
39

A Logic for True Concurrency

PAOLO BALDAN, University of Padova
SILVIA CRAFA, University of Padova

We propose a logic for true concurrency whose formulae predicate about events in computations and their
causal dependencies. The induced logical equivalence is hereditary history preserving bisimilarity, and frag-
ments of the logic can be identified which correspond to other true concurrent behavioural equivalences in
the literature: step, pomset and history preserving bisimilarity. Standard Hennessy-Milner logic, and thus
(interleaving) bisimilarity, is also recovered as a fragment. We also propose an extension of the logic with fix-
point operators, thus allowing to describe causal and concurrency properties of infinite computations. This
work contributes to a rational presentation of the true concurrent spectrum and to a deeper understanding
of the relations between the involved behavioural equivalences.

Categories and Subject Descriptors: F.1.2 [Theory of Computation]: Modes of Computation—Parallelism
and concurrency; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic—Temporal
logic; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages—Process models

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: true concurrency, causality, mu-calculus, behavioural equivalences,
history-preserving bisimilarity, event structures

ACM Reference Format:
Paolo Baldan and Silvia Crafa, 2014. A Logic for True Concurrency. J. ACM 9, 4, Article 39 (March 2010),
36 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
In the semantics of concurrent and distributed systems, a major dichotomy opposes
the interleaving approaches, where concurrency of actions is reduced to the non-
deterministic choice among their possible sequentialisations, to true concurrent ap-
proaches, where concurrency is taken as a primitive notion. In both cases, on top of
the operational models a number of behavioural equivalences have been defined by
abstracting from aspects which are considered unobservable [van Glabbeek 2001; van
Glabbeek and Goltz 2001].

For the interleaving world, a systematic and impressive picture is taken in the
linear-time branching-time spectrum [van Glabbeek 2001]. Quite interestingly, the
equivalences in the spectrum can be uniformly characterised in logical terms. Bisim-
ilarity, the finest equivalence, corresponds to Hennessy-Milner (HM) logic: two pro-
cesses are bisimilar if and only if they satisfy the same HM logic formulae [Hennessy
and Milner 1985]. Coarser equivalences correspond to suitable fragments of HM logic,
as discussed in [van Glabbeek 2001].

This work is partially supported by the MIUR-PRIN Project CINA.
Author’s addresses: P. Baldan and S. Crafa, Diaprtimento di Matematica, Università di Padova, Italy.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2010 ACM 0004-5411/2010/03-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:2 P. Baldan and S. Crafa

In the true concurrent world, relying on models like event structures or transition
systems with independence [Winskel and Nielsen 1995], several behavioural equiv-
alences have been defined. Hereditary history preserving (hhp-)bisimilarity [Bednar-
czyk 1991], the finest equivalence in the spectrum of [van Glabbeek and Goltz 2001],
has been shown to arise as a canonical behavioural equivalence when considering
partially ordered computations [Joyal et al. 1996] (The abstract notion of bisimilar-
ity threin instantiates to hhp-bisimilarity when taking the category of pomsets as the
path category.) Coarser equivalences like history preserving (hp-)bisimilarity [Rabi-
novich and Trakhtenbrot 1988; Degano et al. 1988; Best et al. 1991], pomset and step
bisimilarity have also been widely studied. Correspondingly, a number of logics have
been studied, but, to the best of our knowledge, a unifying logical framework for the
main true concurrent equivalences is still missing. The huge amount of work on the
topic makes it impossible to give a complete account of related approaches. Just to
give a few references (see Section 7 for a wider discussion), [De Nicola and Ferrari
1990] proposes a general framework encompassing a number of temporal and modal
logics that characterise interleaving bisimilarity as well as pomset bisimilarity and
weak hhp-bisimilarity, a weakening of hhp-bisimilarity studied, e.g., in [De Nicola and
Ferrari 1990; Pinchinat et al. 1994; Cherief 1992]. However, finer equivalences are not
considered and a single unitary logic is missing. Hp-bisimilarity has been studied in
the setting of Petri nets and shown to be decidable for finite 1-safe Petri nets in [Vogler
1991]. A decidability result for finite-state Petri nets is obtained also in [Montanari
and Pistore 1997] by means of an encoding of into history dependent (HD-)automata.
Concerning hhp-bisimilarity, several logics with modalities corresponding to the “re-
traction” or “backward” execution of computations have been proposed [Hennessy and
Stirling 1985; Bednarczyk 1991; Nielsen and Clausen 1995; Phillips and Ulidowski
2011]. When a system does not exhibit autoconcurrency, i.e., where events with the
same label are never enabled concurrently, such logics are shown to capture hhp-
bisimilarity. Relaxing this restriction requires to move to an event based logic, where
specific events executed in the past can be retracted [Bednarczyk 1991; Nielsen and
Clausen 1995; Phillips and Ulidowski 2011].

In this paper we propose a behavioural logic for concurrency and we show that it
allows us to characterise a relevant part of the true concurrent spectrum. More specifi-
cally, the full logic L is shown to capture hhp-bisimilarity, the finest behavioural equiv-
alence in the spectrum in [van Glabbeek and Goltz 2001]. Then suitable fragments of
the logic are shown to scale down to the characterisation of coarser equivalences: his-
tory preserving, pomset and step bisimilarity. Standard HM logic, and thus (interleav-
ing) bisimilarity, is also recovered as a fragment.

Our logic allows us to predicate about events in computations together with
their causal and independence relations. It is interpreted over prime event struc-
tures [Nielsen et al. 1981; Winskel 1987], one of the most widely known event-based
models of computation, where the dependencies between events are expressed in terms
of causality and (binary) conflict. It could naturally be interpreted over any formalism
with explicit notions of event, causality and consistency. A formula is evaluated in a
configuration representing the current state of the computation, and it predicates on
the possible future evolutions starting from that state. The logic is event-based in the
sense that it contains an operator acting as a binder: it asserts the existence of an
event satisfying suitable requirements and it binds the event to a variable so that the
event can be referred to later in the formula. In this respect, it is reminiscent of the
modal analogue of independence-friendly modal logic as considered in [Bradfield and
Fröschle 2002].

The logic contains two main operators. The formula (x, y < a z)ϕ declares that an
a-labelled future event exists, which causally depends on the event bound to x, and is

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Logic for True Concurrency 39:3

independent from the event bound to y. Such an event is bound to variable z so that it
can be later referred to in ϕ. In general, x and y can be replaced by tuples of variables.
A second operator allows one to “execute” events previously bound to variables. The
formula 〈z〉ϕ says that the event bound to z is enabled in the current state, and after
its execution ϕ holds.

Different behavioural equivalences are induced by fragments of the logics where we
suitably restrict the set of possible futures the formulae are able to refer to. Namely,
hhp-bisimilarity, that is captured by the full logic, corresponds to the ability of ob-
serving the existence of a number of legal but (possibly) incompatible futures. Such
ability is strictly related to the capability of observing future events without execut-
ing them (in fact the execution of an event would rule out all the events in conflict
with it). Interestingly, the definition of hhp-bisimilarity is normally given in terms of
backward transitions, whereas our logical characterisation has a “forward flavour.” By
restricting to a fragment where future events can be observed only by executing them
(any occurrence of the binding operator is immediately followed by a corresponding
execution), we get hp-bisimilarity. Pomset bisimilarity is induced by a fragment of the
logic obtained by further restricting that for hp-bisimilarity, with the requirement that
propositional connectives are used only on closed (sub)formulae. Roughly speaking,
this fragment predicates about the possibility of executing pomset transitions and the
closedness requirement prevents pomset transitions from being causally linked to the
events in the past. Finally, step bisimilarity corresponds to the possibility of observing
only currently enabled concurrent events.

The logic L in its basic form is essentially a means to understand and compare dif-
ferent process equivalences, but its expressive power is rather weak. In fact, although
events arbitrarily far in the future can be “observed”, the logic only allows us to de-
scribe computations where a finite number of events are executed. In order to over-
come this limitation and to provide a more powerful specification logic, well-suited for
describing properties of unbounded, possibly infinite computations, we enrich the logic
with a form of recursion. This is obtained by adding least (and dually greatest) fixpoint
operators, thus obtaining a kind of first order modal µ-calculus similar to the µ-calculi
in [Dam 1996; Dam et al. 1998] and [Groote and Willemse 2005], which are endowed
with first order variables representing channels or data. Similarities exist also with
the fixpoint extension of independence-friendly modal logic in [Bradfield and Kreutzer
2005]. In the resulting logic µL one can express non-trivial causal properties, like “any
a action can always be followed by a causally related b action in at most three steps,”
or “an a action can always be executed in parallel with a b action.” Moreover, we show
that, as it happens in the interleaving case, the addition of the fixpoint operators does
not alter the logical equivalence. The logical equivalence of µL is still hhp-bisimilarity
and the same invariance result applies to the fixpoint extensions of the fragments of L
characterising the coarser behavioural equivalences.

This work contributes to the definition of a logical counterpart of the true concurrent
spectrum, shading further light on the relations between the involved behavioural
equivalences and suggests interesting directions of investigations in the verification of
true concurrent properties.

The rest of the paper is organised as follows. In Section 2 we introduce the basics of
event structures and the concurrent equivalences we will work with in the paper. In
Section 3 we present the syntax and semantics of our logic L. In Section 4 we study
the logical equivalence induced by L, proving that it coincides with hhp-bisimilarity.
In Section 5 we provide a characterisation of other concurrent equivalences in terms
of fragments of our logic. In Section 6 we discuss the fixpoint extension of our logic.
Finally, in Section 7 we discuss some related work and present directions of future

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:4 P. Baldan and S. Crafa

research. This is a revised and extended version of the conference paper [Baldan and
Crafa 2010].

2. BACKGROUND
In this section we provide the basics of prime event structures which will be used
as models for our logic. Then we define some common behavioural true concurrent
equivalences which will play a basic role in the paper.

2.1. Event structures
Prime event structures [Nielsen et al. 1981; Winskel 1987] are a widely known model
of concurrency. They describe the behaviour of a system in terms of events and depen-
dency relations between such events. Throughout the paper Λ denotes a fixed set of
labels ranged over by a, b, c . . .

Definition 2.1 (prime event structure). A (Λ-labelled) prime event structure (PES) is
a tuple E = 〈E,≤,#, λ〉, where E is a denumerable set of events, λ : E → Λ is a labelling
function and ≤, # are binary relations on E, called causality and conflict respectively,
such that:

(1) ≤ is a partial order and dee = {e′ ∈ E | e′ ≤ e} is finite for all e ∈ E;
(2) # is irreflexive, symmetric and hereditary with respect to≤, i.e., for all e, e′, e′′ ∈ E,

if e#e′ ≤ e′′ then e#e′′.

In the following, we will assume that the components of an event structure E are
named as in the definition above. Subscripts carry over the components.

Definition 2.2 (consistency, concurrency). Let E be a PES. We say that e, e′ ∈ E are
consistent, written ea e′, if ¬(e#e′). A subset X ⊆ E is called consistent if ea e′ for all
e, e′ ∈ X. We say that e and e′ are concurrent, written e || e′, if ¬(e ≤ e′), ¬(e′ ≤ e) and
¬(e#e′).

Causality, concurrency and consistency will be sometimes used on sets of events.
Given X ⊆ E and e ∈ E, by X < e we mean that for all e′ ∈ X, e′ < e. Similarly X || e,
resp. X a e, means that for all e′ ∈ X, e′ || e, resp. e′a e. We write dXe for

⋃
e∈Xdee.

Configurations of event structures are intended to represent (concurrent) computa-
tions, which abstract from the order of execution of concurrent events.

Definition 2.3 (configuration). Let E be a PES. A (finite) configuration in E is a (fi-
nite) consistent subset of events C ⊆ E closed w.r.t. causality (i.e., dCe = C). The set of
finite configurations of E is denoted by C(E).

Observe that the empty set of events ∅ is always a configuration, which can be un-
derstood as the initial state of the computation.

Hereafter all configurations will be assumed to be finite. A consistent subset X ⊆ E
of events will always be seen as a pomset (partially ordered multiset) (X,≤X , λX),
where ≤X and λX are the restrictions of ≤ and λ to X. Given X,Y ⊆ E we will write
X ∼ Y if X and Y are isomorphic as pomsets.

Definition 2.4 (pomset transition and step). Let E be a PES and let C ∈ C(E). Given

∅ 6= X ⊆ E, if C ∩ X = ∅ and C ′ = C ∪ X ∈ C(E) we write C
X
−−→ C ′ and call it a

pomset transition from C to C ′. When the events in X are pairwise concurrent, we say

that C
X
−−→ C ′ is a step. When X = {e} we write C

e
−−→ C ′ instead of C

{e}
−−→ C ′.

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Logic for True Concurrency 39:5

A PES E is called image finite if for any C ∈ C(E) and a ∈ Λ, the set of events
{e ∈ E | C

e
−−→ C ′ ∧ λ(e) = a} is finite. All the PESs considered in this paper will be

assumed to be image finite. As it commonly happens when relating modal logics and
bisimilarities, this assumption is crucial for getting a logical characterisation of the
various bisimulation equivalences in Sections 4 and 5, based on a finitary logic.

2.2. Concurrent behavioural equivalences
Behavioural equivalences which capture to some extent the concurrency features of a
system, can be defined on the transition system where states are configurations and
transitions are pomset transitions.

Definition 2.5 (pomset, step bisimulation). Let E1, E2 be PESs. A pomset bisimula-

tion is a relation R ⊆ C(E1) × C(E2) such that if (C1, C2) ∈ R and C1

X1

−−→ C ′1 then

C2

X2

−−→ C ′2, with X1 ∼ X2 and (C ′1, C
′
2) ∈ R, and vice versa. We say that E1, E2 are

pomset bisimilar, written E1 ∼p E2, if there exists a pomset bisimulation R such that
(∅, ∅) ∈ R.

Step bisimulation is defined analogously, replacing general pomset transitions with
steps. We write E1 ∼s E2 when E1 and E2 are step bisimilar.

While pomset and step bisimilarity only consider the causal structure of the current
step, (hereditary) history preserving bisimilarities are sensible to the way in which
the executed events depend on events in the past. In order to define history preserving
bisimilarities the following definition is helpful.

Definition 2.6 (posetal product). Given two PESs E1, E2, the posetal product of their
configurations, denoted C(E1)×̄C(E2), is defined as

{(C1, f, C2) | C1 ∈ C(E1), C2 ∈ C(E2), f : C1 → C2 isomorphism}

A subsetR ⊆ C(E1)×̄C(E2) is called a posetal relation. We say thatR is downward closed
when for any (C1, f, C2), (C ′1, f

′, C ′2) ∈ C(E1)×̄C(E2), if (C1, f, C2) ⊆ (C ′1, f
′, C ′2) pointwise

and (C ′1, f
′, C ′2) ∈ R then (C1, f, C2) ∈ R.

Given a function f : X1 → X2 we will denote by f [x1 7→ x2] : X1 ∪ {x1} → X2 ∪ {x2}
the function defined, for z ∈ X1 ∪ {x1}, by

f [x1 7→ x2](z) =

{
x2 if z = x1

f(z) otherwise

Definition 2.7 ((hereditary) history preserving bisimulation). A history preserving
(hp-)bisimulation is a posetal relation R ⊆ C(E1)×̄C(E2) such that if (C1, f, C2) ∈ R

and C
e1
−−→ C ′1 then C2

e2
−−→ C ′2, with (C ′1, f [e1 7→ e2], C ′2) ∈ R, and vice versa. We say

that E1, E2 are history preserving (hp-)bisimilar and write E1 ∼hp E2 if there exists a
hp-bisimulation R such that (∅, ∅, ∅) ∈ R.

