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Abstract

Various results appear in the literature for deriving existence and

uniqueness of fixed points for endofunctors on categories of complete met-

ric spaces. All these results are proved for contracting functors which

satisfy some further requirements, depending on the category in question.

Following a new kind of approach, based on the notion of η-isometry,

we show that the sole hypothesis of contractivity is enough for proving

existence and uniqueness of fixed points for endofunctors on the category

of compact metric spaces and embedding-projection pairs.

1 Introduction

Categories of metric spaces have turned out to be very useful in giving de-
notational semantics to concurrent programming languages. The key idea is
the following: the longer the processes exhibit the same behaviour, the smaller
the distance between two processes is. In various papers (see e.g. [2], [3], [8],
[16], [14]), mathematical theories are developed for solving domain equations
of the form X = FX , where F is a functor, in categories of complete metric
spaces. These can be viewed as possible categorical versions of the Banach-
Caccioppoli’s fixed point theorem in complete metric spaces. All the results
apply to contracting functors, for which the equation X = FX has a fixed
point. In order to obtain uniqueness, further hypotheses have to be added. In
[3] and [14] three approaches are presented; all other results on uniqueness of
fixed points in categories of complete metric spaces appearing in the literature
(see e.g. [8], [16]) are based on them. The first approach (see [3]) deals with
endofunctors which are contracting and hom-contracting in the category of com-
plete metric spaces and embedding-projection pairs. The second approach (see
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[3]) deals with contracting endofunctors in a base-point category of complete
metric spaces, i.e. a category in which each space has a specially designated
base-point and morphisms preserve the base-points. The third approach (see
[14]) deals with contracting functors such that F (∅) 6= ∅, where ∅ is the empty
metric space, in the category of complete metric spaces.

It is worthy mentioning that the problem of finding a (unique) solution to
X = FX , where F is not necessarily a functor, has been also faced in non-
categorical settings; in [9] fixed point results are presented in the framework of
hyperuniverses.

In this note we prove that if one works in a category of compact metric
spaces, then contractivity of F (without any extra hypothesis) is enough to
obtain existence and uniqueness of solutions of domain equations.

We proceed as follows. First we introduce the notion of η-isometry, which
can be viewed as an isometry “up to a factor η”. Then, using contractivity, we
prove that two solutions M and M ′ of the equation X = FX are η-isometric
for each η. Finally, using the compactness hypothesis, we prove that M and M ′

are isometric.
A peculiarity of our technique is that isometries are proved without invoking,

as in the case of the other approches, commutativity of categorical diagrams.

2 Mathematical Preliminaries

In this section we give basic definitions and properties of metric spaces. As
in [3] we consider only metric spaces with bounded diameter, i.e. the distance
between two points never exceeds 1.

A sequence (xn)n in a metric space (M, d) is called a Cauchy sequence when-
ever we have:

∀ε > 0. ∃n0 ∈ IN. ∀n, m ≥ n0. d(xn, xm) < ε.

A metric space (M, d) is called complete whenever each Cauchy sequence con-
verges to an element of M . It is called compact if each sequence contains a
converging subsequence.

Let (M1, d1), (M2, d2) be metric spaces and let A ≥ 0. M1 →A M2 denotes
the set of functions f : M1 → M2 which satisfy the condition:

∀x, y ∈ M1. d2(f(x), f(y)) ≤ A · d1(x, y).
The functions in M1 →1 M2 are called non-distance increasing (NDI). The
elements of M1 →A M2, for 0 ≤ A < 1, are called contracting functions or
contractions. A function f : M1 → M2 is an isometric embedding if

∀x, y ∈ M1. d2(f(x), f(y)) = d1(x, y).
If f is a bijection then it is an isometry.

Now we recall the classical result of existence and uniqueness of fixed point
for contracting functions.

Theorem 2.1 (Banach-Caccioppoli’s fixed point theorem)
Let (M, d) be a complete metric space and f : M → M a contracting function.
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Then there exists a unique fixed point fix(f) for f in M :

fix(f) = lim
n→+∞

fn(x0), x0 ∈ M.

