Bisimilarity and Behaviour-Preserving
Reconfigurations of Open Petri Nets*

Paolo Baldan!, Andrea Corradini?, Hartmut Ehrig3,
Reiko Heckel, and Barbara Koénig®

! Dipartimento di Matematica Pura e Applicata, Universita di Padova, Italy
2 Dipartimento di Informatica, Universita di Pisa, Italy
3 Institut fiir Softwaretechnik und Theoretische Informatik,
Technische Universitdt Berlin, Germany
4 Department of Computer Science, University of Leicester, UK
5 Abteilung fiir Informatik und Angewandte Kognitionswissenschaft,
Universitdt Duisburg-Essen, Germany

Abstract. We propose a framework for the specification of behaviour-
preserving reconfigurations of systems modelled as Petri nets. The
framework is based on open nets, a mild generalisation of ordinary
Place/Transition nets suited to model open systems which might in-
teract with the surrounding environment and endowed with a colimit-
based composition operation. We show that natural notions of (strong
and weak) bisimilarity over open nets are congruences with respect to
the composition operation. We also provide an up-to technique for facil-
itating bisimilarity proofs. The theory is used to identify suitable classes
of reconfiguration rules (in the double-pushout approach to rewriting)
whose application preserves the observational semantics of the net.

Introduction

Petri nets are a well-known model of concurrent and distributed systems, widely
used both in theoretical and applicative areas [19]. In classical approaches,
nets are intended to represent closed, completely specified systems evolving au-
tonomously through the firing of transitions. Therefore, ordinary Petri nets do
not support directly certain features that are needed to model open systems,
namely systems which can interact with the surrounding environment or, in a
different view, systems which are only partially specified.

Firstly, a large (possibly still open) system is typically built out of smaller
open components. Syntactically, an open system is equipped with suitable inter-
faces, over which the interaction with the external environment can take place.
Semantically, openness can be represented by defining the behaviour of a com-
ponent as if it were embedded in general environments, determining any possible
interaction over the interfaces.

* Research partially supported by the EU IST-2004-16004 SENSORIA, the MIUR
Project ART, the DFG project SANDS and CRUI/DAAD VIGONI “Models based
on Graph Transformation Systems: Analysis and Verification”.

Secondly, often the building components of an open system are not statically
determined, but they can change during the evolution of the system, according
to predefined reconfiguration rules triggered by internal or external solicitations.

In this paper we present a framework where open systems can be modelled
as Petri nets. Observational semantics based on (weak) bisimulation are shown
to be congruences with respect to the composition operation defined over Petri
nets. Building on this, suitable reconfigurations of such systems can be specified
as net rewritings, which preserve the behaviour of the system.

The framework is based on so-called open nets, a mild generalisation of ordi-
nary Petri nets introduced in [2, 3] to answer the first of the requirements above,
i.e., the possibility of interacting with the environment and of composing a larger
net out of smaller open components. An open net is an ordinary net with a dis-
tinguished set of places, designated as open, through which the net can interact
with the surrounding environment. As a consequence of such interaction, tokens
can be freely generated and removed in open places. In the mentioned papers
open nets are endowed with a composition operation, characterised as a pushout
in the corresponding category, suitable to model both interaction through open
places and synchronisation of transitions.

In the first part of the paper, after having extended the existing theory for
open nets to deal with marked nets, we introduce bisimulation-based observa-
tional equivalences for open nets. Following the intuition about reactive systems
discussed in [12], such equivalences are based on the observation of the interac-
tions between the given net and the surrounding environment. The framework
treats uniformly strong bisimilarity, where every transition firing is observed, and
weak bisimilarity, where a subset of unobservable transition labels is fixed and
the firings of transitions carrying such labels are considered invisible. Bisimilar-
ity is shown to be a congruence with respect to the composition operation over
open nets. Interestingly enough, this holds also when the set of non-observable
labels is not empty, i.e., for weak bisimilarity: some natural questions regarding
the relation with weak bisimilarity in CCS are also addressed. In addition, we
also define an up-to technique for facilitating bisimulation proofs.

Exploiting the results in the first part of the paper we introduce a framework
for open net reconfigurations. The fact that open net components are combined
by means of categorical colimits, suggests a setting for specifying net reconfig-
urations, based on double-pushout (DPO) rewriting [9]. Using the congruence
result for bisimilarity we identify classes of transformation rules which ensure
that reconfigurations of the system do not affect its observational behaviour.

A concluding section discusses some related work. A full version of the paper,
with proofs and additional results, is available as [4].

1 Marked open nets

An open net, as introduced in [2, 3], is an ordinary P/T Petri net with a dis-
tinguished set of open places, which represent the interface through which the
environment can interact with the net. An open place can be an input place,

meaning that the environment can put tokens into it, or an output place, from
which the environment can remove tokens, or both. In this section we introduce
the basic notions for open nets as presented in [3], generalising them to nets with
initial marking: this will be needed in the treatment of bisimilarity in Section 3.

