
History Preserving Bisimulation

for Contextual Nets⋆

Paolo Baldan, Andrea Corradini, Ugo Montanari

Dipartimento di Informatica
Università di Pisa

Abstract. We investigate the notion of history preserving bisimula-
tion [15, 18, 3] for contextual P/T nets, a generalization of ordinary P/T
Petri nets where a transition may check for the presence of tokens without
consuming them (non-destructive read operations). A first equivalence,
simply called HP-bisimulation, is based on Winskel’s prime event struc-
tures. A finer equivalence, called RHP-bisimulation (where “R” stands
for “read”), relies on asymmetric event structures [1], a generalization
of prime event structures which gives a more faithful account of the de-
pendencies among transition occurrences arising in contextual net com-
putations. Extending the work in [11, 19], we show that HP-bisimulation
is decidable for finite n-safe contextual nets. Moreover by resorting to
causal automata [12] — a variation of ordinary automata introduced to
deal with history dependent formalisms — we can obtain an algorithm
for deciding HP-bisimulation and for getting a minimal realization. De-
cidability of RHP-bisimulation, instead, remains an open question.

1 Introduction

Contextual nets [14], also called nets with test arcs in [5], with activator arcs
in [9] or with read arcs in [20], are a generalization of classical P/T Petri nets
where transitions may check for the presence of tokens in the places of the net,
without consuming such tokens. More precisely, a transition of a contextual net,
besides the usual preconditions and postconditions, may also have some context
conditions. The transition is enabled if the current marking covers its precon-
ditions and context conditions. Then the firing of the transition consumes its
preconditions, leaves the context unchanged and produces its postconditions.
The possibility of faithfully representing a “read-only” access to resources al-
lows contextual nets to model many concrete situations more naturally than
classical nets. In recent years they have been used to model concurrent accesses
to shared data [16], to provide concurrent semantics to concurrent constraint
(CC) programs [13] and to model priorities [8].

Several concurrent semantics for contextual nets based on processes and event
structures have been defined in the literature [9, 21, 7, 1]. Relying on such con-
current descriptions of contextual net computations, the aim of this paper is to
⋆ Research partially supported by MURST project Tecniche Formali per Sistemi Soft-
ware, by TMR Network GETGRATS and by Esprit WG APPLIGRAPH.

•

t0 •

s

t1

t0 t1

t′1
#

t0

t′′1

•

t′1 t0

t′′1

N G P N ′

Fig. 1. A contextual net N with its aes G and pes P semantics, and a net N ′ with
the same pes semantics.

discuss more abstract semantics by introducing suitable notions of bisimulation,
inspired by the classical history preserving bisimulation [15, 18, 3]. The reason
why the extension to contextual nets is not straightforward is that, as noticed
in [1], a new kind of dependency between transitions, different from causality
and symmetric conflict arises in contextual nets, which cannot be represented
faithfully in traditional event structures. The new kind of dependency is related
to the possibility of reading part of the state without changing it, and thus it
is common to all computational formalisms where a step may preserve part of
the state. Consider the contextual net N in Fig. 1 with two transitions t0 and
t1 such that the same place s is a context for t0 and a precondition for t1. As
for a conflict of ordinary nets, the firing of t1 prevents t0 to be executed, so that
t0 can never follow t1 in a computation. But the converse is not true, since t0
can fire before t1. This situation can be naturally interpreted as an asymmetric
conflict between the two transitions. Equivalently, since t0 precedes t1 in any
computation where both fire, in such computations t0 acts as a cause of t1, but,
differently from a cause, t0 is not necessary for the firing of t1. Hence we can
also think of the relation between t0 and t1 as a weak form of causal dependency.

A reasonable way of encoding a situation of asymmetric conflict in Winskel’s
prime event structures (pes’s) consists of representing the firing of t1 with two
distinct events (see the pes P in Fig. 1): t′1 representing the execution of t1 that
prevents t0, thus mutually exclusive with t0, and t′′1 representing the execution
of t1 after t0 (thus caused by t0). Besides this phenomenon of “duplication” of
events, which increases the complexity of the structures, what may be unsatisfac-
tory in such encoding is the fact that it looses the information on weak causality.
For instance, the net N ′ in Fig. 1 has the same pes semantics of N . In [1] we
proposed a solution based on asymmetric event structures (aes’s), a generaliza-
tion of prime event structures where the symmetric binary conflict relation is
replaced by a relation ր modeling asymmetric conflict. In an aes a situation of
asymmetric conflict as in the net N of Fig. 1 is faithfully represented simply by
t0 ր t1. The aes G corresponding to the net N is depicted in the same figure
(asymmetric conflict is represented by a dotted arrow).

2

History preserving bisimulation on ordinary P/T nets relies on the notion
of process and of deterministic pes ev(π) associated to a process π. Roughly
speaking, two nets N0 and N1 are history preserving bisimilar if for any process
π0 of N0 we can find a process π1 of N1 such that the underlying deterministic
pes’s are isomorphic. Moreover whenever π0 can perform an action becoming
a process π′

0, also π1 can perform the same action becoming π′
1 and vice versa.

The isomorphism between ev(π0) and ev(π1) is required to be extensible to an
isomorphism between ev(π′

0) and ev(π′
1). Informally this means that each event

in N1 can be simulated by an event in N2 with the same causal history.

When trying to reformulate this notion for contextual nets, we have more
than one possibility according to what we decide to observe as history. We can
decide that the history of an event e in a process is given by the set of events that
precede e in the process, with their relative ordering and without any additional
information on the origin of the precedences among events. This amounts to
associate to a process π a deterministic pes. The corresponding notion of bisim-
ulation is called history preserving bisimulation (HP-bisimulation). As already
noticed, the pes semantics and thus HP-bisimulation loose the information on
weak causality (asymmetric conflict) between events which, working with deter-
ministic processes, is confused with causality. For instance the nets N and N ′ in
Fig. 1, are HP-bisimilar since they have the same pes semantics. In some situa-
tions this level of abstraction may be not appropriate: the firing sequence t0; t1
in N is simulated by t0; t

′′
1 in N ′, but in N ′, differently from what happens in N ,

there is a flow of information from t0 to t′′1 . Imagine that tokens represent pieces
of data and transitions are functions operating on such data. Then changing the
function computed by t0 in the net N ′ we influence the output of t′′1 , while in
N the output of t1 does not depend on t0. A different notion of bisimulation,
discriminating the nets N and N ′, arises by assuming that the history of an
event in a process should record complete information on causality and weak
causality. Formally, this is obtained by associating to a process π a determin-
istic aes. The corresponding finer equivalence is called read history preserving
bisimulation (RHP-bisimulation). Both HP-bisimulation and RHP-bisimulation
coincide with the classical notion when restricted to ordinary P/T nets.

