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Abstract. We consider trophic networks, a kind of networks used in ecology to represent feeding
interactions (what-eats-what) in an ecosystem. Starting from the observation that trophic networks
can be naturally modelled as Petri nets, we explore the possibility of using Petri nets for the analysis
and simulation of trophic networks. We define and discuss different continuous Petri net models,
whose level of accuracy depends on the information available for the modelled trophic network. The
simplest Petri net model we construct just relies on the topology of the network. We also propose a
technique for deriving a more refined model that embeds into the Petri net the known constraints on
the transition rates that represent the knowledge on metabolism and diet of the species in the network.
Finally, if the information of the biomass amounts for each species at steady state is available, we
discuss a way of further refining the Petri net model in order to represent dynamic behaviour. We
apply our Petri net technology to a case study of the Venice lagoon and analyse the results.
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1. Introduction

Ecosystems are very complex systems constituted by biotic communities (populations of different species),
abiotic components of the environment (like air, water, soil), and interactions among these (living and
non-living) elements. A branch of ecology deals with the study of feeding relationships within ecosys-
tems and represents them as networks of interacting compartments called trophic networks or food webs,
where each compartment represents a population of a given species or of a group of species with similar
feeding behaviour. To study such networks, despite the common limited availability of experimental
information, a static approach – the mass balance steady state approach, has been developed as an alter-
native to a dynamic description.

Complex networks of interacting entities are widely studied in computer science: computer networks,
agent systems, and, in general, all concurrent and distributed systems fall into this category. Uncountably
many formalisms and practical tools have been developed for the representation and analysis of interact-
ing systems. This suggests the possibility of reusing modelling and analysis techniques from computer
science for the study of trophic networks.

This idea is pursued in [23], where the authors advocate the use of process calculi for ecological mod-
elling. Their claim is that the compositionality properties of process calculi can be fruitfully exploited
for a modular representation of complex ecosystems. Moreover, process calculi provide individual-based
modelling and stochastic extensions.

In this paper we explore the use of another widely used model of concurrency, namely Petri nets [25,
15], starting from the simple but crucial observation of a natural correspondence between methods and
technologies used in the areas of Petri nets and trophic networks. Petri nets permit individual-based
modelling, they explicitly represent parallelism and dependencies among entities, they offer stochastic
and continuous extensions, and, as a major advantage, they enable a qualitative analysis of systems when
kinetic information is not available. Many tools for system visualisation, analysis and simulation are also
available (see The Petri net World site [29]).

A trophic network is usually represented as a directed graph where each node represents a com-
partment, aggregating similar species into groups with similar feeding behaviour, and each arc denotes
an interaction (production, consumption, assimilation, predation, non-predatory mortality, respiration)
between the source and target node, determining a flow of energy or biomass. When quantitative infor-
mation is available, a quantity can be associated with each arc, representing the magnitude of biomass or
energy flow or the relative strength of such a flow, as well as with each node, representing the magnitude
of biomass or energy of the corresponding compartment.

The first basic observation is that the above representation naturally translates into a Petri net, that
we call the structural Petri net model, where any species (or compartment) becomes a place and any
flow between two compartments S1 and S2 in the network becomes a transition having the source S1 as
pre-condition and the target S2 as post-condition. If there is no flow-related information available, all
weights are set to one.

Thanks to its simplicity, the structural Petri net model enables standard structural analyses for Petri
nets, like those based on T-invariants. The presence of T-invariants in a Petri net model of a trophic
network is ecologically of interest as it can reveal the presence of steady states. The set of transitions
involved in a T-invariant can be seen as a subsystem of the whole system, whose equilibrium is au-
tonomously maintained. Indeed, interestingly enough, T-invariants have a natural correspondence with
classical notions in the analysis of trophic networks, known as the Ulanowicz simple cycles and Ulanow-



icz straight-through flows [34, 35]. Both are used for decomposing a trophic network into smaller parts
and to analyse recycling of matter.

The structural Petri net model of a trophic network can be refined, turning it into a continuous Petri
net model. We introduce two approaches for associating constant rates to transitions, corresponding
to two different assumptions on the system at steady state. The first approach assumes that all the
subsystems, corresponding to minimal T-invariants, are active and perform at the same speed. The second
one, more realistic from an ecological point of view, assumes that the steady state is determined by some
subsystems that ensure that each flow is active, while minimising in some sense the system activity. This
is a maximal parsimony assumption, capturing the intuition that the system stays active, but it minimises
its effort. Our continuous models represent the system at steady state with the flows balanced at each
compartment. This corresponds to the usual representation of a trophic network given by ecologists, that
is a snapshot of the system at steady state, with the mass balance assumption. These Petri net models are
only based on the topology of the system with transition rates inferred from T-invariants, relying on a
technique similar to that used for Time Petri nets in [30]. Whenever additional information is available,
either on the metabolism of the species or on their diet composition, we integrate it in the process of
derivation of rates, by computing a sort of T-invariants “constrained” by this further information, so
that the resulting models are ecologically plausible. This is done by expressing the constraints as linear
inequalities, which are added to the system of equations used for the computation of the T-invariants. To
the best of our knowledge this idea is original in the Petri net literature.

Whenever an estimation of the biomasses in compartments at steady state is available, we outline
a technique for moving from a static representation to a dynamic Petri net model equipped with mass-
dependent rates. Specifically, we propose to adopt for prey-predator flows as well as respiration and
defecation flows a law inspired by the Lotka-Volterra models [24, 39], establishing a linear dependency
of flows on the biomasses of the involved compartments. This allows us to perform dynamic simulation
of transient behaviour and what-if analyses.

The presented techniques are applied, throughout the paper, to a case study consisting of a planktonic
trophic network of the Venice lagoon, taken from [6], and the results are encouraging. The network
provides a representation of the food items digested and assimilated by R. philippinarum (a marine
bivalve mollusk), namely, green algae, cyanobacteria, diatoms, bacterioplankton, microzooplankton, and
dead, dissolved, and/or particulate organic matter.

This paper builds on some preliminary work in [3], where we started the exploration of Petri nets to
model and analyse trophic networks. Here, besides providing a more extensive and detailed presentation
of the technique for inferring transition rates from T-invariants combined with available information
on the trophic network, we propose a technique for deriving rates based on the maximal parsimony
assumption and the whole approach for dynamic simulation and transient analysis.

The structure of the paper is as follows. In Section 2 trophic networks are introduced with a case
study related to the Venice lagoon. In Section 3 the main concepts of Petri nets used to model trophic
networks are briefly recalled. In Section 4 we show how to derive different continuous Petri net models
for the representation and analysis of trophic networks when no quantitative information on the system
is available. This is exemplified in the case study. In Section 5, by knowing the biomass amounts for
each species at steady state, mass-dependent rates are derived for the flows and added to the Petri net
model, thus permitting dynamic simulations. This is applied to the case study and some validation tests
are discussed. Conclusions are given in Section 6.