Given a set X we write 2% for the powerset of X and X® for the free
commutative monoid over X . Moreover, given a function h : X — Y we denote
by the same symbol A : 2% — 2V its extension to sets, and by h® : X® — Y®
its monoidal extension. Given a multiset u € X®, with u = Doex Uz - @, for
x € X we will write u(z) to denote the coefficient u,. The symbol 0 denotes the
empty multiset.

Definition 1 (multiset projection). Given a function f : X — Y and a
multiset u € YO we denote by (u] f) the projection of uw along f, which is the
multiset over X defined as (ul f) = P e x Uf(z) - T-

For instance, given f : {so, s1} — {sy, s, s5} such that f(s;) = s} for i € {1,2},
we have (2s) @ s] @ s5] f) = 2s0® s1. In the following we will mainly work with
injective functions, for which the projection operation satisfies some expected

properties, such as £2((ul f)) < u and (F2((ul)1 f) = (ul f).

We consider nets where transitions are labelled over a fixed set of labels A.

Definition 2 (P/T Petri net). A P/T Petri net is a tuple N = (S,T,0,7,\)
where S is the set of places, T is the set of transitions , o,7 : T — S® are
functions mapping each transition to its pre- and post-set and X\ : T — A is a
labelling function for transitions.

In the sequel we will denote by *(-) and (-)®* the monoidal extensions of the
functions ¢ and 7 to functions from T'® to S®. Moreover, given s € S, the pre-
and post-set of s are defined by *s={te€T:s€t*}ands*={t €T :s¢€ °t}.

Definition 3 (Petri net category). Let Ny and Ny be Petri nets. A Petri
net morphism f : Ng — Nj is a pair of total functions f = (fr, fs) with
fT Ty — Ty and fs : Sy — Sl, such that fO’l“ all ty € Ty, .fT(tQ) = fga(.to),
frto)® = f&(to®) and \i(fr(to)) = No(to). The category of P/T Petri nets and
Petri net morphisms is denoted by Net.

We next introduce the notion of open net. As anticipated above, differently
from [2, 3], we work here with marked nets.

Definition 4 (open net). An open net is a pair Z = (Nz,0Oz), where Nz =
(Sz,Tz,02,72,\z) is a P/T Petri net and Oz = (O},Og) € 252 x 257 gpre
the sets of input and output open places of the net. A marked open net is a pair
(Z,4) where Z is an open net and @ € S is the initial marking.

Hereafter, unless stated otherwise, all open nets will be implicitly assumed to
be marked. An open net will be denoted simply by Z and the corresponding
initial marking by 4. Subscripts carry over to the net components. The graphical
representation for open nets is similar to that for standard nets. In addition, the

fact that a place is input or output open is represented by an ingoing or outgoing
dangling arc, respectively. For instance, in net Z; of Fig. 1, place s is both input
and output open, while s’ is only output open.

The notion of enabledness for transitions is the usual one, but, besides the
changes produced by the firing of the transitions of the net, we consider also the
interaction with the environment which is modelled by events, denoted by +¢
and —g, which produce or consume a token in an open place s.

Definition 5 (set of extended events). Let Z be an open net. The set of
extended events of Z, denoted by Tz and ranged over by € is defined as

Ty =TzU{+s:s€0L}U{—s:5€0,}.

Defining *+s = 0 and +5°* = s, and symmetrically, *—s = s and —;* =0, the
notion of pre- and post-set extends to multisets of extended events.

Given a marking u € O}ea, we denote by +, the multiset @, g u(s) - +s.
Similarly, —, = @,cgu(s) - —s for u € 0269.

Definition 6 (firings and steps). Let Z be an open net. A step in Z consists
of the execution of a multiset of (extended) events A € Ty, i.e., u® *A[A) u®
A®. A step is called a firing when it consists of a single event, i.e., A =€ € Ty.

A firing can be (i) the execution of a transition u @ *t [t) u @ t*, with u € ST,
t € Ty; (ii) the creation of a token by the environment u [+5) u®s, with s € O,
u € ST; (iii) the deletion of a token by the environment u®s [—,) u, with u € S5,
s € Oy. A step is the firing of a multiset of transitions and interactions with the

environment, of the kind A ® —,, & +,, for A € Tée, w E 02@ and v € OJZF@.

Definition 7 (open net category). An open net morphism f : 7y — Z5 is
a Petri net morphism f : Nz, — Nz, such that, if we define in(f) = {s € Sy :
*fs(s) = fr(*s) # 0} and out(f) = {s € S1: fs(s)* — fr(s*) # 0}, then

1. (i) fs ' (O5) Uin(f) € OF and (ii) 5" (Oy) Uout(f) € Or .
2. 1y = (G2 | fs) (reflection of initial marking).

The morphism f is called an open net embedding if both fr and fs are injective.
We will denote by ONet the category of open nets and open net morphisms.

