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Abstract

Graph grammars are a powerful model of concurrent and distributed systems which can be seen as a proper
extension of Petri nets. Inspired by this correspondence we develop truly concurrent semantics for dpo
graph grammars based on (deterministic) processes and on a Winskel’s style unfolding construction, and
we show that the two approaches can be reconciled. A basic role is played by the study of contextual and
inhibitor nets, two extensions of ordinary nets which can be seen as intermediate models between graph
grammars and ordinary Petri nets.

Keywords: Graph grammars, Petri nets, concurrent semantics, processes, unfolding, event structures,
domains.

Introduction

Petri nets [35,37] are one of the the most widely used models of concurrency and

they have attracted, since their introduction, the interest of both theoreticians and

practitioners. Along the years Petri nets have been equipped with satisfactory se-

mantics, making justice of their intrinsically concurrent nature, which have served

as basis for the development of a variety of modelling and verification techniques.

However, the simplicity of Petri nets, which is one of the reasons of their success,

represents also a limit in their expressiveness. If one is interested in giving a more

structured description of the state, or if the kind of dependencies between steps

of computation cannot be reduced simply to causality and conflict, Petri nets are

likely to be inadequate.

This paper summarizes the work in the PhD thesis [2], which is part of a project

aimed at proposing graph transformation systems as an alternative model of con-

currency, extending Petri nets. The basic intuition underlying the use of graph
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transformation systems for formal specifications is to represent the states of a sys-

tem as graphs (possibly attributed with data-values) and state transformations by

means of rule-based graph transformations. Needless to say, the idea of represent-

ing system states by means of graphs is pervasive in computer science. Whenever

one is interested in giving an explicit representation of the interconnections, or

more generally of the relationships among the various components of a system, a

natural solution is to use (possibly hierarchical and attributed) graphs. The possi-

bility of giving a suggestive pictorial representation of graphical states makes them

adequate for the description of the meaning of a system specification, even to a

non-technical audience. A popular example of graph-based specification language is

given by the Unified Modeling Language (UML), but we recall also the more clas-

sical Entity/Relationship (ER) approach, or Statecharts, a specification language

suited for reactive systems. Moreover, graphs provide a privileged representation of

systems consisting of a set of processes communicating through ports.

When one is interested in modelling the dynamic aspects of systems whose states

have a graphical nature, graph transformation systems are clearly one of the most

natural choices. Since a graph rewriting rule has only a local effect on the state,

it is natural to allow for the parallel application of rules acting on independent

parts of the state, so that a notion of concurrent computation naturally emerges

in this context. The research in the field, mainly that dealing with the so-called

algebraic approaches to graph transformation [20], has been led to the attempt of

equipping graph grammars with a satisfactory semantical framework, where their

truly concurrent behaviour can be suitably described and analyzed. After the semi-

nal work [27], which introduces the notion of shift-equivalence, during the last years

many original contributions to the theory of concurrency for algebraic graph trans-

formation systems have been proposed, most of them inspired by their relation with

Petri nets. In particular, for the dpo approach to graph transformation, building

on some ideas of [27], a trace semantics has been proposed in [13,17]. Resorting to

a construction in the the style Mauzurkiewicz, the trace semantics has been used

to derive an event structure semantics [15,14] for dpo graph grammars. Some steps

have been moved also in the direction of providing graph grammars with a process

semantics with the introduction of graph processes [16].

In this paper, with the aim of consolidating the foundations of the concurrency

theory of graph transformation systems, we explore the possibility of extending to

graph grammars some fundamental approaches to the semantics coming from the

world of Petri nets. More specifically, we provide graph transformation systems with

truly concurrent semantics based on concatenable (deterministic) processes [23,19]

and on a Winskel’s style unfolding construction [45], as well as with more abstract

semantics based on event structures and domains, and we show that the various

approaches can be “reconciled”. As an intermediate step, we study two general-

izations of Petri nets proposed in the literature, which reveal a close relationship

with graph transformation systems, namely contextual nets (also called nets with

read, activator or test arcs) and nets with inhibitor arcs. Due to their relatively

wide diffusion, we believe that the work on these extended kinds of nets may be

understood as an additional outcome, independently from its usefulness in carrying

out our program on graph transformation systems.
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Figure 1. A (double-pushout) graph rewriting step.

