
Efficient Unfolding of Contextual Petri NetsI

Paolo Baldana, Alessandro Brunia, Andrea Corradinib, Barbara Königc, César
Rodŕıguezd, Stefan Schwoond

aDipartimento di Matematica Pura e Applicata, Università di Padova, Italy
bDipartimento di Informatica, Università di Pisa, Italy

cAbteilung für Informatik und Angewandte Kognitionswissenschaft, Universität
Duisburg-Essen, Germany

dLSV (ENS Cachan & CNRS) and INRIA, France

Abstract

A contextual net is a Petri net extended with read arcs, which allows transitions
to check for tokens without consuming them. Contextual nets allow for better
modelling of concurrent read access than Petri nets, and their unfoldings can
be exponentially more compact than those of a corresponding Petri net. A con-
structive but abstract procedure for generating those unfoldings was proposed
in earlier work. However, it remained unclear whether the approach was useful
in practice and which data structures and algorithms would be appropriate to
implement it. Here, we address this question. We provide two concrete methods
for computing contextual unfoldings, with a view to efficiency. We report on
experiments carried out on a number of benchmarks. These show that not only
are contextual unfoldings more compact than Petri net unfoldings, but they can
be computed with the same or better efficiency, in particular with respect to
alternative approaches based on encodings of contextual nets into Petri nets.

Keywords: Petri nets, unfolding, asymmetric conflict

1. Introduction

Petri nets are a means for reasoning about concurrent, distributed systems.
They explicitly express notions such as concurrency, causality, and indepen-
dence.

The unfolding of a Petri net is, essentially, an acyclic version of the net
in which loops have been unrolled. The unfolding is infinite in general, but
for bounded Petri nets one can construct a finite complete prefix of it that
completely represents the behaviour of the system, and whose acyclic structure

ISupported by École Doctorale Sciences Pratiques, ENS Cachan, the MIUR project SisteR,
the University of Padua project BECOM and the Regione Toscana project RUPOS.
The list of authors is given in alphabetic order.

Preprint submitted to Theoretical Computer Science March 12, 2012

permits efficient analyses. This prefix is typically much smaller than the reach-
ability graph because an unfolding exploits the inherently concurrent nature of
the underlying system; loosely speaking, the more concurrency there is in the
net, the more advantages unfoldings have over reachability-graph techniques.

Petri net unfoldings may serve as a basis for further analyses. There is a
large body of work describing their construction, their properties, and their use
in various fields; see [1] for an extensive survey. For bounded Petri nets, a finite
complete prefix of an unfolding can be understood as the compact description
of the set of reachable markings of the underlying net. Moreover, while the
reachability problem is PSPACE-complete for bounded nets, it is only NP-
complete for complete prefixes. Notwithstanding the fact that the size of such a
prefix is typically rather larger than the net itself, this opens avenues for efficient
reachability checking [2].

However, Petri nets are not well-suited to model concurrent read accesses,
that is, multiple actions requiring non-exclusive access to one common resource.
The typical way of representing such a situation using a standard net is with
“consume-produce loops”: each action can consume the common resource when
needed, regenerating it immediately after. Unfortunately, this can make the
unfolding technique inefficient. In fact, actions reading the common resource
are sequentialised so that all their possible interleavings have to be generated, at
least in principle. It is possible to mitigate this problem with a place-replication
(PR) encoding [3]. Here, a resource with n readers is duplicated n times, and
each reader obtains a “private” copy which is accessed with a consume-produce
loop. However, the resulting unfolding may still be exponential in n.

Contextual nets explicitly model concurrent read accesses and address this
problem. They extend Petri nets with read arcs, allowing an action to check
for the presence of a resource without consuming it. They have been used, e.g.,
to model concurrent database access [4], concurrent constraint programs [5],
priorities [6], and asynchronous circuits [3]. Their accurate representation of
concurrency makes contextual unfoldings up to exponentially smaller in the
presence of multiple readers, which promises to yield more efficient analysis
procedures.

While the properties and construction of ordinary Petri net unfoldings are
well-understood, research on how to construct and exploit the properties of con-
textual unfoldings has been lacking so far. Contextual unfoldings are introduced
in [3, 7], and a first unfolding procedure for a restricted subclass can be found
in [3]. A general but non-constructive procedure is proposed in [8].

A constructive, general solution was finally given in [9], at the price of making
the underlying theory notably more complicated. In particular, computing a
complete prefix required to annotate every event e with a subset of its histories;
roughly speaking, a history of e is a set of events that must precede e in a
possible execution. However, it remained unclear whether the approach could
be implemented with reasonable efficiency, and how. For safe nets, the interest
of computing a complete contextual prefix was not evident from a practical point
of view: while the prefix can be exponentially smaller than the complete prefix
of the corresponding PR-encoding, the intermediate structure used to produce it

2

has asymptotically the same size. More precisely, the number of histories in the
contextual prefix matches the number of events in the prefix of the PR-encoding
(for general bounded nets, this is not the case).

The purpose of this paper is to address these open issues and to resolve
the algorithmic problems related to contextual-net unfolding. In particular, we
make the following contributions:

• We provide key elements to implement contextual-net unfoldings effi-
ciently, including data structures and algorithms such as for computing
the events of an unfolding (called possible extensions) and maintaining a
concurrency relation. For the latter, we provide multiple approaches and
compare them.

• We generalise the results in [9] in order to deal with (a slight generalisation
of) the adequate orders from [10]. Although not very surprising, this
extension is quite relevant in practice as it drastically reduces the size of
the resulting prefixes.

• We implemented both approaches, aiming for efficiency. The resulting
tool, called Cunf [11], matches dedicated Petri net unfolders like Mole [12]
on pure Petri nets and additionally handles contextual unfoldings. The
new unfolder is not a simple extension of an existing one because the
presence of histories influences the data structures at every level.

• We ran the tool on a set of benchmarks and report on the experiments, for
both approaches. In particular, it turns out that, even for safe nets, our
construction of contextual unfoldings is faster than that for PR-unfoldings.

Apart from details of the prefix computation, our main message is that effi-
cient contextual unfolding is possible and performs better than the PR-encoding,
even for safe nets. Contextual nets and their unfoldings therefore have a rightful
place in research on concurrency, also from an efficiency point of view.

The paper is structured as follows. Section 2 introduces Petri and contextual
nets, and discusses how to encode a contextual net into a Petri net. Sections 3
and 4 recall fundamental notions of contextual unfoldings. Section 5 contains
most of the technical results, including two approaches to the unfolding con-
struction. Section 6 discusses data structures and other elements related to the
efficient construction of a complete prefix. Section 7 reports on experiments,
and Section 8 sketches applications in verification. We conclude in Section 9.
Preliminary versions of the contents in this paper have appeared in [13, 14, 15].

2. Basic notions

A contextual net (c-net) is a tuple N = 〈P, T, F,C,m0〉, where P and T
are disjoint sets of places and transitions, F ⊆ (P × T) ∪ (T × P) is the flow
relation, C ⊆ P × T is the context relation and m0 ⊆ P is the initial marking.
A pair (p, t) ∈ C is called read arc. The net N is called finite when the sets

3

p1

t1

p3 t2

t3 p4

p2 c2

e1

c3

e3

c′2

e′1

c′3

e2

(b)

c1

e′2

c′4

c4

(a)

Figure 1: (a) A safe c-net; and (b) an unfolding prefix.

of places and transitions are finite. In general, a marking of N is any function
m : P → N. The set m0 is seen as a marking in the obvious way, by letting
m0(p) = 1 if p ∈ m0 and m0(p) = 0, otherwise. A Petri net is a c-net without
read arcs.

For x ∈ P ∪ T , we call •x := { y ∈ P ∪ T | (y, x) ∈ F } the preset of x
and x• := { y ∈ P ∪ T | (x, y) ∈ F } the postset of x. The context of a place p
is defined as p := { t ∈ T | (p, t) ∈ C }, and the context of a transition t as
t := { p ∈ P | (p, t) ∈ C }. These notions are extended to sets in the usual
fashion. For the sake of simplicity, we assume for any transition t that its
context is disjoint from its preset and its postset, i.e. •t ∩ t = ∅ and t• ∩ t = ∅.

A set A ⊆ T of transitions is enabled at marking m if for all p ∈ P ,

m(p) ≥ |p• ∩A|+

{
1 if p ∩A 6= ∅
0 otherwise

Such A can occur or be executed, leading to a new marking m′, where m′(p) =
m(p)− |p• ∩A|+ |•p ∩A| for all p ∈ P . We call 〈m,A,m′〉 a step of N .1

Note that in order to enable concurrently a set of transitions, a marking must
include the pre-sets of all transitions and an additional token for each place used
as context, i.e., a token cannot be read and consumed at the same time. This
is needed to ensure that transitions which are concurrently enabled can also
fire sequentially in any order. As a consequence concurrency represents event
independency, a fact that is at the heart of unfolding approaches. For instance,
in the net in Fig. 2, transitions t1 and t2 are not concurrently enabled by the

1One could define enabledness for multisets of transitions, but this is irrelevant for our
purposes. The set-wise definition will be sufficient to illustrate the advantage of c-nets over
Petri nets in Section 2.1.

4

p2

t2

p3

t3

p′2p′1

t1

p1

Figure 2: A net with a contextual cycle.

initial marking. Indeed, the firing of t1 disables t2 as it consumes a token in p2,
which t2 must read to fire; similarly, the firing of t2 disables t1. Hence t1 and t2
cannot occur in the same computation and t3 is not firable. This dependency is
later explained in terms of an asymmetric form of conflict, see Section 4.1. It is
worth reminding that different notions of enabling are conceivable (see e.g., [16])
where the simultaneous parallel executions of transitions in contextual cycle, like
t1 and t2, is allowed.

A finite sequence of transitions σ = t1 . . . tn ∈ T ∗ is a run if there exist
markings m1, . . . ,mn such that 〈mi−1, {ti},mi〉 is a step for 1 ≤ i ≤ n, and m0

is the initial marking of N ; if such a run exists, mn is said to be reachable.
A marking m is n-safe if m(p) ≤ n for all p ∈ P . A c-net N is said to be

n-safe if every reachable marking of N is n-safe. It is called bounded if there
exists an n such that N is n-safe. A 1-safe net is simply called safe. As done for
the initial marking, we will occasionally treat 1-safe markings as sets of places.
Fig. 1 (a) depicts a safe c-net. Read arcs are drawn as undirected lines. For t2,
we have {p1} = •t2, {p3} = t2 and {p4} = t•2.

Remarks. The class of c-nets used in this paper constrains the initial marking
to be a set and does not allow for weights on the flow relation. This restric-
tions allow for a simplified presentation, in particular because they ensure that
conditions and events in the unfolding are identified uniquely by their causal
history.

2.1. Encodings of contextual nets

A c-net N can be encoded into a Petri net whose reachable markings are
in one-to-one correspondence with those of N . We discuss two such encodings,
and illustrate them by the c-net N in Fig. 3 (a). Place p has two transitions b, c
in its context, modelling a situation where, e.g., two processes are accessing in
a read-only way a common resource represented by p. Note that the step {b, c}
can occur in N after executing a.

Plain encoding. Given a c-net N , the plain encoding of N is the net N ′ obtained
by replacing every read arc (p, t) in the context relation by a consume/produce
loop (p, t), (t, p) in the flow relation. The net N ′ has the same reachable mark-
ings as N ; it also has the same runs but not the same steps as N . The plain

5

N ′′

(c)(b)

p1

N

(a)

b

a

p
c

d

N ′

b

a
p

d

c b

a
p2

c

d

Figure 3: C-net N , its plain encoding N ′ and its Place-Replication encoding N ′′.

encoding of the net N in Fig. 3 (a) is the net N ′ in Fig. 3 (b). Observe that
in N ′ the firings of {b} and {c} are sequentialised, hence, after executing a, the
step {b, c} can no longer occur.

PR-encoding. The place-replication (PR-) encoding [3] of a c-net N is a Petri
net N ′′ in which we substitute every place p in the context of n ≥ 1 transitions
t1, . . . , tn by places p1, . . . , pn and update the flow relation of N ′′ as follows. For
all i ∈ {1, . . . , n},

1. transition ti consumes and produces place pi, i.e., pi ∈ •ti and pi ∈ t•i ;

2. any transition t producing p in N produces pi in N ′′, i.e., pi ∈ t•;
3. any transition t consuming p in N consumes pi in N ′′, i.e., pi ∈ •t.

The PR-encoding of the net N in Fig. 3 (a) is the net N ′′ depicted in
Fig. 3 (c). Reachable markings, runs, and steps of N ′′ are in one-to-one corre-
spondence to those of N .