Intuitively, an embedding f : Z; — Z> “inserts” net Z; into a larger net Zs,
which might constrain the behaviour of Z;. Conditions 1.(i) and 1.(ii) first require
that open places are reflected and hence that places which are “internal” in Z
cannot be promoted to open places in Z;. Furthermore, they ensure that the
context in which Z; is inserted can interact with Z; only through the open
places. In fact, if s is a place of Z; and its image fg(s) is in the post-set of
a transition of Z; which is not in the image of Z;, from the perspective of
Zy the environment can generate tokens in s; in this case s € in(f), and thus
Condition 1.(i) requires s to be an input place. Condition 1.(ii) is analogous

for output places. Finally, condition 2 requires that the marking of Z; is the
projection of the marking of Zs: any place s; € S1 must carry the same number
of tokens than its image f(s1) € So, i.e., G1(s1) = ta(f(s1)) for any s; € Si.
All morphisms f1, f2, a1 and as in Fig. 1 are examples of open net embeddings
(the mappings on places and transitions are those suggested by the shape and
labelling of the nets).

It is worth observing that most of the constructions in the paper will be
defined for open net embeddings, hence readers can limit their attention to em-
beddings if this helps the intuition. Still, on the formal side, working in a larger
host category with more general morphisms is essential to obtain a characterisa-
tion of the composition operation in terms of pushouts. Specifically, non-injective
open net morphisms are needed as mediating morphisms (recall, for example,
that the category of sets with injective functions does not have all pushouts).

In the sequel, given an open net morphism f = (fs, fr) : Z1 — Za, to lighten
the notation we will omit the subscripts “S” and “T” in its place and transition
components, writing f(s) for fs(s) and f(¢) for fr(t). Moreover we will write
1o T?l — Tg; to denote the monoidal function defined on the generators by
fO@t) = f(t) for t € Tz, and, for x € {+, -}, f®(xs) = x4, if f(s) € OF and
f®(zs) undefined, otherwise. Note that f® can be partial since open places can
be mapped to closed places.

Unlike most of the morphisms considered over Petri nets in the literature,
open net morphisms are not simulations. Instead, since open net embeddings are
designed to capture the idea of inserting a net into a larger one, they are expected
to reflect the behaviour, in the sense that given an embedding f : Zyp — Z1, the
behaviour of Z; can be projected along f to the behaviour of Z.

To formalise reflection of the behaviour along open nets embeddings, we
define the projection operation also over steps.

Definition 8 (projecting extended events). Given an open net embedding
f:Z — Z' and an extended event € € Tz we define the projection of ¢ along
f as follows:

— if € =t € Ty is a transition then
(t/Uf){t ift €Ty and f(t) =1t
—(oe1f) @ Feyy iU E f(T7)
—if € =g, withx € {+, -}, then (xs | f) = 25 f).

The projection operation over multisets of extended events (- f) : TEB/ — T?,
is defined as the monoidal extension of the projection of firings.

In words, if we think of the embedding as an inclusion, given a transition
t', the projection ('} f) is the transition itself if ¢’ is in Z. Otherwise, if ¢’ is
not in Z but it consumes or produces tokens in places of Z, the projection of
t' contains the corresponding extended events, expressing the interactions over
open places.

Lemma 1 (reflection of behaviour). Let f : Z — Z' be an open net embed-
ding. For every step u' [A") v’ in Z' there is a step (v’ | f) [((A'Uf)) (W'] f) in
Z, called the projection of the step u’ [A’) v/ over Z.

2 Composing open nets

We introduce next a basic mechanism for composing open nets which is char-

acterised as a pushout construction in the category of open nets. The case of

unmarked nets was already discussed in [3]. Here we extend the theory to deal

with marked open nets. Intuitively, two open nets Z; and Z5 are composed by

specifying a common subnet Zj, and then by joining the two nets along Zj.
Let us start with a technical definition which will be useful below.

Proposition 1 (composition of multisets). Consider a pushout diagram in
the category of sets as below, where all morphisms are injective.

Given u; € SiB and uy € SSB such that (u1] f1) = " Sy fo
(uz | fa) = uo, there is a (unique) multiset uz € S§ S T
such that (us | ;) = w;, for i € {1,2}. Such a m&% —ar

multiset us will be denoted by us = w1 Wy, ua.

S2

As in [2,3], two embeddings f1 : Zo — Z1 and f2 : Zg — Zs are called com-
posable if the places which are used as interface by fi, i.e., the places in(f;) and
out(f1), are mapped by fa to input and output open places of Z, respectively,
and also the symmetric condition holds.

Definition 9 (composability). Let f1 : Zo — Z1, fa: Zo — Za be embeddings
in ONet. We say that fi and fa are composable if 1. fa(in(f1)) C O}'Q and

folout(f1)) € O,; and 2. fi(in(f2)) € O, and fy(out(f2)) € O,

Composability is necessary and sufficient to ensure that the pushout of f;
and f> can be computed in Net and then lifted to ONet.

Proposition 2 (pushouts in ONet). Let f1 : Zog — Z1, fo 1 Zo — Za be
embeddings in ONet (see Fig. 2(a)). Compute the pushout of the corresponding
diagram in category Net (componentwise on places and transitions) obtaining
net Nz, and morphisms ay and as, and then take as open places, for x € {+,—},

0%, ={s3 € Ss:a7'(s3) CO% A a;'(s3) CO%,}

and as marking Us = U1 Wy, U2, defined according to Proposition 1. Then
(a1, Z3,) is the pushout in ONet of f1 and fo if and only if f1 and fo are
composable. In this case we write Zs = Z1 4y, ., Z2.

