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Abstract. The notion of processes for low-level Petri nets based on oc-
currence nets is well known and it represents the basis for the study of
the non-sequential behavior of Petri nets. Processes for high-level nets
N are often defined as processes of the low level net F lat(N) which is
obtained from N via a construction called ”flattening”. In this paper we
define high-level processes for high-level nets based on a suitable notion
of high-level occurrence nets. The flattening of a high-level occurrence net
is in general not a low-level occurrence net, due to so called ”assignment
conflicts” in the high-level net. The main technical result is a syntacti-
cal characterization of assignment conflicts. But the main focus of this
paper is a conceptual discussion of future perspectives of high-level net
processes including concurrency and data type aspects. Specifically, in
the second part of the paper, we discuss possible extensions of high-level
net processes, which are formally introduced for algebraic high-level nets
in the first part of this paper. Of special interest are high-level processes
with data type behavior, amalgamation, and other kinds of construc-
tions, which are essential aspects for a proposed component concept for
high-level nets.

1 Introduction

High-level nets are one of the most important examples of integrated data type
and process modeling techniques for concurrent and distributed systems (see
[EGH92, Jen92]). For low-level Petri nets the notion of nondeterministic and
deterministic processes is an essential concept to capture their non-sequential
truly concurrent behavior. Especially in the case of elementary net systems and
safe place/transition nets this has been worked out in a fully satisfactory way by
Rozenberg, Winskel, Nielsen, Goltz, Reisig, Degano, Meseguer, Montanari and
other authors [NPW81, GR83, Roz87, Win87, Win88, DMM89, Eng91, MMS97]
leading to different notions of deterministic and nondeterministic processes and
to a truly concurrent semantics of Petri nets in terms of prime algebraic domains
and event structures. The situation is already slightly more difficult in the case
of non-safe place/transition nets. In order to capture a satisfactory notion of
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causality and conflict in the case of multiple tokens on one place, the dichotomy
between the ”individual token” and ”collective token” views has been developed
in the literature and coined as such by van Glabbeck and Plotkin in [vGP95]. On
the basis of the individual token interpretation Meseguer, Montanari and Sassone
[MMS97] have extended Winskel’s adjunction between safe Petri nets and prime
event structures to general place/transition nets. Since the flattening of high-
level nets in general leads to non-safe place/transition nets, processes for general
place/transition nets are a prerequisite to study the concurrent behavior of a
high-level net N via the flattening Flat(N) using the corresponding semantics
and techniques of low-level nets. Especially, this allows to define processes of a
high-level net N as low-level processes of the flattening Flat(N) of N . This view
of processes of high-level nets or an equivalent presentation has been mainly
considered in the literature up to now.

In this paper we claim, however, that a more adequate view of processes
for high-level nets should capture the distinction between the data processing
and the concurrency aspect of processes in the sense of basic procedures for
concurrent and distributed systems in software engineering and communication
technology. For this purpose we propose a notion of high-level process for high-
level nets which is defined independently of flattening.

The essential idea is to generalize the concept of occurrence net from the
low-level to the high-level case. This means that the net structure of a high-level
occurrence net has similar properties like a low-level occurrence net, like uni-
tarity, conflict freeness, and acyclicity. But we drop the idea that an occurrence
net captures essentially one concurrent computation. Instead, a high-level oc-
currence net and a high-level process are intended to capture a set of different
concurrent computations corresponding to different input parameters of the pro-
cess. This is in some sense analogous to procedures in programming languages,
where a procedure works on a set of input parameters: Each instantiation or call
of the procedure with suitable input parameters leads to a run of the procedure
and hence to one specific computation. In fact, high-level processes can be con-
sidered to have a set of initial markings for the input places of the corresponding
occurrence net, whereas there is only one implicit initial marking of the input
places for low-level occurrence nets.

The paper is organized as follows. First in Section 2 we define high-level
processes for algebraic high-level nets (AHL-nets) without initial marking. The
case with initial markings is discussed in Section 4. In Section 3, we review the
flattening of AHL-nets (see e.g. [EPR94]) and apply it to high-level processes.
As expected, the flattening of a high-level process is in general not a low-level
process, due to so called ”assignment conflicts”, which may occur in high-level
occurrence nets. As main technical result we give a syntactical characterization
of assignment conflicts. The main idea, however, is that a high-level process of
a high-level net N corresponds to a set of low-level processes of the flattening
Flat(N) of N .

In Section 4, we discuss possible extensions of our basic notion of high-level
processes. The first extension is that from algebraic-high level nets to that of
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other types of high-level nets in the framework of parameterized net classes
([EP97a, EP97b, PE01]) and abstract Petri nets [Pad96]. Another extension is
that from AHL-processes in Section 2 to open AHL-processes in the sense of
open nets and open processes studied for Place/Transition nets most recently
in the paper [BCEH01]. As mentioned already, another important extension is
the case of AHL-processes with a set of initial markings, which also allows to
define a data type behavior of high-level processes. This extension allows to
consider AHL-nets and AHL-processes as an instantiation of the general con-
cept of integrated data type and process modeling techniques in [EO01a] and
leads to a component concept for AHL-nets with AHL-processes in the sense of
[EO01b]. Last but not least we discuss in Section 4 how well-known construc-
tions of low-level processes, like unfolding and concatenation can be extended to
high-level processes. Moreover, we propose also new constructions for low-level
and high-level processes via process terms based on constructions like sequen-
tial and parallel composition as well as amalgamation of processes in the sense
of [BCEH01]. This should allow to define process types based on nets and net
processes in analogy to data types [EM85] as advocated in [EMP97] already.
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2 Algebraic High-Level Processes

In this section we review the concept of algebraic high-level net and we give a
formal definition of algebraic high-level processes based on a suitable high-level
notion of occurrence net. The well known example of dining philosophers in the
high-level case (see [EPR94, PER95]) serves as running example.

The version of AHL-nets defined below is similar to [EPR94, PER95] but for
the fact that places are typed, that is, the data elements on these places and
the terms occurring in the inscriptions of the attached arcs are required to be of
a specified sort. This typing reduces the set of possible markings and helps to
keep the unfolding of a high-level net manageable.

Definition 2.1 (Algebraic High-Level Net).
An algebraic high-level net (AHL-net),

N = (SPEC,P, T, pre, post, cond, type,A)

consists of an algebraic specification SPEC = (S,OP,E;X) with equations E
and additional variables X over the signature (S,OP ) (see [EM85]), sets P and
T of places and transitions, respectively, pre- and post-domain functions

pre, post : T → (TOP (X)⊗ P )⊕
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assigning to each transition t ∈ T the pre- and post-domains pre(t) and post(t)
(see Remark 1), respectively, a firing condition function

cond : T → Pfin(EQNS(S,OP,X))

assigning to each transition t ∈ T a finite set cond(t) of equations over the
signature (S,OP ) with variables X , a type function

type : P → S

assigning to each place p ∈ P a sort type(p) ∈ S, and an (S,OP,E)-algebra A
(see [EM85]).