The rest of this paper is organized as follows. In Section 1 we introduce the dpo

approach to graph transformation, discussing its relation with Petri nets, and we

stress the role of contextual and inhibitor nets as intermediate models between Petri

nets and graph grammars. This allows us to organize the mentioned models in an

ideal chain where each model generalizes its predecessor. Then Section 2 outlines the

approach to the truly concurrent semantics of ordinary Petri nets which we propose

as a paradigm. Section 3 gives an overview of the results, by explaining how the

semantical framework of ordinary nets can be lifted along the chain of models, first

to contextual and inhibitor nets and then to graph grammars. Finally, Section 4

discusses some open problems and directions of future research.

1 Graph grammars and their relation with Petri nets

In this section we present the dpo approach to graph transformation and we discuss

how ordinary Petri nets can be seen as special dpo graph grammars. The new

features with which graph grammars extend ordinary Petri nets establish a close

relationship between graph grammars and two generalizations of Petri nets in the

literature, i.e., contextual and inhibitor nets.

1.1 The double-pushout approach to graph rewriting

Generally speaking, a graph grammar consists of a start graph together with a

set of graph productions, i.e., rules of the kind p : L ; R, specifying that, under

certain conditions, once an occurrence (a match) of the left-hand side L in a graph

G has been detected, it can be replaced by the right-hand side R. The form of

graph productions, the notion of match and in general the mechanisms stating how

a production can be applied to a graph and what the resulting graph is, depend on

the specific graph rewriting formalism.

Here we follow the so-called double-pushout (dpo) algebraic approach [20], where

the basic notions of production and direct derivation are defined in terms of con-

structions and diagrams in a suitable category. Consequently, the resulting theory is

very general and flexible, easily adaptable to a very wide range of structures, simply

by changing the underlying category.

In the dpo approach a graph production consists of a left-hand side graph L, a

right-hand side graph R and a (common) interface graph K embedded both in R
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Figure 2. A Petri net transition and a corresponding dpo production.

and in L, as depicted in the top part of Fig. 1. Informally, to apply such a rule to a

graph G we must find a match, namely an occurrence of its left-hand side L in G.

The rewriting mechanism first removes the part of the left-hand side L which is not

in the interface K producing the graph D, and then adds the part of the right-hand

side R which is not in the interface K, thus obtaining the graph H. Formally, this

is obtained by requiring the two squares in Fig. 1 to be pushouts in the category of

graphs, hence the name of the approach. The interface graph K is “preserved”: it

is necessary to perform the rewriting step, but it is not affected by the step itself.

Notice that the interface K plays a fundamental role in specifying how the right-

hand side has to be glued with the graph D. Working with productions having

an empty interface graph K, the expressive power would drastically decrease: only

disconnected subgraphs could be added.

1.2 Relation with Petri nets

A basic observation belonging to the folklore (see, e.g., [12] and references therein)

regards the close relationship existing between graph grammars and Petri nets.

Basically a Petri net can be viewed as a graph transformation system that acts on a

restricted kind of graphs, namely discrete, labelled graphs (that can be considered

as sets of tokens labelled by places), the productions being the transitions of the

net. For instance, Fig. 2 presents a Petri net transition t and the corresponding

graph production which consumes nodes corresponding to two tokens in s0 and

one token in s1 and produces new nodes corresponding to one token in s2 and one

token in s3. The interface is empty since nothing is explicitly preserved by a net

transition. It is easy to check that this representation satisfies the properties one

would expect: a production can be applied to a given marking if and only if the

corresponding transition is enabled, and the double pushout construction produces

the same marking as the firing of the transition.

In this view, general graph transformation systems can be seen as a proper

extension of ordinary Petri nets in two dimensions:

(i) they allow for general productions, possibly with non-empty interface, speci-

fying rewriting steps where a part of the state is preserved, i.e., required, but

not affected by the rewriting step;

(ii) they allow for a more structured description of the state, that is an arbitrary,

possibly non-discrete, graph.

The first capability is essential to give a faithful representation of concurrent

accesses to shared resources. In fact, the part of the state preserved in a rewriting

step, i.e., the (image of the) interface graph, can be naturally interpreted as a part of

the state which is accessed in a read-only manner by the rewriting step. Coherently
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Figure 3. A contextual Petri net transition and a corresponding dpo production.

with such interpretation, several productions can be applied in parallel sharing (part

of) the interface. It is worth remarking that the näıve technique of representing a

read operation as a consume/produce cycle may cause a loss of concurrency since it

imposes an undesired serialization of the read-only accesses to the shared resource.

