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Abstract. In the last fifteen years, several research efforts have been di-
rected towards the representation and the analysis of metabolic pathways
by using Petri nets. The goal of this paper is twofold. First, we discuss
how the knowledge about metabolic pathways can be represented with
Petri nets. We point out the main problems that arise in the construc-
tion of a Petri net model of a metabolic pathway and we outline some
solutions proposed in the literature. Second, we present a comprehensive
review of recent research on this topic, in order to assess the maturity of
the field and the availability of a methodology for modelling a metabolic
pathway by a corresponding Petri net.

1 Introduction

Molecular biology suffers of the gap between a huge amount of data stored in
large databases, worldwide collected through observations and experiments, and
the lack of satisfying explanations and theories able to give them a sound biolog-
ical meaning. To fill the gap, Computational Systems Biology [73, 74] advocates
the integration of experimental results with both computational techniques and
modelling formalisms in order to get a deeper understanding of biological sys-
tems.

Various formalisms have been proposed for modelling and analysing bio-
systems: ordinary differential equations (ODEs), process calculi, boolean net-
works, Bayesian networks, bipartite graphs, stochastic equations (see, e.g., [40,
122, 42, 80] for some surveys). It is not trivial to choose among discrete or con-
tinuous, deterministic or probabilistic modelling techniques. A difficulty resides
in the need of having, at the same time, abstraction and ease of use, detailed and
complete descriptions. Some additional problems are intrinsic to bio-modelling:
heterogeneous representation of information, incomplete knowledge, noise and
imprecision in the data. Data availability strongly influences the choice of the
model: ODE-models are often the first choice when all kinetic data are known,
but also stochastic models can be used. In the absence of kinetic data, the choice
is obviously restricted to qualitative models. Still it is worth remarking that, in



any case, qualitative models, and the analysis methods they are equipped with,
can provide valuable information which complements or facilitates a quantitative
analysis.

A model always needs to be validated. After that, the model can be used
for studying the behaviour of the biosystem and for experimenting with it. The
analysis techniques available for the adopted formalism may be fundamental
both in the validation phase and when studying the properties of the modelled
biosystem.

In this paper we focus on metabolic pathways, which are complex networks
of biochemical reactions describing flows of substances. Deterministic continuous
models based on ODEs have been largely used for representing and analysing the
kinetics of such networks. On the other hand, stochastic discrete models have
been mainly used for simulation [123]. They assume that the timing of reactions
is determined by a random variable (either continuous or discrete) and that
compound concentrations change either by discrete numbers of molecules (dis-
crete state space models) or by continuous values (fluid models), corresponding
to single reaction events. ODEs model a metabolic pathway at a macroscopic
scale, while a stochastic system models it at a finer level of granularity. As a
consequence, a stochastic model, although generally hard to analyse, can reveal
interesting individual behaviours neglected by ODEs, which instead capture, in
a sense, the average case.

In some seminal papers Reddy et al. [100, 98, 99] and Hofestädt [67] propose
Petri nets (PNs) for representing and analysing metabolic pathways. Since then
a wide range of literature has grown on the topic. PNs are a well known for-
malism introduced in computer science for modelling concurrent systems. They
have an intuitive graphical representation which may help the understanding
of the modelled system, a sound theory and many applications both in com-
puter science and in real life systems (see [96, 101, 90, 47] for surveys on PNs
and their properties). A PN model can be decomposed in order to master the
overall complexity and it enables a large number of different analyses. Just to
mention a few, one can determine conflicting evolutions, reachable states, cycles,
states of equilibrium, bottlenecks or accumulation points. Additionally, once a
qualitative PN model has been devised, quantitative information can be added
incrementally.

Although PNs have been employed also for signalling and regulatory networks
(see, e.g., [55, 95, 84, 64, 103, 33, 57]), here we focus on metabolic pathways only,
since modelling problems are different for different kinds of networks. PNs seem
to be particularly natural for representing metabolic pathways, as there are many
similarities between concepts in biochemical networks and in PNs. They both
consist of collections of reactions which consume and produce resources and
their graphical representations are similar. Such similarities allow for a fruitful
integration between analysis techniques developed for biochemistry and for PNs.
Abstraction and compositionality issues, as studied in PN theory, may help in
mastering the complexity of metabolic networks, furthermore many tools are
available for visualisation, analysis and simulation of PNs.
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The goal of this work is twofold. Firstly, we illustrate how information about
metabolic pathways can be modelled and analysed using PNs; we point out
some relevant representation problems along with some solutions proposed in
the literature. Secondly, we present a comprehensive review of recent research
on modelling and analysing metabolic pathways with PNs in order to assess the
maturity of the field. We consider in particular some aspects: the type of PNs,
the case studies considered, the analyses performed, the tools adopted, the use
of the main biological databases, the level of automated support for translating
pathways information into corresponding PN models and for analysing such
models.

Other reviews on modelling metabolic pathways through PNs are presented
in [58, 94, 83, 32, 75]. In particular, in [58] the modelling and analysis capabilities
of basic PNs and of their extensions are discussed, illustrating how the glycolysis
pathway can be modelled with stochastic, coloured and hybrid PNs. In [94] PNs
and some of their extensions are presented together with a classification of the
analyses they enable and of the biological processes they can model. Three case
studies are considered which highlight some typical features of biological systems.
These are modelled with five PN tools, which are then compared with respect to
their analysis capabilities. The paper [83] presents a survey on qualitative and
quantitative modelling and analysis of biological pathways through various types
of PNs. Some practical examples of modelling by means of Hybrid PN and their
extensions are discussed, showing how they can be used to produce biological
hypotheses by means of simulations. We also recall [32], which surveys the basics
of PN theory and some possible applications to metabolic, genetic and regulatory
networks. An interesting overview on PN and on the main analysis techniques
for validating a PN model and experimenting with it, is presented in [75] and it
is illustrated by examples. A special emphasis is given to the qualitative analysis
of the model.

The paper is organised as follows. In Section 2 we shortly illustrate metabolic
pathways and the main databases collecting related information. In Section 3
we present an overview of the basics of PNs. In Section 4 we discuss the repre-
sentation of metabolic pathways through PNs. We describe the main problems
concerning qualitative and quantitative modelling and we illustrate some solu-
tions proposed in the literature. In Section 5 we present the main PN based
approaches for modelling and analysing metabolic pathways in the literature
and discuss the indications resulting from this survey. Brief concluding remarks
follow in Section 6.

2 Metabolic Pathways

The life of an organism depends on its metabolism, the chemical system which
generates the essential components - amino acids, sugars, lipids and nucleic acids
- and the energy necessary to synthesise and use them. The flow of mass and
energy is the essential purpose of the system and homeostasis its central property,
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since the organism has to maintain a steady level for the important metabolites
while facing external and internal stimuli.

Subsystems dealing with some specific function are called metabolic path-
ways. Hence a metabolic pathway is a set of interacting chemical reactions which
modify a principal chemical. Each chemical reaction transforms some molecules
(reactants or substrates) into others (products), and it is catalysed by one or
more enzymes. Enzymes are not consumed in a reaction, even if they are neces-
sary and used while the reaction takes place. The product of a reaction can be
the substrate of subsequent ones.

Regulation is important in metabolic pathways. Usually it is obtained by a
feedback inhibition or by a cycle where one of the products starts the reaction
again. Anabolic (constructive) or catabolic (destructive) pathways can be sep-
arated by compartments or by using different enzymes. A metabolic pathway
contains many steps, one is usually irreversible, the other steps need not to be
irreversible and in many cases the pathway can go in the opposite direction
depending on the needs of the organism. Glycolysis is a good example of this
behaviour: it is a fundamental pathway which converts glucose into pyruvate
and releases energy. As glucose enters a cell, it is phosphorylated by ATP to
glucose 6-phosphate in a first irreversible step, thus glucose will not leave the
cell. When there is an excess of energy, the reverse process, the gluconeogenesis,
converts pyruvate into glucose: glucose 6-phosphate is produced and stored as
glycogen or starch. Most steps in gluconeogenesis are the reverse of those found
in glycolysis, but the three reactions of glycolysis producing most energy are
replaced with more kinetically favorable reactions. This system allows glycolysis
and gluconeogenesis to inhibit each other. This prevents the formation of a fu-
tile cycle, i.e. when two metabolic pathways running simultaneously in opposite
directions have no overall effect except for dissipating energy.

A metabolic pathway is usually represented graphically as a network of chem-
ical reactions. In such a concise representation enzymes are often omitted. In
order to completely characterise a metabolic pathway, it is necessary to identify
its components (namely the reactions, enzymes, reactants and products) and
their relations. The quantitative relations between reactants and products in a
balanced chemical reaction are represented through its stoichiometry. For exam-
ple the well-known reaction in which water is formed from hydrogen and oxygen
gas is described by the equation 2H2 + O2 → 2H2O, where the coefficients show
the relative amounts of each substance. Each amount can represent either the
relative number of molecules, or the relative number of moles 1. Each reaction is
characterised also by an associated rate, represented by a rate equation, which
depends on the concentrations of the reactants. The rate equation depends also
on a reaction rate coefficient (or rate constant) which includes all the other
parameters (except for concentrations) affecting the rate of the reaction.

For a pathway with n reactions and m molecular species, stoichiometries
may be represented in a more compact although less informative form by a

1 By definition, a mole of any substance contains the same number of elementary
particles as there are atoms in exactly 12 grams of the 12C isotope of carbon.
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stoichiometric matrix with n columns and m rows. An element of the matrix,
a stoichiometric coefficient nij , represents the degree to which the i-th species
participates in the j-th reaction or, more precisely, the variation of the amount
of the i-th substance due to the j-th reaction. By convention, reactants have
negative values and products positive ones. In elementary reactions such values
are integers (whole molecules), while in composite reactions some values may be
fractions. The coefficients of the enzymes are equal to zero, since they are taken
and released in the reaction. For an introduction to metabolism and to chemical
networks we refer to general texts such as [120, 23].

The study of a metabolic pathway requires to combine information from
many sources: biochemistry, genomics, life process descriptions, network analy-
sis and simulation. A challenge of computational Systems Biology is to repre-
sent metabolic pathways with formal models supporting analysis and simulation.
Such models are meant to give a better understanding of the processes in a path-
way by studying the interactions among the pathway components and how these
interactions contribute to the function and behaviour of the whole system. Sys-
tems Biology advocates a method consisting of various steps:

– translate experimental and theoretical knowledge into a model;
– validate the model;
– derive from the validated model testable hypotheses about the system;
– experimentally verify them;
– use the newly acquired information to refine the model or the theory.

The first two steps are very complex, they require to build a model of a metabolic
pathway from available knowledge and to validate it. Such knowledge is contin-
uously increasing and rapidly changing, and often stored in databases.

2.1 Databases for metabolic pathways

In this section we briefly consider the main databases collecting knowledge on
metabolic pathways.

The KEGG PATHWAY database [11] (KEGG stands for Kyoto Encyclo-
pedia of Genes and Genomes) contains the main known metabolic, regulatory
and genetic pathways for different species. It integrates genomic, chemical and
systemic functional information [70]. At present it contains around 96000 path-
ways, generated from 339 reference pathways which are manually drawn, curated
and continuously updated from published materials. Pathways are represented
by maps with additional information connected to such maps. Such information
cover reactions, proteins and genes, and may be stored also in other databases.
KEGG can be queried through a language based on XML [9], called KGML
(KEGG Markup Language) [10].

Another important repository is the BioModels Database related to the
SBML.org site [18]. It allows biologists to store, search and retrieve published
mathematical models of biological interest. These are annotated and linked
to relevant data resources, such as publications, databases of compounds and
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pathways, controlled vocabularies. At present it contains 231 curated and 198
non-curated models, 32014 species, 39293 reactions and around 16492 cross-
references. The models are coded in SBML (Systems Biology Markup Lan-
guage) [18], a language based on XML.