3 Fixed Points in the Category CMSE

In this section, following [3], we see how it is possible to generalize the Banach-
Caccioppoli’s fixed point theorem to a categorical setting. One introduces first
the category CMSE of complete metric spaces and embedding-projection pairs
and defines the concepts of converging tower, contracting and hom-contracting
functor. Then one shows that a contracting functor F gives rise to a converging
tower and that the limit of this tower is a fixed point for the functor, which solves
therefore the equation X = FX . Finally one proves that hom-contractivity
ensures uniqueness of fixed point.

Let M1, M2 be complete metric spaces. An ep-pair (embedding-projection
pair) from M1 to M2 is a pair of functions ι = 〈i, j〉 such that i : M1 → M2 is
an isometric embedding, j : M2 → M1 is an NDI function and j ◦ i = idM1

. We
denote by CMSE the category whose objects are non-empty complete metric
spaces and morphisms ep-pairs. Composition of morphisms is defined in the
obvious way.

Notice that if there is a morphism ι = 〈i, j〉 : M1 → M2 then we can consider
M1 as an approximation of M2, since M1 can be isometrically embedded into
M2. The measure of this approximation is given by

δ(ι) = dM2→M2
(i ◦ j, idM2

) (= supy∈M2
dM2

(i(j(y)), y) ).

A tower in CMSE is a sequence (Mn, ιn)n of objects and morphisms such
that for all n we have ιn : Mn → Mn+1. It is called a converging tower if

∀ε > 0.∃n0 ∈ N. ∀m > n ≥ n0. δ(ιnm) < ε, where ιnm = ιm−1 ◦ . . . ◦ ιn.

A converging tower is intuitively a sequence of spaces such that when n

increases Mn approximates better and better Mn+k (for each integer k).

The following result gives a criterion for checking the initiality of a cone.

Lemma 3.1 (Initiality Lemma)
Let (Mn, ιn)n be a converging tower in CMSE and let (M, (γn)n), with γn =
〈αn, βn〉, be a cone for that tower. Then

(M, (γn)n) is an initial cone iff limn→∞ δ(γn) = 0.

We now outline the direct limit construction in CMSE . First of all we
fix some notations. Let (Mn, ιn)n be a converging tower in CMSE, where
ιn = 〈in, jn〉. Define ink : Dn → Dk as follows: if n < k then ink = ik−1◦ . . .◦in;
if n > k then ink = jk ◦ . . . ◦ jn−1; if n = k then inn = idDn

.

The direct limit of (Mn, ιn)n is a cone (M, (γn)n), such that:
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- M = {(xn)n : ∀n ∈ N. xn ∈ Mn and xn = jn(xn+1)}.
d : M × M → [0, 1] is defined as follows: for all (xn)n, (yn)n

d((xn)n, (yn)n) = sup
n∈IN dMn

(xn, yn).
- Morphisms γn = 〈αn, βn〉 : Mn → M are defined as follows:

αn : Mn → M αn(x) = (xk)k, where xk = ink(x);
βn : M → Mn βn((xk)k) = xn.

It is possible to show that the direct limit M is a complete metric space
and (M, (γn)n) is a cone for the tower (Mn, ιn)n. Moreover using the Initiality
Lemma one can prove that (M, (γn)n) is an initial cone for the tower.

3.1 Fixed Point Theorems

In this subsection we present the technique shown in [3] for solving domain
equations X = FX in CMSE.

We start with the notion of contractivity for functors.
A functor F : CMSE → CMSE is called contracting if there exists ε, 0 ≤ ε < 1,
such that for each morphism ι : M1 → M2 the following inequality holds

δ(Fι) ≤ ε · δ(ι).

The importance of contractivity arises when one considers a converging tower
(Mn, ιn)n with an initial cone (M, (γn)n). In such a case, whenever F is con-
tracting (see e.g. [3], lemma 3.13), then (FMn, F ιn)n is a converging tower with
(FM, (Fγn)n) as an initial cone. Moreover, if one starts from an initial ep-pair
ι0 : M0 → FM0, then the tower (FnM0, F

nι0)n is converging.
These remarks are essential in showing the theorem of existence of fixed

points for domain equations in CMSE .