As for the second capability, even if multisets may be sufficient in many situa-

tions, as already mentioned in the introduction, graphs are more appropriate when

one is interested in giving an explicit representation of the interconnections among

the various components of the systems, e.g., if one wants to describe the topology

of a distributed system and the way it evolves.

These distinctive features of graph grammars establish a link with two extensions

of ordinary Petri nets in the literature, introduced to overcome some deficiencies of

the basic model: contextual nets and inhibitor nets.

Contextual nets

Contextual nets [32], also called nets with test arcs in [11], activator arcs in [26] or

read arcs in [43], extend ordinary nets with the possibility of checking for the pres-

ence of tokens which are not consumed. Concretely, besides the usual preconditions

and postconditions, a transition of a contextual net has also some context condi-

tions, which specify that the presence of some tokens in certain places is necessary

to enable the transition, but such tokens are not affected by the firing of the tran-

sition. Following [32], non-directed (usually horizontal) arcs are used to represent

context conditions: for instance, transition t in the left part of Fig. 3 has place s as

context.

Clearly the context of a transition in a contextual nets closely corresponds to the

interface graph of a dpo production. As suggested by Fig. 3, a contextual net corre-

sponds to a graph grammar still acting on discrete graphs, but where productions

may have a non-empty interface.

For their ability of faithfully representing concurrent read-only accesses to

shared resources, contextual nets have been used to model the concurrent access

to shared data (e.g., for serializability problems for concurrent transactions in a

database) [18,38], to give a concurrent semantics to concurrent constraint pro-

grams [9] where several agents access a common store, to model priorities [25] and

to compare temporal efficiency in asynchronous systems [43].

Inhibitor nets

Inhibitor nets (or nets with inhibitor arcs) [1] further generalize contextual nets

with the possibility of checking not only for the presence, but also for the absence of

tokens in a place. For each transition an inhibitor set is defined and the transition

is enabled only if no token is present in the places of its inhibitor set. When a place

5



Baldan

s0

2 ��

s1

1��
s4 t

1��1 ��

s

s2 s3

• •
s0 s0

!!
•
s1

��
• ��

yy

s

•s4 t
��}}•s2 • s3

Figure 4. Correspondence between inhibitor Petri nets and dpo graph grammars.

s is in the inhibitor set of a transition t we say that s inhibits (the firing of) t. The

fact that a place s inhibits a transition t is graphically represented by drawing a

dotted line from s to t, ending with an empty circle, as shown in the left part of

Fig. 4.

While, at a first glance, this could seem a minor extension, it definitely increases

the expressive power of the model. In fact, many other extensions of ordinary nets,

like nets with reset arcs or prioritized nets, can be simulated in a direct way by

using nets with inhibitor arcs (see, e.g., [34]). Indeed the crucial observation is that

traditional nets can easily simulate all the operation of RAM machines, with the

exception of the zero-testing. Enriching nets with inhibitor arcs is the simplest exten-

sion which allows to overcome this limit, thus giving the model the computational

power of Turing machines.

In this case the relation with graph grammars is less straightforward. We must

recall that in a graph transformation system each rewriting step is required to

preserve the consistency of the graphical structure of the state, namely each step

must produce a well-defined graph. Hence, as required by a part of the application

condition, the so-called dangling condition, a production q which removes a node

n cannot be applied if there are edges with source or target in n, not removed by

q. In other words the presence of such edges inhibits the application of q. This is

informally illustrated by Fig. 4, where place s which inhibits transition t in the left

part, becomes an arc which would remain dangling after the execution of t, in the

right part. As in the case of contextual nets, this intuitive relation can be made

formal, but here, for lack of space, we cannot give the details of the correspondence.

2 Truly concurrent semantics of Petri nets

Along the years Petri nets have been equipped with several semantics, aimed at

describing at the right degree of abstraction, the truly concurrent nature of their

computations. The approach that we propose as a paradigm, comprises the seman-

tics based on deterministic processes, whose origin dates back to an early proposal

by Petri himself [36] and the semantics based on the nondeterministic unfolding

introduced in a seminal paper by Nielsen, Plotkin and Winskel [33], and shows how

the two may be reconciled in a satisfactory framework.