There are also other free access databases containing information on metabolic
pathways:

– MetaCyc [12, 30], which is part of BioCyc Database Collection [2]. It de-
scribes more than 1400 metabolic pathways from more than 1800 different
organisms and it is maintained by exploiting the scientific experimental lit-
erature.

– Reactome [17] which is an expert-authored, peer-reviewed knowledge base
of core pathways and reactions in human biology, with inferred orthologous
events in 22 non-human species.

– TRANSPATH, which is part of BIOBASE [20]. It provides information
on signalling molecules, metabolic enzymes, second messengers, endogenous
metabolites, miRNAs and the reactions they are involved in.

– BioCarta [1] hosts a set of dynamic graphical models which integrate emerg-
ing proteomic information from the scientific community. It contains around
80 metabolic pathways.

Relevant information can be found also in other databases, not specifically
dedicated to metabolic pathways, such as BRENDA [5, 31] (BRaunschweig EN-
zyme DAtabase), which is the largest publicly available enzyme information sys-
tem worldwide; ENZYME [8], which is another repository of information relative
to enzymes; DIP [6, 104], MINT [13, 34] and BIND (Biomolecular Interaction
Network Database) [4] which are catalogues of experimentally determined inter-
actions between proteins.

2.2 General problems in representing metabolic information

In spite of all the available information, it is very difficult to collect the relevant
knowledge and to translate it into a model of a metabolic pathway. The data con-
cerning the chemical reactions are generally not precise, coherent and complete,
and this is especially true for kinetic information. Published data come from
different microorganisms or different strains and they are produced over several
years. Besides the kinetic laws of reactions are seldom published, since major
substrates, cofactors and effectors are usually studied separately. The kinetics of
many processes is almost completely unknown and modelling assumptions are
highly speculative. Hence simplified approaches are used [23, 122].

An example is the following Michaelis-Menten scheme

V =
d[P ]

dt
=

Vmax · [S]

[S] + Km

which is commonly used to describe an enzymatic reaction

E + S →
←

ES → E + P
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where E is the enzyme, S the substrate, P the product. In the scheme [S] and [P ]
denote the substrate and product concentrations, Vmax is the maximum reaction
rate and Km the Michaelis constant. The parameters Vmax and Km characterise
the interactions of the enzyme with its substrate. This kinetic model is valid
when the concentration of the enzyme is much smaller than the concentration of
the substrate and it is based on the assumption that enzyme and substrate are
in fast equilibrium with their complex, that is the concentrations of intermediate
complexes do not change (steady state approximation). When kinetic data are
available, a more accurate description could be obtained by decomposing the
enzymatic reaction and by using the law of mass-action for single-step reactions.
An interesting discussion on the use of these two models and on their assumptions
can be found in [28]. A uniform distribution of the amount of metabolites in
the system is generally assumed, but in some situations this is not true. For
example, when there are diffusion mechanisms or membranes which alter the
transportation of metabolites. In such cases more appropriate kinetic models
must be used [23].

A further problem to solve in modelling regards the partitioning of a large
metabolic network into pathways. On the one hand partitioning is necessary to
master the complexity of the network, on the other hand it is a quite difficult task
since biologists and biochemists base their definitions of pathways on intuitive
biological criteria. As a consequence, in the databases we may find models of the
same pathway which can significantly differ, not only in numerical parameters,
but also in their structure. To overcome this problem, consensus pathways may
be defined and they are represented in some databases such as in KEGG [11].

In the latest years there have been many attempts to attack the problems con-
cerning data availability and network partitioning by computational means. Data
mining and information retrieval have been used to extract available metabolic
information from the literature in the Internet and to integrate them with the
information from major public databases, by using genome sequence data, an-
notations, organism similarities and statistical techniques (see, e.g., [26, 78, 27]).
Genetic algorithms have been used for predicting both the network topology and
the parameters of biochemical equations. They have been used also in the reverse
engineering problem of inferring the topology and the parameters of a network
from time series data on the concentration of the different reacting components
(see, e.g., [77, 38]). Optimisation techniques have been used for the computation
of steady-states, dynamic optimal growth behaviour and network modularisation
(see, e.g., [88, 25]).

Analysis techniques are essential for model validation and various methods
have been developed for metabolic pathways. We can distinguish methods based
on system theory, such as metabolic control analysis and flux balance analysis
(see, e.g., [65, 48, 119, 45]), and structural methods which do not use informa-
tion on metabolite concentrations or fluxes, by assuming that fluxes and pool
sizes are constant. The analysis of extreme fluxes and the analysis of elementary
flux modes belong to this second class and are used to determine the possible
behaviours of the pathway (see, e.g., [110, 105]). They are based on the stoi-
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chiometric relations which restrict the space of all possible flux patterns in a
network to a rather small linear subspace. Such a subspace can be analysed in
order to capture also the functional subunits of the network (see, e.g., [111]). A
good survey on metabolic pathways analysis techniques can be found in [106].
Based on stoichiometric data and reaction descriptions, they have been used
to identify and validate metabolic pathways [108, 109] without requiring kinetic
information.

3 Petri nets

In this section we give an overview of Petri nets (PNs) (see, e.g., [96, 101, 90]),
describing the basic model and some extensions used for the representation of
metabolic pathways.

3.1 Basic Petri nets

A (finite marked) Petri net (PN) is a tuple N = (P, T, W, M0) where:

– P is the set of places, P = {p1, . . . , pn};
– T is the set of transitions, T = {t1, . . . , tm};
– W :

(

(P × T ) ∪ (T × P )
)

→ N is the weight function; 2

when W (x, y) = k, with k > 0, the net includes an arc from x to y with
weight k;

– M0 is an n-dimensional vector of non-negative integers which represents the
initial marking of the net.

PNs admit a simple graphical representation, where places are drawn as circles,
transitions as rectangles, the presence of an arc (p, t) or (t, p) between a transition
t and a place p, is represented by a directed arc, labelled with the corresponding
weight W (p, t) or W (t, p), respectively. When the weight is 1 the label is usually
omitted. A marking (or state) is an n-dimensional vector of non-negative integers
M = (m1, . . . , mn) which represents the amount of tokens in the places of the
net N . A marking M is graphically represented by inserting in each place pi a
corresponding number mi of black circles representing tokens. We write M ≤ M ′

when mi ≤ m′i for i ∈ {1, . . . , n}. A simple example of PN is given in Fig. 1.
The input bag or precondition of the transition t is the n-dimensional vector

of non-negative integers t− = (i1, . . . , in), where ij = W (pj , t) for any j ∈
{1, . . . , n}. Dually, the output bag or post-condition of the transition t is an
n-dimensional vector of non-negative integers t+ = (o1, . . . , on), where oj =
W (t, pj) for any j ∈ {1, . . . , n}. Intuitively, t− indicates, for every place of
the net, the number of tokens needed to enable transition t. The firing of t

removes such tokens and generates new ones, as indicated by t+. We call input
(output) places of a transition t those places, which correspond to the non-zero
elements of t− (t+). For instance, in Fig. 1, we have t1

− = (1, 0, 0, 0, 0), while
t1

+ = (0, 1, 1, 0, 0). Similarly, t5
− = (0, 0, 0, 2, 1) and t5

+ = (1, 0, 0, 0, 0).

2 We denote by N the set of natural numbers, N = {0, 1, 2, . . .}.
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t 1 t 2

t 3 t 4

t 5

p 1

p 4

p 2 p 3

2

p 5

Fig. 1. A simple Petri net.

A self-loop of a transition t over a place p exists when W (p, t) > 0 and
W (t, p) > 0, i.e., the transition deletes and produces tokens from the same
place. A Petri net is called pure if it does not contain self-loops.

A transition t with input bag t− is enabled by the marking M = (m1, . . . , mn),
if t− ≤ M . In this case t can fire and, as a consequence, the net marking changes
from M to a new marking M ′ defined as follows:

M ′ = M − t− + t+,

and we write M
t
−→ M ′.

Note that a marking can enable more than one transition. In this situation
one of the enabled transitions is non-deterministically chosen and fired. It can
also happen that some of the enabled transitions compete for a token; in this case
they are in conflict and the execution of one of them can prevent the other ones
from firing. For instance, consider the PN in Fig. 1. Its marking M = (1, 0, 0, 0, 0)
enables transitions t1 and t2, which are in conflict. After firing e.g., transition
t1, the new marking is M ′ = (0, 1, 1, 0, 0) and t2 is no longer enabled.

The incidence matrix of a PN N , denoted by AN , is the n×m matrix which
has a row for each place and a column for each transition. The column associated
with transition t is the vector (t+ − t−)T , which represents the marking change
due to the firing of t. In the PN literature the incidence matrix is sometimes
defined as the transpose of the one considered here (see for example [90]).

The reachability set (or state space) of the net N is the set of all the markings
of the net which are reachable by a firing sequence from the initial marking M0,
and it is denoted by R(N, M0).

3.2 Behavioural properties of Petri nets

Representing a system as a PN allows for a formal analysis of its properties.
We discuss now some fundamental properties which are of interest when PNs
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model biological systems. First we focus on those properties which depend on
the evolutions of the net from an initial marking. According to [90], these are
referred to as behavioural or marking dependent properties of a PN. Structural
or marking independent properties will be discussed in the next section. For the
rest of this section N indicates a fixed PN, with m transitions, n places and an
initial marking M0.

A first fundamental property of a system is reachability: given a marking
M , determine whether M ∈ R(N, M0), i.e., check whether M is reachable via
a firing sequence from the initial marking (reachability problem). Understand-
ing whether the system will be able to reach some desired or undesired state is
clearly of vital importance in most modelling application. A related problem is
coverability: given a marking M , determine if there exists a reachable marking
M ′ ∈ R(N, M0) such that M ′ covers M , i.e., M ≤ M ′. The problem of deciding
whether a state is part of the reachability set of a net is known to be decid-
able [85], but of intractable complexity (it is easily proven to be NP-hard [47]
and it is actually EXPSPACE-hard [79]). As a consequence of the intractability
of the reachability problem, naive approaches to reachability analysis normally
fail to be effective, a fact that motivates the interest and the huge literature on
analysis methods for Petri nets.

Next fundamental property is boundedness. A net N is bounded if, during
the evolution of the net, in each place the number of tokens will never exceed a
fixed number k. More formally, N is called k-bounded, for some k ∈ N, if for all
M = (m1, . . . , mn) ∈ R(N, M0) and i ∈ {1, . . . , n}, mi ≤ k. We say that N is
bounded if it is k-bounded for some k ∈ N. When considering a PN model of a
metabolic pathway, the validity of the conservation law should ensure that the
net is bounded. However, often this property does not hold due to the presence
of external metabolites for the considered pathway, which are usually assumed to
be available in unbounded quantity. A more detailed discussion on the modelling
of external metabolites can be found in Section 4.2.

The third fundamental property is liveness. A net N is live if, starting from
any reachable marking, any transition in the net can be fired, possibly after
some further firings. Formally, for all M ∈ R(N, M0) and t ∈ T , there exists
M ′ ∈ R(N, M) such that t is enabled at M ′. A net N has a deadlock (or dead
state) if it is possible to reach a marking in which no transition is enabled. The
fact that a PN model of a metabolic pathway is live indicates that any reaction,
at any moment may happen infinitely often, i.e., that the biological process will
never restrict to a subprocess. A deadlock corresponds to the possibility for a
metabolic process to become blocked, thus reaching a false equilibrium.

The reachability graph of a net N with initial marking M0, is a graph whose
vertices are the elements of the reachability set R(N, M0) and whose arcs rep-

resent transitions, namely there is an arc from M to M ′ when M
t
−→ M ′. The

reachability graph is infinite when the number of reachable markings is infi-
nite. In this case it can be useful to consider the coverability graph, which is a
graph where nodes are labelled by markings, with the property that for each
reachable marking M ∈ R(N, M0) there is a marking M ′ in the graph that
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covers M . In order to keep the graph finite even for infinite-state Petri nets,
the symbol ω is used to represent an unbounded number of tokens in a place.
Conversely, for any marking M ′ in the coverability graph, there is a reachable
marking M ∈ R(M0, N) such that mi = m′i, if m′i 6= ω, and mi > k, for arbi-
trary k, if m′i = ω. Edges in the graph still represent the firing of transitions.
The coverability graph is thus an abstraction of the reachability graph, where
some information is lost. Hence its analysis normally provides bounds, rather
than exact results.

