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Abstract

System F-bounded is a second order typed lambda calculus, where
the basic features of object-oriented languages can be naturally modelled.
F-bounded extends the better known system F≤, in a way that provides an
immediate solution for the treatment of the so-called “binary methods”. Al-
though more powerful than F≤ and also quite natural, system F-bounded has
only been superficially studied from a foundational perspective and many of
its essential properties have been conjectured but never proved in the lit-
erature. The aim of this paper is to give a solid foundation to F-bounded ,
by addressing and proving the key properties of the system. In particular
transitivity elimination, completeness of the type checking semi-algorithm,
the subject reduction property for βη reduction, conservativity with respect
to system F≤ and antisymmetry of a “full” subsystem are considered, and
various possible formulations for system F-bounded are compared. Finally a
semantic interpretation of system F-bounded is presented, based on partial
equivalence relations.
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1 Introduction

System F-bounded is a type system which was defined by Canning, Cook, Hill,
Olthoff, and Mitchell [CCH+89] to model the basic features of object-oriented lan-
guages. F-bounded properly generalizes system F≤ [CW85, CG92, CMMS94], an
extension of the polymorphic lambda calculus (système F, [Rey74, Gir72]) with
subtyping.

The key ingredient of F≤ is the bounded type abstraction (or bounded polymor-
phism). It allows one to define a function which works for every type A′ that is a
subtype of a bound A, and whose result type depends on A′. In this way F≤ in-
tegrates the expressive power of parametric polymorphism with that of subtyping,
and it allows one to model many features of object-oriented languages, including
subtyping and inheritance. However, an important class of object types, discussed
later in Section 2, can be modelled naturally if the bound A of a quantified type
variable α is allowed to depend on α itself, a situation forbidden in F≤. System
F-bounded generalizes system F≤ by permitting this more liberal kind of quantifi-
cation.

The essential properties of system F≤ have been extensively studied. One of
the most important is transitivity elimination, i.e., the existence of an equivalent
type system which is syntax driven and hence which does not contain an explicit
transitivity rule [CG92]; a correct and complete type checking semi-algorithm is
defined in the same paper. Another basic result is the undecidability of the sub-
type checking problem [Pie94], which immediately implies the undecidability of
type checking. Termination of βη reduction, namely the fact that every reduction
sequence is finite, has been proved in [Ghe90]. Although βη reduction in itself is not
confluent, the confluence of reduction can be regained by adding a Top rule, which
equates all terms with type Top. The βηTop system is normalizing (every term has
a normal form), but it is still unknown whether it is terminating as well [CG94].
Finally, it has been proved that the extension of system F≤ with recursive types is
not conservative, namely that, once recursive types are added, the traditional sub-
type checking algorithm is no longer complete, even with respect to non recursive
types [Ghe93].

On the other hand, there have been few formal studies for system F-bounded . It
was explicitly formalized for the first time in [Ghe97], where βη reduction is proved
to be terminating. The same property has been shown to hold for a Curry version
(i.e., with implicitly typed variables) of the system, in [MKO95]. To the best of
our knowledge, nothing else has been explicitly proved about system F-bounded .
The lack of formal studies about system F-bounded is probably due to the fact
that its similarity to system F≤ suggests that the two systems should enjoy the
same properties. However this assumption must be carefully verified, since in many
cases common beliefs on systems of the F≤ family have been discovered to be false.
Moreover, system F-bounded differs from system F≤ at least in terms of the former
having a subtyping relation which is not antisymmetric, and also in the behaviour
of the standard subtype checking algorithm which is quite different in the two
systems.1

For these reasons, we decided to try and prove some of the unproved key prop-
erties of system F-bounded , namely transitivity elimination, completeness of the

1Informally, the class of judgements which make the standard subtype checker diverge is sig-
nificantly larger in system F-bounded .
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type checking semi-algorithm, subject reduction for βη reduction, undecidability
of subtype checking, conservativity with respect to system F≤, non conservativity
of strong recursive types, definition of an antisymmetric subsystem, and the equiv-
alence (under suitable conditions) of the two different versions which have been
proposed in the literature for the key subtyping rule for bounded quantification.
Although the results are not surprising, we believe that it was time to prove them
in order to give a solid foundation for further studies about system F-bounded .

Another contribution of this paper is the presentation of an explicit seman-
tic interpretation of system F-bounded . Our interpretation is a classical realiz-
ability interpretation based on partial equivalence relations, in the tradition of
[BL90, CL91, CMMS94, Ghe90] and others. However, most of these papers focus
on “semantic frameworks”, i.e., on the definition of a general notion of a semantic
interpretation for system F≤, in the style of [BMM90], rather than on the definition
of a specific interpretation. As a consequence, most proofs become quite complex,
and are not actually reported, but the reader is referred to a chain of classical pa-
pers. Here we address just one specific interpretation, and although the techniques
we use are standard, we give explicit proofs of the key properties, though we leave
it to the reader to generalize the interpretation. We think that this is an interesting
complement to what is obtained in the more general framework-based approach.

The rest of the paper is structured as follows. Section 2 discusses how system
F-bounded may be used to model some basic features of object-oriented languages.
Section 3 presents a formal definition of system F-bounded . Section 4 studies the
subtype relation in system F-bounded and in particular proves the transitivity elim-
ination property. Section 5 introduces a type checking semi-algorithm for system
F-bounded , and proves its correctness and completeness. Section 6, relying on tran-
sitivity elimination, proves the subject reduction property for F-bounded with β
and η reduction rules. Section 7 studies type equivalence for system F-bounded
and shows that, although subtyping is not antisymmetric in this system, two dif-
ferent types are equivalent if, and only if, one can be transformed into the other
by changing α ≤ α into α ≤ Top bounds. This result naturally suggests how an
antisymmetric equivalent subsystem can be defined. Section 8 characterizes the
relationship between our version of system F-bounded and some other less expres-
sive variants. Section 9 proves that system F-bounded is conservative with respect
to system F≤; as a corollary, this immediately implies that subtyping for system
F-bounded is undecidable, and that the addition of recursive types gives a non-
conservative extension of F-bounded . Section 10 defines a semantic interpretation
for system F-bounded , along the now classical lines of [BL90]. Finally, Section 11
draws some conclusions.

2 System F-bounded and object-oriented pro-

gramming

System F-bounded has been proposed as a foundation for the type system of object-
oriented programming, since it offers all the basic mechanisms which are needed to
define a rich object-oriented language. The fundamental features which should be
offered by this kind of languages may be listed as follows.2

2Here we consider the class-based view of object-oriented languages. However also the alter-
native object-based view, which is slightly different, can be described in the context of system
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• Type abstraction: the ability to define abstract data types (ADTs), consisting
of a name, an interface, which lists the possible operations on values of that
type (the messages), and an implementation, which defines a representation
for the objects of that type and an implementation for the operations in
the interface (the methods of the messages). Values of an ADT can only be
manipulated through the operations offered by the interface. Type abstraction
is not unique to object-oriented languages, but it is their most important
feature; in this context, an ADT is called a class, and any value of the class
is represented as a record.

• Inheritance: the ability to define the interface and the implementation of a
class by saying how it differs from a “superclass”. A definition by inheritance
of an interface can either add new messages to the superclass interface or
change their type. A definition by inheritance of an implementation can ei-
ther add new fields to the record type used to represent the class values, or
add methods to the superclass, or change the method of a message (method
overriding).

• Subtyping: a (pre)order relation among types such that, if a type T is a
subtype of U , every function which is defined on U can also operate on values
of type T . Usually inheritance is linked to subtyping, i.e., the type defined
by a subclass is a subtype of the type defined by the superclass.

• Overloading with late binding: suppose that both a type U and a subtype T of
U have a message m in their interface, but they define two different methods
MU and MT for that message. Then the application o.m of the message m
to an object o may either invoke MU or MT , depending on the type of o; we
say that the message m is overloaded. Due to subtyping, the type inferred
for o by the compiler is only a supertype of the type of the values which can
be denoted by o. For example, if o is the formal parameter of type U of a
function, the compiler gives o the type U , but in different invocations of the
function it may be bound to values of type U or to values of the subtype T .
In this case, a language with an early binding (or static binding) resolution
mechanism translates (at compile time) the application o.m to a call to the
method MU . Instead, a language with a late binding (or dynamic binding)
resolution mechanism will translate (at run time) the application o.m with
the method which is the most appropriate for the actual parameter of the
function.

• Late binding of self: every method can send messages to a special variable,
often called self. This variable denotes the object which has received the
message whose method is executing; messages sent to self are resolved using
late binding.

The fact that ADTs could be encoded in system F is well known, and was
first studied in [MP88].3 Subtyping can be added to system F in many different
ways, the most widely accepted being the one proposed by Cardelli and Wegner

F-bounded (see [AC96b]).
3Object-oriented ADT’s are actually best understood as a form of procedural abstraction,

according to the distinction introduced by Reynolds [Rey74, Coo91]; this kind of abstraction can
be still represented in system F .
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in [CW85] and formalized as system F≤ in [CG92, CMMS94]. As mentioned in
the introduction, the key feature of system F≤ is the bounded type abstraction,
which allows one to define a function that works for every type A′ which is a
subtype of a type bound A, producing a result whose type depends on A′. System
F≤, enriched with recursive values and types, is expressive enough to allow one to
encode most key constructs of object-oriented languages, such as the inheritance
of implementations, late binding and self variables. However, this approach does
not deal smoothly with binary methods. A binary method is a method that takes a
parameter of the same type as the receiving object, as in the canonical example of
an object type Point with a binary method which tests for equality. In this example
we assume that an object type only specifies the interface of methods, and not their
implementation; the operator Rec X.T defines a recursive type.

Point = Rec X.

[ x: Int;

eq: X -> Bool

]

Consider now a new object type ColouredPoint, which adds a method colour to
the type Point, as follows.

ColouredPoint = Rec X.

[ x: Int;

eq: X -> Bool;

colour: Colour

]

A type B which is defined by adding some fields to an object type A is said
to match A. The basic observation is that when A has some binary methods, B
may match A without being a subtype of A. For example, the type ColouredPoint
is not a subtype of Point since the type ColouredPoint → Bool of the eq field of
ColouredPoint is not a subtype of the type Point → Bool of the eq field of Point.
The absence of subtyping is also witnessed by the fact that a ColouredPoint cannot
appear in any context where a Point can appear. For example, an expression x.eq(y)
is type correct when both x and y are of type Point, but it may raise an exception if
x is substituted with an object of type ColouredPoint : its equality function expects
a ColouredPoint parameter, hence it may try and access the colour field of y.

On the other hand, although ColouredPoint is not a subtype of Point, most
functions that operate on points may correctly operate on coloured points and on
any other type which matches the Point type, but no type for these functions can
be expressed in system F≤. By permitting the presence of a type variable in its
own bound, F-bounded quantification allows the programmer to express the fact
that a function works with any type that matches the Point type, by assigning to
such function a type:

∀α≤ [x : Int ; eq : α→Bool ]. α→B

The condition α ≤ [x : Int ; eq : α → Bool ] is satisfied by any type which
is obtained by adding some fields to the recursive definition of type Point or by
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specializing some of the non-recursive fields, and even by some other types.4 This
form of quantification allows one to write many useful functions which operate on
all the types which match the Point type.

F-bounded quantification is not the only way to give this kind of functions a
type. It is also possible to define a “matching” relation which is different from the
subtype relation, and to quantify functions on every type that matches an object
type A [Bru94, BSvG95]; however, this approach is slightly more complex and ad
hoc than the F-bounded one (see [BCC+96]). Another possibility arises when one
considers higher order type systems, such as Fω

≤ , where it is possible to define
type operators, i.e., functions from types to types [Car90, PS97]. In this context a
quantification:

Λα≤A[α]. b[α]

can be expressed as:

Λα≤(Λ2β.A[β]). b[Fix (α)],

where Λ represents abstraction of terms over types, Λ2 represents abstraction of
types over types, and Fix is a fixpoint operator (see [AC96a] for details). This
approach is very interesting, but the recursive version of system Fω

≤ has not been
completely understood yet. In particular, strong recursive types (the notion of
strong recursion is discussed in Sections 9 and 11) have not been studied in this
context, and it is not yet known how to combine type operators with the full
F≤ subtype system.5 Hence, we have no hope of deriving properties of system
F-bounded from such an encoding.

Another way to deal with binary methods is to switch from seeing objects as
records which contain their methods, to seeing a method as an overloaded function.
This complementary approach has some advantages, above all that methods become
first class values and that it is possible to deal smoothly both with contravariant
and covariant overriding of methods, and in particular with binary methods. This
approach was first proposed in [Ghe91], in the context of strongly typed languages,
and then studied in [CGL95, CGL93, Cas96, Cas97]. Though very promising, this
approach has not been studied sufficiently, and there are some problems in the def-
inition of a clean semantic model and in the design of a suitable type abstraction
mechanism to bind the definition of methods with the definition of the correspond-
ing class.

For more information and references about the problem of binary methods we
refer the reader to the excellent paper [BCC+96].

To conclude this section it is worth remarking that for practical purposes
F-bounded quantification alone is not very useful, because system F-bounded , as
studied in this paper, should be enriched with a notion of recursive types in order to
model an object-oriented language with binary methods. We concentrate, however,
on the core system, with no recursion at the value or at the type level, in order
to understand the basic properties of F-bounded quantification. Only some sugges-
tions are given on how the system properties would be affected by the addition of
recursive types (see Sections 9 and 11). While the core system is rich enough to

4For example, a version of the ColouredPoint type whose eq field has type Point→Bool would
satisfy the type inequality considered.

5So far, only the kernel-fun version (Section 11) of system F ω
≤

has been studied in detail.
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merit studying, this work is also intended to provide a foundation for future studies
of extensions of F-bounded with recursion.

3 System F-bounded

This section defines system F-bounded by formalizing the intuitive ideas presented
above. The starting point is the second order typed lambda calculus, where besides
value abstraction (λ), a second order feature of type abstraction (Λ) is present.
Subtyping and the possibility to specify a bound for a quantified type variable are
added by system F≤. F-bounded is obtained from F≤ by relaxing the constraint
which disallows the presence of a type variable in its bound.

3.1 Syntax for Types, Terms, Environments and Judge-

ments

Many different formulations for system F-bounded are possible. First of all, one can
adopt either an explicit approach (à la Church) where every variable is annotated
with its type, and where type abstractions and applications are explicit, or an
implicit approach (à la Curry), where types are inferred rather than appearing
inside terms. In line with tradition, we will adopt the explicit approach, which
gives programmers a finer control over the typing of the terms they write. There
are two minor syntactic variants to be considered:

1. in a type good formation judgement Γ ⊢ A, the environment Γ may contain
just a list of variable names (like in [Ghe97], or in presentations of system F )
or it may contain a list of variables with their bounds (like in [CG92]);

2. in a typing judgement Γ ⊢ a : A, typing and subtyping assumptions may be
mixed in Γ (like in [CG92, CMMS94]) or separated (like in [Ghe97]).

Both choices are mainly stylistic and have minor advantages; we opted for the
second possibility in both cases. Finally, we may allow or forbid a type variable to
be a bound for itself (as in ∀α≤α. A). We will allow this kind of bound, while the
variant where this is forbidden will be studied in Section 8.

Let TypeVar and ValVar be two fixed countable (disjoint) sets of variables
referred to as type variables and value variables respectively. The set TypeVar will
be ranged over by Greek letters α, β, . . . , while ValVar will be ranged over by
Latin letters x, y, . . . . The syntax of our system is then described by the following
grammar.

A ::= α | Top | A→A | ∀α≤A. A (Types)

a ::= x | λx:A. a | a(a) | Λα≤A. a | a{A} (Terms)

Γ ::= ǫ | Γ, α≤A (TypeEnv)

∆ ::= ǫ | ∆, x :A (ValueEnv)

J ::= Γ ⊢ ♦ | Γ ⊢A | Γ, ∆ ⊢ ♦ | Γ ⊢A ≤ A | Γ, ∆ ⊢ a : A (Judgements)

The arrow type A→ B is the type of functions taking arguments of type A
and giving back results of type B. The bounded universal type ∀α ≤ A. B is the
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type of terms which, when applied to a type A′, yield a term of type B[α←A′];
the application is allowed only when A′ is a subtype of A[α←A′]. The Top type
is a supertype of every type. In system F≤, the Top type gives the system the
expressive power needed to encode records and objects; system F≤ without the
type Top would be decidable, but it would be impossible to encode record types
(see [CMMS94], [KS92]). The role of this type in system F-bounded will be discussed
in Section 8.

Among terms, we find the three forms of the classical typed lambda calculus,
plus type abstraction Λα ≤ A. a and type application a{A}, whose use has been
informally exemplified in the previous section.

Two different kinds of environments are present. A type environment Γ consists
of a list of type variables, each bounded by a type bound. A value environment ∆
consists of a list of value variables, each one bound to a type.

Finally, judgements represent the assertions we can express about our calculus.
The judgement Γ ⊢ ♦ means that Γ is a well-formed type environment, i.e., that no
type variable occurs free in Γ. More precisely, Γ is well-formed if every free variable
in the bound A of a variable α is either α or it is defined in the part of Γ on the
left of α≤A. The judgement Γ ⊢ A means that the type A is well-formed in the
environment Γ, i.e., that Γ is well-formed and every free variable in A is defined
in Γ. The judgement Γ, ∆ ⊢ ♦ means that Γ is a well-formed type environment,
and that the value environment ∆ is well-formed in Γ, i.e., that the type of each
variable in ∆ is well-formed in Γ. The judgement Γ ⊢ A ≤ A′ means that A is a
subtype of A′, and they are both well-formed types in Γ. Lastly, Γ, ∆ ⊢ a : A means
that the term a has type A when the assumptions in Γ, ∆ hold. The environment
Γ must be a well-formed type environment, and ∆ and A well-formed in Γ.

3.2 The rules

We are now ready to introduce the good formation, subtyping and typing rules
for system F-bounded . Before getting into technical definitions we will clarify our
conventions in the treatment of (type and value) variables. We adopt the De Bruijn
approach [dB72], where variables are not considered as names but as pointers to the
surrounding context (free variables are then simply pointers that “go outside the
context”). However, working explicitly with De Bruijn indexes, notation becomes
cumbersome and the readability of terms decreases considerably. Therefore we will
continue working with variable names, but simply as a more convenient way of
denoting De Bruijn pointers. The advantage of this approach is that no α-conversion
is needed, since each α-congruent class of ordinary terms corresponds exactly to
one nameless De Bruijn term. To have some more details on the actual De Bruijn
definition please refer to the appendix.

First of all we define the set of free variables for types, value environments and
terms, and we give the corresponding formation rules, formalizing the intuition
given in the previous subsection.

Free type variables for:

• Types

FV (α) = {α} FV (A→B) = FV (A) ∪ FV (B)
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FV (Top) = ∅
FV (∀α≤A. B) =

(FV (A) ∪ FV (B)) \ {α}

• Value Environments

FV (ǫ) = ∅ FV (∆, x :A) = FV (∆) ∪ FV (A)

The same symbol FV will also be used to denote the set of free (type and value)
variables in a term, defined as follows:

FV (x) = {x}

FV (λx:A. b) =
FV (A) ∪ (FV (b) \ {x})

FV (f(a)) = FV (f) ∪ FV (a)

FV (Λα≤A. b) =
(FV (A) ∪ FV (b)) \ {α}

FV (b{A}) = FV (b) ∪ FV (A)

Given a type environment Γ ≡ α1 ≤A1, . . . , αn ≤An we denote with vars(Γ)
the set of type variables bounded in Γ, i.e., {α1, . . . , αn}. Moreover, we denote
with Γ(αi) the type Ai for i ∈ {1, . . . , n}; in the De Bruijn notation, every free
variable in Ai has to be adjusted so that it points to the same binder as before
(technically, in the judgement Γ ⊢ α ≤ Γ(α), the offset n − i has to be added to
the index of every free variable in Ai). In the same way, given a value environment
∆ ≡ x1 :A1, . . . , xn :An we denote with vars(∆) the set of value variables typed in
∆, i.e., {x1, . . . , xn} and with ∆(xi) the type Ai.