Theorem 3.2 (Existence of fixed point)
Let F : CMSE → CMSE be a contracting functor. Then F has a fixed point,
that is, there exists a complete metric space M such that M ∼= FM .

Proof (Sketch).
Consider the one-point metric space M0 = {x0} and let ι0 : M0 → FM0 be

any morphism. Build the tower (FnM0, F
nι0)n. This is a converging tower, thus

it has a direct limit (M, (γn)n) which is an initial cone for the tower. Moreover
F preserves tower and its initial cone. This is enough (see [3], Theorem 3.14)
to conclude that FM ∼= M .

2

In order to extend to the categorical setting the Banach-Caccioppoli’s fixed
point theorem, we now turn our attention to uniqueness of fixed points. As
remarked in the introduction, three methodologies have been introduced in the
literature in order to obtain uniqueness. Before presenting the common strategy
shared by them, let us fix some notations.
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Let M ′ be a fixed point of F (F contracting), say λ : M ′ → FM ′, for an
isometry λ. Let ∆ denote the tower (Fn{p0}, Fnι0)n, where {p0} is the one-
point space and ι0 is any ep-pair from {p0} to F{p0}. The crucial idea of all
approaches presented in the literature is the following:

(∗) if M ′ can be turned into a cone (M ′, (γn)n) of ∆, where
(∗∗) γn+1 = λ−1 ◦ Fγn (n ∈ IN)

then M ′ is isometric to the direct limit of ∆, (therefore the fixed point is
unique up to isometry).

The result follows essentially from the Initiality Lemma, by noticing that con-
tractivity of F enforces δ(γn) → 0.

As an example we see how this idea works in the case of contracting and
hom-contracting functors, (for a detailed explanation see [3]). First of all we
recall the notion of hom-contractivity.

Definition 3.3 A functor F : CMSE → CMSE is called hom-contracting if
for each M1, M2 in CMSE there exists ε, 0 ≤ ε < 1 such that

F|hom(M1,M2) ∈ hom(M1, M2) →ε hom(FM1, FM2).

We now show how hom-contractivity implies uniqueness of fixed points.
According to the previous notation, we want to prove that M ′ is essentially
unique. As shown, it is enough to prove that M ′ satisfies (∗), that is there
exist morphisms γ̃n : Fn{p0} → M ′ such that (M ′, (γ̃n)n) is a cone for ∆ (i.e.
γ̃n = γ̃n+1 ◦Fnι0) and moreover (∗∗) holds. An easy induction on n shows that
(∗∗) is equivalent to finding γ̃0 : {p0} → M ′ such that

γ̃0 = λ−1 ◦ F γ̃0 ◦ ι0.

Now γ̃0 can be seen as the fixed point of the functional Φ : hom(M0, M
′) →

hom(M0, M
′) defined by

Φ(u) = λ−1 ◦ F (u) ◦ ι0.
Since F is hom-contracting Φ has a fixed point, thus one can conclude the
existence of γ̃0. Therefore (∗) holds and uniqueness is proved.

This discussion justifies the theorem of uniqueness of fixed point for con-
tracting and hom-contracting functors.

Theorem 3.4 (Existence and uniqueness of fixed point)
Let F : CMSE → CMSE be a contracting and hom-contracting functor. Then
F has a unique fixed point up to isomorphism, that is there exists a complete
metric space M such that

- M ∼= FM ;
- ∀M ′ in CMSE FM ′ ∼= M ′ ⇒ M ∼= M ′.

4 The Result

In this section we consider the full subcategory KMSE of CMSE whose objects
are compact metric spaces. Our aim is to prove that in KMSE equations

5



X = FX have a unique fixed point, provided that F is just contracting. It is
interesting to point out that our technique does not rely on satisfying (∗).