As an example, the open net embeddings f; and fs in Fig. 1 are composable
and Zs is the resulting pushout object.

We next analyse the behaviour of an open net Z3 arising as the composition
of two nets Z; and Z, along an interface Zy. More specifically, we show that
steps of the component nets Z; and Z5 can be “composed” to give a step of Z3
when they agree on the interface and satisfy suitable compatibility conditions.

Lemma 2 (composing steps). Let f1 : Zog — Z1 and fo : Zy — Za be
composable embeddings in ONet and let Zs = Z1 +y,,5, Z2 (see Fig. 2(a)).
Let uy [A1) v1 and uz [A2) ve be steps in Z1 and Zi, respectively, such that
(urlf1) = (uz] f2) = uo and Ay = f5 (A1 f1)).

Then, (v1] f1) = vo = (v2| f2) and, if we define Az = af (A1),

Fig. 1. An example of a pushout in ONet.

Up Wy, U2 [A3> V1 Wy, V2.

The above result can be used to get a compositionality result for steps, show-
ing that the steps of Z3 can be obtained by “composing” steps of the components
Zy and Zj satisfying suitable compatibility requirements. However, this is out-
side the main focus of the paper and can be found in the full version [4].

3 Bisimilarity of open nets

We next study (strong and weak) bisimilarity for open nets, proving that it is a
congruence with respect to the colimit-based composition of open nets.

First, we define the labelled transition system associated to an open net. Net
transitions carry a label which is observed when they fire. Additionally, in the
labelled transition system we also observe what happens at the open places. As
discussed in the conclusions, this resembles the labelled transition system arising
from the view of Petri nets as reactive systems in [14,20]. More precisely, given
an open net Z, the corresponding labelled transition system has the markings
of the net as states. Transitions are generated by the firings of Z and labelled
over the set Az = AU{+5:5€0L}U{—5:5€0,}.

For notational convenience we extend the labelling function Az to the set of
extended events Tz, by defining \z(z) = x for v € Ty — Ty (i.e., for x = +, or
x = —4 with s € Sz).

Definition 10 (Its for an open net). The labelled transition system associ-
ated to an open net Z, denoted by Its(Z), is the pair <S§, —z), where states are
markings uy € S%B and the transition relation — 7 C S? X Az x S%B includes all

A
transitions uyz Z—(z>)z u'y such that there is a firing uz [z) u'y in Z.

When observing the behaviour of a system it is common that only a subset
of events is considered observable. Here this is formalised by selecting a subset of

labels representing internal firings, playing a role similar to 7-actions in process
calculi, and then considering a corresponding notion of weak bisimilarity. Let
A; C A be a subset of unobservable labels, fixed for the rest of the paper. Given

a A-labelled open net Z, for markings v,v' € S5 we write v >z v’ if v LZ v

with £ € A, and v AZ»Z v if v i»z v' with £ € Az — A,. Then we define

— v ==z v/ when U«B; v’
fv:€>zv’whenv «T»*Z«Z»Z«T»*Z v L#T.

Weak bisimilarity is now defined in a standard way (but note that when the
set of unobservable labels is empty, this actually corresponds to strong bisimi-
larity). Only, we need to specify for each open place of one net which is the cor-
responding open place in the other net. Given two open nets Z; and Zs a corre-
spondence 1 : O1 < Oz between Z; and Zs is a bijection n : O UO] — OF UO;
such that for s; € O1, © € {4, —} we have s; € OF iff n(s1) € O03.

Definition 11 ((weak) bisimilarity). Let Z1, Zs be open nets and n: Op <
Os be a correspondence between Zy and Zs. A (weak) n-bisimulation over Z
and Zs is a relation over markings R C S? X SSG such that if (u1,u2) € R then

. . 4
— ifuy “eﬁzl u}, there exists uf such that ug L;ZQ ub and (uf,uh) € R;
— the symmetric condition holds;

where N(+s) = +y(s), N(—s) = —nes), and n(€) = £ for any £ € AU{7}.

Two open nets Z1 and Zs are (weakly) n-bisimilar, denoted Z\ ~, Za, if
n : O1 < Oz is a correspondence and there exists a (weak) n-bisimulation R
over Zy and Zs such that (i1, i2) € R. We will say that Zy and Zy are (weakly)
bisimilar, written Zy = Za, if Z1 =y Za for some correspondence 1.

As already mentioned, open net morphisms are not simulations, since the
target net can be more “instantiated” than the source net. However, according
to the following lemma, which is a corollary of Lemma 2, given composable
embeddings f1 : Zg — Z; and fs : Zy — Za, the firing of a transition in Zs,
projected along f2 to Zy can then be simulated in Z;.

Lemma 3. Let Zy, Z1, Zs be open nets and let f; : Zo — Z; (i € {1,2}) be

composable embeddings, as in Fig. 2(a). Furthermore, let Z3 = Z1 +y, 1, Za.