Type environment formation rules

ǫ ⊢ ♦ (ǫTEnv)
Γ ⊢ ♦ FV (A) ⊆ vars(Γ) ∪ {α}

Γ, α≤A ⊢ ♦
(TEnv)

Type formation rules

Γ ⊢ ♦ FV (A) ⊆ vars(Γ)

Γ ⊢A
(TypeForm)

Value environment formation rules

Γ ⊢ ♦

Γ, ǫ ⊢ ♦
(ǫVEnv)

Γ, ∆ ⊢ ♦ Γ ⊢A

Γ, ∆, x :A ⊢ ♦
(VEnv)

Subtype rules

Γ ⊢A

Γ ⊢A ≤ A
(Id ≤)

Γ ⊢A ≤ B Γ ⊢B ≤ C

Γ ⊢A ≤ C
(Trans ≤)

Γ ⊢ ♦ α ∈ vars(Γ)

Γ ⊢ α ≤ Γ(α)
(Var ≤)

Γ ⊢A

Γ ⊢A ≤ Top
(Top ≤)
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Γ ⊢A′ ≤ A Γ ⊢B ≤ B′

Γ ⊢A→B ≤ A′→B′
(→≤)

Γ, α≤A′ ⊢ α ≤ A Γ, α≤A′ ⊢ B ≤ B′

Γ ⊢ (∀α≤A. B) ≤ (∀α≤A′. B′)
(∀ ≤)

Term formation rules

Γ, ∆ ⊢ ♦ x ∈ vars(∆)

Γ, ∆ ⊢ x : ∆(x)
(Var)

Γ, ∆ ⊢ a : A Γ ⊢A ≤ B

Γ, ∆ ⊢ a : B
(Subs)

Γ, ∆, x :A ⊢ b : B

Γ, ∆ ⊢ λx:A. b : A→B
(→ I)

Γ, ∆ ⊢ f : A→B Γ, ∆ ⊢ a : A

Γ, ∆ ⊢ f(a) : B
(→ E)

Γ, α≤A, ∆ ⊢ b : B α 6∈ FV (∆)

Γ, ∆ ⊢ (Λα≤A. b) : (∀α≤A. B)
(∀I)

Γ, ∆ ⊢ f : ∀α≤A. B Γ ⊢A′ ≤ A[α←A′]

Γ, ∆ ⊢ f{A′} : B[α←A′]
(∀E)

Notation 3.1 When necessary to avoid ambiguity, a judgement derivable in
F-bounded will be denoted as

Pre ⊢b Concl

Notice that the fact that F-bounded is a proper extension of F≤ is essentially
expressed by the type environment formation rule (TEnv), which allows the type
variable α to occur free in its bound A. Indeed, although some other F-bounded rules
are slightly different from the corresponding F≤ rules, it can be seen that (a system
equivalent to) F≤ can be simply regained by strengthening the second premise of
rule (TEnv) into FV (A) ⊆ vars(Γ). The relation between F≤ and F-bounded will
be studied in Section 9.

We finally present the reduction rules of the system. Notice that there are
two kinds of β and η rules: besides the usual rules of the (typed) lambda calcu-
lus (βTerm) and (ηTerm), the corresponding rules regarding type abstraction are
present. The four rules define a binary relation that, closed by context, gives the
one-step reduction relation, and then, closed by reflexivity and transitivity, gives
the many-steps reduction relation.

Reduction rules

(λx:A. b)(a) −−≫ b[x←a] (βTerm)

(Λα≤A. b){A′} −−≫ b[α←A′] (βType)

λx:A. b(x) −−≫ b if x 6∈ FV (b) (ηTerm)

Λα≤A. b{α} −−≫ b if α 6∈ FV (b) (ηType)6

6Using the De Bruijn notation, in rule (ηTerm), the b at the right hand side is obtained by
decrementing every free variable in the b of the left hand side by one, so that every variable still
points to the same binder. The same consideration applies to rule (ηType).
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This relation is terminating [Ghe97], but not confluent, due to subtyping. Consider
the two following normalizing reductions.

λx:A. (λy:B. y)x −−≫η λy:B. y

λx:A. (λy:B. y)x −−≫β λx:A. x

Since the term λx : A. (λy : B. y)x is well typed for any A ≤ B, the above
critical pair is not confluent in any calculus with a non-trivial subtype relation.
This problem has been addressed in system F≤ by proving that βη reduction can
be made confluent by adding a Top rule, which equates every term with a Top type,
plus some rules which may be obtained by a Knuth-Bendix like process [CG94].
The same approach may also apply to system F-bounded , but we leave this as an
open issue.

4 Transitivity elimination

Transitivity plays a central role in every subtype system. In fact, requiring the
transitivity of the subtype relation is fundamental both from a conceptual and from
a technical point of view. First of all, the informal understanding of subtyping is
based on the notion of set inclusion: “integer” is a subtype of “real” since every
integer number is also a real number. Moreover, subtyping formalizes the idea of
“specialization of properties” in the following sense: T is a subtype of U if every
relevant property of all values of type U is also enjoyed by all values of type T .
Clearly both the set inclusion and the “specialization” relations are transitive. More
technically, we will see that transitivity is very important to prove the subject
reduction property.

However, the presence of an explicit rule for transitivity makes it difficult to
decide the subtyping relation. The standard subtype checking algorithm takes a
couple of types and an environment, and searches for a rule whose conclusion
matches the judgement to be proved. If no matching rule is found, then the judge-
ment cannot be proved. If only one matching rule is found, then the problem can
be reduced to the problem of proving all the premises of the rule. If many matching
rules exist, then each one of them must be tried, in a non deterministic fashion.

This algorithm cannot be applied in the presence of a transitivity rule. First
of all, every subtyping judgement matches its conclusion, hence the algorithm will
never give a negative answer. Moreover, both premises contain a metavariable (the
type B, in our formulation in Section 3) which is not instantiated by the conclusion,
and whose value must hence be guessed by the algorithm.

To solve this problem, it is customary to define two different presentations for
a subtype system: an abstract presentation and an algorithmic one. The abstract
presentation contains one subtyping rule for every form of type, and a transitivity
rule which ensures the transitivity of the whole system. This presentation is aimed
at describing the system in the most understandable way. On the other hand, the
algorithmic presentation is defined in order to allow for a direct application of
the standard algorithm. To this aim, the rules are modified in such a way that no
judgement may match the conclusion of two different rules. Moreover every variable
in the premises of a rule also appears in its conclusion, and thus no guessing is
needed; in particular, the full transitivity rule is not inserted in the algorithmic
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presentation (but it may be embedded in some other rules, as happens with rule
(TVar ≤) below). Finally, one proves that the two sets of rules define the same
relation. This proof is called proof of transitivity elimination, since it shows that
the abstract presentation can be transformed into an equivalent presentation with
no transitivity rule.

4.1 The algorithmic presentation

In our case, the algorithmic presentation is obtained from the original system by
removing the transitivity rule (Trans ≤). Moreover the rule for variables (Var ≤)
is replaced by a new rule containing a “restricted form” of transitivity and the
identity rule (Id ≤) is specialized to work only on type variables.

Definition 4.1 (deterministic F-bounded) The system dF-bounded (deter-
ministic F-bounded) is obtained from F-bounded by removing the rule (Trans ≤)
and by substituting the rules (Var ≤) and (Id ≤) with the following ones:

Γ ⊢ Γ(α) ≤ A α ∈ vars(Γ) Γ(α) 6= α,Top A 6≡ α,Top

Γ ⊢ α ≤ A
(TVar ≤)

Γ ⊢ ♦ α ∈ vars(Γ)

Γ ⊢ α ≤ α
(IdVar ≤)

Hereafter the premise α ∈ vars(Γ) of rule (TVar ≤) will be often omitted, since we
consider it to be implied by the use of the notation Γ(α) in the other premises.

Notice that the set of subtyping rules of dF-bounded is deterministic (or syntax-
directed), in the sense that given any subtyping judgement Γ ⊢ A ≤ B there is
at most one rule that can be applied to obtain that conclusion. Therefore, as
anticipated, the standard algorithm which, given a judgement, tries to construct a
proof of that judgement in dF-bounded , is deterministic (no backtracking is needed).

4.2 The proof of transitivity elimination

The proof of transitivity elimination is based on the introduction of an intermediate
system, called F-bounded+, equivalent to F-bounded . F-bounded+ is then proved to
be equivalent also to the algorithmic system dF-bounded , by showing that a suitable
set of rewrite rules allows us to reduce each F-bounded+ derivation into a normal
form derivation with the same conclusion, which turns out to be a dF-bounded
derivation. Then transitivity elimination immediately follows.

4.2.1 System F-bounded+

The system F-bounded+ is obtained from F-bounded by replacing the (Var ≤) sub-
typing rule with the rule (TVar ≤) of system dF-bounded .

System F-bounded+ is clearly equivalent to F-bounded : given any F-bounded
proof we can obtain an F-bounded+ proof with the same premises and conclusion
by replacing every instance of the rule (Var ≤) with a subproof combining the rules
(TVar ≤) and (Id ≤); in the other direction, every instance of rule (TVar ≤) can
be substituted by an instance of (Var ≤) plus transitivity. It is worth noticing that
dF-bounded can be obtained from F-bounded+ by removing rule (Trans ≤) and
restricting the use of (Id ≤) to type variables.
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Notation 4.2 When necessary to avoid ambiguity, judgements derivable in
F-bounded+ and in dF-bounded will be denoted respectively as

Pre ⊢+ Concl and Pre ⊢d Concl

In F-bounded+, it is convenient to have a linear notation for subtyping deriva-
tions, so that operations performed on derivations to reduce them to normal form
can be expressed as textual rules (see [CG92, Pie97]). By c :: J we mean that c is a
derivation whose conclusion is the judgement J . The same notation will be used to
indicate that c is the linear abbreviation of a derivation having J as its conclusion,
i.e., when the meaning is clear from the context, we identify a derivation with its
linear representation.

Definition 4.3 (linear abbreviations for derivations) The translation func-
tion (·)†, which maps derivation trees (in F-bounded+) to their abbreviated forms,
is defined by induction on the structure of the derivation:

(

Γ ⊢A

Γ ⊢+ A ≤ A
(Id≤)

)†

= IdΓ,A

(

c :: Γ ⊢+ Γ(α) ≤ A Γ(α) 6= α,Top A 6≡ α,Top

Γ ⊢+ α ≤ A
(TVar≤)

)†

= Vα,A(c†)

(

Γ ⊢A

Γ ⊢+ A ≤ Top
(Top≤)

)†

= TopΓ,A

(

c :: Γ ⊢+ A′ ≤ A d :: Γ ⊢+ B ≤ B′

Γ ⊢+ A→B ≤ A′→B′
(→≤)

)†

= (c†→d†)

(

c :: Γ, α≤A′ ⊢+ α ≤ A d :: Γ, α≤A′ ⊢+ B ≤ B′

Γ ⊢+ ∀α≤A. B ≤ ∀α≤A′. B′
(∀≤)

)†

= (∀α≤c†. d†)

(

c :: Γ ⊢+ A ≤ B d :: Γ ⊢+ B ≤ C

Γ ⊢+ A ≤ C
(Trans≤)

)†

= (c†; d†)

Notice that only the abbreviations for the basic derivations using (Id ≤) and
(Top ≤) are explicitly adorned with the environment since in the other cases the
environment is already coded in the premises. Furthermore, sometimes we will not
indicate explicitly the environment involved in a derivation unless it is strictly
necessary. Therefore we will write TopA for TopΓ,A, and IdA for IdΓ,A.

4.2.2 Replacement, Top-lemmata and weakening

We collect here some definitions and technical lemmata which will be useful below.
Although most of the lemmata are formulated for F-bounded+, it is easy to verify
that their obvious reformulations for the other systems considered so far hold as
well. For this reason, we will sometimes refer and apply them to systems F-bounded
or dF-bounded as well.

The first lemma specifies that (sub)typing implies good formation for the types
and environment involved.
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Lemma 4.4 (subproof) If Γ ⊢ A ≤ B then Γ ⊢ ♦, Γ ⊢ A and Γ ⊢ B. If
Γ ⊢ a : A then Γ ⊢ ♦ and Γ ⊢A.

Proof. Routine induction on the structure of the derivations. 2

Replacement is an operation on derivations, which allows us to replace a hy-
pothesis α ≤ A′ in the environment Γ, α ≤ A′, Γ′ of a derivation, with another
hypothesis α≤A, whenever Γ, α≤A, Γ′ proves α ≤ A′.

Definition 4.5 (derivations replacement) Let c :: Γ, α≤A, Γ′ ⊢+ α ≤ A′ and
d :: Γ, α≤A′, Γ′ ⊢+ B ≤ B′ be F-bounded+ derivations. The replacement of α≤A′

in d with c, denoted by d[α≤A′←c], is defined by induction on the structure of d
as follows:

1. Id (Γ,α≤A′,Γ′),B′ [α≤A′←c] = Id (Γ,α≤A,Γ′),B′

2. Vβ,B′(d1)[α≤A′←c] =

{

Vβ,B′(d1[α≤A′←c]) if β 6≡ α

c; (d1[α≤A′←c]) if β ≡ α

(Observe that when β ≡ α one has B ≡ α and d1 :: Γ, α≤A′, Γ′ ⊢+ A′ ≤ B′.)

3. Top(Γ,α≤A′,Γ′),B′ [α≤A′←c] = Top(Γ,α≤A,Γ′),B′

4. (d1→d2)[α≤A′←c] = ((d1[α≤A′←c])→(d2[α≤A′←c]))

5. (∀β≤d1. d2)[α≤A′←c] = (∀β≤(d1[α≤A′←c]). (d2[α≤A′←c]))

6. (d1; d2)[α≤A′←c] = ((d1[α≤A′←c]); (d2[α≤A′←c]))

Notice that some parentheses in the definition are not genuine syntactical objects.
They are inserted only for the sake of clarity.

The replacement operation has two main effects. First, it substitutes every
instance of α≤A′ in the environment Γ of basic derivations with α≤A (rules 1 and
3). Second, whenever Γ, α≤A′, Γ′ ⊢ α ≤ B′ is proved by applying rule (TVar ≤)
to Γ, α≤A′, Γ′ ⊢A′ ≤ B′ in the original derivation, the same judgement is proved
by transitivity from c :: Γ, α≤A, Γ′ ⊢ α ≤ A′ and Γ, α≤A, Γ′ ⊢ A′ ≤ B′ in the
modified derivation (rule 2, first case). Rules 2 (second case) and 3, 4, and 5 only
propagate the replacement inside the derivation.

Lemma 4.6 Let c :: Γ, α≤A, Γ′ ⊢+ α ≤ A′ and d :: Γ, α≤A′, Γ′ ⊢+ B ≤ B′ be
F-bounded+ derivations. Then

d[α≤A′←c] :: Γ, α≤A, Γ′ ⊢+ B ≤ B′.

Proof. Routine induction on the structure of d. Cases 1 and 3 entail invoking the
Subproof Lemma 4.4. 2

The next two lemmata give some properties of the derivations in F-bounded+

whose final judgements involve the type Top. In particular we show that Top is
indeed the maximum type with respect to the subtype relation. Furthermore we
show that to derive that a type is less than Top one must eventually use the rules
(Id ≤) or (Top ≤).
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Lemma 4.7 Let c :: Γ ⊢+ Top ≤ A be an F-bounded+ subtyping derivation. Then
A ≡ Top and c must be in the set generated by the following grammar:

e ::= TopΓ,Top | IdΓ,Top | e; e.

Proof. We proceed by induction on the length |c| of c. Suppose that the thesis
holds for |c| < k; then, if |c| = k, we distinguish various cases according to the last
rule in the derivation.

• (c ≡ IdΓ,B, c ≡ TopΓ,B)
In both cases A ≡ B ≡ Top and thus c is of the desired form.

• (c ≡ Vα,B(c′), c ≡ c′→c′′, c ≡ ∀α≤c′. c′′)
Not possible.

• (c ≡ c′; c′′)
Since c′ :: Γ ⊢+ Top ≤ A′ and |c′| < |c|, by inductive hypothesis, we have that
c′ must be in the set generated by the grammar and A′ ≡ Top. Moreover,
c′′ :: Γ ⊢+ A′ ≤ A, i.e., c′′ :: Γ ⊢+ Top ≤ A. Since |c′′| < |c|, again by inductive
hypothesis, we conclude that A ≡ Top and c′′ is generated by the grammar.
Therefore c ≡ c′; c′′ is generated by the grammar. 2

Lemma 4.8 Let c :: Γ ⊢+ A ≤ Top be a F-bounded+ subtyping derivation. Then
c must be in the set generated by the following grammar:

e ::= IdΓ,Top | TopΓ,A | d; e,

where the variable d ranges over arbitrary derivations.

Proof. We proceed by induction on the length |c| of c. Suppose that the thesis
holds for |c| < k; then, if |c| = k:

• (c ≡ IdΓ,B)
In this case, by necessity B ≡ A ≡ Top and thus c is of the desired form.

• (c ≡ TopΓ,B)
In this case, B ≡ A and thus c is of the desired form.

• (c ≡ Vα,B(c′))
Not possible, since B should be Top.

• (c ≡ c′→c′′, c ≡ ∀α≤c′. c′′)
Not possible.

• (c ≡ c′; c′′)
In this case c′′ :: Γ ⊢+ A′ ≤ Top and |c′′| < |c|, hence by inductive hypothesis,
c′′ is of the desired form and thus also c ≡ c′; c′′ is. 2

The weakening operation, as suggested by its name, allows us to weaken a
derivation by adding a new hypothesis to the type or value environments.
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Definition 4.9 (subtyping weakening) Let Γ be Γ1, α ≤ A, Γ2, with Γ ⊢ ♦.
The weakening of an F-bounded+ derivation c :: Γ1, Γ2 ⊢+ B ≤ C with the binding
α≤A, denoted by c, Γ (i.e., c, Γ1, α≤A, Γ2) is defined by induction on the structure
of c, as follows:7

1. Id (Γ1,Γ2),B, Γ = IdΓ,B

2. Vβ,C(c′), Γ = Vβ,C(c′, Γ)

3. Top(Γ1,Γ2),B, Γ = TopΓ,B

4. (c′→c′′), Γ = (c′, Γ)→(c′′, Γ)

5. (∀β≤c′. c′′), Γ = ∀β≤(c′, (Γ, β≤C′)). (c′′, (Γ, β≤C′))
where c :: Γ1, Γ2 ⊢+ (∀β≤B′. B′′) ≤ (∀β≤C′. C′′)

6. (c′; c′′), Γ = (c′, Γ); (c′′, Γ)

Lemma 4.10 If c :: Γ1, Γ2 ⊢+ B ≤ C and Γ ⊢ ♦, where Γ ≡ Γ1, α≤A, Γ2, then

c, Γ :: Γ ⊢+ B ≤ C.

Proof. Routine induction on the structure of c. In the ∀β≤c′. c′′ case we also have
to prove that Γ, β≤C′ ⊢ ♦, but this immediately follows from the fact that, by
hypothesis, Γ ⊢ ♦ and, by Subproof Lemma 4.4, Γ1, Γ2, β≤C′ ⊢ ♦. 2

Lemma 4.11 (typing weakening) Let Γ, ∆ ⊢+ a : A be an F-bounded+ typ-
ing judgement. Assuming Γ, α≤A′ ⊢ ♦ then Γ, α≤A′, ∆ ⊢+ a : A. Similarly, if
Γ, ∆, y : B, ∆′ ⊢ ♦, then Γ, ∆, y :B, ∆′ ⊢+ a : A.

Proof. Routine induction. 2

4.2.3 Normalization of F-bounded+ derivations

In this section, following the ideas proposed for F≤ in [CG92, Pie97], we prove
that every F-bounded+ subtyping derivation can be transformed into a normal
form derivation, where the transitivity rule is not used and the identity rule is
used only on variable types. Since every normal form derivation in F-bounded+ is
also a dF-bounded derivation, this result implies that dF-bounded is equivalent to
F-bounded+ and hence to F-bounded .

The normalization procedure is presented as a collection of rewrite rules on
(linear representations of) subtyping derivations. These rules are separated into
three groups. Informally, the rules in the first group push instances of (Id ≤) rule
towards the leaves until they are applied to variables or disappear into instances
of the (Top ≤) rule. The rules in the second group remove instances of (Trans ≤)
that involve identity derivations, and push instances of (Trans ≤) rule towards the
leaves until they disappear into instances of the (TVar ≤) rule. The unique rule in
the last group removes instances of (Trans ≤) rule that involve TopA derivations.

7As usual, in the De Bruijn notation, when Γ1, Γ2 becomes Γ1, α≤A,Γ2, all variable indexes
in Γ2 have to be updated so that they point to the same binder as before. Namely, the index of
every free variable in Γ2 has to be incremented by one.

19



Definition 4.12 (derivation simplification rules) The one step, outermost
simplification relation on subtyping derivations, denoted by −→o, is defined by the
following rewrite rules.