Some preliminary remarks about compact metric spaces are in order. First
of all we recall that given two compact metric spaces M1 and M2, the space of
NDI functions from M1 to M2, endowed with the metric

d(f, g) = supx∈M1
d2(f(x), g(x)),

is a compact metric space. This fact follows from the Ascoli-Arzelà’s theorem
(see [11] theorem 7.17). Moreover KMSE is closed with respect to direct limit
constructions. This is a consequence of Tychonoff’s theorem on compactness of
product spaces (see e.g. [11]). A direct proof is given in [8].

Using these properties and taking into account that every compact space is
complete, it is possible to show that the results of the previous section follow
also in the subcategory KMSE , that is every [hom-]contracting functor F :
KMSE → KMSE has a [unique] fixed point in KMSE.

Now we prove that uniqueness follows from the sole hypothesis that F is
contracting.

Let F : KMSE → KMSE be a contracting functor, and let (M, (γn)n) be
the direct limit of the tower (FnM0, F

nι0)n, where γn = 〈αn, βn〉. Let κ be the
canonical isomorphism between M and FM . Let M ′ be another fixed point and
λ an isomorphism between M ′ and FM ′. Choose a morphism γ̃0 : M0 → M ′

and define for all n, γ̃n+1 = λ−1 ◦ F γ̃n. We know that (M ′, (γ̃n)n) is not in
general a cone for the tower (FnM0, F

nι0)n, but contractivity of F assures that
δ(γ̃n) → 0. Thus FnM0 approximates M ′ better and better when n increases
and the same thing happens for M , since it is the limit of the tower.

In the compact case this is sufficient to conclude M ∼= M ′.
Before going into technical details we explain shortly this point. Consider again
γn : FnM0 → M and γ̃n = 〈α̃n, β̃n〉 : FnM0 → M ′. We define, for each n,

hn = α̃n ◦ βn : M → M ′,
kn = αn ◦ β̃n : M ′ → M .

The first remark above (stating that the space of NDI functions between compact
metric spaces is compact) assures that we can find h : M → M ′ and k : M ′ →
M , limits of suitable subsequences of (hn)n and (kn)n respectively. Although
〈hn, kn〉 are not in general ep-pairs (for this reason we will be forced to introduce
η-isometries), nevertheless k = h−1. Therefore we obtain M ∼= M ′.
We now give the technical details. First of all we introduce the notion of η-
isometry for η ≥ 0, which generalizes that of ep-pair.

Definition 4.1 Let M1 and M2 be metric spaces and let η ≥ 0. We say that
M1 and M2 are η-isometric if there exists a pair of NDI functions γ = 〈α, β〉,
α : M1 → M2 and β : M2 → M1, such that

d(β ◦ α, idM1
) ≤ η and d(α ◦ β, idM2

) ≤ η.

γ is called a η-isometry.
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Notice that a 0-isometry is an isometry. One can wonder whether two spaces
η-isometric for all η > 0 are isometric. This holds if the spaces are compact, but
it is not true in general for complete metric spaces (see [1] for a counterexample).
This fact is essential in our proof for deriving uniqueness of fixed points for
contractive endofunctors over KMSE . The question whether contractivity of
functors forces uniqueness of fixed point in CMSE is open.

Lemma 4.2
Let M1 and M2 be compact metric spaces. If M1 and M2 are η-isometric for
all η > 0 then M1 and M2 are isometric.

Proof.
For every n ∈ N , let γn = 〈αn, βn〉 be a ηn-isometry between M1 and M2,

with ηn → 0. Now (αn)n is a sequence of NDI functions between compact spaces,
hence (as remarked at the beginning of the section), there exists a subsequence
(αnk

)k converging to an NDI function α : M1 → M2. In the same way (βnk
)k

contains a converging subsequence (βnk
h
)h with limit β : M2 → M1.