�

Remarks

1. Denoting by TOP (X) the set of terms with variables X over the signature
(S,OP ) (see [EM85]), and by M⊕ the free commutative monoid over a set
M , the set of all type-consistent arc inscriptions TOP (X)⊗ P is defined by

TOP (X)⊗ P = {(term, p)|term ∈ TOP (X)type(p), p ∈ P}.

Thus, pre(t) (and similar post(t)) is of the form pre(t) =
∑n

i=1(termi, pi)
(n ≥ 0) with pi ∈ P, termi ∈ TOP (X)type(pi). This means, {p1, . . . , pn} is
the pre-domain of t with arc-inscription termi for the arc from pi to t if the
p1, . . . , pn are pairwise distinct (unary case) and arc-inscription termi1 ⊕
· · · ⊕ termik for pi1 = · · · = pik (multi case).

2. The proposed version of AHL-nets is similar to [EPR94, PER95], but for the
use of free commutative monoids M⊕ (cf. [MM90]) instead of free Abelian
groups Mab. In this paper the use of M⊕ is more suitable than Mab in order
to compare the high level with the classical low level case of place/transition
nets. Moreover, as discussed above, places are typed. Therefore, the carte-
sian product TOP (X) × P used in [PER95] has been replaced by its subset
TOP (X)⊗ P . Consequently a marking m is now an element m ∈ (A ⊗ P )⊕

with

A⊗ P = {(a, p)|a ∈ Atype(p), p ∈ P}.

3. The case of AHL-nets and corresponding AHL-processes with initial mark-
ings init ∈ (A⊗ P )⊕ will be discussed in Section 4.

Enabling and firing of transitions are defined as follows.
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Definition 2.2 (Algebraic High-Level Net).
Given an AHL-net as above and a transition t ∈ T , V ar(t) denotes the set of vari-
ables occurring in pre(t), post(t), and cond(t). An assignment asgA : V ar(t) → A
is called consistent if the equations cond(t) are satisfied in A under asgA.

The marking preA(t, asgA) – and similarly postA(t, asgA) – is defined for
pre(t) =

∑n
i=1(termi, pi) by

preA(t, asgA) =
n∑

i=1

(asgA(termi), pi),

where asgA : TOP (V ar(t)) → A is the extension of the assignment asgA to
an evaluation of terms (see [EM85]).

A transition t ∈ T is enabled under a consistent assignment asgA : V ar(t) →
A and marking m ∈ (A⊗ P )⊕, if

preA(t, asgA) ≤ m,

In this case, the successor marking m′ is defined by

m′ = m� preA(t, asgA)⊕ postA(t, asgA)

where preA(t, asgA) and similar postA(t, asgA) is defined for pre(t) =∑n
i=1(termi, pi) by

preA(t, asgA) =
n∑

i=1

(asgA(termi), pi).

�

Example 2.3 (Dining Philosophers).
In analogy to [PER95] the AHL-net DIPHI for dining philosophers (with n
philosophers) is given in Figure 1 together with the algebraic specification

diphi = sorts : philo, fork
opns : p1, . . . , pn :→ philo

f1, . . . , fn :→ fork
ls : philo → fork
rs : philo → fork

eqns : ls(p1) = fn
ls(pi) = f(i−1) (i = 2 . . . n)
rs(pi) = fi (i = 1 . . . n),

additional variablesX = {x : philo; y, z : fork}, type(THINK) = type(EAT ) =
philo, type(FORK) = fork and initial diphi-algebra A with Aphilo = {P1,

. . . , Pn} and Afork = {F1, . . . , Fn}. The usual initial marking for the dining
philosophers is to have all philosophers P1 . . . Pn on place THINK and all forks
F1 . . . Fn on place FORK, i.e.

init =
n∑

i=1

(Pi, THINK)⊕
n∑

i=1

(Fi, FORK).
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TAKE

ls(x)=y
rs(x)=z

THINK

EAT

FORK

PUT

ls(x)      rs(x)y     z

x

x x

x

DIPHI

Fig. 1. AHL Net for Dining Philosophers

�

Definition 2.4 (Category of AHL-Nets).
The category AHL-net has AHL-nets N as objects and AHL-net-morphisms
f : N1 → N2 as arrows where f = (fSPEC , fP , fT , fA) with

– fSPEC : SPEC1 → SPEC2 is a specification morphism with sort part
fs : S1 → S2, signature part fOP : (S1, OP1, X1) → (S2, OP2, X2) and
extension f �

OP to terms and equations such that the restrictions
fOP |V ar(t1) : V ar(t1) → V ar(fT (t1)) of fOP to variables of transitions are
bijective;

– fP : P1 → P2 and fT : T1 → T2 are functions;
– fA : A1 → A2 is induced by an isomorphism fa : A1

∼−→ VfSP EC (A2) in
the category of SPEC1-algebras (see [EM85]) requiring that the following
diagrams commute separately for pre- and post-functions.

f
OP
#( fP )

2

1

=

2

==

1

Tf SfPf

S

P S
type

type1

2

1

2
2

2

2
2 2 2 2 2

1
1P11 1 1 11

P
fin

cond

cond
(TOP (X  )T P  )(EQNS(OP , X  )))

pre

post

P  )(EQNS(OP , X  )))

P
fin

(X  )OP(T
post

pre
T

  (f )  fin
   # P
OP

�
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Remark Although this definition is slightly different from those in [PER95]
and [EGP99] we still have the existence of pushouts and other HLR-properties
as stated in the mentioned papers. These properties allow to define the union of
nets via pushouts and net transformations via double pushouts in the sense of
high-level replacement systems (see [EGP99]). The bijectivity of fOP on variables
of transitions is used in Fact 3.2.2.

Definition 2.5 (AHL-Occurrence Net).
A (deterministic) AHL-occurrence net K is an AHL-net

K = (SPEC,P, T, pre, post, cond, type,A)

such that for all t ∈ T with pre(t) =
∑n

i=1(termi, pi) and notation •t =
{p1, . . . , pn} and similarly t• we have

1. (Unarity): •t, t• are sets rather than multisets for all t ∈ T , i.e., for •t the
places p1 . . . pn are pairwise distinct. Hence | • t| = n and the arc from pi to
t has a unary arc-inscription termi (rather than a proper sum of terms as in
Remark 1 of Definition 2.1).

2. (No Forward Conflicts): •t ∩ •t′ = ∅ for all t, t′ ∈ T, t �= t′
3. (No Backward Conflicts): t • ∩t′• = ∅ for all t, t′ ∈ T, t �= t′
4. (Partial Order): the causal relation <⊆ (P × T ) ∪ (T × P ) defined by the

transitive closure of

{(p, t) ∈ P × T | p ∈ •t} ∪ {(t, p) ∈ T × P | p ∈ t•}
is a finitary strict partial order, i.e. the partial order is irreflexive and for
each element in the partial order the set of its predecessors is finite.