I. Reflexivity simplification

(1) IdΓ,A→B −→o IdΓ,A→IdΓ,B

(2) IdΓ,∀α≤A. B −→o ∀α≤(Vα,A(Id(Γ,α≤A),A)). Id(Γ,α≤A),B

(3) IdΓ,Top −→o TopΓ,Top

II. Cut simplification

(1) IdΓ,α; c −→o c

(2) c; IdΓ,α −→o c

(3) Vα,A(c); d −→o Vα,B(c; d) if d :: Γ ⊢A ≤ B, B 6≡ Top, α

(4) (c1→d1); (c2→d2) −→o c2; c1→d1; d2

(5) (∀α≤c1. d1); (∀α≤c2. d2) −→o ∀α≤(c1[α≤A′←c2]). (d1[α≤A′←c2]; d2)

if ∀α≤c1. d1 :: (∀α≤A. B) ≤ (∀α≤A′. B′) and
∀α≤c2. d2 :: (∀α≤A′. B′) ≤ (∀α≤A′′. B′′)

III. Top Cut simplification

(1) c;TopΓ,B −→o TopΓ,A if c :: Γ ⊢A ≤ B

Hereafter −→ denotes the “context closure” of the relation −→o, which can be
defined as the least relation containing −→o and such that, for all derivations
c, c′, d, if c −→ c′ then:

(c; d) −→ (c′; d) and (d; c) −→ (d; c′)

Vα,A(c) −→ Vα,A(c′)

(c→d) −→ (c′→d) and (d→c) −→ (d→c′)

(∀α≤c. d) −→ (∀α≤c′. d) and (∀α≤d. c) −→ (∀α≤d. c′)

The symbol −→∗ denotes the reflexive and transitive closure of −→.

Now, to reach the desired result we have to prove three things:

1. every reduction step transforms a derivation of a judgement into another
derivation of the same judgement (subject reduction);

2. for every F-bounded+ derivation, there exists a finite sequence of reduction
steps which transforms it into a normal form derivation (normalization);

3. every normal form derivation is a dF-bounded derivation.

Subject reduction plus normalization imply that, for every F-bounded+ deriva-
tion, there exists a normal form derivation which proves the same judgement.
The third fact completes the proof of the equivalence between F-bounded+ and
dF-bounded .
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c1

Γ, α≤A′ ⊢ α ≤ A

d1

Γ, α≤A′ ⊢B ≤ B′

∀α≤c1. d1 :: Γ ⊢ (∀α≤A. B) ≤ (∀α≤A′. B′)

c2

Γ, α≤A′′ ⊢ α ≤ A′

d2

Γ, α≤A′′ ⊢B′ ≤ B′′

∀α≤c2. d2 :: Γ ⊢ (∀α≤A′. B′) ≤ (∀α≤A′′. B′′)

(∀α≤c1. d1); (∀α≤c2. d2) :: Γ ⊢ (∀α≤A. B) ≤ (∀α≤A′′. B′′)

c1[α≤A′←c2]

Γ, α≤A′′ ⊢ α ≤ A

(d1[α≤A′←c2]; d2)

Γ, α≤A′′ ⊢B ≤ B′′

∀α≤(c1[α≤A′←c2]). (d1[α≤A′←c2]; d2) :: Γ ⊢ (∀α≤A. B) ≤ (∀α≤A′′. B′′)

Table 1: A pictorial representation of rule II.5: the two subtyping derivations
(∀α≤c1. d1); (∀α≤c2. d2) and ∀α≤(c1[α≤A′←c2]). (d1[α≤A′←c2]; d2).

Subject reduction for simplification rules

Lemma 4.13 (subject reduction for simplification rules) If c is a subtyping
derivation such that c :: Γ ⊢A ≤ B and c −→∗ d then d :: Γ ⊢A ≤ B.

Proof. First observe that all the simplification rules transform each derivation
into a derivation with the same conclusion. The only non trivial case is rule II.5,
depicted in Table 1, where Replacement Lemma 4.6 is needed. This gives subject
reduction for −→o.

Noticing that none of the subtyping rules places any requirement on the shape
of the derivations of their hypotheses we can extend the result to −→ and hence
to −→∗. 2

Termination of the normalization procedure

We now prove that every F-bounded+ subtyping derivation can be reduced to a
normal form in a finite number of steps. As in [CG92, Pie97] the proof relies on the
basic observation that when an instance of transitivity is reduced, all new instances
of transitivity introduced by the reduction step have a smaller intermediate type.

A derivation of the form c; d is called a compound derivation. If c :: Γ ⊢A ≤ B
and d :: Γ ⊢B ≤ C then B is called the cut-type of the derivation, and its (syntac-
tic) length the cut-size of the derivation, namely

cut -type(c; d) = B cut -size(c; d) = |B|

For X ∈ {I, II, III}, an X-redex in a derivation c is a subderivation of c that
can be reduced by using a rule in group X . The result of the reduction is called
the contractum of the redex. A derivation c is in X-normal form if it contains no
X-redexes. A derivation in I, II, III-normal form is said to be in normal form. By
“innermost II-redex with cut-size k of a derivation c” we refer to any II-redex d in
c such that no proper subderivation of d is a II-redex with cut-size k.

Definition 4.14 (rewriting strategy) The rewriting strategy for the normaliza-
tion of subtyping derivations comprises the following steps:

1. Perform I-reductions in any order until a I-normal form is reached.
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2. If the derivation is not in II-normal form, let k be the largest cut-size of
II-redexes, select an innermost redex with cut-size k and reduce it. Then
return to step 2.

3. Perform III-reductions in any order until a III-normal form is reached.

First of all, observe that no step in the rewriting strategy generates redexes
of the previous steps. Therefore, if we show that each step (separately) terminates
then we can conclude that the whole normalization process always terminates, thus
producing a derivation in normal form.

Step 1: Notice that rules I.1 and I.2 decrease the size of the type associated with
any new I-redex they create, and rule I.3 does not create new I-redexes. Therefore
I-rules are strongly normalizing and Step 1 always terminates.

Step 3: The only rule in Step 3 strictly decreases the size of the derivation, therefore
Step 3 always terminates as well.

Step 2, outline: The proof of termination for Step 2 is based on the observation
that rules II.1, II.2 do not generate new redexes, while the cut-size of the new
redexes generated by rules II.4, II.5 is strictly smaller than the cut-size of the
reduced redex. Finally, rule II.3 applied to some redex can generate a new redex
with the same cut-size, but it is not difficult to see that any segment of consecutive
II.3 reductions can only have a finite length. This is formalized by inserting into
the complexity measure of a derivation c a component, called v-complexity, which
intuitively represents a bound for the number of possible consecutive II.3 reductions
starting from c.

We continue by giving a detailed proof of the termination of Step 2. We first
define the v-complexity of a derivation c. The v-complexity counts, for every “;”
operator, the number of occurrences of the operator V·,·(·) in its left argument, so
that any application of the II.3 rule is guaranteed to decrease this complexity by
one. The number of occurrences of V inside c is denoted by #V (c).

Definition 4.15 (v-complexity) The v-complexity of a derivation c, denoted by
#v(c), is defined as follows:

1. #v(IdΓ,A) = #v(TopΓ,A) = 0;

2. #v(Vα,A(c)) = #v(c);

3. #v((c1→c2)) = #v(c1) + #v(c2);

4. #v((∀β≤c1. c2)) = #v(c1) + #v(c2);

5. #v((c1; c2)) = #V (c1) + #v(c1) + #v(c2).

Definition 4.16 (total complexity) The (total) complexity of a derivation c,
denoted by comp(c), is defined as

comp(c) = 〈k, n, #v(c)〉

where k is the maximum cut-size of II-redexes in c, and n is the number of II-redexes
with cut-size k in c. Total complexities are ordered lexicographically.
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The next two lemmata are useful in proving that each II-reduction decreases
the total complexity of a derivation. The first one will be applied to give a charac-
terization of the cut-size of new II-redexes generated by reductions using rule II.5.
The second one proves that an application of rule II.3 decreases the v-complexity
of a derivation.

Lemma 4.17 Let c :: Γ, α≤A ⊢ α ≤ A′ and d :: Γ, α≤A′ ⊢ B ≤ B′ be two
subtyping derivations. Then the cut-type of any new II-redex in d[α≤A′←c] is A′.

Proof. We proceed by structural induction on d:

• (d ≡ Id (Γ,α≤A′),B′ or d ≡ Top(Γ,α≤A′),B′)
In this case d[α≤A′←c] does not contain new redexes.

• (d ≡ Vβ,B′(d1))
We distinguish two subcases. If α ≡ β then

d[α≤A′←c] = c; (d1[α≤A′←c]).

By inductive hypothesis, any new II-redex in d1[α≤A′←c] has cut-type A′.
Moreover the whole derivation c; (d1[α≤A′←c]) can be a new redex and its
cut-type is indeed A′.

If α 6≡ β then

d[α≤A′←c] = Vβ,B′(d1[α≤A′←c]).

Thus we conclude by inductive hypothesis.

• (d ≡ d1→d2)
By definition of replacement

(d1→d2)[α≤A′←c] = (d1[α≤A′←c])→(d2[α≤A′←c]).

Thus we conclude by inductive hypothesis.

• (d ≡ ∀β≤d1. d2)
As above.

• (d ≡ d1; d2)
By definition of replacement:

(d1; d2)[α≤A′←c] = (d1[α≤A′←c]); (d2[α≤A′←c]).

First of all notice that if (d1[α≤A′←c]); (d2[α≤A′←c]) is a II-redex, then
also d1; d2 has to be a II-redex, as can be verified by analyzing Definition 4.5.
The length of (d1[α≤A′←c]); (d2[α≤A′←c]) can be greater than the length
of the original redex d1; d2, but the cut-type remains the same.

Hence true new redexes can only appear in d1[α≤A′←c] and d2[α≤A′←c],
but in these cases we conclude by inductive hypothesis. 2
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Lemma 4.18 Let l be a subtyping derivation, let Vα,A(c); d be a II-redex in l and
let l′ be the result of replacing Vα,A(c); d in l with its contractum Vα,B(c; d). Then

#v(l′) = #v(l)− 1.

Proof. First observe that, since l′ is obtained from l by substituting a subderivation
e with a subderivation e′ such that #V (e) = #V (e′), then #v(l)−#v(l

′) is equal
to #v(e)−#v(e

′). We can now compute this difference as follows:

#v(Vα,A(c); d)−#v(Vα,B(c; d))
= #V (Vα,A(c)) + #v(Vα,A(c)) + #v(d)−#v(c; d)
= #V (c) + 1 + #v(c) + #v(d)− (#V (c) + #v(c) + #v(d))
= 1.

2

We are now ready to prove that rules in group II strictly decrease the total
complexity of a derivation and thus that Step 2 always terminates as well.

Theorem 4.19 Let l be a subtyping derivation whose maximum cut-size is k. Let
c; d be an innermost II-redex in l with cut-size k. Then

comp(l′) < comp(l)

where l′ is the result of replacing the redex c; d in l with its contractum e.

Proof. By cases on the II-rule applied to reduce c; d to e:

• (Rule II.1) c ≡ Idα and e ≡ d.
This reduction removes a II-redex of maximum cut-size from l.

• (Rule II.2) d ≡ Idα and e ≡ c.
Same as (Rule II.1).

• (Rule II.3) c ≡ Vα(c1) and e ≡ Vα(c1; d).
This reduction removes a II-redex of maximum cut-size Vα(c1); d and intro-
duces a new II-redex c1; d with the same cut-size. However, by Lemma 4.18,
#v(l

′) < #v(l), hence the total complexity decreases.

• (Rule II.4) c ≡ c1→c2, d ≡ d1→d2 and e ≡ (d1; c1)→(c2; d2).
This reduction removes a II-redex of maximum cut-size and may introduce
two new redexes d1; c1 and c2; d2 with a smaller cut-size.

• (Rule II.5) c ≡ ∀α ≤ c1. c2, d ≡ ∀α ≤ d1. d2 and e ≡ ∀α ≤ c′. d′, where c′ =
(c1[α≤A′←d1]) and d′ = (c2[α≤A′←d1]; d2).
To fix notation, let us suppose that

c :: Γ ⊢ (∀α≤A. B) ≤ (∀α≤A′. B′)

d :: Γ ⊢ (∀α≤A′. B′) ≤ (∀α≤A′′. B′′).

The reduction removes a II-redex with maximum cut-size and may add the
following new redexes:

• (c2[α≤A′←d1]; d2) with cut-type B′;
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• new redexes in c1[α≤A′←d1] and c2[α≤A′←d1], with cut-type A′, by
Lemma 4.17.

Hence, new redexes have a cut-size smaller than cut -size(c; d) = ∀α≤A′. B′.
The old redexes in d1 are generally copied many times by the substitution
operation c1[α≤A′←d1], but this replication does not modify the total com-
plexity, since all the redexes in d1 have a cut-size which is smaller than k
(due to the fact that the innermost redex of cut-size k has been chosen); the
same considerations apply for c2[α≤A′←d1]. 2

Normal forms are in dF-bounded

By the previous results each F-bounded+ subtyping derivation can be rewritten, in a
finite number of steps, to a normal form derivation that proves the same judgement.
We now show that every normal form F-bounded+ derivation is a dF-bounded
derivation, i.e., that it applies reflexivity only to type variables and that it does
not use the transitivity rule.

Lemma 4.20 If IdΓ,A :: Γ ⊢ A ≤ A is a normal form subtyping derivation then
A ≡ α for some type variable α.

Proof. Obvious by the form of I-rules. 2

Lemma 4.21 If e is a normal form subtyping derivation then it is not of the shape
c; d.

Proof. Let e ≡ c; d be a subtyping derivation and let us show that it is not a
normal form.

If c or d are not in I-normal form then obviously e is not in normal form.
Otherwise, if c and d are in I-normal form, we prove the thesis by induction

on the length of e. The following table reports a case analysis for c and d, and
indicates in each case the reason why e ≡ c; d is not in normal form.

c d reason
Idα any rule II.1
any Idα rule II.2
c1; c2 any inductive hypothesis
any d1; d2 inductive hypothesis
TopA Vβ,B(d1) not possible
TopA d1→d2 not possible
TopA ∀α≤d1. d2 not possible
any TopA rule III.1
Vα,A(c1) Vβ,B(d) / d1→d2 / ∀α≤d1. d2 rule II.3
c1→c2 Vα,A(d1) not possible
∀α≤c1. c2 Vβ,B(d1) not possible
c1→c2 d1→d2 rule II.4
c1→c2 ∀α≤d1. d2 not possible
∀α≤c1. c2 d1→d2 not possible
∀α≤c1. c2 ∀α≤d1. d2 rule II.5
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Notice that the only case which is lacking is Vα,A(c1); d with d :: Γ ⊢ A ≤ Top and
d 6≡ TopA (if d ≡ TopA the case appears in the table as any ;TopA). Now, since d
is a I-normal form, IdTop cannot occur in d and thus, by Lemma 4.8, we conclude
that d ≡ c′; c′′, which is not a II-normal form by inductive hypothesis. 2

As an immediate corollary we have now the main result of this section.

Theorem 4.22 (transitivity elimination for subtyping) For every subtyping
judgement Γ ⊢A ≤ B

Γ ⊢b A ≤ B iff Γ ⊢d A ≤ B

Proof. We already observed that systems F-bounded+ and F-bounded are equiv-
alent. Moreover we proved that the normalization procedure always transforms
an F-bounded+ derivation into a normal form derivation of the same judgement,
which is, by Lemmata 4.20 and 4.21 a dF-bounded derivation. Since dF-bounded is
a subsystem of F-bounded+ this allows us to conclude that also dF-bounded and
F-bounded+ are equivalent, thus proving the thesis. 2

Since the subtyping relations in F-bounded , F-bounded+ and dF-bounded coin-
cide, in the following we do not distinguish derivability of subtyping judgement in
the three systems unless we need it to refer to the concrete derivation.

5 Type checking

In this section we complete the definition of dF-bounded , the algorithmic version
of F-bounded , by specifying a deterministic set of term formation rules. Then we
show that the typing algorithm naturally associated with dF-bounded is correct
with respect to F-bounded and allows us to determine a minimal type for every
term which is typable in a given environment.

First of all we introduce the function Γ→, induced by a type environment Γ,
which applied to a type A gives back the minimum supertype of A which is an
arrow type, when such a supertype exists.

Definition 5.1 Let Γ be a well-formed type environment. Then:

Γ→(A→B) = A→B if Γ ⊢A→B
Γ→(α) = Γ→(Γ(α)) if α ∈ vars(Γ) and Γ(α) 6= α

Notice that Γ→(A) is undefined whenever A is Top, or a ∀ type, or a variable α
bounded by itself or by a type B such that Γ→(B) is undefined. The definition of
the minimum ∀ supertype of a given type in a type environment is analogous.

Definition 5.2 Let Γ be a well-formed type environment. Then:

Γ∀(∀α≤A. B) = ∀α≤A. B if Γ ⊢ ∀α≤A. B
Γ∀(α) = Γ∀(Γ(α)) if α ∈ vars(Γ) and Γ(α) 6= α

The reader can easily verify that, if Γ→(A) is defined, then Γ ⊢A ≤ Γ→(A). Simi-
larly, if Γ∀(A) is defined, then Γ ⊢A ≤ Γ∀(A).
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Definition 5.3 The term formation rules of dF-bounded are the rules (Var), (→ I),
(∀I) of F-bounded , plus the rules:

Γ, ∆ ⊢ f : B Γ→(B) = A′→B′ Γ, ∆ ⊢ a : A Γ ⊢A ≤ A′

Γ, ∆ ⊢ f(a) : B′
(d→ E)

Γ, ∆ ⊢ f : B Γ∀(B) = ∀α≤A. B′ Γ ⊢A′ ≤ A[α←A′]

Γ, ∆ ⊢ f{A′} : B′[α←A′]
(d∀E)

5.1 Correctness

The system dF-bounded is correct with respect to F-bounded , i.e., all derivable
dF-bounded judgements are also derivable F-bounded judgements.

Theorem 5.4 (correctness) If Γ, ∆ ⊢d a :A then Γ, ∆ ⊢b a :A.

Proof. As proved in the previous section, the subtyping relations in F-bounded
and dF-bounded coincide. Therefore it suffices to observe that for each dF-bounded
typing rule there exists a typing derivation in F-bounded with the same premises
and conclusion. Then an inductive reasoning on the structure of the derivation
allows us to conclude the proof.

The rules (Var), (→ I), (∀I) are also F-bounded rules, thus no consideration is
needed. An instance of rule (d→ E) can be replaced with the F-bounded typing
derivation:

Γ, ∆ ⊢ f : B Γ ⊢B ≤ Γ→(B) = A′→B′

Γ, ∆ ⊢ f : A′→B′
(Subs)

Γ, ∆ ⊢ a : A Γ ⊢A ≤ A′

Γ, ∆ ⊢ a : A′
(Subs)

Γ, ∆ ⊢ f(a) : B′
(→E)

Finally, the rule (d∀E) can be replaced with the F-bounded typing derivation:

Γ, ∆ ⊢ f : B Γ ⊢B ≤ Γ∀(B) = ∀α≤A.B′

Γ, ∆ ⊢ f : ∀α≤A.B′
(Subs)

Γ ⊢A′ ≤ A[α←A′]

Γ, ∆ ⊢ f{A′} : B′[α←A′]
(∀E)

2

5.2 Completeness and minimal typing

We now prove that the system dF-bounded is complete with respect to F-bounded
in the sense that if there exists a derivation for Γ, ∆ ⊢b a : A in F-bounded then we
can find a derivation Γ, ∆ ⊢d a : A′ in dF-bounded such that Γ ⊢A′ ≤ A. Moreover,
since dF-bounded is deterministic, the type A′ is uniquely determined and it is a
minimum type for the term a in F-bounded .

We first need a lemma stating some substitution properties of subtyping deriva-
tions which, besides being useful here to prove the completeness result, will be
fundamental in the proof of subject reduction for βη reduction. The lemma infor-
mally states that a type variable can be safely replaced with any type satisfying
the constraint imposed by the environment.

Let us fix some notation. If Γ ≡ α1≤A1, . . . , αn≤An is a type environment, we
denote with Γ[α←A] the type environment obtained from Γ by substituting each

27



free occurrence of α in the bounds with A, i.e., α1≤A1[α←A], . . . , αn≤An[α←A].
Similarly, if ∆ is a value environment we denote by ∆[α←A] the value environment
obtained by substituting each free occurrence of α in ∆ with the type A.

Lemma 5.5 (type substitution) Let Γ, α≤A, Γ′ ⊢ ♦ and let Γ, Γ′[α←A′] ⊢
A′ ≤ A[α←A′].

1. If Γ, α≤A, Γ′ ⊢B ≤ C then

Γ, Γ′[α←A′] ⊢B[α←A′] ≤ C[α←A′]

2. If Γ, α≤A, Γ′, ∆ ⊢b b : B then

Γ, Γ′[α←A′], ∆[α←A′] ⊢b b[α←A′] : B[α←A′]

Proof.

1. The proof is carried out by induction on the structure of the derivation of
Γ, α≤A, Γ′ ⊢b B ≤ C in F-bounded and by cases on the last rule used in
the derivation. We analyze just the cases of the rules for type variable and
bounded quantification.