3. Contextual unfoldings and their prefixes

In this section, we mostly recall basic definitions from [9] concerning unfold-
ings. We fix a c-net N = 〈P, T, F,C,m0〉 for the rest of the section. Intuitively,
the unfolding of N is a safe acyclic c-net where loops of N are “unrolled”; in
general, the unfolding is infinite.

Definition 1 (unfolding). The unfolding of N , denoted by UN , is a c-net
(B,E,G,D, m̂0) equipped with a mapping f : (B ∪ E) → (P ∪ T). We call the
elements of B conditions, and those of E events; f maps conditions to places
and events to transitions. We extend f to sets, multisets, and sequences in the
usual way; f applied to a marking of UN (a set) will yield a marking of N (a
multiset).

Conditions will take the form 〈p, e′〉, where p ∈ P and e′ ∈ E ∪ {⊥}, and
events will take the form 〈t,M〉, where t ∈ T and M ⊆ B. We shall assume
f(〈p, e′〉) = p and f(〈t,M〉) = t, respectively. A set M of conditions is called
concurrent, written conc(M), when UN has a reachable marking M ′ s.t. M ′ ⊇
M .

Then UN is the smallest net containing the following elements:

6

a

b

d

p
c

(b) (c)(a)

p

a

b c

b c

ddd dd

p p

pp

a

p2

cb

p1

dddd

p1 p2

Figure 4: Unfoldings of N , N ′, and N ′′ from Fig. 3

• if p ∈ m0, then 〈p,⊥〉 ∈ B and 〈p,⊥〉 ∈ m̂0;

• for any t ∈ T and disjoint pair of sets M1,M2 ⊆ B such that conc(M1 ∪
M2), f(M1) = •t, f(M2) = t, we have e := 〈t,M1 ∪M2〉 ∈ E, and for all
p ∈ t•, we have 〈p, e〉 ∈ B. Moreover, G and D are such that •e = M1,
e = M2, and e• = { 〈p, e〉 | p ∈ t• }.

Note that in some previous works on unfoldings the intial marking is omitted
from the unfolding because it is determined as their minimal set of places. Here
we include the initial marking explicitly to be consistent with the definition of
unfoldings as special c-nets.

Fig. 4 shows the unfoldings of the nets from Fig. 3, where f is implicitly
indicated by the labels of conditions and events. Note that in this case, the c-
net N is isomorphic to its unfolding; crucially, it is smaller than the unfoldings of
its two encodings. Call events labelled by b and c “readers”, and events labelled
by d “consumers”. Suppose that we were to replace b and c in Fig. 3 with n
transitions reading from p. Then there would be n readers and one consumer in
the contextual unfolding; O(n!) readers and consumers in the plain unfolding;
and n readers but 2n consumers in the PR-unfolding.

The net UN represents all possible behaviours of N , and in particular a
marking m is reachable in N iff some m̂ with f(m̂) = m is reachable in UN .
Intuitively, the plain unfolding explodes because it represents the step {b, c} of
the c-net by two runs (in general, by its possible sequentialisations). Instead,
in the PR-encoding the consume/produce loops lead to more consuming events
in the unfolding.

Definition 2 (causality). The causality relation on UN , denoted <, is the
transitive closure of G ∪ { (e, e′) ∈ E × E | e• ∩ e′ 6= ∅ }. For x ∈ B ∪ E, we
write [x] for the set of causes of x, defined as { e ∈ E | e ≤ x }, where ≤ is the
reflexive closure of <. A set X ⊆ E is called causally closed if [e] ⊆ X for all
e ∈ X.

7

In Fig. 1 (b), we have, e.g., c2 < e1, e1 < e2, and c2 < e2. The causality
relation between a pair of events e < e′ captures the intuition that e must occur
before e′ in any run that fires e′.

Definition 3 (prefix). A prefix of UN is a net P = 〈B′, E′, G′, D′, m̂0〉 such
that E′ ⊆ E is causally closed, B′ = m̂0 ∪ (E′)•, and G′, D′ are the restrictions
of G,D to (B′ ∪ E′).

In other words, a prefix is a causally closed subnet of UN . Surely, if P is a
prefix and m̂ a marking reachable in it, then f(m̂) is reachable in N . We are
interested in computing a prefix for which the inverse also holds.

Definition 4 (finite, complete prefix). A prefix P is called finite if it con-
tains finitely many events. It is called complete if for all markings m of N , m is
reachable in N iff there exists a marking m̂ reachable in P such that f(m̂) = m.

A finite complete prefix thus preserves all behavioural information about N ,
while being typically smaller than its reachability graph; its acyclic structure
makes the reachability problem easier than for N itself [17]. Moreover, as we
saw in Fig. 4, a contextual unfolding is more succinct than its corresponding
Petri net unfolding. (In fact, readers familiar with unfoldings may note that in
Fig. 4 there exists a complete prefix of the plain unfolding with 2n rather than
O(n!) reading and consuming events; but this still makes them the largest of
the three unfolding types.)

Other papers consider different notions of completeness, requiring e.g. that
not only reachable markings, but also the fireability of transitions is preserved
(see, e.g., [18]). Roughly, this means that if a cut-off free configuration of the
prefix enables a transition, then a representative of that transition should be
included in the prefix. This is useful for certain deadlock checking algorithms,
and it can be ensured by inserting cut-off events into the prefix. The results
presented in the following could be easily adapted accordingly. See our experi-
mental data in Section 7 for another discussion of this issue.

4. Constructing finite complete prefixes

In this section, we study the construction of a finite and complete prefix
for a c-net. In Section 4.1, which mostly recalls elements from [9] with minor
modifications, we develop a generic algorithm for constructing prefixes. In Sec-
tion 4.2, we then turn to the question of ensuring that the resulting prefix is
complete.

For the rest of the section, we fix a finite c-net N and its unfolding UN as
in Section 3.

4.1. On finite prefixes

Consider events e2 and e3 in Fig. 1 (b). Clearly, e2 < e3 does not hold.
However, any run that fires both e2 and e3 will fire e2 before e3 (since e3 consumes
c3). This situation arises due to read arcs and motivates the next definition.

8

Definition 5 (asymmetric conflict). Two events e, e′ ∈ E are in asymmet-
ric conflict, written e↗ e′, iff (i) e < e′, or (ii) e ∩ •e′ 6= ∅, or (iii) e 6= e′ and
•e ∩ •e′ 6= ∅. For a set of events X ⊆ E, we write ↗X to denote the relation
↗∩ (X ×X).

Note that the asymmetric-conflict relation↗ gives rise to a digraph (E,↗),
which we henceforth identify with ↗ itself.

An asymmetric conflict can be thought of as a scheduling constraint: if both
e, e′ occur in a run, then e must occur first. Note that in case (iii) this is
vacuously true, as e, e′ cannot both occur. Thus, by condition (iii)↗ subsumes
the symmetric conflicts known from Petri net unfoldings as cycles of length two.

Definition 6 (configuration). A configuration of the unfolding UN is a finite,
causally closed set of events C such that ↗C is acyclic. Conf (UN) denotes the
set of all such configurations.

Thus a set of events is a configuration iff all its events can be ordered to
form a run that respects the scheduling constraints given by ↗.

Definition 7 (order and conflict on configurations). We say that config-
uration C evolves to configuration C′, written C v C′, iff C ⊆ C′ and ¬(e′ ↗ e)
for all e ∈ C and e′ ∈ C′ \ C. By C @ C′ we denote C v C′ and C 6= C′.

Configurations C, C′ are said to be in conflict, written C # C′, when there is
no configuration C′′ satisfying C v C′′ and C′ v C′′.

Note that v is not merely the subset relation between configurations. Intu-
itively, C v C′ when a run of C can be extended into a run of C′. Instead, C # C′
when they cannot evolve to a common future configuration. For instance, in
Fig. 1 (b) we have {e1, e3} 6v {e1, e2, e3} (and actually {e1, e3} # {e1, e2, e3})
because e2 would have to fire before e3. However, if two configurations are not
in conflict, then their union is a configuration.

Remark 1. [9] For two configurations C1, C2, we have C1 # C2 iff there exists
e1 ∈ C1 and e2 ∈ C2 \ C1 such that e2 ↗ e1, or the symmetric condition holds.

The cut of a configuration C is the marking reached in UN by a run of C.
We define Cut(C) := (m̂0 ∪ C•) \ •C. The marking of C is its image through f :
Mark(C) := f(Cut(C)).

Definition 8 (history). Let e be an event and C a configuration with e ∈ C.
We call the configuration C[[e]] := { e′ ∈ C | e′(↗C)∗e } the history of e in C.
Moreover, Hist(e) := { C[[e]] | C ∈ Conf (UN)∧ e ∈ C } is the set of histories of e.

Remark 2. Let C be a configuration, and e ∈ C. Then C[[e]] v C.

While in Petri net unfoldings each event has exactly one history, a contextual
unfolding may have multiple (even infinitely many) histories per event. For
instance, in Fig. 1 (b) Hist(e3) = {{e1, e3}, {e1, e2, e3}}. To compute a complete
prefix, one annotates events with a finite subset of their histories.

9

Definition 9 (enriched prefix). An enriched event is a pair 〈e,H〉 where e ∈
E and H ∈ Hist(e). An enriched prefix (EP) of UN is a pair E = 〈P, χ〉 such
that P = 〈B′, E′, G′, D′, m̂0〉 is a prefix and χ : E′ → 22

E

satisfies for all e ∈ E′
(i) ∅ 6= χ(e) ⊆ Hist(e), and (ii) H ∈ χ(e) and e′ ∈ H imply H[[e′]] ∈ χ(e′). For
an enriched event 〈e,H〉, we write 〈e,H〉 ∈ E if e ∈ E′ and H ∈ χ(e).

In [9], a complete prefix of UN is constructed by a saturation procedure that
adds one enriched event at a time until there remains no addition that would
“contribute” new markings. We make this idea concrete in the following:

Definition 10 (possible extension). An enriched event 〈e,H〉 is a possible
extension of an EP E if 〈e′, H[[e′]]〉 ∈ E for all e′ ∈ H \ {e} and 〈e,H〉 /∈ E.

The algorithm will take into account possible extensions in some suitable
order. Let ≺ be an order on configurations. If ≺ satisfies that C ≺ C′ for
any C, C′ such that C @ C′, then we call ≺ basic. We extend ≺ to enriched
events by 〈e,H〉 ≺ 〈e′, H ′〉 if H ≺ H ′. For a fixed ≺, a tuple 〈e,H〉 is called
cutoff iff there exists an enriched event 〈e′, H ′〉 such that Mark(H ′) = Mark(H)
and 〈e′, H ′〉 ≺ 〈e,H〉. Any basic order ≺ parametrises the following informal
algorithm for constructing an EP of UN .

Algorithm 1.

• Start with the EP that contains just m̂0;

• Then, in each iteration, add a non-cutoff ≺-minimal possible extension.

• If no non-cutoff possible extensions remain, terminate.

Remark 3. Notice that Algorithm 1 maintains condition (ii) of Definition 9,
due to the choice of possible extensions in Definition 10: condition (ii) is clearly
satisfied initially, where there are no events; and every addition of a possible
extension maintains this invariant. The EP is thus closed in the sense of [9],
Definition 13.

Algorithm 1 terminates if N is bounded. The size and shape of the produced
prefix depends on the choice of ≺. In particular, the resulting prefix may be
complete or not. In Section 4.2, we discuss how to choose ≺ so that the prefix is
guaranteed to be both complete and not larger than the size of the reachability
graph. Later, in Section 5 and Section 6 we will discuss how to implement
Algorithm 1 efficiently.

4.2. On complete prefixes

Algorithm 1 was first introduced in [9], where it was shown that the resulting
prefix is complete when ≺ is following partial order:

C ≺ C′ iff |C| < |C′| (1)

10

This condition was originally introduced by McMillan [17] in his seminal paper
on Petri net unfoldings. However, it is known that McMillan’s order may cre-
ate complete prefixes that are up to exponentially larger than the reachability
graph [10]. This is because ≺ is a partial order: multiple enriched events may
lead to the same marking, but if they are incomparable (because their histories
have the same size), then none of them is a cutoff. It is therefore preferable
to replace McMillan’s order by a suitable finer order, ideally a total order, in
which case the resulting prefix will have at most as many events as there are
reachable markings in the net (and usually far fewer).

For Petri nets, this problem was resolved in [10], which introduces adequate
orders. Any adequate order will yield a complete prefix, and [10] exhibits an
adequate order that is total for safe nets. Below, in Definition 11, we present a
slight generalisation of the adequate orders from [10] that is more suitable for
c-nets. We then show that these orders also yield complete prefixes.