2. Trophic Networks

An ecosystem is a community of living organisms, such as plants, animals and microbes, in conjunction
with the nonliving components of their environment, such as air, water and bioavailable organic matter
(detritus), which interact as a system. A trophic network (or food web) is a representation of feeding
interactions in an ecosystem, where the components are connected by binary links (what-eats-what).
Food webs permit to represent and analyse the trophic structure and functioning of an ecosystem. This
knowledge can be used to identify key species and to detect anthropogenic impacts, such as the effects
of pollution, physical disturbance and exploitation of resources.

Real trophic networks are very complex, hence models provide partial and abstract representations
where, for instance, similar species are aggregated into groups with similar feeding behaviour. A model
of a trophic network generally focuses on the flows of energy or biomass between nodes. Such flows are
directional and encompass some relevant organism-level processes, such as production, consumption,
assimilation, predation, non-predatory mortality, and respiration. Primary and secondary production,
respectively, refer to the production of biomass by autotrophic and heterotrophic organisms. The latter
one occurs through food consumption and subsequent assimilation.

An ecosystem is usually modelled as an open system, i.e. there are flows of material or energy
between the system and the rest of the world. For this reason, when representing and analysing trophic
networks, also the input and output flows are taken into account. Inputs can be primary production,
immigration or incoming of detrital matter into the system, while outputs can be emigration, harvesting
by humans and exit of detrital matter from the system. Some energy is dissipated into heat (respiration).

Some knowledge on the species that are part of the studied ecosystem and on their feeding behaviour
is a needed prerequisite for modelling a trophic network. First of all it is necessary to single out the living
and non-living compartments to be represented. A compartment can represent a population of a given
species or of some aggregation of species with comparable feeding habits. Depending on the size and
the level of details of the model, the number of compartments can be a few tens or even a few hundreds.
For each compartment it is necessary to determine which taxa are included in its diet, thus specifying
the interactions among species or groups of species. This information determines the topology of the
network, which already provides some relevant insights on the features of the ecosystem.

An ecosystem is traditionally represented as a directed graph where each node represents a compart-
ment and each arc denotes an interaction between its source and target node. More precisely, an arc from
node A to node B represents a flow of energy or biomass from A to B. When quantitative information
is available, a quantity can be associated with each arc, representing the magnitude of biomass or energy
flow or the relative occurrence of such a flow, and with each node, indicating the magnitude of biomass
or energy of the corresponding compartment.

In order to move from a purely topological representation of a trophic network to a quantitative one,
ecologists need quantitative data. Estimation of biomass in each compartment and knowledge of several
rates (e.g. production rate, consumption rate, respiration rate, etc.), along with quantitative knowledge
about diet composition of each living compartment, are required to quantify flows among compartments.
Some information on primary production, specific consumption rates and diet compositions can be de-
duced from field and laboratory studies, but normally it is impossible to determine directly the magnitude
of all flows. Therefore, for some of them it is necessary to estimate the magnitude by indirect means.
The most common approach for estimating unknown flows consists in assuming that the inputs and out-
puts for each compartment are balanced. If a sufficiently long time period is considered, mass balance



in each node of the network is a reasonable assumption because of the conservation of mass principle.
Under the mass balance assumption, the system is represented as a steady state snapshot, with energy
flows averaged over time.

The trophic network reconstruction is the problem to infer unspecified flows by solving the mass
balance equations while satisfying some constraints among the flows, which represent known metabolic
and diet properties of the species in the system. The problem is generally underdetermined and an infinite
number of solutions comply with the data set, the known constraints and the mass balance assumption.
Different techniques are used to choose a preferable solution. One technique is the Inverse Model (IM),
which has been firstly applied to trophic networks in [38] and has become quite common among ecol-
ogists. IM combines mass balance equations, data equations and constraints on the flows expressed as
inequalities. It finds a unique solution based on some optimisation criteria, for example by minimis-
ing the sum of squared flows, which corresponds to a maximal parsimonious solution. The package
LIM implements linear inverse models in R [27]. Ecopath [9], with its evolutions Ecopath-Ecosym-
Ecospace [10, 11], is a popular freely available software package that supports representation of trophic
networks and inference of unknown flows.

When a model of the trophic network has been defined, several analysis techniques developed in the
last decades can be applied. Some of them are purely topological, i.e., based only on graph properties,
for instance determining food chain length, connectance (i.e. the ratio between the number of actual food
links and the number of possible links), and the presence of cycles. In a balanced model it is possible to
study both qualitative and quantitative properties.

Static analyses of trophic networks are mostly based on linear algebra techniques, e.g. I-O modelling
techniques for economics modified in order to be applicable to ecosystems [35]. With such techniques
it is possible to study the indirect effects and the trophic structure [34, 35] of an ecosystem. Further
properties concerning the status and the development of the global system, such as stability [22, 36],
ascendency and development capacity [35] 1 are studied by using flow networks and information theory.

A crucial analysis focuses on the degree of recycling [2] in order to characterise the reuse of biomass
or energy in a trophic network. Cycles are important features of an ecosystem because they augment its
stability by acting as buffers for fluctuations in energy supply. Odum identified in [26] the amount of
cycling as one of the criteria for “maturity” of an ecosystem. A quantitative description of cycling in
ecosystems was defined by Finn [16] through an index expressing the fraction of flow that cycles relative
to the total system flow. Finn’s index has been extended and modified [18, 2] for better representing the
amount of cycling in the system. On the other hand, Ulanowicz [34, 35] claims that both the topology of
the pathways by which the medium is recycled and the amount are relevant in the recycling analysis. He
proposes a two-step method to decompose the network into weighted cyclic and non-cyclic sub-networks:
first all simple cycles in the network are identified, then cycled flows are removed from the network,
obtaining straight-through flows. The removal of a cycled flow is based on the idea of subtracting the
minimal flow in the cycle from all the arcs in the cycle. The proposed technique is actually more complex
because different cycles (called nexus) can share an arc with the minimal flow.

Case study: the Venice lagoon planktonic network. We now introduce a trophic network that will
serve as our running example along the paper. It is a planktonic trophic network of the Venice Lagoon,

1Ascendency is a measure of total ecosystem development and growth, given by the average mutual information of the flow
network scaled by the total throughput; development capacity is an upper boundary to ascendency.