Decision procedures for properties based on the reachability graph may be
affected by the so-called state space explosion problem: a structurally small PN
can have a huge reachability set due to the arbitrary interleaving of concurrent
transitions. Indeed, for these nets the state space can grow faster than any
primitive recursive function [118]. As a consequence, even if the reachability
graph is finite, the analyses can become computationally unfeasible.

In order to tackle the state space explosion problem and to ease the analyses,
many techniques have been proposed. Just to mention a few, reduction rules
may be used to simplify a net while preserving its interesting properties (see,
e.g., [90]). Binary decision diagrams, or generalisations of them, can be fruitfully
combined with static analysis (e.g, [93]) to simplify the reachability analysis.
Abstract interpretation may be used to reduce the size of the net (see, e.g., [49])
and partial order semantics to check reachability, coverability and absence of
deadlocks and to model check behavioural logics for PNs [46].

3.3 Structural properties of Petri nets

The term structural analysis of a net refers to the analysis of those properties,
called structural properties, which only depend on the net topology. Structural
properties are independent of the initial marking and they can be often charac-
terised in terms of the incidence matrix.

A common kind of structural analysis based on the incidence matrix aims to
determine the so-called invariants of the net.

Let N be a PN, with m transitions and n places. A T-invariant (transition
invariant) of N is an m-dimensional vector in which each component represents
the number of times that a transition should fire to take the net from a state M

back to M itself. It can be obtained as a solution of the following equation:

AN · X = 0, where X = (x1, . . . , xm)T and xi ∈ N, for i ∈ {1, . . . , m}.

A T-invariant X 6= 0 indicates that the system can cycle on a state M enabling
the cycle. The presence of T-invariants in a PN model of a metabolic network is
biologically of great interest as it can reveal to the analyst the presence of steady
states, in which concentrations of substances have reached a possibly dynamic
equilibrium. As discussed in [52, 75], T-invariants admit two possible biological
interpretations. On the one hand, the components of a T-invariant represent
a multiset of transitions whose partially ordered execution reproduces a given
initial marking. On the other hand, the components of a T-invariant may be
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interpreted as the relative firing rates of transitions which occur permanently
and concurrently, thus characterising a steady state.

The support of a T-invariant X = (x1, . . . , xm)T is the set of transitions
corresponding to non-zero coefficients supp(X) = {ti | xi > 0}. The support
of a T-invariant is minimal if there is no other T-invariant X ′ whose support
is strictly included in that of X , i.e., such that supp(X ′) ⊂ supp(X). For any
minimal support there exists a unique T-invariant X with that support and such
that for any other T-invariant X ′, X ′ ≤ X implies X = X ′. Such T-invariants are
called minimal support T-invariants or simply minimal T-invariants. They form
a basis for the set of T-invariants of the net, i.e., any T-invariant can be obtained
as a linear combination of minimal T-invariants. In a PN model of a metabolic
pathway, minimal T-invariants represent minimal sets of enzymes necessary for
the network to function at steady state. They are particularly important in model
validation techniques (see, e.g., [61, 75]) which will be discussed in Section 4.1.

A P-invariant (place invariant) or S-invariant (from ‘Stelle”, the German
word for place) is a n-dimensional vector which can be obtained as a solution of
the following equation:

AT
N · Y = 0, where Y = (y1, . . . , yn)T , with yi ∈ N, for i ∈ {1, . . . , n}.

When a PN admits a P-invariant with all positive components, then the net is
called conservative since the weighted sum of the tokens remains constant during
the evolution of the net, i.e., for each marking of its reachability set. In a PN
model of a metabolic network P-invariants correspond to the conservation law
in chemistry. Minimal (support) P-invariants are defined similarly to minimal
T-invariants. As discussed later, also minimal P-invariants are used as validators
of a metabolic net model (see, e.g., [61, 75]).

A relevant role in the structural analysis of a PN is played also by traps and
siphons. A trap S is a subset of places, S ⊆ P , such that transitions consuming
tokens in S are a subset of those producing tokens in S, i.e., for any t ∈ T , p ∈ S,
if W (p, t) > 0 then there exists p′ ∈ S such that W (t, p′) > 0. As a consequence
if a trap is initially marked, then it will never become empty.

Dually, a siphon S is a subset of places S ⊆ P such that transitions producing
tokens in S are a subset of those consuming tokens in S, i.e., for any t ∈ T , p ∈ S,
if W (t, p) > 0 then there exists p′ ∈ S such that W (p′, t) > 0. If a siphon is token
free in some marking, then it will remain token free in all subsequent markings.
In a biological model, traps may reveal the storage of substances which can
occur, e.g., during the growth of an organism. Dually, siphons can characterise
situations in which this storage, previously created, is consumed.

Structural properties can be useful also for the behavioural analysis of a net.
For instance, a necessary condition for a marking M to be reachable is that the
equation

AN · X + M0 = M (1)

admits a non-negative integer solution.
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Boundedness is obviously implied by structural boundedness, i.e., bounded-
ness with respect to any possible initial marking. The latter can be characterised
in terms of the existence of a strictly positive sub-P-invariant, namely an n-vector
of strictly positive integers such that AT

N · Y ≤ 0.
For some subclasses of PNs, behavioural properties can be characterised in

purely structural terms. For instance, condition (1) becomes also sufficient for
reachability when dealing with acyclic nets, while for the so called free-choice
PNs [41], liveness can be characterised in terms of traps and siphons.

A large number of tools have been developed for analysing many properties
of PNs. A quite comprehensive list can be found at the Petri net World site [16].

3.4 Petri net extensions

The simplicity of the PN formalism, which is one of the reasons of its success,
can also represent a limitation in the modelling of real systems. On the one
hand, basic PNs, i.e. those described in the previous section, are not Turing
powerful, on the other hand, they are not suited to model quantitative aspects
of the behaviour of a system.

In order to overcome these limitations, several generalisations of the basic
PN formalism have been proposed in the literature. Some extensions concern the
qualitative aspects of the models, such as the addition of new kinds of arcs or
coloured tokens, and they aim at increasing the expressive power or the modelling
capabilities of the formalism. Other extensions introduce quantitative concepts,
such as time and probability, allowing for the representation of temporal and
stochastic aspects of biological systems, respectively.

In the following we review some extensions of PNs which have been used for
the modelling of metabolic pathways.

– PNs with test and inhibitor arcs.
Test or read arcs allow a transition to verify the presence of a token in
the source place without consuming it. Inhibitor arcs, instead, permit to
model the fact that the presence of some tokens in a place inhibits the fir-
ing of a transition [21]. PNs with inhibitor arcs reach the expressive power
of Turing Machines, and the reachability, liveness and boundedness prob-
lems become, in the general case, equivalent to the halting problem of the
Turing Machine [71] and hence undecidable. The notions of P-invariant and
T-invariant can be defined in the same way as for basic PNs. Under some
restrictions, it is also possible to derive the coverability graph for this class
of models [29].
In metabolic networks, test arcs may be used to model the role of the enzymes
in reactions (see, e.g., [84, 87]), since enzymes are needed for a reaction to
take place, but not consumed. Inhibitor arcs may directly model the inhibitor
function. This issue is further discussed in Section 4.1.

– Self-Modifying or Functional Petri nets (FPNs).
FPNs (see, e.g., [117]) give the possibility to define arc weights symbolically,
as functions of the number of tokens in places. This allows arc weights to
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evolve dynamically. When modelling metabolic networks, this feature can
represent how variations in the concentration of substances may influence
the kinetic rate of reactions [68].

– Coloured Petri nets (CPNs).
CPNs [69] are a generalisation of basic PNs where the tokens are assigned
a colour and the arcs can be labelled by conditions regarding these colours.
Due to the possibility of making a distinction between tokens in the same
place, CPNs can represent some system behaviours in a more compact and
understandable way than basic PNs. In particular, the use of colours allows
one to superpose different execution flows in the same net. As a consequence,
a CPN can be structurally much smaller than a corresponding basic PN mod-
elling the same process. For example, in [63, 121], CPNs are used to model
a metabolic pathway where molecules of the same species are differentiated
according to their origin and destination reactions.

– Time Petri nets (TPNs).
In TPNs [86] a time interval [at, bt] is associated with each transition t. When
t becomes enabled, it cannot fire before at time units have elapsed and it
has to fire not later than bt time units, unless t gets disabled by the firing of
another transition. The firing of a transition t takes no time. TPNs are used
to model or analyse time-related quantitative aspects of biological models,
as in [62, 50, 97].

– Stochastic Petri nets (SPNs).
SPNs [89] model time in a different way. Each transition is associated with
a random variable which represents its firing delay. The expected value of
the delay determines the execution rate of the transition, i.e., the number of
firings per time unit when the transition is continuously enabled. If all the
random variables are exponentially distributed (or more generally, if they
take values in (0, +∞)), then the reachability graph of the stochastic model
is isomorphic to that of the untimed model. This makes some analysis tasks
easier because standard techniques for basic PNs can still be used. Moreover,
the reachability graph can be seen as a continuous time Markov chain whose
states are the same as those of the reachability graph, and the transition
from m′ to m′′ has a rate equal to the sum of the rates of the transitions
that are enabled in m′ and whose firings take the model to m′′ [22, 24].
When a SPN models a metabolic pathway, the firing rate of a transition t

may be a function of both the environment conditions (e.g., temperature,
pressure, pH) and the concentrations of the reactants. SPNs are used for
modelling biological systems, e.g., in [55, 81, 53, 60].

– Continuous Petri nets (KPNs) and Hybrid Petri nets (HPNs).
KPNs are characterised by the fact that the state is no longer discrete.
The integer numbers of tokens in places are replaced by non-negative real
numbers, called marks. When modelling metabolic pathways, marks may
represent the concentration of the molecular species. Continuous transitions
have an associated firing rate, which expresses the “speed” of the trans-
formation from input to output places. HPNs can represent both discrete
and continuous quantities in the same model (see, e.g., [39]) since they have

14



both discrete and continuous places and transitions. Techniques for deriving
a quantitative model of a biochemical network based on KPNs are proposed,
e.g., in [52, 60, 28, 75].
Hybrid Functional Petri nets (HFPNs), defined in [84, 87], combine the fea-
tures of HPNs and FPNs. Additionally, inhibitor and test arcs are used in
order to ease the modelling of some biological functions.

Summing up, some PN extensions allow one to define models of biochem-
ical reactions which capture also quantitative aspects. Some other extensions
just lead to more compact and readable models than those which could be ob-
tained with basic PNs. However, there is a price to pay. As a general rule, an
increased modelling power makes the analysis tasks more difficult and, indeed,
for extended formalisms there are fewer algorithmic analysis methods with an
acceptable complexity or decent heuristics. For instance, when using CPNs, the
discovery of T-invariants becomes more difficult. In [63, 121] it is shown how,
in some situations, this problem can be faced by first decomposing the original
net into sub-nets on the basis of the assigned colours, and then using standard
algebraic techniques. When the number of colours is finite, CPNs can be un-
folded into finite basic PNs. Hence several properties, like reachability, remain
decidable. Nevertheless the unfolded model can be so large that the analysis is
practically unfeasible.