A hereditary history preserving (hhp-)bisimulation is a downward closed hp-
bisimulation. The fact that E1, E2 are hereditary history preserving (hhp-)bisimilar is
denoted E1 ∼hhp E2.

It is easy to show (see, e.g, [van Glabbeek and Goltz 2001]) that the definition of
(h)hp-bisimilarity can be equivalently given by using pomset transitions instead of

single event transitions, i.e., by asking that if (C1, f, C2) ∈ R and C
X1

−−→ C ′1 then

there exists C2

X2

−−→ C ′2 and (C ′1, f
′, C ′2) ∈ R, with f ′|C1

= f .

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:6 P. Baldan and S. Crafa

3. A LOGIC FOR TRUE CONCURRENCY
In this section we introduce the syntax and the semantics of our logic. Formulae
predicate about events in computations and their dependencies as primitive concepts.
The logic is interpreted over PESs. It could be interpreted, without any serious tech-
nical complication, over more general classes of event structures, as long as they
are endowed with notions of causality and consistency (e.g., over stable event struc-
tures [Winskel 1987]). The choice of restricting to PESs is motivated by the fact that
they are probably the most popular event structure model, easily accessible and, at the
same time, quite expressive.

In order to keep the notation simple, tuples of variables like x1, . . . , xn will be de-
noted by ~x and, abusing the notation, tuples will be often used as sets.

Definition 3.1 (syntax). Let Var be a denumerable set of variables ranged over by
x, y, z, The syntax of the logic L over the set of labels Λ is defined as follows, where
a ranges over Λ:

ϕ ::= T | ϕ ∧ ϕ | ¬ϕ | (~x, ~y < a z)ϕ | 〈z〉ϕ

The operator (~x, ~y < a z) acts as a binder for the variable z, as clarified by the following
notion of free variables in a formula.

Definition 3.2 (free variables). The set of free variables of a formula ϕ, denoted
fv(ϕ), is inductively defined by:

fv(T) = ∅
fv(ϕ1 ∧ ϕ2) = fv(ϕ1) ∪ fv(ϕ2)

fv(¬ϕ) = fv(ϕ)

fv((~x, ~y < a z)ϕ) = ~x ∪ ~y ∪ (fv(ϕ) \ {z})
fv(〈z〉ϕ) = fv(ϕ) ∪ {z}

The satisfaction of a formula ϕ is defined with respect to a configuration C ∈ C(E),
representing the state of the computation, and a (total) function η : Var → E, called
an environment, that binds free variables in ϕ to events in C or in the future of C. In
particular, the events bound to free variables in a formula must be both pairwise con-
sistent and consistent with the current state of the computation. Such a requirement
is expressed by the following definition of legal pair.

Definition 3.3 (environments, legal pairs). Let E be a PES. We denote by EnvE the
set of environments η : Var → E. Given a formula ϕ in L, a pair (C, η) ∈ C(E) × EnvE
is legal for ϕ if C ∪ η(fv(ϕ)) is a consistent set of events. We denote by lpE(ϕ) the set of
legal pairs for ϕ in E .

Remark. Observe that the legal pairs for a formula only depends on its set of free
variables. Whenever fv(ϕ) = fv(ψ) it holds that lpE(ϕ) = lpE(ψ). More generally, if
fv(ϕ) ⊆ fv(ψ) then lpE(ϕ) ⊇ lpE(ψ).

We simply write Env and lp(ϕ), omitting the subscript, when the PES E is clear
from the context. Moreover, in order to simplify the definition of the semantics, given
a configuration C, we denote by E[C] the residual of E after C, defined as E[C] = {e |
e ∈ E \ C ∧ C a e}.

Definition 3.4 (semantics). Let E be a PES. The denotation of a formula ϕ, written
{|ϕ|}E ∈ 2C(E)×EnvE , is defined inductively as follows:

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Logic for True Concurrency 39:7

b d

a c

b d

a a b d

c c

b b

a a

c

b

a

E1 E2 E3 E4 E5

Fig. 1.

{|T|}E = C(E)× EnvE

{|ϕ1 ∧ ϕ2|}E = {|ϕ1|}E ∩ {|ϕ2|}E ∩ lp(ϕ ∧ ψ)

{|¬ϕ|}E = lp(ϕ) \ {|ϕ|}E

{|(~x, ~y < a z)ϕ|}E = {(C, η) | (C, η) ∈ lp((~x, ~y < a z)ϕ) and
∃e ∈ E[C] such that ea η(fv(ϕ) \ {z})
∧ λ(e) = a ∧ η(~x) < e ∧ η(~y) || e
∧ (C, η[z 7→ e]) ∈ {|ϕ|}E }

{|〈z〉 ϕ|}E = {(C, η) | C
η(z)
−−→ C ′ ∧ (C ′, η) ∈ {|ϕ|}E }

When (C, η) ∈ {|ϕ|}E we say that the PES E satisfies the formula ϕ in the configuration
C and environment η : Var → E, and write E , C |=η ϕ. For closed formulae ϕ, we write
E , C |= ϕ, when E , C |=η ϕ for some η and E |= ϕ, when E , ∅ |= ϕ.

Intuitively, the formula

(~x, ~y < a z)ϕ

holds in (C, η) when in the future of the configuration C there is an a-labelled event e,
consistent with the events bound to free variables in ϕ, such that binding e to variable
z, the formula ϕ holds. Such an event is required to be caused (at least) by the events
already bound to variables in ~x, and to be independent (at least) from those bound to
variables in ~y. We stress that the event e might not be currently enabled; it is only
required to be consistent with the current configuration, meaning that it could be en-
abled in the future of the current configuration. The formula 〈z〉ϕ says that the event
bound to z is enabled by the current configuration, hence it can be executed producing
a new configuration which satisfies the formula ϕ. To simplify the notation we write
(a z)ϕ for (< a z)ϕ.

As an example, consider the PES E1 in Fig. 1, corresponding to the CCS process
a.b+c.d, where dotted lines represent immediate conflict and the causal order proceeds
upwards along the straight lines. The empty configuration satisfies the closed formula
(bx)T, i.e., E1 |= (bx)T, even if the b-labelled event is not immediately enabled. Also
E1 |= (bx)T∧(d y)T, since there are two possible (incompatible) computations that start
from the empty configuration and contain, respectively, a b-labelled and a d-labelled
event. On the other hand, if ϕ = (a z)〈z〉 ((bx)T ∧ (d y))T then E1 6|= ϕ since after the
execution of the a-labelled event, E1 reaches a configuration that does not admit a
future containing an event labelled by d. As a further example, the formula ϕ above
is satisfied by the PESs E2 and E3 in Fig. 1 corresponding respectively to the process
a.(b+ d) and a | (b+ d), whereas the formula (a z)〈z〉 (z < bx)T is satisfied only by E3.

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:8 P. Baldan and S. Crafa

It is worth noticing that the semantics of the binding operator does not prevent from
choosing for z an event e that has been already bound to a different variable, i.e.,
the environment function η need not be injective. This is essential to avoid the direct
observation of conflicts, a capability which would make the logical equivalence stronger
than hhp-bisimilarity (and of any reasonable behavioural equivalence). Consider for
instance the PESs associated to the hhp-equivalent processes a + a and a: in order to
be also logically equivalent, they both must satisfy the formula (a z)(a z′)T. Hence for
the second PES, both z and z′ must be bound to the unique a-labelled event. On the
other hand, observe that both PESs falsify the formula (a z)(a z′)〈z〉 〈z′〉T. In fact, z′
must be bound to an event consistent with that associated to z (because z occurs free
in 〈z〉 〈z′〉T). Hence z and z′ will be bound to the same event, which cannot be executed
twice.

3.1. About legal pairs and environments
We remark that differently from other logics for event structures, whose semantics is
given only with respect to the set of configurations, here legal pairs come into play
in order to ensure that the events bound to free variables in a formula be consistent
with the current state of the computation and pairwise consistent. The intuition is
that, in a legal pair for a formula, the configuration identifies the current state of the
computation and the environment should map variables free in the formula to events
which have already occurred or which can occur in a possible future of the current
state.

The use of legal pairs has some subtle effects on the semantics of the propositional
connectives. In particular, concerning negation, it is immediate to see that a pair (C, η)
is legal for ϕ if and only if it is legal for ¬ϕ. Hence, when a denotation (C, η) is not legal
for ϕ, we have that neither E , C |=η ϕ nor E , C |=η ¬ϕ. As a concrete example, take
ϕ = 〈x〉 〈y〉T. Then in the PES E1 of Fig. 1, if η binds x and y to the conflicting events
labelled a and c, respectively, then (∅, η) is not legal for ϕ and we have E1, ∅ 6|=η ϕ and
E1, ∅ 6|=η ¬ϕ.

For closed formulae, we have the following:

LEMMA 3.5 (NEGATION). Let ϕ be a closed formula in L, let E be a PES and let
(C, η) ∈ C(E)× EnvE . Then E , C |=η ϕ iff E , C 6|=η ¬ϕ.

PROOF. Immediately follows from the observation that for a closed formula any pair
is legal.

Concerning conjunction, observe that it is not the case that lp(ϕ ∧ ψ) = lp(ϕ)∩ lp(ψ).
Therefore it can happen that E , C |=η ϕ and E , C |=η ψ, but E , C 6|=η ϕ ∧ ψ. As an
example, consider again the PES E1 of Fig. 1, and the formulae ϕ = 〈x〉T and ψ = 〈y〉T.
If η binds x and y to the events labelled a and c, respectively, then (∅, η) ∈ lp(ϕ),
(∅, η) ∈ lp(ϕ) and we have E1, ∅ |=η ϕ and E1, ∅ |=η ψ. However, since the two events are
in conflict, (∅, η) 6∈ lp(ϕ ∧ ψ), and thus E1, ∅ 6|=η ϕ ∧ ψ.

We next show that the denotation of a formula, given according to Definition 3.4,
always consists of a set of legal pairs for the formula.

LEMMA 3.6 (DENOTATIONS CONSIST OF LEGAL PAIRS). Let E be a PES. Then for
any formula ϕ ∈ L, it holds {|ϕ|}E ⊆ lpE(ϕ)

PROOF. The proof is by routine induction on the structure of the formula ϕ. We
only comment case ϕ = 〈z〉ψ. If (C, η) ∈ {|ϕ|}E then, by definition, if we let e = η(z),
it holds that C

e
−−→ C ∪ {e} and (C ∪ {e}, η) ∈ {|ψ|}E . Hence by inductive hypothesis

(C ∪ {e}, η) ∈ lpE(ψ), i.e., C ∪ {e} ∪ η(fv(ψ)) is consistent. Since fv(ϕ) = fv(ψ) ∪ {z}, we
have that C∪η(fv(ϕ)) = C∪{e}∪η(fv(ψ)), and thus we can conclude (C, η) ∈ lpE(ϕ).

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Logic for True Concurrency 39:9

The semantics of a formula only depends on the events that the environment asso-
ciates to the free variables of the formula.

LEMMA 3.7. Let E be a PES and let C ∈ C(E). Let ϕ ∈ L and let η1, η2 : Var → E be
environments such that η1(x) = η2(x) for any x ∈ fv(ϕ). Then

E , C |=η1 ϕ iff E , C |=η2 ϕ

In particular, (C, η1) ∈ lpE(ϕ) if and only if (C, η2) ∈ lpE(ϕ).

PROOF. Routine induction on the structure of ϕ.

Note that without restricting the semantics of formulae to legal pairs the logics
would have been too powerful. In fact, it would have allowed us to observe conflicts
through a combination of the binder and the execution modality. For instance, con-
sider the PESs E4 and E5 in Fig. 1, corresponding to the processes a.b.c + a.b.c and
a.b.c, respectively, and take formula ϕ = (ax)(b y)〈x〉 ¬〈y〉T, saying that there are
two events labelled by a and b such that after executing the first, the second can-
not be executed. With the current definition neither E4 nor E5 satisfy ϕ, since after
binding x to any a-labelled event e, in order to keep the denotation legal, y must be
bound to the b-labelled event caused by e, that is executable after e. Without the re-
striction to legal pairs, instead, the formula would hold in E4, since variables x and
y could be bound to conflicting events (e.g., x could be bound to the a-labelled event
on the left and y to the b-labelled event on the right). Similarly, consider the formula
ψ = (a x)(b y)¬(x, y < c z)T, saying that there are two events, labelled by a and b,
respectively, which are not common causes for any c-labelled event. Also ψ does not
hold neither in E4 nor in E5. Omitting the restriction to legal pairs, ψ would be true
only in E4 where x and y can be bound to conflicting events. This means that the logic
would distinguish the PESs corresponding to a process from that corresponding to the
non-deterministic choice between the process and itself, which instead are equated by
virtually any behavioural equivalence.

Instead of restricting the semantics of formulae to legal pairs, one could envisage
syntactic constraints which produce essentially the same effect, thus limiting the ob-
servation power of the logic. The idea is quite simple: in any formula, whenever we
bind an event to a variable z, we require that the binder operator explicitly states the
consistency of z with the free variables appearing in the remaining part of the for-
mula. Specifically, for any subformula of the kind (~x, ~y < a z)ψ, we could require the
free variables of ψ to be a subset of ~x∪ ~y ∪ {z}. In this way we are guaranteed that the
event bound to z is either causally dependent or concurrent (hence consistent) with
the events bound to the free variables of the formula. This essentially gives the same
effect as restricting the semantics to legal pairs. It can be seen that restricting to the
fragment of L consisting of well-formed formulae does not alter the logical equivalence
which remains hhp-bisimilarity, as for the full logic. A more detailed account of this
alternative approach is given in the Appendix A.

3.2. Dual operators
Relying on negation we can define operators which are dual to those primitive in the
logic. As usual, disjunction ϕ∨ψ can be defined by the formula ¬(¬ϕ∧¬ψ). Its seman-
tics, according to Definition 3.4, turns out to be:

{|ϕ ∨ ψ|}E = ({|ϕ|}E ∪ {|ψ|}E) ∩ lp(ϕ ∨ ψ).

The formula F (false) is defined by ¬T, with semantics:

{|F|}E = ∅.

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:10 P. Baldan and S. Crafa

Moreover, we write

{~x, ~y < a z}ϕ for the formula ¬((~x, ~y < a z)¬ϕ).

[z] ϕ for the formula ¬(〈z〉 ¬ϕ)

The dual of the binder has a universal flavour. In fact its semantics, given explicitly
below, involves a universal quantification:

{|{~x, ~y < a z}ϕ|}E = {(C, η) | (C, η) ∈ lp({~x, ~y < a z}ϕ) and
∀e ∈ E[C] such that ea η(fv(ϕ) \ {z})
∧ λ(e) = a ∧ η(~x) < e ∧ η(~y) || e
it holds (C, η[z 7→ e]) ∈ {|ϕ|}E }

i.e., E , C |=η {~x, ~y < a z}ϕ when for all a-labelled events e in the future of C, consistent
with the events already bound to fv(ϕ), caused by η(~x) and concurrent with η(~y), we
have that binding e to z the formula ϕ holds.

The semantics of [·] , instead, is:

{|[z] ϕ|}E = {(C, η) | (C, η) ∈ lp([z]ϕ) and

if C
η(z)
−−→ C ′ then (C ′, η) ∈ {|ϕ|}E }

namely, E , C |=η [z]ϕ if, either η(z) is not executable from C or it is executable and in
the reached configuration ϕ holds.