Generalizing the results proved in [11, 19] for ordinary P/T nets, we show that
HP-bisimulation is decidable for finite n-safe contextual nets. To this aim we re-
sort to causal automata [11], a variation of ordinary automata suited to deal with
history-dependent formalisms like CCS with causal or location semantics and the
π-calculus with the ordinary or non-interleaving semantics. The (possibly infi-
nite) transition system of processes of a contextual net, which is used to define
HP-bisimulation, is abstracted to a causal automaton via a construction which
respects (preserves and reflects) bisimilarity. The automaton is finite for finite
n-safe contextual nets. Hence the HP-bisimilarity of any two finite n-safe con-
textual nets can be checked by applying the general algorithm proposed in [11]
to the corresponding causal automata. Since such algorithm relies on the trans-
lation of causal automata into ordinary automata, the standard techniques for
ordinary transition systems can be used, allowing, for instance, to obtain a min-

3

imal realization for a contextual net up to HP-bisimulation. Our attempt of
extending the described approach to RHP-bisimulation instead fails. In princi-
ple, we are still able to build a (generalized) causal automaton corresponding
to a contextual net in a way that respects RHP-bisimulation. However such an
automaton is in general infinite also for finite n-safe nets and thus the trans-
lation does not suggest an immediate way of checking RHP-bisimulation. The
decidability of RHP-bisimulation on contextual nets is left as an open question.

2 Contextual nets, processes and asymmetric event

structures

In this section, after introducing the basics of marked contextual P/T nets [16],
we present the notions of deterministic occurrence contextual net and process.
Then we briefly review prime event structures, and asymmetric event structures
as defined in [1].

2.1 Contextual nets

We first recall some notation for multisets. Let A be a set; a multiset of A is a
function M : A → N. It is called finite if {a ∈ A : M(a) > 0} is finite. The set
of finite multisets of A is denoted by µ∗A. The usual operations and relations
on multisets, like multiset union + or multiset difference −, are used. We write
M ≤ M ′ if M(a) ≤ M ′(a) for all a ∈ A. If M ∈ µ∗A, we denote by [[M]] the
multiset defined, for all a ∈ A, as [[M]](a) = 1 if M(a) > 0, and [[M]](a) = 0
otherwise. With abuse of notation we will write a ∈ M for M(a) > 0 and M∩M ′

for the set {a ∈ A : M(a) > 0 ∧ M ′(a) > 0}. A multirelation f : A → B is
a multiset of A × B. It is called finitary if {b ∈ B : f(a, b) > 0} is a finite set
for all a ∈ A. A finitary multirelation f induces in an obvious way a function
µf : µ∗A → µ∗B, defined as µf(M)(b) =

∑
a∈A M(a) · f(a, b) for M ∈ µ∗A and

b ∈ B. In the sequel we will implicitly assume that all multirelations are finitary.

Definition 1 ((labelled, marked) contextual net). A (marked) contextual
Petri net (c-net) is a tuple N = 〈S, T, F,C,m〉, where

– S is a set of places and T is a set of transitions;
– F = 〈Fpre, Fpost〉 is a pair of multirelations from T to S;
– C is a multirelation from T to S, called the context relation;
– m is a finite multiset of S, called the initial marking.

The c-net is called finite if T and S are finite sets. Without loss of generality,
we assume S ∩ T = ∅. Moreover, we require that for each transition t ∈ T , there
exists a place s ∈ S such that Fpre(t, s) > 0. A labelled c-net is a pair 〈N, lN 〉
where N is a c-net and lN : T → Act is a function from T to a set of labels Act.

In the following when considering a c-net N , we implicitly assume that N =
〈S, T, F,C,m〉 and, if N is labelled, we denote by lN its labelling function. Fur-
thermore, throughout the paper we consider a fixed set of labels Act.

4

As usual, given a finite multiset of transitions A ∈ µ∗T we write •A for its
pre-set µFpre(A) and A• for its post-set µFpost(A). Moreover, by A we denote
the context of A, defined as A = µC(A). The same notation is used to denote
the functions from S to the powerset P(T) defined as, for s ∈ S, •s = {t ∈ T :
Fpost(t, s) > 0}, s• = {t ∈ T : Fpre(t, s) > 0}, s = {t ∈ T : C(t, s) > 0}.

Let N be a contextual net. For a finite multiset of transitions A to be enabled
by a marking M , it is sufficient that M contains the pre-set of A and at least
one additional token in each place of the context of A. This corresponds to
the intuition that a token in a place can be used as context concurrently by
many transitions and with multiplicity greater than one by the same transition.
Formally, a finite multiset of transitions A ∈ µ∗T is enabled by a marking M ∈
µ∗S if •A + [[A]] ≤ M . In this case, to indicate that the execution of A in M

produces the new marking M ′ = M − •A + A• we write M [A〉M ′. We call
M [A〉M ′ a step (or a firing when it involves just one transition).

A marking M of a c-net N is called reachable if there is a finite step sequence
in N leading to M from the initial marking, i.e., m [A0〉M1 [A1〉M2 . . . [An〉M .
A c-net is called n-safe if for any reachable marking M each place contains at
most n tokens, namely M(s) ≤ n for all s ∈ S. A 1-safe net will be often called
simply safe.

2.2 Deterministic occurrence c-nets and processes

As for ordinary nets a process of a c-net is defined as an occurrence c-net with
a mapping to the original net. Occurrence c-nets are safe c-nets such that the
dependency relations between transitions satisfy suitable acyclicity and well-
foundedness requirements.

Definition 2 (causality). Let N be a safe c-net. The causality relation <N is
the least transitive relation on S ∪ T such that

1. if s ∈ •t then s <N t;
2. if s ∈ t• then t <N s;
3. if t• ∩ t′ 6= ∅ then t <N t′.

Given x ∈ S ∪ T , we write ⌊x⌋ for the set of causes of x in T , defined as
⌊x⌋ = {t ∈ T : t ≤N x} ⊆ T , where ≤N is the reflexive closure of <N .

Note that causality is defined as for ordinary nets, with an additional clause
stating that transition t causes t′ if it generates a token in a context place of t′.