Network simulation is generally necessary both for refining the model and
for experimenting with it. KPNs, HPNs and SPNs can be used for simulation
purposes. When modelling a metabolic network at a microscopic level, where
a small number of molecules is involved and their individuality is important,
SPNs are appropriate. As mentioned before, a SPN with an exponential time
distribution induces a Markov chain and thus well-known analysis techniques are
available. However, for complex systems these techniques can become practically
unfeasible and simulation can be an interesting alternative. SPNs can be simu-
lated by computing the delay for each enabled transition and by executing the
transition with the smallest delay. This simulation corresponds to the Gillespie
algorithm [54, 123], which is generally used in stochastic simulation of chemi-
cal reactions. The algorithm is simple but computationally expensive when the
number of reactions/molecules increases. For this reason several modifications
and adaptations have been proposed (see, e.g., [51]).

When modelling at a macroscopic level, the enormous number of molecules
involved is better represented in a continuous way as a concentration, and KPNs
or HPNs are generally more appropriate. In this case, the rate functions asso-
ciated with transitions may follow known kinetic equations, which have been
studied, under simplifying assumptions, for chemical reaction networks, such as
the Michaelis-Menten or the mass action equation.

4 From Metabolic Pathways to Petri nets

In this section we discuss how to pass from a metabolic pathway description to
a corresponding PN representation. We point out some modelling problems and
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outline some solutions proposed in the literature. We also discuss the relations
with existing analysis techniques for metabolic pathways in Systems Biology.

4.1 Correspondence between pathways and Petri nets

In order to give a PN representation of a metabolic pathway, the first step con-
sists in providing a structural description. This process is guided by the natural
correspondence between PNs and biochemical networks and it is well illustrated
in [75]. Firstly, places are associated with molecular species, such as metabo-
lites, proteins or enzymes. Transitions correspond to chemical reactions: places
in the precondition represent substrates or reactants; places in the postcondi-
tion represent reaction products. The incidence matrix of the PN coincides with
the stoichiometric matrix of the system of chemical reactions and arc weights
in the PN can be derived by the stoichiometric coefficients. As a classical ex-
ample, which dates back to [90], reaction 2H + O → H2O will lead to a PN
with three places, corresponding to the substances H , O and H2O, and one
transition, which consumes two tokens from place H and one from place O and
produces one token in place H2O. The number of tokens in each place indicates
the amount of substance associated with that place. It may represent either the
number of molecules expressed in moles or the level of concentration, suitably
discretised by introducing a concept of concentration level [53].

Once we have a qualitative model, quantitative data can be added to refine
the representation of the behaviour of the pathway. In particular, extended PNs
may have an associated transition rate which depends on the kinetic law of the
corresponding reaction.

The following table shows the correspondence between metabolic pathway
elements and Petri net elements.

Pathway elements Petri net elements

metabolites, enzymes, compounds places
reactions, interactions transitions
substrates, reagents input places
reaction products output places
stoichiometric coefficients arc weights
metabolites, enzymes, compounds quantities number of tokens on places
kinetic laws of reactions transition rates

Qualitative aspects. As an example of qualitative modelling, consider the two
reactions in Fig. 2, which appear in the Glycolysis Pathway, as given in KEGG
database.

By clicking on enzyme 3.1.3.11 in the KEGG map, it is possible to see the
reaction associated with the enzyme, namely:

D-fructose 1,6-bisphosphate + H2O = D-fructose 6-phosphate + phosphate
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Fig. 2. Two biochemical reactions in the KEGG Glycolysis Pathway.

where the substrates are D-fructose 1,6–bisphosphate and water, and the prod-
ucts are D-fructose 6-phosphate and phosphate. Note that KEGG always uses
the equal sign in reaction formulae even though the reaction is irreversible. The
direction of a reaction is indicated by an arrow in the KEGG diagram.

The other reaction in the same figure, catalysed by the enzyme 2.7.1.11, is:

ATP + D-fructose 6-phosphate = ADP + D-fructose 1,6-bisphosphate

where the substrates are ATP and D-fructose 6-phosphate, and the products are
ADP and D-fructose 1,6-bisphosphate. Also this reaction is irreversible.

If we represent each component of the substrate, each enzyme and each prod-
uct of the reaction as a place of a Petri net, and chemical reactions by transitions,
we obtain the PN of Fig. 3(a).

D - f r u c t o s e - 1 , 6 -
b i s p h o s p h a t e

H 2 O

D - f r u c t o s e  6 - p h o s p h a t e

p h o s p h a t e

f r u c t o s e - b i s p h o s p h a t a s e
E n z y m e  3 . 1 . 3 . 1 1

6 - p h o s p h o f r u c t o k i n a s e
E n z y m e  2 . 7 . 1 . 1 1

A T P A D P

D - f r u c t o s e -
1 , 6 - b i s p h o s p h a t e

D - f r u c t o s e  
6 - p h o s p h a t e

( a ) (b )

Fig. 3. PN associated with the biochemical reactions of Fig. 2.

Note that when enzymes are represented as normal substrates, the resulting
PN is non-pure, i.e. it contains self-loops, since the enzyme is taken and released
by the corresponding reaction. This is represented graphically in Fig. 3(a) by
connecting the enzyme place to the transition corresponding to the associated
reaction with a double arrow. Having a non-pure net may cause difficulties in the
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analysis since self-loops are not represented in the incidence matrix of the net. In
order to simplify the model and to avoid the introduction of self-loops, a typical
modelling choice consists of omitting the explicit representation of enzymes. This
is appropriate as long as their concentrations do not change as it happens, e.g.,
in signalling cascades. Alternatively enzymes can be treated as parameters, as
suggested in [124].

Note that in the KEGG map of Fig. 2, substances such as H2O, phosphate,
ADP and ATP are not shown. They are ubiquitous molecules and their con-
centrations, which are assumed to be constant, are taken into account in the
constants of the reaction rates.

By omitting places corresponding to enzymes and ubiquitous substances the
net of Fig. 3(a) can be simplified, thus resulting in the PN of Fig. 3(b). In
general, large and complex networks can be greatly simplified by avoiding an
explicit representation of enzymes and by assuming that ubiquitous substances
are in a constant amount. On the other hand, as an obvious drawback, processes
involving these substances, such as the energy balance, are not modelled. For ex-
ample a dephosphorylation, such as the decomposition of adenosine triphosphate
(ATP) into adenosine diphosphate (ADP) and a free phosphate ion, releases en-
ergy, which is generally used by enzymes to drive other chemical reactions. This
process cannot be observed in the simplified PN shown in Fig. 3(b).

The inhibitor function of some substances on a reaction can be directly mod-
elled by using inhibitor arcs. However, inhibitor arcs generally make the prop-
erties of a PN much more difficult to check and the modeller might desire to
avoid their use. If the net is bounded, one can get rid of inhibitor arcs by using
a classical complementation technique [101]. Intuitively, a so-called complement
place is introduced such that a token in such place represents the absence of
an inhibitor biochemical substance. Inhibition of a process can also be modelled
by using transitions which remove tokens needed by the process to take place,
as discussed in [57]. Other inhibition patterns (negative feedback) in signalling
networks and the corresponding PN encodings can be found, e.g., in [28]. An-
other approach consists in representing inhibition by quantitative information
using the reaction rate. An example of this technique, applied to the modelling
of negative feedback control, is illustrated later in this section, when discussing
quantitative aspects.

Stoichiometry and invariants. In Systems Biology, many techniques for sto-
ichiometric modelling, dynamic simulation and ODE-modelling of metabolic
pathways have been developed. Petri nets allow for accommodating many of
them into a single framework, while providing a natural graphical represen-
tation. Some clear correspondences exist between fundamental concepts used
in modelling and analysing biochemical systems and their counterparts in PNs.
In [111] they are discussed and summarised in a table which is partially reported
below.
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Biochemical systems Petri nets

Conservation relations P-invariants
Semi-positive (non-negative) Semi-positive P-invariants
conservation relations
Steady-state flux distributions T-invariants
Elementary flux modes Minimal T-invariants

The analysis of invariants in a Petri net model of a metabolic pathway has
a fundamental role in checking its biological plausibility. Such validation tech-
niques are well illustrated in [61, 75]. Moreover invariants may provide insights
into the network behaviour.

A fundamental property to be verified is CTI, which requires that the PN
model is covered by minimal T-invariants, i.e., that each transition belongs to
the support of a minimal T-invariant. The fact that CTI holds means that every
chemical reaction represented in the net occurs in some subprocess. The CTI
property is a necessary condition for a bounded PN to be live. Besides each min-
imal T-invariant should be biologically meaningful and each biological behaviour
should correspond to a T-invariant.

Similar validation criteria exist for minimal P-invariants. A net is said to
satisfy CPI if it is covered by P-invariants, namely when every place is in the
support of a minimal P-invariant. CPI can be expected to hold only for com-
pletely specified, closed systems. It will be violated whenever the system includes
places corresponding to ubiquitous molecules and to external metabolites, as the
components corresponding to these places will be null in any P-invariant. In fact,
whenever a component yp, corresponding to place p, is null, the P-invariant does
not constrain the number of tokens in p (the representation of external metabo-
lites is further discussed in Section 4.2). Nevertheless, each minimal P-invariant
must have a biological interpretation and each compound conservation must
correspond to a P-invariant.

The number of minimal T-invariants is generally high for large nets. As a
consequence their biological interpretations becomes difficult to be grasped by
inspection. Recently several techniques have been proposed for concisely repre-
senting the set of minimal T-invariants of a net and their relations. This may be
quite helpful in easing the analyses. Maximal Common Transition sets (MCT-
sets) have been introduced in [103]. They define a partition of the set of transi-
tions T , where equivalence classes are formed by the transitions that participate
in the same minimal T-invariants. More formally, two transitions ti and tj are in
the same MCT-set if and only if, for every minimal T-invariant X , ti ∈ supp(X)
if and only if tj ∈ supp(X). MCT-sets can be interpreted as the smallest biologi-
cally meaningful functional units of the net. Alternatively, minimal T-invariants
can be classified by using standard clustering techniques. In this case a distance
between T-invariants is defined by considering the similarity between their sup-
ports, computed, e.g., by comparing the number of common transitions with the
total number of transitions of their supports. In [56] both MCT-sets and a well-
known hierarchical clustering method (UPGMA) have been used for exploring
T-invariants in model validation and in order to modularise the network.
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A graphical representation of the minimal T-invariants in terms of a binary
tree, the Mauritius map, has been proposed for the knockout analysis of a net-
work. This is aimed at determining the most important transitions, namely those
transitions whose knockout would destroy the largest number of functionalities
(corresponding to minimal T-invariants) in the network. In a Mauritius map,
starting from the root to the leaves of the tree the importance of transitions
decreases. A detailed description of this technique can be found in [57].

Quantitative aspects. As observed in [66], kinetics is pivotal in a metabolic
pathway and it should be represented in the corresponding PN model. Extended
PNs can serve for this purpose. For instance in KPNs and HPNs the rates of
chemical reactions can be very naturally modelled by associating marking depen-
dent rates to continuous transitions. The underlying semantics can be expressed
in terms of ODEs and well-know numerical techniques for their solution can be
applied. Alternatively, stochastic discrete PNs can be used to obtain a finer grain
model. In this case the exact analysis may become unfeasible for systems with
very large state spaces and simulation becomes necessary. On the other hand, a
SPN may point out biological behaviours that ODEs-based models are not able
to catch.

Quantitative parameters can also be used to model control mechanisms in
metabolic processes, such as positive or negative feedbacks. For instance, suppose
that in a pathway the final product is an inhibitor of the enzyme that catalyses
the first reaction (negative feedback control). We can define a state dependent
rate for the PN transition corresponding to the first reaction of the pathway, such
that its rate slows down when tokens accumulate in the place representing the
final product. However, in general, defining appropriate transition rates is not
easy, mainly because some relevant parameters, such as rate constants or kinetic
laws, are not known or difficult to determine. This problem is not specific to
PNs, but it rather applies to any formalism aiming at representing biological
knowledge.

4.2 Problems in the PN representation of metabolic pathways

Although the correspondence between metabolic pathways and PN elements is
rather straightforward, some problems arise in the construction of a PN repre-
sentation of metabolic pathways. Below we review some of these problems and
we present corresponding solutions in the literature.