Assume that ug i)zz ub where £ € A, let t € Ty such that Xa(t) = £ and

ug [t) uh, let ug [Ao) ug be its projection over Zy (hence Ay = (t f2)), and
0 ln , i ‘ .

let ug —z, ... —>z, uj be any sequence of transitions in Its(Zy) arising as a

linearisation of such step in Zy. Then for any uy € ST such that (u1 | f1) = uo

I2 2 / 3 ! I
we have that uy —z, ... —>z, Uy and uy Wy, ug —z; Uy Wy us.

Note that above, if transition ¢ is in the image of Zj, then the sequences of
transitions in Its(Zy) and Its(Z1) are actually single firings. Otherwise, they are
sequences of interactions over open places, possibly of length greater than one.

By exploiting this lemma we can prove that bisimilarity is a congruence with
respect to the composition operation on open nets.

1 Zo 2 1 Zo 92
, f/ \ % 7 f/ \ "
I e
(a) (b)

Fig. 2. Pushouts in ONet.

Theorem 1 (bisimilarity is a congruence). Let Zy, Z1, Za, Wa be open
nets. Let Zy =, Wy, for some n. Consider the nets Zs = Zy +y, f, Z2 and
Ws = Z1 44,90 Wa, as in Fig. 2 where f1, fo and g2 are embeddings, fi and f>
are composable, and fi1 and g2 are composable as well.

If g2lo, = no (f2lo,) (i-e., fa and go are consistent with n on open places)
then Zs =,y W3, where ' is defined as follows: for all s € Ogz,, n'(s) = p1(s') if
s =ay(s'), and 1/'(s) = Ba(n(s')) if s = aa(s').

We next provide a kind of up-to technique for open net bisimilarity. Given an
open net Z, let us define the out-degree of a place s € S as the maximum number
of tokens that the firing of an extended event can remove from s, formally:

deg(s) = max ({('t)(s) teTzU{l:se 02})

The idea, formalised in the notion of up-to bisimulation, is to allow tokens
to be removed from open input places, when they exceed the out-degree of the
place. More precisely, given a net Z and a marking u € S®, let us say that a
marking v € OJZrea is subtractable from u if Vs € OF. deg(s) < u(s) — v(s). Note
that this implies that all transitions enabled in u are also enabled in u © v.

Definition 12 (up-to bisimulation). Let Z; and Zs be open nets, and let
1 : 01 < O3 be a correspondence between Z1 and Zs. A relation R C Sfa X Sge
between markings is called an up-to n-bisimulation if whenever (u1,uz) € R then

. . . £

—if uy «Z»ZI u}, then there exist markings ub such that usg QZQ ub, and
vy € Of@ subtractable from uy, with (v} © vy, ub &n®(v1)) € R;

— the symmetric condition holds.

Proposition 3. Let Z1 and Zy be open nets, and let n : Oy < O3 be a corre-
spondence between Zy and Zs. Let R be an up-to n-bisimulation. Then for any
(u1,u2) € R we have that (Z1,u1) =y (Z2,u2).

As it often happens with up-to techniques, the above result might allow to
show that two nets are bisimilar by exhibiting finite relations (while bisimulations
are typically infinite). E.g., consider the open nets on the right, where label a is
observable. Then a bisimulation would in-
clude at least the pairs {(k-s,k-s) : k € N}, @
where s is the only place. Instead, accord- ﬂjtﬂ
ing to the definition above {(0,0),(s,s)} is
an up-to bisimulation.

Z
S1 Z3 o 22 1 o o 22
s'
[b] o] EY [o]
zZ"
\ Q / \ ® : /
2] [a] ' [b]

Fig. 3. Two pushouts of open nets for the comparison to CCS.

Comparison to CCS. We now give some hints as to why weak bisimilarity is
a congruence in the case of open nets, but not in CCS [16]. Remember that
a classical counterexample for CCS is as follows: p; = 7.a4.0 = a.0 = ps, but
q1 = 7.a.0+ 0.0 % a.0 + 5.0 = ¢2. The reason for the latter inequality is that ¢;
can do a 7 and become a.0, while g2 cannot mimic this step.

Fig. 3 shows a similar situation of nondeterministic choice for open nets,
where 7 is the only unobservable label. However, note that here the two nets Z;
(corresponding to 7.a.0) and Z; (corresponding to a.0) are not weakly bisimilar.
Whenever the 7-transition is fired in Z;, resulting in the marking m;, this can
not be mimicked in Z; by staying idle, since then in Z] a transition with label
—s; 1s possible, while a transition labelled —s, is not possible for the net Z; with
marking ms. Also note that the places s; respectively s§ must be output open
in order to allow composition with the net Z,.

Roughly, this means that for open nets we are always able to observe the first
invisible action in an open component, which is reminiscent of the definition of
observation congruence (denoted by ~¢) in CCS: two processes p, ¢ are called
observation congruent if they are weakly bisimilar, with the additional constraint
that whenever the first step of p is a 7-action, then it has to be answered by
at least one 7T-action of ¢ (and vice versa). In both settings it is only the first
T-action that can be observed but not the subsequent ones.