Compartments
PHP = phytoplankton
BPL = bacterioplankton
MIZ = microzooplankton
MEZ = mesozooplankton
TAP = Ruditapes philippinarum
DET = organic detritus

No. Flow Description
1 CO2→PHP PHP net production
2 input→DET DET import into the system
3 PHP→MIZ MIZ consumption on PHP
4 PHP→MEZ MEZ consumption on PHP
5 PHP→DET PHP mortality
6 PHP→TAP TAP consumption on PHP
7 DET→BPL BPL consumption
8 BPL→CO2 BPL respiration
9 BPL→MEZ MEZ consumption on BPL
10 BPL→MIZ MIZ consumption on BPL
11 BPL→TAP TAP consumption on BPL
12 MIZ→MIZ MIZ consumption on MIZ
13 MIZ→DET MIZ defecation and mortality
14 MIZ→CO2 MIZ respiration
15 MIZ→MEZ MEZ consumption on MIZ
16 MIZ→TAP TAP consumption on MIZ
17 MEZ→MEZ MEZ consumption on MEZ
18 MEZ→DET MEZ defecation and mortality
19 MEZ→CO2 MEZ respiration
20 TAP→DET TAP defecation and mortality
21 TAP→CO2 TAP respiration
22 TAP→Harvesting TAP harvesting (fishery)
23 DET→TAP TAP consumption on DET
24 DET→Export DET export outside the system

Figure 1. A trophic network TV of the Venice Lagoon [6] (left, upper part), its compartments (left, lower part),
and its flows (right).

taken from [6]. The network provides a representation of the food items digested and assimilated by
R. philippinarum (a marine bivalve mollusk), namely, green algae, cyanobacteria, diatoms, bacterio-
plankton, microzooplankton, and dead, dissolved, and/or particulate organic matter. The topology of the
trophic network is shown in Figure 1 (left). Numbers on arrows are flow identifiers. The flows are explic-
itly listed in Figure 1 (right). The table in Figure 1 (left) gives the correspondence between compartments
and node names.

This trophic network has some peculiarities that are worth being pointed out:

• dissipation (respiration) of PHP is not considered because the flow from CO2 to PHP (flow 1)
models the net photosynthetic production, known from experimental data, i.e. the CO2 needed for
respiration has been already subtracted;

• effect of mineral nutrients limitation on productivity was not modelled explicitly, since photosyn-
thetic production is known from experimental data;

• flow from BPL to DET (mortality of BPL) is not considered because experimental data suggest
that it is negligible;

• flows from TAP, MEZ and MIZ to DET (flows 20, 18 and 13) include both natural mortality and
production of faeces;

• flow from PHP to DET (flow 5) indicates only mortality, because PHP does not produce faeces;



• the case of MIZ and MEZ cannibalism is represented by arrows exiting and entering in the same
compartment (flows 12 and 17).

3. Petri Nets

Petri nets are a well known formalism originally introduced in computer science for modelling discrete
concurrent systems. Petri nets have a sound theory and many applications which are not limited to
computer science (see, e.g., [25] and [15] for surveys). A large number of tools has been developed for
analysing Petri nets (see Petri Nets World site [29]).

We denote a basic Petri net by N = (P, T,W,M0), where P = {p1, . . . , pn} is the set of places,
T = {t1, . . . , tm} is the set of transitions, W :

(
(P × T ) ∪ (T × P )

)
→ N is the weight function, and

M0 is the initial marking of the net, an n-dimensional integer vector assigning to each place its initial
number of tokens.

We write t− for denoting the pre-condition of a transition t, namely the n-dimensional vector t− =
(i1, . . . , in), where ij = W (pj , t) for j ∈ {1, . . . , n}. Sometimes the same notation will be used to refer
to the corresponding support, i.e., the set of places {pj | ij > 0}. The post-condition t+ = (o1, . . . , on)
is defined dually.

The incidence matrix of a Petri net N , denoted by AN , is the n×m matrix which has a row for each
place and a column for each transition. The column associated with transition t is the vector (t+− t−)T ,
which represents the marking change due to the firing of t.

Depending on the available information, Petri nets may permit to represent and study a system qual-
itatively, based only on the graph structure, as well as quantitatively or dynamically. An interesting
structural analysis, based on the incidence matrix, aims at determining the so-called invariants of the
net. We focus here on T-invariants. Let N be a Petri net, with m transitions and n places, a T-invariant
(transition invariant) of N is a multiset of transitions whose execution starting from a state will bring
the system back to the same state, More explicitly, it is an m-dimensional vector whose components
represent the number of times that each transition should fire to take the net from a state M back to M
itself. T-invariants are solutions of the equation

AN ·X = 0 (1)

where X = (x1, . . . , xm)T and xi ∈ N, for i ∈ {1, . . . ,m}. A T-invariant X 6= 0 indicates that
the system can cycle via a state M enabling the cycle. As discussed in [19], T-invariants admit two
possible interpretations. On the one hand, given an appropriate start marking enabling the transitions
of a T-invariant, the components of the T-invariant itself represent a multiset of interactions (transitions)
whose partially ordered execution reproduces the start marking. On the other hand, the components of a
T-invariant may be interpreted as the relative rates of interactions (transitions) which occur permanently
and concurrently in a steady state. Minimal T-invariants of a Petri net N , form a basis, B(N), for the
set of semi-positive T-invariants (referred to as Hilbert basis [32], for integral spaces). Any T-invariant
can be obtained as a linear combination, with positive rational coefficients, of elements of the basis.
Uniqueness of the basis B(N) makes it a characteristic feature of the net N .

Two subclasses of Petri nets will be of special interest for the modelling of trophic networks [13]. A
state machine Petri net is a Petri net where every arc has weight one and every transition has exactly one
place in its pre- and post-condition. State machine Petri nets are conservative, namely the total number of



tokens of the system remains invariant under the occurrence of transitions. A free choice Petri net [14] is
characterised by the fact that for any place p, either p has at most one post-transition (i.e. no conflict) or
it is the only pre-place of all its post-transitions. The class of state machine Petri nets is strictly included
in the class of free choice Petri nets.

Petri nets supply an executable specification: in the case of basic Petri nets, we can play the token
game, i.e., the non-deterministic firing of all enabled transitions. More sophisticated and realistic models
and simulations can be obtained through extended Petri net models. The most interesting model class in
our context are Continuous Petri nets. In Continuous Petri nets [19] the state is no longer discrete. Places
contain non-negative real numbers, usually interpreted as the concentration of the species represented by
the place. The instantaneous firing of a transition is carried out like a continuous flow. The firing rate
expresses the “speed” of the transformation from input to output places. The rate functions associated
with transitions may follow, under simplifying assumptions, known kinetic equations such as the mass
action equation.

4. Petri Nets for Modelling and Analysing Trophic Networks

In this section we discuss how Petri nets can be used to model and analyse trophic networks. At first we
assume to know only the species (or compartments) and their relations, which is the minimal knowledge
generally available for a trophic network. Subsequently, we discuss how to include in the model the
ecological knowledge possibly available for the metabolism of the species or their diet composition. As
a running example, we consider the trophic network TV of the Venice lagoon in Figure 1. We illustrate
how to build corresponding Petri net models and discuss the applicability of some Petri net analysis
techniques. We use the tools Snoopy [20], Charlie [21] and 4ti2 [1] for editing and analysing the Petri
net models, and glpsol [17] for solving linear optimisation problems.