The logic L could be alternatively defined in positive form by including the dual
operators and omitting negation. The syntax of the resulting logic, denoted L+, would
be as follows:

ϕ ::= T | F | ϕ ∧ ϕ | ϕ ∨ ϕ | (~x, ~y < a z)ϕ | {~x, ~y < a z}ϕ | 〈z〉ϕ | [z] ϕ

Negation is then encodable in L+ by duality. Hereafter we will freely use the dual
operators.

3.3. Examples and notation
In this subsection we provide some more examples illustrating the expressiveness of
the logic. We start by introducing some handy notation, which will improve the read-
ability of the formulae.

Immediate execution. We will write

〈|~x, ~y < a z|〉ϕ for the formula (~x, ~y < a z)〈z〉ϕ
that states the existence of an event e enabled by the current configuration, and thus
which can be immediately executed, such that after executing e the formula ϕ holds
(with e bound to variable z). Dually we introduce the notation [[~x, ~y < a z]]ϕ, which
stands for the formula {~x, ~y < a z}[z]ϕ.

Steps. We introduce a notation also to predicate the existence, resp., the immediate
execution, of concurrent events, specifying also their dependencies. We will write

((~x, ~y < a z)⊗ (~x′, ~y′ < b z′))ϕ for the formula (~x, ~y < a z)(~x′, ~y′, z < b z′)ϕ

(〈|~x, ~y < a z|〉 ⊗ 〈|~x′, ~y′ < b z′|〉)ϕ for the formula ((~x, ~y < a z)⊗ (~x′, ~y′ < b z′))〈z〉 〈z′〉ϕ

The first formula declares the existence of two concurrent events, labelled by a and
b, respectively, such that if we bind such events to z and z′, then ϕ holds. The second

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Logic for True Concurrency 39:11

b a

a b a b

b a

a b

b

a b

E6 E7 E8 E9

Fig. 2.

formula states the existence of two concurrently enabled events, labelled by a and b,
whose immediate execution leads to a state where ϕ holds. In particular, the ability
to perform a step consisting of two concurrent events labelled by a and b is simply
expressed by the formula (〈|ax|〉 ⊗ 〈|b y|〉)T.

Clearly, this notation can be generalised to the quantification and the immediate
execution of any number of concurrent events.

An analogous notation will be used for the dual operators:

({~x, ~y < a z}⊗{~x′, ~y′ < b z′})ϕ and ([[~x, ~y < a z]]⊗ [[~x′, ~y′ < b z′]])ϕ

The first formula asserts that considering any pair of concurrent events, labelled a and
b, respectively, which are bound to z and z′, the formula ϕ holds. The second formula
states that the after the execution of all pairs of concurrent events, labelled a and b,
respectively, the formula ϕ holds.

Example 3.8 (interleaving vs. true concurrency). Consider the PESs E6 and E7 in
Fig. 2. They are equated by interleaving equivalences and distinguished by any true
concurrent equivalence. The formula ϕ1 = 〈|ax|〉〈|x < b y|〉T = (〈|ax|〉 ⊗ 〈|b y|〉)T is true
only on E7, while ϕ2 = 〈|ax|〉〈|x < b y|〉T is true only on E6.

Wildcard operators. It is often useful to have a wildcard operator to refer to an event
with an arbitrary label. When the set of labels Λ is finite, we write

(~x, ~y < z)ϕ

to denote the formula
∨

a∈Λ(~x, ~y < a z)ϕ, and we use an analogous nota-
tion for the induced operators. For instance, the formula (〈| x1|〉 ⊗ 〈| x2|〉)T ∧
¬(〈| y1|〉 ⊗ 〈| y2|〉 ⊗ 〈| y3|〉)T states that in the current state there is a step consisting
of two concurrent events and this is the maximal size for a step. When the set of labels
Λ is infinite the same wildcard operators are no longer expressible in the finitary logic
L. However they can be added to L while retaining all the results in the paper. More
precisely, logical equivalence for Lwould be still hhp-bisimilarity. In fact, by adding the
wildcard operators logical equivalence becomes potentially finer and thus the fact that
it implies hhp-bisimilarity (Proposition 4.2) clearly remains true. Conversely, finite-
ness of conjunctions plays no role in the proof of Proposition 4.4, hence it can be easily
seen that hhp-bisimilarity implies logical equivalence even for an infinitary version of
the logic L (explicitly introduced in Section 6.2 and denoted L∞) where wildcard oper-
ators can be encoded. The same applies to the various fragments of L and to the logics
with recursion.

Example 3.9 (causality and concurrency). Consider the PESs E6 and E8 in Fig. 2.
They are distinguished by all true concurrent equivalences, but since they share the
same causal structure, in order to pinpoint how they differ, the logic must be able to
express the presence of two concurrent events. Logic L can do this in a quite direct
way, e.g., E8 |= (〈|ax|〉 ⊗ 〈|b y|〉)T, while E6 6|= (〈|ax|〉 ⊗ 〈|b y|〉)T. On the other hand, PESs E7
and E9, roughly speaking, exhibit the same concurrency and indeed they are equated

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:12 P. Baldan and S. Crafa

by step bisimilarity. However they have a different causal structure and thus they are
distinguished by any equivalence which observes causality, e.g., pomset bisimilarity.
The logic can take them apart by predicating directly about causality, e.g., E9 satisfies
〈|ax|〉〈|x < b y|〉T, while E7 does not.

Example 3.10 (conflicting futures). Consider the PESs below which can be proved
to be hp-bisimilar but not hhp-bisimilar (the example is taken from [Joyal et al. 1996]):

d c

a b a b

c d

a b a b

E10 E11

Intuitively, they differ since the causes of the events labelled by c and d, respectively,
are in conflict in E10 and concurrent in E11. This difference can be captured by the
formula ϕ = ((ax)⊗ (b y))((x < c z1)T ∧ (y < d z2)T), which is satisfied only by E11.
Notice that the formula ϕ exploits the ability of the logic L of quantifying over events
in conflict with previously bound events: formula ϕ is satisfied in E11 by binding x and
y to the rightmost a-labelled and b-labelled events; then z1 and z2 are bound to events
which are in conflict with either x or y. For this, the possibility of “observing” an event
without executing it is essential: the formula ϕ′ = (〈|ax|〉 ⊗ 〈|b y|〉)((x < c z1)T ∧ (y <
d z2)T) would be false for both PESs since the execution of the first two events leads to
a configuration that is no further extensible.

As a last example, consider the CCS processes P = a|(b+ c) + a|b + b|(a+ c) and
Q = a|(b+ c) + b|(a+ c), equated by the absorption law (see, e.g., [van Glabbeek
and Goltz 2001]). They contain no causal dependencies, but they exhibit a different
interplay between concurrency and branching. Accordingly, the corresponding PESs
can be proved to be hp-bisimilar but not hhp-bisimilar. Intuitively, this difference
arises from the fact that only the process P includes two concurrent events a and
b such that, once their execution has started, by firing one of them, no c-labelled
event will ever be enabled. Such a difference can be expressed in L by the formula
((ax)⊗ (b y))(¬(x < c z)T ∧ ¬(y < c z′)T), which says that there are two concurrent
events labelled a and b, respectively, such that none of them is concurrent with a c-
labelled event. This is clearly satisfied only by the PES corresponding to P .

4. A LOGICAL CHARACTERISATION OF HHP-BISIMILARITY
We next study the logical equivalence induced by L. We have already argued that no
formula in L distinguishes the PESs a and a#a, hence the logical equivalence induced
by L is surely coarser than isomorphism. In this section we will show that it coincides
with hhp-bisimilarity.

Since later we will also identify suitable fragments of L corresponding to coarser
equivalences, we define logical equivalence for a generic fragment of L.

Definition 4.1 (logical equivalence). Let L′ be a fragment of L. We say that two PES
E1, E2 are logically equivalent in L′, written E1 ≡L′ E2 when they satisfy the same closed
formulae of L′.

We first prove that two PES’s satisfying the same formulae in L are hhp-bisimilar.

PROPOSITION 4.2. Let E1 and E2 be PESs such that E1 ≡L E2, then E1 ∼hhp E2.

PROOF. Let us start by introducing some notation. We fix a surjective environment
η1 : Var → E1. Then given an event e ∈ E1, we write xe to denote a fixed distinguished

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Logic for True Concurrency 39:13

variable such that η1(xe) = e. Similarly, for a configuration C1 = {e1, . . . , en} we denote
by XC1 the set of variables {xe1 , . . . , xen}. Observe that (∅, η1) is a legal pair for any
formula ϕ ∈ L such that fv(ϕ) ⊆ XC1

, since ∅ ∪ η(fv(ϕ)) ⊆ C1, which is consistent.
Consider the posetal relation R ⊆ C(E1)×̄C(E2) defined by:

R = { (C1, f, C2) | ∀ψ ∈ L. fv(ψ) ⊆ XC1
(E1, ∅ |=η1 ψ iff E2, ∅ |=f◦η1 ψ) } (1)

where, for an isomorphism of pomsets f : C1 → C2, we denote by f ◦η1 an environment
such that f ◦ η1(x) = f(η1(x)) for x ∈ XC1 and f ◦ η1(x) has any value, otherwise. Note
that this does not introduce ambiguities since, by Lemma 3.7, the semantics of ψ only
depends on the value of the environment on fv(ψ) and fv(ψ) ⊆ XC1

by construction.
Observe that, since by hypothesis E1 ≡L E2, we have that (∅, ∅, ∅) ∈ R. Hence in order

to conclude it is sufficient to show that R is a hhp-bisimulation.

—R is downward closed
Take (C1, f, C2) ∈ R and consider (C ′1, f

′, C ′2) ⊆ (C1, f, C2) pointwise. We have to
show that (C ′1, f

′, C ′2) ∈ R.
Let ψ be any formula such that fv(ψ) ⊆ XC′

1
. Since C ′1 ⊆ C1, clearly fv(ψ) ⊆ XC1

and
thus, since (C1, f, C2) ∈ R, by definition of R (1), we have that

E1, ∅ |=η1 ψ iff E2, ∅ |=f◦η1 ψ,

Moreover, since fv(ψ) ⊆ XC′
1
, η1(XC′

1
) = C ′1 and f ′ = f|C′

1
, we have that (f ◦η1)|fv(ψ) =

(f ′ ◦ η1)|fv(ψ) and thus, by Lemma 3.7,

E2, ∅ |=f◦η1 ψ iff E2, ∅ |=f ′◦η1 ψ

Summing up, for any ψ such that fv(ψ) ⊆ XC′
1
, it holds that E1, ∅ |=η1 ψ iff E2, ∅ |=f ′◦η1

ψ. Therefore (C ′1, f
′, C ′2) ∈ R, as desired.

—R is a hp-bisimulation
We have to show that given (C1, f, C2) ∈ R, if C1

e
−−→ C ′1 then there exists a tran-

sition C2

g
−−→ C ′2 such that f ′ = f [e 7→ g] : C ′1 → C ′2 is an isomorphism of pomsets

(hence in particular λ1(e) = λ2(g)) and (C ′1, f
′, C ′2) ∈ R.

We proceed by contradiction. Since all PESs are assumed to be image finite, there

are finitely many transitions C2

gi

−−→ Ci2, with i ∈ {1, . . . , n}, such that C ′1 ∼ Ci2 (as
pomsets). By contradiction assume that, for any i ∈ {1, . . . , n}, it holds (C ′1, f

i, Ci2) 6∈
R. Hence, by definition of R (1), there exists a formula ψi such that

E1, ∅ |=η1 ψ
i and E2, ∅ 6|=fi◦η1 ψ

i

where fv(ψi) ⊆ XC′
1

= XC1
∪ {xe} and f i = f [e 7→ gi]. Observe that it could either be

that E1, ∅ 6|=η1 ψ
i and E2, ∅ |=fi◦η1 ψ

i, but we can reduce to the case above by taking
the negation of ψi. In fact, since fv(ψi) ⊆ XC′

1
, we have that (∅, η1) ∈ lpE1(ψi), and

thus from E1, ∅ 6|=η1 ψ
i we deduce E1, ∅ |=η1 ¬ψi. Moreover, since E2, ∅ |=fi◦η1 ψ

i we
have E2, ∅ 6|=fi◦η1 ¬ψi.
Consider the formula

ϕ = (~x, ~y < axe)(〈XC1〉 〈xe〉T ∧ ψ1 ∧ . . . ∧ ψn)

where a = λ1(e) and the ~x, ~y ⊆ XC1
are such that η1(~x) is the set of causes of e in C1

and η1(~y) is the set of events in C1 which are concurrent with e. Note that

fv(ϕ) = ~x ∪ ~y ∪ ((XC1
∪ {xe} ∪

⋃n
i=1 fv(ψi)) \ {xe}) = XC1

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:14 P. Baldan and S. Crafa

In fact, by construction, ~x ∪ ~y = XC1 and fv(ψi) ⊆ XC′
1

= XC1 ∪ {xe}.
Now, it is easy to see that E1, ∅ |=η1 ϕ. Moreover E2, ∅ 6|=f◦η1 ϕ. In fact, an event g ∈ E2

such that f ◦η1(~x) < g, f ◦η1(~y) || g and E2, ∅ |=f◦η1 〈XC1〉 〈xe〉 is necessarily in the set
{g1, . . . , gn}, and thus, by construction, E2, ∅ 6|=f◦η1[xe 7→g] ψ

i for some i ∈ {1, . . . , n}.
The existence of a formula ϕ which distinguishes C1 and C2 contradicts the hypoth-
esis (C1, f, C2) ∈ R, as desired.

The fact that also the converse holds, i.e., if C2

g
−−→ C ′2 then there exists a transi-

tion C1

e
−−→ C ′1 such that f ′ = f [e 7→ g] : C ′1 → C ′2 is an isomorphism of pomsets

and (C ′1, f
′, C ′2) ∈ R, can be proved analogously.

In order to prove that, conversely, hhp-bisimilar PESs satisfy the same L formulae,
we first recall a lemma from [Bednarczyk 1991; van Glabbeek and Goltz 2001] which
will be useful in the sequel.

LEMMA 4.3 (HHP-BISIMILARITY AS A PES). Let E1, E2 be PESs such that E1 ∼hhp E2
and let R be a hhp-bisimulation. Then there exists a PES ER = 〈ER,≤R,#R, λR〉 such
that for i ∈ {1, 2}

— Ei ∼hhp ER
— there are surjective maps f iR : ER → Ei such that { (C, f iR|C , f

i
R(C)) | C ∈ C(ER)} is a

hhp-bisimulation.

Additionally, each f iR preserves labels, causality ≤ and concurrency ||, it maps configu-
rations to configurations and it is injective on consistent sets of events.

PROOF SKETCH, FROM [BEDNARCZYK 1991; VAN GLABBEEK AND GOLTZ 2001].
We just recall the definition of ER = 〈ER,≤R,#R, λR〉:

—ER = {(e1, f, e2) | (de1e, f, de2e) ∈ R},
— (e1, f, e2) ≤R (e′1, f

′, e′2) if f ⊆ f ′,
— (e1, f, e2)#R(e′1, f

′, e′2) if there exists no (C, g,D) ∈ R such that
(de1e, f, de2e), (de′1e, f ′, de′2e) ⊆ (C, g,D) pointwise,

— λR(e1, f, e2) = λ1(e1).

The maps f1
R : ER → E1 and f2

R : ER → E2 are just the projections on the first and
third components, respectively.