P1: Modelling of spatial properties. In some cases, it is necessary to distinguish
between compounds according to their location in the cell. For instance, in
a cell, the ATP pools inside and outside the mitochondrion are different and
their relative concentrations are determined through a selective transport
process. This situation is modelled in [100, 98, 99] for the adenine nucleotide
transport system by using two different places for ATP.
As discussed in [55, 32], spatial properties, such as positions, distances and
compartments, are not naturally modelled with PNs. A system with various
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compartments can be modelled by distinct interacting subsystems, where
transitions represent the displacement of diffusing substances as proposed
in [44, 72, 57]. As a drawback, the resulting model can become very large as
it contains replicated information for the different compartments. Another
solution, adopted in [63, 121], is to use colours to associate spatial informa-
tion to substances.

P2: Modelling of external metabolites. In a metabolic pathway one can distin-
guish between internal and external metabolites. The former are entirely
produced and consumed in the network, while the latter represent sources
or sinks, that is, connection points with other pathways producing or con-
suming them. In a sense, external metabolites correspond to the network
interface with the environment. The amount of external metabolites is usu-
ally assumed to be constant, thus implicitly assuming their unconditioned
availability. They can be represented in several different ways.
A first possibility consists in simply not including the places corresponding
to the external metabolites in the PN model. This can be fine for simulation
purposes, while it can have a negative impact on the possibility of analysing
the model, as, e.g., conservation laws can fail to hold.
When, instead, the model explicitly includes places associated with external
metabolites, then they are characterised by the fact that all transitions in
the net may either consume or produce tokens in such places. In the first case
we talk of input metabolites and in the second case of output metabolites.
They can be identified by those rows of the incidence matrix whose non-null
coefficients have the same sign. In order to guarantee a correct behaviour for
such places, various solutions have been proposed [63, 121, 124, 61, 76, 75], as
illustrated below.
A first solution [61, 76, 75], consists in including, for any place in the net
corresponding to an input metabolite a transition with empty precondition,
generating tokens in such place. As transitions with empty preconditions can
always fire, this corresponds to assume that input metabolites are always
available. Similarly, outgoing transitions with empty postconditions can be
added for output metabolites. Note that in this way no explicit assumption
is made on the quantitative relations of input/output metabolites. Addition-
ally, the obtained PN is unbounded, so it is not covered by P-invariants.
A different proposal, illustrated in [124], is to fill all the places correspond-
ing to input metabolites with an infinite number of tokens, and to allow the
places corresponding to output metabolites to accumulate an arbitrary num-
ber of tokens. In this way, situations of equilibrium which involve external
metabolites will not be captured by T-invariants. Additionally, the net turns
out to be unbounded and thus it is not covered by P-invariants.
Another possibility [124] consists in connecting places corresponding to out-
put metabolites to those corresponding to input metabolites by additional
transitions, in order to enable a circular flow. However, there is some arbi-
trariness in the choice of how places have to be connected.
A refined variant of the previous proposal, described in [63, 121, 61, 75], is
to close the net by adding two auxiliary transitions, generate and remove,
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connected by means of a place, cycle, as depicted in Fig. 4, which is taken
from [61]. Transition generate produces tokens in the places modelling in-
put metabolites, while transition remove consumes tokens from the places
modelling output metabolites. The arc weights represent the stoichiometric
relations of the sum equation of the whole network thus making explicit
assumptions about the quantitative relations of input/output metabolites.

The resulting net will be bounded and covered by P-invariants, when also
the problem of adequate conflict resolution is addressed, as discussed in [63,
121, 75]. Note that, if quantitative aspects are included in the model, special
attention must be devoted to the definition of the auxiliary transition rates,
since they could impose unrealistic assumptions.
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Fig. 4. Modelling external metabolites by adding the auxiliary transitions re-
move and generate and the auxiliary place cycle.

A further possibility, proposed in [124], is to create self-loops going from
each output metabolite to the transition producing it, and from the transi-
tion related to each input metabolite back to the corresponding place. The
resulting PN is no longer pure.

P3: Modelling of reversible reactions. A reversible reaction can occur in two
directions, from the reactants to the products (forward reaction) or vice
versa (backward reaction). The direction depends on the kind of reaction, on
the concentration of the metabolites and on conditions such as temperature
and pressure. The most important factor is the activation energy of the
reaction, namely the minimal energy which is necessary for the reactants
in order to start the reaction. Once started, the reaction proceeds. If the
products have less energy than the reactants, the reaction produces energy
which can activate other reactions. By the repeated activation of the forward
reaction, the concentrations of reactants decrease and the concentrations of
products increase. Correspondingly, the reaction rate decreases, since it is
generally proportional to the concentrations of reactants, until eventually
the backward reaction is activated. If the forward and backward reactions
reach the same rate, then the reaction is in chemical (dynamic) equilibrium.

Most of the reactions in a pathway are reversible. Each of them is normally
viewed as a pair of distinct reactions, a forward one and a backward one,
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which corresponds to a pair of transitions in the PN. If kinetic factors are
not represented, the presence of the forward and backward transitions leads
to a cyclic behaviour producing and destroying the same molecules, which
might not be of biological interest. Still, this does not preclude the general
suitability of qualitative analyses. In the T-invariant analysis, for example,
minimal T-invariants corresponding to such cycles are usually considered as
trivial T-invariants and ignored.

A solution for this problem, proposed in [63, 121], consists in adding specific
biological knowledge to the PN by means of colours as discussed later in this
section.

A more precise model is obtained if the kinetic factors can be represented.
For example, if the forward reaction happens much faster than the backward
one, the effect of the backward reaction may be unimportant. In [68, 43, 87]
the authors face the problem by means of HPNs and HFPNs. Such models
allow arc weights to be functions of the state of the network and thus the
net behaviour can change depending on the reactant concentrations. As an
example, in [68] a reaction is considered where for each element of the sub-
strate we obtain two elements of the product; the reaction is catalysed by an
enzyme and the concentration of the enzyme influences the reaction speed
(see Fig. 5).

E n z y m e

S u b s t a n c e P r o d u c t
1  *  E n z y m e 2  *  E n z y m e

1  *  E n z y m e 1  *  E n z y m e

Fig. 5. FPN associated with a catalysed biochemical reaction, taken from [68].
In this model Substance, Product and Enzyme are variables which represent the
number of tokens in the corresponding place. Arcs are labelled with functions of
the variable Enzyme.

We conclude this section by remarking that, as shown by problem P3, when
quantitative aspects of a PN can be considered, the resulting model is more
accurate and sensible. However, often quantitative information are not available
and, additionally, the simulation of a PN with quantitative information and the
interpretation of the simulation results can be difficult tasks. For these reasons,
the representation and the analysis is often restricted to qualitative aspects of
the PN model and one may choose to add biological knowledge to the PN by
using colours, as proposed in [63, 121].
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As an example, suppose that the PN of Fig. 6(a) represents a fragment of a
metabolic pathway and that the biological knowledge on such pathway ensures
that either path A → B → C or path D → B → E will be followed each time. A
SPN would represent this situation by using different rates for the transitions.
If the active path is fixed, then the rates can be statically assigned. Otherwise,
in the steady state assumption, marking dependent firing rates can be used to
model the flow of tokens along the different paths. In the example, the rates of
the transitions feeding C and E should be a monotone function of the number
of tokens in A and D, respectively. A basic PN cannot represent this situation,
since in place B it is not possible to discriminate whether tokens come either
from A or from D and whether tokens proceed to C or to E.
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Fig. 6. Basic (a) and coloured (b) PNs representing a fragment of a metabolic
pathway with the paths A → B → C and D → B → E.

By using CPNs the colours x and y can be used to discriminate the two
different paths, as shown in Fig. 6(b).

The colour assignment technique proposed in [63, 121] is based on the notion
of conflict place, that is a place p with outgoing transitions which are in conflict.
When a conflict place is identified in the basic PN, different colours are assigned
to tokens belonging to different paths. Then, in order to separate different paths
of the compound pathway and to distinguish among molecules in the same place
according to their origin and destination, conditions are associated with reactions
in a way that they will operate with tokens of some colours and ignore the
presence of tokens of other colours. In [63, 121] the authors apply this technique
to study the glycolysis pathway and show that the results of their analysis are
more accurate than those obtained in [99] by using basic PNs.
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5 Main Approaches in the Literature

In this section we present the main approaches in the literature to the mod-
elling and analysis of metabolic pathways with PNs. The different proposals are
grouped and discussed on the basis of the type of modelling and analysis per-
formed, namely qualitative or quantitative. We conclude the section by pointing
out the most relevant observations emerging from this literature review.

5.1 Qualitative modelling and analysis

The first approaches employing PNs for the modelling of biological networks
have been presented in [100, 67, 99].

In [100] the authors consider the fructose metabolism in liver and present the
corresponding basic PN. Petri net properties such as liveness, reachability, P-
and T-invariants, are discussed along with their biological interpretation. In [99]
the combined metabolism of the glycolytic and the pentose phosphate pathways
in erythrocytes is considered. After presenting the corresponding basic PN, the
authors provide a qualitative analysis in terms of P- and T-invariants, bounded-
ness and liveness. Additionally, some reduction techniques are used for making
the PN model smaller. This is done by ignoring details which are considered
not essential for the analysis and by eliminating certain places and transitions
without changing the overall behaviour of the model.

The focus of [67] is on the representation of metabolic processes with basic
PNs, while the possibility of performing a qualitative analysis in terms of liveness,
deadlocks and bottlenecks of the net is just mentioned. The paper considers the
Isoleucin pathway of E. coli as a case study.

Basic PNs are also used in [124] for modelling the Trypanosoma brucei gly-
colysis. The authors illustrate the biological meaning of PN properties, such as
siphons, traps, deadlocks and liveness and discuss the modelling problems P2

and P3 as presented in Section 4.2.
The use of CPNs for the design and qualitative analysis of metabolic path-

ways is proposed in [63, 121]. In particular, the authors consider the steady state
analysis in the combined glycolysis and pentose phosphate pathways in erythro-
cytes, previously studied in [99], and discuss the role of T- and P- invariants.
The analysis results turn out to be more accurate than those in [99] because, as
discussed in Section 4.2, the use of colours allow the addition of specific biological
knowledge to the PN model. In particular, a solution, already discussed in Sec-
tion 4.2, is devised for the modelling problems P1, P2 and P3. Some PN tools,
such as Design/CPN [7] and the prototype tool SY (not publicly available), are
used for the analysis.

In [92] an algorithmic methodology is proposed to study complex networks of
chemical reactions without using the stoichiometry and the reaction rates. The
methodology represents the network as a composition of CPNs, corresponding to
molecular reactions and complex formations. Then the network is transformed
into a digraph and, by further simplifications, into the list of all its minimal
circuits. This operation allows for the identification of elementary biochemical
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sub-networks and the study of the molecular flow; additionally it suggests new
experiments which may be of interest. To demonstrate the suitability of the
approach, the Krebs cycle is modelled and analysed.

An automatic translation of SBML models into PNs expressed in PNML
(Petri Net Markup Language) [15] is proposed in [112]. The translation is sup-
ported by a prototype tool (not publicly available). The proposed methodology
is illustrated on the saccharomyces cerevisiae glycolysis pathway taken from the
BioModels database [3]. Using the Integrated Net Analyser (INA) [115], a qual-
itative analysis based on P- and T-invariants is performed on the resulting PN.
The use of SBML models allows for the specification of both qualitative and
quantitative aspects of biological systems, but the proposed translation does
not include the quantitative ones, since, at present, PNML does not support
extended PNs.