Definition 3 (asymmetric conflict). Let N be a safe c-net. The asymmetric
conflict relation րN is defined as

t րN t′ iff t ∩ •t′ 6= ∅ or (t 6= t′ ∧ •t ∩ •t′ 6= ∅) or t <N t′.

In our interpretation, t րN t′ if t′ prevents t to be fired or, equivalently, if
t must precede t′ in each computation where both transitions fire. Informally, if
fireC(t) indicates that t fires in a computation C and precC(t, t

′) indicates that
t precedes t′ in C, then t ր t′ means that

5

for all computations C, if fireC(t) and fireC(t
′) then precC(t, t

′) (†)

The discussion in the introduction suggests that, in an acyclic safe net, (†) is
surely satisfied when the same place s appears as context for t and as precondi-
tion for t′. But (†) is trivially true (with t and t′ in interchangeable roles) when
t and t′ have a common precondition, since they never fire in the same com-
putation. This corresponds to the intuition that an ordinary symmetric conflict
amounts to an asymmetric conflict in both directions. Finally, (†) is weaker than
the condition expressing causality and thus it is satisfied when t < t′.

We are now able to introduce deterministic occurrence c-nets.

Definition 4 ((deterministic) occurrence c-nets). A deterministic occur-
rence c-net is a safe c-net O = 〈S, T, F,C,m〉 such that

1. each place s ∈ S is in the post-set of at most one transition, i.e. | •s| ≤ 1;
2. րO is well-founded and finitary; thus (րO)

∗ and ≤O are finitary partial
orders;1

3. m = {s ∈ S : •s = ∅}.

While conditions (1) and (3) are standard, condition (2) deserves some com-
ments. First, it implies the acyclicity of րO, which can be interpreted as a
conflict freeness property. In fact, if some transitions t0, . . . , tn form a րO-cycle
t0 րO t1 րO . . . րO tn րO t0 then they cannot fire together in the same com-
putation since each one should precede the others. Hence cycles of asymmetric
conflict can be thought of as a kind of conflicts on sets of events. Condition (2)
also requires the absence of infinite descending chains of րO, ensuring that each
transition must be preceded only by finitely many other transitions.

We will denote by min(O) and max(O) the sets of minimal and maximal
places of O w.r.t. the partial order ≤O. An occurrence c-net O will be often
denoted as 〈S, T, F,C〉, not mentioning the initial marking m which is uniquely
determined as min(O).

In a deterministic occurrence c-net all transitions can fire in a single compu-
tation, in any order compatible with the asymmetric conflict relation. Hence, as
for ordinary nets, a deterministic process of a c-net, representing a concurrent
computation of the net, is defined as a deterministic occurrence c-net with a
mapping to the original net. Such a mapping allows one to transform each firing
(step) sequence of the occurrence net into a firing sequence of the original net.

Definition 5 ((deterministic) process). A deterministic process of a c-net
N is a mapping π : Oπ → N , where Oπ is a deterministic occurrence c-net
and π is a strong c-net morphism, namely a pair of total functions π = 〈πS :
SN → SOπ

, πT : TN → TOπ
〉 such that the pre-set, post-set and context of each

transition are preserved. A process π is called marked if πS preserves also the
initial marking of the net.

1 A relation r ⊆ X × X is called finitary if for any x ∈ X the set {y ∈ X : y r x} is
finite. Furthermore r∗ denotes the reflexive and transitive closure of a relation r.

6

We will denote by min(π) and max(π) the sets of places min(Oπ) and max(Oπ).
Similarly the relations ≤Oπ

and րOπ
will be denoted simply as ≤π and րπ.

Any marked process of the net N having an empty set of transitions is called an
initial process of N (observe that all the initial processes of a net are isomorphic).
Since in this paper we will only deal with deterministic occurrence c-nets and
processes, the qualification “deterministic” will be often omitted. Some examples
of deterministic marked processes of a c-net can be found in Fig. 2 (for the
moment ignore the fact that processes are partly dotted).

Hereinafter we will consider only finite processes, i.e., processes with a finite
underlying occurrence net. It is possible to show that a markingM of a c-netN is
reachable iff there is some finite marked process π such that M = µπS(max(π)).

2.3 Prime and asymmetric event structures

Event structures [22] are a simple event based model of concurrent computations
in which events are considered as atomic and instantaneous steps, which can
appear only once in a computation. Recall that a (labelled) prime event structure
with binary conflict (pes) is a tuple 〈E,≤,#, l〉 consisting of a set E of events
endowed with two binary relations: the partial order ≤ modelling causality and
the relation # modeling conflict, which is symmetric, irreflexive and hereditary
w.r.t. causality. The last component l : E → Act is the labelling function over
the fixed set of labels Act.

To faithfully model the dependencies in c-net computations, in [1] we intro-
duced asymmetric event structures, a generalization of pes’s where the symmet-
ric conflict relation is replaced by a relation ր representing weak causality or
asymmetric conflict.

Definition 6 (asymmetric event structure). A (labelled) asymmetric event
structure (aes) is a tuple G = 〈E,≤,ր, l〉, where E is a set of events, l : E →
Act is the labelling function (with Act fixed set of labels) and ≤, ր are binary
relations on E called causality and asymmetric conflict, respectively, such that:

1. ≤ is a partial order and ⌊e⌋ = {e′ ∈ E : e′ ≤ e} is finite for all e ∈ E;
2. < ⊆ ր and ր is acyclic on ⌊e⌋ for all e ∈ E.

We do not discuss in detail the notion of aes. It is basically a “stateless” coun-
terpart of (possibly nondeterministic) occurrence c-nets and most of the consid-
erations done for occurrence c-nets also apply to aes’s. In particular the conflict
relation is induced by cycles of asymmetric conflict.

In this paper we are interested only in finite deterministic event structures.
A (deterministic) prime event structure is a conflict free pes, namely a pes

〈E,≤,#, l〉 such that # = ∅. It will be always denoted simply by 〈E,≤, l〉.
Similarly a (deterministic) asymmetric event structure is an aes 〈E,≤,ր, l〉 such
that the asymmetric conflict relation is well-founded and finitary (in particular
the relation ր is acyclic, a property corresponding to conflict freeness). Observe
that for finite aes’s such conditions reduce to the acyclicity of ր. For both
deterministic pes’s and aes’s the entire set E of events is a configuration of the

7

event structure, meaning that all the events in E can be executed in a single
computation of the modelled system.

The notion of isomorphism for pes’s and aes’s is defined in the obvious way.