4.1. Structural modelling of trophic networks with Petri nets

Given a trophic network T , a simple Petri net model can be immediately derived by replicating the
topological structure of T in the Petri net. Recall that in the graph representation of T each species (or
compartment) is a node and a relation between two species is a directed arc representing the flow of
biomass or energy between the two species.

A structural Petri net model of a trophic network T is the net Ns(T ) where

• any species (or compartment) becomes a place;

• any flow (relation) between two species S1 and S2 in T becomes a transition having S1 as pre-
condition and S2 as post-condition;

• any outgoing flow from a species S1 to the external environment (e.g., dissipation) in T , becomes
a transition with pre-condition S1 and empty post-condition; similarly, any incoming flow from the
environment to a species S2, becomes a transition with empty pre-condition and post-condition S2.

In absence of any information regarding the strength of flows, all weights (of existing arcs) are set to
one. Transitions corresponding to interactions among species are referred to as internal transitions,
while those corresponding to interactions with the environment are referred to as interface transitions.



Note that the structural Petri net model of a trophic network is a free choice Petri net, and its restriction
to internal transitions is a state machine Petri net.

By applying the described construction to the running example TV in Figure 1, we obtain a structural
Petri net model which is depicted in Figure 2 (for the moment, please ignore the rates associated with
transitions). The net includes six places (in yellow, in the coloured version) representing the six com-
partments (DET, PHP, BPL, MIZ, MEZ, TAP) of the trophic network, and as many transitions as there
are flows of biomass. A transition representing a flow from compartment A to compartment B is named
A B. For instance, MIZ respiration, that produces CO2 is denoted by MIZ CO2. In order to improve
readability, in the coloured version, we use different colours for different classes of transitions. More
specifically, respiration flows (producing CO2) are represented by light blue transitions, defecation flows
by brown transitions, mortality flows by purple transitions, input and export flows for DET as well as the
harvesting flow for TAP by red transitions, and predation-prey flows by white transitions.

Note that there are two transitions in the Petri net model of Figure 2, which do not have a direct
match in the trophic network TV of Figure 1: the transition PHP CO2 representing respiration of PHP
and the transition BPL DET representing BPL mortality. This is due to the fact that TV was simplified
by integrating the two flows PHP CO2 and CO2 PHP (modelling CO2 needed for photosynthesis), while
BPL DET was considered irrelevant and thus omitted.

4.2. Structural analysis of trophic networks modelled as Petri nets

Since the structural Petri net model adheres to the graph representation used by ecologists, it enables us
to immediately reuse the usual analyses for trophic networks based on graph properties, which aim, for
example, at determining food chains length and connectance.

In addition, standard structural analyses known for Petri nets can be used, like those based on T-
invariants. The presence of T-invariants in a Petri net model of a trophic network is ecologically of
interest as it can reveal the presence of steady states. The set of transitions involved in a T-invariant
can be seen as a subsystem of the original system, whose equilibrium is autonomously maintained.
According to the terminology in [19], we classify T-invariants into two groups:

• internal T-invariants, consisting of internal transitions only;

• I/O T-invariants, which include also interface transitions.

Given a trophic network T , consider the set of semi-positive T-invariants of the structural Petri net
model Ns(T ) and the corresponding invariant basis B(Ns(T )), consisting of the minimal T-invariants.
Then the following holds.

Remark 4.1. Minimal T-invariants in Ns(T ) are set of transitions corresponding to either simple cycles
or acyclic paths connecting two interface transitions.

In fact, recall that in the Petri net model Ns(T ) of a trophic network T all transitions have at most
one place in their pre- and post-set. This immediately implies that set of transitions corresponding to
simple cycles or acyclic paths connecting two interface transitions are minimal T-invariants.

In order to see that also the converse holds, let I be a minimal T-invariant and take the corresponding
set of transitions TI = {t | I(t) > 0}.



Inv no. Transitions
1 MEZ MEZ
2 MIZ MIZ
3 DET TAP; TAP DET
4 DET BPL; BPL DET
5 DET BPL; BPL MEZ; MEZ DET
6 DET BPL; BPL MIZ; MIZ DET
7 DET BPL; BPL TAP; TAP DET
8 DET BPL; BPL MIZ; MIZ MEZ; MEZ DET
9 DET BPL; BPL MIZ; MIZ TAP; TAP DET

Table 1. Internal minimal T-invariants of the structural Petri net model of TV .

• If the subnet corresponding to TI includes a cycle, then the cycle must be simple and it must
coincide with I due to minimality of I .

• If, instead, the net corresponding to TI is acylic, take any transition t0 ∈ TI such that t+∩ t0
− = ∅

for all t ∈ TI (which exists by acyclicity and finiteness of TI ). Since no transition in TI generates
tokens in t0

− and I is an invariant, t0 must be an interface (input) transition with t0
− = ∅. Now,

either t0+ = ∅, i.e., t0 is also an interface output transition or, since I is an invariant, there is at
least one transition t1 in TI consuming the tokens produced by t0, i.e., such that t0+ ∩ t1

− 6= ∅.
Now, again, either t1+ = ∅, i.e., t1 is an interface (output) transition or there must be t2 ∈ TI such
that t1+∩ t2

− 6= ∅, and so on. Since TI is acylic, the construction terminates producing an acyclic
path in TI of the kind t0, t1, . . . , tn where t0 and tn are interface transitions. This is an invariant
and by minimality of I , it must coincide with I itself.

Observe that, in particular, for any minimal T-invariant I = (x1, . . . , xm) we have xi ≤ 1 for all
i ∈ {1, . . . ,m}, namely each transition occurs at most once and the invariant is a set rather than a proper
multiset.

Summing up:

• Minimal internal invariants are simple cycles, involving only internal transitions.

• Minimal I/O invariants are acyclic paths, connecting two interface transitions.

In both cases we have a clear correspondence with well-known concepts in trophic networks as pre-
sented, e.g., in [35]. The internal minimal T-invariants are Ulanowicz simple cycles, which are associated
with the internal recycling of matter. The minimal I/O T-invariants are Ulanowicz straight-through flows,
which represent the way in which energy and matter are provided by the environment, used by the net-
work and then (partially) released back to the environment. Such correspondences are at the structural
level, for Ulanowicz analyses the quantities of flows are needed.