Three related papers are [61, 76, 75]. In particular [61], which exploits the
techniques introduced in [63, 121], presents PN models for the sucrose breakdown
pathway in the potato tuber and the combined glycolysis and pentose phosphate
pathways in erythrocytes, and validate them by means of P- and T-invariants.
The latter case study is modelled by CPNs. The paper discusses also problem
P2, as presented in Section 4.2. The PN model of the sucrose breakdown pathway
in the potato tuber is presented in more detail in [76] and validated by means of
P- and T-invariants. The considered case study is of great research interest since
it is not yet completely understood. In [75] the authors present the main quali-
tative PN analysis techniques and illustrate them on the combined glycolysis and
pentose phosphate pathways in erythrocytes. The pathway is modelled using two
PNs that differ for the modelling of the external metabolites (see problem P2

in Section 4.2). The authors mainly focus on the analysis of qualitative prop-
erties, but also sketch the derivation of a KPN. They use public domain tools,
namely Snoopy [19] and INA [115] for simulation and qualitative analysis, and
IDD-CTL [116] and the Model Checking Kit [107] for model checking properties
expressed in CTL.

A systematic approach for the modelling of regulated metabolic pathways
with PNs is proposed in [114]. The approach is illustrated on the qualitative
modelling of the biosynthesis of tryptopham in E. coli, taking into account two
types of regulatory feedbacks. The idea is to separately build the basic PN
models of the metabolic and regulatory pathways, which are then integrated
into a unique structure. In particular, for the regulatory pathways, the authors
propose to start with a specification in terms of a generic regulatory graph,
followed by its parametrisation. Next the obtained model is mapped into a PN,
called Multi-level Regulatory PNs. The complete methodology for regulatory
pathways is illustrated in [33].

In [102] the authors consider a complex metabolic network describing the
main part of the human body iron homeostasis, present the corresponding basic
PN model and illustrate the results of an invariant analysis performed by using
both MCT sets and cluster analysis. The case study concerns a biological process
which is not yet fully understood. The analysis is helpful both for the validation
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of the model and for the formulation of some biological hypotheses to be further
studied.

5.2 Quantitative modelling and analysis

Various proposals of using extended PN models for the quantitative modelling
and analysis of metabolic pathways can be found in the literature.

FPNs are used in [68] to represent some quantitative aspects of biological
systems and to solve problem P3 of reverse reactions, described in Section 4.2.
The authors discuss the computational properties of the considered family of
extended PNs and consider glycolysis as an example.

In [62] the authors employ TPNs to model and analyse a particular flux mode
of the combined glycolytic and pentose phosphate pathways in erythrocytes. A
reversible reaction is modelled by assigning suitable time intervals to the two
corresponding transitions, so that the preferred direction fires more often than
the other one. The authors apply the token game animation for a first validation
of the model and then analyse P- and T-invariants and other structural and
behavioural properties. The employed tools are PED [14] (now superseded by
Snoopy [19]) and INA [115].

In [50] the authors propose a methodology for modelling metabolic path-
ways as TPNs for simulation purposes. They infer the metabolic network topol-
ogy together with its kinetic parameters by querying the BRENDA database of
chemical reactions, looking for all the sequences of reactions involving the ini-
tial (source) and final (sink) substances of interest. For the glycolysis case study
such a query produces a very large set of networks. By applying some heuristic
filtering rules, it is possible to obtain a single metabolic network, which is then
translated into a TPN. The rate of each reaction is calculated with a kinetic
function based on the Michaelis-Menten law and by using the kinetic parame-
ters extracted from BRENDA. The resulting model, after a suitable reduction
phase, can be used for simulation, performed with the tool Design/CPN [7].

HPNs are proposed in [37] for quantitatively modelling and simulating gene
regulated metabolic networks. Gene regulation and metabolic reactions can be
naturally represented by using both discrete and continuous places and transi-
tions, while inhibitor arcs are used to represent inhibitors and to explore how
enzymes are regulated. As a case study, the urea cycle and its regulation is con-
sidered, extracting the corresponding metabolic information from KEGG and
BRENDA. A tool, Visual Object Net++ (VON++) is employed for modelling
and simulation of the HPNs. Other papers [35, 36] propose a framework for the
integration of information extracted from different biology databases, aimed at
easing the development and the execution of modelling and simulation tools.
More specifically, the authors propose an environment to extract data from the
main biology databases and automatically translate them into Petri net models.
An extension of PNML [15] called BioPNML (Biologic PNML) is introduced
in [36] for expressing biological data.

In [82, 84, 43, 87], the authors introduce HFPNs which extend basic PNs with
features particularly suited for modelling biological pathways. HFPNs allow for
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a natural representation of kinetic information since rate equations can be di-
rectly represented. Additionally, place values can be integers, reals, booleans,
strings or vectors thus allowing for a natural representation of complex data.
The authors apply HFPNs to genetic and signalling networks, exploiting the
discrete elements to model control and regulation, and the continuous elements
to model metabolic reaction rates. In particular, the glycolytic pathway in E. Coli
controlled by the lac operon gene regulatory mechanism is modelled through HF-
PNs. Besides the authors propose a software tool, called Genomic Object Net
(GON), for representing and simulating biopathways modelled as HFPNs. The
successor of GON, presented in [91], is called Cell Illustrator (CI). It is based on
HFPNs and on a language specifically defined for the description of biological
pathways, called CSML (Cell System Markup Language).

A methodology for deriving a quantitative model of a metabolic pathway in
terms of TPNs is proposed in [97]. The authors introduce a technique to derive
some kinetic parameters by assuming that the net is in a steady state and that
the reaction rates are constant. Under these hypotheses and with the knowledge
of the stoichiometric relations, one can fix the rate of an arbitrary chosen reaction
and then derive the reaction rates of the whole PN by exploiting the T-invariants.
Additionally, a technique is proposed to decide time dependent realisability of a
transition sequence. However, these methods can lead to numerical problems; in
this case approximated solutions must be adopted. The considered case study is
the sucrose breakdown pathway in the potato tuber, taken from [76].

Other approaches in the literature focus mainly on the modelling of signalling
or regulatory networks and are out of the scope of this literature review. How-
ever, some interesting proposals are worth to be mentioned for their innovative
contribution in the research area of modelling biological pathways with PNs. In
order to cope with the lack of information on concentrations and kinetic param-
eters, [113] presents a stochastic PN simulation tool called NASTY (not publicly
available), equipped with a genetic algorithm for estimating unknown kinetic pa-
rameters. In [52, 28] the authors propose an approach which exploits both ODEs
and PNs (basic and continuous). The papers [53, 60] propose a unifying frame-
work for modelling and analysing biochemical networks with basic, stochastic
and continuous PNs. In [59] the authors illustrate how to use invariant analysis
in order to analyse data obtained by simulation with KPNs. A classification of
T-invariants based on clustering techniques is introduced in [56] to cope with
network complexity. The T-clusters thus obtained are used for modularising the
network into biologically relevant functional units. The authors employ also the
MCT-sets introduced in [103]. The papers [81, 72, 57] use different kinds of PNs
for modelling purposes and different analysis techniques. However, they have
a similar starting point and goal: by using literature and experimental data,
they study biological pathways which are not yet fully understood. First, the
available knowledge is modelled and the model is validated. Then the model
is taken as a basis for a better understanding of the process under study and
the analysis results are interpreted for giving new insights on system behaviour
and for planning further experiments. In particular, in [57] the authors model
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gene regulation of the Duchenne muscular dystrophy by using mainly their own
experimental data, both for model development and for the design of new ex-
periments. This is the paper in which Mauritius Maps, described in Section 4.1,
are proposed and used for knockout analysis.

5.3 Summary and discussion

In this section we provide a synthesis of the approaches presented in Sections 5.1
and 5.2. Table 1 summarises their main characteristics. The table includes only
the approaches for modelling metabolic pathways, while proposals concerning
signalling or regulatory pathways mentioned at the end of Section 5.2 are omit-
ted. The approaches appear in the table in the same order as they are discussed
in Sections 5.1 (upper part of the table) and 5.2 (lower part of the table). Each
row refers to a specific approach and the columns specify the following informa-
tion:

1. References to the considered papers.
2. The types of Petri net adopted.
3. Pathways used as case studies. We highlight with a boldface font the path-

ways not yet fully understood or whose analysis required specific experimen-
tal knowledge.

4. The main source of information, that is, specific literature or databases such
as KEGG or BRENDA.

5. Qualitative PN analysis planned or performed.
6. Quantitative PN analysis planned or performed.
7. Techniques for deducing or computing quantitative information, when needed.
8. Availability of automatic translations from metabolic pathways to PNs: do

the approaches propose a semi-automatic translation? Is it supported by a
tool? This column is strictly related to the fourth column, since automa-
tising the translation requires the availability of a database as a source of
information for metabolic pathways.

9. Tools adopted for qualitative or quantitative analysis, if explicitly men-
tioned.3

On the basis of the considered approaches and looking at Table 1 we can
make the following observations.

– There is no clear preference on the type of Petri net. The choice of the
model is clearly constrained by the data available for the pathway of inter-
est. Qualitative models must be used when none or very few kinetic data
are available. In this case, the precision of the analysis can be improved by
conveying as much information as possible into the net structure. For exam-
ple, the use of colours in CPNs makes it possible to get more precise results

3 Some papers do not mention explicitly the use of any specific tool, even if the com-
plexity of the considered case studies clearly suggests that calculations have not been
performed manually. Still, in this case the tool entry will be empty.
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Paper PN

Type

Case study Data

Source

Qual.

Analysis

Quant.

Analysis

Quant.

Inform.

Integration

Translation

Method.

Tools

Tools

[100]
[99]

basic fructose metab.
in liver, glycoly-
sis and pentose
phosphate

literature T-/P-inv.
boundedness
liveness

no – no –

[67] basic Isoleucin of
E. coli

literature no no – no –

[124] basic Trypanosoma
brucei glycolysis

literature T-/P-inv.,
traps,
siphons

no – no INA

[63]
[121]

CPN glycolysis and
pentose phos-
phate

literature T-/P-inv. no – no SY
Design/CPN

[92] CPN Krebs cycle literature identification
of minimal
circuits

no – no ad-hoc sw

[112] basic Saccharomyces
cerevisiae Gly-
colysis

Bio-
Models

T-/P-inv. no – yes/
prototype

INA

[61]
[76]
[75]

basic
CPN

glycolysis and
pentose phosp.,
sucrose break-

down in the

potato tuber

literature T-/P-inv.
CTL

no – no Snoopy,
INA,
model
checkers

[114] basic biosynthesis of
tryptopham in
E.Coli and two
regulatory feed-
backs

literature reachability no – no –

[102] basic human body

iron home-

ostasis process

literature T-/P-inv. no – no cluster
analysis

[68] FPN glycolysis literature no no – no –
[62] TPN glycolysis and

pentose phos-
phate

literature T-/P-inv. no – no PED,
INA

[50] TPN glycolysis BRENDA no simulation Michaelis
Menten +
BRENDA

yes/ no Design/CPN

[37] HPN urea cycle and its
regulation

KEGG
BRENDA

no simulation literature no VON++

[82]
[43]
[84]
[87]

HFPN lac operon gene
regul. mech. and
glycolytic path-
ways in E. Coli

literature no simulation Michaelis
Menten +
constants

no GON

[97] TPN sucrose break-

down in the

potato tuber

literature T-inv. time-
dependent
realisability

quant. data
deduced by
the T-inv.

no –

Table 1. Summary of the approaches on metabolic pathways with PNs.
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by representing additional biological knowledge without moving to a quan-
titative model (see, e.g., [63, 121]). Quantitative models, like HPNs, HFPNs,
KPNs or SPNs, may be appropriate when information about the kinetics is
available.
Then the properties of a pathway that one wish to analyse play a fundamen-
tal role in determining the choice. For instance, a transient analysis aimed
at predicting the concentration of a substance clearly requires a quantitative
model. Besides, it is worth noting that even if we are interested in a quanti-
tative analysis and kinetic data are available, qualitative models can provide
valuable preliminary or complementary information.