3 History preserving bisimulation on contextual nets

As mentioned in the introduction, history preserving bisimulation is a behavioural
equivalence which takes into account the dependencies among events. Roughly
speaking it equates two ordinary nets if each action of the first net can be simu-
lated by an action of the second net with the same history, and vice versa. This
section generalizes this idea to the setting of contextual nets, where, according
to the chosen notion of history, two different formulations of history preserv-
ing bisimulation arise: HP-bisimulation, relying on pes’s, which observes only
the precedences between events, and RHP-bisimulation, based on aes’s, which
instead distinguishes causality from weak causality.

A basic ingredient for the definition of history preserving bisimulation is a
transition system, associated to each c-net, where states are processes.

Definition 7 (process moves). Given two processes π and π′ of a labelled

c-net N , we write π
a

e
π′, saying that π moves to π′ performing action a, if

– Tπ′ = Tπ ∪ {e}, with e 6∈ Tπ and lN (π′
T (e)) = a;

– Sπ ⊆ Sπ′ ;
– πS, πT , Fπ and Cπ are the restrictions to Oπ of the components of π′.

Fig. 2 represents a sequence of processes of a c-net N such that each πi moves

to πi+1. For example, π0
c

e0
π1 and π1

b

e1
π2.

To each process π of a c-net we can naturally associate a (deterministic) pes
having the transitions of the underlying occurrence net as events and the transi-
tive closure of the asymmetric conflict relation as causality: this corresponds to
confuse the weak causality determined by the precedences induced by contexts
and the “strong” causality deriving from the flow of information. Alternatively,
we can associate to the process a deterministic aes, which keeps weak causality
and “strong” causality distinct.

Definition 8 (event structures for processes). Let π be a process of a la-
belled c-net N . The pes associated to π is defined as:

ev(π) = 〈Tπ, (րπ)
∗, lN ◦ πT 〉

The aes associated to π is instead

aev(π) = 〈T,≤π,րπ, lN ◦ πT 〉

Based on the notions of process and of (asymmetric) event structure as-
sociated to a process, history preserving (HP-) bisimulation and read history
preserving (RHP-) bisimulation are readily defined.

8

•

s0

•

s2

•

s1

b c

a s3

d
N

s1 s0 s2 s1 s0 s2

c e0

s3

s1 s0 s2

be1 c e0

s3

π0 π1 π2

s1 s0 s2

be1 c e0

ae2 s3

s1

s1 s0 s2

be1 c e0

ae2

s3
s1

ae3

s1

s1 s0 s2

be1 c e0

ae2 s3

s1 d e4

ae3

s1

π3 π4 π5

Fig. 2. A contextual net N and a sequence of process moves starting from an initial
process. The process mappings are specified by the labelling of the items. For any
process the non dotted part represents the corresponding partial process.

9

Definition 9 (HP-bisimulation). Let N1 and N2 be labelled c-nets. An
HP-simulation R of N1 in N2 is a set of triples 〈π1, f, π2〉 where πi is a marked
process of Ni for i ∈ {1, 2}, and f : ev(π1) → ev(π2) is an isomorphism of pes’s,
such that

1. 〈π0(N1), ∅, π0(N2)〉 ∈ R, with π0(Ni) initial process of Ni for i ∈ {1, 2};

2. 〈π1, f, π2〉 ∈ R ∧ π1
a

e1
π′
1 ⇒ π2

a

e2
π′
2 ∧ 〈π′

1, f
′, π′

2〉 ∈ R ∧ f ′
|ev(π1)

= f .

An HP-bisimulation between N1 and N2 is a set of triples R such that R and
R−1 = {〈π2, f

−1, π1〉 : 〈π1, f, π2〉 ∈ R} are HP-simulations. The labelled c-nets
N1 and N2 are HP-bisimilar, written N1 ∼hp N2, if there is an HP-bisimulation
R between N1 and N2.

Definition 10 (RHP-bisimulation). An RHP-bisimulation R between two
labelled c-nets N1 and N2 is a set of triples 〈π1, f, π2〉 satisfying the same
conditions as HP-bisimulation, but with ev(πi) replaced by aev(πi). The la-
belled c-nets N1 and N2 are RHP-bisimilar, written N1 ∼rhp N2, if there is an
RHP-bisimulation R between N1 and N2.

Any RHP-bisimulation for two c-nets N1 and N2 is also an HP-bisimulation.
In fact if π1 and π2 are processes of N1 and N2, respectively, and f : aev(π1) →
aev(π2) is an isomorphism of aes’s then it is easy to see that f is also an
isomorphism of pes’s between ev(π1) and ev(π2). Therefore N1 ∼rhp N2 implies
N1 ∼hp N2. The converse implication, instead, does not hold. For instance, if N
and N ′ are the c-nets in Fig. 1, then N ∼hp N ′, while N 6∼rhp N ′.

4 Causal automata

Causal automata are a generalization of ordinary automata introduced in [11] as
an appropriate model for history dependent formalisms (see also [12], where more
general models, called HD-automata, are presented). Causal automata extend
ordinary automata by allowing sets of names to appear explicitly in the states
and labels of the automata. The names are local, namely they do not have a
global identity, and the correspondence between the names of the source and
those of the target states of each transition is specified explicitly. This allows for
a compact representation of systems since states differing only for the concrete
identity of the names can be identified. Moreover causal automata provide a
mechanism for the generation of new names: the problem of choosing a fresh
name simply disappears in this formalism where a new name is simply a name
which does not correspond to any name in the source state. In the specific case
of Petri nets, names are identities of transitions in a process (events) and the
correspondence between names allows to represent causal dependencies.

Definition 11 (causal automaton). Let N be a fixed infinite countable set of
names (event names) and let Act be a fixed set of labels. A causal automaton is
a tuple A = 〈Q,n, 7−→, q0〉, where

10

– Q is the set of states;
– n : Q → Pfin(N) is a function associating to each state a finite set of names;

– 7−→ is a set of transitions, each of the form q
a

M
σ q

′, with

• q, q′ the source and target states;
• a ∈ Act the label;
• M ⊆ n(q) the set of dependencies of the transition;
• σ : n(q′) →֒ n(q) ∪ {⋆} the injective inverse renaming function;

– q0 ∈ Q is the initial state; it is required that n(q0) = ∅.

For each state q ∈ Q the set of names n(q) is used to represent the past events
which can (but not necessarily will) be referenced by future transitions. Concep-

tually, each transition q
a

M
σ q

′ depends on the past events mentioned in M .