�

Remarks

1. Conditions 1-4 are exactly those for occurrence nets in the case of – low-
level place/transition nets with pre(t) =

∑n
i=1 pi (see [MM90]) and do not

take into account possible assignment conflicts formally introduced in Def-
inition 3.7). This means that the flattening Flat(K) of an AHL-occurrence
net K may not be a low-level occurrence net (see Example 3.5.2).

2. If we drop the unarity condition, K is called an AHL- multi-occurrence net.
3. We only define deterministic AHL-occurrence nets leading to determinis-

tic AHL-processes. The nondeterministic case can be obtained by dropping
the second condition ”no forward conflicts” because conflicts are allowed in
nondeterministic processes.

Definition 2.6 (AHL-process).
A (deterministic) AHL-process of an AHL-net N is an AHL-net morphism
p : K → N, where K is a (deterministic) AHL-occurrence net with the same
data type part (SPEC,A), which is preserved by p, i.e. pSPEC = idSPEC and
pA = idA.

�
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Remarks

1. This definition generalizes that of (deterministic) processes of Place/Transi-
tion nets which is obtained in the special case where SPEC consists of one
sort and A of one element (black token) only.

2. If K is an AHL-multi-occurrence net, then p : K → N is called AHL-
multi-process. AHL-multi-process seem to be an interesting alternative to
AHL-processes in the high-level case as shown in the following examples.

3. We only define deterministic AHL-processes, but nondeterministic processes
are obtained if K is a nondeterministic AHL-occurrence net (see Remark 3
of Definition 2.5).

Example 2.7 (AHL-processes of Dining Philosophers).
The AHL-net COURSE1 resp. COURSE2 in Figure 2 with the same data type
part as that of DIPHI in Example 2.3 is a (deterministic) AHL-occurrence net
resp. AHL-multi-occurrence net, because COURSE2 violates the unitarity con-
dition (see Definiton 2.5.1). Moreover, we obtain a (deterministic) AHL- process
p1 : COURSE1 → DIPHI resp. (deterministic) AHL- multi-process
p2 : COURSE2 → DIPHI by defining the morphisms p1 and p2 as suggested
by the labelling in Figure 2:

TAKE

ls(x)=y
rs(x)=z

TAKE

ls(x)=y
rs(x)=z

F1
’ F2’

T’ F’ T’

E

PUT

E

PUT

y    z

ls(x)    rs(x)

F1
F2

’’ T’’
’’

F’’ T’’

x

x

x

x
rs(x)

ls(x) x

x

x

y z x

1COURSE COURSE2

Fig. 2. AHL-process and AHL-multi process of AHL-net DIPHI with AHL-
occurrence net COURSE1 and AHL-multi occurrence net COURSE2

More precisely, p1 : COURSE1 → DIPHI maps F ′
1, F

′
2, F

′′
1 , F ′′

2 to FORK,
T ′ and T ′′ to THINK and E to EAT in DIPHI. Similarly p2 : COURSE2 →
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DIPHI maps F ′, F ′′ to FORK, T ′, T ′′ to THINK, and E to EAT, while tran-
sitions are mapped identically in both cases.

The mappings p1 : COURSE1 → DIPHI and p2 : COURSE2 → DIPHI
are both AHL-net morphisms preserving the data type parts. We only show
compatibility of p1 for TAKE with pre-domains:

(id⊗ p1P )
⊕(pre1(TAKE)) = (id⊗ p1P )

⊕((y, F ′
1)⊕ (z, F ′

2)⊕ (x, T ′))
= (y, FORK)⊕ (z, FORK)⊕ (x, THINK)
= preDIPHI(TAKE)
= preDIPHI(p1T (TAKE))

It is interesting to note that the two processes of DIPHI in Figure 2 have
different behaviors as formally shown for their flattenings in Section 3.

Finally let us note that we have an AHL-net morphism f : COURSE1 →
COURSE2 which maps F ′

1 and F ′
2 to F ′ and F ′′

1 and F ′′
2 to F ′′. This leads to

an AHL-multi-process morphism (f, idDIPHI) from p1 to p2 (see below).
�

Definition 2.8 (Category of AHL-processes).
Given AHL-processes p1 : K1 → N1 and p2 : K2 → N2 an AHL-process mor-
phism is a pair (fK , fN ) of AHL-net morphisms such that the following diagram
commutes:

p
1 N1K1

p
2

NK2 2

fK N=f

The category AHL-Proc has AHL-processes as objects and AHL-process
morphisms as arrows. Similarly AHL-Multi-Proc is the category consisting
of AHL-multi-processes as objects and AHL-process morphisms between AHL-
multi-processes as morphisms. �

AHL-Proc and AHL-Multi-Proc are well-defined because they form dia-
gram categories over AHL-Net (see Definition 2.4).

Remark In the case of low-level nets there is also another view how to define a
category of processes: Inspired by the ”arrows as computations” philosophy, in
[DMM89] a category of processes is defined where processes are viewed as arrows
of a category in which objects are the possible states of the net (markings) and
the source and target of a process are the starting and final state for the process
itself.
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3 Flattening of AHL-processes

In this section we review the well-known flattening construction from AHL-
nets to Place/Transition nets and apply it to construct the flattening of AHL-
processes introduced in the previous section. We will see that the flattening of
an AHL-process is in general not a low- level process of place/transition nets,
because the flattening may contain forward and/or backward conflicts. We call
a place of an AHL-occurrence net K to be in forward resp. backward assignment
conflict if there is a corresponding place in Flat(K) which is in forward resp.
backward conflict. The main result of this section is a characterization of assign-
ment conflicts for AHL-processes. Moreover, we discuss the relationship between
the AHL-process of an AHL-net N and the low-level processes of the flattening
Flat(N) of N .

Definition 3.1 (Place/Transition Nets and Processes).
A Place/Transition net (P/T net),

N = (P, T, pre, post)

consists of sets P and T of places and transitions respectively, and pre- and
post-domain functions

pre, post : T → P⊕

where P⊕ is - as in Definition 2.1 - the free commutative monoid over P .
A P/T net morphism f : N1 → N2 is given by f = (fP , fT ) with functions

fP : P1 → P2 and fT : T1 → T2 such that the following diagram commutes
separately for pre- and post-functions:

f

2

1
1

1

P

P

P1

f T

22
2

pre

post

T
pre

post

T

�

The category Net consists of P/T nets as objects and P/T-net morphisms
as morphisms.

A (deterministic) P/T process of a P/T net N is a P/T net morphism
p : K → N , where K is a (deterministic) occurrence net, i.e. a net satisfying
conditions 1-4 of Definition 2.5.
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Remark The case of nondeterministic P/T processes can be obtained by drop-
ping condition 2 which requires the absence of no forward conflicts. A slightly
more restrictive notion of nondeterministic processes is considered in [Eng91]. If
condition 1 is dropped, K is called multi-occurrence net and p : K → N a P/T
multi-process of N .

Definition 3.2 (Flattening).