PROPOSITION 4.4. Let E1 and E2 be PESs such that E1 ∼hhp E2. Then E1 ≡L E2.

PROOF. Let R be a hhp-bisimulation relating E1 and E2. By Lemma 4.3, it is not
restrictive to assume that R = { (C1, f|C1

, f(C1)) }, where f : E1 → E2 is a surjective
map satisfying the conditions in the statement of the lemma. Then it is sufficient to
prove that for any formula ϕ ∈ L, for any (C1, η1) ∈ lpE1(ϕ)

E1, C1 |=η1 ϕ iff E2, f(C1) |=f◦η1 ϕ (2)

This implies, in particular, that E1 and E2 satisfy the same closed formulae, i.e., E1 ≡L
E2 as desired. In fact, given any closed formula ϕ, note that (∅, η1) ∈ lpE1(ϕ) for all
environments η1. Therefore if E1 |= ϕ, which means E1, ∅ |=η1 ϕ for some η1, we have
E2, ∅ |=f◦η1 ϕ, i.e., E2 |= ϕ. Vice versa, if E2 |= ϕ then E2, ∅ |=η2 ϕ for some η2 ∈ EnvE2 .
Since ϕ is closed, by Lemma 3.7 the environment is irrelevant and thus, if we take any
η1 ∈ EnvE1 , it holds E2, ∅ |=f◦η1 ϕ. By this we get E1, ∅ |=η1 ϕ, which means E1 |= ϕ.

Now, in order to prove (2), first of all note that f preserves legal pairs, i.e., if (C1, η1) ∈
lpE1(ϕ) then (f(C1), f ◦ η1) ∈ lpE2(ϕ) since f preserves consistency (as it preserves
causality and concurrency).

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Logic for True Concurrency 39:15

The proof proceeds by induction on the formula ϕ:

— ϕ = T
Immediate.

— ϕ = ϕ1 ∧ ϕ2

Let (C1, η1) ∈ lpE1(ϕ), hence (C1, η1) ∈ lpE1(ϕi) for i ∈ {1, 2}. If E1, C1 |=η1 ϕ, then,
by definition of the semantics, we have E1, C1 |=η1 ϕi, for i ∈ {1, 2}. Thus we can
use the inductive hypothesis to deduce that E2, f(C1) |=f◦η1 ϕi, for i ∈ {1, 2}. More-
over, since f preserves legal pairs, we know that (f(C1), f ◦ η1) ∈ lpE2(ϕ). Therefore
E2, f(C1) |=f◦η1 ϕ. The converse implication can be proved by just reverting all de-
ductions.

— ϕ = ¬ϕ1

Analogous to the previous case.

— ϕ = (~x, ~y < a z)ψ
Assume that E1, C1 |=η1 ϕ, with (C1, η1) ∈ lpE1(ϕ). Hence, by definition of the se-
mantics, there exists an event e ∈ E1[C1], such that ea η1(fv(ψ) \ {z}), λ1(e) = a,
η1(~x) ≤ e, η1(~y) || e and

E1, C1 |=η′1
ψ (3)

where η′1 = η1[z 7→ e].
By (3) and Lemma 3.6, (C1, η

′
1) ∈ lpE1(ψ). Hence by inductive hypothesis

E2, f(C1) |=f◦η′1 ψ, with f ◦ η′1 = (f ◦ η1)[z 7→ f(e)].
Since, by Lemma 4.3, f preserves consistency and it is injective on consistent sets of
events, f(e) ∈ E2[f(C1)]. Additionally, again by Lemma 4.3, since f preserves labels,
≤ and || (and hence a) we have that f(e)a f ◦ η1(fv(ψ) \ {z}), λ2(f(e)) = λ1(e) = a
and f(η1(~x)) ≤ f(e), f(η1(~y)) || f(e). Therefore we conclude that, as desired

E2, f(C1) |=f◦η1 ϕ.

Conversely, let E2, f(C1) |=f◦η1 ϕ, where (C1, η1) ∈ lpE1(ϕ). Therefore there exists an
event g ∈ E2[f(C1)], such that ga f ◦ η1(fv(ψ) \ {z}), λ2(g) = a, f(η1(~x)) ≤ g and
f(η1(~y)) || g and E2, f(C1) |=η′2

ψ, where η′2 = (f ◦ η1)[z 7→ g].
From the fact that E2, f(C1) |=f◦η1 ϕ, by Lemma 3.6, we have that (f(C1), f ◦ η1) ∈
lpE2(ϕ). This means that f(C1) ∪ f ◦ η1(fv(ϕ)) is consistent and thus D2 = f(C1) ∪
df ◦ η1(fv(ϕ))e is a configuration. Since fv(ϕ) = ~x ∪ ~y ∪ (fv(ψ) \ {z}), the arguments
above show that

D2 a g. (4)

Now, since by hypothesis (C1, η1) ∈ lpE1(ϕ), we know that C1∪η1(fv(ϕ)) is consistent.
It follows that D1 = C1 ∪ dη1(fv(ϕ))e is a configuration. Since, by Lemma 4.3, f is
injective on consistent sets and preserves causality,

D2 = f(C1) ∪ df ◦ η1(fv(ϕ))e
= f(C1) ∪ f(dη1(fv(ϕ))e
= f(C1 ∪ dη1(fv(ϕ))e)
= f(D1)

which means that (D1, f|D1
, D2) ∈ R.

We distinguish two cases. If g ∈ D2, since f|D1
is an isomorphism of pomsets be-

tween D1 and D2, we can take the (unique) e ∈ D1 such that f(e) = g. By using
the isomorphism property, we have immediately that e ∈ E1[C1], η1(fv(ψ) \ {z})a e,
λ1(e) = λ2(g) = a, η1(~x) ≤ e and η1(~y) || e. Define the environment η′1 = η1[z 7→ e].

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:16 P. Baldan and S. Crafa

Note that (C1, η
′
1) ∈ lpE1(ψ) since C1∪η′1(fv(ψ)) ⊆ C1∪η′1(fv(ϕ)∪{z}) ⊆ D1. Therefore,

since E2, f(C1) |=η′2
ψ, noticing that f ◦ η′1 = η′2, by inductive hypothesis we conclude

E1, C1 |=η′1
ψ. Hence

E1, C1 |=η1 ϕ

Otherwise, if g 6∈ D2, recalling (4), if we letX2 = dge\D2 we have a pomset transition
in E2:

D2

X2

−−→ D′2 (5)

Therefore, since R is a hhp-bisimulation, there is a pomset transition in E1 simulat-
ing (5):

D1

X1

−−→ D′1 (6)

such that (D′1, f|D′
1
, D′2) ∈ R. Now, g ∈ D′2 and thus we can replicate the argument

above.

— ϕ = 〈x〉ψ
Assume that E1, C1 |=η1 ϕ, where (C1, η1) ∈ lpE1(ϕ). By definition of the semantics
this means that

C1

η1(x)
−−−→ C ′1

and E1, C ′1 |=η1 ψ.
Since R is a hhp-bisimulation, we have that

f(C1)
f(η1(x))
−−−−−−→ f(C ′1).

Now, since C ′1 = C1 ∪ {η1(x)} and fv(ψ) ⊆ fv(ϕ), we have that

C ′1 ∪ η1(fv(ψ)) ⊆ C1 ∪ {η1(x)} ∪ η1(fv(ϕ)) = C1 ∪ η1(fv(ϕ)).

Since (C1, η1) ∈ lpE1(ψ) the set above is consistent and thus (C ′1, η1) ∈ lpE1(ψ). There-
fore we can use the inductive hypothesis to deduce E2, f(C ′1) |=f◦η1 ψ and thus, as
desired,

E2, f(C1) |=f◦η1 ϕ.

Conversely, let E2, f(C1) |=f◦η1 ϕ, where (C1, η1) ∈ lpE1(ϕ). By definition of the se-
mantics this means that

f(C1)
f(η1(x))
−−−−−−→ C ′2

and E2, C ′2 |=f◦η1 ψ.
Since (C1, η1) ∈ lpE1(ψ), we know that η1(x) is consistent with C1. Moreover, C1 ∪
{η1(x)} is causally closed, otherwise, since f preserves causality and it is injective
on consistent sets, also f(C1 ∪ η1(x)) = C2 ∪ f(η1(x)) = C ′2 would not be causally
closed.
Hence C ′1 = C1 ∪ {η1(x)} is a configuration and thus

C1

η1(x)
−−−→ C ′1

and clearly f(C ′1) = C ′2. As above we can show that (C ′1, η1) ∈ lpE1(ψ) and thus, by
inductive hypothesis, E1, C ′1 |=η1 ψ. Hence, as desired

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Logic for True Concurrency 39:17

E1, C1 |=η1 ϕ.

Propositions 4.4 and 4.2 together say that hhp-bisimilarity is the logical equivalence
of L.

THEOREM 4.5 (HHP-BISIMILARITY, LOGICALLY). Let E1 and E2 be PESs. Then
E1 ∼hhp E2 iff E1 ≡L E2.

5. FROM HENNESSY-MILNER LOGIC TO HP-LOGIC
Hhp-bisimilarity is the finest equivalence in the spectrum of true concurrent equiv-
alences proposed in [van Glabbeek and Goltz 2001]. Interestingly enough, coarser
equivalences such as step, pomset and hp-bisimilarity, can be captured by suitable
fragments of L summarised in Fig. 3, which can be viewed as the logical counterpart
of the true concurrent spectrum.

Note that in each of these fragments after predicating the existence of an event we
must execute it. As a consequence, differently from what happens in the full logic,
in the fragments it is impossible to refer to events in conflict with already observed
events. Intuitively, this means that behavioural equivalences up to hp-bisimilarity can
observe events only by executing them. Hence they cannot fully capture the interplay
between concurrency and branching, which is indeed distinctive of hhp-bisimilarity.

HM Logic LHM ϕ ::= 〈|ax|〉ϕ | ϕ ∧ ϕ | ¬ϕ | T

Step Logic Ls ϕ ::= (〈|a1 x1|〉 ⊗ · · · ⊗ 〈|an xn|〉) ϕ | ϕ ∧ ϕ | ¬ϕ | T

Pomset Logic Lp ϕ ::= 〈|~x, ~y < a z|〉ϕ | ¬ϕ | ϕ ∧ ϕ | T
where ¬, ∧ are used only on closed formulae.

HP Logic Lhp ϕ ::= 〈|~x, ~y < a z|〉ϕ | ¬ϕ | ϕ ∧ ϕ | T

Fig. 3. Fragments of L corresponding to various behavioural equivalences

5.1. Hennessy-Milner logic
A first simple observation is that standard Hennessy-Milner logic can be recovered
as the fragment of L where only the derived modality 〈|ax|〉ϕ (with no references to
causally dependent/concurrent events) is allowed. In words, whenever we state the
existence of an event we are forced to execute it. Note that, since no dependencies can
be expressed, the bound variable x is irrelevant. The induced logical equivalence is
thus (interleaving) bisimilarity [Hennessy and Milner 1985] (recall that we consider
only image finite PES’s).

5.2. Step logic
A fragment Ls corresponding to step bisimilarity naturally arises as a generalisation
of HM logic where we can refer to sets of concurrently enabled events. More pre-
cisely, as shown in Fig. 3, Ls is the fragment of L where only the derived modality
〈|a1 x1|〉 ⊗ · · · ⊗ 〈|an xn|〉 is used, allowing to predicate on the possibility of performing a
parallel step, but without any reference to causal dependencies. Note that all formulae
in Ls are closed, and thus environments (as well as variables) are irrelevant in their
semantics.

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:18 P. Baldan and S. Crafa

As an example, consider the two PESs E6 and E7 in Fig. 2. They are bisimilar but
not step bisimilar since only E7 can execute the step consisting of a and b in parallel.
Accordingly, they are taken apart by the formula (〈|a |〉 ⊗ 〈|b |〉)T in Ls, which is true only
on E7.

LEMMA 5.1. Let E1 and E2 be PESs and let Ci ∈ C(Ei), for i ∈ {1, 2}, be configu-
rations. There exists a step bisimulation R such that (C1, C2) ∈ R iff for any ϕ ∈ Ls,
E1, C1 |= ϕ⇔ E2, C2 |= ϕ.

PROOF. (⇒) Assume that (C1, C2) ∈ R for some step bisimulation R. The proof that
for all ϕ ∈ Ls, we have E1, C1 |= ϕ iff E2, C2 |= ϕ can be carried out by induction on the
structure of ϕ.

We only discuss the non-trivial case where ϕ = (〈|a1 x1|〉 ⊗ · · · ⊗ 〈|an xn|〉) ψ. Assume

that E1, C1 |= ϕ. Hence there is a step C1

{e1,...,en}
−−−−−−−→ C ′1 where λ1(ei) = ai for i ∈

{1, . . . , n} and

E1, C ′1 |= ψ. (7)

Since (C1, C2) ∈ R, also C2 can perform an analogous step

C2

{g1,...,gn}
−−−−−−−→ C ′2

with λ2(gi) = ai for i ∈ {1, . . . , n} and (C ′1, C
′
2) ∈ R. Additionally, by (7) and the induc-

tion hypothesis, we have that E2, C ′2 |= ψ. Therefore we conclude E2, C2 |= ϕ.

(⇐) We prove that the relation

R = {(C1, C2) | ∀ϕ ∈ Ls (E1, C1 |= ϕ iff E2, C2 |= ϕ)}
is a step bisimulation.

We proceed by contradiction. Let (C1, C2) ∈ R, let C1

X
−−→ C ′1 be a step in E1 and

assume that for all Y such that C2

Y
−−→ C ′2 andX ∼ Y as pomsets it does not hold that

(C ′1, C
′
2) ∈ R. Hence there exists a formula ψ ∈ Ls such that E1, C ′1 |= ψ and E2, C ′2 6|= ψ.

Since our PESs are assumed to be image finite, the number of possible steps

C2

Y
−−→ C ′2, with X ∼ Y is finite. Let C2

Y i

−−→ Ci2, for i ∈ {1, . . . , k}, be such steps
and let ψi be the formulae such that E1, C ′1 |= ψi and E2, Ci2 6|= ψi. If we define

ψ = (〈|a1 x1|〉 ⊗ · · · ⊗ 〈|an xn|〉) (ψ1 ∧ . . . ∧ ψk)

we have that E1, C1 |= ψ while E2, C2 6|= ψ. This gives the desired contradiction.

Now it is immediate to conclude that the following holds.

THEOREM 5.2 (STEP BISIMILARITY, LOGICALLY). Let E1 and E2 be PESs. Then
E1 ∼s E2 iff E1 ≡Ls E2.

5.3. Pomset logic
The logic Lp for pomset bisimilarity in Fig. 3 consists of the fragment of L where,
still an event must be immediately executed when quantified, but it is possible to
refer to dependencies between events. However, propositional connectives (negation
and conjunction) can be used only on closed formulae.

Roughly speaking, in Lp closed subformulae characterise the execution of pomsets.
The requirement that the propositional operators are used only on closed subformulae
prevents pomset transitions from being causally linked to the events in the past. These
ideas are formalised by the results below.