Due to the local scope of names, the function σ : n(q′) →֒ n(q) ∪ {⋆} is needed
to relate the names of the target state to those of the source. The event mapped
to ⋆ (if any) represents the new event generated by the considered transition.
In the following the components of a causal automaton will be often denoted by
using the name of the automaton as subscript.

The notion of bisimulation on causal automata (CA-bisimulation) takes into
account the fact that a state has attached a set of local names. Hence a bisimu-
lation not only relates states, but also the corresponding sets of local names.

Definition 12 (CA-bisimulation). Let A and B be two causal automata. A
CA-simulation R of A in B is a set of triples 〈q, δ, p〉, where q ∈ QA, p ∈ QB

and δ is a partial injective function from nA(q) to nB(p), such that

1. 〈q0A, ∅, q0B〉 ∈ R;

2. if 〈q, δ, p〉 ∈ R and q
a

M
σ q

′ in A then

– p
a

δ(M)
ρ p

′ in B for some p′ and

– 〈q′, δ′, p′〉 ∈ R for some δ′ such that δ⋆ ◦ σ = ρ ◦ δ′, where δ⋆ is defined
as δ ∪ {(⋆, ⋆)} (see the diagram below).

nA(q) ∪ {⋆}
δ⋆

nB(p) ∪ {⋆}

nA(q
′)

σ

δ′
nB(p

′)

ρ

A CA-bisimulation between A and B is a set of triples R such that R and
R−1 = {〈p, δ−1, q〉 : 〈q, δ, p〉 ∈ R} are CA-simulations. The automata A and B
are CA-bisimilar, written A ∼ca B, if there exists a bisimulation R between A
and B.

In [11] an algorithm has been proposed for checking the CA-bisimilarity of (fi-
nite) causal automata. Given a causal automaton A, after removing the “unnec-
essary” names from the states of the automaton, the basic step of the algorithm

11

nA(q) ∪ {⋆} nB(h(q)) ∪ {⋆}
h⋆
q

nA(q′)

σ

nB(h(q
′))

hq′

ρ

nA(q) ∪ {⋆} nB(h(q)) ∪ {⋆}
h⋆
q

nA(q′)

σ

nB(p
′)

hq′

ρ

(a) (b)

Fig. 3. Diagrams for abstraction homomorphisms.

constructs an ordinary labelled transition system Unf (A), called the unfolding of
A, such that A ∼ca B iff the associated transition systems Unf (A) and Unf (B)
are bisimilar. Then standard algorithms (e.g., a partition/refinement algorithm)
can be used to verify bisimilarity on the ordinary transition systems or to obtain
a minimal equivalent transition system.

Abstraction homomorphisms [4], also called zig-zag morphisms [17] or tran-
sition preserving homomorphisms [6], are defined in the setting of ordinary au-
tomata as morphisms which “preserve” and “reflect” transitions. The existence
of an abstraction homomorphism ensures that the source an target automata
are bisimilar. The next definition generalizes this idea to causal automata.

Definition 13 (abstraction homomorphism). Let A and B be causal au-
tomata. An abstraction homomorphism h : A → B is a pair h = 〈h, {hq}q∈QA

〉
where h : QA → QB is a function and for all q ∈ QA, hq : nB(h(q)) → nA(q) is
an injective function, such that h(q0A) = q0B and

– if q
a

M
σ q

′ in A then h(q)
a

h−1
q (M)

ρ h(q′) in B, with σ ◦ hq′ = h⋆
q ◦ ρ (see

Fig. 3.(a));

– if h(q)
a

M
ρ p

′ in B then q
a

hq(M)
σ q

′ in A for some q′, with h(q′) = p′ and

σ ◦ hq′ = h⋆
q ◦ ρ (see Fig. 3.(b)).

Intuitively, via an abstraction homomorphism h : A → B several states of A
can collapse into a single state of B, in a way that respects the behaviour and
the naming. Also in this setting, the existence of an abstraction homomorphism
h : A → B is sufficient to conclude the bisimilarity of A and B.

Lemma 1. Let A and B be causal automata. If there exists an abstraction ho-
momorphism h : A → B then A ∼ca B.

It is worth observing that, as for ordinary automata, the above lemma does not
provide a necessary condition. Indeed, in [12], following the approach of [10],
abstraction homomorphisms have been described as open maps in a category
of causal automata, and CA-bisimilarity has been given a characterization by
means of spans of open maps.

12

5 Causal automata for contextual net bisimulations

As in the ordinary case, the definition of (R)HP-bisimulation for contextual nets
relies on the transition system of marked processes and process moves, which
is infinite for any non-trivial net exhibiting a cyclic behaviour. In the case of
ordinary nets, the solution proposed in the literature for deciding history pre-
serving bisimulation on significant subclasses of nets consists of recording only
the part of a process which is, in a sense, relevant for the current state. More
precisely, the techniques in [19] for safe nets and in [11] for n-safe P/T nets,
basically rely on the idea of restricting the attention only to the set of events
which produced at least one token in the current state and to the causal order-
ing among them. The corresponding structures are called configurations in [11]
and ordered markings in [19]. The bisimulation relation defined on the transition
system having such configurations as states, called incremental bisimulation, is
shown to coincide with history preserving bisimulation. Since a finite n-safe net
only has finitely many configurations (up to isomorphism), incremental bisimu-
lation (and thus also history preserving bisimulation) is decidable for this class
of nets. Furthermore, the paper [11] shows how it is possible to associate to each
finite n-safe net N a finite causal automaton A(N) such that two nets N1 and
N2 are bisimilar if and only if A(N1) ∼ca A(N2). Then the general algorithm for
causal automata mentioned in Section 4 can be used to check the bisimilarity of
nets and to construct a minimal realization.

In this section we address the problem of extending such a method to con-
textual nets. We prove that HP-bisimulation is still decidable for finite n-safe
contextual nets by showing how a finite causal automaton can be associated to
such nets via a construction which respects HP-bisimilarity. Instead, when con-
sidering RHP-bisimulation some serious problems arise: the natural extension
of the described approach produces a causal automaton which may be infinite
also for finite safe c-nets. Hence the decidability of RHP-bisimulation remains
an open question.

5.1 HP-bisimulation

As mentioned before, to construct a finite causal automaton, or, in general,
a finite transition system allowing to decide history preserving bisimulation for
ordinary nets the leading idea is that not all the information carried by a process
is relevant for deciding bisimulation. Hence processes may be replaced by more
compact structures where part of the past history is discarded.