In our case study, the structural Petri net model has an invariant basis consisting of 69 minimal T-
invariants, nine are internal and sixty are I/O invariants. The internal T-invariants are shown in Table 1.
The first two invariants describe the self-predation (cannibalism) of MEZ and MIZ. All the other T-
invariants “traverse” the DET place, pointing out that, in this network, Detritus is the way for recycling
matter. The I/O invariants start from the source transitions CO2 PHP and input DET and end in the sink



transitions PHP CO2, BPL CO2, MIZ CO2, MEZ CO2, TAP CO2, and TAP harvesting. They model
trophic chains allowing for respiration of the various compartments and for input and output of matter.

4.3. Deriving continuous Petri net models from structural information

In this section we show how to refine the structural Petri net model of a trophic network, turning it
into a continuous Petri net model with constant rates derived by T-invariants. We propose two distinct
constructions, based on different assumptions on the behaviour of the system at steady state, and we
discuss them with respect to our case study.

4.3.1. Deriving continuous Petri net models with constant rates

We start with deriving continuous Petri net models from structural information, i.e., relying only on the
network topology in a way similar to what has been done in [30] for Time Petri nets. We obtain a
representation of the trophic network which closely resembles the one usually adopted by ecologists,
where the system is at a steady state and the input and output flows in all the compartments are balanced
(mass balance assumption). The choice of considering continuous Petri nets is motivated by the fact that
flows of biomass are appropiately modelled by continuous flows. Additionally, moving from ordinary
to continuous Petri nets has some computational advantages, since we avoid the need of dealing with
integer (in)equations, making our technique more scalable. In particular, hereafter, whenever we refer to
the set B(N) of the minimal T-invariants of a Petri net N , we actually mean a basis of the solution space
of AN ·X = 0, X ≥ 0 in the rationals, as provided by the tool qsolve of 4ti2 [1].

In the proposed continuous Petri net models, each transition of the structural model Ns(T ) is asso-
ciated with a constant rate. Rates are computed by assuming that the system is at a steady state resulting
from a specific linear combination of a suitable set of minimal T-invariants. In the combination chosen,
the invariants with non-zero coefficients correspond to the minimal subsystems which are assumed to be
active. Different combinations will produce models with different transition rates. Before providing the
details, a couple of observations are in order.

Remark 4.2. In a structural Petri net model of a trophic network, Ns(T ), any place has at least one
incoming and one outgoing transition, otherwise the place would unnaturally correspond to a compart-
ment with monotonically increasing or decreasing content. Under this assumption, Ns(T ) is covered by
T-invariants, namely each transition in the Petri net belongs to at least one minimal T-invariant. In fact,
Ns(T ) is a state machine if we exclude interface transitions, hence for any transition, by following all
the predecessors and successors, we will go back to the transition itself (internal T-invariant) or to an
interface transition on both sides (I/O T-invariant).

Remark 4.3. A derived continuous Petri net model of a trophic network satisfies the mass balance
assumption. In fact, all continuous models use as underlying net the structural model Ns(T ), where all
arcs are 1-weighted. As a consequence, rates and flows per time unit coincide in such continuous models,
and using this fact, it is immediate to see that for all compartments the sum of incoming and outgoing
flows coincide, i.e., the mass balance assumption is satisfied. In fact, recall that due to the special shape
of Ns(T ), minimal T-invariants are simple cycles or paths. This implies that for any place p and for any
invariant Ii that “crosses” place p, it happens that p is in the pre-set of exactly one transition in Ii and in



the post-set of exactly one transition in Ii, meaning that the flow through p via Ii is balanced. Therefore,
the input and output flows coincide for any place of the network.

We propose two different approaches for inducing rates keeping the model in a steady state. They
correspond to two different assumptions: either assuming that all minimal subsystems are uniformly
active or assuming that only a set of subsystems covering all flows in the system are “minimally” active.

Uniform activation of all minimal subsystems. Our first approach for associating rates with the
transitions assumes a sort of “uniform” activation of all the subsystems corresponding to minimal T-
invariants, namely it assumes that each subsystem

1. is active and

2. performs all its transitions once per time unit.

More formally, consider the structural Petri net model Ns(T ) of a trophic network T as described in
Section 4.1 and its invariant basis B(Ns(T )). The assumptions 1 and 2 above can be implemented by
letting the rate of a transition t depend on the number of minimal invariants in which t occurs. Then, for
the trophic network T , we define the uniform continuous Petri net model Nc(T ) as the continuous Petri
net obtained from the structural model Ns(T ) by associating to each transition t a constant rate given by:

rate(t) = |{Ii|Ii ∈ B(Ns(T )) ∧ t ∈ Ii}|.

With such rates, all the transitions in all the invariants in Nc(T ) are performed once per time unit
and the system is in a steady state. This is similar to what has been done in [30] for Time Petri nets. In
an ecosystem, the assumption that all the subsystems are equally active and perform all their transitions
exactly once per time unit is somehow simplistic and unrealistic, even if it could be acceptable when any
further information on the behaviour of the system is missing. When additional information is available,
it can be exploited for selecting a suitable subset of minimal invariants out of B(Ns(T )) to be active or
for the attribution of different speeds to the selected subsystems. We will see in Subsection 4.4 that this
can be automated in some situations.

Minimal activation of subsystems. From an ecological point of view, rather than assuming that all
subsystems are active, it can be sensible to suppose that the steady state is determined by some subsys-
tems, a subset of B(Ns(T )), that covers the net, i.e., that ensures that all the flows of the system are
active, while minimising their sum. This is a maximal parsimony assumption somehow capturing the
intuition that the system stays “fully active”, but it minimises the overall effort.

In order to implement this maximal parsimony assumption we consider a linear optimisation problem

minimise Σm
i=1xi

subject to AN ·X = 0

and X ≥ 1

(2)

where X = (x1, . . . , xm)T . Given a solution K = (k1, . . . , km), a minimal continuous Petri net model
Nm

c (T ) is the continuous Petri net obtained from the structural model Ns(T ) by associating to each
transition ti a constant rate ki, for i ∈ {1, . . . ,m}.



Clearly, the solution of the linear optimisation above can be expressed as a linear combination of a
subset of elements of the basis B(Ns(T )) that can be determined a posteriori. If K = (k1, . . . , km) is
the solution from (2) and B(Ns(T )) = {I1, . . . , In}, consider the matrix I , having I1, . . . , In as rows,
and solve the system

Y · I = K

Y ≥ 0
(3)

with Y = (y1, . . . , yn). The active invariants (subsystems) are those that contribute positively to the
solution K, i.e., the invariants Ij such that yj > 0.