4 Reconfigurations of open nets

The results in the previous sections are used here to design a framework where a
system specified as a (possibly open) Petri net can be reconfigured dynamically
by transformation rules, triggered by the state/shape of the system. The con-
gruence result allows to characterise classes of reconfigurations which preserve
the observational behaviour of the system.

The fact that the composition operation over open nets is defined in terms
of a pushout construction suggests naturally a way of reconfiguring open nets
by using the double-pushout approach to rewriting [9].

A rewriting rule over open nets consists of a pair of morphisms in ONet:

10

!
p:LpiKpng

where L,, K,, R, are open nets, called left-hand side, interface and right-hand
side of the rule p, and [,,, r, are open net embeddings. Furthermore, it is required
that (rp ol 1)|OLp is a correspondence between L, and R,, which we denote by
np ¢ Lp < Rp. Intuitively, the rule specifies that, given a net Z, if the left-hand
side L, matches a subnet of Z then this can be reconfigured into Z’ by replacing
the occurrence of L, with the right-hand side R,, preserving the subnet K.
Note that by requiring the existence of the correspondence 7,, we guarantee
that the interface of the transformed net, consisting of the open places, is left
untouched by the reconfiguration (a more general treatment can be found in [4]).
A rewriting rule p is called behaviour preserving if its left- and right-hand sides
are bisimilar: more precisely, if L, ~, R,.

Definition 13 (open net transformation). Let p be a rewriting rule over
open nets, let Z be an open net and let m : L, — Z be a match, i.e., an
open net embedding. We say that Z rewrites to Z' using p at match m, writing
Z =™ 7' or simply Z =P Z', if the diagram of Fig. /(a) can be constructed
i ONet, where both squares are pushouts, and morphism n is composable with
both 1, and 7.

We stress that we are interested in transformations where the two pushout
squares are built from composable arrows (technically, this ensures that the
transformation can be performed in Net and then “lifted” to ONet).

The next result is now an easy consequence of Theorem 1.

Theorem 2 (behaviour-preserving reconfigurations). Let p be a
behaviour-preserving open mnet rule. Given an open net Z and a match
m:L,— Z,if Z=P™ Z' then Z = Z'.

For instance, consider the double-pushout diagram in Fig. 4(b). It can be
easily seen that the left- and right-hand sides of the applied rule are strongly
bisimilar. Hence we can conclude that also Z and Z’ are strongly bisimilar.

4.1 Applying rules to open nets

As it is common in the categorical approaches to (graph) rewriting, the notion
of open net transformation proposed in Definition 13 is rather “declarative”
in style, because it requires the existence of two pushouts in category ONet,
without stating how they can be constructed, and under which conditions. A
more explicit description of the conditions under which a rule can be applied
to an open net and of the way the resulting net can be constructed, is clearly
necessary for practical purposes. Looking at Fig. 4(a), given a rule p and a match
m : L, — Z, in order to build the open net transformation:

— The pushout complement of [, and m must exist. The resulting arrows n
and d must be such that [, and n are composable. Additionally, there can
be several pushout complements and in this case a canonical choice should
be considered.

11

(a) (b)

Fig. 4. Transforming open nets through DPO rewriting.

— The resulting arrow n must be composable with 7,: then we know how to
build Z’ by Proposition 2.

Unfortunately, although a general theory of DPO rewriting has been devel-
oped recently in the framework of adhesive categories [11], we cannot exploit
it here since the category of open nets falls outside the scope of the theory.
Sufficient hypotheses under which the above conditions are satisfied are made
explicit in the following lemma (more general conditions are considered in [4]).

Lemma 4 (existence of transformations in ONet). Let p be an open net
rewriting rule, let Z be an open net and let m : L, — Z be a match such that:

1. for all s € L, — 1,(K,) we have *m(s)Um(s)®* Cm(L, — Kp);
2. for all s € K, if s € in(rp) —in(l,) then m(l,(s)) € OF;
3. for all s € Ky, if s €in(l,) then l,(s) € OF implies m(l,(s)) € OF;

and the dual of the last two conditions, obtained by replacing in() by out() and
+ by —, hold. Then, there exists a transformation Z =P™ Z'.

The intuition underlying the conditions above is the following. Condition 1
is a typical dangling condition: it asserts that a place can be deleted only if all
the transitions connected to this place are removed as well, otherwise the flow
arcs of this transition would remain dangling. Technically, this condition ensures
that the pushout complement exists and is unique in the underlying category
Net. By condition 2, if s € in(r,) —in(l,), i.e., the rule p creates a new (ingoing)
transition connected to place s, without replacing any old one, then the image
of s in Z must be (input) open. Finally, condition 3 says that if s € in(l,), i.e.,

12

if some (ingoing) transitions are deleted from s then the image of s in Z must
be (input) open if so is its image in L.

Technically, conditions 2 and 3 (and their dual) ensure the existence of a
minimal pushout complement D, i.e., a pushout complement which embeds into
any other, which is the one that we choose to define the transformation; the
conditions also guarantee the composability of n with both [, and 7,. The net
underlying the minimal pushout complement is D = Z — m(L, — ,(K,)) (with
set difference componentwise on places and transitions), and the open places of
D are given by O% = d='(0%) for x € {4, —}. The initial marking 4 p is defined
as Gp(s) = tz(d(s)) for any place s € Sp.