We first adapt the notion of extension for a configuration. Given a configu-
ration C, one calls a set of events X an extension of C if C ∩X = ∅ and C ∪X is
a configuration such that C v C ∪X . We call two extensions X1,X2 (of different
configurations) isomorphic if the subnets labelled by f and consisting of the
events X1, conditions •X1 ∪ X •1 ∪ X 1 (resp. X2) and G,D restricted to these
events and conditions are isomorphic. It is evident that two configurations with
the same associated markings have the same extensions, modulo isomorphism.

Definition 11 (adequate order). Given a partial order ≺ on configurations,
we call it adequate iff it satisfies the following properties:

1. ≺ is well founded;

2. C1 @ C2 implies C1 ≺ C2;

3. ≺ is preserved by finite extensions, that is, if C1 ≺ C2, and Mark(C1) =
Mark(C2), for any extension X of C1 there exists some extension X ′ of C2
isomorphic to X such that C1 ∪ X ≺ C2 ∪ X ′.

The above notion of adequate order differs from the one in [10] for condi-
tion 2, which is C1 ⊂ C2 there. Note that for Petri net unfoldings C1 ⊂ C2
implies C1 @ C2, hence the two notions coincide. However, for contextual un-
foldings this is not the case; for instance, in Fig. 1 {e1, e3} 6@ {e1, e2, e3}. For
c-nets therefore, Definition 11 is a slight generalisation of [10].

Proposition 1 (completeness of the prefix). Let N be a finite bounded c-
net. If ≺ is adequate, then Algorithm 1 terminates with an EP E = 〈P, χ〉 such
that P is a complete prefix of UN .

Proof The proof consists of two parts: first one shows that the algorithm
terminates, then one shows that the result is complete. The structure of the
proof mimics the proof from [10], except that it has to be lifted to enriched
events.

To prove that the algorithm terminates, one exploits that N is bounded,
therefore the number of reachable markings is bounded; this ensures that along

11

any infinite chain C1 @ C2 @ · · · there are two configurations C1, C2 with
Mark(C1) = Mark(C2) and hence a cutoff.

To show that the resulting prefix is complete, let us say that E contains a
configuration C of UN if all events of C are in E and 〈e, C[[e]]〉 ∈ E for all e ∈ C.
Let m be a reachable marking in N . Then there exists a configuration C of
UN such that Mark(C) = m. Either C is contained in E (and we are done), or
C contains an enriched cutoff event 〈e, C[[e]]〉. In the latter case, there exists a
≺-smaller enriched event 〈e′, C′〉 ∈ UN with Mark(〈e′, C′〉) = Mark(〈e, C[[e]]〉). We
can then construct isomorphic extensions X ,X ′ of C[[e]] and C′ and thus obtain
(thanks to condition 3 of Definition 11) a ≺-smaller configuration with marking
m. Since ≺ is well-founded, this argument can be iterated only finitely many
times, thus resulting eventually in a configuration contained in E . �

5. Two approaches to possible extensions and concurrency

We now turn to the question of how to implement Algorithm 1 efficiently,
for constructing unfoldings in practice. Notice that Algorithm 1 is parametrised
by an ordering ≺ on enriched events. While that order needs to be adequate
to obtain complete prefixes (see Section 4.2), the results in this section require
only that ≺ be basic.

Let N and UN be, as in the previous sections, a fixed finite c-net and its
unfolding. The main computational problem of Algorithm 1 is to identify the
possible extensions in each iteration. For Petri net unfolders (which do not deal
with histories) this involves identifying sets M of conditions such that conc(M)
and f(M) = •t for some t ∈ T (compare Definition 1). For Petri nets, it is
known that conc(M) holds iff conc({c1, c2}) for all pairs c1, c2 ∈ M . Possible
extensions can therefore be identified by repeatedly consulting a binary relation
on conditions. Moreover, this binary relation can be computed efficiently and
incrementally during prefix construction. This idea is exploited by existing tools
such as Mole [12] or Punf [19].

e1

d1

c1

e2

d2

c2

e3

d3

c3

Figure 5: A net showing that concurrency is not a binary relation for c-net unfoldings.

The above statement about conc(·) is invalid for contextual unfoldings.
Consider the net in Figure 5, which is identical to its unfolding, and the set

12

M = {d1, d2, d3}. Clearly, the elements of M are pairwise concurrent, for in-
stance d1, d2 may be covered by firing e1, then e2. However, conc(M) does not
hold. In fact, [{d1, d2, d3}] = {e1, e2, e3} cannot be fired in the same run as
e1 ↗ e2 ↗ e3 ↗ e1, i.e., it includes an asymmetric-conflict cycle and thus it is
not a configuration.

In the following, we introduce a binary relation for c-net unfoldings in which
pairwise concurrency does imply reachability of the whole set. This relation is
defined on conditions enriched with histories.

Definition 12 (histories for conditions). Let c be a condition. A generat-
ing history of c is ∅ if c ∈ m̂0, or H ∈ Hist(e), where {e} = •c. A reading
history of c is any H ∈ Hist(e) such that e ∈ c. A history of c is any of its
generating or reading histories or H1 ∪H2, where H1 and H2 are histories of c
verifying ¬(H1 # H2). In the latter case, the history is called compound.

In words, for a condition c, not belonging to the initial marking, a generating
history is any history of the unique event producing of c. When c is in the
initial marking it has only an empty generating history. A reading history is
any history of the events reading c. Compound histories are combinations of
generating and (possibly multiple) reading histories.

If H is a history of c, we call 〈c,H〉 an enriched condition, referred to as
generating, reading, or compound condition, according to H. For an EP E =
〈P, χ〉, we say 〈c,H〉 ∈ E if for all e ∈ •c ∪ c it holds C[[e]] ∈ χ(e), i.e., H is
built from histories in χ. The mapping f is extended to enriched events and
conditions by f(〈e,H〉) = f(e) and f(〈c,H〉) = f(c).

Definition 13 (concurrency for enriched conditions). Two enriched con-
ditions 〈c,H〉, 〈c′, H ′〉 are called concurrent, written 〈c,H〉 ‖ 〈c′, H ′〉, iff ¬(H #
H ′) and c, c′ ∈ Cut(H ∪H ′).

To illustrate the definition, we give some examples from Fig. 5.

• 〈c1, ∅〉 6 ‖ 〈d1, {e1}〉 because c1 /∈ Cut({e1});

• 〈d1, {e1}〉 6 ‖ 〈d2, {e2}〉 because {e1} # {e2};

• 〈c1, ∅〉 ‖ 〈d3, {e3}〉;

• 〈d1, {e1}〉 ‖ 〈d2, {e1, e2}〉.

Remark 4. Given enriched conditions ρ = 〈c,H〉 and ρ′ = 〈c′, H ′〉 the state-
ment ρ ‖ ρ′ is equivalent to the conjunction of the next four statements:

1. ¬(∃e1 ∈ H, ∃e2 ∈ H ′ \H, e2 ↗ e1)

2. ¬(∃e1 ∈ H ′, ∃e2 ∈ H \H ′, e2 ↗ e1)

3. ¬(∃e ∈ H, c′ ∈ •e)
4. ¬(∃e ∈ H ′, c ∈ •e)

The following facts will be useful in the subsequent proofs.

13

Remark 5. Let H,H ′ be two histories of the same event e. Then ¬(H # H ′)
if and only if H = H ′. In fact, ¬(H # H ′) iff there exists a configuration C
such that H,H ′ v C iff H = C[[e]] = H ′.

Similarly, if ρ = 〈c,H〉 and ρ′ = 〈c,H ′〉 are two generating conditions for
the same c, then ρ ‖ ρ′ if and only if H = H ′. In fact, ¬(H # H ′) if and only if
H = H ′. To see this, note that either c ∈ m̂0, then H = H ′ = ∅. Or •c = {e},
in which case the result follows from the above observation.

We introduce another notion, that of an ancestor:

Definition 14 (ancestor). Let ρ = 〈c,H〉 be a reading history. The ancestor
of ρ, denoted ρ↑, is the unique generating condition 〈c,H ′〉 such that H ′ v H.

Note that indeed H ′ is uniquely determined due to Remark 5.
In Section 5.1, we discuss how relation ‖ helps to compute possible exten-

sions. For this purpose, we propose two methods that we call lazy and eager. In
Section 5.2 we then discuss how to update ‖ during the unfolding construction.
In Section 5.3 we show how to obtain a unique decomposition for each possible
extension, and in Section 5.4 we compare the lazy and the eager approaches
from a theoretical point of view.

5.1. Computing possible extensions

We discuss two ways of computing possible extensions. The first, called
“lazy”, avoids constructing compound conditions (see Definition 12), reducing
the number of enriched conditions considered. The second, “eager” approach
does use compound conditions, saving work when computing possible extensions
instead.

e2

e1

c1 c

e

c2 c3 e5

e3 e4

Figure 6: Predecessors w.r.t. asymmetric conflict of an event e.

Lazy Approach. The lazy approach is based on the observation that the history
associated with an event can be constructed by taking generating and read-
ing histories for places in the pre-set and generating histories for places in the
context. This is stated by the following proposition:

Proposition 2 (possible extensions - lazy). The pair 〈e,H〉 with f(e) = t
is an enriched event iff there exist sets Xp, Xc of enriched conditions such that

1. f(Xp) = •t and f(Xc) = t;

14

2. Xp contains generating or reading conditions, Xc generating conditions;

3. Xp ∪Xc contains exactly one generating condition for every c ∈ (•e ∪ e);
4. for all ρ, ρ′ ∈ Xp ∪Xc we have ρ ‖ ρ′;
5. finally, H = {e} ∪

⋃
〈c,H′〉∈Xp∪Xc

H ′.

Proposition 2 allows to identify new possible extensions whenever a prefix is
extended with new enriched conditions. Compound conditions are avoided at
the price of allowing Xp to contain, for every c ∈ •e, an arbitrary number of
reading conditions.

To illustrate the meaning of Xp and Xc in Proposition 2, consider Fig. 6. To
create a history for event e, Xp must contain generating histories for c2 and c3,
i.e. histories of events e3 and e4. Optionally, Xp may contain a reading history
of c3 coming from e5. As for Xc, it must contain a generating history of c1
(coming from e2) but it must not contain a reading history of c1. In fact, note
that e1 is not an asymmetric-conflict predecessor of e, hence it is not included
in any history of e.

Proof
Left-to-right.

Assume that 〈e,H〉 is an enriched event. We define Xp := X1 ∪X2, where
X1 (resp. X2) are sets of generating (resp. reading) conditions obtained from
the generating (resp. reading) histories of •e that extend to H:

X1 = { 〈c, ∅〉 | c ∈ •e ∩ m̂0 } ∪ { 〈c,H[[e′]]〉 | c ∈ •e \ m̂0 ∧ {e′} = •c }
X2 = { 〈c,H[[e′]]〉 | c ∈ •e ∧ e′ ∈ c ∩H }

For Xc, we take the generating histories of conditions in e:

Xc = { 〈c, ∅〉 | c ∈ e ∩ m̂0 } ∪ { 〈c,H[[e′]]〉 | c ∈ e \ m̂0 ∧ {e′} = •c }

This choice of Xp and Xc evidently satisfies properties 1, 2, and 3 of Propo-
sition 2. As for the rest:

Property 4. Let 〈c1, H1〉, 〈c2, H2〉 ∈ Xp ∪Xc. Then H1 v H and H2 v H, so
¬(H1 # H2). Moreover, c1 ∈ Cut(H1) and c2 ∈ Cut(H2). Assume w.l.o.g.
that c1 /∈ Cut(H1 ∪H2). Then there exists e′ ∈ H2 such that c1 ∈ •e′.
Since c1 ∈ •e ∪ e, we have e ↗ e′. Moreover, e′ ∈ H2 v H, where the
configuration H is a history of e, therefore by definition e′ ↗∗H e. This is
a contradiction because H may not contain asymmetric conflict cycles.

Property 5. Recall that any e′ ∈ H satisfies e′ ↗∗H e. So either e′ = e or there
exists e′′ ∈ H such that e′ ↗∗H e′′ and e′′ ↗ e. From all such e′′, pick one
that is maximal w.r.t. <. According to Definition 2 and Definition 5, this
leaves three cases: there is c such that either (i) c ∈ •e and e′′ ∈ •c, or
(ii) c ∈ •e and e′′ ∈ c, or (iii) c ∈ e and e′′ ∈ •c. Moreover, since e′′ ∈ H,
we conclude that H ′′ := H[[e′′]] is a history such that H ′′ v H. Thus, in
cases (i) and (ii), 〈c,H ′′〉 ∈ Xp, and in case (iii), 〈c,H ′′〉 ∈ Xc. Finally,
e′ ∈ H ′′ because e′ ∈ H and e′ ↗∗H e′′.

