
Concurrent Rewriting

for Graphs with Equivalences⋆

Paolo Baldan1, Fabio Gadducci2, and Ugo Montanari2

1 Dipartimento di Scienze dell’Informazione, Università Ca’ Foscari di Venezia
2 Dipartimento di Informatica, Università of Pisa

Abstract. Several applications of graph rewriting systems (notably,
some encodings of calculi with name passing) require rules which, besides
deleting and generating graph items, are able to coalesce some parts of
the graph. This latter feature forbids the development of a satisfactory
concurrent semantics for rewrites (intended as a partial order description
of the steps in a computation). This paper proposes the use of graphs
with equivalences, i.e., (typed hyper-) graphs equipped with an equiva-
lence over nodes, for the analysis of distributed systems. The formalism
is amenable to the tools of the double-pushout approach to rewriting, in-
cluding the theoretical results associated to its concurrent features. The
formalism is tested against the encoding of a simple calculus with name
mobility, namely the solo calculus.

Keywords: Concurrent graph rewriting, dpo approach, graphical encoding
of nominal calculi, graph process semantics.

1 Introduction

Recent years have seen an increasing use of graphical formalisms for the modeling
of concurrent and distributed systems. Graph-like structures naturally provide
a formal yet flexible view of system states, while the rewriting rules suitably
model local state transformations. Among the different formalisms proposed in
the literature, the so-called double pushout (dpo) approach offers a large vari-
ety of theoretical and practical tools for the visual specification of a system (as
witnessed by [6] and the many areas where it found applications), abstracting
away from the often unnecessary details of the state representation. As an exam-
ple, dpo rewriting techniques for simulating reductions in nominal calculi [17,
4], as presented in [9, 10], views a (possibly recursive) process as a graph, thus
modeling reductions by rewrites. The use of graphs allows for getting rid of the
problems concerning the implementation of reduction over the structural con-
gruence, such as e.g. α-conversion of (bound) names, since equivalent processes
turn out to be mapped into isomorphic graphs.

⋆ Research partially supported the EC RTN 2-2001-00346 SegraVis, the EU IST-
2004-16004 SEnSOria and the MIUR Project ART.

However, the widespread diffusion of the formalism raises unresolved issues
concerning the analysis of its concurrency aspects. Consider again the graphical
encodings for nominal calculi we mentioned above: a concurrent semantics for
the graph rewriting formalism would provide a concurrent semantics for process
reduction, but unfortunately these encodings fall outside the canon of dpo con-
current semantics. More specifically, the matching morphisms (those morphisms
identifying the occurrence of the left-hand side of a rule into the graph to be
rewritten) are forced to be injective. More importantly, the right-hand side of
the rules resulting from the encoding are specified by non-injective morphisms
(operationally, they force some node coalescing in the graph to be rewritten).

Such features are general enough to deserve to be properly addressed. Recall
that concurrency in the dpo approach was originally defined by using the shift
equivalence [6], which equates those derivations that could be related via the
repeated application of an interchange operator swapping consecutive rewriting
steps that are sequentially independent (roughly, such that they act on disjoint
parts of the graph). Graph processes, as proposed in [5], generalise the notion of
non-sequential process from the Petri net mold, representing concurrency and
causal dependency in a synthetic manner as a partial ordering on the rewrites
occurring in a derivation. Shift equivalent derivations correspond to isomorphic
processes. Additionally, each total order on rule instances, compatible with the
partial order of the graph process, uniquely characterises a derivation which is
shift equivalent to the original one [1] (complete concurrency property). The
above theory has been developed for rules with injective right-hand morphisms.
When considering coalescing rules, as argued in [14, 11], a connection between
graph processes and shift-equivalent derivations may still be drawn, but no par-
tial order can be distilled anymore from a graph process.

In order to allow the use of coalescing rules, while retaining a satisfactory
theory of concurrency, we advocate the use of rewriting over a novel family of
structures, graphs with equivalences, which are ordinary (hyper-)graphs equipped
with an equivalence relation over their nodes. The underlying intuition is simple:
the coalescing of nodes is replaced by the handling of equivalence classes over
nodes. Avoiding the fusion of these graph items (and thus preserving the identi-
ties of the nodes involved in a computation) allows for recovering the theoretical
results associated to the concurrent features of the dpo approach: the paradigm
of graph processes for representing shift-equivalent derivations can be lifted to
the new formalism, and the complete concurrency property once more holds.

For the sake of presentation, the formalism is tested against the encoding of
(a fragment of the) solo calculus [16], one of the dialects of those nominal calculi
whose distinctive feature is name fusion [12, 18]. The choice of such a simple
calculus is functional to the main focus of the paper, but it is noteworthy that
the formalism is expressive enough to properly recast the graphical encodings of
nominal calculi proposed in e.g. [9, 10]. With respect to those encodings, where
the presence of node coalescing rules forbade the development of a suitable con-
current presentation of reductions, the use of equivalences on nodes allows the
extraction of a meaningful notion of causal order from a process.