As an example, consider again the DPO diagram in Fig. 4(b). It is not difficult
to see that the rule and the match satisfy the conditions of Lemma 4. Hence
we can complete the double-pushout construction transforming Z into 7', as
depicted in the same figure.

4.2 Modeling dynamic reconfigurations of services

Open nets allow us to specify a system as built out of smaller components. Then,
its behaviour is captured by the firing behaviour of the open net. However, for
highly dynamic systems, as mentioned in the introduction, it can be useful to
have the possibility of specifying that, under suitable conditions, some struc-
tural changes or reconfigurations of the system can take place. For instance the
invocation of a service could trigger a rule which provides an implementation of
the required service.

The theory of open net reconfigurations can do the job. As an example,
consider net Ny in Fig. 6 which models the view of a traveller on the journey
planning and ticket purchase services offered through a travel agency portal.

We distinguish abstract transitions representing services that should be pro-
vided elsewhere and concrete transitions representing local services and control
flow actions. The invocation of an external service can be seen at different levels
of abstraction. From the point of view of the client process it is just the firing an
abstract transition. At a lower level of abstraction, the execution of the service
is captured by a rule such as the one at the top of Fig. 5. An application of this
rule, replacing the abstract transition by a new open net, models the discovery
and binding of the concrete services required. The left- and right-hand sides of
the rule are weakly bisimilar if we observe only the interactions at the open
(interface) places, i.e., if we take A, = A. This can be seen as a proof of the
fact that the bound service meets the requirements: both in the abstract tran-
sition and in its concrete counterpart any inquiry will produce a corresponding
itinerary.

The rule in the bottom of Fig. 5 represents a case where a simple pattern
is replaced by a richer one. On the left we say that, given an itinerary, we can
either purchase the required tickets or cancel the processes. On the right the
transaction is refined, adding a prior reservation phase, while keeping the option
to cancel. As above, the rule has weakly bisimilar left- and right-hand sides,

13

Jjourney . (l) _—
planner: Inquiry inquiry

planne,

B — @ —

itinerary Q itinerary/‘g) itinerary_(O

purchase
tickets:

itineraryé} itinerary O
<= = reservation ()
\O’

payment
O tickets g} tickets payment O tickets

tickets

payment

Fig. 5. Rules

ensuring that the visible effect of the abstract and concrete transitions at the
interfaces is the same.

A possible sequence of transformations is shown in Fig. 6. By the above
considerations, we are sure that the transformations do not change the observable
behaviour of the system, a fact that can be interpreted as a proof of conformance
of the provided service with respect to the abstract specification.

5 Conclusion and Related Work

Open nets, introduced in [2, 3], are a reactive extension of standard Petri nets
which allows to model systems interacting with an unspecified environment. Sev-
eral other approaches to Petri net composition and reactivity have been proposed
in the literature (see, e.g., [6,17, 10], to mention a few) and a detailed comparison
with the open net model can be found in [3].

In this paper, firstly we have generalised the theory of open nets, including
the characterisation of net composition using pushouts, to the case of marked
nets. Next we have introduced the notions of strong and weak bisimilarity over
open nets. Weak bisimilarity (and, as a particular case, also strong bisimilarity)
is shown to be a congruence with respect to the colimit-based composition op-
eration over open nets. To the best of our knowledge, this is the first time that
a compositionality result is given for weak bisimilarity over Petri nets. Weak
bisimilarity for Petri nets with a composition operation is studied for instance
n [17], but it is not congruence, though a context closure allows one to get a
congruence which is then characterised by means of a universal context. Our re-
sult about strong bisimilarity can be seen as a generalisation of those in [15, 20],

14

inquiry

Z’aumey p/annsa

Jjourney

planner[

purchase

ticketsC

itinerary C itinerary)

reserve ticke:

reservation()

O tickets N

purchas
tickets

purchase
tickets

payment
tickets Na

Fig. 6. Transformation of open nets representing a travel agent’s portal.

which essentially are developed for a special kind of open nets, arising by viewing
them as bigraphical reactive systems or as reactive systems over a cospan cat-
egory. In the resulting reactive Petri net model there is no distinction between
open input and output places. Furthermore the composition operation used in
these papers does not allow synchronisation of transitions. Similarities exist also
with the problem studied in [7], where a reactive Petri net model which ad-
mits a compositional behavioural equivalence is exploited, in the framework of
web-services, to provide a theoretical basis to service composition and discovery.

In the second part of the paper we have proposed a rewriting-based frame-
work for Petri nets with reconfigurations. We have shown how our congruence
results for the observational semantics can be used to identify classes of recon-
figurations which do not alter the observational behaviour of the system. This
is applied to a small case study of a workflow-like model of a travel agency.