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Logic for True Concurrency 39:19

First observe that a closed formula in Lp has always the shape

〈|~x1, ~y1 < a1 z1|〉 . . . 〈|~xn, ~yn < an zn|〉 ψ

where, if we let Z = {z1, . . . , zn}, then ~xi, ~yi ⊆ Z for any i ∈ {1, . . . , n}. We next
prove that the prefix 〈|~x1, ~y1 < a1 z1|〉 . . . 〈|~xn, ~yn < an zn|〉 intuitively corresponds
to the execution of a class of pomsets (not a single one, since the relation be-
tween some events might be unspecified). More precisely, in the situation above let
Pom(〈|~x1, ~y1 < a1 z1|〉 . . . 〈|~xn, ~yn < an zn|〉) denote the class of pomsets (Z,≤, λ) such that
Z = {z1, . . . , zn} and for i ∈ {1, . . . , n}, λ(z1) = ai and given any z ∈ Z

— z ∈ ~xi implies z ≤ zi,
— z ∈ ~yi implies z 6≤ zi.

With this definition it is immediate to show that the following result holds.

LEMMA 5.3. Let ϕ = 〈|~x1, ~y1 < a1 z1|〉 . . . 〈|~xn, ~yn < an zn|〉 ψ be a closed formula in Lp.
Then

E , C |=η ϕ iff C
X
−−→ C ′ where X = {e1, . . . , en} is a pomset s.t. X ∼ (Z,≤, λ)

for some (Z,≤, λ) ∈ Pom(〈|~x1, ~y1 < a1 z1|〉 . . . 〈|~xn, ~yn < an zn|〉)
and E , C ′ |=η′ ψ, with η′ = η[z1 7→ e1, . . . , zn 7→ en].

PROOF. By induction on n.

Next we observe that, in particular, the execution of a single pomset can be exactly
characterised by a corresponding formula in Lp.

Definition 5.4 (pomsets as formulae in Lp). Let Z = {z1, . . . , zn} be a set of variables
and let pZ = (Z,≤pZ , λpZ) be a pomset. Given a formula ϕ ∈ Lp, we denote by 〈| pZ |〉ϕ the
formula inductively defined as follows. If Z is empty then 〈| pZ |〉ϕ = ϕ. If Z = Z ′ ∪ {z},
where z is maximal with respect to ≤pZ (if there are many maximal zi, choose the one
with highest index), let ~x = {z′ ∈ Z ′ | z′ ≤pz z}, ~y = Z ′ \ ~x, and a = λpZ (z), then
〈| pZ |〉ϕ = 〈| pZ′ |〉 〈|~x, ~y < a z|〉ϕ.

Note that if ϕ is a closed formula also 〈| pZ |〉ϕ is closed.
The fact that pomset formulae as defined above have exactly the intended semantics

immediately follows from Lemma 5.3.

LEMMA 5.5 (POMSETS IN Lp). Let E be a PES and let C ∈ C(E) be a configuration.
Given {z1, . . . , zn} ⊆ Var and a pomset pZ = (Z,≤pZ , λpZ), then

E , C |=η 〈| pZ |〉ϕ iff C
X
−−→ C ′ where X = {e1, . . . , en} is a pomset s.t. X ∼ pZ

and E , C ′ |=η′ ϕ, with η′ = η[z1 7→ e1, . . . , zn 7→ en]

PROOF. Just observe that Pom(〈| pZ |〉) = {pZ}. Then the result is an instance of
Lemma 5.3.

LEMMA 5.6. Let E1 and E2 be PESs and let Ci ∈ C(Ei), for i ∈ {1, 2}, be configura-
tions. There exists a pomset bisimulation R such that (C1, C2) ∈ R iff for any ϕ ∈ Lp, ϕ
closed formula, E1, C1 |= ϕ⇔ E2, C2 |= ϕ.

PROOF. (⇒) Let R be a pomset bisimulation. We prove that if (C1, C2) ∈ R, then for
all closed formulae ϕ ∈ Lp, we have that E1, C1 |= ϕ iff E2, C2 |= ϕ.

The proof proceeds by induction on the structure of the formula ϕ. The cases in
which ϕ is a conjunction, negation or true are trivial. In the remaining cases ϕ is a

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:20 P. Baldan and S. Crafa

closed formula of the shape

〈|~x1, ~y1 < a1 z1|〉 . . . 〈|~xn, ~yn < an zn|〉 ψ. (8)

where ψ is closed.
Assume that E1, C1 |= ϕ, i.e., E1, C1 |=η1 ϕ for some (irrelevant) η. Then, by

Lemma 5.3, C1

X
−−→ C ′1 whereX ∼ (Z,≤, λ) for some pomset (Z,≤, λ) ∈ Pom(〈|~x1, ~y1 <

a1 z1|〉 . . . 〈|~xn, ~yn < an zn|〉). Additionally E1, C ′1 |=η1[z1 7→e1,...,zn 7→en] ψ, which can be writ-
ten E1, C ′1 |= ψ, as ψ is closed.

Since (C1, C2) ∈ R andR is a pomset bisimulation, there is a pomset Y = {g1, . . . , gn},
isomorphic to X, and thus to (Z,≤, λ), such that

C2

Y
−−→ C ′2 (9)

and (C ′1, C
′
2) ∈ R. By inductive hypothesis, E2, C ′2 |= ψ. Again, since ψ is closed, by

Lemma 3.7 it also holds E2, C ′2 |=η2[z1 7→g1,...,zn 7→gn] ψ, for any chosen η2. This fact, to-
gether with (9), allows us to conclude, by Lemma 5.3, that E2, C2 |=η2 ϕ, i.e., since ϕ is
closed, E2, C2 |= ϕ as desired.

(⇐) The proof is similar to that of Lemma 5.1, i.e., we show that the relation

R = {(C1, C2) | ∀ϕ ∈ Lp, ϕ closed, E1, C1 |= ϕ iff E2, C2 |= ϕ}
is a pomset bisimulation.

We proceed by contradiction. Let (C1, C2) ∈ R, let C1

X
−−→ C ′1, where X is a pomset,

and assume that for all Y such that C2

Y
−−→ C ′2 and X ∼ Y there exists a closed

formula ψ ∈ Lp such that E1, C ′1 |= ψ and E2, C ′2 6|= ψ.
Since our PESs are assumed to be image finite, there are finitely many such pomset

transitions C2

Y i

−−→ Ci2, for i ∈ {1, . . . , k}. Let ψi be the formulae such that E1, C ′1 |= ψi

and E2, Ci2 6|= ψi for i ∈ {1, . . . , k}. If pZ is a pomset of variables, such that pZ ∼ X, let
us define a formula in Ls as follows:

ψ = 〈| pZ |〉 (ψ1 ∧ . . . ∧ ψk)

Then by Lemma 5.5, we have that E1, C1 |= ψ while E2, C2 6|= ψ. This gives the desired
contradiction.

The logical characterisation of pomset bisimilarity now immediately follows.

THEOREM 5.7 (POMSET BISIMILARITY, LOGICALLY). Let E1 and E2 be PESs. Then
E1 ∼p E2 iff E1 ≡Lp E2.

As an example, consider the two PESs E7 and E9 in Fig. 2. They are step bisim-
ilar but not pomset bisimilar since only the second one can execute the pomset
pa<b = ({a, b}, a < b, λ), where λ is the obvious labelling. Accordingly, the formula
ϕ = 〈| pa<b|〉T = 〈|ax|〉〈|x < b y|〉T in Lp, is satisfied only by E9.

5.4. History preserving logic
The fragment Lhp corresponding to hp-bisimilarity is obtained from that for pomset
bisimilarity by relaxing the condition asking that propositional connectives are applied
only to closed formulae. Intuitively, in this way a formula ϕ ∈ Lhp, besides expressing
the possibility of executing a pomset p, also predicates about dependencies of events in
the pomset with previously executed events (bound to the free variables of ϕ).

The following two PESs can be proved to be pomset equivalent but not hp-equivalent:

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Logic for True Concurrency 39:21

b

a b

b

a a b

Intuitively, they allow the same pomset transitions, but they have a different “causal
branching”. Indeed, only in the left-most PESs, after the execution of an a-labelled
event we can choose between a concurrent and a causally dependent b-labelled event.
In the rightmost PES the choice is already determined by the execution of a. Formally,
the formula 〈|ax|〉(〈|x < b y|〉T ∧ 〈|x < b z|〉T) in Lhp is true only on the left-most PES.

We start with a simple lemma that makes explicit the semantics of the induced
operator 〈|~x, ~y < a z|〉.

LEMMA 5.8 (EVENTS WITH THEIR HISTORY IN THE LOGIC). Given a PES E , a for-
mula ϕ ∈ Lhp and a legal pair (C, η) ∈ lp(〈|~x, ~y < a z|〉ϕ):

E , C |=η 〈|~x, ~y < a z|〉ϕ iff there is an event e ∈ E such that C
e
−−→ C ′, λ(e) = a,

η(~x) ≤ e, η(~y) || e and C ′ |=η′ ϕ, where η′ = η[z 7→ e].

PROOF. The result follows almost immediately from the definition of the semantics
(Definition 3.4).

LEMMA 5.9. Let E1 and E2 be PESs and let (C1, f, C2) ∈ C(E1)×̄C(E2), i.e., Ci ∈ C(Ei),
for i ∈ {1, 2}, are configurations and f : C1 → C2 is an isomorphism of pomsets. Then
the following are equivalent:

(1) there is a hp-bisimulation R such that (C1, f, C2) ∈ R;
(2) for any ϕ ∈ Lhp and η1 ∈ EnvE1 such that η1(fv(ϕ)) ⊆ C1, it holds that E1, C1 |=η1

ϕ⇔ E2, C2 |=f◦η1 ϕ.

PROOF. (1⇒ 2) Let R be a hp-bisimulation. We show that for all formulae ϕ ∈ Lhp,
triples (C1, f, C2) ∈ R and environments η1 ∈ EnvE1 such that η1(fv(ϕ)) ⊆ C1 it holds

E1, C1 |=η1 ϕ iff E2, C2 |=f◦η1 ϕ.

We proceed by induction on the structure of the formula ϕ. We focus on the only non-
trivial case where ϕ = 〈|~x, ~y < a z|〉ψ. If E1, C1 |=η1 ϕ, then by Lemma 5.8 there is an
event e ∈ E1 such that

C1

e
−−→ C ′1 (10)

with λ1(e) = a, η1(~x) ≤ e, η1(~y) || e and E1, C ′1 |=η′1
ψ where η′1 = η1[z 7→ e].

Since (C1, f, C2) ∈ R, there exists an event g ∈ E2 such that

C2

g
−−→ C ′2 (11)

and (C ′1, f
′, C ′2) ∈ R, with f ′ = f [e 7→ g]. Since f ′ is an isomorphism of configurations,

we have that λ2(g) = a, f(η1(~x)) ≤ g and f(η1(~y)) || g.
Note that η′1(fv(ψ)) ⊆ η′1(fv(ϕ)∪ {z}) = η1(fv(ϕ))∪ {e} ⊆ C1 ∪ {e} = C ′1. Thus, we can

use the induction hypothesis to deduce that E2, C ′2 |=f ′◦η′1 ψ. Therefore, by using again
Lemma 5.8, we can conclude E2, C2 |=f◦η1 ϕ.

The proof that E2, C2 |=f◦η1 ϕ implies E1, C1 |=η1 ϕ is analogous and thus omitted.

(1⇐ 2) As in Proposition 4.2 we fix a surjective environment η1 : Var → E1. Moreover,
given an event e ∈ E1, we write xe to denote a fixed distinguished variable such that
η1(xe) = e. Similarly, for a configuration C1 = {e1, . . . , en} we denote by XC1

the set of

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:22 P. Baldan and S. Crafa

variables {xe1 , . . . , xen}. Observe that (C1, η1) is a legal pair for any formula ϕ ∈ L such
that fv(ϕ) ⊆ XC1

.
Then we show that the posetal relation R ⊆ C(E1)×̄C(E2) defined by

R = {(C1, f, C2) | ∀ϕ ∈ Lhp. fv(ϕ) ⊆ XC1
E1, C1 |=η1 ϕ iff E2, C2 |=f◦η1 ϕ}

is a hp-bisimulation. Note that as in Proposition 4.2, with a slight abuse of notation,
we denote by f ◦ η1 any environment η2 such that η2(x) = f(η1(x)) for x ∈ XC1

and
η2(x) has any value, otherwise. By Lemma 3.7, this arbitrariness has no impact on the
satisfaction of ϕ in the definition of R since fv(ϕ) ⊆ XC1

.
We proceed by contradiction. Assume that (C1, f, C2) ∈ R, let C1

e
−−→ C ′1 and sup-

pose that for all g ∈ E2 such that C2

g
−−→ C ′2 with C ′1 ∼ C ′2 as pomsets, we have

(C ′1, f [e 7→ g], C ′2) 6∈ R, i.e., there exists a formula ψ, with fv(ψ) ⊆ XC′
1
, such that

E1, C ′1 |=η1 ψ and E2, C ′2 6|=f ′◦η1 ψ.
Since all PESs are assumed to be image finite, there are finitely many transitions

C2

gi

−−→ Ci2, i ∈ {1, . . . , k}
such that f i = f [e 7→ gi] : C ′1 → Ci2 is an isomorphism of pomsets. Let ψi, for i ∈
{1, . . . , k} be formulae such that

E1, C ′1 |=η1 ψ
i and E2, Ci2 6|=fi◦η1 ψ

i

where fv(ψi) ⊆ XC′
1

= XC1
∪ {xe}. Now consider the formula

ϕ = 〈|~x, ~y < axe|〉(ψ1 ∧ . . . ∧ ψk)

where a = λ1(e) and the ~x, ~y ⊆ XC1 are such that η1(~x) is the set of causes of e in C1

and η1(~y) is the set of events in C1 which are concurrent with e. Note that fv(ϕ) =

~x ∪ ~y ∪ ((
⋃k
i=1 fv(ψi)) \ {xe}) = XC1

.
Then by Lemma 5.8 we have that E1, C1 |=η1 ϕ and E2, C2 6|=f◦η1 ϕ, which gives the

desired contradiction.

The fact that R as defined above is a hp-bisimulation allows us to conclude. In fact,
assume that (C1, f, C2) ∈ C(E1)×̄C(E2) and (2) holds. Then for any ϕ ∈ Lhp such that
fv(ϕ) ⊆ XC1

, it holds that η1(fv(ϕ)) ⊆ η1(XC1
) = C1. Therefore we can use (2) and

deduce that E1, C1 |=η1 ϕ iff E2, C2 |=f◦η1 ϕ. This implies that (C1, f, C2) ∈ R, i.e., we
get (1).

Remark. It is worth observing that the hp-bisimulation built in the previous proof
relates two configurations C1 and C2 when they satisfy the same formulae, whereas
the hhp-bisimulation built in the proof of Proposition 4.2 (which leads to Theorem 4.5)
relates C1 and C2 when the same formulae are satisfied by the empty configuration (in
an environment that binds free variables to C1, resp. C2). Intuitively, this corresponds
to the fact that for hp-bisimilarity one has to check only the future of a configuration,
while for hhp-bisimilarity also alternative evolutions (hence evolutions from the past)
of a configuration must be considered.

THEOREM 5.10 (HP-BISIMILARITY, LOGICALLY). Let E1 and E2 be PESs. Then
E1 ∼hp E2 iff E1 ≡Lhp E2.

PROOF. (⇒) Let E1 ∼hp E2. Then there is a hp-bisimulation R such that (∅, ∅, ∅) ∈ R.
For all ϕ ∈ Lhp, if ϕ is closed, i.e., fv(ϕ) = ∅, as an instance of Lemma 5.9, we obtain
E1, ∅ |=η1 ϕ iff E2, ∅ |=f◦η ϕ, for any η1 ∈ EnvE1 . This amounts to E1 |= ϕ iff E2 |= ϕ, i.e.,
E1 ≡Lhp E2, as desired.