1. Given an AHL-net N = (SPEC,P, T, pre, post, cond, type,A), the flattening
Flat(N) of N is a P/T net

Flat(N) = (CP,CT, preA, postA)

defined by
– CP = A⊗ P = {(a, p)|a ∈ Atype(p), p ∈ P}, called colored places;
– CT = {(t, asg)|t ∈ T, asg : V ar(t) → A, s.t. all equations e ∈ cond(t)

are valid in A under asg}, called consistent transition assignments;
– preA(t, asg) =

∑n
i=1(asg(termi), pi) for pre(t) =

∑n
i=1(termi, pi) where

termi ∈ TOP (X)type(pi) and asg : TOP (V ar(t)) → A is the extension of
the assignment asg : V ar(t) → A to terms (see [EM85]);

– postA(t, asg) =
∑m

i=1(asg(term
′
i), p

′
i) for post(t) =

∑m
i=1(term

′
i, p

′
i).

2. Given an AHL-net morphism f : N1 → N2 with f = (fSPEC , fP , fT , fA, ),
the flattening Flat(f) of f is a P/T-net morphism given by

Flat(f) = (fA ⊗ fP : CP1 → CP2, fC : CT1 → CT2)

where fC is defined by fC(t1, asg1) = (fT (t1), asg2) with asg2 given by

Var( t1 )
asg

A
1

1

fA
f
OP

Var(f (tT
asg2

A 21))

(bijectivity of fOP on variables of transitions is required in Definition 2.3).

�

Fact 3.3 (Flattening Functor).

The flattening conctruction defined in Definition 3.2 is well-defined and can be
turn into a functor

Flat : AHL-net → Net

�
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Proof

1. Flat (N) is a well-defined P/T net if we show preA(t, asg), postA(t, asg) ∈
CP⊕ = (A ⊗ P )⊕. In fact we have asg(termi) ∈ Atype(pi) because termi ∈
TOP (X)type(pi)

by definition of pre(t) ∈ (TOP (X)⊗ P )⊕. This implies preA(t, asg) =∑n
i=1(asg(termi), pi) ∈ (A⊗ P )⊕ and similarly for postA(t, asg).

2. For symmetry reasons it suffices to show commutativity of

CT1
pre1A

CP1 = ( A1 P1 )

CT
pre

CP = ( A P )2 2 2 2
2A

(fCf A fP )

Given (t1, asg1) ∈ CT1 we have for pre1(t1) =
∑n

i=1(termi, pi)

(fA ⊗ fP )⊕(pre1A(t1, asg1)) = (fA ⊗ fP )⊕(
n∑

i=1

(asg1(asg1)(termi), pi)

=
n∑

i=1

(fA(asg1(termi)), fP (pi)) (1)

(pre2A(fC(t1, asg1)) = (pre2A(fT (t1), asg2)

=
n∑

i=1

(asg2(f
#
OP (termi)), fP (pi)) (2)

where the last equation holds, because f AHL-net morphism implies:

pre2(fT (t1)) = (f#
OP ⊗ fP )⊕(

n∑

i=1

(termi, (pi))

= (f#
OP ⊗ fP )⊕(

n∑

i=1

(termi, pi))

=
n∑

i=1

(f#
OP (termi), fP (pi)).

Comparing (1) and (2) is suffices to show

asg2(f
#
OP (termi)) = fA(asg1(termi)) (i = 1 . . . n). (3)
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For (3) it is sufficient to show commutativity of (5) in the following diagram:

1

2

Var(t1) TOP (Var(t1 ))
xevalA1(asg1)

A1

T(t1 )) TOP (Var(fT (t 2 ))
xevalA2 2 A2

OPf
OP
#f (5) Af

asg1

asg2

(asg )

(4)

Var(f

But due to commutativity of (4) and the outer diagram by definition of
asg2 diagram (5) commutes because TOP1(V ar(t1)) is a free construction
(see [EM85]).

3. Obviously we have Flat(f) = idFlat(N) for f = idN . We can show Flat(g ◦
f) = Flat(g) ◦ Flat(f) by composing the corresponding diagrams in part 2
of the proof and using the properties
(g ◦ f)C = gC ◦ fC and ((g ◦ f)A ⊗ (g ◦ f)P )⊕ = (gA ⊗ gP )⊕ ◦ (fA ⊗ fP )⊕.

Example 3.4 (Flattening of Dining Philosophers).
Given the AHL-net DIPHI for dining philosophers in Example 2.3 we obtain
the following flattening

Flat(DIPHI) = (CP,CT, preA, postA)

with

– CP = A⊗ P = {(Pi, T ), (Pi, E), (Fi, F )|i = 1 . . . n}
– CT = {(TAKE, asgi), (PUT, asgi)|asgi(x) = Pi, i = 1 . . . n}

where T = THINK,E = EAT, F = FORK and asgi(y), asgi(z) are
uniquely determined by asgi(x) = Pi and the equations lsA(x) = y and
rsA(x) = z. The net Flat(DIPHI) in the case n = 3 is shown in Figure 3:

�

Remark 3.5 (Flattening of AHL-processes).
As we will show in the following examples, an AHL- process p : K → N can be
flattened to

Flat(p) : Flat(K) → Flat(N),

but Flat(p) is not necessarily a P/T process of Flat(N). In the first example
Flat(p) corresponds to a set of P/T-processes and in the second one Flat(K) is
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1P ,T

F3 ,F

asg1

1P1
,EF ,F

 PUTTAKE
asg1 (x) = P1(x) = P1

TAKE
asg asg

P ,T

TAKE
asg asg

PP

2 P ,T3

2 2 3 3

 PUT  PUT

2 ,E

2F ,F

3 ,E

3
(x) = P (x) = P3

(x) = P
2(x) = P

2

Fig. 3. Flattening of Dining Philosophers (n = 3)

not a low-level occurrence net, although K is a high-level occurrence net. This
is due to the fact that K has assignment conflicts which become conflicts in
Flat(K). In Definition 3.7 we will formally define assignment conflicts and in
Fact 3.8 we will give a characterization of them.

�

Example 3.6 (Flattening of AHL-processes).

1. The AHL-process p1 : COURSE1 → DIPHI (see 2.7) has the flattening

Flat(p1) : Flat(COURSE1) → Flat(DIPHI)

where Flat(DIPHI) is given in example 3.4, Flat(COURSE1) in Figure 4
and Flat(p1) maps places (Pi, T

′) and (Pi, T
′′) to (Pi, T ), (Pi, E) to (Pi, E),

and (Fi, F
′
j), (Fi, F

′′
j ) to (Fi, F ) for i ∈ {1, 2, 3}, j ∈ {1, 2}.