• (Var ≤) Let the last rule be:

Γ, α≤A,Γ′ ⊢ ♦ β ∈ vars(Γ, α≤A,Γ′)

Γ, α≤A,Γ′ ⊢ β ≤ (Γ, α≤A,Γ′)(β)
(Var ≤)

We distinguish two subcases:

• If (β ≡ α) then β[α←A′] = A′ and (Γ, α≤A, Γ′)(β)[α←A′] =
A[α←A′]. Therefore the judgement we want to prove can be written
as Γ, Γ′[α←A′] ⊢ A′ ≤ A[α←A′], which is already present in the
hypotheses.

• If (β 6≡ α) then (Γ, α≤A, Γ′)(β) = (Γ, Γ′)(β) and thus the judge-
ment we want to prove becomes

Γ, Γ′[α←A′] ⊢ β ≤ (Γ, Γ′)(β)[α←A′].

Since Γ, α≤A, Γ′ ⊢ ♦, the variable α cannot occur free in Γ, and
thus (Γ, Γ′)(β)[α←A′] = (Γ, Γ′[α←A′])(β). Therefore we can con-
struct the following derivation for the desired judgment.

Γ, Γ′[α←A′] ⊢ ♦ β ∈ vars(Γ, Γ′[α←A′])

Γ, Γ′[α←A′] ⊢ β ≤ (Γ, Γ′[α←A′])(β)
(Var ≤)

Notice that Γ, Γ′[α←A′] ⊢ ♦ follows by Subproof Lemma 4.4, ap-
plied to the hypothesis Γ, Γ′[α←A′] ⊢A′ ≤ A[α←A′].

• (∀ ≤) Let the last rule be

Γ, α≤A,Γ′, β≤C′ ⊢ β ≤ B′ Γ, α≤A,Γ′, β≤C′ ⊢B′′ ≤ C′′

Γ, α≤A,Γ′ ⊢ ∀β≤B′. B′′ ≤ ∀β≤C′. C′′
(∀ ≤)
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By Lemma 4.4, we have Γ, α≤A, Γ′, β≤C ⊢ ♦, and thus it is easy to
see that also Γ, Γ′[α←A′], β≤C′[α←A′] ⊢ ♦. Hence Lemma 4.10 and
the hypothesis Γ, Γ′[α←A′] ⊢ A′ ≤ A[α←A′] allow us to deduce that
Γ, Γ′[α←A′], β≤C′[α←A′] ⊢A′ ≤ A[α←A′]. Therefore, by inductive hy-
pothesis, we have that Γ, Γ′[α←A′], β≤C′[α←A′] ⊢ β ≤ B′[α←A′] and
Γ, Γ′[α←A′], β≤C′[α←A′] ⊢ B′′[α←A′] ≤ C′′[α←A′]. Therefore, by us-
ing the rule (∀ ≤), we obtain that in the environment Γ, Γ′[α←A′]

(∀β≤B′[α←A′]. B′′[α←A′]) ≤ (∀β≤C′[α←A′]. C′′[α←A′]),

that is Γ, Γ′[α←A′] ⊢ (∀β≤B′. B′′)[α←A′] ≤ (∀β≤C′. C′′)[α←A′].

2. By induction on the structure of the derivation of Γ, α≤A, Γ′, ∆ ⊢b b : B in
F-bounded , and using point (1). 2

We are now ready to prove the main theorem of this section.

Theorem 5.6 (completeness and minimal typing) If Γ, ∆ ⊢b a : A then
Γ, ∆ ⊢d a : A′ and Γ ⊢A′ ≤ A.

Proof. By induction on the structure of the derivation of Γ, ∆ ⊢b a : A.
We distinguish various cases according to the last rule used in the derivation.

• (Var) Let the last rule be:

Γ, ∆, x :A,∆′ ⊢b ♦

Γ, ∆, x :A,∆′ ⊢b x : A
(Var)

Then this is also a derivation in dF-bounded .

• (→ I) Let the last rule be:

Γ, ∆, x :A ⊢b b : B

Γ, ∆ ⊢b λx:A. b : A→B
(→ I)

By inductive hypothesis there exists a derivation d :: Γ, ∆, x :A ⊢d b : B′,
with Γ ⊢B′ ≤ B. Then, since (→ I) is also a dF-bounded rule, we obtain the
derivation in dF-bounded :

d :: Γ, ∆, x :A ⊢d b : B′

Γ, ∆ ⊢d λx:A. b : A→B′
(→ I)

and Γ ⊢A→B′ ≤ A→B holds by rule (→≤).

• (∀I) Let the last rule be:

Γ, α≤A,∆ ⊢b b : B α 6∈ FV (∆)

Γ, ∆ ⊢b Λα≤A. b : ∀α≤A.B
(∀I)

By inductive hypothesis there exists a derivation d :: Γ, α≤A, ∆ ⊢d b : B′,
with Γ, α≤A ⊢B′ ≤ B. Then, since (∀I) is also a dF-bounded rule, we obtain
the derivation in dF-bounded :
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d :: Γ, α≤A,∆ ⊢d b : B′ α 6∈ FV (∆)

Γ, ∆ ⊢d (Λα≤A. b) : (∀α≤A.B′)
(∀I)

Furthermore, by using rule (∀ ≤), from Γ, α≤A ⊢ B′ ≤ B we can derive
Γ ⊢ (∀α≤A. B′) ≤ (∀α≤A. B).

• (Subs) Let the last rule be:

Γ, ∆ ⊢b a : A Γ ⊢A ≤ B

Γ, ∆ ⊢b a : B
(Subs)

By inductive hypothesis there exists a derivation d :: Γ, ∆ ⊢d a : A′, with
Γ ⊢A′ ≤ A. Thus, by transitivity, Γ ⊢A′ ≤ B.

• (→ E) Let the last rule be:

Γ, ∆ ⊢b f : A→B Γ, ∆ ⊢b a : A

Γ, ∆ ⊢b f(a) : B
(→ E)

By inductive hypothesis there exist the derivations

d1 :: Γ, ∆ ⊢d f : C, with Γ ⊢ C ≤ A→B,
d2 :: Γ, ∆ ⊢d a : A′, with Γ ⊢A′ ≤ A.

We want to show that Γ ⊢ C ≤ A→B implies that Γ→(C) is defined and that
Γ ⊢ Γ→(C) ≤ A→B. We prove it by induction on the size of the dF-bounded
derivation of Γ ⊢ C ≤ A→B and by cases on the last rule used. There are
two possibilities. If the last rule is (→≤), then C is an arrow type, and the
thesis follows immediately from Γ→(C) = C. If the rule is (TVar ≤), then C is
a type variable α with Γ ⊢ Γ(α) ≤ A→B and Γ(α) 6= α. Hence, by induction,
Γ→(Γ(α)), which is equal to Γ→(α), is defined and less than A→B.

Now, let Γ→(C) be A′′→B′′. By the shape of dF-bounded subtyping rules,
Γ ⊢A ≤ A′′ and Γ ⊢ B′′ ≤ B, and thus, by transitivity, Γ ⊢A′ ≤ A′′. Hence,
Γ ⊢ f(a) : B′′ can be proved as follows:

d1 :: Γ, ∆ ⊢d f : C Γ→(C) = A′′→B′′ d2 :: Γ, ∆ ⊢d a : A′

....
Γ ⊢A′ ≤ A′′

Γ, ∆ ⊢d f(a) : B′′
(d→ E)

and, as remarked above, Γ ⊢B′′ ≤ B.

• (∀E) Let the last rule be:

Γ, ∆ ⊢b f : ∀α≤A.B Γ ⊢b A′ ≤ A[α←A′]

Γ, ∆ ⊢b f{A′} : B[α←A′]
(∀E)

By inductive hypothesis there exists a derivation

d :: Γ, ∆ ⊢d f : C, with Γ ⊢ C ≤ (∀α≤A. B).
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By reasoning as above, we can prove that Γ∀(C) is equal to a type ∀α≤A′′. B′′

such that Γ ⊢ (∀α≤A′′. B′′) ≤ (∀α≤A. B). By the shape of dF-bounded
subtyping rules, Γ, α≤A ⊢ α ≤ A′′ and Γ, α≤A ⊢ B′′ ≤ B. By using
Γ, α≤A ⊢ α ≤ A′′, Γ ⊢ A′ ≤ A[α←A′] (premise of the (∀E) rule) and
Lemma 5.5(1), we have Γ ⊢ α[α←A′] ≤ A′′[α←A′], i.e.,

Γ ⊢A′ ≤ A′′[α←A′].

Therefore, by using the rule (d∀E), we can construct the following dF-bounded
derivation:

d :: Γ, ∆ ⊢d f : C Γ∀(C) = ∀α≤A′′. B′′

....
Γ ⊢A′ ≤ A′′[α←A′]

Γ, ∆ ⊢d f{A′} : B′′[α←A′]
(d∀E)

and, since Γ, α≤A ⊢B′′ ≤ B, recalling that Γ ⊢ A′ ≤ A[α←A′], and by using
Lemma 5.5(1) again, we conclude:

Γ ⊢B′′[α←A′] ≤ B[α←A′]. 2

6 Subject reduction for system F-bounded

Subject reduction is one of the primary properties of a typed language. It states
that the type is preserved (or sometimes specialized) by the reduction rules of the
language and therefore it ensures that a program which has been assigned a type
statically, will never go wrong at run-time because of typing errors.

We first need a strengthening lemma stating that unused bindings can be safely
discarded from the environment. More precisely, given a judgement Γ(, ∆) ⊢ P , if a
(type or value) variable appearing in the environment does not occur free in P then
the corresponding binding in the environment can be removed without affecting the
derivability of the judgement.

Lemma 6.1 (strengthening) 1. If the judgement Γ, α≤A, Γ′ ⊢ B ≤ C is
derivable, α 6∈ FV (B) ∪ FV (C) and Γ, Γ′ ⊢ ♦ then also Γ, Γ′ ⊢ B ≤ C
is derivable.

2. Similarly, if the judgement Γ, α≤A, Γ′, ∆ ⊢b b : B is derivable, Γ, Γ′, ∆ ⊢ ♦
and α 6∈ FV (b) ∪ FV (B) then also Γ, Γ′, ∆ ⊢b b : B is derivable.

3. Finally, if Γ, ∆, x :A, ∆′ ⊢ b : B and x 6∈ FV (b) then Γ, ∆, ∆′ ⊢ b : B.

Proof.

1. It is convenient to consider a derivation d for Γ, α≤A, Γ′ ⊢ B ≤ C in the
deterministic version dF-bounded of the system. Then the proof proceeds by
straightforward induction on the structure of d and by cases on the last rule
used. Only observe that, when treating rule (TVar ≤), the well-formedness
hypothesis Γ, Γ′ ⊢ ♦ ensures that variable α does not occur free in any
bound of variables in vars(Γ, Γ′).
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2. We first prove a slightly stronger property which only holds for the determin-
istic variant dF-bounded of the system, namely that

Γ, α≤A, Γ′, ∆ ⊢d b : B ∧ Γ, Γ′, ∆ ⊢ ♦ ∧ α 6∈ FV (b) ⇒
α 6∈ FV (B) ∧ Γ, Γ′, ∆ ⊢d b : B.

The proof is done by induction on the structure of the dF-bounded derivation
of the judgement Γ, α≤A, Γ′, ∆ ⊢d b : B and by cases on the last rule used.

• (Var) Let the last rule be:

Γ, α≤A,Γ′, ∆ ⊢d ♦ x ∈ vars(∆)

Γ, α≤A,Γ′, ∆ ⊢d x : ∆(x)
(Var)

Since by hypothesis Γ, Γ′, ∆ ⊢ ♦, and x ∈ vars(∆), the judgement
Γ, Γ′, ∆ ⊢d x : ∆(x) is derivable by using rule (Var). The fact that α 6∈
FV (∆(x)) is also an obvious corollary of the well-formedness hypothesis.

• (→ I) Let the last rule be:

Γ, α≤A,Γ′, ∆, x :A ⊢d b : B

Γ, α≤A,Γ′, ∆ ⊢d λx:A. b : A→B
(→ I)

Since α 6∈ FV (λx:A. b), clearly

(†) α 6∈ FV (A) (‡) α 6∈ FV (b)

By Γ, Γ′, ∆ ⊢ ♦ and (†), we have that Γ, Γ′, ∆, x :A ⊢ ♦ and thus, by
(‡) and inductive hypothesis, we deduce that the variable α 6∈ FV (B)
and Γ, Γ′, ∆, x :A ⊢d b : B is derivable. Summing up, α 6∈ FV (A→B)
and, by using rule (→ I), the judgement Γ, Γ′, ∆ ⊢d λx:A. b : A→B is
derivable.

• (d→ E) Let the last rule be:

Γ′′, ∆ ⊢d f : B Γ′′→(B) = A′→B′ Γ′′, ∆ ⊢d a : A′′ Γ′′ ⊢A′′ ≤ A′

Γ′′, ∆ ⊢d f(a) : B′
(d→ E)

where Γ′′ ≡ Γ, α≤A, Γ′. Since α 6∈ FV (f(a)), we have α 6∈ FV (f) and
α 6∈ FV (a), and therefore, by inductive hypothesis:

(a) α 6∈ FV (B) (b) Γ, Γ′, ∆ ⊢d f : B
(c) α 6∈ FV (A′′) (d) Γ, Γ′, ∆ ⊢d a : A′′

By the fact that (Γ, α≤A, Γ′)
→

(B) = A′→B′ and Γ, Γ′, ∆ ⊢ ♦, it is
not difficult to see that (a) implies

(e) α 6∈ FV (A′→B′)

Hence α 6∈ FV (A′) and thus, by Γ, α≤A, Γ′ ⊢ A′′ ≤ A′, (c), Γ, Γ′ ⊢ ♦
and point (1) of this lemma, we have that

Γ, Γ′ ⊢A′′ ≤ A′.

Summing up, the binding α≤A can be removed from the environment in
all the premises of the rule, and thus by using rule (d→ E) we conclude
that Γ, Γ′, ∆ ⊢d f(a) : B′ is derivable. Moreover, by (e), α 6∈ FV (B′).
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Rules (∀I) and (d∀E) are treated analogously to (→ I) and (d→ E), respec-
tively. This concludes the proof of the intermediate result.

Now, suppose Γ, α≤A, Γ′, ∆ ⊢b b : B derivable in F-bounded , Γ, Γ′, ∆ ⊢ ♦
and α 6∈ FV (b) ∪ FV (B). By Theorem 5.6 there exists a derivation in
dF-bounded for Γ, α≤A, Γ′, ∆ ⊢d b : B′, such that Γ, α≤A, Γ′ ⊢ B′ ≤ B.
Hence, by the property of dF-bounded just proved

(†) α 6∈ FV (B′) (‡) Γ, Γ′, ∆ ⊢d b : B′

Since by hypothesis α 6∈ FV (B), by (†) and point (1) of this lemma, we have
Γ, Γ′ ⊢B′ ≤ B. Therefore, by (‡) and using subsumption, we conclude that

Γ, Γ′, ∆ ⊢b b : B.

3. Trivial induction on the structure of the derivation. 2

It is worth remarking that the absence of a transitivity rule in dF-bounded plays
a fundamental role, making the proof of point (1) extremely simple. Similarly, the
proof of point (2) relies on the possibility of deriving a minimal type for a term
in dF-bounded , without resorting to subsumption. In fact, notice that the property
proved for dF-bounded in the proof of point (2) does not hold for the full system.
For instance, α≤Top, β≤α, x :α→α ⊢b x : β→α, and, although the variable β
does not occur free in x, it appears in its type β→α.

A basic role in the proof of subject reduction is played by the substitution
lemma for types (Lemma 5.5). Furthermore an analogous substitution result for
values is needed, stating that a value variable can be safely replaced by any term
with the appropriate type.

Lemma 6.2 (value substitution) Let Γ, ∆, x :A, ∆′ ⊢b b : B and let Γ, ∆, ∆′ ⊢b
a : A. Then

Γ, ∆, ∆′ ⊢b b[x←a] : B.

Proof. The proof proceeds by induction on the structure of the derivation of
Γ, ∆, x :A, ∆′ ⊢b b : B and by cases on the last rule applied.

• (Var) Let the last rule be:

Γ, ∆, x :A,∆′ ⊢b ♦ y ∈ vars(∆, x :A,∆′)

Γ, ∆, x :A,∆′ ⊢b y : B
(Var)

If y ≡ x then by necessity A ≡ B and therefore, since y[x←a] = a, the desired
conclusion Γ, ∆, ∆′ ⊢b a : A is already in the hypotheses. If, on the other
hand, y 6≡ x then (∆, ∆′)(y) = B. Observing that Γ, ∆, ∆′ ⊢ ♦, we conclude
Γ, ∆, ∆′ ⊢b y : B which is exactly the desired conclusion since y[x←a] = y.

• (→ I) Let the last rule be:

Γ, ∆, x :A,∆′, y :A′ ⊢b b′ : B′

Γ, ∆, x :A,∆′ ⊢b λy:A′. b′ : A′→B′
(→ I)
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Since we work with De Bruijn terms we can assume without loss of generality
that x 6≡ y and thus that

(λy:A′. b′)[x←a] = λy:A′. b′[x←a] (†)

By the Subproof Lemma and Lemma 4.11, Γ, ∆, ∆′, y :A′ ⊢b a : A. Hence,
by inductive hypothesis Γ, ∆, ∆′, y :A′ ⊢b b′[x←a] : B′ and therefore, by rule
(→ I), we conclude that Γ, ∆, ∆′ ⊢b λy:A′. b′[x←a] : A′→B′. But, recalling
(†), this is exactly what we wanted to prove.

• (→ E) Let the last rule be:

Γ, ∆, x :A,∆′ ⊢b f : A′→B Γ, ∆, x :A,∆ ⊢b a′ : A′

Γ, ∆, x :A,∆′ ⊢b f(a′) : B
(→ E)

By inductive hypothesis the judgements Γ, ∆, ∆′ ⊢b f [x←a] : A′→B and
Γ, ∆, ∆′ ⊢b a′[x←a] : A′ are derivable. Therefore the desired conclusion
Γ, ∆, ∆′ ⊢b f [x←a](a′[x←a]) : B follows by rule (→ E).

• (Subs), (∀I) and (∀E) are treated as the previous case, by a direct use of the
inductive hypothesis. In the case (∀I), the first statement of Lemma 4.11 must
be used. 2

Subject reduction is an immediate consequence of the following lemmata, which,
in turn, exploits the substitution lemmata for types and values (Lemma 5.5 and
Lemma 6.2) and the completeness of the deterministic version of F-bounded (The-
orem 5.6).

Lemma 6.3 Let Γ be a type environment and let ∆ be a value environment. Then

1. Γ, ∆ ⊢b (λx:A. b)(a) : B ⇒ Γ, ∆ ⊢b b[x←a] : B;

2. Γ, ∆ ⊢b (Λα≤A. b){A′} : B ⇒ Γ, ∆ ⊢b b[α←A′] : B;

3. Γ, ∆ ⊢b λx:A. b(x) : B and x 6∈ FV (b) ⇒ Γ, ∆ ⊢b b : B;

4. Γ, ∆ ⊢b Λα≤A. b{α} : B and α 6∈ FV (b) ⇒ Γ, ∆ ⊢b b : B;

Proof.

1. By Theorem 5.6 there exists a derivation d :: Γ, ∆ ⊢d (λx:A. b)(a) : B′ in
dF-bounded such that Γ ⊢ B′ ≤ B. This derivation must have the following
shape:

Γ, ∆, x :A ⊢d b : B′

Γ, ∆ ⊢d λx:A. b : A→B′
(→ I)

Γ, ∆ ⊢d a : A′ Γ ⊢A′ ≤ A

Γ, ∆ ⊢d (λx:A. b)(a) : B′
(d→ E)

By using subsumption, from Γ, ∆, x :A ⊢d b : B′ and Γ ⊢ B′ ≤ B we have
Γ, ∆, x :A ⊢b b : B, and, similarly, from Γ, ∆ ⊢d a : A′ and Γ ⊢A′ ≤ A we de-
duce Γ, ∆ ⊢b a : A. Therefore, by Lemma 6.2, we conclude Γ, ∆ ⊢b b[x←a] : B.
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2. By Theorem 5.6 there exists a derivation d :: Γ, ∆ ⊢d (Λα≤A. b){A′} : B′ in
dF-bounded such that Γ ⊢ B′ ≤ B. This derivation must have the following
shape:

Γ, α≤A,∆ ⊢d b : B′′ α 6∈ FV (∆)

Γ, ∆ ⊢d (Λα≤A. b) : (∀α≤A.B′′)
(∀I)

Γ ⊢A′ ≤ A[α←A′]

Γ, ∆ ⊢d (Λα≤A. b){A′} : B′′[α←A′]
(d∀E)

with B′ ≡ B′′[α←A′].