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Logic for True Concurrency 39:23

(⇐) Let E1 ≡Lhp E2. Then, for any closed formula ϕ ∈ Lhp, it holds that E1 |= ϕ
iff E2 |= ϕ. Since ϕ is closed, satisfaction does not depend on the environment, hence
E1, ∅ |=η1 ϕ iff E2, ∅ |=η2 ϕ for any η1 ∈ EnvE1 , η2 ∈ EnvE2 . In particular, we can consider
∅ : ∅ → ∅, isomorphism between empty configurations and we have E1, ∅ |=η1 ϕ iff
E2, ∅ |=∅◦η1 ϕ for any η1 ∈ EnvE1 . Therefore, we can apply Lemma 5.9 to conclude that
there exists a hp-bisimulation R such that (∅, ∅, ∅) ∈ R and thus E1 ∼hp E2.

6. A LOGIC WITH RECURSION
The logic L discussed in the previous section is theoretically interesting as it allows
one to logically characterise the main true concurrent equivalences. However, as a
specification language, it has a limited expressiveness: even if one can “observe” events
arbitrarily far in the future, a single formula in L only describes properties where
a finite number of events are executed. In order to overcome this limitation, in this
section we study a fixpoint extension of the logic, where the use of recursion allows one
to express causal and concurrency properties of infinite computations. The resulting
logic, denoted µL, is a kind of first-order µ-calculus similar to the µ-calculi in [Dam
1996; Dam et al. 1998] and [Groote and Willemse 2005], where first order variables are
used to represent channels or data. Similarities exist also with the fixpoint extension
of independence-friendly modal logic studied in [Bradfield and Kreutzer 2005]. In fact,
in all of these papers fixpoints are added to a core logic which includes quantified
first order variables. The solutions adopted to let the fixpoint operators and variables
interact with first order variables are similar to that in our logic.

Let X a be a set of abstract propositions, ranged over byX, Y , . . . , that are intended to
represent formulae possibly containing (unnamed) free event variables. Each abstract
proposition has an arity ar(X), which indicates the number of free event variables in
X. An abstract proposition X can be turn into a formula by specifying a name for its
free variables. For ~x such that |~x| = ar(X), we write X(~x) to indicate the abstract
proposition X whose free event variables are named ~x. We call X(~x) a proposition and
denote by X the set of all propositions.

Definition 6.1 (syntax). Let Var be a denumerable set of event variables and let X
be a set of propositions, as explained above. The syntax of µL over the set of labels Λ
is defined as follows:

ϕ ::= X(~x) | T | ϕ ∧ ϕ | ¬ϕ | (~x, ~y < a z)ϕ | 〈z〉ϕ | µX(~x).ϕ

where for formula µX(~x).ϕ, as usual, X must occur positively in ϕ and additionally,
fv(ϕ) = ~x.

The requirement that X occurs positively in the formula µX(~x).ϕ is a standard one,
later used in the definition of the semantics for ensuring the existence of the fixpoint.

Definition 6.2 (free variables). The free variables of a formula ϕ in µL are given as
in Definition 3.2, with the addition of the following clauses:

fv(X(~x)) = ~x and fv(µX(~x).ϕ) = ~x.

In the sequel we will often use the set of free variables of a formula as a tuple. Thus
it is convenient to assume that fv(·) returns a fixed tuple of variables. Note that the
fact that variables ~x are free in X(~x) and in µX(~x).ϕ is reflected in the definition
of free variable substitution. For instance X(~x)[~y/~x] = X(~y) and (µX(x).ϕ)[y/x] =
µX(y).(ϕ[y/x]).

A least fixpoint operator µ has been added. In a recursive formula µX(~x).ϕ the ab-
stract proposition X can occur in ϕ, possibly with a different tuple of variables which,
intuitively, are used in the next iteration.

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:24 P. Baldan and S. Crafa

As usual a greatest fixpoint operator can be encoded, by duality, as

νX(~x).ϕ = ¬(µX(~x).¬ϕ̃)

where ϕ̃ is the formula obtained replacing any occurrence of X in ϕ with ¬X (in order
to keep the positivity of the occurrences of X).

As an example, the existence of a run consisting of an infinite causal chain of a-
actions can be expressed by the following formula:

〈|ax|〉 (νX(x).〈|x < a y|〉X(y))

The infinite causal chain is obtained by “passing” the event bound to y by the current
execution to the next iteration so that it can be used as a cause in the corresponding
execution. The execution outside the recursive formula binds x to an a-labelled event
which will be the first in the causal chain.

In a fixpoint formula µX(~x).ϕ, the fixpoint operator binds all the free occurrences
of the abstract proposition X in ϕ. This leads to the following notion of free abstract
proposition.

Definition 6.3 (free propositions, substitution). The set of free propositions in a for-
mula ϕ in µL, denoted fp(ϕ), is defined inductively by

fp(T) = ∅ fp(X(~x)) = {X}
fp(ϕ1 ∧ ϕ2) = fp(ϕ1) ∪ fp(ϕ2)

fp(¬ϕ) = fp((~x, ~y < a z)ϕ) = fp(〈z〉ϕ) = fp(ϕ)

fp(µX(~x).ϕ) = fp(ϕ) \ {X}
Let ϕ be a formula in µL. For an abstract proposition X and formula ψ such that
fv(ψ) = ~x, |~x| = ar(X), we denote by ϕ[ψ/X] the formula obtained from ϕ by replacing
any free occurrence of X(~y) by ψ[~y/~x].

A formula ϕ ∈ µL is called closed when both fv(ϕ) and fp(ϕ) are empty.
Let us now move to the definition of the semantics. Legal pairs for a formula are

defined exactly as in Definition 3.3. For instance the pair (C, η) is legal for the for-
mula X(~x) if the set C ∪ η(~x) is consistent. On the other hand, in addition to the
(event variable) environment, the semantics of µL also requires an interpretation for
the propositions, mapping each proposition X(~x) to a set of legal pairs for it.

Definition 6.4 (proposition environments). Let E be a PES. A proposition environ-
ment is a function π : X → 2C(E)×EnvE such that:

(1) π(X(~x)) ⊆ lp(X(~x)) for any X(~x) ∈ X , and
(2) if (C, η) ∈ π(X(~x)) and η′(~y) = η(~x) pointwise, then (C, η′) ∈ π(X(~y)).

We denote by PEnvE the set of proposition environments, ranged over by π.

The first condition requires that the denotation for X(~x) only consists of legal pairs for
X(~x). The second condition requires that the semantics of a proposition only depends
on the events that the environment associates to its free variables and that it does
not depend on the naming of the variables. Such a condition allows us to generalise
Lemma 3.7 to the logic with recursion.

Updates of a proposition environment must be properly defined in order to maintain
the validity of properties 1 and 2 above. For π ∈ PEnvE and S ⊆ lp(X(~x)), we write
π[X(~x) 7→ S] for the proposition environment defined by

π[X(~x) 7→ S](X(~y)) = {(C, η′) | (C, η) ∈ S ∧ η′(~y) = η(~x)}
π[X(~x) 7→ S](Y (~y)) = π(Y (~y)) for Y 6= X.

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Logic for True Concurrency 39:25

LEMMA 6.5. Let E be a PES, π a proposition environments, ϕ ∈ µL be a formula and
let ~x = fv(ϕ) be the tuple of free variables in ϕ.

(1) If (C, η) ∈ {|ϕ|}Eπ and η′(~y) = η(~x) pointwise, then (C, η′) ∈ {|ϕ[~y/~x]|}Eπ.
(2) For any formula ψ and abstract proposition X such that ar(X) = |fv(ϕ)| it holds
{|ψ[ϕ/X]|}Eπ = {|ψ|}Eπ[X(~x)7→{|ϕ|}Eπ].

PROOF. Both items can be proved by a routine induction (on ϕ for 1 and on ψ for
2).

In particular, from 1 above it follows that, as already proved for logic L in Lemma 3.7,
the semantics of a formula ϕ in µL only depends on the events that the environment
associates to the free variables ~x of the formula, i.e., if C ∈ C(E) and η, η′ are environ-
ments such that η|~x = η′|~x then (C, η) ∈ {|ϕ|}E iff (C, η′) ∈ {|ϕ|}E .

Definition 6.6 (semantics). Let E be a PES. The denotation of a formula is given by
the function

{|·|}E : µL → PEnvE → 2C(E)×EnvE

defined inductively as follows, where we write {|ϕ|}Eπ instead of {|ϕ|}E(π):

{|T|}Eπ = C(E)× EnvE

{|ϕ1 ∧ ϕ2|}Eπ = {|ϕ1|}Eπ ∩ {|ϕ2|}Eπ ∩ lp(ϕ1 ∧ ϕ2)

{|¬ϕ|}Eπ = lp(ϕ) \ {|ϕ|}Eπ

{|(~x, ~y < a z)ϕ|}Eπ = {(C, η) | (C, η) ∈ lp((~x, ~y < a z)ϕ) and
∃e ∈ E[C] such that ea η(fv(ϕ) \ {z})
∧ λ(e) = a ∧ η(~x) < e ∧ η(~y) || e
∧ (C, η[z 7→ e]) ∈ {|ϕ|}Eπ }

{|〈z〉 ϕ|}Eπ = {(C, η) | C
η(z)
−−→ C ′ ∧ (C ′, η) ∈ {|ϕ|}Eπ }

{|X(~x)|}Eπ = π(X(~x))

{|µX(~x).ϕ|}Eπ = lfp(f)

where lfp(f) is the least fixed point of the function f : 2lp(X(~x)) → 2lp(X(~x)) that maps
S ⊆ lp(X(~x)) into

f(S) = {|ϕ|}Eπ[X(~x)7→S]

When (C, η) ∈ {|ϕ|}Eπ we say that the PES E satisfies the formula ϕ in the configuration
C and environments η, π and write E , C |=η,π ϕ. For closed formulae ϕ, we write E , C |=
ϕ, when E , C |=η,π ϕ for some η, π and E |= ϕ when E , ∅ |= ϕ.

It can be easily proved that Lemma 3.6 extends to µL, i.e., for any formula ϕ ∈ µL,
its denotation only contains legal pairs, that is {|ϕ|}Eπ ⊆ lpE(ϕ). Note also that the
semantics of recursive formulae is well-defined. In fact, π[X(~x) 7→ S] is a well-defined
proposition environment, since S ⊆ lp(X(~x)). Moreover f(S) = {|ϕ|}Eπ[X(~x)7→S] ⊆ lp(ϕ)

by the previous observation, and lp(X(~x)) = lp(ϕ) since fv(ϕ) = ~x by definition of the
syntax of µL. Therefore, correctly, f(S) ⊆ lp(X(~x)). Moreover, the least fixed point of
f exists by Knaster-Tarski theorem since the set 2lp(X(~x)) ordered by subset inclusion
is a complete lattice and the function f used in the definition is monotone. This can be

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:26 P. Baldan and S. Crafa

easily checked by inspection of the definition of the semantics (Definition 6.6), keeping
in mind that X is required to occur positively in ϕ.

As it happens for the non-recursive fragment L, the logic µL could be defined in
positive form. The corresponding syntax, given below, includes the dual operators and
omits negation, which can then be encoded by duality.

ϕ ::= X(~x) | T | ϕ ∧ ϕ | (~x, ~y < a z)ϕ | 〈z〉ϕ | µX(~x).ϕ

F | ϕ ∨ ϕ | {~x, ~y < a z}ϕ | [z]ϕ | νX(~x).ϕ

In the following we will freely use the dual operators.

6.1. Examples
In the previous section we observed that standard HM logic can be viewed as a frag-
ment of L where we only use the (derived) modality 〈|ax|〉. Similarly, the propositional
µ-calculus corresponds to a fragment of the the general logic µL where we avoid ref-
erences to causally dependent/independent events. In particular, since in recursive
formulae we do not express causal links between event variables used in different iter-
ations, we can use only propositions without free variables (i.e., of arity 0). Therefore,
the µ-calculus corresponds to the following fragment of µL:

ϕ ::= X(ε) | T | ϕ ∧ ϕ | ¬ϕ | (~x, ~y < a z)ϕ | 〈z〉ϕ | µX(ε).ϕ

For simplicity in the following we omit trailing empty tuples of variables, writing X
instead of X(ε).

As first examples of µL formulae we thus have some standard safety and liveness
properties inherited from the µ-calculus (see, e.g., [Bradfield and Stirling 2006]). For a
fixed closed formula ψ, representing a property of interest:

— ψ holds in every reachable state
Inv(ψ) = νX. (ψ ∧ [[z]]X);

— ψ eventually holds in some state
Pos(ψ) = µX. (ψ ∨ 〈| z|〉X);

— there is a complete (finite terminated or infinite) computation where ψ always holds
Safe(ψ) = νX. (ψ ∧ ([[z]]F ∨ 〈| x|〉X));

— in every complete computation eventually ψ holds
Ev(ψ) = µX. (ψ ∨ (〈| z|〉T ∧ [[x]]X)).

When moving to the full logic, property ψ can include concurrency and causal fea-
tures. In case ψ is not closed, denoted by ~x the tuple of free variables in ψ, in order to re-
spect the syntax any occurrence of X above must be replaced by X(~x). For instance, we
can define Ev((〈|a z|〉 ⊗ 〈|a z′|〉)T) saying that eventually there will be a concurrent step
consisting of two events, labelled a and b, respectively, or Inv(〈|r z|〉Ev(〈|z < s z′|〉T)) say-
ing that any r-labelled event will be eventually followed by an s-labelled event caused
by it (e.g., any request will be eventually served).

More generally, logic µL allows one to express causal and concurrency properties
of infinite computations, where events occurring in different fixpoint iterations are
possibly related. We next provide a number of further examples.

— There is a causal chain of b-labelled events reaching a state where a can be fired:

〈|a y|〉T ∨ 〈|bx|〉 (µX(x).(〈|a z|〉T ∨ 〈|x < b y|〉X(y)))

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Logic for True Concurrency 39:27

— There is an executable a-labelled event such that in every configuration reached by
executing events which are concurrent with it, a c-labelled event can be executed:

(ax)(〈x〉T ∧ νX(x).(〈|c z|〉T ∧ [[x < y]]X(x)))

— It is always possible to perform a step consisting of two concurrent events labelled
by a and b, after executing any number of events labelled c:

νX. ((〈|a z|〉 ⊗ 〈|b z′|〉)T ∧ [[cw]]X)

— There is a finite sequence of (not necessarily related) steps, each consisting of two
concurrent events labelled by a and b, respectively, leading to a state where a c-
labelled event can be executed:

µX.(〈|c z|〉T ∨ (〈|a z|〉 ⊗ 〈|b z′|〉)X)

6.2. Invariance of logical equivalence
We show that the addition of fixpoints formulae does not alter the logical equiva-
lence, that still coincides with hhp-bisimilarity, i.e., ≡L=≡µL=∼hhp . (Recall that in
the paper we are limiting ourselves to image-finite PESs.) This is done by adapting the
proof of the fact that the µ-calculus induces the same equivalence as HM logic (see,
e.g., [Bradfield and Stirling 2006]).