Obviously Flat(p1) corresponds to three processes of Flat(DIPHI) with
usual initial marking init =

∑3
i=1(Pi, T ) ⊕ (Fi, F ). Since we have not con-

sidered initial markings up to now, Flat(p1) is formally a (single) process
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, FF
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’’

’’

1 2
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1(x) = Pasg 1

3
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2

2
3

32

PUT PUT PUT

Fig. 4. Flattening of AHL-process p1 : COURSE1 → DIPHI

of Flat(DIPHI). The usual interpretation of Flat(p1) would have as ini-
tial marking one token on each input place, which would be mapped to the
marking

init2 =
3∑

i=1

(Pi, T )⊕ 2(Fi, F )

where two forks are on each fork place. This would avoid conflicts, but
does not correspond to the problem of shared resources. Taking into ac-
count initial markings (see Subsection 4.4), Flat(p1) is not a process of
(Flat(DIPHI), init), but only a set of three single processes.

2. The flattening of the AHL-multi-process p2 : COURSE2 → DIPHI (see
Example 2.7) leads to the following flattening:

Flat(p2) : Flat(COURSE2) → Flat(DIPHI)

where Flat(DIPHI) is given in Example 3.4, Flat(COURSE2) in Figure 5
and Flat(p2) maps places (Pi, T

′) and (Pi, T
′′) to (Pi, T

′), (Pi, E) to (Pi, E),
and (Fi, F

′), (Fi, F
′′) to (Fi, F ) for i ∈ {1, 2, 3}.

The P/T net Flat(COURSE2) is neither an occurrence net, nor a multi-
occurrence net, although COURSE2 is an AHL-multi-occurrence net.
Especially COURSE2 has no forward and backward conflicts, but
Flat(COURSE2) has three forward conflicts for places (Fi, F

′) and 3 back-
ward conflicts for places (Fi, F

′′), i ∈ {1, 2, 3}.
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F1 , F’

F1 , F’’ ’’P , T3

P3 , T’

TAKE
(x) = Pasg
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(x) = Pasg
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1(x) = Pasg 1

3

TAKE
(x) = Pasg
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(x) = Pasg
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2 , F 3F 1 , T ’P P2 , T’

’’P , TF

F’ , F’

, F’’ , F’’2 P2F 3 , T’’1

Fig. 5. Flattening of AHL-multi-process p2 : COURSE2 → DIPHI

In fact we have in COURSE2

pre(TAKE) = (x, T ′)⊕ (y, F ′)⊕ (z, F ′).

This implies for asg1 with asg1(x) = P1, asg1(y) = F3, asg1(z) = F1:

preA(TAKE, asg1) = (P1, T
′)⊕ (F3, F

′)⊕ (F1, F
′).

But (F1, F
′) is also in the pre-domain of (TAKE, asg2) leading to a forward

conflict in Flat(COURSE2).
According to the following definition of assignment conflicts (see Defini-
tion 3.7) the place F ′ of COURSE′

2 is in forward assignment conflict, be-
cause (F1, F

′) defines a forward conflict in the flattening Flat(COURSE2)
of COURSE2.

3. If we drop the equations of transition TAKE of COURSE1 and DIPHI,
then COURSE′

1 is an AHL-process of DIPHI ′ and we have two different
consistent assignments asg1, asg

′
1 with asg1(x) = P1, asg1(y) = F3, asg1(z) =

F1 and asg′1(x) = P1, asg
′
1(y) = F1, asg

′
1(z) = F3 leading to a forward as-

signment conflict for place T ′, because (P1, T
′) is in the pre-domain of the

transitions (TAKE, asg1) and (TAKE, asg′1). Note that asg1 is not a consis-
tent assignment for COURSE1 andDIPHI, such that we have no transition
(TAKE, asg′1) in Flat(COURSE1) and Flat(DIPHI).
This example shows that also AHL-processes may have assignment conflicts,
while Example 2 has shown assignment conflicts for the AHL-multi-process
p2 : COURSE2 → DIPHI.

�
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Definition 3.7 (Assignment Conflicts).
Given a (deterministic) AHL-occurrence net

K = (SPEC,P, T, pre, post, cond, type,A)

a place p ∈ P is in forward (resp. backward) assignment conflict in K if there is
a data a ∈ Atype(p) such that the place (a, p) ∈ A ⊗ P defines a forward (resp.
backward) conflict in the flattening Flat(K) of K.

�

Remark According to definition 2.5 (a, p) ∈ A ⊗ P defines a forward (resp.
backward) conflict in Flat(K) if there are distinct transitions (t, asg), (t′, asg′) ∈
CT with

(a, p) ∈ [preA(t, asg)] ∩ [preA(t′, asg′)]

(forward conflict) resp.

(a, p) ∈ [postA(t, asg)] ∩ [postA(t′, asg′)]

(backward conflict).
In the following we give a characterization for forward and backward assign-

ment conflicts:

Theorem 3.8 (Characterization of Assignment Conflicts).
Given a (deterministic) AHL-occurrence net K as in 3.7 a place p ∈ P is in
forward (resp. backward) assignment conflict in K if and only if the following
assignment conflict condition is satisfied:

There is a transition t ∈ T with pre(t) =
∑n

i=1(termi, pi) (resp. post(t) =∑n
i=1(termi, pi)) such that p = pi for some i ∈ {1, . . . , n} and there are consis-

tent assignments asg �= asg′ with

asg(term) = asg′(term) = a

for some a ∈ Atype(p) and term = termi as shown in Figure 6.
�

Remark In the case of AHL-multi-occurrence nets K the assignment condition
is slightly more general because we require the existence of t ∈ T with p = pi = pj
for some
i, j ∈ {1, . . . , n} and consistent assignments asg �= asg′ with

asg(termi) = asg′(termj) = a ∈ Atype(p)

which includes the condition above for i = j.
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term

Forward Assignment Conflict Backward Assignment Conflict

Fig. 6. Forward and Backward Assignment Conflicts with (t, asg) �= (t, asg′) ∈
CT and asg(term) = asg′(term)

Proof For symmetry reasons it suffices to consider forward conflicts.
Necessity of Assignment Conflict Condition
Given a place p ∈ P in forward assignment conflict we have (a, p) ∈ A ⊗

P, (t, asg) �= (t′, asg′) ∈ CT with

(a, p) ∈ [preA(t, asg)] ∩ [preA(t′, asg′)].

Let pre(t) =
∑n

i=1(termi, pi) and pre(t′) =
∑m

j=1(term
′
j , p

′
j) then

preA(t, asg) =
n∑

i=1

(asg(termi), pi), preA(t′, asg′) =
m∑

j=1

(asg′(term′
j), p

′
j)

which means that we have i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} with

(a, p) = (asg(termi), pi) = (asg′(term′
j), p

′
j).

This implies p = pi = p′j and a = asg(termi) = (asg′(term′
j).

Case 1 (t �= t0) In this case we have p = pi = p′j ∈ •t∩•t′ for t �= t′ and hence
a forward conflict in K, which contradicts the fact that K is an AHL-occurrence
net.

Case 2 (t = t0) In this case p = pi = p′j and pre(t) = pre(t′) implies termi =
term′

j such that we have for term = termi the assignment conflict condition

asg(term) = asg′(term) = a

with asg �= asg′, because (t, asg) �= (t′, asg′) and t = t′.
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Sufficiency of Assignment Conflict Condition:
Given the assignment conflict condition we have asg �= asg′ with

(a, p) ∈ [preA(t, asg)] ∩ [preA(t′, asg′)].