In both the continuous models Nc(T ) and Nm
c (T ), the system is represented in a steady state, with

the flows of biomass balanced in all compartments as noticed in Remark 4.3. This corresponds closely to
the ecologists’ representation of a trophic network as a snapshot of the system at steady state. The con-
tinuous Petri net models Nc(T ) and Nm

c (T ), despite the fact that they build on some further assumptions
on the system behaviour, are still based only on the topology of T . When additional knowledge on the
trophic network is available, it can be integrated in the model, as we will show in the next section. Note
that so far biomasses do not play a role in the definition of the rates, hence rates represent just relations
among flows. This fact and the choice of constant rates make the models rather unrealistic. This issue
will be discussed in Section 5.

4.3.2. Applying the continuous modelling idea to the case study

We apply the approach outlined above to our case study and evaluate the corresponding continuous Petri
net models with respect to some ecological knowledge extracted from the literature.

The uniform continuous Petri net model Nc(T ), resulting from the first technique, has the structural
model given in Figure 2 as underlying Petri net, and a constant rate is associated with each transition. As
stated in Remark 4.3, all places are balanced. We validate the model by considering some basic ecological
processes and checking their plausibility from an ecological point of view. For each compartment we
compute the throughput, namely the total amount of flow per unit of time, in order to measure the
degree of activity of the compartment. Moreover, we compute food consumption (the total amount of
ingested food per time unit), food assimilation (the amount of ingested food minus amount of faeces per
time unit), respiration and mortality as percentages of the consumption. Table 2 shows the throughputs,
the assimilation and respiration values as resulting from the model compared with those found in the
literature.

The values derived from the uniform continuous model are quite interesting. Considering the through-
put, the various compartments are ordered as follows:

DET>PHP>BPL=TAP>MIZ>MEZ.

We may distinguish two main groups: lower trophic level compartments (DET, PHP and BPL), having
higher throughput, and higher trophic level compartments (TAP, MIZ and MEZ), having lower through-
put. This is coherent with the general knowledge on metabolic and growth rates of the two different
groups of compartments under consideration.

Assimilation of the top compartment TAP is just over the maximum indicated in the literature, while
assimilation requirements for MEZ and MIZ are perfectly met. However, MEZ assimilation is close to
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Figure 2. Continuous Petri net model for the case study

the lower bound of the indicated range. This is due to the fact that MEZ is a top level compartment in the
network and no predators are modelled for it. This is a quite unrealistic assumption: in natural systems
MEZ are actually preyed by other species, like fishes. By adding an external predation for MEZ, we
found that its assimilation becomes close to TAP and MIZ assimilation values.

Concerning respiration, TAP and MEZ satisfy the constraints found in the literature, while MIZ and
BPL are slightly below the literature value. Respiration of PHP is instead far below the lower bound of
the indicated range. The low respiration flows for MIZ, BPL and PHP is caused by the fact that there are
only a few I/O minimal invariants involving these compartments. This is a misbehaviour of the uniform
continuous model.

Mortality of BPL is negligible, which is in accordance with experimental data (see discussion in
Section 2). Mortality of PHP is instead quite high: this is probably due to the fact that some PHP
grazers, like fishes usually living in lagoon systems, are not modelled.

On the whole, the uniform continuous Petri net model realistically reproduces the main processes of
the trophic network considered in the case study. Even if it based only on the network topology, it allows
for deriving some quantitative information on trophic network flows, which is coherent with results of
experimental measures taken in natural ecosystems. Moreover, the quantitative validation shows that the
model is somehow incomplete, indicating that two further predation flows, one for MEZ and one for
PHP, should be represented in the model.

We now focus on the minimal continuous Petri net model Nm
c (TV ) of the case study. The underlying

Petri net is still Ns(TV ), but the transition rates are now computed according to (2), and this determines a



Compartment throughput Literature values Model values
TAP 41 [33] Respiration ≥ 20% Respiration = 36%

[33] 37% ≤ Assimilation ≤ 70% Assimilation = 73%
Defecation and Mortality = 27%

MEZ 28 [37] Respiration ≥ 20% Respiration = 37%
[28, 12] 40% ≤ Assimilation ≤ 80% Assimilation = 39%

Defecation and Mortality = 61%
MIZ 37 [37] Respiration ≥ 20% Respiration = 14%

[28, 12] 40% ≤ Assimilation ≤ 80% Assimilation = 78%
Defecation and Mortality = 22%

BPL 41 [31, 8] Respiration ≥ 20% Respiration = 17%
Assimilation = Consumption Assimilation = Consumption

Mortality = 2,4%
PHP 49 [40, 4] 10% ≤ Respiration ≤ 30% Respiration = 2%

Assimilation = Consumption Assimilation = Consumption
Mortality = 22%

DET 58 not relevant not relevant

Table 2. Literature values and measured values for the uniform continuous Petri net model of the case study.

modification of the corresponding ecological processes. Table 3 shows the throughputs, the assimilation
and respiration values as obtained from the model compared to those found in the literature.

Considering the throughput, the various compartments are ordered as follows:

DET=PHP>BPL=MIZ>MEZ=TAP

and, again, we notice a higher activity on the lower level organisms and a lower activity on the higher
level ones. By considering the literature values and the measured values, we observe that the model
satisfies all the constraints, including those regarding respiration of MIZ, BPL and PHP. The throughput
values for the second model are much smaller than in the first one, but the absolute values of the flows
and throughput are not relevant in our models. In fact, our models do not use any quantitative information
on flows or biomasses, hence only the ratio between the flows is represented, not their absolute values.

4.4. Enforcing ecological constraints

In the previous section we introduced two techniques for obtaining a continuous Petri net model of a
trophic network by relying on structural information. Generally some additional information on the
trophic network is available, such as the metabolism of the species or their diet composition. Examples
of such knowledge for our case study are the constraints reported in the columns “Literature Values”
of Tables 2 and 3. In this section we propose a way to “embed” into a continuous Petri net model the
information possibly available on the metabolism of the species or their diet. Such information can be
expressed as constraints on the rates of the corresponding transitions. This produces a model which
automatically satisfies such constraints and which is hence closer to the actual trophic network.

4.4.1. Deriving constrained continuous models

We work under the simplifying assumption that the flow constraints imposed on the model are linear.
This restriction is not severe since it is generally satisfied by the constraints on metabolic flows and on



Compartment throughput Literature values Model values
TAP 4 [33] Respiration ≥ 20% Respiration = 25%

[33] 37% ≤ Assimilation ≤ 70% Assimilation = 50%
Defecation and Mortality = 50%

MEZ 4 [37] Respiration ≥ 20% Respiration = 50%
[28, 12] 40% ≤ Assimilation ≤ 80% Assimilation = 75%

Defecation and Mortality = 25%
MIZ 5 [37] Respiration ≥ 20% Respiration = 20%

[28, 12] 40% ≤ Assimilation ≤ 80% Assimilation = 80%
Defecation and Mortality = 20%

BPL 5 [31, 8] Respiration ≥ 20% Respiration = 20%
Assimilation = Consumption Assimilation = Consumption

Mortality = 20%
PHP 7 [40, 4] 10% ≤ Respiration ≤ 30% Respiration = 14%

Assimilation = Consumption Assimilation = Consumption
Mortality = 14%

DET 7 not relevant not relevant

Table 3. Literature values and measured values for the minimal continuous Petri net model of the case study.

the diet partitions. An example of such constraints for our case study are the metabolic constraints taken
from the literature shown in Table 2.