The idea of using rewriting techniques for providing a reconfiguration mech-
anism for Petri nets has been already explored in the literature (see, e.g., re-
configurable nets of [1,13] and high-level replacement systems applied to Petri
nets in [18]). In future work, besides analysing the relationships between these
approaches and ours, we will continue to study the notion of reconfigurable open
nets and describe in more detail how reconfigurations can be triggered by the net
itself, for example by reaching certain markings or by firing certain transitions,
following an intuition similar to that of dynamic nets [8].

Finally we plan to study the exact relationship between our morphisms and
(generalisations of) the morphisms by Winskel [21,5], in order to see whether
they can be considered as duals. This would allow to establish a precise cor-
respondence between our pushout-based composition and the pullback-based
composition in the mentioned papers.

15

References

1.

10.

11.

12.

13.

14.

15.

16.
17.

18.

E. Badouel, M. Llorens, and J. Oliver. Modeling concurrent systems: Reconfig-
urable nets. In H. R. Arabnia and Y. Mun, editors, Proceedings of PDPTA’03,
volume 4, pages 1568-1574. CSREA Press, 2003.

. P. Baldan, A. Corradini, H. Ehrig, and R. Heckel. Compositional modeling of reac-

tive systems using open nets. In K.G. Larsen and M. Nielsen, editors, Proceedings
of CONCUR’01, volume 2154 of LNCS, pages 502-518. Springer, 2001.

P. Baldan, A. Corradini, H. Ehrig, and R. Heckel. Compositional semantics for open
Petri nets based on deterministic processes. Mathematical Structures in Computer
Science, 15(1):1-35, 2004.

P. Baldan, A. Corradini, H. Ehrig, R. Heckel, and B. Koénig. Bisimilarity and
behaviour-preserving reconfigurations of open petri nets. Technical Report CS-
2006-9, Computer Science Department, University Ca’ Foscari of Venice, 2006.

. A.M. Bednarczyk, M.A.and Borzyszkowski. General morphisms of Petri nets.

In J. Wiedermann, P. van Emde Boas, and M Nielsen, editors, Proceedings of
ICALP’99, volume 1644 of LNCS, pages 190-199. Springer, 1999.

E. Best, R. Devillers, and J. G. Hall. The Petri box calculus: a new causal algebra
with multi-label communication. In G. Rozenberg, editor, Advances in Petri Nets,
volume 609 of LNCS, pages 21-69. Springer, 1992.

F. Bonchi, A. Brogi, S. Corfini, and F. Gadducci. A behavioural congruence for
web services. In Proceedings of FSEN ’07, LNCS. Springer, 2007.

M.G. Buscemi and V. Sassone. High-level Petri nets as type theories in the join
calculus. In Proceedings of FoSSaCS’01, volume 2030 of LNCS. Springer, 2001.
H. Ehrig. Tutorial introduction to the algebraic approach of graph-grammars. In
H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors, Proceedings of the 3rd
International Workshop on Graph-Grammars and Their Application to Computer
Science, volume 291 of LNCS, pages 3-14. Springer, 1987.

E. Kindler. A compositional partial order semantics for Petri net components. In
P. Azema and G. Balbo, editors, Application and Theory of Petri Nets, volume
1248 of LNCS, pages 235-252. Springer, 1997.

S. Lack and P. Sobocinski. Adhesive and quasiadhesive categories. RAIRO —
Theoretical Informatics and Applications, 39(3), 2005.

J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems. In
C. Palamidessi, editor, Proceedings of CONCUR’00, volume 1877 of LNC'S, pages
243-258. Springer, 2000.

M. Llorens and J. Oliver. Introducing structural dynamic changes in Petri
nets: Marked-controlled reconfigurable nets. In F. Wang, editor, Proceedings of
ATVA’04, volume 3299, pages 310-323. Springer, 2004.

R. Milner. Bigraphical reactive systems. In K. G. Larsen and M. Nielsen, editors,
Proceedings of CONCUR’01, volume 2154 of LNCS, pages 16-35. Springer, 2001.
R. Milner. Bigraphs for Petri nets. In J. Desel, W. Reisig, and G. Rozenberg,
editors, Lectures on Concurrency and Petri Nets, volume 3098 of LNCS, pages
686—701. Springer, 2003.

Robin Milner. A Calculus of Communicating Systems. Springer, 1980. LNCS 92.
M. Nielsen, L. Priese, and V. Sassone. Characterizing Behavioural Congruences for
Petri Nets. In Proceedings of CONCUR’95, volume 962 of LNCS, pages 175-189.
Springer, 1995.

J. Padberg, H. Ehrig, and L. Ribeiro. High level replacement systems applied
to algebraic high level net transformation systems. Mathematical Structures in
Computer Science, 5(2):217-256, 1995.

16

19. W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-
puter Science. Springer, 1985.

20. V. Sassone and P. Sobocinski. A congruence for Petri nets. In Proceedings of
PNGT’04, number 127(2) in Electronic Notes in Computer Science, pages 107—
120. Elsevier Science, 2005.

21. Glynn Winskel. Event structures. In Petri Nets: Applications and Relationships
to Other Models of Concurrency, pages 325-392. Springer, 1987. LNCS 255.

17