– The considered case studies are mostly well known pathways, such as the
glycolysis. This might depend on the fact that most of the papers are aimed
at introducing new PN based methodologies for modelling and studying
metabolic pathways. Well known pathways are more suited for this purpose:
on the one hand, the reader is likely to be familiar with the pathway and can
focus on the peculiarities of the methodology proposed, on the other hand
the availability of complete information on the pathway eases the validation
phase. The recurrence of glycolysis and few other pathways may be due to
the incompleteness of information, mainly on quantitative data, about other
pathways.
There are some recent papers, like [61, 76, 97, 102] for metabolic pathways
(in boldface in the table) and [81, 72, 57] for other kinds of pathways, which
try to apply these techniques to original case studies, i.e., pathways which
are not yet fully understood, and infer new biological insights from the PN
analysis results.

– Few approaches make use of databases as main references for metabolic path-
ways [50, 37, 112], while most approaches refer to specific literature. The rea-
son might be that databases contain partial information and some unreliable
data. In the databases only a few well studied pathways are provided with all
the necessary kinetic information. On the contrary papers describing specific
experiments are generally more precise and complete.

– Most of the approaches consider just one or a few specific case studies which
serve as running examples. Only the approaches [50, 112] propose a general
translation methodology from metabolic pathways into PN models and [112]
develops also a prototype tool, which is, however, not publicly available.
This is related to the previous item: only the approaches which rely on
biology databases can propose a translation methodology and some tool for
its automation. Note that, in order to devise a semi-automatic translation
from metabolic pathways to corresponding Petri nets, querying the databases
is normally not sufficient and techniques for inferring missing information
must be integrated into the framework.

– The various approaches focus either on qualitative or on quantitative anal-
ysis, but not on both. Qualitative analysis is usually preferred, since it is
simpler and it does not require kinetic data. However, the integration of ba-
sic PNs and KPNs is sketched in [75] and investigated more deeply in [52,
28]. Moreover, recent papers, like [53, 60] describe a complete modelling and
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analysis framework taking advantage from the various techniques provided
by different types of PNs (basic, stochastic and continuous).

– The qualitative analysis, in most cases, is based on net invariants. Invariant
analysis has become a standard way to validate the PN model of a metabolic
pathway. It can also help in identifying paths worth to be tested in experi-
ments and it can provide new biological insights, as in [81, 102, 72, 57]. This
is not surprising since the (minimal) T-invariant analysis in PNs corresponds
to the (elementary) flux modes analysis which was already employed to val-
idate metabolic pathways. A few approaches take into consideration other
analysis techniques based on siphons, traps and liveness.

– Quantitative analysis is often synonymous of simulation. This might be
caused by the complexity of PN models of metabolic pathways and the lack
of kinetic information. The last issue can be faced by developing techniques
for inferring the missing information. For example [97] derives quantitative
information from the PN structure by assuming that the system is in a steady
state.

We may further observe that when modelling complex metabolic processes, in
general, it becomes necessary to represent also regulatory and genetic phenomena
(see, e.g., [114]). When quantitative modelling is considered, this requires the
integrated representation of both discrete steps and continuous behaviours. In
these cases hybrid models, like HPNs or HFPNs might be an appropriate choice
(see, e.g., [37, 82, 84, 43, 87, 83]).

6 Conclusions

In this paper we have surveyed the literature on modelling and analysing me-
tabolic pathways with PNs. This research area has been explored in search of a
comprehensive methodology able to retrieve information on pathways from the
main databases, to automatically translate them into corresponding PN mod-
els, and to employ PN tools for the qualitative and quantitative analysis of the
nets thus obtained. First, we have described the natural correspondence between
pathways and PNs, discussing some problems concerning the modelling and anal-
ysis of metabolic pathways with PNs, along with some solutions proposed in the
literature. Then we have reviewed the literature on this research field, trying
to evaluate the existing approaches with respect to a complete methodology in
the sense described above. From this analysis, it emerged that a semi-automatic
translation may be feasible when modelling only the structure of a metabolic
pathway. In fact such data are generally available, their representation in PN
form is rather natural and qualitative analysis techniques for model validation
are well-established. On the contrary modelling quantitative information of a
metabolic pathway poses serious problems. Data are largely incomplete and
they have to be obtained from different sources or inferred with appropriate
techniques. Even when such data are available, it is not easy to choose a PN
extension able to represent those data and supported by suitable tools. In our
opinion, a reasonable solution would be to define a modelling framework able
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to adapt to different input sources and to different analysis requirements, as
proposed in [35, 36]. Such framework should be able to integrate various existing
approaches and tools and it would require a translation between the various in-
put formats. In the future, format standardisation and a greater availability of
quantitative data will improve the reliability of databases. We believe that this
could make a semi-automatic translation from pathways to PNs really feasible.

Altogether, the natural representation of metabolic information as PN mod-
els, where qualitative and quantitative information can be integrated, the well
known analysis techniques inherited by this formalism, the similarities between
some biological and PN analysis methods, definitively suggest the appropriate-
ness of PNs as a formalism for representing, validating and analysing metabolic
pathways. Admittedly, while being quite promising, this seems to be still at a
preliminary stage with respect to a comprehensive and automated methodology.
The poor knowledge of the kinetic parameters plays an important role in this
context. However such difficulties are inherent to biological systems and they
affect any formalism and tool aiming at modelling bio-knowledge.
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enlightening discussions on metabolic pathways and biochemical issues. They are
also greatly indebted to the anonymous referees for their extensive and valuable
comments and suggestions on preliminary versions of the paper.

References

1. BioCarta: Charting Pathways of Life. http://www.biocarta.com.

2. BioCyc: database collection. http://BioCyc.org.

3. Biomodels Database. http://www.ebi.ac.uk/biomodels.

4. Biomolecular Interaction Networks Database.
http://bond.unleashedinformatics.com.

5. BRENDA: The Comprehensive Enzyme Information System. http://www.

brenda-enzymes.info.

6. Database of Interacting Proteins. http://dip.doe-mbi.ucla.edu.

7. Design/CPN: Computer Tool for Coloured Petri Nets. http://www.daimi.au.

dk/designCPN.

8. ENZYME: enzyme nomenclature database. http://www.expasy.ch/enzyme.

9. Extensible Markup Language. http://www.w3.org/XML.

10. Kegg Markup Language manual. http://www.genome.ad.jp/kegg/docs/xml.

11. KEGG pathway database - Kyoto University Bioinformatics Centre. http://

www.genome.jp/kegg/pathway.html.

12. MetaCyc Encyclopedia of Metabolic Pathways. http://metacyc.org.

13. MINT: The Molecular INTeraction database. http://mint.bio.uniroma2.it.

14. PED - a hierarchical Petri net editor. http://www-dssz.informatik.

tu-cottbus.de/index.html?/software/ped.htmll.

15. Petri Net Markup Language. http://www.pnml.org.

16. Petri net tools. http://www.informatik.uni-hamburg.de/TGI/PetriNets/

tools.

33



17. REACTOME a curated knowledgebase of biological pathways. http://www.

reactome.org.
18. SBML: Systems Biology Markup Language. http://sbml.org.
19. SNOOPY: a software tool to design and animate hierarchical graphs. http:

//www-dssz.informatik.tu-cottbus.de/index.html?/software/snoopy.html.
20. TRANSPATH: The Pathway Database. http://www.biobase-international.

com.
21. T. Agerwala. A complete model for representing the coordination of asynchronous

processes. Hopkins Computer Research Report 32, John Hopkins University, 1974.
22. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-

elling with Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing.
John Wiley and Sons, 1995.

23. P. Atkin and J. de Paula. Atkins’ Physical Chemistry. Oxford University Press,
2006.

24. G. Balbo. Introduction to Generalized Stochastic Petri Nets. In M. Bernardo and
J. Hillston, editors, Formal Methods for Performance Evaluation, volume 4486 of
Lecture Notes in Computer Science, pages 83–131. Springer, 2007.

25. J. E. Beasley and F. J. Planes. Recovering metabolic pathways via optimization.
Bioinformatics, 23(1):92–98, 2007.

26. S. Borger, W. Liebermeister, and E. Klipp. Prediction of enzyme kinetic pa-
rameters based on statistical learning. Genome Informatics Series, 1(17):80–87,
2006.

27. S. Borger, J. Uhlendorf, A. Helbig, and W. Liebermeister. Integration of enzyme
kinetic data from various sources. In Silico Biology, 7(S1 09), 2007.

28. R. Breitling, D. Gilbert, M. Heiner, and R. Orton. A structured approach for the
engineering of biochemical network models, illustrated for signalling pathways.
Briefings in Bioinformatics, 9(5):404–421, 2008.

29. N. Busi. Analysis issues in Petri nets with inhibitor arcs. Theor. Comput. Sci.,
275(1-2):127–177, 2002.

30. R. Caspi, H. Foerster, C.A. Fulcher, P. Kaipa, M. Krummenacker, M. Laten-
dresse, S. Paley, S. Y. Rhee, A. G. Shearer, C. Tissier, T. C. Walk, P. Zhang,
and P. D. Karp. The MetaCyc Database of metabolic pathways and enzymes and
the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Research,
36(Database issue: D623-D631), 2008.

31. A. Chang, Scheer M., Grote A., I. Schomburg, and D. Schomburg. BRENDA,
AMENDA and FRENDA the enzyme information system: new content and tools
in 2009. Nucleic Acids Research, 37(Database issue: D588-D592), 2009.

32. C. Chaouiya. Petri net modelling of biological networks. Briefings in Bioinfor-
matics, 8(4):210–219, 2007.

33. C. Chaouiya, E. Remy, and D. Thieffry. Petri net modelling of biological regula-
tory networks. Journal of Discrete Algorithms, 6(2):165–177, 2008.

34. A. Chatraryamontri, A. Ceol, L. Montecchi Palazzi, G. Nardelli, M. V. Schneider,
L. Castagnoli, and G. Cesareni. MINT: the Molecular INTeraction database.
Nucleic Acids Research, 35(Database issue: D572-D574), 2007.

35. M. Chen. Modelling and Simulation of Metabolic Networks: Petri Nets Approach
and Perspective. In Proceedings of the European Simulation Multiconference on
Modelling and Simulation, pages 441–444, 2002.

36. M. Chen, A. Freier, J. Koehler, and A. Ruegg. The Biology Petri Net Markup
Language. In Promise2002, pages 150–161. Lecture Notes in Informatics, 2002.
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50. H. Genrich, R. Küeffner, and K. Voss. Executable Petri Net Models for the
Analysis of Metabolic Pathways. Proceedings of the Workshop on Practical Use
of High-level Petri Nets, pages 1–14, 2000.

51. M. A. Gibson and J. Bruck. Efficient exact stochastic simulation of chemical
systems with many species and many channels. Journal of Physical Chemistry,
25(104):1876–1889, 2000.

52. D. Gilbert and M. Heiner. From Petri Nets to Differential Equations - An Inte-
grative Approach for Biochemical Networks Analysis. In Petri Nets and Other
Models of Concurrency - ICATPN 2006, volume 4024 of LNCS, pages 181–200.
Springer, 2006.

53. D. Gilbert, M. Heiner, and S. Lehrack. A Unifying Frameworks for Modelling and
Analysing Biochemical Pathways Using Petri Nets. Proceedings of the Workshop
on Computational Methods in Systems Biology (CMSB), pages 200–216, 2007.

54. D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal
of Physical Chemistry, 25(81):2340–2361, 1977.

55. P. J. Goss and J. Peccoud. Quantitative modeling of stochastic systems in
molecular biology by using stochastic Petri nets. Proc. Natl. Acad. Sci. USA,
95(12):6750–6755, 1998.

56. E. Grafahrend-Belau, F. Schreiber, M. Heiner, A. Sackmann, B. H. Junker,
S. Grunwald, A. Speer, K. Winder, and I. Koch. Modularization of biochemical
networks based on classification of Petri net t-invariants. BMC Bioinformatics,
9(90), 2008.

35



57. S. Grunwald, A. Speer, J. Ackermann, and I. Koch. Petri net modelling of gene
regulation of the Duchenne muscular dystrophy. BioSystems, 92:189–205, 2008.