This implies (t, asg) �= (t, asg′) and hence (a, p) defines a forward conflict in
Flat(K), i.e. a forward assignment conflict for p in K.

Remark In the case of an AHL-multi-occurrence net K case 2 above allows
termi �= termj for pi = p′j and hence the slightly more general assignment
conflict condition.

Remark 3.9 (Relationship between High-Level and Low-Level Processes).

1. Given an AHL-process p : K → N we have seen already that
Flat(p) : Flat(K) → Flat(N) is not necessarily a low-level process of
Flat(N) because K may have an assignment conflict which causes a con-
flict in Flat(K). But if K has no assignment conflicts, then Flat(K) has no
conflicts and Flat(p) is a low-level process. Moreover, even in the general
case with assignment conflicts of K each low-level process q : L → Flat(K)
defines a low-level process q′ = Flat(p) ◦ q : L → Flat(N) of Flat(N). In
this way we obtain the set of all low-level processes of Flat(N) associated to
p : K → N .

2. Vice versa let us call a low-level process q′ : L → Flat(N) high-level-
representable, if there is an AHL-process p : K → N and a P/T-process
q : L → Flat(K) such that q′ = Flat(p) ◦ q : L → Flat(N). For ex-
ample let L1, L2, L3 be the three connected low-level occurrence nets in
Figure 4 leading to low-level processes q′i = Flat(DIPHI) (i = 1 . . . 3).
Then each of these processes is high-level representable by the AHL-process
p1 : COURSE1 → DIPHI, where
q′i : Li → Flat(COURSE1) is the embedding of Li into Flat(COURSE1)
in Figure 4.
In general, we claim that (under mild assumptions which we dont know yet)
each low-level process q′ : L → Flat(N) is high-level representable by some
AHL-processes p : K → N , where the net structures of K and L coincide,
i.e. the skeleton of K is isomorphic to L. In other words, q′ : L → Flat(N)
can be lifted to a high-level process p : K → N with some q : L → Flat(K).

L Flat(N)

Flat(K)

q’

Flat(p)
q

=

�
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4 Future Perspectives

In this section, we discuss several extensions of AHL-processes and flattening
introduced in the previous sections. Each of these extensions can be considered
in its own right, but most of them can be also combined with each other. A more
detailed presentation of most of these extensions will be given in forthcoming
papers.

4.1 High-Level Net Processes

We have defined processes for AHL-nets in Section 2, where AHL-nets, however,
are only one specific type of high-level nets. Of course the question arises how
far this can be generalized to other types of high-level nets, like colored nets
or predicate transition nets. In [EP97a, EP97c, PE01] we have introduced the
notion of parameterized net classes, which can be instantiated to a great variety
of low-level and high-level net classes in the literature including colored nets
[Jen92] and predicate transition nets [Gen91]. The categorical theory of param-
eterized net classes is based on the notion of abstract Petri nets introduced in
[Pad96]. This notion relies on an institution for the data type part and on a
net structure functor Net : Sets → Sets for the net structure part. In [Pad96]
the instantiation for P/T nets is given by Net(P ) = P⊕ and for AHL-nets by
Net(P ) = (TOP (X) × P )⊕. The basic concepts of a theory of abstract Petri
nets are developed, including the category of abstract Petri nets and a flattening
construction from high-level to low-level abstract Petri nets. But a concept of
processes for abstract Petri nets generalizing processes for elementary nets and
P/T nets is not yet considered in [Pad96] or elsewhere. As discussed in Section
2 the main problem is to find a suitable notion of occurrence net in the case of
high-level nets. In fact, our notion of AHL-occurrence net and process in Defini-
tions 2.5 and 2.6 can be generalized to abstract Petri nets, if we are able to define
the pre-domain •t and the post-domain t• of a transition t ∈ T . The present
version of abstract Petri nets in [Pad96] does not allow to define these domains
as subsets of the set of places P . For this purpose an idea could be to extend
the notion of abstract Petri nets by a natural transformation

[ ] : Net → P
from the net-structure functor Net : Sets → Sets to the power set functor

P : Sets → Sets, where the family of functions

[ ]P : Net(P ) → P(P )

is intended to define for each marking m ∈ Net(P ) over a set P of places the
subset [m]P ⊆ P of places occurring in the markingm. In the case of P/T nets we
have Net(P ) = P⊕ and []P : P⊕ → P(P ) can be defined for m =

∑n
i=1(λi, pi)

with pi ∈ P and λi ∈ IN − {0} by

[m]P = {p1, . . . pn} ⊆ P.
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Similarly in the case of AHL-nets with Net(P ) = (TOP (x) × P )⊕ and m =∑n
i=1(termi, pi) with pi ∈ P and termi ∈ TOP (X) by

[m]P = {p1, . . . pn} ⊆ P.

In both cases we obtain a natural transformation, which means in the case of
P/T nets commutativity of the following diagram for each function f : P1 → P2.

P1

P2

(P
1

)

(P )
2

(f)f

1P
[  ]

P2
[  ]

P

P

P

In fact, we have for m =
∑n

i=1(λi, pi)

P(f)([m]P1) = P(f){p1, . . . pm} = {f(p1), . . . f(pm)}

= [
n∑

i=1

(λi, f(pi))]P2 = [f⊕(m)]P2 .

Using this natural transformation we are able to define pre-domain •t and
post-domain t• of a transition t ∈ T by

•t = [pre(t)]P ⊆ P and t• = [post(t)]P ⊆ P

With these notions we can generalize at least the conflict- and partial order
conditions in Definition 2.5 to abstract Petri nets. In order to define unarity we
must be able to distinguish between set and multisets which would require an
additional extension of abstract Petri nets.

Finally let us note that AHL-nets as defined in Definition 2.1 of this paper
are slightly different from those in [PER95] and [Pad96]. In our case we have

Net(P ) = (TOP (X)× P )⊕,

where TOP (X)⊗ P ⊆ TOP (X)× P depends on the type function type : P → S,
which is not present in the definition of AHL-nets in [PER95] and [Pad96]. In
fact, our definition is much more adequate in the case of flattening: Otherwise
in our running example (and similar for most other examples) the places of the
flattened net would include also pairs (Pi, FORK) and (Fi, THINK), where
philosophers Pi are on the place FORK or forks Fi on the place THINK. On
the other hand Net in our case is no longer a functor Net : Sets → Sets, but a
slightly different functor Net : (Sets ↓ S) → Sets, because type : P → S is an
element of the comma category Sets ↓ S.



212 Hartmut Ehrig et al.

This, however, would require an extension of the notion of abstract Petri nets
in [Pad96].