By Γ, α≤A, ∆ ⊢d b : B′′ and Γ ⊢A′ ≤ A[α←A′] which appear in the deriva-
tion, and using Lemma 5.5(2), we have that

Γ, ∆ ⊢b b[α←A′] : B′′[α←A′] ≡ B′.

Hence, by using subsumption we conclude Γ, ∆ ⊢b b[α←A′] : B.

3. By Theorem 5.6 there exists a derivation d :: Γ, ∆ ⊢d λx:A. b(x) : B′ in
dF-bounded such that Γ ⊢B′ ≤ B. The derivation d must have the following
shape:

Γ, ∆, x :A ⊢d b : D Γ→(D) = A′→C Γ, ∆, x :A ⊢d x : A Γ ⊢A ≤ A′

Γ, ∆, x :A ⊢d b(x) : C
(d→E)

Γ, ∆ ⊢d λx:A. b(x) : A→C
(→I)

where B′ ≡ A→C.

By the Subproof Lemma 4.4 and reflexivity rule we have Γ ⊢ C ≤ C,
and using Γ ⊢ A ≤ A′ we deduce Γ ⊢ A′→C ≤ A→C. Recalling that
Γ ⊢ D ≤ Γ→(D) and Γ→(D) = A′ → C we conclude, by transitivity
and subsumption, Γ, ∆, x :A ⊢b b : A→C ≡ B′, and, again by subsumption,
Γ, ∆, x :A ⊢b b : B. Now, since x 6∈ FV (b), by strengthening (Lemma 6.1(3)),
we reach the desired conclusion Γ, ∆ ⊢b b : B.

4. By Theorem 5.6 there exists a derivation d :: Γ, ∆ ⊢d Λα≤A. b{α} : B′ in
dF-bounded such that Γ ⊢B′ ≤ B. The derivation d must have the following
shape:

Γ, α≤A,∆ ⊢d b : D (Γ, α≤A)∀(D) = ∀α≤A′. C

Γ, α≤A ⊢ α ≤ A′

Γ, α≤A,∆ ⊢d b{α} : C
(d∀E)

α 6∈ FV (∆)

Γ, ∆ ⊢d Λα≤A. b{α} : ∀α≤A.C
(∀I)

where B′ ≡ ∀α≤A. C.

By the Subproof Lemma 4.4 and reflexivity rule we have Γ ⊢ C ≤ C, and us-
ing Γ, α≤A ⊢d α ≤ A′ we deduce Γ ⊢ (∀α≤A′. C) ≤ (∀α≤A. C). By Lemma
4.10, Γ, α≤A ⊢ (∀α≤A′. C) ≤ (∀α≤A. C). Therefore, as above, by subsump-
tion we conclude Γ, α≤A, ∆ ⊢b b : (∀α≤A. C) and thus, by strengthening
(Lemma 6.1(2)), since α 6∈ FV (b) ∪ FV (∀α≤A. C) and Γ, ∆ ⊢ ♦, we have
Γ, ∆ ⊢b b : (∀α≤A. C). Recalling that B′ ≡ ∀α≤A. C and Γ ⊢ B′ ≤ B, by
using subsumption, we reach the desired conclusion. 2
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Now, the theorem of subject reduction for F-bounded is an immediate corollary
of the previous lemma.

Theorem 6.4 (subject reduction) Let a be a term in F-bounded. If ⊢b a : A
and a −−≫ ∗a′ then ⊢b a′ : A.

7 Type Equivalence in system F-bounded

Two types mutually related by subtyping are equivalent in the sense that each
can be substituted by the other one in any good formation, typing, or subtyping
judgement. Having just one type in each equivalence class generally makes a type
system slightly easier to use and to understand, both for the programmer and
for the theoretician. For this reason, antisymmetry of subtyping is regarded as a
desirable property.

The subtype relation in F-bounded is not antisymmetric, namely, in general,
Γ ⊢ A ≤ B and Γ ⊢ B ≤ A does not imply that A and B are (syntactically) the
same type. In other words subtype equivalence and (syntactical) equality of types
do not coincide in F-bounded . For instance we have:

α≤Top ⊢ α

α≤Top ⊢ α ≤ α
(IdVar≤)

α≤Top ⊢ Top

α≤Top ⊢ Top ≤ Top
(Top≤)

⊢ (∀α≤α.Top) ≤ (∀α≤Top.Top)
(∀≤)

and also the converse inequality holds:

α≤α ⊢ α

α≤α ⊢ α ≤ Top
(Top≤)

α≤α ⊢ Top

α≤α ⊢ Top ≤ Top
(Top≤)

⊢ (∀α≤Top.Top) ≤ (∀α≤α.Top)
(∀≤)

The aim of this section is to characterize type equivalence in F-bounded and to
suggest how an antisymmetric subtype relation can be recovered. We will see that
the above example is paradigmatic, in the sense that, as one would expect, two
equivalent types are syntactically the same type up to the replacement of bounds
of the kind α≤ α with α≤Top and vice versa. These considerations will lead to
the notion of standard type.

Let us start by giving the formal definition of type equivalence. As pointed out
above, two types are equivalent if each one is a subtype of the other.

Definition 7.1 (type equivalence) Two types A and B are equivalent in Γ, writ-
ten Γ ⊢A ∼ B, if Γ ⊢A ≤ B and Γ ⊢B ≤ A.

The types A and B are called equivalent, written A ∼ B, if there exists a type
environment Γ such that Γ ⊢A ∼ B.

The existential quantification over Γ in the above definition may sound strange.
Indeed we will prove later that equivalence does not actually depend on the envi-
ronment considered but only on the structure of the two types. Namely, whenever
A ∼ B then Γ ⊢ A ∼ B for any environment Γ such that Γ ⊢ A and Γ ⊢ B
(Corollary 7.7).

A few simple remarks are in order:

Proposition 7.2 Let Γ be a type environment, A, B types and let α, β be type
variables. Then:
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1. if Γ ⊢A ≤ α then A is a type variable;

2. α ∼ β iff α ≡ β;

3. if Γ, α≤A ⊢ α ≤ B and B 6≡ α,Top then Γ, α≤A ⊢A ≤ B.

Proof.

1. Just consider the structure of a possible derivation of the judgement in
dF-bounded .

2. Suppose that α ∼ β (in the environment Γ) and α 6≡ β. Since Γ ⊢d α ≤ β
there exists n > 0 such that Γn(α) = β and thus β occurs before α in
the environment Γ. Therefore it cannot be the case that Γ ⊢d β ≤ α, thus
contradicting the hypothesis.

Conversely, if α ≡ β we immediately conclude by using the rule (IdVar ≤).

3. Straightforward, by looking at the shape of the rule (TVar ≤). 2

Let us introduce the notion of the standard form for a type. The basic idea
is that a bound α ≤ α is equivalent to a bound α ≤ Top, since both essentially
correspond to an unbounded quantification.

Definition 7.3 The standard form for a type A, denoted by std(A), is defined by
induction on the structure of A as follows:

std(Top) = Top;

std(α) = α;

std(A→B) = std(A)→std(B);

std(∀α≤A.B) =

{

∀α≤std(A). std(B) if A 6≡ α
∀α≤Top. std(B) if A ≡ α

We first prove that every type is equivalent to its standard form and that two
types with the same standard form are equivalent.

Lemma 7.4 Let Γ be a type environment and let A be a type. If Γ ⊢ A then
Γ ⊢A ∼ std(A).

Proof. We prove by induction on the structure of A that Γ ⊢ A ≤ std(A) and
Γ ⊢ std(A) ≤ A.

• A ≡ α,Top
Immediate, by rule (Id ≤).

• A ≡ A′→A′′

Trivial induction.

• A ≡ ∀α≤A′. A′′

The hypothesis Γ ⊢ ∀α≤A′. A′′ implies that

Γ, α≤A′ ⊢A′ and Γ, α≤A′ ⊢A′′
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and thus, since FV (std(A)) = FV (A), we easily conclude that:

Γ, α≤std(A′) ⊢A′ and Γ, α≤std(A′) ⊢A′′.

By inductive hypothesis we have:

(1) Γ, α≤A′ ⊢A′ ∼ std(A′) (3) Γ, α≤std(A′) ⊢A′ ∼ std(A′)
(2) Γ, α≤A′ ⊢A′′ ∼ std(A′′) (4) Γ, α≤std(A′) ⊢A′′ ∼ std(A′′)

Now, if A′ 6≡ α,Top then, by definition, std(A) = ∀α≤ std(A′). std(A′′) and
std(A′) 6≡ α,Top. Thus we can construct a derivation for Γ ⊢ std(A) ≤ A as
follows:

Γ, α≤A′ ⊢A′ ≤ std(A′)(1)
A′ 6≡ α,Top std(A′) 6≡ α,Top

Γ, α≤A′ ⊢ α ≤ std(A′)
(TVar≤)

Γ, α≤A′ ⊢ std(A′′) ≤ A′′(2)

Γ ⊢ (∀α≤std(A′). std(A′′)) ≤ (∀α≤A′. A′′)
(∀≤)

and similarly for Γ ⊢A ≤ std(A):

Γ, α≤std(A′) ⊢ std(A′) ≤ A′(3)
A′, std(A′) 6≡ α,Top

Γ, α≤std(A′) ⊢ α ≤ A′
(TVar≤)

Γ, α≤std(A′) ⊢A′′ ≤ std(A′′)(4)

Γ ⊢ (∀α≤A′. A′′) ≤ (∀α≤std(A′). std(A′′))
(∀≤)

If A′ ≡ Top or A′ ≡ α we cannot use rule (TVar ≤), and in both cases
std(A) = ∀α ≤ Top. std(A′′). The case A′ ≡ Top, can be treated by sub-
stituting the instances of rule (TVar ≤) in both derivations by instances of
rule (Top ≤). The case A′ ≡ α is managed by replacing the instances of rule
(TVar ≤) in the two derivations, by an instance of rule (Top ≤) in the first
one and by an instance of (Id ≤) in the second one. 2

Corollary 7.5 If Γ ⊢ A, Γ ⊢ B, and std(A) = std(B) then Γ ⊢ A ∼ B and thus
A ∼ B.

Proof. By the previous lemma, Γ ⊢A ∼ std(A) and Γ ⊢ std(B) ∼ B. By std(A) =
std(B) and by transitivity, Γ ⊢A ∼ B; hence A ∼ B. 2

We can now prove the inverse implication, namely the fact that equivalent
F-bounded types have the same normal form. Here we make a crucial use of the
result of transitivity elimination. This explains why such a property, which is by
now easy, was claimed but not proved in previous works [Kat92, Ghe97].

Proposition 7.6 Let A and B be types. If A ∼ B then std(A) = std(B).

Proof. Let Γ be an environment such that Γ ⊢A ∼ B, that is:

Γ ⊢d A ≤ B and Γ ⊢d B ≤ A, (†)

where the subtyping derivations are assumed to be in dF-bounded . We proceed by
induction on the structure of A.
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• (A ≡ α)
In this case, by Proposition 7.2, we conclude B ≡ α.

• (A ≡ Top)
In this case, by Lemma 4.7, we conclude that B ≡ Top.

• (A ≡ A′→A′′)
In this case B ≡ B′ → B′′, since the last rules used in the derivations for
(†) are necessarily instances of (→≤). Moreover, from the shape of this, we
immediately get that Γ ⊢A′ ∼ B′ and Γ ⊢A′′ ∼ B′′. Therefore we conclude
by inductive hypothesis.

• (A ≡ ∀α≤A′. A′′)
Reasoning as above, the only rule that allows one to prove (†) is (∀ ≤) and
thus we have B ≡ ∀α≤B′. B′′ and

(a) Γ, α≤B′ ⊢ α ≤ A′ (c) Γ, α≤A′ ⊢ α ≤ B′

(b) Γ, α≤B′ ⊢A′′ ≤ B′′ (d) Γ, α≤A′ ⊢B′′ ≤ A′′

By Lemma 4.6, and (c), (b) we conclude that

(e) Γ, α≤A′ ⊢A′′ ≤ B′′.

From (d) and (e) we have that A′′ ∼ B′′ and therefore, by inductive hypoth-
esis, std(A′′) = std(B ′′).

Now, if A′ and B′ are both different from α and Top then, by Proposition
7.2, point (3) and (a), (c) we have

(f) Γ, α≤B′ ⊢B′ ≤ A′ and (g) Γ, α≤A′ ⊢A′ ≤ B′.

By (g), Lemma 4.6 and (a) we deduce

(h) Γ, α≤B′ ⊢A′ ≤ B′,

and thus A′ ∼ B′. Therefore, by inductive hypothesis std(A′) = std(B ′), and
we conclude std(A) = std(B).

If, on the other hand, A′ ≡ α,Top then the only rules that allow us to obtain
the conclusion (c) are (IdVar ≤) or (Top ≤) and thus B′ ≡ α or B′ ≡ Top.
Summing up, and, reasoning by symmetry, we have that A′ ≡ α or A′ ≡ Top
if and only if B′ ≡ α or B′ ≡ Top. Therefore, in this case too we conclude
std(A) = (∀α≤Top. std(A′′)) = (∀α≤Top. std(B ′′)) = std(B). 2

As an immediate corollary of the previous lemma and of Corollary 7.5, we obtain
the independence of type equivalence from the environment.

Corollary 7.7 If A ∼ B, Γ ⊢ A and Γ ⊢B, then Γ ⊢A ∼ B.

The result of this section suggests a very simple way to obtain a formulation
of F-bounded in which the subtyping relation is antisymmetric, which consists of
forbidding types with shape ∀α ≤ α. A, where a type variable has the variable
itself as bound. Such a system contains exactly one representative for each class of
equivalent F-bounded types.
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Proposition 7.8 Let F-bounded strict be the system having the same rules as
those of F-bounded, but with the constraint that the bound of a variable must be
different from the variable itself. Then the following facts hold.

1. Conservativity: F-bounded is a conservative extension of F-bounded strict.

2. Fullness: for any type A in F-bounded there exists A′ in F-bounded strict
such that A ∼ A′ (in system F-bounded).

3. Antisymmetry: for any A, A′ in F-bounded strict, if A ∼ A′ then A ≡ A′.

Proof. As for (1), just observe that any algorithmic derivation in F-bounded which
does not contain any α ≤ α bound in the conclusion, does not contain any α ≤ α
bound anywhere else. To prove (2) let A′ be std(A). Finally (3) follows by observing
that A = std(A), A′ = std(A′) and that, by Proposition 7.6, std(A) = std(A′). 2

8 Other formulations of system F-bounded

The (sub)typing rules of F-bounded closely correspond to F≤ rules, with the only
exception being (∀ ≤). In fact, the most immediate generalization of the rule (∀ ≤)
of F≤ would be as follows:

Γ, α≤A′ ⊢A′ ≤ A Γ, α≤A′ ⊢B ≤ B′

Γ ⊢ (∀α≤A. B) ≤ (∀α≤A′. B′)
(∀′ ≤)

In this section we study the variant of F-bounded including rule (∀′ ≤) instead of
(∀ ≤) and we prove some properties first conjectured in [Kat92] and later in [Ghe97].
More precisely, we first show that rule (∀′ ≤) is strictly less powerful than the (∀ ≤)
rule adopted in this paper. Then we prove that the two rules are equivalent if we
either forbid α≤α bounds, or we add also the following rule to the system:

Γ, α≤α ⊢A

Γ ⊢ (∀α≤α. A) ≤ (∀α≤Top. A)
(∀Top ≤)

The next proposition shows that rule (∀′ ≤) above is strictly less expressive
than rule (∀ ≤). In fact it does not allow one to prove, for example, the judgement
⊢ (∀α≤α.Top) ≤ (∀α≤Top.Top), which is derivable in F-bounded .

Proposition 8.1 In a system obtained from F-bounded by substituting rule (∀ ≤)
with (∀′ ≤), one cannot prove the judgement Γ ⊢ (∀α≤A. B) ≤ (∀α≤Top. B′), for
any choice of Γ, B, B′ and A 6≡ Top.

Proof. We prove it by reduction ad absurdum. Suppose that derivations of such
judgements exist in the system, and let k be the minimum height of such deriva-
tions. A derivation of height k cannot end with an instance of (Trans ≤) rule,
otherwise (at least) one of the two premises would have the desired shape and a
derivation with a height smaller than k. In fact, it is easy to verify that the in-
termediate type would have to be a ∀ type with shape ∀α≤A′′. B′′, and thus, if
A′′ ≡ Top then the left subderivation (or otherwise the right one) would have a
judgement of the desired shape as its conclusion. Hence the judgement must have
been proved by rule (∀′ ≤). This implies that Γ, α≤Top ⊢ Top ≤ A. Now, it is easy
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to see that Lemma 4.7 still holds for this variant of F-bounded (the proof remains
the same since it does not depend on the formulation of rule (∀ ≤)) and therefore
we conclude that A ≡ Top, thus contradicting the hypothesis. 2

We now show that equivalence can be regained by either restricting the types
or by adding the rule (∀Top ≤) above. We first give a name to the systems corre-
sponding to these different choices.

Definition 8.2 (F-bounded≤ and F-bounded−) The system F-bounded≤ is ob-
tained from F-bounded by replacing the rule (∀ ≤) with (∀′ ≤) and adding the rule
(∀Top ≤).

The system F-bounded− is obtained from F-bounded by replacing the rule (∀ ≤)
with (∀′ ≤) and forbidding α≤α bounds, where a variable is a bound for itself.

Notation 8.3 When necessary to avoid ambiguity, a judgement derivable in
F-bounded≤ and F-bounded− will be respectively denoted as

Pre ⊢b≤ Concl and Pre ⊢− Concl

Proposition 8.4 The systems F-bounded and F-bounded≤ are equivalent, i.e.,

Γ, ∆ ⊢b a : A iff Γ, ∆ ⊢b≤ a : A

Proof. Since the two systems have the same term formation rules, it is sufficient
to show that for all subtyping judgements:

Γ ⊢b A ≤ B iff Γ ⊢b≤ A ≤ B

(⇒) Let us consider a derivation d :: Γ ⊢d A ≤ B in the deterministic system
dF-bounded .8 We show by induction on d that it can be transformed into a deriva-
tion d≤ :: Γ ⊢b≤ A ≤ B. We distinguish various cases according to the last rule
applied in the derivation d.

• (IdVar ≤), (→≤), (Top ≤): Just notice that such rules are (instances of)
F-bounded≤ rules, and apply the inductive hypothesis to the premises.

• (TVar ≤) The derivation is of the kind

d′

Γ ⊢d Γ(α) ≤ B B 6≡ α,Top Γ(α) 6= α, Top

Γ ⊢d α ≤ B
(TVar≤)

By inductive hypothesis we can obtain the F-bounded≤ derivation d′≤ and
thus:

Γ ⊢ ♦

Γ ⊢b≤ α ≤ Γ(α)
(Var≤)

d′
≤

Γ ⊢b≤ Γ(α) ≤ B

Γ ⊢b≤ α ≤ B
(Trans≤)

• (∀ ≤) The derivation is of the kind

8Basically the same proof can be carried out within the non deterministic version.
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d1

Γ, α≤A′ ⊢d α ≤ A

d2

Γ, α≤A′ ⊢d B ≤ B′

Γ ⊢d (∀α≤A.B) ≤ (∀α≤A′. B′)
(∀≤)

We distinguish three cases, according to the shape of the type A and in each
case we give the F-bounded≤ derivation for Γ ⊢b≤ (∀α≤A. B) ≤ (∀α≤A′. B′)

– (A ≡ Top)

Γ, α≤A′ ⊢b≤ A′

Γ, α≤A′ ⊢b≤ A′ ≤ Top
(Top≤)

d2≤

Γ, α≤A′ ⊢b≤ B ≤ B′
(ind.hyp.)

Γ ⊢b≤ (∀α≤Top. B) ≤ (∀α≤A′. B′)
(∀′≤)

– (A ≡ α)

Γ, α≤α ⊢b≤ B

Γ ⊢b≤ (∀α≤α.B) ≤ (∀α≤Top. B)
(∀Top≤)

d

Γ ⊢b≤ (∀α≤α.B) ≤ (∀α≤A′. B′)
(Trans≤)

where d is the derivation of the previous case.

– (A 6≡ α,Top)
In this case the derivation d1 is necessarily of the kind:

d′
1

Γ, α≤A′ ⊢d A′ ≤ A

Γ, α≤A′ ⊢d α ≤ A
(TVar≤)

Therefore we can construct the F-bounded≤ derivation:

d′
1≤

Γ, α≤A′ ⊢b≤ A′ ≤ A
(hyp.ind)

d2≤

Γ, α≤A′ ⊢b≤ B ≤ B′
(ind.hyp.)