As one would expect, when considering HP-bisimulation on c-nets, one must
keep information not only about the events which produced a token in the cur-
rent marking (“producers”), but also about the events which read a token in
the current marking (“readers”). Fortunately, among the readers, which can be
unbounded even for a safe net, only the maximal ones play a significant role,
while the others can be safely discarded.

Definition 14 (producers and (maximal) readers). Given a process π of
a c-net N , we define

13

– the set of producers
p(π) = {t ∈ Tπ : t• ∩max(π) 6= ∅};

– the set of readers
r(π) = {t ∈ Tπ : t ∩max(π) 6= ∅};

– the set of maximal readers
mr(π) = {t ∈ r(π) : ∃s ∈ t ∩max(π). t is ≤π −maximal in s}.

For instance the set of producers of the process π4 in Fig. 2 is p(π4) = {e0, e3},
its set of readers is r(π4) = {e1, e2, e3}, while the set of maximal readers is
mr(π4) = {e1, e3}.

As expressed by the proposition below, for a finite n-safe c-net N the sets
p(π) and mr(π), with π ranging over the marked processes of N , are bounded.

Proposition 1. Let N be a finite n-safe c-net. Then, for any marked process π
of N , we have |p(π)| ≤ n · |SN | and |mr(π)| ≤ (n · |SN |)2.

We next define partial processes, which are aimed at representing trunca-
tions of marked processes where only a relevant part for discriminating non
HP-bisimilar states is kept, namely the producers and the maximal readers.

Definition 15 (partial process). A partial process γ of a c-net N is an un-
marked process γ : Oγ → N , where Tγ = p(γ) ∪mr(γ).

Observe that any initial process for a c-net N is a partial process of N , since it
has an empty set of productions.

To each (marked or unmarked) process π of a net N we associate in the
obvious way a partial process which is obtained by keeping only the producers
and the maximal readers of π (see Fig. 2).

Definition 16. Each process π of a c-net N naturally induces a partial process,
denoted γ(π), such that Oγ(π) = 〈S′, T ′, F ′, C ′〉, where

– T ′ = p(π) ∪mr(π);
– S′ = max(π) ∪

⋃
{ •t : t ∈ T ′};

– F ′, C ′ and the mapping to N are the restrictions of Fπ, Cπ and π.

We next introduce the move relation on partial processes, leading to a tran-
sition system of partial processes which is then exploited in the construction of
the causal automaton associated to a c-net.

Definition 17 (partial processes moves). Given two partial processes γ and

γ′ we write γ
a

e
γ′, and we say that γ moves to γ′ performing the action a, iff

γ
a

e
π (as a generic process, according to Definition 7) and γ(π) = γ′.

The process move γ
a

e
π is called the process move underlying the partial

process move γ
a

e
γ′. Considering only the non-dotted parts, Fig. 2 represents

a sequence of partial process moves starting from the initial process π0.

14

To each (partial) process move we associate the set of maximal (weak or
strong) causes of the executed transition, which will play a basic role in the
definition of the automaton. In fact, to observe the partial order associated to an
evolving computation it is sufficient to look, step by step, only at the immediate
maximal causes of each single transition (the other dependencies being implicitly
given by the transitivity of the partial order).

Definition 18 (immediate and maximal causes). The set of immediate

(weak or strong) causes of a process move π
a

e
π′ is defined as IC(π

a

e
π′) =

{t ∈ Tπ : t• ∩ (e ∪ •e) 6= ∅ ∨ t ∩ •e 6= ∅}. We denote by MC(π
a

e
π′) the

set of maximal (immediate) causes, namely the subset of րπ-maximal elements

of IC(π
a

e
π′). The sets of immediate and maximal causes of a partial process

move are defined in the obvious way by resorting to the underlying process move.

For example, for the move π4
d

e4
π5 we have that IC(π4

d

e4
π5) = {e0, e1, e2, e3},

while MC(π4
d

e4
π5) = {e0, e1, e3}.

It is possible to show that if a partial process γ of a c-net N is reachable
from an initial process via a finite sequence of moves, then γ = γ(π) for some
marked process π of N . When the c-net N is n-safe and finite, the definition of
γ(π) and Proposition 1 allow us to conclude the validity of the following result.

Lemma 2. For any n-safe finite c-net the set of partial processes reachable from
the initial process (and taken up to isomorphism) is finite.

We are now ready to present the construction of the causal automaton asso-
ciated to a c-net for checking HP-bisimilarity. To obtain a “compact” automaton
(with a finite number of states for finite n-safe c-nets) we must consider partial
processes up to isomorphism. To this aim we fix a standard representative in
each class of isomorphic partial processes. Furthermore we consider a normaliza-
tion function norm such that for any partial process γ, norm(γ) = 〈γ′, i〉, where
γ′ is the standard representative in the isomorphism class of γ and i : γ′ → γ is
a chosen process isomorphism. We assume that the names of the transitions in
any (partial) process γ are taken from N , namely that Tγ ⊆ N .

Definition 19 (causal automaton for HP-bisimulation). Let N be a la-
belled contextual net. The HP-causal automaton associated to N is the automa-
ton Ahp(N) = 〈Q,n, 7−→, q0〉, having (standard representatives of) partial pro-
cesses as states. The initial state q0 is the standard representative γ0 of the initial
processes of N and whenever γ ∈ Q then

– n(γ) = Tγ ;

– if γ
a

e
γ′ and norm(γ′) = 〈γ′′, i〉 then γ′′ ∈ Q and γ

a

M
σ γ

′′ where

• σ : Tγ′′ →֒ Tγ ∪ {⋆} is defined as σ = (idTγ
∪ {(e, ⋆)}) ◦ iT ;

• M = MC(γ
a

e
γ′).

15

Observe that the renaming function in a transition of the causal automaton
is obtained from the isomorphism given by the normalization function norm,
simply by redirecting the new name e to ⋆. As anticipated, the maximal causes
of a process move are used as dependencies in the automaton transition.

The states of the automaton are standard representatives of partial processes
reachable from the initial partial process. Hence by Lemma 2 we derive that
for any finite n-safe c-net the above defined automaton has a finite number of
states (and clearly, being the net finite, it has also a finite number of transitions
leaving from each state). Vice versa, if the net is not n-safe for some n, then the
automaton will have an infinite number of states.