4.2 Higher Order Net Processes

In [Hof00, Hof01] we have introduced the concept and formal definition of Alge-
braic Higher Order Nets to model flexible business processes. Algebraic Higher
Order Nets are AHL-nets where the data type part is extended by higher or-
der types, sorts and functions. This allows to have functions as data items on
places which are typed by higher order sorts, such that different functions may
be activated and applied during run time. This feature is especially useful to
model flexible business processes, where the choice of different functions would
require different nets, in the case of ordinary AHL-nets, but can be modeled
with a single Algebraic Higher Order Net using different functions as tokens.
For a restricted class of Algebraic Higher Order Nets it is possible to define an
unfolding operation leading to an AHL-net. This is similar in some sense to the
flattening construction of AHL-nets leading to Place/Transition nets discussed
in Section 3. But in general Algebraic Higher Order Nets are more expressive
than AHL-nets.

AHL-nets in contrast to Algebraic Higher Order Nets are adequate in appli-
cation domains, where the context is known from the very beginning. The system
can be modeled by a Petri net with a fixed net structure, that is, changes of the
environment can only be modeled by changing the structure of Petri nets. But in
other application domains like business processes it is also desirable to support
the fact that an organisation of a system is not fixed once and for all. Rather, a
large variety of changes e.g. replacing one task by another refined task can oc-
cur. In such application domains it is useful to use Algebraic Higher Order Nets.
In [Hof01] we have used Algebraic Higher Order Nets in an example of logistic
processes and discussed different kinds of changes which are supported by this
formalism. In a forthcoming paper this example will be extended to a whole case
study where specific scenarios will be modeled as processes for AHL-nets and
Algebraic Higher Order Nets.

In fact, the main difference between Algebraic Higher Order Nets and AHL-
nets consist in the use of higher order functions in the data type part. This
means that the extension of high-level occurrence nets and processes to higher
order occurrence nets and higher order processes seems to be quite natural and
will be studied as part of ongoing work.

4.3 Open AHL-processes

In [BCEH01] we have formally defined the notion of open P/T net and process
of such P/T nets leading to a compositional modeling of reactive systems. The
main result in [BCEH01] is an amalgamation theorem which allows the amalga-
mation and decomposition of open P/T nets. This kind of result is not possible
for ordinary P/T nets, because ordinary P/T nets cannot take into account the
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behavior of the environment. On the other hand this is the essential new fea-
ture of open nets, where in addition to producing and consuming tokens from
places by firing of transitions we have open places, where so called ”invisible
actions” can produce or consume tokens on these open places. The intuitive idea
is that the open places are the interface towards the environment. The ”invisi-
ble actions” of one open net component can be interpreted as the consequence
of the firing of transitions of other open net components which belong to the
environment of the first component sharing the open places as interface places.

This idea of open net has been applied to the modeling of interorganizational
workflows in the sense of [vdA98] and on a conceptual level to interoperability
in train control systems [PJE+01]. In the second application open high-level
processes have been introduced on a conceptual level already, and called scenario
nets in [PJE+01]. In this paper we have defined AHL-processes, which can be
extended to open nets in the sense of [BCEH01]. In fact, the idea of open places in
[BCEH01] allows to define open AHL-nets, open AHL-net morphisms and open
AHL-processes of open AHL-nets. As far as we can see it is possible to extend
on one hand the theory of open nets and processes of P/T nets in [BCEH01]
to open AHL-nets and processes, and on the other hand the flattening of AHL-
processes in this paper to open AHL-processes.

4.4 AHL-processes with Initial Marking

For low-level processes p : K → N it is implicitly assumed that we have an
initial marking initK , where each input place of the occurrence net K contains
exactly one token. Moreover, if N has an initial marking initN then it is assumed
that p(initK) = initN . Sometimes it is useful to require p(initK) ≤ initN or
p(initK) ≥ initN .

For high-level processes p : K → N of an AHL-net with initial marking initN
we propose to have a set of markings INITK , where each initK ∈ INITK is a
marking of all input places of K, i.e.

[initK ] = {p ∈ PK |¬∃ t ∈ TK : p ∈ [postK(t)]},
and p(initK) = initN . Here [m] denotes the set of all places occurring in

m i.e. for m =
∑n

i=1(termi, pi) we have [m] = {p1, . . . pn}, where unitarity of
K implies that p1, . . . pn are pairwise disjoint. The idea to have a set INITK

of initial markings for the high-level process corresponds to the idea that the
process should be defined for different input parameters initK ∈ INITK .

In our running example of dining philosophers we should have n initial
markings for the process p1 : COURSE1 → DIPHI (resp. multi-process p2 :
COURSE2 → DIPHI) if DIPHI has the standard initial marking

initDIPHI =
n∑

i=1

(Pi, THINK) +
n∑

i=1

(Fi, FORK)
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In fact, the n initial markings of COURSE1

init
(i)
COURSE1

= (Pi, T
′
1)⊕ (lsA(Pi), F ′

1)⊕ (rsA(Pi), F ′
2) (i = 1 . . . n)

correspond to the n cases, where each philosopher Pi(i = 1 . . . n) has his associ-
ated forks. For the multi-process we would have

init
(i)
COURSE2

= (Pi, T
′)⊕ (lsA(Pi), F ′)⊕ (rsA(Pi), F ′) (i = 1 . . . n),

where we have two tokens on F ′, i.e. the two forks of Pi.
Of course, it would make no sense to have the initial marking

initCOURSE1 = (P1, T
′)⊕ (F1, F

′
1)⊕ (F2, F

′
2)

In this case the transition TAKE could not fire, because the left-side fork of
P1 is F3 and the right-side fork is F1. However, it is probably not useful to force
by definition that K can fire for each initial marking initK ∈ INITK . But it
is interesting to analyze under which condition there is - up to independence of
firing - only one firing sequence in K leading from the initial marking intitK to
some final marking finK of K, i.e. finK contains only tokens on output places
of K. For this purpose it makes sense to extend the flattening construction of
Section 3 to the case with initial markings:

A marking m in the high-level case of AHL-net N is given by

m =
n∑

i=1

(ai, pi) ∈ (A⊗ P )⊕.

In fact, m can also be interpreted as a marking of the low-level net Flat(N),
because A ⊗ P is the set of places of Flat(N). Hence for (N, init) we obtain
Flat(N, init), where init is initial marking of N and Flat(N).

For a high-level process p : K → N with set of initial markings INITK of K
and initial marking INITN of N we obtain the following flattenings

Flat(p) : Flat(K, initK) → Flat(N, initN) f or all initK ∈ INITK .

As pointed out already Flat(K) is not necessarily a low-level occurrence net.
Moreover, initK is not necessarily a marking of all the input places of Flat(K).
For example, init(1)COURSE1

is only a marking for three of the nine input places of
Flat(COURSE1) in Figure 4, where we have n = 3 philosophers. But for each
initial marking of COURSE1 we obtain one subnet of Flat(COURSE1) leading
to a well-defined low-level process of Flat(DIPHI, initDIPHI).