Γ ⊢b≤ (∀α≤A.B) ≤ (∀α≤A′. B′)
(∀′≤)

(⇐) Just notice that all F-bounded≤ rules are also F-bounded rules, with the
exception of (∀′ ≤) and (∀Top ≤) rules which can be transformed into F-bounded
derivations with the same premises and conclusion. For the (∀′ ≤) rule the corre-
sponding derivation is:

Γ, α≤A′ ⊢ ♦

Γ, α≤A′ ⊢b α ≤ A′
(Var≤)

Γ, α≤A′ ⊢b A′ ≤ A

Γ, α≤A′ ⊢b α ≤ A
(Trans≤)

Γ, α≤A′ ⊢b B ≤ B′

Γ ⊢b (∀α≤A.B) ≤ (∀α≤A′. B′)
(∀≤)

while for the (∀Top ≤) rule the corresponding derivation is:

Γ, α≤Top ⊢b α

Γ, α≤Top ⊢b α ≤ α
(Id≤)

Γ, α≤Top ⊢b A

Γ, α≤Top ⊢b A ≤ A
(Id≤)

Γ ⊢b (∀α≤α.A) ≤ (∀α≤Top. A)
(∀≤)

It would be easy to show, by exploiting the Subproof Lemma 4.4, that all the good
formation premises in the two derivations hold. 2

Since not all F-bounded judgements are acceptable in F-bounded−, we cannot
prove the equivalence of the two systems, but only that the first one is a conservative
extension of the second one.
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Proposition 8.5 The system F-bounded is a conservative extension of the system
F-bounded−, i.e.,

Γ, ∆ ⊢b a : A iff Γ, ∆ ⊢− a : A

for any judgement Γ, ∆ ⊢ a : A not containing α≤α bounds.

Proof. Since the two systems have the same term formation rules, it suffices to
show that:

Γ ⊢b A ≤ B iff Γ ⊢− A ≤ B

for any F-bounded− judgement Γ ⊢A ≤ B.
The proof is very similar to that of Proposition 8.4. In the (⇒) part the only

difference is that, for the (∀ ≤) rule, the case A ≡ α cannot arise since F-bounded−

judgements do not contain α≤ α bounds. Thus the (∀Top ≤) rule is not needed.
As for the (⇐) part, it suffices to remove the treatment of the rule (∀Top ≤). 2

To conclude we remark that the alternative formulations analyzed in this section
differ essentially in the treatment of the α≤α bound. If one believes that the α≤α
bound should be considered different from the α≤Top bound, then the system of
choice should contain the (∀′ ≤) rule and no (∀Top ≤) rule. This system is strictly
less expressive than F-bounded , but its subtype relation is antisymmetric (the proof
of this fact is simple, but it does not appear in this paper). If one believes that the
α≤α bound is just an equivalent way of expressing the α≤Top constraint, the most
reasonable choice is to disallow this kind of bound altogether, namely F-bounded−

is the right system. In this way, the system obtained is antisymmetric and no type
is lost, i.e., for every F-bounded type there is (exactly) one equivalent type with no
α≤α bounds. Moreover, with this limitation, the two different formulations of the
∀ subtyping rule turn out to be equivalent. Finally, if one is interested in studying
the variant where the greatest amount of terms can be written down and typed,
the one we called F-bounded is the system of choice.

9 Conservativity with respect to F≤

In this section we show that F-bounded is a conservative extension of F≤. As an
outcome, two results proved in the literature for F≤, namely undecidability of
(sub)typing [Pie94] and non-conservativity of strong recursive types [Ghe93], can
be easily extended to F-bounded .

We consider here the algorithmic version AlgF≤ of F≤, as defined in [CG92]. As
discussed in the introduction, system F≤ differs from F-bounded essentially because
the first one does not allow a type variable to occur in its own bound. Formally,
the operation FV≤ that gives back the free variables of a type is defined as in
Subsection 3.2, with the exception of the clause for the ∀ types, which becomes
FV≤(∀α≤A. B) = FV≤(A) ∪ (FV≤(B) \ {α}).

Referring to Section 3, the definitions of types, terms, environments, and judge-
ments are the same. The rule (TEnv) changes as follows.

Γ ⊢ ♦ FV≤(A) ⊆ vars(Γ)

Γ, α≤A ⊢ ♦
(TEnv sub)
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Finally, the subtyping and typing rules are the same as those of dF-bounded , the
algorithmic version of F-bounded (Definitions 4.1 and 5.3), with the exception of
the subtyping rule for ∀ types and the rule of ∀ elimination which change as follows.

Γ ⊢A′ ≤ A Γ, α≤A′ ⊢B ≤ B′

Γ ⊢ (∀α≤A. B) ≤ (∀α≤A′. B′)
(∀ ≤ sub)

Γ, ∆ ⊢ f : B Γ∀(B) = ∀α≤A. B′ Γ ⊢ A′ ≤ A

Γ, ∆ ⊢ f{A′} : B′[α←A′]
(∀E sub)

Notation 9.1 When necessary to avoid ambiguity, a judgement derivable in
(Alg)F≤ will be denoted as

Pre ⊢≤ Concl .

The first basic property to observe about system F≤ is the fact that, if A′ ≤ A′′

can be derived in an environment Γ, α≤A, and α does not occur free either in A′ or
in A′′, then the result can be strengthened by removing the hypothesis α≤A from
the environment. A similar result has already been proved for system F-bounded
in Lemma 6.1.

Lemma 9.2 Let Γ, α≤A ⊢≤ A′ ≤ A′′ and suppose α 6∈ FV (A′) ∪ FV (A′′). Then
Γ ⊢≤ A′ ≤ A′′.

Proof. Trivial induction. 2

The main difference between the algorithmic versions of F-bounded and F≤
resides in the first premise of the (∀ ≤) rule; hence the next lemma is the key of
the conservativity proof. It states essentially that the two premises are equivalent
if we restrict ourselves to F≤ types.

Lemma 9.3 If Γ, α≤A ⊢≤ α ≤ A′ and α 6∈ FV (A′) then Γ ⊢≤ A ≤ A′

Proof. Let us consider the last rule applied in the derivation. It can be neither
(IdVar ≤), otherwise A′ ≡ α, nor (→≤), nor (∀ ≤ sub). Therefore only two cases can
arise:

• (TVar ≤) In this case the derivation has the shape:

d′

Γ, α≤A ⊢≤ A ≤ A′

Γ, α≤A ⊢≤ α ≤ A′
(TVar≤)

By F≤ notion of well-formedness for type environments, α 6∈ FV (A) and by
hypothesis α 6∈ FV (A′). Hence, by Lemma 9.2, d′ :: Γ, α≤A ⊢≤ A ≤ A′ can
be strengthened to d′′ :: Γ ⊢≤ A ≤ A′.

• (Top ≤) In this case A′ ≡ Top and the derivation has the shape:

Γ, α≤A ⊢≤ α

Γ, α≤A ⊢≤ α ≤ Top
(Top≤)
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By Γ, α≤A ⊢≤ ♦, we have Γ ⊢≤ ♦ and FV (A) ⊆ vars(Γ). Therefore Γ ⊢≤ A
and the desired derivation can simply be:

Γ ⊢≤ A

Γ ⊢≤ A ≤ Top
(Top≤)

2

Observing that the rules defining well-formedness in F≤ are weaker than the
ones in F-bounded , one can prove the following simple results.

Lemma 9.4 Let Γ be a type environment and let A be a type;

1. if Γ ⊢≤ ♦ then Γ ⊢b ♦;

2. if Γ ⊢≤ A then Γ ⊢b A.

We now have all the necessary ingredients to prove the conservativity result for
subtyping and typing.

Lemma 9.5 (conservativity of subtyping) Let Γ ⊢≤ A and Γ ⊢≤ B. Then:

Γ ⊢≤ A ≤ B iff Γ ⊢b A ≤ B

Proof.
(⇒) We proceed by induction on the size of the derivation and by cases on the

last rule applied. For cases (IdVar ≤) and (Top ≤), recall that these are (instances
of) F-bounded rules and use Lemma 9.4. Similarly, for cases (TVar ≤) and (→≤)
use the fact that such rules are in F-bounded and apply the inductive hypothesis.
Finally, if the last rule is (∀ ≤ sub), the shape of the derivation is:

Γ ⊢≤ A′ ≤ A Γ, α≤A′ ⊢≤ B ≤ B′

Γ ⊢≤ (∀α≤A.B) ≤ (∀α≤A′. B′)
(∀ ≤ sub)

By induction, Γ ⊢≤ A′ ≤ A implies Γ ⊢b A′ ≤ A, and thus, by Weakening Lemma
4.10, Γ, α≤A′ ⊢b A′ ≤ A. Moreover, by induction Γ, α≤A′ ⊢≤ B ≤ B′ implies
Γ, α≤A′ ⊢b B ≤ B′. The thesis follows by rule (∀′ ≤), which is provable in system
F-bounded by Proposition 8.4:

Γ, α≤A′ ⊢b A′ ≤ A Γ, α≤A′ ⊢b B ≤ B′

Γ ⊢b ∀α≤A.B ≤ ∀α≤A′. B′
(∀′ ≤)

(⇐) It is convenient to consider the deterministic version dF-bounded of system
F-bounded . Cases (IdVar ≤) and (Top ≤) are dealt with by the well-formedness
hypothesis of Γ ⊢ A ≤ B in F≤. Cases (TVar ≤) and (→≤) are dealt with by
induction. Finally, let the last rule be (∀ ≤):

Γ, α≤A′ ⊢b α ≤ A Γ, α≤A′ ⊢b B ≤ B′

Γ ⊢b ∀α≤A.B ≤ ∀α≤A′. B′
(∀ ≤)

By induction, Γ, α≤A′ ⊢b α ≤ A implies Γ, α≤A′ ⊢≤ α ≤ A, and thus, by Lemma
9.3, Γ ⊢≤ A′ ≤ A. Notice that Lemma 9.3 can be applied since A is a bound for α,
therefore, by definition of F≤ types, α 6∈ FV (A). By induction, Γ, α≤A′ ⊢b B ≤ B′

implies Γ, α≤A′ ⊢≤ B ≤ B′. Hence we can prove the thesis as follows:
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Γ ⊢≤ A′ ≤ A Γ, α≤A′ ⊢≤ B ≤ B′

Γ ⊢≤ (∀α≤A.B) ≤ (∀α≤A′. B′)
(∀≤ sub)

2

The conservativity of typing is now an easy corollary.

Theorem 9.6 (conservativity of typing) Let Γ, ∆ ⊢ a : A be any well-formed
F≤ typing judgement. Then:

Γ, ∆ ⊢≤ a : A iff Γ, ∆ ⊢b a : A

Proof. Again it is convenient to consider the deterministic version dF-bounded of
the system F-bounded . The basic remark is that, if ∀α≤A. B and ∀α≤A′. B′ are
(Alg)F≤ types, i.e., α does not occur (free) in the bounds A and A′ thus the rule
(d∀E) of dF-bounded coincides with (∀E) sub in AlgF≤. This shows that a derivation
in AlgF≤ is also a derivation in dF-bounded and thus proves (⇒).

As for (⇐), it suffices to notice that in each F-bounded rule, if the conclusion is a
well-formed F≤ judgement (type variables do not appear in their bounds) then the
judgements in the premises are well-formed as well. Then, an inductive reasoning
that uses the above remark allows us to conclude. 2

The undecidability of (sub)typing, proved in [Pie94] for system F≤, can now be
extended to system F-bounded .

Corollary 9.7 Subtyping is not decidable for system F-bounded.

Proof. Subtyping is undecidable for system F≤, and, by Theorem 9.5, any algo-
rithm for system F-bounded subtyping would also decide F≤ subtyping. 2

We can also easily prove the non-conservativity of strong recursion for
F-bounded subtyping, by extending a similar result given in [Ghe93] for system
F≤. For the sake of brevity we only sketch the essential constructions. The inter-
ested reader can find more details in [Ghe93].

A common abstract notation for recursive types is µX.A, where X is a (recur-
sion) type variable typically occurring in type A (recursive types are defined in most
real languages via a construct of the form let rec X = A). We can distinguish two
(families of) approaches to type level recursion, usually referred to as weak recursion
and strong recursion. In the strong approach the type µX.A is seen as the only solu-
tion of the equation X = A. Therefore the type equality µX.A = A[X←µX.A] holds
in a “strong” sense (see [AC93, CG99]). The weak approach, on the other hand,
only provides a couple of functions foldµX.A: A[X←µX.A]→µX.A and unfoldµX.A:
µX.A→A[X←µX.A] which allow the programmer to pass explicitly from a recur-
sive type to its unfolding and vice versa [GMW79, AC96b]. The weak approach
makes type and subtype checking very simple. The strong approach, instead, is
easier for programmers to use, but makes subtype checking much more challeng-
ing; intermediate approaches are investigated in [Ghe93]. The non-conservativity
result applies to strong recursion as well as to some intermediate approaches.

Let µF-bounded be any extension of system F-bounded with recursion variables
named X, Y, . . . and with a constructor µX.B for type recursion, such that the
following rules are admissible (i.e., they express a deduction which can actually be
proved in µF-bounded). Observe that such rules are admissible in any transitive
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system with strong recursion, but they are actually weaker than strong recursion
(see [AC93, Ghe93]).

Γ ⊢A[X←µX.A] ≤ B

Γ ⊢ µX.A ≤ B
(unfold− l ≤)

Γ ⊢ B ≤ A[X←µX.A]

Γ ⊢B ≤ µX.A
(unfold− r ≤)

Consider now the following types, where −A stands for A→Top, and ∀α. A abbre-
viates ∀α≤Top. A.

B ≡ ∀α.−∀α′≤α.−α
A ≡ ∀β≤B. β
A′ ≡ ∀β≤B. ∀β′≤β.−β
R ≡ ∀β≤B. µX.∀β′≤X.−X

The paper [Ghe93] shows that, in system F≤, the type A is not a subtype of
A′; by Theorem 9.5 the same holds in system F-bounded . Now, in [Ghe93] it is
also proved that both ⊢ A ≤ R and ⊢ R ≤ A′ can be derived in any extension
of system F≤ where the two unfold rules above are admissible, hence they are also
derivable in any extension of system F-bounded where the same unfold rules are
admissible. Therefore we obtain the following corollary.

Corollary 9.8 (non-conservativity of recursion) There exist two types A and
A′ such that ⊢ A ≤ A′ does not hold in system F-bounded, while it holds in any
extension of the system with a constructor µX.B for type recursion and where the
subtype relation is transitive and the two rules (unfold− l ≤) and (unfold− r ≤) are
admissible.

The paper [Ghe93] also contains a limitation of non-conservativity result. Let
us say that Γ ⊢ A ≤ A′ is a non-conservative F≤ judgement if it does not contain
recursive types, it does not hold in pure F≤, but it is derivable in the extended sys-
tem obtained by adding recursion and the two unfold rules to F≤. The “limitation”
result shows that every non-conservative F≤ judgement makes the standard sub-
type checking algorithm diverge; this is very interesting since we know from [Ghe95]
that only “very special” judgements diverge. We conjecture that the same limita-
tion result can be proved for system F-bounded too, but we leave this as an open
problem.

10 PER semantics

The semantic interpretation that we propose for system F-bounded is obtained
by adapting the semantics of system F≤, based on partial equivalence relations,
first defined in [BL90] (see also [CL91, CMMS94, Ghe90]). Let 〈ω, .〉 be Kleene’s
applicative structure, i.e., for i, n ∈ ω, i.n denotes the application of the ith function
in a Gödel numbering, to the argument n.9 A partial equivalence relation (p.e.r.)
p on ω is a transitive and symmetric relation on ω. A p.e.r. p can then be seen
as an equivalence on the set {n ∈ ω : n p n} which is called its domain dom(p).
The quotient dom(p)/p is denoted by Q(p), namely Q(p) = {[n]p : n ∈ dom(p)}.
We will often manipulate p.e.r.’s as sets of pairs, in particular by writing p ⊆ q for
i p j ⇒ i q j, and p ∩ q for {〈i, j〉| i p j ∧ i q j}.

9Any other combinatory algebra would be appropriate.
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In this approach a type A is interpreted as a p.e.r. JAK. The idea is that the
possible values of type A are the elements in dom(JAK) and if iJAKj then i, j repre-
sent values in JAK which cannot be discriminated by using the operations allowed
on type A. Terms are then interpreted as equivalence classes. The interpretation
is required to be sound with respect to the (sub)typing system, namely if a : A is
provable, then Ja : AK must be a value in JAK (an equivalence class in Q(JAK)), and
if A ≤ B then JAK ⊆ JBK, i.e., iJAKj ⇒ iJBKj. Notice that the inclusion between
JAK and JBK expresses at the same time two basic intuitions about subtyping: the
fact that every element of the subtype also belongs to the supertype (domain inclu-
sion) and the fact that every function which can be used to discriminate elements
of the supertype U can also be used to discriminate elements of the subtype T
(namely, ¬(iJBKj)⇒ ¬(iJAKj)).

To deal with free variables, we first interpret a judgement Γ, ∆ ⊢ ♦ as the set
of all well-typed assignments to the variables in Γ, ∆, and then we interpret a well-
typed term Γ, ∆ ⊢ a : A by a function from JΓ, ∆ ⊢ ♦K to JΓ ⊢AK, i.e., a function
which associates a value with any possible assignment of values to free variables. In
the same way, a type Γ ⊢A is interpreted by a function JΓ ⊢AK which associates a
p.e.r. JΓ ⊢AKγ with each assignment γ of p.e.r.’s to the type variables. Specifically,
JΓ ⊢ TopKγ is always the total p.e.r. ω × ω, which contains all values, but all of
them are equivalent. To interpret arrow types, we first define the operator ( → )
on p.e.r.’s: if p, q are p.e.r.’s, then

i(p→ q)j ⇔ ∀m, n. m p n⇒ i.m q j.n

i.e., two integers are related by (p→ q) if they are the indexes of two functions which
map p-related values to q-related values. Then, the interpretation JΓ ⊢ A→BKγ is
simply defined as (JΓ ⊢AKγ → JΓ ⊢ BKγ). Finally, a universal type ∀α≤A. B is
interpreted as the intersection of all JB[α]K’s, when α ranges over all the p.e.r.’s such
that α ⊆ JA[α]K (the formal definition is given later). The use of an intersection,
rather than a function type, expresses the fact that the type parameter does not
have any role in the computation, but is only used for type checking purposes.
Hence, a term of type ∀α≤A. B is not really interpreted as a function which takes
a p.e.r. α and gives back a value in JB[α]K, but is just a constant value which is
in every JB[α]K, regardless of what α really is. This essential property, which is at
the base of most compilation techniques of polymorphic languages, is usually called
“parametricity”.

Notation 10.1 In the following, p.e.r’s will be denoted by p and equivalence
classes in Q(p) by v, possibly with subscripts. Finally, given a function f : X → Y ,
x0 ∈ X and y0 ∈ Y we denote by f [x0 7→ y0] the function from X to Y defined as
f [x07→y0](x) = f(x) if x 6= x0 and y0 otherwise.

The following proposition introduces some properties of the (→ ) operator and
of p.e.r.’s intersections which will be used hereafter.

Proposition 10.2 1. Let p1, p2 be two p.e.r.’s; then the relation (p1 → p2)
defined for all i, j ∈ ω:

i(p1 → p2)j iff ∀n, m. n p1 m⇒ i.n p2 j.m,

is a p.e.r.; moreover, if p′1 ⊆ p1 and p2 ⊆ p′2 then (p1 → p2) ⊆ (p′1 → p′2).
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2. Let {pi}i∈I be a collection of p.e.r.’s; the relation
⋂

i∈I pi is a p.e.r., with

(a) dom(
⋂

i∈I pi) =
⋂

i∈I dom(pi);

(b) Q(
⋂

i∈I pi) = {
⋂

i∈I vi : {vi}i∈I ∈ Πi∈IQ(pi) ∧
⋂

i∈I vi 6= ∅}.10

Since in case (2) the notation is a little complex, the reader could get some clearer
ideas by considering the binary case, namely the intersection of two p.e.r.’s p1 and
p2, which is a p.e.r. with domain dom(p1 ∩ p2) = dom(p1) ∩ dom(p2) and classes
Q(p1 ∩ p2) = {v1 ∩ v2 : for all 〈v1, v2〉 ∈ Q(p1)×Q(p2) such that v1 ∩ v2 6= ∅}.

Semantics of types and environments

We are now ready to give the actual semantics. As discussed before, to give a
semantics to a type or term containing free variables, we must specify a suitable
semantic assignment to its variables. This is formalized by the notions of semantic
type environment and value type environment. A semantic type environment is a
function γ which associates a p.e.r. on ω with each type variable:

γ : TypeVar→ PER,

where PER denotes the set of all p.e.r.’s on ω. A semantic value environment δ
associates with each value variable a subset of ω to be interpreted as an equivalence
class with respect to the p.e.r. denoted by the type of the variable:

δ : ValVar→ P(ω)

Type judgements are interpreted as functions which, given a semantic environ-
ment γ, return the p.e.r. denoted by the type, where free variables are interpreted
according to γ.