15

Right-to-left.
Suppose that there exist Xp, Xc, and H fulfilling properties 1–5. We have

to show that H is a history of e. To see this, it suffices to see that H is a
configuration and that H[[e]] equals H.

H is causally closed. Any H ′ such that 〈e′, H ′〉 ∈ Xp ∪Xc is causally closed.
Moreover, the choice of Xp ensures that all causal predecessors of e are
contained in H.

↗H is acyclic. By contradiction, assume that there exists a simple cycle
e1 ↗H e2 ↗H · · · ↗H en ↗H e1, for some n ≥ 2.

Either e appears in the cycle, then w.l.o.g. e1 = e and e2 ∈ H2, for some
〈c2, H2〉 ∈ Xp ∪Xc. Now, e↗ e2 implies (see Definition 5) either e < e2,
e ∩ •e2 6= ∅, or •e ∩ •e2 6= ∅. In all cases, H2 consumes a token from some
c1 ∈ •e∪ e. Due to property 3, Xp ∪Xc contains some tuple 〈c1, H1〉, but
〈c1, H1〉 6 ‖ 〈c2, H2〉, violating property 4.

Or e does not appear in the cycle, then w.l.o.g. e2 ∈ H2 and e1 ∈ H1 \H2

for some 〈c1, H1〉, 〈c2, H2〉 ∈ Xp ∪Xc, where H1 6= H2. Thus, H1 # H2,
violating property 4.

H[[e]] = H. We need to show that e′ ↗∗H e holds for each e′ ∈ H. Recall
that the elements 〈c′, H ′〉 ∈ Xp ∪ Xc are chosen such that H ′ is either
empty or a history of some e′′ such that e′′ ↗ e. Thus, if e′ 6= e, we have
e′ ↗∗H e′′ ↗ e for some suitable e′′, and for e′ = e the condition holds
trivially. �

Eager approach. The eager approach, instead of attempting to combine gener-
ating and reading histories when computing a possible extension, explicitly pro-
duces all types of enriched conditions, including compound ones. This means
more enriched conditions, but on the other hand less work when computing
possible extensions.

Proposition 3 (possible extensions - eager). The pair 〈e,H〉 with f(e) =
t is an enriched event iff there exist sets Xp, Xc of enriched conditions such that

1. f(Xp) = •t and f(Xc) = t;

2. Xp contains arbitrary enriched conditions, Xc generating conditions;

3. Xp ∪Xc contains exactly one enriched condition for every c ∈ (•e ∪ e);
4. for all ρ, ρ′ ∈ Xp ∪Xc we have ρ ‖ ρ′;
5. finally, H = {e} ∪

⋃
〈c,H′〉∈Xp∪Xc

H ′.

Before we proceed with the proof, let us make some remarks. First, notice
that |Xp| = |•t| by properties 1 and 3 in Proposition 3 whereas no such bound
exists in Proposition 2. Like the latter, Proposition 3 allows to identify new
possible extensions upon addition of new enriched conditions.

16

As an example, consider again Fig. 6. The set Xp must contain an arbitrary
history for c2 and c3. Concretely, for c2 we can take only a generating history
(coming from e3), while for c3 we can use a generating history (coming from e4)
or a compound history (combining histories of e4 and e5). Instead, Xc is still
restricted to include generating histories only, in this case of c1.

Second, one can establish a relation between possible extensions according
to Proposition 2 and Proposition 3. Let Xp be a set as in Proposition 2. We
define

Eager(Xp) := { 〈c,
⋃

〈c,H〉∈Xp

H〉 | c ∈ •e }.

On the other hand, if Xp is a set as in Proposition 3, let

Lazy(Xp) := { 〈c,H[[e′]]〉 | 〈c,H〉 ∈ Xp∧e′ ∈ (•c∪c)∩H }∪{ 〈c, ∅〉 | c ∈ •e∩m̂0 }.

We are now ready to state the proof of Proposition 3.

Proof (of Proposition 3) We shall prove that a collection of enriched conditions
satisfying properties 1–5 in Proposition 2 exists if and only if such a collection
exists for properties 1–5 in Proposition 3.

Left-to-right.
Let Xp, Xc be a pair of sets as per Proposition 2. We define X ′p := Eager(Xp)

and prove that X ′p, Xc satisfy properties 1–5 of Proposition 3.
Properties 1 and 5 are immediate. For properties 2 and 3 it suffices to

realise that the elements of Xp are concurrent, therefore their union forms a
valid compound history according to Definition 12.

For property 4, let ρ = 〈c,H1∪· · ·∪Hm〉, ρ′ = 〈c′, Hm+1,∪ · · ·∪Hn〉 ∈ X ′p∪Xc

such that 〈c,Hi〉, 〈c′, Hj〉 ∈ Xp ∪ Xc for 1 ≤ i ≤ m and m < j ≤ n. The
elements of Xp ∪Xc are concurrent, so c, c′ ∈ Cut(H1 ∪ · · · ∪Hn). Moreover, if
(H1∪· · ·∪Hm) # (Hm+1∪· · ·∪Hn), then Hi # Hj for some 1 ≤ i ≤ m < j ≤ n,
which contradicts the assumption that Xp ∪Xc are pairwise concurrent. Thus,
ρ ‖ ρ′ holds.

Right-to-left.
Let Xp, Xc be a pair of sets as per Proposition 3. We define X ′p := Lazy(Xp).

Now we show that X ′p, Xc satisfy properties 1–5 of Proposition 2.
Properties 1, 2, and 3 are immediate from the definition of X ′p, Xc. Prop-

erty 4 follows from pairwise concurrency in Xp, Xc. For property 5, we need to
show that every event e′ ∈ H is included in one of the elements of X ′p ∪Xc. For
e′ = e, this is immediate. Otherwise there exists a chain e′ ↗H · · · ↗H e′′ ↗H e
such that e′′ ∈ •(•e)∪ •e∪ •(e). The definition of X ′p and Xc implies that their
union contains at least one tuple 〈c,H[[e′′]]〉, where e′ ∈ H[[e′′]]. �

5.2. Updating the concurrency relation

Propositions 2 and 3 tell us how to identify possible extensions: it suffices
to identify a set of concurrent enriched conditions satisfying suitable side condi-
tions. We thus need a technique for efficiently computing the binary concurrency

17

relation ‖ on enriched conditions. In the following, we discuss methods that al-
low to do this incrementally, i.e., by extending ‖ whenever the unfolding grows
by the insertion of new enriched events.

Again, it shall be useful to contrast our approach with that for Petri nets.
There, when an event e is created with concurrent preset M , a condition c in
e• is concurrent with other conditions in e•, non-concurrent with the elements
of M , and for any other condition c′ we have conc({c, c′}) iff conc({ci, c′}) for
all ci ∈M .

This principle is not correct for c-nets, even when lifted to enriched con-
ditions. Consider Fig. 1 (b). Let us consider the enriched conditions ρ1 =
〈c3, {e1}〉, ρ = 〈c′2, {e1, e3}〉, and ρ′ = 〈c4, {e1, e2}〉. Now, ρ1 is used to create
the possible extension 〈e3, {e1, e3}〉, which gives rise to the enriched condition
ρ. Observe that ρ1 ‖ ρ′ holds but ρ ‖ ρ′ does not. Intuitively, this is because ρ′

contains an event (e2) that reads, without consuming, a condition (c3) in •e3,
and such event is not included in ρ1. For computing the concurrency relation ‖,
we must therefore introduce an additional condition ensuring that such events
are taken into account correctly.

The following two results show how to achieve this. Proposition 4 deals with
generating and reading conditions, and Proposition 5 with compound condi-
tions.

Proposition 4 (updating concurrency). In Algorithm 1, let E be the cur-
rent EP, where 〈e,H〉 is the last addition thanks to sets Xp, Xc as per Propo-
sition 2 or Proposition 3. We denote by Yp = e• × {H} and Yc = e × {H}
the generating and reading conditions created by the addition of 〈e,H〉. Let
ρ = 〈c,H〉 ∈ Yp ∪ Yc, and let ρ′ = 〈c′, H ′〉 ∈ E be any other enriched condition.
Then ρ ‖ ρ′ iff

ρ′ ∈ Yp ∪ Yc ∨ (c′ /∈ •e ∧ •e ∩H ′ ⊆ H ∧ ∀ρi ∈ Xp ∪Xc : (ρi ‖ ρ′))

Proof

Left-to-right.
Assume ρ ‖ ρ′ and ρ′ /∈ Yp∪Yc. Since ¬(H # H ′), there exists a configuration

C such that H v C and H ′ v C.

1. Clearly, c′ /∈ •e is implied by c′ ∈ Cut(H ∪H ′).
2. Let e′ be an event in •e∩H ′. Then e′ ↗ e. Since ¬(H # H ′), and due to

Remark 1, e′ cannot be in H ′ \H, so e′ ∈ H.

3. Let ρi = 〈ci, Hi〉 ∈ Xp ∪ Xc. Then Hi v H v C, therefore ¬(Hi # H ′).
Moreover c′ ∈ Cut(Hi ∪H ′). In fact, otherwise there would exist e1 ∈ Hi

that consumes c′ and this would contradict c′ ∈ Cut(H ∪H ′).
It remains to show that ci ∈ Cut(Hi ∪H ′). Assume that there is e′′ ∈ H ′
such that ci ∈ •e′′. Since e ↗ e′′ ↗∗ e′ and ¬(H # H ′), necessarily
e ∈ H ′, e 6= e′, and H = H ′[[e]] v H ′. Due to condition (ii) of Definition 9
(cf. also Remark 3) 〈e′, H ′〉 ∈ E implies 〈e,H〉 ∈ E . But then, 〈e,H〉
cannot be a possible extension.

18

Right-to-left.
We shall show that if the right-hand side of Proposition 4 holds, then ρ ‖ ρ′.
Suppose ρ′ ∈ Yp ∪ Yc. Then H ′ = H, so ¬(H # H ′). Moreover, since

c, c′ ∈ e ∪ •e, and H is a history for e, we have c, c′ ∈ Cut(H). Therefore, ρ ‖ ρ′
as desired.

Let us now assume that the right-hand part of the disjunction holds, and
assume by contradiction that ¬(ρ ‖ ρ′). Then either H # H ′ or c, c′ /∈
Cut(H ∪H ′).

1. If H # H ′, then (i) either there exists e1 ∈ H, e2 ∈ H ′ \H with e2 ↗ e1
or (ii) e1 ∈ H \ H ′, e2 ∈ H ′ with e1 ↗ e2. In either case, e1 = e must
hold; in fact, if e1 were in H \ {e}, then ρi 6 ‖ ρ′ for some ρi ∈ Xp ∪Xc.

(i) There are three cases for e2 ↗ e.

• If e2 < e, then e2 ∈ H because H is causally closed, which
contradicts e2 ∈ H ′ \H.

• If e2 ∩ •e 6= ∅, then again e2 ∈ H because •e ∩H ′ ⊆ H.

• If •e2 ∩ •e 6= ∅, then clearly ρ′ 6 ‖ ρi for some ρi ∈ Xp.

(ii) There are three cases for e↗ e2.

• If e < e2, then H ′ consumes all tokens from •e, so ρ′ is not
concurrent with any element of Xp.

• If e∩•e2 6= ∅, then ρ′ is not concurrent with some element of Xc.

• If •e ∩ •e2 6= ∅, see (i).

2. If c′ /∈ Cut(H ∪H ′), then there exists e1 ∈ H with c′ ∈ •e1. If e1 6= e,
we would get ρi 6 ‖ ρ′ for some ρi ∈ Xp ∪Xc. But if e1 = e, then c′ ∈ •e,
contradicting our assumption.

3. If c /∈ Cut(H ∪H ′), then there exists e1 ∈ H ′ with c ∈ •e1. If ρ ∈ Yp,
then H ′ consumes all of •e; if ρ ∈ Yc, then H ′ consumes some element of
e. In either case, we get non-concurrency between ρ′ and some element of
Xp ∪Xc. �

As a complement to Proposition 4, the following result allows to compute
the concurrency relation for compound conditions.

Proposition 5 (updating concurrency - compound). Let ρ = 〈c,H1∪H2〉
be a compound condition of E, where ρ1 = 〈c,H1〉, ρ2 = 〈c,H2〉 are enriched
conditions verifying ¬(H1 # H2). Let ρ′ = 〈c′, H ′〉 ∈ E be any enriched condi-
tion. Then

ρ ‖ ρ′ ⇐⇒ ρ1 ‖ ρ′ ∧ ρ2 ‖ ρ′

Proof Let H = H1 ∪H2.
Left-to-right.