We define a continuous Petri net model which structurally coincides with Ns(T ) and whose transi-
tion rates satisfy a set of linear inequalities. As in the previous continuous models, the transition rates
correspond to the “speed” ki of each T-invariant, but now we are interested only in T-invariants that
satisfy the constraints.

In order to determine these invariants we compute the solutions of a system of inequalities

AN ·X = 0

C ·X ≥ 0

X ≥ 0

(4)

where AN is the incidence matrix of Ns(T ) and C ·X ≥ 0 are the linear constraints. Also in this setting
we can consider a basis for the solution space, referred to as the constrained invariant basis BC(Ns(T )),
so that any solution of (4) will be a linear combination of elements in BC(Ns(T )).

Continuous Petri net models for the trophic network T satisfying the constraints C are defined exactly
as in the previous subsection. In both cases, the underlying Petri net is Ns(T ).

The uniform constrained continuous Petri net model Nc(T , C) is defined by associating each transi-
tion t with a constant rate:

rate(t) = |{Ii : Ii ∈ BC(Ns(T )) ∧ t ∈ Ii}|.

In this way, each transition in each constrained invariant Ii in BC(Ns(T )) can be performed once in one
time unit.

Alternatively, we can consider the minimal constrained Petri net model Nm
c (T , C), which associates

with each transition a constant rate corresponding to minimising Σm
i=1xi in the system (4). This ensures



that all the flows in the system are active, they satisfy the constraints, and the system as a whole satisfies
a maximal parsimony assumption.

4.4.2. Applying the constrained modelling idea to the case study

When applied to our case study, the constrained approach produces a linear system of equalities and
inequalities, where the inequalities express the literature knowledge summarised in Table 2. In this case,
the constrained invariant basis contains 993 elements. We construct the uniform constrained model and
the minimal constrained model, both endowed with constant rates automatically satisfying the given
ecological constraints.

Despite the fact that they incorporate some additional knowledge on the system, the constrained
continuous models are still unsatisfactory as they provide a static view of the trophic network. In fact,
the use of constant transition rates does not allow for a sensible dynamic simulation and analysis of
the system. Moreover, in all the continuous models proposed so far, the amounts of biomass of the
compartments in the steady state do not play any role and our rates represent just relations between
flows. In the next section we address these issues and illustrate how to extend the models and overcome
these limitations.

5. A continuous PN model with mass-dependent rates

In this section we do one step forward, showing how to obtain a more realistic dynamic model, when
estimations of the amount of biomass in the compartments at steady state are available. What we derive
now are continuous Petri net models with mass-dependent rates associated to transitions, that can be used
to perform dynamic simulation and what-if analyses.

The first step for building a dynamic model consists in choosing a suitable kinetic law for modelling
prey-predator flows as well as respiration and defecation flows. In analogy with Lotka-Volterra models
[24, 39], a prey-predator flow should depend on the biomass of both the prey and the predator, while
the respiration or defecation flow of a given compartment should depend only on the biomass of the
compartment itself.

In chemistry, the law of mass action defines the rate of a chemical reaction as proportional to the
product of the masses of reactants. Analogously, the law of mass action can be used to define the
process rate, prey-predator, respiration or defecation, as proportional to the biomasses of the interacting
compartments. Hence we choose the mass action law to associate the following rate expression to a
prey-predator flow

rate1 = k1 ·Mprey ·Mpredator (5)

while for a respiration or defecation flow of a compartment C the rate expression is the following

rate2 = k2 ·MC (6)

where Mprey, Mpredator and MC are the amounts of biomass associated to compartments, and k1 and k2
are suitable constants. This makes the system sensitive to any variation of the biomass or of the constants.

Then we proceed as follows in order to determine the constants k1 and k2 in the mass-dependent
flow rate expressions. We take a continuous model of the trophic network produced by a construction
proposed in Section 4.4. In such a model, a rate value is associated to each transition t at steady state.



Instead of considering this rate as a constant, i.e., state-independent, as we did before, we now assume
that it is regulated by the mass action law, namely it is defined by (5) or (6) depending on the kind of
flow it represents. In this way we can infer the constants k1 and k2 by exploiting the knowledge of the
biomasses of the involved compartments (Mprey, Mpredator or MC).

5.1. Application to the case study

In this section we apply the method described above to the minimal constrained continuous model, as
proposed in Section 4.4.2, which seems to be the most realistic one. We associate the law of mass action
to the rates of internal transitions. Concerning the boundary flows, the model is simplified by assuming
a constant flow of the detritus both incoming and outgoing from the lagoon and a constant harvesting of
clams. To be more specific, input DET, DET export and TAP harvesting, have the same constant rates
as in the original minimal constrained continuous model. These boundary flows will be then perturbed
in the analysis.

In order to validate the dynamic representation of the system, we set up some test cases, correspond-
ing to realistic hypotheses based on the available scientific knowledge on the Venice lagoon. The test
cases consist in varying some relevant flows selected from those described in [7, 5].

The first flow we consider is the harvesting of the clam R. philippinarum (TAP), an important eco-
nomic activity in the territory of the Venice lagoon. Its sustainable management is needed in order to
limit the environmental impacts generated by this type of fishing on other traditional fishing practices,
on bottom habitat conservation (for example on areas vegetated with submerged rooted plants), and on
lagoon morphological structures (shallow water areas, intertidal flats). Therefore, testing the possibility
to simulate changes of the flow TAP harvesting is important from a management point of view. Changes
of plus/minus 30% in the values of TAP harvesting (flow number 15) were considered.

A second interesting flow is concerned with the organic matter (DET) that represents a relevant
source of food for clams (TAP). DET is generated by the food web itself (from mortality and faeces), but
it can also be imported from the surrounding areas of the lagoon (flow input DET). In the real system
this import depends on several environmental factors like current regime, sediment resuspension due to
winds and/or boats traffic and algae growth. The possibility of simulating changes of the flow input DET
is important in order to understand the degree of dependence of clam production (TAP) in a given area
on the larger lagoon environment. Changes of plus/minus 30% in the values of input DET (flow number
11) were considered.