We start by introducing an infinitary version of the logic µL, which is then exploited
to define fixpoint approximants. Let µL∞ denote an extension of µL with infinite con-
junctions, i.e., formulae of µL∞ are defined by the grammar

ϕ ::= X(~x) | T |
∧
i∈I ϕi | ¬ϕ | (~x, ~y < a z)ϕ | 〈z〉ϕ | µX(~x).ϕ

The semantics of µL∞ is given as in Definition 6.6, replacing the clause for conjunction
with {|

∧
i∈I ϕi|}Eπ =

⋂
i∈I{|ϕi|}Eπ ∩ lp(

∧
i∈I ϕi). We denote by L∞ the fragment of µL∞ not

including propositions and fixpoint operators.

Definition 6.7 (approximants). The α-th approximant of a fixpoint formula in µL∞,
for an ordinal α, is a formula in L∞, inductively defined as follows:

µ0X(~x).ϕ = F

µα+1X(~x).ϕ = ϕ[µαX(~x).ϕ/X]

µλX(~x).ϕ =
∨
α<λ µ

αX(~x).ϕ for λ a limit ordinal

A fixpoint formula µX(~x).ϕ is intuitively equivalent to the (infinite) disjunction of
its approximants. More formally:

LEMMA 6.8 (FIXPOINT UNFOLDING VIA APPROXIMANTS). Let E be a PES. For any
formula µX(~x).ϕ in µL∞ there exists an ordinal α such that

{|µX(~x).ϕ|}Eπ = {|µαX(~x).ϕ|}Eπ.

PROOF. Recall that {|µX(~x).ϕ|}Eπ = lfp(f) where f : 2lp(X(~x)) → 2lp(X(~x)) is the func-
tion defined by f(S) = {|ϕ|}Eπ[X(~x)7→S].

We already noted that the function f is monotone in 2lp(X(~x)) ordered by subset in-
clusion. Hence its least fixpoint can be obtained by iterating f on ∅, the bottom element
of the lattice, i.e., there exists an ordinal α such that lfp(f) = fα(∅), where f0(∅) = ∅,
fα+1(∅) = f(fα(∅)) and fλ(∅) =

⋃
α<λ f

α(∅) for λ a limit ordinal.
The observation that for any ordinal α it holds that fα(∅) = {|µαX(~x).ϕ|}Eπ allows us

to conclude. The latter can be proved by transfinite induction on α.
(α = 0) {|µ0X(~x).ϕ|}Eπ = {|F|}Eπ = ∅ = f0(∅)
(α→ α+ 1) We have that

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:28 P. Baldan and S. Crafa

{|µα+1X(~x).ϕ|}Eπ = [definition of µα+1X(~x).ϕ]
= {|ϕ[µαX(~x).ϕ/X]|}Eπ = [Lemma 6.5]
= {|ϕ|}Eπ[X(~x)7→{|µαX(~x).ϕ|}π] = [definition of f]
= f({|µαX(~x).ϕ|}π) = [inductive hypothesis]
= f(fα(∅))

(λ limit ordinal) We have

{|µλX(~x).ϕ|}Eπ = [definition of µλX(~x).ϕ]
= {|

∨
α<λ µ

αX(~x).ϕ|}Eπ = [from Definition 6.6]
= (

⋃
α<λ{|µ

αX(~x).ϕ|}Eπ) ∩ lp(
∨
α<λ µ

αX(~x).ϕ) = [distributivity of ∩ w.r.t. ∪]
=

⋃
α<λ({|µ

αX(~x).ϕ|}Eπ ∩ lp(
∨
β<λ µ

αX(~x).ϕ)) = [lp(
∨
β<λ µ

αX(~x).ϕ) = lp(µβX(~x).ϕ)
for any β, as all approximants have
the same free variables]

=
⋃
β<λ({|µ

αX(~x).ϕ|}Eπ ∩ lp(µαX(~x).ϕ)) = [since {|µαX(~x).ϕ|}Eπ ⊆ lp(µαX(~x).ϕ)]
=

⋃
β<λ{|µ

αX(~x).ϕ|}Eπ = [by inductive hypothesis]
=

⋃
α<λ f

α(∅) =
= fλ(∅)

We can finally prove that the logical equivalences induced by L and µL are the same
and they both coincide with ∼hhp .

THEOREM 6.9 (INVARIANCE OF LOGICAL EQUIVALENCE). The logical equiva-
lences of L and µL coincide with ∼hhp .

PROOF. First of all, since µL extends L, clearly ≡µL implies ≡L which in turn, by
Proposition 4.2, implies ∼hhp . Hence ≡µL implies ∼hhp . For the opposite direction, note
that Proposition 4.4 can be straightforwardly adapted to logic L∞ (as finiteness of con-
junction plays no role in the proof). Hence ∼hhp implies ≡L∞ . An inductive argument,
using Lemma 6.8, allows one to show that for any closed formula in µL∞ (and thus
in particular any formula in µL), there exists an equivalent formula in L∞, obtained
by replacing all fixpoint operators with suitable approximants. Therefore ≡L∞ implies
≡µL, hence ∼hhp implies ≡µL as desired.

We conclude this section by mentioning that fragments of µL corresponding to fix-
point extension of step, pomset and history preserving logic can be defined in the obvi-
ous way. The invariance of logical equivalence for these fragments can be easily proved
along the lines of the previous proof.

7. CONCLUSIONS: RELATED AND FUTURE WORK
We have introduced a logic for true concurrency, which allows us to predicate on
events in computations and their mutual dependencies (causality and concurrency).
The logic subsumes standard HM logic and provides a characterisation of the most
widely known true concurrent behavioural equivalences: hhp-bisimilarity is the logi-
cal equivalence induced by the full logic, and suitable fragments are identified which
induce hp-bisimilarity, pomset and step bisimilarity.

As we mentioned in the introduction, there is a vast literature relating logical and
operational views of true concurrency, however, to the best of our knowledge, a uniform
logical counterpart of the true concurrent spectrum was still missing. An exhaustive

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Logic for True Concurrency 39:29

account of the related literature is impossible; we just recall here the approaches that
most closely relate to our work.

In [De Nicola and Ferrari 1990; Pinchinat et al. 1994; Cherief 1992] the causal
structure of concurrent systems is pushed into the logic. The paper [De Nicola and
Ferrari 1990] considers modalities which describe pomset transitions, thus provid-
ing an immediate characterisation of pomset bisimilarity. Moreover, [De Nicola and
Ferrari 1990; Pinchinat et al. 1994; Cherief 1992] show that by tracing the history
of states and adding the possibility of reverting pomset transitions, one obtains an
equivalence coarser than hp-bisimilarity and incomparable with pomset bisimilarity,
called weak hp-bisimilarity. Our logic intends to be more general by also capturing the
interplay between concurrency and branching, which is not observable at the level of
hp-bisimilarity.

The idea of studying logics for true concurrency, identifying suitable fragments
which induce known or meaningful behavioural equivalences has been considered by
several authors. In particular, a recent work [Gutierrez 2011] discusses a fixpoint
modal logic for true concurrent models, called separation fixpoint logic (SFL), origi-
nally introduced in [Gutierrez 2009]. The logic SFL includes modalities which spec-
ify the execution of an action causally dependent/independent on the last executed
one. Moreover, a “separation operator” deals with concurrently enabled actions. This
line of work is in turn inspired by the so-called independence-friendly modal logic
(IFML) [Bradfield and Fröschle 2002], which includes a modality that allows one to
specify that the currently executed action is independent from a number of previ-
ously executed ones. In this sense IFML is similar in spirit to our logic. Equivalences
induced by (fragments of) IFML, with alternative semantics, are investigated and
shown to be often not standard in the true concurrent spectrum. The fragment of the
logic in [Gutierrez 2011] without the separation operator captures a weakening of hp-
bisimilarity, which coincides with hp-bisimilarity on a suitable subclass of safe Petri
nets [Gutierrez 2011]. For similar reasons, the full logic induces an equivalence which
is weaker than hhp-bisimilarity, and incomparable with hp-bisimilarity. Still a deeper
comparison with this approach represents an interesting open issue.

Several classical papers have considered temporal logics with modalities correspond-
ing to the “retraction” or “backward” execution of computations. In particular [Joyal
et al. 1996; Nielsen and Clausen 1995; Bednarczyk 1991; Hennessy and Stirling 1985]
study a so-called path logic with a past tense (also called future perfect) modality: the
formula @aϕ is true when ϕ holds in a state which can reach the current one with an a-
transition. For systems that do not exhibit autoconcurrency, i.e., where events with the
same label are never enabled concurrently, such a logic can be shown to characterise
hhp-bisimilarity. The restriction to systems without autoconcurrency can be relaxed by
modifying the past tense modality in a way which allows one to undo a specific event
executed in the past [Nielsen and Clausen 1995]. With such a modification the logic
becomes event-based logic, similar in spirit to our logic L.

Compared to these works, the main novelty of our approach resides in the fact that
the logic L provides a characterisation of the different standard true concurrent equiv-
alences in a simple, unitary logical framework. In order to enforce this view, we in-
tend to pursue a formal comparison with the logics for concurrency introduced in the
literature. It is easy to see that the execution modalities of [Gutierrez 2011] can be
encoded in L since they only refer to the last executed event, while the formulae in L
can refer to any event executed in the past. On the other hand, the “separation oper-
ator” of [Gutierrez 2011], as well as the backward modalities mentioned above (past
tense, future perfect, reverting pomset transitions) are not immediately encodable in
L. A deeper investigation would be of great help in shading further light on the true
concurrent spectrum. Moreover L suggests an alternative, forward-only, operational

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:30 P. Baldan and S. Crafa

definition of hhp-bisimilarity which we would expect to be closely related to the charac-
terisation of hhp-bisimilarity in [Fröschle and Hildebrandt 1999]. This approach could
be inspiring also for other reverse bisimilarities [Phillips and Ulidowski 2010].

Interestingly, the idea of considering a logic with event variables is taken also in
a very recent work [Phillips and Ulidowski 2011], which provides an elegant charac-
terisation of (h)hp-bisimilarity via a logic, called event identifier logic (EIL), with a
backward execution modality. The logic includes three operators: 〈x:a〉〉, (x:a) and 〈〈x〉.
The formula 〈x:a〉〉ϕ holds when, starting from the current configuration, an a-labelled
event can be executed and, after the execution of such an event the formula ϕ holds.
The formula (x:a)ϕ states that the current configuration contains an a-labelled event
(which has thus been executed in the past) and formula ϕ holds. In both cases, the
a-labelled event is bound to variable x to be possibly referenced in ϕ. Finally, 〈〈x〉 holds
when the event bound to x can be undone and then ϕ holds. The reason why both logics
capture hhp-bisimilarity is conceptually clear: the possibility of performing backward
steps can be seen as a mean of exploring alternative different futures. The very same
possibility is “primitive” in our logic where we can explore the future of a configura-
tion, without executing the corresponding events. However, the formal relationships
between EIL and our logic (e.g., the possibility of encoding backward steps in our logic)
is still to be understood and represents a stimulating direction of future research.

As a byproduct of such an investigation, we foresee the identification of interesting
extensions of the concurrent spectrum, both at the logical and at the operational side.
For instance, it can be shown that the fragment of L where the operator (~x, ~y < a z)
is restricted to bind z to events consistent with those already quantified induces an
equivalence which admits a natural operational definition, it is decidable and lies in
between hp- and hhp-bisimilarity, still being different from the equivalences in [Gutier-
rez 2011].

Connected to this, model-checking and decidability issues are challenging directions
of future investigation (see [Penczek 1995] for a survey of these issues over partial
order temporal logics and logics based on event structures having explicit operators
representing concurrency, causality and conflict). It is known that hhp-bisimilarity is
undecidable, even for finite state systems [Jurdzinski et al. 2003], while hp-bisimilarity
is decidable [Vogler 1991; Montanari and Pistore 1997]. Characterising decidable frag-
ments of the logic could be helpful in drawing a clearer separation line between de-
cidability and undecidability of concurrent equivalences. A promising direction is to
impose a bound on the “causal depth” of the future which the logic can quantify on.
In this way one gets a chain of equivalences, coarser than hhp-bisimilarity, which
should be closely related with n-hhp bisimilarities introduced and shown to be decid-
able in [Fröschle and Hildebrandt 1999]. As for verification, we aim at investigating
the automata-theoretic counterpart of the logic. In previous papers, hp-bisimilarity has
been characterised in automata-theoretic terms using HD-automata [Montanari and
Pistore 1997] or Petri nets [Vogler 1991]. It seems that HD-automata [Montanari and
Pistore 1997] could provide a suitable automata counterpart of the fragment Lhp. Also
the game-theoretical approach proposed in [Gutierrez and Bradfield 2009; Gutierrez
2011] for the separation fixpoint logic as well as the model checking techniques devel-
oped in [Groote and Willemse 2005] for their first order µ-calculus can be sources of
inspiration.

Just note that the model checking problem is not trivial since it may be the case
that some formulae have infinite models only, even if we limit ourselves to the finite
fragment of the logic. For instance, the formula 〈|aw|〉T ∧ ¬(ax)¬(x < a y)T only holds
in an PES which contains an infinite causal chain of a-labelled events. Preliminary

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Logic for True Concurrency 39:31

investigations lead us to conjecture that model-checking is decidable on finite state
systems for the fixpoint extension of Lhp, Lp and Ls.

A. APPENDIX: WELL-FORMED FORMULAE
In this appendix we identify a fragment of the logic L where the restriction of the
denotations to include only legal pairs is enforced syntactically. The idea is as follows:
whenever we bind an event to a variable we declare how it relates to all the events
bound to the free variables in the remaining part of the formula.

Definition A.1 (well-formed formulae). A formula ϕ ∈ L is called well-formed
when, for any subformula of the kind (~x, ~y < a z)ψ, we have that fv(ψ) ⊆ ~x ∪ ~y ∪ {z}.
We denote by Lwf the fragment of L consisting of well-formed formulae.

Observe that any subformula of a well-formed formula is well-formed.
The semantics of well-formed formulae can be given as in Definition 3.4, without

restricting to legal pairs. We refer to this “unrestricted” semantics as the well-formed
denotation of a formula.

Definition A.2 (semantics of well-formed formulae). Let E be a PES. The well-
formed denotation of a formula ϕ in Lwf , written {|ϕ|}Ewf ∈ 2C(E)×EnvE is defined in-
ductively as follow:

{|T|}Ewf = C(E)× EnvE

{|ϕ1 ∧ ϕ2|}Ewf = {|ϕ1|}Ewf ∩ {|ϕ2|}Ewf

{|¬ϕ|}Ewf = (C(E)× EnvE) \ {|ϕ|}Ewf

{|(~x, ~y < a z)ϕ|}Ewf = {(C, η) | ∃e ∈ E[C] such that
λ(e) = a ∧ η(~x) < e ∧ η(~y) || e
∧ (C, η[z 7→ e]) ∈ {|ϕ|}Ewf }

{|〈z〉 ϕ|}Ewf = {(C, η) | C
η(z)
−−→ C ′ ∧ (C ′, η) ∈ {|ϕ|}Ewf }

The claim that the “well-formedness” is a syntactic counterpart of the restriction
to legal pairs is now formalised by proving that, for closed well-formed formulae, the
well-formed denotation given above and the one based on legal pairs in Definition 3.4
do coincide.

PROPOSITION A.3 (SEMANTICS OF WELL-FORMED FORMULAE). Let E be a PES.
Then, for any closed well-formed formula ϕ

{|ϕ|}E = {|ϕ|}Ewf

PROOF. We can prove more generally that for any well-formed formula ϕ, it holds
that

{|ϕ|}E = {|ϕ|}Ewf ∩ lp(ϕ).