By contradiction, assume ρ ‖ ρ′ and w.l.o.g. ρ1 6 ‖ ρ′. Then one of the four
statements in Remark 4 must be false:

1. There exist e1 ∈ H ′ and e2 ∈ H1 \H ′ verifying e2 ↗ e1. As e2 ∈ H \H ′,
we have H # H ′, a contradiction to ρ ‖ ρ′.

19

2. There exist e1 ∈ H1 and e2 ∈ H ′ \H1 verifying e2 ↗ e1. As H1 ⊆ H, we
have e1 ∈ H. Regarding e2, we have two cases: either e2 /∈ H or e2 ∈ H.
Assuming the former immediately leads us to the contradiction H # H ′.
Assuming e2 ∈ H = H1 ∪H2 leads to e2 ∈ H2 \H1. In turn, this implies
H1 # H2, a contradiction to our hypothesis.

3. There exists e ∈ H1 such that c′ ∈ •e. Then e ∈ H and H also consumes
c′, a contradiction to ρ ‖ ρ′.

4. There exists e ∈ H ′ such that c ∈ •e. This is a contradiction to ρ ‖ ρ′.

Right-to-left. Assume ρ1 ‖ ρ′, ρ2 ‖ ρ′, and by contradiction ρ 6 ‖ ρ′. We consider
the four cases of Remark 4:

1. There exist e1 ∈ H and e2 ∈ H ′ \ H verifying e2 ↗ e1. Then either
e1 ∈ H1, and H1 # H ′ holds, or e1 ∈ H2 and H2 # H ′ holds. In any case
we reach a contradiction to our hypothesis.

2. There exist e1 ∈ H ′ and e2 ∈ H \H ′ verifying e2 ↗ e1. Same argument
as before, regarding e2 instead of e1.

3. There exists e ∈ H such that c′ ∈ •e. Either e ∈ H1 and ¬(ρ1 ‖ ρ′)
or e ∈ H2 and ¬(ρ2 ‖ ρ′). In any case we reach a contradiction to our
hypothesis.

4. There exists e ∈ H ′ such that c ∈ •e. This is a contradiction to ρ1 ‖ ρ′. �

5.3. Unique possible extensions

Propositions 2 and 3 show how possible extensions are constructed, in both
lazy and eager fashions. Essentially, a history H for an event is constructed by
taking generating histories for the conditions in e, while for the conditions in
•e one takes a generating history and optionally some reading histories. In the
eager case, the latter are combined to one single compound history.

The optionality of the reading histories means that, in some cases, the same
history H may be constructed in different ways, by combining different sets of
enriched conditions. Consider the unfolding in Fig. 7. Condition c has n + 1
different reading histories: H0 := ∅, H1 := {e1}, . . . , Hn := {e1, . . . , en}, while
c′ has one single history H := Hn. Notice that we have 〈c,Hi〉 ‖ 〈c′, H〉 for
all i = 0, . . . , n. Thus, there exists a multitude of possibilities to construct the
enriched event 〈e,H ∪ {e}〉: there are 2n+1 collections satisfying Proposition 2
and n+ 1 collections for Proposition 3.

e1

e
c

en c′

Figure 7: Propositions 2 and 3 allow multiple constructions of 〈e, {e1, . . . , en, e}〉.

20

In the following, we discuss how to remove this ambiguity, i.e. how additional
constraints can be inserted into Propositions 2 and 3 so that every tuple 〈e,H〉
can be obtained from a unique collection of enriched conditions. Roughly, the
idea is simple: if one element of Xp∪Xc contains an event e′ that reads from c ∈
•e, then that event must be contained in a reading (resp. compound) condition
for c included in Xp.

In both lazy and eager mode, this requires to compute an additional relation-
ship between enriched conditions, and we propose how this can be computed.

5.3.1. Lazy approach: Subsumption

For the lazy approach, which deals exclusively with generating and reading
histories, we use the notion of subsumption:

Definition 15 (subsumption). Let ρ = 〈c,H〉 be a generating or reading con-
dition and ρ′ = 〈c′, H ′〉 be a reading condition, where H ′ is the history of some
e ∈ c′. If e ∈ H, c′ ∈ Cut(H), and H ′ = H[[e]], we say that ρ subsumes ρ′,
written ρ ∝ ρ′.

In other words, the subsuming condition ρ includes H ′ and reads but never
consumes c′. For instance, in Fig. 7, 〈c′, H〉 ∝ 〈c,Hi〉, for all i = 1, . . . , n.

Definition 16 (subsumption closure). Let Xp, Xc be sets of enriched con-
ditions enjoying the properties in Proposition 2. We call Xp, Xc subsumption-
closed if additionally for any ρ ∈ Xp ∪Xc, if ρ ∝ ρ′ for some reading condition

ρ′ such that ρ′
↑ ∈ Xp, then ρ′ ∈ Xp.

For instance, the collection 〈c, ∅〉, 〈c′, H〉 satisfies the conditions of Proposi-

tion 2 but is not subsumption-closed since 〈c′, H〉 ∝ 〈c,H1〉, 〈c,H1〉↑ = 〈c, ∅〉 ∈
Xp but 〈c,H1〉 /∈ Xp. The only subsumption-closed collection to produce
〈e,H ∪ {e}〉 is { 〈c,Hi〉 | i = 0, . . . , n } ∪ {〈c′, H〉}.

We now show how, for subsumption-closed collections Xp, Xc, knowledge of
the relation ∝ can be used for computing concurrency.

Proposition 6 (concurrency vs. subsumption). In Algorithm 1, let E be
the current EP, where 〈e,H〉 is the last addition thanks to sets Xp, Xc as per
Proposition 2 and assume Xp, Xc subsumption-closed. We denote by Yp =
e• × {H} and Yc = e × {H} the generating and reading conditions created by
the addition of 〈e,H〉. Let ρ′ = 〈c′, H ′〉 be any enriched condition such that
ρ′ /∈ Yp ∪ Yc, c′ /∈ •e, and ∀ρ1 ∈ Xp ∪ Xc : (ρ1 ‖ ρ′). Then the following are
equivalent:

1. for all ρ′′ such that ρ′ ∝ ρ′′ and ρ′′
↑ ∈ Xp we have ρ′′ ∈ Xp;

2. •e ∩H ′ ⊆ H.

Proof Left-to-right
Let e′′ be in •e ∩ H ′, i.e. e′′ ∈ H ′ and there is c1 ∈ •e ∩ e′′. Let ρ′′ =

〈c1, H ′[[e′′]]〉 and note that ρ′ does not consume c1, so by definition ρ′ ∝ ρ′′. Let

21

ρ1 = 〈c1, H1〉 ∈ Xp be the generating condition associated with c1 in Xp. Denote

ρ′′
↑

= 〈c1, H ′′1 〉. Recall that ρ1 ‖ ρ′ implies the existence of a configuration C
such that H1 v C and H ′′1 v H ′[[e′′]] v H ′ v C. Therefore ¬(H ′′1 # H1), and

thus, by Remark 5, H ′′1 = H1. Therefore, ρ1 = ρ′′
↑

and thus, by 1. we have
ρ′′ ∈ Xp and hence e′′ ∈ H.

Right-to-left
Suppose that ρ′ ∝ ρ′′ = 〈c1, H ′′1 〉, where H ′′1 = H ′[[e′′]] for some e′′ ∈ H ′, and

suppose ρ′′
↑

= ρ1 = 〈c1, H1〉 ∈ Xp. Now c1 ∈ •e∩e′′, and since, by construction
of the unfolding, •e∩ e = ∅ (see Definition 1), we have e′′ 6= e. But e′′ ∈ •e∩H ′
and by 2. we get e′′ ∈ H, so there must be some ρ2 = 〈c2, H2〉 ∈ Xp ∪Xc with
e′′ ∈ H2. By assumption, ρ2 ‖ ρ′, so there exists some configuration C such that
H2[[e′′]] v H2 v C and H ′′1 = H ′[[e′′]] v H ′ v C. This implies ¬(H2[[e′′]] # H ′′1),
hence by Remark 5 they are equal, so by definition ρ2 ∝ ρ′′. If Xp, Xc is
subsumption-closed, then we have ρ′′ ∈ Xp, as desired. �

Proposition 6 shows how knowledge of the subsumption relation can be useful
for updating the concurrency relation; condition 1 of Proposition 6 can be used
to implement or replace the condition •e ∩H ′ ⊆ H of Proposition 4. This, on
the other hand, begs for a way to incrementally compute ∝, too, which is done
by Proposition 7.

Proposition 7 (updating subsumption). In Algorithm 1, let E be the cur-
rent EP, where 〈e,H〉 is the last addition thanks to sets Xp, Xc as per Propo-
sition 2. We denote by Yp = e• × {H} and Yc = e × {H} the generating and
reading conditions created by the addition of 〈e,H〉. Let ρ = 〈c,H〉 ∈ Yp ∪ Yc,
and let ρ′ = 〈c′, H ′〉 ∈ E be any other enriched condition. Then ρ ∝ ρ′ if and
only if

ρ′ ∈ Yc ∨ (∃ρ′′ ∈ Xp ∪Xc : ρ′′ ∝ ρ′ ∧ ρ ‖ ρ′)

Proof Left-to-right.
If ρ ∝ ρ′, then by Definition 15 there is some e′ ∈ H∩c′ such that H ′ = H[[e′]]

and c′ ∈ Cut(H).

1. Either e′ = e, then H ′ = H and ρ′ ∈ Yc.
2. Otherwise e′ is contained in some H ′′ such that ρ′′ = 〈c′′, H ′′〉 ∈ Xp ∪Xc.

Since c′ ∈ e′, c′ must be either initial or produced by H ′′, and H ′′ does
not consume c′ (since H does not), so c′ ∈ Cut(H ′′).
We have H ′ = H[[e′]] v H and H ′′[[e′]] v H ′′ v H. Therefore, ¬(H ′ #
H ′′[[e′]]) and by Remark 5 we have H ′ = H ′′[[e′]] and hence ρ′′ ∝ ρ′.
Finally, ρ ‖ ρ′ follows from ρ ∝ ρ′: we have H ′ v H, so clearly ¬(H # H ′),
and c, c′ ∈ Cut(H).

Right-to-left.

1. If ρ′ ∈ Yc, then c′ ∈ e and H ′ = H = H[[e]], so clearly ρ ∝ ρ′ (and vice
versa).

22

2. Let ρ′′ = 〈c′′, H ′′〉 ∈ Xp∪Xc such that ρ′′ ∝ ρ′ and assume ρ ‖ ρ′. From the
former we get c′ ∈ Cut(H ′′) and from the latter c′ ∈ Cut(H ∪H ′). So c′ is
initial or produced by H ′′ v H and not consumed by H, thus c′ ∈ Cut(H).
Now, ρ′′ ∝ ρ′ implies some e′ ∈ H ′′ such that H ′ = H ′′[[e′]]. It remains to
show that H[[e′]] = H ′′[[e′]], which again follows from Remark 5. �

The results of this section lead us to the following characterisation of unique
possible extensions.

Corollary 1 (unique lazy extensions). The pair 〈e,H〉 with f(e) = t is an
enriched event iff there exist sets Xp, Xc of enriched conditions such that

1. f(Xp) = •t and f(Xc) = t;

2. Xp contains generating or reading conditions, Xc generating conditions;

3. Xp ∪Xc contains exactly one generating condition for every c ∈ (•e ∪ e);
4. for all ρ, ρ′ ∈ Xp ∪Xc we have ρ ‖ ρ′;
5. Xp, Xc are subsumption closed;

6. finally, H = {e} ∪
⋃
〈c,H′〉∈Xp∪Xc

H ′.

Moreover, for any enriched event 〈e,H〉 there exists exactly one pair of sets
Xp, Xc satisfying properties 1–6.

Proof The “iff” part follows almost directly from Proposition 2. We just
need to observe that any collection that does not satisfy property 5 can be
made subsumption-closed by adding all the ρ′ according to the rule given in
Definition 16.

It remains to show the uniqueness of the pair Xp, Xc w.r.t. 〈e,H〉. We start
by observing that for any ρ1 = 〈c1, H1〉 ∈ Xp ∪ Xc, it holds H1 v H. In
fact, let e′ ∈ H1 and e′′ ∈ H, such that e′′ ↗ e′. Then e′′ 6= e, otherwise
e′ ↗∗ e↗ e′ would be a cycle of asymmetric conflict in H. Hence there is some
ρ2 = 〈c2, H2〉 ∈ Xp∪Xc such that e′′ ∈ H2. Since ρ1 ‖ ρ2 and thus ¬(H1 # H2),
we deduce e′′ ∈ H1, as desired.