According to the processes described above, four dynamic simulations were generated:

• Test case 1: TAP harvesting = TAP harvesting (staticmodel) ∗ (1 + 0.3)

• Test case 2: TAP harvesting = TAP harvesting (staticmodel) ∗ (1− 0.3)

• Test case 3: input DET = input DET (staticmodel) ∗ (1 + 0.3)

• Test case 4: input DET = input DET (staticmodel) ∗ (1− 0.3)

We discuss now the results of these tests. Please note that the time unit is not defined in the system.
Hence in the following discussion we can only focus on the dynamic behaviour of the system (the way
compartments evolve and interact), but no comments can be given about the absolute timing of the
observed processes.



• Test case 1: Figure 3 shows the system behaviour on the short-term (upper picture) and long-term
period (lower picture). Due to the increase of the TAP harvesting flow, the biomass of TAP
decreases very rapidly until it reaches 0 (disappearance of the compartment). The disappearance
of TAP favours MEZ (feeding on the same sources) that shows an increasing trend. BPL and
MIZ also increase, being the feeding pressure from TAP decreased and eventually cancelled. It is
interesting to note that on the long run, the system shows an oscillatory dynamics, characterised by
the predator-prey relationships between MEZ and MIZ−BPL−PHP. In this test case, the system
demonstrates its ability to reproduce a realistic scenario: under unsustainable fishing pressure
clams disappear and a dramatic change in the ecosystem structure occurs, leading on the long-
term to a new, different, dynamic equilibrium.

Figure 3. Test case 1: short-term run (upper picture) and long-term run (lower picture)

• Test case 2: The results for this test case are shown in Figure 4 for both the short-term and the long-
term period. Notice that, due to the decrease of TAP harvesting , the biomass of TAP increases
rapidly. As a consequence, MEZ is outcompeted and its biomass sharply decreases. The increase
of TAP determines an increased feeding pressure on BPL and a consequent decline of its biomass.
On the long run (Figure 4, lower picture), the system shows an oscillatory dynamics, different
from the one before, characterised in this case by the predator-prey relationships between TAP
and its sources of food PHP and DET. Also in this test case, the system demonstrates its ability to
reproduce a realistic scenario: fishing pressure acts as an important control factor for TAP biomass
and for the equilibrium of the ecosystem. When changing the fishing pressure, dramatic changes



in the ecosystems occur. Sensitivity of the food web model to the values of this flow is notably
very high.

Figure 4. Test case 2: short-term run (upper picture) and long-term run (lower picture)

• Test case 3: As can be noticed in the upper picture shown in Figure 5, the increased input of
DET determines some increase of DET biomass in the system, but most of the additional input
is utilised by TAP which exhibits a rapid increase. Consequently - and similarly to the Test case
2 results - MEZ is outcompeted and BPL is overexploited by TAP. As it can be noted from the
long-term results (Figure 5, lower picture) the system shows again an oscillatory dynamics, very
similar to the Test case 2 results, characterised again by the predator-prey relationships between
TAP and its source of food PHP and DET. Also external food sources like input DET can act as
important control factors for TAP biomass and for the equilibrium of the ecosystem. Their changes
can induce dramatic changes in the ecosystems. Sensitivity of the food web model to the values of
this flow is also very high.

• Test case 4: The reduced input of DET to the system determines, as shown in the upper picture of
Figure 6, a sharp decrease of TAP and ultimately the disappearance of this compartment. The other
compartments look quite constant in value on the short-term, with some tendencies in growth for
BPL and MIZ. Long-term results (Figure 6, lower picture) point out again an oscillatory dynamics,
similar to the Test case 1 results, characterised by the predator-prey relationships between MEZ
and its source of food BPL−DET−PHP. Given the overall lower amount of biomass available for



Figure 5. Test case 3: short-term run (upper picture) and long-term run (lower picture)

the system, oscillations look smaller in value than in Test case 1. Input DET is confirmed to
be an important control factor for TAP biomass, and the sensitivity of the food web model on its
values is confirmed to be very high.

From these test cases we can conclude that the dynamic behaviour of the modelled system appropri-
ately responds to changes of the external conditions. Simulation results are reasonable from a general
ecologic point of view and in agreement with expectations based on the knowledge available for real
ecosystems similar to the Venice lagoon.

6. Conclusions

In this paper we explored the use of Petri nets for representing and analysing trophic networks. Ecolo-
gists usually represent trophic networks as networks of flows of energy or biomass between species or
compartments. By averaging over a reasonable period of time, the ecosystem is represented as a steady
state snapshot where the input and output flows in each species/compartment are balanced. Quantitative
information on such networks is generally difficult to estimate, and they are partially computed by some
inference technique. In order to represent and analyse a trophic network, we proposed several techniques
for building Petri net models based on the available data. In order to evaluate our proposal, we applied
such models to a case study, a simplified view of the ecosystem of the Venice lagoon.



Figure 6. Test case 4: short-term run (upper picture) and long-term run (lower picture)

We showed how the structural information on a trophic network naturally translates into a structural
Petri net model which allows for recovering classical trophic networks concepts and structural analyses.

By exploiting the set of minimal T-invariants, we refined the structural Petri net model into contin-
uous Petri net models that closely resembles the representation of the trophic network usually adopted
by ecologists, where the system is at a steady state and the input and output flows are balanced in all
the compartments. We defined several continuous models based on different assumptions: either by as-
suming a uniform execution of all the minimal subsystems (the minimal T-invariants), or by assuming a
global minimisation of the flows in the system, which are however all active.

Despite the fact that such continuous Petri net models are rather simplistic (in particular, they have
constant rates, independent of the masses), the analyses of such models applied to the case study of the
Venice lagoon showed that they realistically reproduce the main ecological processes. Furthermore, they
showed that the continuous Petri net models can be fruitfully used for an early stage validation of the
trophic network under study.

Next, we outlined a technique for refining the continuous Petri net models by “embedding” some
possibly available ecological knowledge on the metabolism of the species and on their diet composition.
This knowledge, typically expressed as linear inequalities, intervenes the computation of T-invariants
that in turn influences the transition rates.

We further proposed a refinement of the constrained continuous Petri net models for deriving more
realistic models capable of representing the dynamic behaviour of the systems. The refinement relies on



the availability of biomass estimates for all compartments at a steady state, that is used to derive dynamic
rates for flows governed by the mass action law. Introducing flow rates dependent on biomasses in the
continuous Petri net model allows for dynamic simulations and what-if analyses.

We defined such a dynamic model for the case study of the Venice lagoon and analysed the evolution
of the system behaviour by applying perturbations to flows relevant for the ecosystem, like harvesting
of clams and incoming detritus. Although the time scale cannot be easily fixed and thus the temporal
system evolution cannot be properly validated, the results of the simulations are encouraging since the
modelled behaviour is reasonable from an ecological point of view and in agreement with expectations
based on the available knowledge.

We plan to perform further experiments by modelling different and possibly larger trophic networks.
This could help us for better validating our approach as well as indicating further extensions.
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