From this the thesis immediately follows, since for a closed formula ϕ it holds that
lp(ϕ) = C(E)× Env . The proof can proceed by induction on ϕ.

(case T) Since lp(T) = C(E)× Env , we have

{|T|}Ewf ∩ lp(T) = (C(E)× Env) ∩ (C(E)× Env) = C(E)× Env = {|T|}E .

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:32 P. Baldan and S. Crafa

(case ϕ ∧ ψ) We have

{|ϕ ∧ ψ|}Ewf ∩ lp(ϕ ∧ ψ) [by Definition A.2]
= {|ϕ|}Ewf ∩ {|ψ|}Ewf ∩ lp(ϕ ∧ ψ) [by inductive hypothesis]
= {|ϕ|}E ∩ lp(ϕ) ∩ {|ψ|}E ∩ lp(ψ) ∩ lp(ϕ ∧ ψ) [since lp(ϕ ∧ ψ) ⊆ lp(ϕ) ∩ lp(ψ)]
= {|ϕ|}E ∩ {|ψ|}E ∩ lp(ϕ ∧ ψ) [by Definition 3.4]
= {|ϕ ∧ ψ|}E

(case ¬ϕ) We have

{|¬ϕ|}Ewf ∩ lp(¬ϕ) [by Definition A.2]
((C(E)× Env) \ {|ϕ|}Ewf) ∩ lp(¬ϕ) [since lp(¬ϕ) = lp(ϕ)]
((C(E)× Env) \ {|ϕ|}Ewf) ∩ lp(ϕ) [by calculation]
((C(E)× Env) ∩ lp(ϕ)) \ ({|ϕ|}Ewf ∩ lp(ϕ)) [by lp(ϕ) ⊆ C(E)×Env and ind. hypot.]
= lp(ϕ) \ {|ϕ|}E [by Definition 3.4]
= {|¬ϕ|}E

(case (~x, ~y < a z)ϕ) By Definition A.2 we have

{|(~x, ~y < a z)ϕ|}Ewf ∩ lp((~x, ~y < a z)ϕ) =

= {(C, η) | (C, η) ∈ lp((~x, ~y < a z)ϕ)∧
∃e ∈ E[C]. λ(e) = a ∧ η(~x) < e ∧ η(~y) || e ∧ (C, η[z 7→ e]) ∈ {|ϕ|}Ewf }

Now observe that, since the formula (~x, ~y < a z)ϕ is well-formed, fv(ϕ) ⊆ ~x ∪ ~y ∪ {z}
and thus fv((~x, ~y < a z)ϕ) = ~x∪~y. As a consequence, whenever (C, η) ∈ lp((~x, ~y < a z)ϕ)
and e ∈ E[C] with η(~x) < e and η(~y) || e, we have

ea η(fv(ϕ) \ {z}) and (C, η[z 7→ e]) ∈ lp(ϕ).

Therefore, we get

{|(~x, ~y < a z)ϕ|}Ewf ∩ lp((~x, ~y < a z)ϕ) =

= {(C, η) | (C, η) ∈ lp((~x, ~y < a z)ϕ)∧
∃e ∈ E[C]. ea η(fv(ϕ) \ {z}) ∧ λ(e) = a ∧ η(~x) < e ∧ η(~y) || e

∧ (C, η[z 7→ e]) ∈ {|ϕ|}Ewf ∩ lp(ϕ)}

Since by inductive hypothesis {|ϕ|}Ewf ∩ lp(ϕ) = {|ϕ|}E , we deduce that

{|(~x, ~y < a z)ϕ|}Ewf ∩ lp((~x, ~y < a z)ϕ) = {|(~x, ~y < a z)ϕ|}E

as desired.

(case 〈z〉 ϕ) We have

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Logic for True Concurrency 39:33

{|〈z〉 ϕ|}Ewf ∩ lp(〈z〉 ϕ) [by Definition A.2]

= {(C, η) | C
η(z)

−−→ C′ ∧ (C′, η) ∈ {|ϕ|}Ewf } ∩ lp(〈z〉 ϕ) [by calculation]

= {(C, η) | (C, η) ∈ lp(〈z〉 ϕ) ∧ C
η(z)

−−→ C′ ∧ (C′, η) ∈ {|ϕ|}Ewf }

[since (C, η) ∈ lp(〈z〉 ϕ) ∧ C
η(z)

−−→ C′ iff (C′, η) ∈ lp(ϕ) ∧ C
η(z)

−−→ C′]

= {(C, η) | C
η(z)

−−→ C′ ∧ (C′, η) ∈ {|ϕ|}Ewf ∩ lp(ϕ)} [by inductive hypothesis]

= {(C, η) | C
η(z)

−−→ C′ ∧ (C′, η) ∈ {|ϕ|}E} [by Definition A.2]
= {|〈z〉 ϕ|}E

Restricting to well-formed formulae does not alter the logical equivalence which re-
mains hhp-bisimilarity.

PROPOSITION A.4 (WELL-FORMED FORMULAE INDUCE HHP-BISIMILARITY). Let
E1 and E2 be PESs. Then E1 ∼hhp E2 iff E1 ≡Lwf

E2.

PROOF. The fact that if E1 ∼hhp E2 then E1 ≡Lwf
E2 follows immediately by Proposi-

tion 4.4, since Lwf is a fragment of L.
The converse implication can be proved essentially as for the full logic L (Propo-

sition 4.2) since the restriction to well-formed formulae smoothly integrates in the
proof. More in detail, most of the proof of Proposition 4.2, remains unchanged. When
showing that relation R is a hhp-bisimilarity, it is sufficient to note that if the for-
mulae ψi are assumed to be well-formed then also the newly constructed formula
ϕ = (~x, ~y < axe)(〈XC1

〉 〈xe〉T ∧ ψ1 ∧ . . . ∧ ψn) is well-formed. In fact, by construc-
tion, ~x, ~y ⊆ XC1

are such that η1(~x) is the set of causes of e in C1 and η1(~y) is the set
of events in C1, hence ~x ∪ ~y = XC1

. Moreover fv(ψi) ⊆ XC′
1

= XC1
∪ {xe} and thus

fv(〈XC1〉 〈xe〉T ∧ ψ1 ∧ . . . ∧ ψn) = XC1 ∪ {xe}. Hence ϕ is well-formed.

The entire theory, including the fragments for step, pomset and hp-bisimilarity and
the logic with recursion could be developed alternatively by focusing on the well-
formed fragment of the logic, with the well-formed semantics.

ACKNOWLEDGMENT

We are grateful to Luca Aceto, Sibylle Fröschle and to the anonymous reviewers for their detailed comments
and inspiring suggestions which helped us in improving the the paper. In particular a remark from the
reviewers stimulated a more appropriate presentation of well-formed formulae.

REFERENCES
Paolo Baldan and Silvia Crafa. 2010. A Logic for True Concurrency. In Proceedings of CONCUR’10 (Lecture

Notes in Computer Science), Paul Gastin and François Laroussinie (Eds.), Vol. 6269. Springer, Heidel-
berg, DE, 147–161.

Marek A. Bednarczyk. 1991. Hereditary History Preserving Bisimulations or What is the Power of the Future
Perfect in Program Logics. Technical Report. Polish Academy of Sciences.

Eike Best, Raymond Devillers, Astrid Kiehn, and Lucia Pomello. 1991. Fully Concurrent Bisimulation. Acta
Informatica 28 (1991), 231–261.

Julian Bradfield and Sibylle B. Fröschle. 2002. Independence-Friendly Modal Logic and True Concurrency.
Nordic Journal of Computing 9, 1 (2002), 102–117.

Julian Bradfield and Stephan Kreutzer. 2005. The Complexity of Independence-Friendly Fixpoint Logic. In
Proceedings of CLS’05 (Lecture Notes in Computer Science), C.-H. Luke Ong (Ed.), Vol. 3634. Springer,
Heidelberg, DE, 355–368.

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:34 P. Baldan and S. Crafa

Julian Bradfield and Colin Stirling. 2006. Modal mu-calculi. In Handbook of Modal Logic, Patrick Black-
burn, Johan van Benthem, and Franck Wolter (Eds.). Elsevier, Amsterdam, NL, 721–756.

Ferroudja Cherief. 1992. Back and Forth Bisimulations On Prime Event Structures. In Proceedings of
PARLE’92 (Lecture Notes in Computer Science), Daniel Etiemble and Jean-Claude Syre (Eds.), Vol. 605.
Springer, Heidelberg, DE, 843–858.

Mads Dam. 1996. Model Checking Mobile Processes. Information and Computation 129, 1 (1996), 35–51.
Mads Dam, Lars-Åke Fredlund, and Dilian Gurov. 1998. Toward Parametric Verification of Open Distributed

Systems. In Proceedings of COMPOS’97 (Lecture Notes in Computer Science), Willem P. de Roever, Hans
Langmaack, and Amir Pnueli (Eds.), Vol. 1536. Springer, Heidelberg, DE, 150–185.

Rocco De Nicola and Gianluigi Ferrari. 1990. Observational logics and concurrency models. In Proceedings
of FST-TCS’90 (Lecture Notes in Computer Science), Kesav V. Nori and C. E. Veni Madhavan (Eds.), Vol.
472. Springer, Heidelberg, DE, 301–315.

Pierpaolo Degano, Rocco De Nicola, and Ugo Montanari. 1988. Partial orderings descriptions and observa-
tions of nondeterministic concurrent processes.. In REX Workshop (Lecture Notes in Computer Science),
Jaco W. de Bakker, Willem P. de Roever, and Grzegorz Rozenberg (Eds.), Vol. 354. Springer, Heidelberg,
DE, 438–466.

Sibylle B. Fröschle and Thomas T. Hildebrandt. 1999. On Plain and Hereditary History-Preserving Bisim-
ulation. In Proceedings of MFCS’99 (Lecture Notes in Computer Science), Miroslaw Kutylowski, Leszek
Pacholski, and Tomasz Wierzbicki (Eds.), Vol. 1672. Springer, Heidelberg, DE, 354–365.

Jan Friso Groote and Tim A. C. Willemse. 2005. Model-checking processes with data. Science of Computer
Programming 56, 3 (2005), 251–273.

Julian Gutierrez. 2009. Logics and Bisimulation Games for Concurrency, Causality and Conflict. In Pro-
ceedings of FoSSaCS’09 (Lecture Notes in Computer Science), Luca de Alfaro (Ed.), Vol. 5504. Springer,
Heidelberg, DE, 48–62.

Julian Gutierrez. 2011. On bisimulation and model-checking for concurrent systems with partial order se-
mantics. Ph.D. Dissertation. LFCS - University of Edinburgh.

Julian Gutierrez and Julian C. Bradfield. 2009. Model-Checking Games for Fixpoint Logics with Partial
Order Models. In Proceedings of CONCUR’09 (Lecture Notes in Computer Science), Mario Bravetti and
Gianluigi Zavattaro (Eds.), Vol. 5710. Springer, Heidelberg, DE, 354–368.

Matthew Hennessy and Robin Milner. 1985. Algebraic laws for nondeterminism and concurrency. J. ACM
32 (1985), 137–161.

Matthew Hennessy and Colin Stirling. 1985. The Power of the Future Perfect in Program Logics. Informa-
tion and Control 67, 1-3 (1985), 23–52.

André Joyal, Mogens Nielsen, and Glynn Winskel. 1996. Bisimulation from Open Maps. Information and
Computation 127, 2 (1996), 164–185. Originally BRICS Report Series RS-94-7.

Marcin Jurdzinski, Mogens Nielsen, and Jirı́ Srba. 2003. Undecidability of domino games and hhp-
bisimilarity. Information and Computation 184, 2 (2003), 343–368.

Ugo Montanari and Marco Pistore. 1997. Minimal Transition Systems for History-Preserving Bisimulation.
In Proceedings of STACS’97 (Lecture Notes in Computer Science), Rüdiger Reischuk and Michel Morvan
(Eds.), Vol. 1200. Springer, Heidelberg, DE, 413–425.

Mogens Nielsen and Christian Clausen. 1995. Games and logics for a noninterleaving bisimulation. Nordic
Journal of Computing 2, 2 (1995), 221–249.

Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. 1981. Petri Nets, Event Structures and Domains,
Part I. Theoretical Computer Science 13 (1981), 85–108.

Wojciech Penczek. 1995. Branching Time and Partial Order in Temporal Logics. In Time and Logic: A Com-
putational Approach, Leonard Bolc and Andrzej Szałas (Eds.). UCL Press, London, UK, 179–228.

Iain Phillips and Irek Ulidowski. 2010. Reverse Bisimulations on Stable Configuration Structures. In Pro-
ceedings of SOS’09 (Electronic Proceedings in Theoretical Computer Science), B. Klin and P. Sobociǹski
(Eds.), Vol. 18. Elsevier, Amsterdam, NL, 62–76.

Iain Phillips and Irek Ulidowski. 2011. A Logic with Reverse Modalities for History-preserving Bisimula-
tions. In Proceedings of EXPRESS 2011 (Electronic Proceedings in Theoretical Computer Science), Bas
Luttik and Frank Valencia (Eds.), Vol. 64. Elsevier, Amsterdam, NL, 104–118.

Sophie Pinchinat, François Laroussinie, and Philippe Schnoebelen. 1994. Logical Characterization of Truly
Concurrent Bisimulation. Technical Report 114. LIFIA-IMAG, Grenoble.

Alexander M.. Rabinovich and Boris A. Trakhtenbrot. 1988. Behaviour Structures and Nets. Fundamenta
Informaticae 11 (1988), 357–404.

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Logic for True Concurrency 39:35

Rob J. van Glabbeek. 2001. The Linear Time – Branching Time Spectrum I; The Semantics of Concrete,
Sequential Processes. In Handbook of Process Algebra, Jan A. Bergstra, Alban Ponse, and Scott A.
Smolka (Eds.). Elsevier, Amsterdam, NL, Chapter 1, 3–99.

Rob J. van Glabbeek and Ursula Goltz. 2001. Refinement of actions and equivalence notions for concurrent
systems. Acta Informatica 37, 4/5 (2001), 229–327.

Walter Vogler. 1991. Deciding History Preserving Bisimilarity. In Proceedings of ICALP’91 (Lecture Notes in
Computer Science), Javier Leach Albert, Burkhard Monien, and Mario Rodrı́guez-Artalejo (Eds.), Vol.
510. Springer, Heidelberg, DE, 495–505.

Glynn Winskel. 1987. Event Structures. In Petri Nets: Applications and Relationships to Other Models
of Concurrency (Lecture Notes in Computer Science), Wilfried Brauer, Wolfgang Reisig, and Grzegorz
Rozenberg (Eds.), Vol. 255. Springer, Heidelberg, DE, 325–392.

Glynn Winskel and Mogens Nielsen. 1995. Models for Concurrency. In Handbook of logic in Computer Sci-
ence, Samson Abramsky, Dov M. Gabbay, and Thomas S. E. Maibaum (Eds.). Vol. 4. Clarendon Press,
Oxford, UK.

Journal of the ACM, Vol. 9, No. 4, Article 39, Publication date: March 2010.

	Introduction
	Background
	Event structures
	Concurrent behavioural equivalences

	A logic for true concurrency
	About legal pairs and environments
	Dual operators
	Examples and notation

	A logical characterisation of hhp-bisimilarity
	From Hennessy-Milner logic to HP-logic
	Hennessy-Milner logic
	Step logic
	Pomset logic
	History preserving logic

	A logic with recursion
	Examples
	Invariance of logical equivalence

	Conclusions: related and future work
	APPENDIX: Well-formed formulae