In general, each high-level process p : K → N with initial markings INITK

and initN defines a set of low-level processes of Flat(N) given by
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LL(p, INITK) = {q′ : L → Flat(N, initN)|q′ = Flat(p) ◦ q for some low-level
process

q : L → Flat(K, initK) with initK ∈ INITK}.
Vice versa, given a low-level process q′ : L → Flat(N, initN) we call q′ high-

level representable, if there is an AHL-process p : K → N with initial markings
INITK and initN and a low-level process q : L → Flat(K, initK) for some
initK ∈ INITK with q′ = Flat(p) ◦ q. Again the problem arises under which
assumptions low-level processes are high- level representable and which sets of
low-level processes are realizable by one high-level process.

4.5 AHL-processes with Data Type Behavior

In order to define the data type behavior of AHL-processes it makes sense to
consider processes p : K → N not only with initial markings INITK and initN
as discussed above, but also with finite sequences of input and output places (i.e.
an arbitrary but fixed order of finite sets instead of arbitrary sets) IN and OUT
given by

IN = (p1 . . . pn) and OUT = (p′1 . . . p
′
m).

Let si = type(pi) (i = 1 . . . n) and sj = type(p′j) (i = 1 . . .m) then we can
define input and output parameter sets

A = As1 × · · · ×Asn and B = As′1 × · · · ×As′m ,

where A is the data type algebra of the AHL-nets K and N .
The set of all possible final markings of the out-put places of K is given for

OUT = (p′1 . . . p
′
m) by

FINK = {finK ∈ (A⊗ P )⊕| ∃b = (a′1 . . . a
′
m) ∈ B, finK =

m∑

j=1

(a′j , p
′
j)}

In this case let data (finK) = (a′1 . . . a
′
n) = b ∈ B. Similarly let data(initK) =

(a1 . . . an) = a ∈ A for initK =
∑n

i=1(ai, pi).
With these preliminaries we can define the data type behavior of (pi, INITK)

by
data− type− beh(p, INITK)
= {(a, b) ∈ A⊗B| ∃initK ∈ INITK , ∃finK ∈ FINK , and ∃ firing sequence
from initK to finK in K with data(initK) = a and data(finK) = b}.

In the case of our process p1 : COURSE1 → DIPHI we have

A = Afork ×Afork ×Aphilo = B

and the data type behavior of (p1, INITCOURSE1) is a partial identity
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data − type − beh(p1, INITCOURSE1) : A−→◦ B defined on the following input
parameter values

(Fn, F1, P1), (F1, F2, P2), . . . , (Fn−1, Fn, Pn).

In each case there is exactly one firing sequence from the corresponding initial
to the corresponding final marking.

In general it seems to be useful to analyze high-level processes p : K →
N with (INITK , initN) concerning consistency and completeness. Consistency
would require that for each initK ∈ INITK there is at least one (or exactly one
up to independence of firing) firing sequence from initK to some final marking
finK ∈ FINK . Completeness means that INITK contains all those markings
of the input places init, such that there exists a firing sequence to some finK ∈
FINK .

AHL-nets and processes with data type behavior as discussed above are an
important example for the instantiation of the integration paradigm in [EO01a]
of integrated data type and process modeling techniques.

4.6 Construction of Low- and High-Level Net Processes

There are several different kinds of process constructions which should be con-
sidered for high-level nets:

1. A well-known construction of nondeterministic processes in the low-level
case is the unfolding of a given net. It is certainly interesting to extend the
unfolding constructions and results to open low-level nets in the sense of
[BCEH01] on one hand and to high-level nets on the other hand. Especially
this is interesting in view of an event structure semantics for these types of
Petri nets generalizing the well-known Winskel adjunction of [Win88].

2. The idea of concatenable processes [DMM89, MMS97] is another important
issue which should be extended to open and high-level nets respectively and
also in combination. This allows sequential composition of processes, while
parallel composition should be defined via coproducts or tensor products. In
the case of open nets both constructions should be a special case of amalga-
mation in the sense of [BCEH01].

3. Using the constructions above it should be possible to define process terms
built up from basic processes in analogy to data type terms built up from
data type operations (see [EM85]). The closure of a given set of processes
w.r.t. process terms would correspond to the construction of all terms and the
term algebra respectively. This allows to define process types as nets together
with a given set of processes for these nets as advocated in [EMP97] already
and to study process types in analogy to data types in [EM85].

4. Given a net morphism f : N1 → N2, the translation of a process p1 : L → N1

is given by p2 = f ◦p : L → N2 and the restriction p1 : L1 → N1 of a process
p2 : L2 → N2 can be defined via the following pullback
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L1 2L

N1 N2

p
2

p
1 PB

provided that the corresponding pullback construction exists for the corre-
sponding net class and L1 becomes an occurrence net. See [BCEH01] for the
restriction of open processes for open P/T-nets.

4.7 Component Concept for Low- and High-Level Nets

In [EO01a, EO01b] we have introduced a components concept for integrated data
type and process modeling techniques. The basic idea - in analogy to the alge-
braic module specification concept in [EM90] - is to have for each component an
import specification IMP , export specification EXP , body specification BOD
and two types of morphisms

i : IMP → BOD and e : EXP → BOD

connecting import and export with the body specification.
An integrated data type and process specification according to [EO01a] is

defined on 4 layers: the data type layer 1, the data state and transformation
layer 2, the process layer 3, and the system architecture layer 4.

In the case of AHL-nets N layer 1 consists of the algebraic specification
SPEC of N , in layer 2 the data states correspond to markings of N and trans-
formations between data states are defined by firing of the transitions of N ,
and processes in layer 3 should be high-level processes of N as defined in this
paper, or open AHL-processes as discussed in 4.1. Up to now, however, there
is no component concept for AHL-nets corresponding to layer 4, or to the gen-
eral component concept in [EO01b]. An instantiation of the general component
concept leads to the following ideas of a component concept for AHL-nets.

Roughly spoken import, export and body consist of (open) AHL-netsNI , NE ,
and NB respectively together with a set of (open) AHL-processes in each case.
The morphism e : EXP → BOD is based on an (open) AHL-net morphism fe :
NE → NB such that the export processes are restrictions (see Subsection 4.7) of
corresponding body processes. The morphism i : IMP → BOD is constructive
in the sense of [EO01b]. This means that on one hand the import processes are
translated along i : IMP → BOD to become body processes. On the other hand
the body net NB and the body processes are constructed from corresponding
parts of the import and new parts introduced in the body. Especially the body
net NB might be constructed as union (pushout) of NI and some auxiliary net
Naux. In the case of open AHL-nets and processes (see Subsection 4.3) the new
body processes might be constructed by amalgamation of import processes of
NI and auxiliary processes of Naux. But also other constructions in the sense of
Subsection 4.6 could be used to construct new body processes.
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Another alternative - also proposed in Subsection 4.6 and [EO01b] - would
be to define the morphism e : EXP → BOD by a suitable net transformation
in the sense of [PER95] and i : IMP → BOD as net inclusion. This corresponds
to the idea that the relationship between export and body is a refinement.

In fact, both alternatives discussed above are not only useful for a component
concept of high-level nets, but also for low-level nets, which are also discussed
as instantiation of the general integration paradigm in [EO01a, EO01b].
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