Deterministic process semantics

The notion of deterministic process naturally arises when trying to give a truly

concurrent description of net computations, taking explicitly into account the causal

dependencies ruling the occurrences of events in single computations.
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Figure 5. A Petri net and a deterministic process for the net.

The prototypical example of Petri net process is given by the Goltz-Reisig pro-

cesses [23]. A Goltz-Reisig process of a net N is a (deterministic) occurrence net O,

i.e., a finite net satisfying suitable acyclicity and conflict freeness properties, plus a

mapping to the original net ϕ : O → N . The flow relation induces a partial order

on the elements of the net O, which can be naturally interpreted as causality. The

mapping essentially labels places and transitions of O with places and transitions

of N , in such a way that places in O can be thought of as tokens in a computation

of N and transitions of O as occurrences of transition firings in such computation.

For instance, Fig. 5 depicts a Petri net and a deterministic process of such net,

representing the sequential execution of two occurrences of t1, followed by t2, in

parallel with t3.

A refinement of Goltz-Reisig processes, the so-called concatenable processes [19],

form the arrows of a category CP[N ], where objects are markings (states of the

net) and arrow composition models the sequential composition of computations. It

turns out that such category is a symmetric monoidal category, in which the tensor

product represents faithfully the parallel composition of processes.

Unfolding semantics

A deterministic process specifies only the meaning of a single, deterministic com-

putation of a net. Nondeterminism is captured implicitly by the existence of several

different “non confluent” processes having the same source. An alternative classical

approach to the semantics of Petri nets is based on an unfolding construction, which

maps each net into a single branching structure, representing all the possible events

that can occur in all the possible computations of the net and the relations existing

between them. This structure expresses not only the causal ordering between the

events, but also gives an explicit representation of the branching (choice) points of

the computations.

In the seminal work of Nielsen, Plotkin and Winskel [33], the denotation of a

safe net is a coherent finitary prime algebraic Scott domain [41] (briefly domain),

obtained via a construction which first unfolds the net into a (nondeterministic)

occurrence net which is then abstracted to a prime event structure. Building on

such result, Winskel [45] proves the existence of a chain of categorical coreflections (a

particularly nice kind of adjunction), leading from the category S-N of safe (marked)

7



Baldan

s1

�� ((
s3

��
t1
��

t2
��

t3
��

t1 # t2 t3

s1

�� ((
s2 s4

t1
��

t2
��

t1 # t2

s1

�� ((
s2

t1
��

t2
��

t1 # t2

s1 s2

Figure 6. Unfolding and event structure semantics of Petri nets.

P/T nets to the category Dom of finitary prime algebraic domains, through the

categories O-N of occurrence nets and PES of prime event structures.

S-N
U
⊥ //O-N

E
⊥ //

? _IOccoo
PES

L
∼ //

Noo
Dom

Poo

The first step unwinds a safe net N into a nondeterministic occurrence net

U(N), which can be seen as a “complete” nondeterministic process of the net N ,

representing in its branching structure all the possible computations of the original

net N . The subsequent step abstracts such occurrence net to a prime event structure

(pes). The pes is obtained from the unfolding simply by forgetting the places, but

remembering the basic dependency relations between transitions that they induce,

namely causality, modelled by a partial order relation ≤ and conflict, modelled by

a symmetric and irreflexive relation #, hereditary with respect to causality. The

last step (which establishes an equivalence between the category of prime event

structures and the category of domains) maps the event structure to its domain of

configurations. Fig. 6 presents the unfolding and event structure corresponding to

the net in Fig. 5.

In [31] it has been shown that essentially the same construction applies to the

category of semi-weighted nets, i.e., P/T nets in which the initial marking is a

set and transitions can generate at most one token in each post-condition. Besides

strictly including safe nets, semi-weighted nets also offer the advantage of being

characterized by a “static condition”, not involving the behaviour but just the

structure of the net.

Reconciling deterministic processes and unfolding

Since the unfolding is essentially a “maximal” nondeterministic process of a net,

one would expect the existence of a clear relation between the unfolding and the

deterministic process semantics. Indeed, as shown in [30], the domain associated to

a net N through the unfolding construction can be equivalently characterized as the

set of deterministic processes of the net starting from the initial marking, endowed

with a kind of prefix ordering. This result is stated in an elegant categorical way

by resorting to concatenable processes. Given a (semi-weighted) net N with initial

marking m, the comma category 〈m ↓ CP[N ]〉 is shown to be a preorder, whose

elements are intuitively finite computations starting from the initial state, and if

8
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ϕ1 and ϕ2 are elements of the preorder, ϕ1 � ϕ2 when ϕ1 can evolve to ϕ2 by

performing appropriate steps of computation. Then the ideal completion of such

preorder, which includes also the infinite computations of the net, is shown to be

isomorphic to the domain generated from the unfolding.