Now, let X ′p, X
′
c be another pair of sets of enriched conditions satisfying

properties 1–6 above for 〈e,H〉. For any condition ρ1 = 〈c1, H1〉 ∈ Xp ∪Xc, we
distinguish two cases. First, if ρ1 is a generating condition, then by property 3
there exists ρ′1 = 〈c1, H ′1〉 ∈ X ′p ∪X ′c. By the observation above, H1, H

′
1 v H,

hence ρ1 ‖ ρ′1 and thus, by Remark 5, ρ1 = ρ′1 ∈ X ′p∪X ′c. The second possibility
is that ρ1 is a reading condition, i.e., H1 is the history of some e1 ∈ •e. Since
e1 ∈ H, there exists ρ′2 = 〈c2, H ′2〉 ∈ X ′p ∪ X ′c such that e1 ∈ H ′2. Clearly
c1 ∈ Cut(H ′2) and thus ρ′2 ∝ 〈c1, H ′2[[e1]]〉 =: ρ′1. Moreover, it is easy to see that

ρ′1
↑ ∈ X ′p and thus subsumption closure of X ′p, X

′
c leads us to conclude that

ρ′1 ∈ X ′p. To conclude, observe that H ′2[[e1]] v H ′2 v H and H ′1 v H, and thus,
by Remark 5, H ′2[[e1]] = H1, since they are both histories of event e1. Therefore
ρ1 = ρ′1 ∈ X ′p ∪X ′c.

Therefore Xp ∪ Xc ⊆ X ′p ∪ X ′c. By symmetry we conclude that they must
coincide. �

23

5.3.2. Eager approach: Asymmetric concurrency

We now show how possible extensions can be made unique in the eager
approach. In the lazy case, we used the concept of subsumption to achieve this.
Recall its intuition: if one element of Xp ∪Xc contains an event e′ that reads
from some c ∈ •e, then that event must be contained in a reading condition for
c included in Xp. For the eager case, this idea must be adapted to compound
conditions, where the history of c may be a union of several of its readers. In
this case, we demand that at least those readers of c contained elsewhere in
Xp ∪Xc are included in the (compound) history chosen for c in Xp.

We introduce a new relation between enriched conditions that captures this
intuition. It is a refinement of ‖ that we call asymmetric concurrency (//). It
turns out that unique possible extensions can be characterised using only this
relation.

Definition 17 (asymmetric concurrency). Let ρ = 〈c,H〉 and ρ′ = 〈c′, H ′〉
be two enriched conditions. We say that ρ is asymmetrically concurrent to ρ′,
written ρ // ρ′ iff ρ ‖ ρ′ and c ∩H ′ ⊆ H.

Notice that // is an asymmetric relation.
The following proposition relates ‖ and // for generating conditions:

Proposition 8 (concurrency vs asymmetric concurrency). Suppose that
ρ = 〈c,H〉 is a generating enriched condition and ρ′ = 〈c′, H ′〉 is an arbitrary
enriched condition. Then ρ ‖ ρ′ iff ρ // ρ′ or ρ′ // ρ.

Proof We only need to prove the direction from left to right, the other trivially
follows from Definition 17. So suppose by contradiction that ρ ‖ ρ′ and neither
ρ // ρ′ nor ρ′ // ρ. Thus, there exist e1 ∈ (c ∩H ′) \H and e2 ∈ (c′ ∩H) \H ′.
So H is not empty, and it is in fact the history of some event e ∈ •c. So e < e1,
therefore e must be in H ′. Moreover, e2 ∈ H \H ′, so e2 6= e and e2 ↗+ e. This
means H # H ′, contradicting ρ ‖ ρ′. �

As for the computation of //, notice that 〈c,H〉 // 〈c′, H ′〉 implies 〈c,H〉 ‖
〈c′, H ′〉. We can thus reuse Propositions 4 and 5 to obtain ‖ and check c∩H ′ ⊆ H
and c′ ∩H ⊆ H ′ at the same time. More details are discussed in Section 6.

The following Corollary 2 summarises the results of this section, showing
how unique possible extensions can be characterised using only //.

Corollary 2 (unique eager extensions). The pair 〈e,H〉 with f(e) = t is
an enriched event iff there exist sets Xp, Xc of enriched conditions such that

1. f(Xp) = •t and f(Xc) = t;

2. Xp contains arbitrary enriched conditions, Xc generating conditions;

3. Xp ∪Xc contains exactly one enriched condition for every c ∈ (•e ∪ e);
4. ρ // ρ′ for ρ ∈ Xp and ρ′ ∈ Xp ∪Xc;

5. ρ // ρ′ or ρ′ // ρ for all ρ, ρ′ ∈ Xc;

6. finally, H = {e} ∪
⋃
〈c,H′〉∈Xp∪Xc

H ′.

24

Moreover, for any enriched event 〈e,H〉 there exists exactly one pair of sets
Xp, Xc satisfying properties 1–6.

Proof The “iff” follows almost directly from Proposition 3 and Proposition 8.
In particular, properties 4 and 5 imply that ρ ‖ ρ′ holds for all ρ, ρ′ ∈ Xp ∪Xc.
Moreover, let Xp, Xc be some collection satisfying the conditions of Proposi-
tion 3 but not Corollary 2. Then there are ρ1 = 〈c1, H1〉 ∈ Xp and ρ′ =
〈c2, H2〉 ∈ Xp ∪ Xc with ρ1 ‖ ρ2 and some e′ ∈ (c1 ∩ H2) \ H1. We have
H2[[e′]] v H and therefore ¬(H1 # H2[[e′]]). Thus ρ1 can be replaced with the
compound condition ρ′1 = 〈c1, H1∪H2[[e′]]〉 in Xp. This process can be repeated
until property 4 is satisfied.

It remains to show uniqueness. Suppose there exists another collection
X ′p, X

′
c for the same enriched event 〈e,H〉. There must be some ρ1 = 〈c,H1〉 ∈

Xp∪Xc and ρ2 = 〈c,H2〉 ∈ X ′p∪X ′c withH1 6= H2 and w.l.o.g. some e1 ∈ H1\H2.
Since e1 ∈ H, there must be some ρ3 = 〈c′, H3〉 ∈ X ′p ∪X ′c such that e1 ∈ H3.

If c ∈ •e and e1 ∈ c, then ρ2 ∈ Xp. but ρ2 // ρ3 would be violated.
So let c ∈ e ∪ •e. If e1 ∈ •c, then H2 would not be a history of c. The

final possibility is that e1 ↗+ e′ for some e′ ∈ •c ∪ c) and e′ ∈ H2. But then
H2 # H3. �

5.4. Discussion: lazy vs eager approach

In order to discover possible extensions of the form 〈e,H〉, both approaches
consider combinations of generating and reading histories for conditions c ∈ •e.

Consider Proposition 2. For every possible extension, the lazy approach
takes one generating and possibly several reading histories for c, all of which
must be concurrent. If the events in c have many different histories, or c is large,
then many different combinations need to be checked for concurrency.

The eager approach (Proposition 3) takes exactly one enriched condition
of arbitrary type, including compound, for c. A compound history is a set of
concurrent reading histories (Definition 12); thus a compound condition repre-
sents pre-computed information needed to identify possible extensions. In this
sense, the eager and the lazy approach can be thought of as different time/space
tradeoffs.

We consider two examples in which eager beats lazy and vice versa. In
Fig. 8 (a), condition c has a sequence of n readers and hence n + 1 histories
{e1, . . . , ei}, for i = 0, . . . , n. For each history H of c′, eager simply combines H
with the n+1 histories for c, while lazy checks all 2n subsets of e1, . . . , en to find
these n+ 1 compound histories. If c′ has many histories, eager becomes largely
superior. Of course, an intelligent strategy may help lazy to avoid exploring all
2n subsets one by one. However, even with a good strategy, lazy still has to
enumerate at least the same combinations as eager; and since the problem of
identifying the useful subsets is NP-complete [20], there will always be instances
where lazy becomes inefficient, whatever strategy is employed.

On the other hand, consider Fig. 8 (b). Again, c has n readers, this time
yielding 2n histories. Suppose that f(c) is an input place of some transition t.

25

(a) (b)

e1
c

c′

e

e1
c

en

e
en

a
b

Figure 8: Good examples for the eager (a) and the lazy (b) approach.

Now, if t also has f(a) and f(b) in its preset, then no t-labelled event e will ever
be generated in the unfolding, and all histories of c are effectively useless. Since
those compound conditions also appear in the computation of the concurrency
relation, they become a liability in terms of both memory and execution time.
The lazy approach does not suffer from this problem here.

Both approaches therefore have their merits, and we implemented them both.
We shall report on experiments in Section 7.

5.5. Memory usage

We shall briefly discuss the memory usage arising from the methods proposed
in this section. There are two major factors determining memory consumption:

• As some of our examples show, notably Fig. 3 (a) and Fig. 8 (b), a con-
dition in the unfolding may have a number of histories exponential in the
number of events reading from it. Thus, the memory usage for creating
a finite unfolding prefix may be exponentially larger than the unfolding
prefix that is eventually produced.

• Moreover, the memory needed to store the binary relations between en-
riched conditions such as ‖, ∝, and // is quadratic w.r.t. the number of
these enriched conditions in the worst case.

One could ask whether these memory blowups are really necessary. Let us
first discuss this question with regard to the second point: in a concrete imple-
mentation, the binary relations ‖, ∝, and // could either be stored explicitly
(at the cost of quadratic memory overhead) or decided individually for each
pair whenever necessary, by directly checking the respective definitions, at the
cost of higher computation time. We initially implemented the second approach
[21]; however, the running times were such that only small unfoldings with a
few hundred events could be produced in reasonable time. We therefore chose
to store the binary relations explicitly.

26

Histories, on the other hand, allow to easily identify new possible extensions
(as per Propositions 2 and 3). In principle, one could imagine an additional
time/space tradeoff in which not only the concurrency relation but even the
histories themselves are constructed on demand whenever one tries to instantiate
the above-mentioned propositions, leading to an algorithm which consumes only
linear space w.r.t. the size of the unfolding prefix. Due to the unsatisfactory
results with the concurrency relation, we did not consider this approach.

In any case, the memory usage is asymptotically the same as for the PR-
encoding. Section 6 contains some hints on how to store histories efficiently,
and Section 7 provides data on actual memory usage on several examples.

6. Efficient prefix construction

We implemented the procedure from Algorithm 1, using the methods pro-
posed in Section 5. The resulting tool, called Cunf, is publicly available [11].
Cunf expects as input a c-net and produces as output a complete unfolding pre-
fix. The current implementation of Cunf is restricted to safe c-nets because our
examples of interest are in this domain. Moreover, this choice simplifies certain
data structures and algorithms in the implementation.

Notice that there exist efficient tools for the unfolding of Petri nets, such
as Mole [12] or Punf [19]. While we profited much from the experiences gained
from developing Mole, Cunf is not an extension of it. The issues of asymmetric
conflict and histories permeate every aspect of the construction so that we went
for a completely new implementation in C, comprising some 4,000 lines of code.

Here, we review some features such as data structures and implementation
details relevant to handling the complications imposed by contextual unfoldings,
that helped to produce an efficient tool. Experiments are reported in Section 7.

6.1. The history graph

Cunf needs to maintain enriched events and conditions, i.e. tuples 〈e,H〉
or 〈c,H〉, where H is a history. We store them in a graph structure, that
grows whenever the enriched prefix E is extended. Formally, the history graph
associated with E is a directed graph HE whose nodes are the enriched events
of E , and with edges 〈e,H〉 → 〈e′, H ′〉 iff e′ ∈ H and H ′ = H[[e′]] and either (i)
(e′• ∪ e′) ∩ •e 6= ∅ or (ii) e′• ∩ e 6= ∅. Each node 〈e,H〉 is labelled by e.

Intuitively, HE has an edge between two enriched events 〈e,H〉 and 〈e′, H ′〉
iff some enriched condition 〈c,H ′〉 was used to construct 〈e,H〉 (in the sense of
Proposition 2 or Proposition 3).

This structure allows Cunf to perform many operations efficiently: every
additional enriched event enlarges the graph by just one node plus some edges;
common parts of histories are shared. We can easily enumerate the events in
H ∈ χ(e) by following the edges from node 〈e,H〉, and HE implicitly represents
the relation @. Given an event e, we can enumerate the histories in χ(e) by
keeping the list of nodes in HE that are labelled by e. Given a condition c, we
can enumerate its generating and reading histories similarly.

27

Compound conditions are stored in a shared-tree-like structure, where leaves
represent reading histories and internal nodes compound histories. An internal
node has two children, one of which is a leaf, the other either internal or a leaf.
One easily sees that a compound history of c corresponds, w.l.o.g., to a union
H1 ∪ · · · ∪Hn of reading histories. Every internal node represents such a union,
and the structure allows sharing if one compound history contains another.