JΓ ⊢ TopKγ = ω × ω
JΓ′, α≤A, Γ′′ ⊢ αKγ = γ(α)
JΓ ⊢ A→BKγ = (JΓ ⊢AKγ → JΓ ⊢BKγ)
JΓ ⊢ ∀α≤A. BKγ =

⋂

p⊆JΓ,α≤A⊢AKγ[α7→p]JΓ, α≤A ⊢BKγ[α7→p]

Since the semantics of Γ ⊢ A does not depend on Γ, we will often write JAKγ for
JΓ ⊢AKγ.

We say that a semantic environment γ satisfies a (syntactic) environment Γ if
the assignment to the variables in Γ are consistent with the constraints imposed
by type bounds on type variables and typing on value variables. First, the notion
of semantic type environment γ satisfying a (syntactic) environment Γ, written
γ |= Γ, is defined inductively as follows:

γ |= ǫ
γ |= Γ, α≤A if γ |= Γ and γ(α) ⊆ JAKγ

Given γ |= Γ, the notion of a semantic value environment satisfying Γ, ∆, written
γ, δ |= Γ, ∆ is defined inductively as follows:

γ, δ |= Γ, ǫ if γ |= Γ
γ, δ |= Γ, ∆, x :A if γ, δ |= Γ, ∆ and δ(x) ∈ Q(JAKγ).

10The notation {vi}i∈I ∈ Πi∈IQ(pi) means that ∀i ∈ I. vi ∈ Q(pi).
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Syntactic environments are interpreted by the sets of semantic environments
which represent well-typed assignments to all the type and value variables in the en-
vironment (to simplify the notation we write JΓ, ∆K instead of JΓ, ∆ ⊢ ♦K). There-
fore

JΓK = {γ : γ |= Γ}
JΓ, ∆K = {〈γ, δ〉 : γ, δ |= Γ, ∆}

Notice that the semantics of Γ, α ≤ A depends on the semantics of the type A
where α may occur free, namely, expanding the notation, on the semantics of a
judgement Γ, α≤A ⊢A. However, the fact that the environment Γ, α≤A appears
in this judgement does not create any circularity in the definition, since as already
noticed, the interpretation of types does not depend on (the interpretation of)
environments.

Semantics of terms

The interpretation of well-typed terms is given by induction on the typing deriva-
tion, and by cases on the last rule applied. For this reason, we should use a notation
like JdK〈γ, δ〉, where d is a notation for a typing derivation. However, to keep things
simple, we do not write the full derivation as the argument of the semantic function
but just the proved judgement, and in the next definition we assume that the pre-
decessors of the final judgement are the same as in the presentation of Section 3.
We will later prove a coherence theorem which states that indeed our interpretation
only depends on the proved judgement, hence justifying the notation.

Notice that, in cases (Subs), (→ E) and (∀E), the interpretation is built as
⋃

[i]JBKγ , where B is the type of the term and i ranges over a suitable set of
integers. The idea is that all the i’s should belong to the same equivalence class
and thus it would be sufficient to take the equivalence class of only one of them;
but this fact will be proved only later, in Theorem 10.11. This result will also
imply that in cases (Subs), (∀I) and (∀E) the interpretation can be obtained by
choosing any element i in the equivalence class interpreting the main premise, and
changing only the p.e.r. where its equivalence class is considered. This fact has
an interesting practical interpretation: if every term is compiled to an index in
its equivalence class, then no code needs to be generated for subsumption, second
order abstraction and second order application. This is what usually happens in
actual implementations.

Definition 10.3 A typing derivation is interpreted by a subset of ω defined as
follows.
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(Var) JΓ, x1 :A1, . . . , xn :An ⊢ xi : AiK〈γ, δ〉
= δ(xi)

(Subs) JΓ, ∆ ⊢ a : BK〈γ, δ〉
=

⋃

[i]JBKγ, for i ∈ JΓ, ∆ ⊢ a : AK〈γ, δ〉

(→ I) JΓ, ∆ ⊢ λx:A. b : A→BK〈γ, δ〉
= {i ∈ ω | ∀v ∈ Q(JAKγ), ∀j ∈ v, i.j ∈ JΓ, ∆, x :A ⊢ b : BK〈γ, δ[x7→v]〉}

(→ E) JΓ, ∆ ⊢ f(a) : BK〈γ, δ〉
=

⋃

[i.j]JBKγ, for i ∈ JΓ, ∆ ⊢ f : A→BK〈γ, δ〉, j ∈ JΓ, ∆ ⊢ a : AK〈γ, δ〉

(∀I) JΓ, ∆ ⊢ Λα≤A. b : ∀α≤A. BK〈γ, δ〉
=

⋂

p⊆JAKγ[α7→p]JΓ, α≤A, ∆ ⊢ b : BK〈γ[α7→p], δ〉

(∀E) JΓ, ∆ ⊢ f{A′} : B[α←A′]K〈γ, δ〉
=

⋃

[i]JB[α←A′]Kγ , for i ∈ JΓ, ∆ ⊢ f : ∀α≤A. BK〈γ, δ〉

It is not difficult to prove that the above semantics is well-defined.

Theorem 10.4 (definition) If Γ ⊢ A then JAKγ is a uniquely defined p.e.r. If
Γ ⊢ ♦, then JΓK is a uniquely defined semantic type environment. If Γ, ∆ ⊢ ♦, then
JΓ, ∆K is a uniquely defined semantic value environment. If d proves Γ, ∆ ⊢ a : A,
and 〈γ, δ〉 ∈ JΓ, ∆K then JdK〈γ, δ〉 is a uniquely defined subset of ω.

Proof. For types, the fact that JAKγ is well-defined for any semantic type environ-
ment γ can easily be proved by using Proposition 10.2. In particular notice that the
intersection of a set of p.e.r.’s is a p.e.r., and that at least the empty p.e.r. satisfies
the condition p ⊆ JΓ, α≤A ⊢ AKγ[α7→p]. For environments, no doubts should arise.
For derivations, the semantics has been defined in such a way that it is always a
well-defined set of integers by construction. The price to pay for this is that, in
principle, it is not obvious that this set is not empty, and that it is an equivalence
class of the corresponding type (Theorem 10.11). 2

The first basic property enjoyed by the proposed semantics is the soundness
of subtyping, namely the fact the subtyping relation on types has set-theoretical
inclusion as a semantical counterpart.

Theorem 10.5 (soundness of subtyping) If Γ ⊢ A ≤ B, then, ∀γ ∈ JΓK, we
have JAKγ ⊆ JBKγ.

Proof. By induction on the structure of the derivation of Γ ⊢A ≤ B and by cases
on the last rule applied. In the cases (Id ≤) and (Trans ≤) we simply use reflexivity
and transitivity of subset inclusion. For (Top ≤) just notice that JTopKγ = ω × ω
is the greatest p.e.r.. The case (Var ≤) follows directly from the definition of the
semantics of environments and for (→≤) we use the property of the function space
operator stated in Proposition 10.2(1).

The interesting case is rule (∀ ≤). Suppose that the last rule applied in the
derivation is

Γ, α≤A′ ⊢ α ≤ A Γ, α≤A′ ⊢B ≤ B′

Γ ⊢ (∀α≤A.B) ≤ (∀α≤A′. B′)
(∀ ≤)

Let γ ∈ JΓK; we have to prove that

51



⋂

p⊆JAKγ[α7→p]JBKγ[α7→p] ⊆
⋂

p⊆JA′Kγ[α7→p]JB
′Kγ[α7→p].

By inductive hypothesis we know that:

1. p ⊆ JA′Kγ[α7→p] ⇒ p ⊆ JAKγ[α7→p]

2. p ⊆ JA′Kγ[α7→p] ⇒ JBKγ[α7→p] ⊆ JB′Kγ[α7→p]

From 1, 2 we deduce 1, 2 below, and thus we conclude by transitivity of subset
inclusion.

1.
⋂

p⊆JAKγ[α7→p]JBKγ[α7→p] ⊆
⋂

p⊆JA′Kγ[α7→p]JBKγ[α7→p]

2.
⋂

p⊆JA′Kγ[α7→p]JBKγ[α7→p] ⊆
⋂

p⊆JA′Kγ[α7→p]JB
′Kγ[α7→p] 2

We next introduce untyped lambda terms and we interpret in the obvious way
each untyped term (in a given variable environment) with a computable function.
Then we show that the meaning of a typed term can be nicely characterized by
using the function associated with its erasure. Such a result will allow us to easily
conclude the soundness of typing and coherence results.

Definition 10.6 (untyped λ-terms) The set Λ of untyped lambda terms is de-
fined by the following grammar, where x denotes a generic value variable:

U ::= x | U(U) | λx. U

Untyped terms will be denoted by u, possibly with subscripts.

Definition 10.7 (erasure) Let a be an F-bounded term. The erasure of a is the
(untyped) term erase(a) ∈ Λ defined as follows:

erase(x) = x
erase(λx:A. b) = λx. erase(b)
erase(f(a)) = erase(f)(erase(a))
erase(Λα≤A. b) = erase(b)
erase(b{A}) = erase(b)

Definition 10.8 For any untyped term u ∈ Λ and variables x1, . . . , xn, such that
FV (u) ⊆ {x1, . . . , xn}, we define a function F x1,...,xn

u : INn → IN as follows: for all
i1, . . . , in ∈ IN :

F x1,...,xn

xk
(i1, . . . , in) = ik

F x1,...,xn

λxn+1. u(i1, . . . , in) = a Gödel index for the function

in+1 7→ F
x1,...,xn,xn+1

u (i1, . . . , in, in+1)

F x1,...,xn

u1(u2) (i1, . . . , in) = F x1,...,xn

u1
(i1, . . . , in).F x1,...,xn

u2
(i1, . . . , in)

One can easily see that each F x1,...,xn

u is well-defined11 and computable. This can be
proved inductively, by observing that in the first clause we just define the projection

11Not uniquely, due to the existence of (infinitely) many indexes for the same computable
function.
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on the kth component, by using the s-m-n theorem from computability for the
second clause and the existence of a universal computable function for the third
one.12

A simple technical lemma, regarding the effect of substitution at a semantic
level for types and terms will be needed in the following.

Lemma 10.9 (semantic substitution) 1. Let Γ, α≤A, Γ′ ⊢ B and
Γ, Γ′[α←A′] ⊢A′. Then, for any semantic type environment γ we have

JBKγ[α7→JA′Kγ] = JB[α←A′]Kγ

2. Let Γ, ∆, x :A, ∆′ ⊢ b : B and Γ, ∆, ∆′ ⊢ a : A. Then, for any 〈γ, δ〉 ∈
JΓ, ∆, ∆′K we have:

JΓ, ∆, ∆′ ⊢ b[x←a] : BK〈γ, δ〉 = JΓ, ∆, x :A, ∆′ ⊢ b : BK〈γ, δ[x7→v]〉,

where v = JΓ, ∆, ∆′ ⊢ a : AK〈γ, δ〉

Proof. Both points are proved by straightforward induction (on the structure of
the type B and of the term b, respectively). 2

The next result essentially asserts that the interpretation of typed terms can be
obtained from the above interpretation of untyped terms, by taking the quotient
with respect to the corresponding type. It immediately implies the soundness of
typing and the coherence result for the semantics.

Lemma 10.10 Let d be a derivation of Γ, ∆ ⊢ a : A in F-bounded, where
∆ ≡ x1 : A1, . . . , xn : An, and let 〈γ, δ〉 ∈ JΓ, ∆K. Then choosing ik ∈ δ(xk) for
k ∈ {1, . . . , n}, we have

JdK〈γ, δ〉 = [F x1,...,xn

erase(a) (i1, . . . , in)]JAKγ .

Proof. Let 〈γ, δ〉 ∈ JΓ, ∆K and let ik ∈ δ(xk) for k ∈ {1, . . . , n}. The proof proceeds
by induction on the structure of the derivation d and by cases according to the last
rule used in the derivation d. As usual, we do not indicate the entire derivation as
the argument of the semantic function J·K but only the proved judgement.

• (Var) Let the last rule be:

Γ, ∆ ⊢ ♦

Γ, ∆ ⊢ xk : Ak
(Var)

where ∆ is ∆′, xk : Ak, ∆′′. Then, by definition of the semantics of environ-
ments, δ(xk) ∈ Q(JAkKγ) and, since ik ∈ δ(xk), we have δ(xk) = [ik]JAkKγ .
Hence

JΓ, ∆ ⊢ xk : AkK〈γ, δ〉

= δ(xk)

= [ik]JAkKγ

= [F x1,...,xn

xk
(i1, . . . , in)]JAkKγ

12Kleene application is intended to be undefined when one of the two arguments
is undefined, and thus, if ΨU : IN2 → IN is the universal function then
F

x1,...,xn
u1

(i1, . . . , in).F x1,...,xn
u2

(i1, . . . , in) is ΨU (F x1,...,xn
u1

(i1, . . . , in), F x1,...,xn
u2

(i1, . . . , in)).
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F x1,...,xn

xk
being the projection on the kth argument. Recalling that

erase(xk) = xk we can conclude.

• (Subs) Let the last rule be:

Γ, ∆ ⊢ a : A Γ ⊢A ≤ B

Γ, ∆ ⊢ a : B
(Subs)

By soundness of subtyping (Lemma 10.5), since Γ ⊢A ≤ B,

JAKγ ⊆ JBKγ. (1)

Moreover, by induction hypothesis,

JΓ, ∆ ⊢ a : AK〈γ, δ〉 = [F x1,...,xn

erase(a) (i1, . . . , in)]JAKγ . (2)

Therefore

JΓ, ∆ ⊢ a : BK〈γ, δ〉

=
⋃

i∈JΓ,∆⊢a:AK〈γ,δ〉[i]JBKγ

= [i]JBKγ for any i ∈ JΓ, ∆ ⊢ a : AK〈γ, δ〉
[by (1) and (2)]

= [F x1,...,xn

erase(a) (i1, . . . , in)]JBKγ

The last step uses the fact that F x1,...,xn

erase(a) (i1, . . . , in) ∈ JΓ, ∆ ⊢ a : AK〈γ, δ〉,

by (2).

• (→ I) Let the last rule be:

Γ, ∆, x :A ⊢ b : B

Γ, ∆ ⊢ λx:A. b : A→B
(→ I)

For any v ∈ Q(JAKγ), by definition of the semantics of environments,
〈γ, δ[x7→v]〉 ∈ JΓ, ∆, x :AK. Therefore, by inductive hypothesis, choosing any
i ∈ v,

JΓ, ∆, x :A ⊢ b : BK〈γ, δ[x7→v]〉 = [F x1,...,xn,x

erase(b) (i1, . . . , in, i)]JBKγ

Now, by definition of F x1,...,xn

u , for any v ∈ Q(JAKγ) and i ∈ v, if we de-
fine iλ = F x1,...,xn

λx. erase(b)(i1, . . . , in), we have that iλ.i = F x1,...,xn,x

erase(b) (i1, . . . , in, i).

Therefore recalling the definition of the semantics of λ-abstraction

iλ ∈ JΓ, ∆ ⊢ λx:A. b : A→BK〈γ, δ〉

By definition of JA→BKγ, any other index j ∈ [iλ]JA→BKγ is in the semantics
of the abstraction, and vice versa. Thus we conclude

JΓ, ∆ ⊢ λx:A. b : A→BK〈γ, δ〉 = [iλ]JA→BKγ ,

which is the desired result, since iλ = F x1,...,xn

λx. erase(b)(i1, . . . , in) and

erase(λx:A. b) = λx. erase(b).
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• (→ E) Let the last rule be:

Γ, ∆ ⊢ f : A→B Γ, ∆ ⊢ a : A

Γ, ∆ ⊢ f(a) : B
(→ E)

By inductive hypothesis, if we define if = F x1,...,xn

erase(f) (i1, . . . , in) and ia =

F x1,...,xn

erase(a) (i1, . . . , in), we have that

JΓ, ∆ ⊢ f : A→BK〈γ, δ〉 = [if ]JA→BKγ and JΓ, ∆ ⊢ a : AK〈γ, δ〉 = [ia]JAKγ

Now, since if ∈ dom(JA→BKγ), and ia ∈ dom(JAKγ), by the definition of
JA→BKγ we have that

if .ia ∈ dom(JBKγ).

Moreover, exploiting the inductive hypothesis and the fact that JA→BKγ =
(JAKγ → JBKγ), we have that, for any other i′f ∈ JΓ, ∆ ⊢ f : A→BK〈γ, δ〉
and i′a ∈ JΓ, ∆ ⊢ a : AK〈γ, δ〉, i′f .i′a(JBKγ)if .ia. Therefore:

JΓ, ∆ ⊢ f(a) : BK〈γ, δ〉

=
⋃

[i′f .i′a]JBKγ , for i′f ∈ JΓ, ∆ ⊢ f : A→BK〈γ, δ〉
and i′a ∈ JΓ, ∆ ⊢ a : AK〈γ, δ〉

= [if .ia]JBKγ

= [F x1,...,xn

erase(f) (i1, . . . , in).F x1,...,xn

erase(a) (i1, . . . , in)]JBKγ

= [F x1,...,xn

erase(f)(erase(a))(i1, . . . , in)]JBKγ ,

that is what we want, since erase(f(a)) = erase(f)(erase(a)).

• (∀I) Let the last rule be:

Γ, α≤A, ∆ ⊢ b : B α 6∈ FV ∆

Γ, ∆ ⊢ Λα≤A. b : ∀α≤A. B
(∀I)

Let p be any p.e.r. such that p ⊆ JAKγ[α7→p] and thus γ[α7→p] |= Γ, α≤A.
Then, by inductive hypothesis, if we denote with ib = F x1,...,xn

erase(b) (i1, . . . , in)13,

we have that

JΓ, α≤A, ∆ ⊢ b : BK〈γ[α7→p], δ〉 = [ib]JBKγ[α7→p]

Therefore, by definition of the semantics of terms we have

JΓ, ∆ ⊢ Λα≤A. b : ∀α≤A. BK〈γ, δ〉

=
⋂

p⊆JAKγ[α7→p]JΓ, α≤A, ∆ ⊢ b : BK〈γ[α7→p], δ〉

=
⋂

p⊆JAKγ[α7→p][ib]JBKγ[α7→p]

13Notice that ib is independent from p.
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Recalling the definition of J∀α≤A. BKγ and exploiting the fact that equiva-
lence classes of a p.e.r. obtained as the intersection of a family of p.e.r.’s are
the (non-empty) intersections of classes of the original p.e.r.’s (see Proposi-
tion 10.2(2)), we conclude from the above that

JΓ, ∆ ⊢ Λα≤A. b : ∀α≤A. BK〈γ, δ〉 = [ib]J∀α≤A.BKγ

which is exactly the desired result since ib = F x1,...,xn

erase(b) (i1, . . . , in) and

erase(b) = erase(Λα≤A. b).

• (∀E) Let the last rule be:

Γ, ∆ ⊢ f : ∀α≤A. B Γ ⊢ A′ ≤ A[α←A′]

Γ, ∆ ⊢ f{A′} : B[α←A′]
(∀E)

Then, by inductive hypothesis, if we denote with if = F x1,...,xn

erase(f) (i1, . . . , in),

we have that

JΓ, ∆ ⊢ f : ∀α≤A. BK〈γ, δ〉 = [if ]J∀α≤A. BKγ

Moreover, by soundness of subtyping (Lemma 10.5) and semantic substitution
(Lemma 10.9(1)) we have that

JA′Kγ ⊆ JA[α←A′]Kγ = JAKγ[α7→JA′Kγ]

Since JA′Kγ satisfies the condition p ⊆ JAKγ[α7→p], by definition of the se-
mantics of ∀-types,

J∀α≤A. BKγ =

=
⋂

p⊆JAKγ[α7→p]JBKγ[α7→p]

⊆ JBKγ[α7→JA′Kγ]

= JB[α←A′]Kγ [by Lemma 10.9(1)]

Therefore, noticing that J∀α≤A. BKγ is a subset of JB[α←A′]Kγ and reason-
ing as in the case (Subs), we can conclude

JΓ, ∆ ⊢ f{A′} : B[α←A′]K〈γ, δ〉 = [if ]JB[α←A′]Kγ ,

which is what we want, since if = F x1,...,xn

erase(f) (i1, . . . , in) and erase(f{A}) =

erase(f). 2

It is worth noticing that we could have defined directly the meaning of an
F-bounded term by using the interpretation of its erasure and the semantics of
types. This approach has been widely explored in the literature. The interested
reader can consult the book [Gun92], where it is shown how a p.e.r. model of the
second order polymorphic lambda calculus can be defined starting from a generic
(untyped) lambda model. An explicit construction of a semantics for a variant of
system F≤ is also carried out in [HP96].