We show that α is an isometry and β = α−1. To keep notation simple we
define (αnk

h
)h = (α′

h)h and (βnk
h
)h = (β′

h)h. We have

d(β ◦ α, idM1
)

= d((limh1→∞ β′
h1

) ◦ (limh2→∞ α′
h2

), idM1
)

= limh1→∞ limh2→∞ d(β′
h1

◦ α′
h2

, idM1
).

Now notice that

d(β′
h1

◦ α′
h2

, idM1
)

≤ d(β′
h1

◦ α′
h2

, β′
h1

◦ α′
h1

) + d(β′
h1

◦ α′
h1

, idM1
)

≤ d(α′
h2

, α′
h1

) + d(β′
h1

◦ α′
h1

, idM1
) [because β′

h1
is NDI].

Since (α′
h)h is a converging sequence (hence a Cauchy sequence) and every α′

h

is a ηnk
h
-isometry, we can conclude that d(β ◦ α, idM1

) = 0, hence
β ◦ α = idM1

.
Similarly we establish that α ◦ β = idM2

. Since α is an NDI bijection which has
an inverse NDI function β, then we can conclude that α is an isometry.

2

Proposition 4.3
Let M1, M2, M3 be complete metric spaces and let ι1 : M1 → M2, ι2 : M2 → M3

be morphisms. Then
δ(ι2 ◦ ι1) ≤ δ(ι1) + δ(ι2).

Proof.
Let ι1 = 〈i1, j1〉 and ι2 = 〈i2, j2〉. The result follows immediately by observ-

ing that
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d(i2 ◦ i1 ◦ j1 ◦ j2(x), x)
≤ d(i2 ◦ i1 ◦ j1 ◦ j2(x), i2 ◦ j2(x)) + d(i2 ◦ j2(x), x)
= d(i1◦j1◦j2(x), j2(x))+d(i2◦j2(x), x) [because i2 is isometric]
≤ δ(ι1) + δ(ι2).

2

We can now prove the main theorem.

Theorem 4.4 (Uniqueness of fixed point)
Let F : KMSE → KMSE be a contracting functor. Then F has a unique fixed
point (up to isometry), that is there exists a compact metric space M such that

a. M ∼= FM ;

b. ∀M ′ ∈ KMSE . FM ′ ∼= M ′ ⇒ M ∼= M ′.

Proof.
Let F : KMSE → KMSE be an ε-contracting functor. By Theorem 3.2

the direct limit (M, (γn)n) of the tower (FnM0, F
nι0)n (where M0 is the one-

point space and ι0 : M0 → FM0) provides a fixed point for the functor F . Let
κ : M → FM be the canonical isomorphism. Suppose we have another fixed
point M ′ so that there exists an isomorphism λ : M ′ → FM ′.

Let u0 : M0 → M ′ be any morphism. Notice that such a morphism always
exists (it is not in general unique). We define for each n ∈ N a morphism
γ̃n : FnM0 → M ′ as follows:

γ̃0 = u0;
γ̃n+1 = λ−1 ◦ F γ̃n.

By proposition 4.3 δ(γ̃n+1) ≤ δ(λ−1) + δ(F γ̃n) ≤ ε · δ(γ̃n), hence

limn→∞ δ(γ̃n) = 0.

Let γn = 〈αn, βn〉 and γ̃n = 〈α̃n, β̃n〉 and consider for each n the pair of functions
〈α̃n ◦ βn, αn ◦ β̃n〉, the first one from M in M ′ and the second one from M ′ in
M . They are NDI since they are compositions of NDI functions. Moreover

d(α̃n ◦ βn ◦ αn ◦ β̃n, idM ′) = d(α̃n ◦ β̃n, idM ′) = δ(γ̃n),

and

d(αn ◦ β̃n ◦ α̃n ◦ βn, idM ) = d(αn ◦ βn, idM ) = δ(γn).

Now, limn→∞ δ(γ̃n) = 0, as seen above, and limn→∞ δ(γn) = 0, by the Initiality
Lemma 3.1. Therefore M and M ′ are η-isometric for all η > 0. Thus, by lemma
4.2 and compactness of M and M ′, we have M ∼= M ′.

2
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