To effectively build the automaton we can perform an inductive construction
based on Definition 19. The only thing to observe is that, given a partial process

γ, there might be infinitely many moves γ
a

e
γ′ since the event e can be chosen

arbitrarily among the unused events in N . However, without loss of generality,
we can limit our attention only to some partial process moves, called the repre-
sentative moves, where the newly generated name is chosen in a canonical way.
For instance we can suppose that the set of names N is well-ordered and call a

transition γ
a

e
γ′ representative if e = min(N − Tγ).

Proposition 2. Let N be a finite c-net. Then N is n-safe for some n iff the
automaton Ahp(N) is finite.

The main result now states that there is a precise correspondence between
HP-bisimulation on contextual nets and CA-bisimulation on causal automata.
Hence HP-bisimilarity of contextual nets can be checked on the corresponding
automata.

Theorem 1. Let N1 and N2 be two c-nets. Then N1 ∼hp N2 if and only if
Ahp(N1) ∼ca Ahp(N2).

Proof (sketch). The proof is organized in two steps. First observe that the tran-
sition system of marked processes of a c-net N can be seen itself as a causal
automaton Apr(N) = 〈Q,n, 7−→, q0〉, where

– Q is the set of marked processes π of N and n(π) = Tπ for any process π;

– π
a

M
σ π

′ if, according to Definition 7, π
a

e
π′, M = MC(π

a

e
π′), and

the naming σ : Tπ′ → Tπ ∪ {⋆} is defined as the identity for x ∈ Tπ′ − {e},
while σ(e) = ⋆;

– the initial state q0 is any initial process of N .

Then, it is possible to prove that HP-bisimulation on c-nets coincides with
CA-bisimulation on the causal automata of processes, namely N1 ∼hp N2 iff
Apr(N1) ∼ca Apr(N2).

The second step of the proof shows that, for any c-net N there exists an
abstraction homomorphism h : Apr(N) → Ahp(N), and thus, by Lemma 1,
Apr(N) ∼ca Ahp(N). The abstraction homomorphism h = 〈h, {hπ}π〉 can be

16

defined as follows: for any marked process π (state of Apr(N)), if norm(γ(π)) =
〈γ′, i〉 then h(π) = γ′ and hπ : Tγ′ → Tπ is simply iT .

Summing up, by the above considerations we have that Apr(Ni) ∼ca Ahp(Ni)
for i ∈ {1, 2}, and moreover Apr(N1) ∼ca Apr(N2) iff N1 ∼hp N2. Hence the
thesis easily follows. ⊓⊔

By Proposition 2 and Theorem 1 we immediately conclude the desired de-
cidability result.

Corollary 1. HP-bisimulation is decidable on finite n-safe contextual nets.

To conclude the discussion on HP-bisimulation it is worth observing that the
configurations in [11] and the ordered markings in [19] are slightly more abstract
than our partial processes essentially for the fact that they do not record the
correspondence between events in the process and transitions in the original net.
We have used partial processes only because they allow for a simpler presenta-
tion, since partial processes are still (unmarked) processes of the given net and
no new notion has to be introduced. Concretely, the drawback of our choice is
that dealing with configurations the number of states of the causal automaton
associated to a net may result significantly smaller. Therefore, although concep-
tually the two approaches are very similar, when one is interested in complexity
and efficiency issues working with configurations is the better choice.

5.2 RHP-bisimulation

Let us turn our attention to RHP-bisimulation, the finer equivalence introduced
in Definition 10. Since asymmetric event structures and thus RHP-bisimulation
distinguish (strong) causality from weak causality (asymmetric conflict), for each
step of computation we must observe separately the maximal causes and the weak
causes (namely the events in the current state which are in asymmetric conflict
with the considered transition). It is easy to realize that keeping information
only about the producers and maximal readers of processes is no more adequate
and thus the partial processes defined in the previous section are not sufficiently
informative to discriminate c-nets which differ according to RHP-bisimulation.

Consider for instance the net N and the process π4 in Fig. 2. Since e2 ≤ e3
and both transitions read the same token, the corresponding partial process
records only the transition e3. However, in this way, when the transition labelled
by d fires, the partial process allows us to recover only the weak dependency
from transition e3, while the dependency from e2 is lost.

To extend the technique described in the previous section to deal with RHP-
bisimulation we must change the notion of partial process in order to keep trace
of all events, maximal or not, which read a token in the current marking.

Definition 20 (read partial processes). A read partial process (R-partial
process) χ of a net N is an unmarked process χ : Oχ → N , where Tχ = p(χ) ∪
r(χ).

17

•

s1

t •

s2

Fig. 4. A finite safe c-net where the number of readers in a marked process is un-
bounded.

The notion of R-partial process move can be defined in the obvious way,
and relying on the transition system of R-partial processes of a c-net N we can
construct a causal automaton Arhp(N). The only difference with respect to the
case of HP-bisimulation is that the transitions of the causal automaton must
be labeled with two sets of names, i.e., they must have the form q

a

M,W
σ q

′. In

fact for each transition we must observe separately the set of maximal (strong)

causes MC(χ
a

e
χ′) = {t ∈ Tχ : t• ∩ (•e ∪ e) 6= ∅ ∧ t is ≤χ-maximal}

and the set of all weak causes WC(χ
a

e
χ′) = {t ∈ Tχ : t ∩ •e 6= ∅}. For

example, in Fig. 2, for the move π4
d

e4
π5 we have MC(π4

d

e4
π5) = {e0},

while WC(π4
d

e4
π5) = {e1, e2, e3}.

Generalizing the notion of CA-bisimulation for causal automata where tran-
sitions are labelled by two sets of names, it is still possible to prove that given
two c-nets N1 and N2, N1 ∼rhp N2 iff Arhp(N1) ∼ca Arhp(N2).

Unfortunately, as anticipated, such translation into causal automata does
not help in checking RHP-bisimulation. The states of the automaton Arhp(N),
which are normalized R-partial processes reachable from the initial process, can
be infinitely many also for a finite safe net. In fact, the number of readers r(π) in
a marked process of very simple finite safe c-nets is easily seen to be unbounded,
as shown, for instance by the net in Fig. 4.

6 Conclusions

We have provided contextual nets with abstract semantics inspired by the clas-
sical notion of history preserving bisimulation. The presence of asymmetric con-
flicts (weak causalities) between events in contextual net computations nat-
urally suggests two different formulations of history preserving bisimulation.
HP-bisimulation, relying on deterministic pes’s, observes only the precedences
between events, while the finer RHP-bisimulation observes both causality and
weak causality by exploiting deterministic aes’s. We have shown that, as for
ordinary nets, HP-bisimulation is decidable for finite n-safe contextual nets, and
we have provided a “translation” of such kind of nets into finite state causal
automata, which allows us to reuse the algorithms existing for this general for-
malism in order to decide the bisimulation equivalence and to obtain a minimal
realization. Such a translation can be adapted to deal with RHP-bisimulation.