6.2. Possible extensions

Cunf behaves similar to Mole or other unfolders in its flow of logic, but its
actions are on enriched events and conditions. We start with a prefix containing
just m̂0 and identify the initial possible extensions. As long as the set of possible
extensions is non-empty, we choose a “minimal” extension and add it unless it
is a cutoff. For “minimal”, we use the adequate order ≺F from [10]. Adding
〈e,H〉 means adding H to χ(e), creating e first if necessary. The addition
of 〈e,H〉 will give rise to various types of enriched conditions for whom we
compute the concurrency relation (see below). Whenever we add an enriched
condition ρ, we attempt to find possible extensions, i.e. sets Xp, Xc matching
the conditions in Propositions 2 and 3 such that Xp ∪Xc includes ρ, where, in
order to implement condition 4, we use the precomputed binary concurrency
relation. Upon identifying a possible extension 〈e,H〉, we immediately compute
its marking, information relevant to deciding ≺F , and certain lists r(H), s(H)
during two linear traversals of H. Details on r(H) and s(H) are given below.

6.3. Concurrency relation

The relation ‖ on the enriched conditions of E can be stored and updated
whenever new possible extensions are appended to E . We detail now how Propo-
sitions 4 and 5 are used to efficiently compute this update.

Let c(ρ) denote the set of enriched conditions ρ′ verifying ρ ‖ ρ′. The
relation ‖ is generally sparse, and Cunf stores c(ρ) as a list. However, for the
purpose of the following, c(ρ) could also be a row in a matrix representing ‖.

For reading and generating conditions ρ (Proposition 4), Cunf initially sets
c(ρ) to Yp ∪ Yc. Next, it computes the intersection of c(ρ′) for all ρ′ ∈ Xp ∪Xc,
and filters out those 〈c′, H ′〉 for which •e ∩H ′ 6⊆ H holds. In order to compute
this condition without actually traversing H and H ′, we use the sets r(H) and
s(H) computed earlier (see above). These are defined as r(H) := { e′ ∈ H |
e′ ∩ Cut(H) 6= ∅ } and s(H) := { e′ ∈ H | e′ ∈ •e }. Then •e ∩ H ′ 6⊆ H holds
iff •e \ s(H) ∩ r(H ′) 6= ∅, which can be computed traversing •e and s(H) one
time, and checking r(H ′) for every ρ′. Note that, while the other steps have
their counterparts in Petri net unfoldings, this step is new and specific to c-nets.
However, we find that this implementation keeps the overhead very small. The
checks to test c∩H ′ ⊆ H required to compute // are done similarly and can in
fact be combined with the aforementioned test. We store // inside the lists c(ρ)
that represent ‖: the lowest two bits of a pointer are “abused” to store whether
ρ // ρ′ holds and vice versa.

As for compound conditions ρ built using ρ1 and ρ2 (Proposition 5), Cunf
computes c(ρ) as the intersection of c(ρ1) and c(ρ2).

28

Certain enriched conditions ρ = 〈c,H〉 need not to be included in the con-
currency relation. It is safe, for instance, to leave c(ρ) empty if ρ is generating
and f(c)• ∪ f(c) = ∅, or if H is a cutoff. We can also avoid computing c(ρ) if ρ
is reading or compound and f(c)• = ∅, even if f(c) 6= ∅.

6.4. Splitting the concurrency relation

Let ρ = 〈c,H〉 be an enriched condition. As mentioned in the previous
paragraph, Cunf manages the set c(ρ) containing the enriched conditions ρ′

such that ρ ‖ ρ′. We found that the performance of the tool benefits greatly in
some cases by splitting c(ρ) into two sets: c1(ρ) = { 〈c,H ′〉 | ρ ‖ 〈c,H ′〉 } and
c2(ρ) = c(ρ) \ c1(ρ). In other words, c1(ρ) contains the concurrent pairs for the
same condition c and c2(ρ) the others.

This simple split helps in several places. Suppose, for instance, that ρ is a
new enriched condition that we have just added to the prefix.

• If ρ is reading or generating (where H is a history for an event e), we apply
Proposition 4 to compute c(ρ) (cf. Section 6.3). For ρ′ ∈ Xp, any 〈c′, H ′〉 ∈
c1(ρ′) verifies c′ ∈ •e, so c1(ρ′) can be excluded from consideration.

• Next, in the eager approach, we may use ρ to generate compound con-
ditions. For this, we now simply take all ρ′ = 〈c,H ′〉 from c1(ρ) and
create a new compound condition ρ′′ = 〈c,H ∪H ′〉. Moreover, c1(ρ′′) =
c1(ρ) ∩ c1(ρ′) and c2(ρ′′) = c2(ρ) ∩ c2(ρ′).

• Finally, we may use any new ρ to search for possible extensions according
to Propositions 2 and 3 (cf. Section 6.2). In order to find the sets Xp, Xc,
we may in certain cases restrict our search to c2(ρ) rather than c(ρ).

7. Experiments

In order to experimentally evaluate our tool, we performed a series of exper-
iments. We were interested in the following questions:

• Is the contextual unfolding procedure efficient?

• What is the size of the unfoldings, compared to Petri net unfoldings?

• How do the various approaches (lazy, eager, PR, plain encoding) compare?

Concerning the second and third point, it is worth noting that we could con-
trive examples to show arbitrarily large differences between various approaches.
As far as the size of the final unfolding is concerned, Fig. 3 already shows that
contextual unfoldings may be up to exponentially more succinct than Petri net
unfoldings. As far as running time is concerned, Section 5.4 contains examples
that would distinguish the eager and the lazy approach in both senses.

To see how the running time of the contextual approaches can be superior
to the plain encoding, consider the net in Fig. 9, where transition t reads from
two places p1 and p2. Both places have an additional reading transition, so

29

t1 t2
p1 p2t

Figure 9: Pairs of independent readers

they each have one (empty) generating history, two reading histories, and one
compound history. The contextual unfolding is isomorphic to the net itself.
If one expands the context of transition t to k places like p1 and p2, then
the contextual approaches produce the prefix in time linear to k. The plain
encoding, on the other hand, will create an exponential number of events for t,
each corresponding to some set of transitions that have previously read from t.

In order to abstract from such artefacts and get numbers from more realistic
examples, we took a set of safe nets that have previously served as benchmarks
in the literature on Petri net unfoldings, e.g. [22, 18, 23]. These nets are not
specifically geared towards using contextual approaches, though read arcs occur
naturally here as part of larger nets. These nets have various characteristics
that allowed to test many aspects of our implementation.

For each net N in the set, we first obtained the c-net N ′ by substituting
pairs of arcs (p, t) and (t, p) in N by read arcs. Evidently, the plain encoding of
N ′ is N . Secondly, we obtained the PR-encoding N ′′ of N ′.

We first compared Mole [12] and Cunf on the nets N and N ′′, which are
ordinary Petri nets without read arcs. The object of this exercise was to establish
whether Cunf was working reasonably efficient on known examples. Indeed, its
running times were always within 70% and 140% of those of Mole, the differences
due to minor implementation choices. To abstract from these details, we used
Cunf for all further comparisons.

We then used Cunf to produce complete unfoldings of the plain net N , the
PR-encoding N ′′, and of N ′ using both lazy and eager methods and the order
≺F from [10]. Table 1 summarises the results.2

The columns in the table are subdivided into three parts, corresponding
to the contextual net, its PR-encoding, and its plain encoding. For contextual
nets, we first give the number of events and conditions contained in the complete
finite prefix (columns |E| and |B|, in thousands). The number for |E| is actu-
ally somewhat larger than what is strictly necessary according to Definition 4
because it also includes events that are enabled by cutoff-free configurations
even if those events are not part of any non-cutoff enriched event (see also the
discussion at the end of Section 3).

2Experiments performed using revision 55 of the Cunf tool, compiled with gcc 4.4.5. Our
machine has twelve 64bit Intel Xeon CPUs, running at 2.67GHz, 50GB RAM and executes
Linux 2.6.32-5.

30

Contextual unfolding (Eager) (Lazy) PR unfolding Plain unfolding

Net |E| |B| |Ecut| |•e| comp. tE mE tL mL |E| |B| |Ecut| |•e| tR mR |E| |B| |Ecut| tP mP

bds 1.sync 1.8k 2.8k 40% 1.5 0 0.11 17 1.5 0.9 2.3 4.8 40% 2.3 2.1 1.9 7.0 13.5 67% 4.2 2.5
byzagr4 1b 8.0k 17.6k 4% 2.9 72 2.60 163 1.4 1.0 1.0 1.4 4% 1.9 3.4 1.5 1.8 2.4 5% 1.4 1.5
dpd 7.sync 10.4k 21.4k 25% 2.1 0 0.98 59 1.2 1.0 1.0 1.4 25% 1.4 1.2 1.4 1.0 1.4 25% 1.0 1.2
elevator 4 16.9k 28.6k 44% 1.7 0 1.24 71 1.1 0.9 1.0 13.7 44% 22.4 358 66.3 1.0 1.7 44% 1.8 1.1

ftp 1.sync 50.9k 96.6k 26% 1.9 0 24.81 296 0.6 1.0 1.0 1.6 26% 1.6 2.5 6.3 1.8 2.8 37% 2.0 1.9
furnace 4 94.4k 147.4k 68% 1.6 0 19.04 266 0.7 0.9 1.1 1.9 70% 1.8 1.7 2.1 1.2 1.8 69% 0.9 1.4
key 4 4.8k 7.9k 16% 1.7 23.3k 1.58 110 711 0.4 4.6 5.5 19% 13.4 6.4 0.7 14.6 17.7 46% 0.8 1.1
mmgt 4.fsa 46.9k 92.1k 45% 2.0 0 0.97 70 1.1 1.0 1.0 1.0 45% 1.0 1.0 1.0 1.0 1.0 45% 0.9 1.0

q 1.sync 10.7k 20.6k 13% 1.9 0 1.36 77 1.0 0.9 1.0 1.5 13% 1.5 2.2 2.1 1.0 1.5 13% 1.0 1.1
rw 12.sync 98.4k 196.8k 92% 2.0 0 3.35 171 1.2 1.0 1.0 1.5 92% 1.5 3.4 2.5 1.0 1.5 92% 1.5 1.0
rw 1w3r 14.5k 24.2k 32% 1.7 191 0.27 36 1.6 1.0 1.0 1.7 34% 1.7 2.0 1.6 1.1 1.2 34% 0.8 0.9
dme11 9.2k 16.7k 1% 1.8 0 7.89 516 0.9 1.0 1.0 1.9 1% 1.9 1.0 0.9 1.0 1.9 1% 0.8 0.9
rw 2w1r 9.4k 15.3k 15% 1.6 0 0.23 31 1.0 1.0 1.0 4.2 15% 4.7 61.9 6.4 1.0 1.2 15% 0.7 0.9

Table 1: Experimental results. Data for the eager approach are absolute numbers, whereas for lazy, place-replication, and plain unfolding the ratio
w.r.t. eager is given; see the text for more information.

31

The column marked |Ecut | provides the percentage of such events; this per-
centage could be subtracted from |E| to obtain the strictly necessary prefix
w.r.t. Definition 4. Our tool does in fact detect those events anyway, so their
inclusion hardly affects the running time.

The column |•e| gives the average preset size of an event. The four columns
mentioned so far are identical for the eager and the lazy approach. For the eager
approach, we then list the number of compound conditions (causing additional
memory overhead of the eager approach w.r.t. lazy) and the running time3 in
seconds (tE) as well as (maximum virtual) memory consumption in megabytes
(mE). For lazy, we list running times (tL) and memory consumption (mL) rela-
tive to the eager approach, i.e. a factor less than 1 means a faster/less memory-
consuming computation, and a factor larger than 1 a slower/more memory-
consuming one.

For the PR-encoding and the plain encoding, the data for number of events
and conditions, running times, memory consumption, and average preset size
(only PR) is also given relative to the eager approach. We additionally provide
the percentage of cutoff events (|Ecut |). Notice that the number of enriched
events in lazy and eager equals the number of events in PR (compare the dis-
cussion in the introduction). The ratio between number of events in contextual
and number of events in PR is thus the average number of histories per event
in the contextual approach. We make the following observations:

• We first look at the comparison between lazy and eager. It turns out that
in this set of benchmarks, many examples did not exhibit any compound
conditions (despite the presence of many read arcs), e.g., because reading
actions took place sequentially, or multiple potential readers happened to
be in conflict with one another. In those examples, the differences between
the two versions are due to the different implementations of the possible
extensions (Section 5.1) and the various relations that must be maintained
(Section 5.3), sometimes slightly favouring one approach, sometimes the
other.