Deterministic processes
$$

P/T Nets

00

00

Domains

Unfolding

;;

3 Concurrent semantics: from nets to graph grammars

In this section, guided by the relationship between graph grammars and Petri nets,

we explore the possibility of generalizing to graph grammars the semantical frame-

work described in the previous section for Petri nets.

3.1 The general approach

The main complications which arise in the treatment of graph grammars are related,

on the one hand, to the possibility of expressing rewritings where part of the state

is preserved and, on the other hand, to the need of preserving the consistency

of the graphical structure of the state, a constraint which leads to the described

“inhibiting effects” between production applications. Therefore, not surprisingly,

contextual and inhibitor nets play an essential role in our work in that they offer

a technically simple framework, where problems which are conceptually relevant to

graph grammars can be studied in isolation.

Intuitively, we organize the considered formalisms in an ideal chain leading from

Petri nets to graph transformation systems

Petri
nets

// Contextual
nets

// Inhibitor
nets

// Graph
grammars

and for each one of such formalisms we develop a similar theory by following a

common schema which can be summarized as follows:

(i) We define a category of systems Sys, where morphisms, which basically origin

from an algebraic view of the systems, can be interpreted as simulations.

(ii) We develop an unfolding semantics, expressed as a coreflection between Sys

and a subcategory O-Sys, where objects, called “occurrence” systems, are

suitable systems exhibiting an acyclic behaviour. From the unfolding we extract

an (appropriate kind of) event structure, the transformation being expressed as

a functor from O-Sys to the considered category of event structures ES (in the

case of contextual nets this functor establishes a coreflection between O-Sys

and ES). Finally, a connection is established with domains and traditional pes

by showing that the category ES of generalized event structures coreflects into

the category Dom of domains.

Summing up, we obtain the following chain of functors, leading from systems

to event structures and domains

Sys ⊥ //O-Sys //
? _oo

ES ⊥ //Dom
oo

∼ //PES
oo

9



Baldan

The last step in the chain is the equivalence between the categories Dom of

domains and PES of prime event structures, due to Winskel.

(iii) We introduce a notion of deterministic process for systems in Sys. Relying

on the work in point (ii), a general (possibly nondeterministic) process of a

system S is defined as an “occurrence system” in O-Sys, plus a (suitable

kind) of morphism back to the original system S (the prototypical example

of nondeterministic process being the unfolding). Then, roughly speaking, a

process is deterministic if it contains no conflict, or, in other words, if the

corresponding event structure has a configuration including all the events.

The deterministic processes of a system S are turned into a category CP[S],

by endowing them with a notion of concatenation, modelling the sequential

composition of computations.

(iv) We show that the deterministic process and the unfolding semantics can

be reconciled by proving that, as for traditional nets, the comma category

〈Initial State ↓ CP[S]〉, is a preorder whose ideal completion is isomorphic to

the domain obtained from the unfolding, as defined at point (ii).

Observe that, differently from what happens for ordinary nets, the unfolding

semantics (essentially based on nondeterministic processes) is defined before de-

veloping a theory of deterministic processes. To understand why, note that for

ordinary nets the only source of nondeterminism is the the presence of pairs of

different transitions with a common precondition, and therefore there is an obvious

notion of “deterministic net”. When considering contextual nets, inhibitor nets or

graph grammars the situation becomes less clear: the dependencies between event

occurrences cannot be described only in terms of causality and conflict, and the

deterministic systems cannot be given a purely syntactical characterization. Con-

sequently, a clear understanding of the structure of nondeterministic computations

becomes essential to be able to single out which are the good representatives of

deterministic computations.

3.2 Some insights on the technical problems

For each one of the considered models the core of the developed theory is point (ii)

and more specifically the formalization of the kind of dependencies among events

which can occur in their computations. As mentioned above, such dependencies

cannot be faithfully reduced to causality and conflict and thus appropriate gener-

alizations of Winskel’s event structures must be defined. Next we give some more

details on the specific problems that we found for each formalism and on the way

we decided to solve them.