58. S. Hardy and P.N. Robillard. Modeling and simulation of molecular biology
systems using Petri nets: modeling goals of various approaches. Journal of Bioin-
formatics and Computational Biology, 2(4):619–637, 2004.

59. S. Hardy and P.N. Robillard. Petri net-based method for the analysis of the
dynamics of signal propagation in signaling pathways. Bioinformatics, 24(2):209–
217, 2008.

60. M. Heiner, D. Gilbert, and R. Donaldson. Petri Nets for Systems and Synthetic
Biology. In Proc. of SFM’08, volume 5016 of LNCS, pages 215–264. Springer,
2008.

61. M. Heiner and I. Koch. Petri Net Based Model Validation in Systems Biology.
In Petri Nets and Other Models of Concurrency - ICATPN 2004, volume 3099 of
LNCS, pages 216–237. Springer, 2004.

62. M. Heiner, I. Koch, and S. Schuster. Using time-dependent Petri nets for the anal-
ysis of metabolic networks. In R. Hofestadt, K. Lautenbach, and M. Lange, edi-
tors, Workshop Modellierung und Simulation Metabolischer Netzwerke, Preprint
No.10, pages 15–21. Faculty of Computer Science, Otto-von-Guericke University
of Magdeburg, 2000.

63. M. Heiner, I. Koch, and K. Voss. Analysis and Simulation of Steady States in
Metabolic Pathways with Petri nets. Workshop and Tutorial on Practical Use of
Coloured Petri Nets and the CPN Tools (CPN’01), pages 15–34, 2001.

64. M. Heiner, I. Koch, and J. Will. Model validation of biological pathways using
Petri nets - demostrated for apoptosis. Biosystems, 75:15–28, 2004.

65. R. Heinrich and T.A. Rapoport. A Linear Steady-State Treatment of Enzymatic
Chains. Eur. Journal of Biochem., 42:89–95, 1974.

66. T. Hofer and R. Heinrich. A Second order Approach to Metabolic Control Anal-
ysis. Journal of Theoretical Biology, 164:85–102, 1993.
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68. R. Hofestädt and S. Thelen. Quantitative modeling of biochemical networks. In
Silico Biology, 1(0006), 1998.

69. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Monographs in Theoretical Computer Science. Springer, 1997.

70. M. Kanehisa, M. Araki, S. Goto, M. Hattori, M. Hirakawa, M. Itoh, T. Katayama,
S. Kawashima, S. Okuda, T. Tokimatsu, and Y. Yamanishi. KEGG for linking
genomes to life and the environment. Nucleic Acids Research, pages D480–D484,
2008.

71. K. Kant. Introduction to Computer System Performance Evaluation. McGraw-
Hill inc., 1992.

72. J. Kielbassa, R. Bortfeldt, S. Schuster, and I. Koch. Modeling of the u1 snrnp
assembly pathway in alternative splicing in human cell using petri nets. Compu-
tational Biology and Chemistry, 2008.

73. H. Kitano. Computational Systems Biology. Nature, 420:206–210, 2002.
74. H. Kitano. Systems Biology: a brief overview. Science, 295:1662–1664, 2002.
75. I. Koch and M. Heiner. Petri nets. In B. H. Junker and F. Schreiber, editors,

Analysis of Biological Networks, Book Series in Bioinformatics, pages 139–179.
Wiley & Sons, 2008.

76. I. Koch, B. H. Junker, and M. Heiner. Application of Petri net theory for mod-
elling and validation of the sucrose breakdown pathway in the potato tuber. Sys-
tems Biology, 21(7):1219–1226, 2005.

36



77. J. R. Koza. Handbook of Metaheuristics - Chapter 7: Automatic synthesis of
topologies and numerical parameters, volume 57 of International Series in Oper-
ations Research and Management Science. Springer New York, 2003.

78. W. Liebermeister, J. Uhlendorf, S. Borger, and E. Klipp. Automatic integration
of kinetic data for metabolic network modelling. In ICSB 2007, pages 80–87.
ACM, 2007.

79. R. J. Lipton. The reachability problem requires exponential space. 62, New Haven,
Connecticut: Yale University, Department of Computer Science, Research, Jan,
1976.

80. J. Mandel, N.M. Palfreyman, J.A. Lopez, and W. Dubitzky. Representing bioin-
formatics causality. Briefings in Bioinformatics, 5(3):270–283, 2004.

81. W. Marwan, A. Sujatha, and C. Starostzik. Reconstructing the regulatory net-
work controlling commitment and sporulation in physarum polycephalum based
on hierarchical Petri net modelling and simulation. Journal of Theoretical Biology,
236:349–365, 2005.

82. H. Matsuno, S. Fujita, A. Doi, M. Nagasaki, and S. Miyano. Towards Biopathway
Modeling and Simulation. In ICATPN 2003, volume 2679 of LNCS, pages 3–22.
Springer, 2003.

83. H. Matsuno, C. Li, and S. Miyano. Petri Net Based Descriptions for System-
atic Understanding of Biological Pathways. EICE Transaction on Fundamentals
of Electronics, Communications and Computer Sciences, E89-A(11):3166–3174,
2006.

84. H. Matsuno, Y. Tanaka, H. Aoshima, A. Doi, M. Matsui, and S. Miyano. Biopath-
way representation and simulation on hybrid functional Petri net. In Silico Biol-
ogy, 3(0032), 2003.

85. E. W. Mayr. Persistence of vector replacement systems is decidable. Acta Infor-
matica, 15:309–318, 1981.

86. P. M. Merlin and D. J. Farber. Recoverability of communication protocols—
implications of a theoretical study. IEEE Transactions on Communications,
24(9):1036–1043, 1976.

87. S. Miyano and H. Matsuno. How to model and simulate biological pathways with
Petri Nets - a new challenge for system biology. In International Conference on
Applications and Theory of Petri Nets, Bologna, Italy, 2004.

88. C. G. Moles, P. Mendes, and R. Banga. Parameter estimation in biochemical path-
ways: a comparison of global optimization methods. Genome Research, 13:2467–
2474, 2003.

89. M. K. Molloy. On the Integration of Delay and Throughput Measures in Dis-
tributed Processing Models. PhD thesis, UCLA, Los Angeles, CA, 1981.

90. T. Murata. Petri Nets: Properties, Analysis, and Applications. Proceedings of
IEEE, 77(4):541–580, 1989.

91. M. Nagasaki, A. Doi, H. Matsuno, and S. Miyano. Petri Net Based Description
and Modeling of Biological Pathways. In Algebraic Biology 2005, pages 19–31,
2005.

92. J.S. Oliveira, C. G. Bailey, J. B. Jones-Oliveira, D. A. Dixon, D. W. Gull, and
M. L. Chandler. A Computational Model for the Identification of Biochemical
Pathways in the Krebs Cycle. Journal of Computational Biology, 10(1):57–82,
2003.

93. E. Pastor, J. Cortadella, and M. Peña. Structural Methods to Improve the Sym-
bolic Analysis of Petri Nets. In S. Donatelli and H.C.M. Kleijn, editors, Proceed-
ings of ICATPN’99, volume 1639 of LNCS, pages 26–45. Springer, 1999.

37



94. M. Peleg, D. Rabin, and R. B. Altman. Using Petri net tools to study properties
and dynamics of biological systems. Journal of the American Medical Informatics
Association, 12:181–199, 2005.

95. M. Peleg, I. Yeh, and R. B. Altman. Modelling biological processes using workflow
and Petri net models. Bioinformatics, 18(6):825–837, 2002.

96. J.L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice-Hall,
1981.

97. L. Popova-Zeugmann, M. Heiner, and I. Koch. Timed Petri Nets for modelling
and analysis of biochemical networks. Fundamenta Informaticae, 67:149–162,
2005.

98. V. N. Reddy. Modeling Biological Pathways: A Discrete Event Systems Approach.
Master’s thesis, The Universisty of Maryland, M.S. 94-4, 1994.

99. V. N. Reddy, M.N. Liebman, and M.L. Mavrovouniotis. Qualitative Analysis of
Biochemical Reaction Systems. Comput. Biol. Med., 26(1):9–24, 1996.

100. V. N. Reddy, M. L. Mavrovouniotis, and M. N. Liebman. Petri net representations
in metabolic pathways. In ISMB93: First Int. Conf. on Intelligent Systems for
Molecular Biology, pages 328–336. AAAI press, 1993.

101. W. Reisig. Petri Nets: An Introduction. EACTS Monographs on Theoretical
Computer Science. Springer Verlag, 1985.

102. A. Sackmann, D. Formanowicz, P. Formanowicz, I. Koch, and J. Blazewicz. An
analysis of the Petri net based model of the human bod iron homeostasis process.
Computational Biology and Chemistry, 31:1–10, 2007.

103. A. Sackmann, M. Heiner, and I. Koch. Application of Petri net based analysis
techniques to signal transduction pathways. BMC Bioinformatics, 7(482), 2006.

104. L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie, and D. Eisenberg.
The Database of Interacting Proteins: 2004 update. Nucleic Acids Research,
32(Database issue: D449-D451), 2004.

105. C. H. Schilling, D. Letscherer, and B. O. Palsson. Theory for the systemic defini-
tion of metabolic pathways and their use in interpreting metabolic function from a
pathway-oriented perspective. Journal of Theoretical Biology, 203:229–248, 2000.

106. C. H. Schilling, S. Schuster, B. O. Palsson, and R. Heinrich. Metabolic path-
way analysis: basic concepts and scientific applications in the post-genomic era.
Biotechnol. Prog., 15:296–303, 1999.

107. C. Schroter, S. Schwoon, and J. Esparza. The Model Checking Kit. In Proceedings
of the 24th International Conference on Application and Theory of Petri Nets
(ICATPN 03), volume 2697 of LNCS, pages 463–472. Springer, 2003.

108. S. Schuster, T. Dandekar, and D. A. Fell. Detection of elementary flux modes
in biochemical networks: a promising tool for pathway analysis and metabolic
engineering. Trends Biotechnology, 17(March):53–60, 1999.

109. S. Schuster, D. A. Fell, and T. Dandekar. A general definition of metabolic
pathway useful for systematic organization and analysis of complex metabolic
networks. Nature Biotechnology, 18(March):326–332, 2000.

110. S. Schuster and C. Hilgetag. On elementary flux modes in biochemical reaction
systems at steady state. Journal of Biological Systems, 2:165–182, 1994.

111. S. Schuster, T. Pfeiffer, F. Moldenhauer, I. Koch, and T. Dandekar. Explor-
ing the pathway structure of metabolism: decomposition into subnetworks and
application to Mycoplasma pneumoniae. Bioinformatics, 18(2):351–361, 2002.

112. O. Shaw, A. Koelmans, J. Steggles, and A. Wipat. Applying Petri Nets to Systems
Biology using XML Technologies. In E. Kindler, editor, Proc. of the Workshop on
the Definition, Implementation and Application of a Standard Interchange Format
for Petri Nets. Satellite event of ATPN, pages 11–25, 2004.

38



113. O. Shaw, J. Steggles, and A. Wipat. Automatic Parameterisation of Stochastic
Petri Net Models of Biological Networks. Electronic Notes in Theoretical Com-
puter Science, 151(3):111–129, 2006. Proceedings of the Second International
Workshop on the Practical Application of Stochastic Modeling (PASM 2005).

114. E. Simão, E. Remy, D. Thieffry, and C. Chaouiya. Qualitative modelling of regu-
lated metabolic pathways: application to the tryptopham biosynthesis in E. Coli.
Systems Biology, 21(2):ii190–ii196, 2005.

115. P.H. Starke and S. Roch. The Integrated Net Analyzer. Humbolt University
Berlin, 1999. www.informatik.hu-berlin.de/ starke/ina.html.

116. A. Tovchigrechko. Model checking using interval decision diagrams. PhD thesis,
Dept. of Computer Science - BTU Cottbus, 2006.

117. R. Valk. Self-modifying nets, a natural extension of Petri nets. In G. Ausiello
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