The previous lemma immediately implies that a term a of type A is interpreted
as an equivalence class (value) in the semantics of A. Such a result expresses the
soundness of typing with respect to the semantics.
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Corollary 10.11 (soundness of typing) If Γ, ∆ ⊢ a : A, then, ∀〈γ, δ〉 ∈ JΓ, ∆K,
JΓ, ∆ ⊢ a : AK〈γ, δ〉 ∈ Q(JAKγ).

Another immediate corollary states the non-emptiness of the interpretation of
terms, namely the fact that the semantics of each well-typed term is non empty
for each possible choice of the semantic environment. However it is worth noticing
that the semantics of environments can be empty, as one can verify considering,
for instance, the environment Γ, ∆ with Γ ≡ ǫ and ∆ ≡ x :∀α≤α. α.

Corollary 10.12 (non emptiness) If Γ, ∆ ⊢ a : A and 〈γ, δ〉 ∈ JΓ, ∆K then
JΓ, ∆ ⊢ a : AK〈γ, δ〉 6= ∅.

A last corollary expresses the fact that the semantics does not depend on the
structure of the derivation of a judgement, but only on the judgement itself, a
property known as the coherence of the semantics.

Theorem 10.13 (coherence) If d and d′ both prove the judgement Γ, ∆ ⊢ a : A,
and 〈γ, δ〉 ∈ JΓ, ∆K, then JdK〈γ, δ〉 = Jd′K〈γ, δ〉.

Proof. Just notice that F x1,...,xn

erase(a) does not depend on the typing derivation and
use Lemma 10.10. 2

Remark 10.14 By Corollary 10.11, the interpretation of terms may be equiva-
lently restated in the following simplified way.

(Var) JΓ, x1 :A1, . . . , xn :An ⊢ xi : AiK〈γ, δ〉 = [j]JAiKγ ,

for any j ∈ δ(xi)

(Subs) JΓ, ∆ ⊢ a : BK〈γ, δ〉 = [i]JBKγ,

for any i ∈ JΓ, ∆ ⊢ a : AK〈γ, δ〉

(→ I) JΓ, ∆ ⊢ λx:A. b : A→BK〈γ, δ〉 = [i]JA→BKγ ,

for any i ∈ ω s.t. ∀v ∈ Q(JAKγ), ∀j ∈ v, i.j ∈ JΓ, ∆, x :A ⊢ b : BK〈γ, δ[x7→v]〉

(→ E) JΓ, ∆ ⊢ f(a) : BK〈γ, δ〉 = [i.j]JBKγ ,

for any i ∈ JΓ, ∆ ⊢ f : A→BK〈γ, δ〉, j ∈ JΓ, ∆ ⊢ a : AK〈γ, δ〉

(∀I) JΓ, ∆ ⊢ Λα≤A. b : ∀α≤A. BK〈γ, δ〉 = [i]J∀α≤A. BKγ ,

for any p ⊆ JAKγ[α7→p], i ∈ JΓ, α≤A, ∆ ⊢ b : BK〈γ[α7→p], δ〉

(∀E) JΓ, ∆ ⊢ f{A′} : B[α←A′]K〈γ, δ〉 = [i]JB[α←A′]Kγ ,

for any i ∈ JΓ, ∆ ⊢ f : ∀α≤A. BK〈γ, δ〉
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Equational system

Finally, we introduce an equational system for judgements of the shape Γ, ∆ ⊢
a = b : A, meaning that terms a and b represent indistinguishable elements of type
A, when free type and value variables are instantiated consistently with the con-
straints specified by the environments Γ and ∆, respectively. The equational system
is then formally proved to be sound with respect to the semantics. The rules of the
system, listed in Table 2, are essentially the same as those for system F≤, namely:

• type and term versions of β and η rules;

• reflexivity, symmetry and transitivity to obtain an equivalence;

• structural rules to force the equivalence to be a congruence;

• a “top” rule which states that all terms are indistinguishable in the Top type
(as in [Ghe90, CG94, CMMS94]).

Notice that (∀E =) allows one to equate two terms f ′{A′} and f ′′{A′′} even
when A′ and A′′ are not the same type, and it expresses a sort of “irrelevance” of the
argument type in second order application. This form of the rule was first defined
in [CMMS94], where the interested reader can find a discussion on its motivations.

By exploiting the alternative definition of the semantics (see Remark 10.14) it
is easy to see that it validates the proposed equational system. First we need a
simple technical lemma which is the semantical counterpart of weakening.

Lemma 10.15 Let Γ, ∆, ∆′ ⊢ b : B and let Γ, ∆, x :A, ∆′ ⊢ ♦. Then for any
〈γ, δ〉 ∈ JΓ, ∆, ∆′K and v ∈ JAKγ

JΓ, ∆, ∆′ ⊢ b : BK〈γ, δ〉 = JΓ, ∆, x :A, ∆′ ⊢ b : BK〈γ, δ[x7→v]〉

(Notice that Γ, ∆, x :A, ∆′ ⊢ b : B is derivable by Lemma 4.11.)

Proof. Trivial induction on the structure of b. 2

Theorem 10.16 (soundness of deduction) If the judgement Γ, ∆ ⊢ a = b : A
is derivable in the equational system of F-bounded then, for any 〈γ, δ〉 ∈ JΓ, ∆K we
have JΓ, ∆ ⊢ a : AK〈γ, δ〉 = JΓ, ∆ ⊢ b : AK〈γ, δ〉.

Proof. The proof can be done by straightforward induction on the structure of
the derivation d of Γ, ∆ ⊢ a = b : A and by cases on the last rule applied in d. The
cases of (Refl =), (Symm =) and (Trans =) and of structural rules are trivial. The
case of rule (Top =) is an immediate consequence of Corollary 10.11, since JTopKγ
has only one equivalence class. The only interesting cases are rule (∀E =) and rules
β and η for terms and types.

• (∀E =) We must prove that

JΓ, ∆ ⊢ f ′{A′} : CK〈γ, δ〉 = JΓ, ∆ ⊢ f ′′{A′′} : CK〈γ, δ〉.

By induction hypothesis

JΓ, ∆ ⊢ f ′ : ∀α≤A. BK〈γ, δ〉 = v = JΓ, ∆ ⊢ f ′′ : ∀α≤A. BK〈γ, δ〉.
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Γ, ∆ ⊢ λx:A. b : A→B Γ, ∆ ⊢ a : A

Γ, ∆ ⊢ (λx:A. b)(a) = b[x←a] : B
(βTerm =)

Γ, ∆ ⊢ b : A→B

Γ, ∆ ⊢ λx:A. b(x) = b : A→B
(ηTerm =)

Γ, ∆ ⊢ Λα≤A. b : ∀α≤A. B Γ ⊢A′ ≤ A[α←A′]

Γ, ∆ ⊢ (Λα≤A. b)A′ = b[α←A′] : B[α←A′]
(βType =)

Γ, ∆ ⊢ b : ∀α≤A. B

Γ, ∆ ⊢ Λα≤A. b{α} = b : ∀α≤A. B
(ηType =)

Γ, ∆ ⊢ a : A

Γ, ∆ ⊢ a = a : A
(Refl =)

Γ, ∆ ⊢ a = b : A

Γ, ∆ ⊢ b = a : A
(Symm =)

Γ, ∆ ⊢ a = b : A Γ, ∆ ⊢ b = c : A

Γ, ∆ ⊢ a = c : A
(Trans =)

Γ, ∆, x :A ⊢ a = b : B

Γ, ∆ ⊢ λx:A. a = λx:A. b : A→B
(→ I =)

Γ, ∆ ⊢ f ′ = f ′′ : A→B Γ, ∆ ⊢ a′ = a′′ : A

Γ, ∆ ⊢ f ′(a′) = f ′′(a′′) : B
(→ E =)

Γ, α≤A, ∆ ⊢ a = b : B

Γ, ∆ ⊢ Λα≤A. a = Λα≤A. b : ∀α≤A. B
(∀I =)

Γ, ∆ ⊢ f ′ = f ′′ : ∀α≤A. B Γ ⊢A′ ≤ A[α←A′]

Γ ⊢A′′ ≤ A[α←A′′] Γ ⊢B[α←A′], B[α←A′′] ≤ C

Γ, ∆ ⊢ f ′{A′} = f ′′{A′′} : C
(∀E =)

Γ, ∆ ⊢ a : Top Γ, ∆ ⊢ b : Top

Γ, ∆ ⊢ a = b : Top
(Top =)

Table 2: The equational system.
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By Remark 10.14, we have JΓ, ∆ ⊢ f ′{A′} : B[α←A′]K〈γ, δ〉 = [i]JB[α←A′]Kγ ,
where i is any index in v. Since Γ ⊢B[α←A′] ≤ C, again by the same corollary
we conclude

JΓ, ∆ ⊢ f ′{A′} : CK〈γ, δ〉 = [i]JCKγ .

By an analogous reasoning JΓ, ∆ ⊢ f ′′{A′′} : CK〈γ, δ〉 = [i]JCKγ and thus we
can conclude.

• (βTerm =) For any pair of indexes i ∈ JΓ, ∆ ⊢ λx:A. b : A→BK〈γ, δ〉 and
j ∈ v = JΓ, ∆ ⊢ a : AK〈γ, δ〉 we have that:

JΓ, ∆ ⊢ (λx:A. b)(a) : BK〈γ, δ〉 =

= [i.j]JBKγ [by term interpretation, case (→ E)]

= JΓ, ∆, x :A ⊢ b : BK〈γ, δ[x7→v]〉 [by i ∈ JΓ, ∆ ⊢ λx:A. b : A→BK〈γ, δ〉

and term interpretation, case (→ I)]

= JΓ, ∆ ⊢ b[x←a] : BK〈γ, δ〉 [by Lemma 10.9(2)]

We conclude by observing that the quantification over i, j is not trivial thanks
to Corollary 10.12.

• (ηTerm =) We must prove that:

JΓ, ∆ ⊢ λx:A. b(x) : A→BK〈γ, δ〉 = JΓ, ∆ ⊢ b : A→BK〈γ, δ〉

First of all notice that, by definition, JΓ, ∆ ⊢ λx:A. b(x) : A→BK〈γ, δ〉 =
[i]JA→BKγ for any i ∈ ω such that

∀v ∈ Q(JAKγ), ∀j ∈ v, i.j ∈ JΓ, ∆, x :A ⊢ b(x) : BK〈γ, δ[x7→v]〉. (‡)

Now, taking any i ∈ JΓ, ∆ ⊢ b : A→BK〈γ, δ〉, to conclude we just have to
prove that it satisfies condition (‡). Since x is not free in b, its semantics
does not change if we update the value of x in δ. Formally, by Lemma 10.15,
∀v ∈ Q(JAKγ), i ∈ JΓ, ∆, x : A ⊢ b : A→BK〈γ, δ[x7→v]〉. For any j ∈ v, by
the semantics of variables, we have that j ∈ JΓ, ∆, x : A ⊢ x : AK〈γ, δ[x7→v]〉
and hence i.j ∈ JΓ, ∆, x :A ⊢ b(x) : BK〈γ, δ[x7→v]〉, by (→ E).

• (βType =), (ηType =) In this case the correctness immediately follows from
the observation that, by Lemma 10.10, the semantics of terms just depends
on the erasure and on the type of the term. Then simply observe that such
rules equate terms with the same erasure. 2

The previous theorem has soundness of reduction as an immediate corollary,
namely, if a is a closed F-bounded term, such that ⊢ a : A and a −−≫ b, then a
and b have the same semantics (as elements of type A). In fact, it is sufficient to
observe that in this case ⊢ a = b : A and then apply Theorem 10.16.

Finally, we observe that the semantics defined is consistent. To this aim we
use the type Bool = ∀α≤Top. α→α→α, which is the usual encoding of Church’s
booleans in system F, and we consider the two closed normal form terms of type
Bool :

true ≡ Λα≤Top. λx:α. λy:α. x false ≡ Λα≤Top. λx:α. λy:α. y
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It is easy to see that J ⊢ true : BoolK 6= J ⊢ false : BoolK. In fact by definition,
iJBoolKj ⇔ ∀p ∈ PER. ∀k, l, m, n ∈ ω. k p l ∧ m p n ⇒ i.k.m p j.l.n. Recall
that J ⊢ true : BoolK and J ⊢ false : BoolK are the equivalence classes in Bool of
the indexes of the binary projections on the first and on the second component
respectively. To conclude it suffices to consider the p.e.r. p = {〈0, 0〉, 〈1, 1〉} and let
k = l = 0, m = n = 1 (in the same way we may also prove that Q(JBoolK) only
contains J ⊢ trueK and J ⊢ falseK).

11 Conclusions

In this paper we have studied some aspects of the theory of system F-bounded ,
concerning type and subtype checking, its relationship with system F≤, and its
semantics. We have proved the following results:

• transitivity elimination, hence correctness and completeness of the standard
subtype checking semi-algorithm;

• correctness and completeness of the standard type checking semi-algorithm;

• subject reduction for βη reduction;

• characterization of type equivalence as the equivalence obtained by identifying
α ≤ α with α ≤ Top bounds;

• characterization of the relationship between system F-bounded and its vari-
ants F-bounded− and F-bounded≤;

• conservativity of F-bounded subtyping with respect to F≤, which implies that
subtype checking, hence type checking, for system F-bounded is undecidable,
and that an extension of system F-bounded with strong recursive types is
non-conservative;

• coherence and consistency of a p.e.r. interpretation of system F-bounded ,
soundness of the term formation, subtyping, typing, reduction and equiva-
lence rules with respect to this interpretation.

Termination of βη reduction has not been investigated, since the result is already
known from [Ghe97].

Although system F-bounded is more powerful than system F≤, essentially the
same techniques can be used to prove analogous properties in the two systems. Some
minor differences are due to the different shape of the (∀ ≤) rule, but the conser-
vativity result of Section 9 shows that an F-bounded -like version of that rule could
have been adopted for system F≤ as well. This fact suggests the idea of viewing
both systems as special cases of a wider family based on a conditional quantifica-
tion ∀α/P (α). T with corresponding introduction, elimination and subtyping rules,
such as:

Γ, ∆ ⊢ f : ∀α/P (α). B Γ ⊢ P (A′)

Γ, ∆ ⊢ f{A′} : B[α←A′]
(∀pE)

Γ, P ′(α) ⊢ P (α) Γ, P ′(α) ⊢B ≤ B′

Γ ⊢ (∀α/P (α). B) ≤ (∀α/P ′(α). B′)
(∀p ≤)
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Therefore, it may be interesting to investigate the possibility of defining some
general language for predicates P (α) ensuring that the crucial properties of system
F≤ are preserved.

In our opinion an interesting open issue is the study of the subtype checking of
a kernel-fun variant of system F-bounded , i.e., a system where universal types are
compared through the following weak rule.

Γ, α≤A′ ⊢A ∼ A′ Γ, α≤A′ ⊢B ≤ B′

Γ ⊢ (∀α≤A. B) ≤ (∀α≤A′. B′)
(kf ∀ ≤)

The kernel-fun variant of system F≤ is known to be decidable. We conjecture that
the analogous variant of system F-bounded would be decidable too.

The kernel-fun variant of system F-bounded is interesting because its subtype
theory should be simpler to deal with, and its expressive power not far from the
power of the full system. In practice, the two systems differ above all in the treat-
ment of existential bounded quantifiers. Existential quantifiers can be encoded in
terms of universal ones, and the resulting subtyping rule turns out to be invariant
in the bounds for the kernel-fun version, and covariant for the full version [GP98].
While the kernel-fun version of the universal quantification is powerful enough for
practical aims, the kernel-fun version of existential quantification turns out to be
weak in some specific situations. A typical example is given by the four different
interpretations of object-oriented languages discussed in [BCP99], where the kernel-
fun subtyping rule for existential types is shown to be expressive enough for the
first three encodings, but too weak for the most expressive “ORBE” interpretation.

Another decidable variant of system F≤ is the one without a Top type [Kat92].
Hence a natural question regards the decidability of a variant of system F-bounded
without the Top type and with no α≤α bound. However, this is a much less in-
teresting question, since the system without Top is not as natural and expressive
as the kernel-fun variation. The essential problem is that records with width sub-
typing cannot be encoded in this variant of the system, and, if they are added as
primitive constructions, then decidability is lost.

To conclude we remark that, while here we have studied the pure system
F-bounded , with no notion of value or type level recursion, a practical object-
oriented language should contain both of them. Especially interesting is the study
of type level recursion.

Strong and weak type level recursion, as defined in Section 9, have different
peculiarities and raise different problems. In any case, both of them destroy the
normalization property of β reduction, since they allow untyped lambda calculus
terms to be easily encoded as terms of type µX.X→X.

Strong recursion interferes with transitivity elimination [Ghe93], and thus with
the completeness of the standard type checking algorithm, even for terms where
no recursive type is used. The definition of complete type and subtype checking
algorithms for second order systems with subtyping and strong recursion is still an
open problem. The only known result is the algorithm for system kernel-fun defined
in [CG99]. On the other hand, weak recursion does not modify the subtype relation,
and has no effect on type checking since the type of a foldµX.A or unfoldµX.A

function can be read from its index, thus allowing these functions to be type-checked
like any user-defined function. However, weak recursion is not a good match for
F-bounded quantification. For instance, the type Point discussed in Section 2, if

62



defined via weak recursion, does not satisfy the condition:

α ≤ [x : Int ; eq : α→Bool ],

since a weak recursive type is a subtype only of other recursive types. This ob-
servation suggests that it may be interesting to explore some intermediate kind of
recursion. For example, a notion of recursive types could be investigated, which is
based on implicit unfolding (µX.A ≤ A[X←µX.A]) and explicit folding through a
function foldµX.A: A[X←µX.A]→µX.A.

From a semantic point of view, adding any kind of recursion would require the
definition of a different interpretation. The realizability interpretation we presented
would still be the basis of the semantics, but the domain of p.e.r.’s would have to
be enriched with enough structure in order to deal with partiality and fix point
definitions [Ama88, Car89, Ama91, AP90].
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Appendix: The De Bruijn notation

In the paper we essentially adopt the De Bruijn approach for the treatment of
variables. The idea consists in representing each variable occurrence as a pointer
to the λ (or Λ) which binds the variable, hereafter referred to as the binder of the
variable.

Concretely, in a term, an occurrence of a variable is represented as an integer
index expressing the number of lambdas between the occurrence and the binder for
the variable. More precisely, the index counts the number of lambdas whose scope
includes the variable occurrence and which are in the scope of the binder. This leads
to the so-called nameless term. Here is an untyped term and the corresponding
nameless term.

λx. λy. x(λz. xz)y λ. λ. 1(λ. 2 0)0.

The same technique can be extended to deal with our typed terms, possibly inside
an environment. Bindings of the environment are treated exactly like λ or Λ bind-
ings. Without going into further details we show some examples. For the reader’s
convenience we consider different indexes for value and type variables (denoted by
nv and nt, respectively). The index represents, for value variables, the number of
λ’s and, for type variables, the number of Λ’s (or ∀’s), between the variable oc-
currence and the binder of the variable. For instance Λα≤Top. λx:α→α. λy:α. xy
becomes Λ ≤ Top. λ:0t→0t. λ:0t. 1v0v, and α≤Top, β≤α→β, x :α, y :β ⊢ yx be-
comes ≤Top, ≤1t→0t, :1t, :0t ⊢ 0v1v.

As highlighted in Section 3, working directly on De Bruijn indexes may be no-
tationally too inconvenient. Therefore we continue using variable names, implicitly
assuming that they are just a more convenient way of denoting De Bruijn indexes.
In this way there is obviously a gap between what is written and what should be
written by explicitly using the De Bruijn notation. To convince the reader that this
gap can be easily filled in, let us present some of the basic definitions in the De
Bruijn notation.

First of all a free variable in a nameless term is a pointer to a non-existing binder.
More precisely an index n, if greater than the number k of nested binders having
the index in their scope, represents the n− kth free variable. We can represent free
variables in a term by using such numbers and write:

FV (n) = {n} FV (A→B) = FV (A) ∪ FV (B)

FV (Top) = ∅ FV (∀α≤A. B) = {n− 1 | n ∈ FV (A) ∪ FV (B) ∧ n > 0}

Given an environment Γ ≡ ≤A1, . . . , ≤An, instead of collecting the set of the
variables defined in Γ, we simply count the number of such variables, i.e., we define:

vars(Γ) = |Γ| = n.

The rules for well-formedness of type environments become:

ǫ ⊢ ♦ (ǫTEnv)
Γ ⊢ ♦ max(FV (A)) ≤ vars(Γ) + 1

Γ, ≤A ⊢ ♦
(TEnv)

The other rules have to be changed in a similar way.
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