Contextual nets and asymmetric conflicts

When dealing with contextual nets, the crucial point is the fact that the presence

of context conditions leads to asymmetric conflicts or weak dependencies between

events. Consider, for instance, the net in Fig. 7, where the same place s is a context

for transition t0 and a precondition for transition t1. The possible firing sequences

are the firing of t0, the firing of t1 and the firing of t0 followed by t1, denoted

t0; t1, while t1; t0 is not allowed. This represents a new situation not arising within
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Figure 7. Asymmetric conflict in contextual nets.

ordinary net theory: t0 and t1 are neither in conflict nor concurrent nor causal

dependent. Simply, as for a traditional conflict, the firing of t1 prevents t0 to be

executed, so that t0 can never follow t1 in a computation. But the converse is not

true, since t1 can fire after t0. This situation can be interpreted naturally as an

asymmetric conflict between the two transitions. Equivalently, since t0 precedes t1
in any computation where both transitions are executed, in such computations t0
acts as a cause of t1. However, differently from a true cause, t0 is not necessary for t1
to be fired. Therefore we can also think of the relation between the two transitions

as a weak form of causal dependency.

Prime event structures and in general Winskel’s event structures result inad-

equate to give a faithful representation of situations of asymmetric conflict. To

overcome this limitation we introduce asymmetric event structures (aes’s), a gen-

eralization of pes’s where symmetric conflict is replaced by a relation ↗ modelling

asymmetric conflict. An aes allows us to specify the new kind of dependency de-

scribed above for transitions t0 and t1 simply as t0 ↗ t1.

The notion of asymmetric conflict plays an essential role both in the ordering

of the configurations of an aes, which is different from set-inclusion, and in the

definition of (deterministic) occurrence contextual nets, which are introduced as

the net-theoretical counterpart of (deterministic) aes’s. Then the entire Winskel’s

construction naturally lifts to contextual nets [4].

Inhibitor nets and the disabling-enabling relation

When considering inhibitor nets, the nonmonotonic features related to the presence

of inhibitor arcs (negative conditions) make the situation far more complicated.

First if a place s is in the post-set of a transition t′, in the inhibitor set of t and in

the pre-set of t0 (see the net Fig. 8.(a)), then the execution of t′ inhibits the firing of

t, which can be enabled again by the firing of t0. Thus t can fire before or after the

“sequence” t′; t0, but not in between the two transitions. Roughly speaking there is

a sort of atomicity of the sequence t′; t0 with respect to t.

The situation can be more involved since many transitions t0, . . . , tn may have

the place s in their pre-set (see the net in Fig. 8.(b)). Therefore, after the firing

of t′, transition t can be re-enabled by any of the conflicting transitions t0, . . . , tn.

This leads to a sort of or-causality. With a logical terminology we can say that t

causally depends on the implication t′ ⇒ t0 ∨ t1 ∨ . . . ∨ tn.

To face these additional complications we introduce inhibitor event structures

(ies’s), which enrich asymmetric event structures with a ternary relation, called

DE-relation (disabling-enabling relation), denoted by � (·, ·, ·), which, for instance,

models the previously described situation as � ({t′}, t, {t0, . . . , tn}). The DE-relation

is sufficient to represent both causality and asymmetric conflict and thus, concretely,
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Figure 8. Two basic nets with inhibitor arc.

it is the only relation of a ies.

Remarkably, computations of an inhibitor net (and thus configurations of an

ies) involving the same events may differ from the point of view of causality. For

instance, in the basic net in Fig. 8.(a) there are two possible orders of execution of

transitions t, t′ and t0, namely t; t′; t0 and t′; t0; t, and while in the first case it is

natural to think of t as a cause of t′, in the second case we can imagine instead that t0
(and thus t′) causes t. To take into account correctly this further information, both

configurations of ies’s and processes of inhibitor nets are enriched with a so-called

choice relation specifying which of the possible partially ordered computations we

are referring to.

The unfolding construction for inhibitor nets makes an essential use of the con-

struction already developed for contextual nets. The main problem emerges in the

passage from occurrence inhibitor net to ies’s: the backward steps is impossible, ba-

sically because of complications due to the complex kind of causality expressible in

ies’s. More technically, the construction associating an inhibitor event structure to

an occurrence net is functorial, but does not give rise to a categorical coreflection [3].

Lifting the results to graph grammars

When we finally turn our attention to graph grammars we are rewarded of the effort

spent on generalized Petri nets, since basically nothing new has to be invented.