18

However in this case the construction may produce an infinite state automaton
also for finite n-safe nets and thus it is not helpful to conclude the decidability
of RHP-bisimulation, which remains a matter of future investigation.

An alternative solution to the problem of deciding HP-bisimulation on finite
n-safe c-nets could be to find a procedure which translates each finite n-safe
c-net into an HP-bisimilar ordinary net, and then to exploit the corresponding
algorithm for ordinary nets. It should not be difficult to see that the transla-
tion proposed in [14], which maps each 1-safe c-net into an ordinary 1-safe net,
respects HP-bisimulation and thus is appropriate for this aim. However, such
translation does not extends naturally to general n-safe nets with weighted con-
texts. A preliminary investigation reveals that, if a translation exists, probably it
would transform a c-net into a significantly more complex ordinary net. Hence,
the direct algorithm proposed in this paper could still be preferable.

In [10] the hereditary (or strong) version of history preserving bisimulation
on pes’s is given an abstract characterization in terms of open maps, by taking as
experiments finite deterministic pes’s. It would be interesting to investigate the
notions of bisimulation on aes’s arising when one takes as experiments the deter-
ministic pes’s and the deterministic aes’s. We conjecture that such equivalences
gives, respectively, the hereditary variations of HP- and RHP-bisimulations.

Finally, a more general direction of future research is the development of
Hennessy-Milner style logics to be interpreted over formalisms endowed with
a causal semantics, with particular interest in the general model of causal au-
tomata. Such logics would be particularly appropriate for concurrent systems,
allowing to express properties on their causal behaviour, like the existence of a
computation where an action can be executed with a given set of causes. Some
preliminary studies [2] have led to a logic for causal automata, which has been
shown to be adequate with respect to CA-bisimulation in the sense that two
automata are bisimilar iff they satisfies the same set of formulae.

Acknowledgments We are grateful to the anonymous referees for their com-
ments on the submitted version of this paper.

References

1. P. Baldan, A. Corradini, and U. Montanari. An event structure semantics for P/T
contextual nets: Asymmetric event structures. In M. Nivat, editor, Proceedings of
FoSSaCS ’98, volume 1378 of LNCS, pages 63–80. Springer Verlag, 1998.

2. R. Bartolini. Model checking di proprietà causali di reti di Petri. MSc Thesis,
University of Pisa, 1999.

3. E. Best, R. Devillers, A. Kiehn, and L. Pomello. Concurrent bisimulations in Petri
nets. Acta Informatica, 28(3):231–264, 1991.

4. I. Castellani. Bisimulations and abstraction homomorphisms. Journal of Computer
and System Sciences, 34(2/3):210–235, 1987.

5. S. Christensen and N. D. Hansen. Coloured Petri nets extended with place capac-
ities, test arcs and inhibitor arcs. In M. Ajmone-Marsan, editor, Applications and
Theory of Petri Nets, volume 691 of LNCS, pages 186–205. Springer Verlag, 1993.

19

6. G. Ferrari and U. Montanari. Towards the unification of models of concurrency. In
A. Arnold, editor, Proceedings of CAAP ’90, volume 431 of LNCS, pages 162–176.
Springer-Verlag, 1990.

7. F. Gadducci and U. Montanari. Axioms for contextual net processes. In Proceedings
of ICALP’98, LNCS, pages 296–308. Springer Verlag, 1998.

8. R. Janicki and M. Koutny. Invariant semantics of nets with inhibitor arcs. In
Proceedings of CONCUR ’91, volume 527 of LNCS. Springer Verlag, 1991.

9. R. Janicki and M. Koutny. Semantics of inhibitor nets. Information and Compu-
tation, 123:1–16, 1995.

10. A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps. Information
and Computation, 127(2):164–185, 1996.

11. U. Montanari and M. Pistore. Minimal transition systems for history-preserving
bisimulation. In 14th Annual Symposium on Theoretical Aspects of Computer Sci-
ence, volume 1200 of LNCS, pages 413–425. Springer Verlag, 1997.

12. U. Montanari and M. Pistore. History-dependent automata. Techni-
cal Report TR-98-11, Dipartimento di Informatica, 1998. Available as
ftp://ftp.di.unipi.it/pub/techreports/TR-98-11.ps.Z.

13. U. Montanari and F. Rossi. Contextual occurrence nets and concurrent constraint
programming. In H.-J. Schneider and H. Ehrig, editors, Proceedings of the Dagstuhl
Seminar 9301 on Graph Transformations in Computer Science, volume 776 of
LNCS. Springer Verlag, 1994.

14. U. Montanari and F. Rossi. Contextual nets. Acta Informatica, 32, 1995.
15. A. Rabinovich and B. A. Trakhtenbrot. Behavior Structures and Nets. Fundamenta

Informaticæ, 11(4):357–404, 1988.
16. G. Ristori. Modelling Systems with Shared Resources via Petri Nets. PhD thesis,

Department of Computer Science - University of Pisa, 1994.
17. J. van Bentham. Correspondence theory. In Handbook of Philosophical Logic,

volume II. Reidel, 1984.
18. R. van Glabbeek and U. Goltz. Equivalence notions for concurrent systems and

refinement of actions. In A. Kreczmar and G. Mirkowska, editors, Proceedings of
MFCS’89, volume 39 of LNCS, pages 237–248. Springer Verlag, 1989.

19. W. Vogler. Deciding history preserving bisimilarity. In J. Leach Albert, B. Monien,
and M. Rodŕıguez-Artalejo, editors, Proceedings of ICALP’91, volume 510 of
LNCS, pages 495–505. Springer-Verlag, 1991.

20. W. Vogler. Efficiency of asynchronous systems and read arcs in Petri nets. In
Proceedings of ICALP’97, volume 1256 of LNCS, pages 538–548. Springer Verlag,
1997.

21. W. Vogler. Partial Order Semantics and Read Arcs. In Proceedings of MFCS’97,
volume 1295 of LNCS, pages 508–518. Springer Verlag, 1997.

22. G. Winskel. Event Structures. In Petri Nets: Applications and Relationships to
Other Models of Concurrency, volume 255 of LNCS, pages 325–392. Springer Ver-
lag, 1987.

20