Significant differences arise where (like in key 4) there are many compound
conditions; here lazy has some memory savings but performs very badly.
An effect to the contrary like in Fig. 8 (b), while in principle possible, did
not manifest itself in our benchmarks.

• Compared with PR, the eager approach is consistently more efficient. In
several cases (such as elevator 4 or rw 2w1r), PR is orders of magnitudes
slower. This clear tendency is slightly surprising given that the enriched
contextual prefix has essentially the same size as the prefix of the PR-
encoding. We experimentally traced the difference to the enlarged presets
of certain transitions in the PR-encoding (see Fig. 3), causing combinato-
rial overhead and increasing the number of conditions in the concurrency

3Actually, the CPU time.

32

relation. Indeed, high running times for PR seem to coincide with high
numbers in the |•e| column for PR (recall that this number is relative to
the one for contextual).

• Both the eager approach and the plain unfolding handle all examples
gracefully. The factors of the running times are between 0.7 and 4.2,
meaning eager is between 40% slower and 4 times faster w.r.t. plain. The
prefixes produced by the contextual unfolding methods are smaller than
in the plain approach in half the cases. Interestingly, these are not al-
ways the same as those on which they run faster: for elevator 4 and
rw 12.sync, the same number of events is produced more quickly. Here,
the read arcs are arranged in such a way that each event still has only one
history; the time saving comes from the fact that the contextual approach
produces fewer conditions and hence a smaller concurrency relation. For
key 4 and rw 1w3r, the contextual methods produce smaller unfoldings
but take longer to run, due some overhead in the computation of the //
relation.

To summarize, this set of benchmarks contained examples where lazy and
PR performed badly, whereas eager and plain handled all cases gracefully. The
eager approach was the fastest overall, and for all examples its running time was
within factor 2 of the fastest approach for that example. The prefixes produced
by the contextual methods can be significantly smaller than for their Petri net
encodings, which make them suitable candidates for subsequent analysis meth-
ods (see Section 8 for a brief discussion).

Moreover, we note that read arcs occur naturally when encoding networks of
logic gates as Petri nets, one of the motivations mentioned by McMillan in his
seminal paper on the unfolding technique [17]. In this encoding, the signals, i.e.
the inputs and outputs of each gate, are modelled with two places for indicating
whether the signal is high (1) or low (0). The outputs change as a function
of reading the inputs. Fig. 10 (a) shows an example of an AND-gate and its
encoding as a c-net fragment.

(a) (b)a
c

a0
c0

b

a1 b1c1

b0

Figure 10: (a) Encoding of a logical AND-gate; and (b) grid of AND-gates

33

10−2

10−1

100

101

102

10 15 20 25
k

T
im

e
(s

)
plain

place-replication
contextual

Figure 11: Unfolding times for the plain, PR, and contextual net encodings of the AND-gate
networks of size n := k × k.

Various experiments that we conducted indicate that contextual unfoldings
perform well on such c-nets. To illustrate the benefits, we present one simple
experiment on a particular family of examples, a grid of n := k× k AND-gates,
shown in Fig. 10 (b) for k = 4. The inputs for the AND-gates are at the
left and top of the figure, and outputs propagate to the right and towards the
bottom. Our experiment simulates what happens when the inputs are switched
from low to high. Observe that the signal changes required to make the output
(at the bottom right) high can occur in many different orders, which are not
distinguished by c-net unfoldings. We observed that the plain unfolding of these
nets is approximately of size O(2.2

√
n), while the size of both the contextual and

PR prefixes is O(n). Furthermore, Cunf builds the latter two in O(n3), while it
requires approximately O(5

√
n) time to produce the plain unfolding, see Fig. 11.

8. SAT-based property checking of c-nets

While the focus of this article is on the construction of prefixes rather than
on their use in verification, we shall briefly sketch how complete prefixes allow
to encode properties of c-nets in propositional logic. For this, we adapt the
SAT-based reductions of [1], which were presented for Petri nets, to c-nets.

We start by recalling that the reachability problem for bounded nets is
PSPACE-complete, whereas the following problem is NP-complete, see e.g. [1]:

Given a complete prefix of UN , where N is a bounded Petri net, and
a marking m of N , is m reachable in N?

It is straightforward to see that the result extends to the case where N is a
general c-net (with read arcs).

This result suggests that the reachability problem can be encoded as a satis-
fiability problem in propositional logic, using a formula whose size is polynomial
in that of UN . Here, we shall only sketch the basics of how this can be done;
future work will study the precise details needed to obtain practical model-
checking algorithms.

34

The key idea is to first construct a formula φN that characterises the con-
figurations and markings of UN . Thus, for every condition c and event e of UN ,
φN will contain a variable c and e, respectively; the models of φN will be those
assignments in which the event variables with value true correspond to some
configuration C and the true condition variables to Mark(C).

We let φN := φC ∧
∧

c∈B φc, where φC ensures the absence of asymmetric-
conflict cycles in C, and the formulae φc for c ∈ B ensure causal closure of C
and correct treatment of c, i.e. variable c will be true iff condition c is produced
but not consumed by C.

A simple way to prohibit all cycles would be to list them explicitly, i.e.

φC :=
∧

e1,...,en∈Cycles(UN)

¬(e1 ∧ · · · ∧ en),

where Cycles(UN) := { e1, . . . , en | e1 ↗ · · · ↗ en ↗ e1 }. Notice that this
encoding is not polynomial as there may be exponentially many such cycles;
however, better encodings exist with size O(n · log n), where n is the number of
events [24].

Moreover, suppose that condition c ∈ B has •c = {e}, c• = {f1, . . . , fm},
and c = {g1, . . . , gk}. Then we define

φc :=

(m∨
i=1

fi ∨
k∨

i=1

gi

)
→ e ∧ c↔

(
e ∧

m∧
i=1

¬fi

)
.

The main difference between φN and the corresponding construction for
Petri nets in [1] is the treatment of asymmetric-conflict cycles. In Petri nets, all
conflicts are symmetric and between pairs of events e, e′ with •e ∩ •e′ 6= ∅. In
contrast, conflict cycles in c-nets can be of arbitrary length as exemplified by
Fig. 5, where e1, e2, e3 form an asymmetric-conflict cycle of length 3.

Using φN , and following the example of [1], one can encode many questions
about the set of reachable markings of N in terms of propositional logic, for
instance:

• Is there any reachable marking in N that contains both places p and q?
Let f is the mapping from Definition 1, and suppose that c1, . . . , cm ∈ B
are those conditions with f(ci) = p, for i = 1, . . . ,m, and d1, . . . , dk ∈ B
those with f(di) = q, for i = 1, . . . , k. Let φp = c1 ∨ · · · ∨ cm and
φq = d1 ∨ · · · ∨ dk. Then, a marking that contains both p and q exists in
N iff

φN ∧ φp ∧ φq
is satisfiable.

• Is {p, q} a P-invariant of N?
This means that every reachable marking puts exactly one token into
either p or q. Under the same assumptions as above, this is the case iff

φN → (φp ⊕ φq)

is valid, i.e., its negation is unsatisfiable.

35

• Does N contain a deadlock?
Suppose that t is a transition of N with •t = {p, q}, and otherwise make
the same assumptions as above. Let φt = φp ∧ φq, then any model of
φN ∧φt corresponds to a marking enabling t. Assuming that we construct
corresponding formulae for all other transitions of N , then a deadlock
exists iff

φN ∧
∧
t∈T
¬φt

is satisfiable.

9. Conclusions

We have made theoretical and practical contributions to the computation
of unfoldings of contextual nets. To our knowledge, Cunf is the first tool that
efficiently produces these objects. The availability of a tool that produces con-
textual unfoldings may trigger new interest in applications of c-nets and the
algorithmics of asymmetric event structures in general.

It will be interesting to further explore the applications in verification, of
which we have given a taste in Section 8. Unfolding-based techniques need
two ingredients: an efficient method for generating them, and efficient methods
for analysing the prefixes. We have provided the first ingredient in this quest.
We believe that traditional unfolding-based verification techniques [25] can be
extended to work with contextual unfoldings and that their succinctness may
help to speed up these analyses. We find this topic to be an interesting avenue
for future research.

Moreover, it would also be interesting to investigate a mix between eager
and lazy that tries to get the best of the two worlds. For instance, one could
start with the eager approach and switch (selectively for some conditions) to
lazy as soon the number of compound conditions exceeds a certain bound. This,
and other ideas, remain to be tested.

References

[1] J. Esparza, K. Heljanko, Unfoldings - A Partial-Order Approach to Model
Checking, EATCS Monographs in Theoretical Computer Science, Springer,
2008.

[2] K. Heljanko, Combining symbolic and partial-order methods for model-
checking 1-safe Petri nets, Ph.D. thesis, Helsinki University of Technology
(2002).

[3] W. Vogler, A. L. Semenov, A. Yakovlev, Unfolding and finite prefix for nets
with read arcs, in: Proc. of CONCUR’98, Vol. 1466 of LNCS, 1998, pp.
501–516.

[4] G. Ristori, Modelling systems with shared resources via Petri nets, Ph.D.
thesis, Department of Computer Science, University of Pisa (1994).

36

[5] U. Montanari, F. Rossi, Contextual occurrence nets and concurrent con-
straint programming, in: Dagstuhl Seminar 9301, Vol. 776 of LNCS, 1994,
pp. 280–295.

[6] R. Janicki, M. Koutny, Invariant semantics of nets with inhibitor arcs, in:
Proc. Concur, Vol. 527 of LNCS, 1991, pp. 317–331.

[7] P. Baldan, A. Corradini, U. Montanari, An event structure semantics for
P/T contextual nets: Asymmetric event structures, in: Proc. FoSSaCS,
Vol. 1378 of LNCS, 1998, pp. 63–80.

[8] J. Winkowski, Reachability in contextual nets, Fundamenta Informaticae
51 (1–2) (2002) 235–250.

[9] P. Baldan, A. Corradini, B. König, S. Schwoon, McMillan’s complete prefix
for contextual nets, ToPNoC 1 (2008) 199–220, LNCS 5100.

[10] J. Esparza, S. Römer, W. Vogler, An improvement of McMillan’s unfolding
algorithm, Formal Methods in System Design 20 (2002) 285–310.

[11] C. Rodŕıguez, Cunf, http://www.lsv.ens-cachan.fr/~rodriguez/

tools/cunf/.

[12] S. Schwoon, Mole, http://www.lsv.ens-cachan.fr/~schwoon/tools/

mole/.

[13] P. Baldan, A. Bruni, A. Corradini, B. König, S. Schwoon, On the compu-
tation of McMillan’s prefix for contextual nets and graph grammars, in:
Proc. ICGT’10, Vol. 6372 of LNCS, 2010, pp. 91–106.

[14] C. Rodŕıguez, S. Schwoon, P. Baldan, Efficient contextual unfolding, in:
Proc. Concur, Vol. 6901 of LNCS, 2011, pp. 342–357.

[15] C. Rodŕıguez, S. Schwoon, P. Baldan, Efficient contextual unfolding, Tech.
Rep. LSV-11-14, LSV, ENS de Cachan (2011).

[16] R. Janicki, M. Koutny, Semantics of inhibitor nets., Information and Com-
putation 123 (1995) 1–16.

[17] K. L. McMillan, Using unfoldings to avoid the state explosion problem in
the verification of asynchronous circuits, in: Proc. CAV, Vol. 663 of LNCS,
1992, pp. 164–177.

[18] V. Khomenko, Model checking based on prefixes of Petri net unfoldings,
Ph.D. thesis, School of Computing Science, Newcastle University (2003).

[19] V. Khomenko, Punf, http://homepages.cs.ncl.ac.uk/victor.

khomenko/tools/punf/.

[20] K. Heljanko, Deadlock and reachability checking with finite complete pre-
fixes, Licentiate’s thesis, Helsinki University of Technology (1999).

37

[21] C. Rodŕıguez, Implementation of a complete prefix unfolder for contextual
nets, Rapport de master, Master Parisien de Recherche en Informatique,
Paris, France (Sep. 2010).

[22] K. Heljanko, Using logic programs with stable model semantics to solve
deadlock and reachability problems for 1-safe Petri nets, Fundamenta In-
formaticae 37 (3) (1999) 247–268.

[23] C. Schröter, Halbordnungs- und Reduktionstechniken für die automatische
Verifikation von verteilten Systemen, Ph.D. thesis, Universität Stuttgart
(2006).

[24] M. Codish, S. Genaim, P. J. Stuckey, A declarative encoding of telecom-
munications feature subscription in sat, in: PPDP, 2009, pp. 255–266.

[25] J. Esparza, K. Heljanko, Implementing LTL model checking with net un-
foldings, in: Proc. SPIN, Vol. 2057 of LNCS, 2001, pp. 37–56.

38