Inhibitor event structures are expressive enough to model the structure of graph

grammar computations and the theory developed for inhibitor nets smoothly lifts,

at the price of some technical complications, to grammars. Furthermore, not only

the process and the unfolding semantics proposed for a graph grammars are shown

to agree, but the theory presented in this paper can be shown to be consistent also

with the classical theory of concurrency for dpo grammar in the literature, basically

relying on shift-equivalence. More specifically:

(i) We define a Winskel’s style semantics for graph grammars [6,7]. An unfolding

construction is presented, which associates to each graph grammar a nonde-

terministic occurrence grammar describing its behaviour. Such a construction

establishes a coreflection between suitable categories of grammars and the cat-

egory of occurrence grammars. The unfolding is then abstracted to an inhibitor

event structure and finally to a prime algebraic domain (or equivalently to a

prime event structure).
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(ii) We introduce a notion of nondeterministic graph process generalizing the de-

terministic processes of [16]. The notion fits nicely in our theory since a graph

process of a grammar G is defined simply as a (special kind of) grammar mor-

phism from an occurrence grammar into G (while in [16] an ad hoc mapping

was used).

13



Baldan

(iii) We define concatenable graph processes, as a variation of (deterministic finite)

processes endowed with an operation of concatenation which models sequen-

tial composition of computations [5]. The appropriateness of this notion is

confirmed by the fact that the category CP[G] of concatenable processes of a

grammar G turns out to be isomorphic to the classical truly concurrent model

of computation of a grammar based on traces of [17].

(iv) The event structure obtained via the unfolding is shown to coincide both with

the one defined in [15] via a comma category construction on the category of

concatenable derivation traces, and with the one proposed in [40], based on

a deterministic variant of the dpo approach (see [6]). These results, besides

confirming the appropriateness of the proposed unfolding construction, give an

unified view of the various event structure semantics for the dpo approach to

graph transformation.

4 Conclusions

The main result of our work is the development of a systematic theory of concurrency

for dpo graph grammars, which contribute to close the gap existing between graph

transformation systems and Petri nets. A second achievement is the development of

an analogous unifying theory for two widely diffused generalizations of Petri nets,

namely contextual nets and inhibitor nets. While a theory of deterministic processes

for these kind of nets was already available in the literature (see, e.g., [32,10]), the

Winskel-style semantics, comprising the unfolding construction, its abstraction to

a prime algebraic semantics, as well as its relation with the deterministic process

semantics are original.

A problem which remains open regards the possibility of fully extending

Winskel’s construction also to inhibitor nets and graph grammars, by expressing

as a coreflection the whole semantical transformation leading from the category of

systems to the category of domains. In fact, while the results on contextual nets can

be considered completely satisfactory, in the case of inhibitor nets and graph gram-

mars the absence of a coreflection with the category of inhibitor event structures

suggests that the construction should still be improved.

An aspect which has not been considered in this paper is the abstract algebraic

characterization of the model of computation of a system. Well established results

exist for ordinary Petri nets, whose computations have been characterized in terms

of monoidal categories [29,39]. For graph transformation systems the problem is still

unsolved, but some work in the PhD thesis [24] and in [22], suggests the need of

resorting to more complex categorical structures like bi- or double categories.

The truly concurrent semantics for graph grammars (and generalized nets) is

intended to represent the basis for defining more abstract observational semantics

to be used for the analysis and verification of the modelled systems. For instance,

the notions of process and of event structure associated to a process naturally lead

to the definition of a behavioural equivalence, called history preserving bisimulation

(HP-bisimulation) [42], which, differently from ordinary bisimulation, takes into ac-

count the properties of concurrency of the system. Furthermore, once an unfolding

construction has been defined, a natural question suggested by the work initiated

14



Baldan

in [28] regards the possibility of extracting from the (possibly infinite) unfolding

a finite fragment which is still useful to study some relevant properties of the sys-

tem. For both problems some encouraging results has been obtained in the case of

contextual nets (see, e.g., [8] and [44]).

Finally, although we considered only on basic graph rewriting acting on directed

(typed) graphs, it would be interesting to understand if the presented constructions

and results can be extended to more general structures. While the generalization to

hypergraphs is trivial, developing a similar theory for more general structures and

for abstract categories (e.g., high level replacement systems [21]) is not immediate

and represents an interesting topic of further investigation.
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