2

The paper has the following structure. In Section 2 we introduce the for-
malism of graphs with equivalences, which is proved to be amenable to the dpo

approach to rewriting. In Section 3 we develop a concurrency theory for rewriting
of graphs with equivalences. Section 4 presents an encoding of the solo calcu-
lus into graphs with equivalences, showing how it allows for an analysis of its
concurrency properties. Finally, Section 5 concludes the paper, discussing open
issues and directions of future research.

2 Rewriting Graphs with Equivalences

In this section we introduce the category of graphs with equivalences, which are
graphs endowed with an equivalence over the set of nodes. Rewriting systems
over such structures are proposed as a technically convenient replacement of
rewriting over ordinary graphs where rules may coalesce nodes.

2.1 The Category of Graphs with Equivalences

A (hyper-)graph G is a tuple 〈VG, EG, cG〉 for VG the set of nodes, EG the
set of edges and cG : EG → V ∗

G the connection function. An (hyper-)graph
morphism f : G → H is a pair f = 〈fV : VG → VH , fE : EG → EH〉 satisfying
cH(fE(e)) = f∗

V (cG(e)) for any e ∈ EG. The corresponding category is denoted
by Graph.

Definition 1 (graphs with equivalences). A graph with equivalences (e-
graph) is a pair G = 〈G,∼G〉 where G is a graph and ∼G⊆ VG × VG is an
equivalence over the set of nodes. Given two e-graphs G and H, a morphism
f : G → H is a graph morphism f : G → H such that for all n, n′ ∈ VG, if
n ∼G n′ then f(n) ∼H f(n′). The category of e-graphs and their morphisms is
denoted by EGraph.

An e-graph G is intended to provide an alternative representation for the
graph G/∼G

obtained by quotienting G with respect to ∼G. Formally, we can
define a quotient functor Q : EGraph→ Graph defined on objects as Q(G) =
G/∼G

= 〈V/∼G
, E, c′〉 where c′([e]∼G

) = [v1]∼G
. . . [vn]∼G

if c(e) = v1 . . . vn.
Given f : G→ H we have Q(f) defined by Q(f)([v]∼G

) = [f(v)]∼G
.

In order to define rewriting over e-graphs some considerations are in order.
Observe that monos in EGraph are morphisms f : G → H such that f :

G → H is a mono in Graph. This is easily proved observing that Graph is
equivalent to the full subcategory of EGraph where objects are e-graphs with
all non-equivalent nodes (i.e., e-graphs G where ∼G is the identity). Regular
monos are monos f : G → H which reflect as well as preserve the equivalences
of nodes, i.e., such that for all n, n′ ∈ VG if f(n) ∼H f(n′) then n ∼G n′. Note
that regular monos over e-graphs induce monos over the corresponding quotient
graphs, i.e., if f : G→ H is regular mono then Q(f) : Q(G)→ Q(H) is injective.

The category EGraph has all pushouts, which are computed by taking the
pushout in Graph, endowed with the equivalence arising as the “union” of the
equivalences of the components.

3

L

mL

K
l r

mK

R

mR

G D
l∗ r∗

H

Fig. 1. A direct derivation.

2.2 Rewriting e-graphs

We next define rewriting systems over e-graphs according to the algebraic double-
pushout (dpo) approach to rewriting, as presented in [6, 7]. For technical reasons
it is convenient to work with typed e-graphs, which are e-graphs labelled over a
structure that is itself an e-graph (see e.g. [5] for the idea of graph typing).

Given an e-graph T, the category of e-graphs typed over T is the slice category
EGraph ↓ T, later denoted T-EGraph. Explicitly, the objects of the category
are the e-graph morphisms f : G → T with target T, and arrows are e-graph
morphisms making the obvious diagram commutes. Given a T-typed e-graph G,
we write |G| for the underlying e-graph and tG for the typing arrow tG : |G| → T.

Rewriting systems over typed e-graphs will be used as a replacement of
rewriting systems over ordinary graphs where rules can coalesce nodes. Intu-
itively, the coalescing of nodes in rewriting systems over graphs becomes the
generation of an equivalence between such nodes in the setting of e-graphs.

Definition 2 (e-graph production). A T-typed e-graph production is a span

L
l
← K

r
→ R in T-EGraph such that l and r are mono. It is called left-linear

if l is regular mono. A typed e-graph transformation system (e-gts) is a tuple
〈T, P, π〉 where T is a fixed graph, P is a set of production names, and π is a
function mapping each name to a T-typed production. An e-gts is called left-
linear if all its productions are left-linear.

Observe that, given a left-linear production p, in the graph production

Q(L)
Q(l)
←− Q(K)

Q(r)
−→ Q(R) the left morphism is mono, while the right morphism

may coalesce some nodes.

Definition 3 (derivation). Given a T-typed production p : L
l
←− K

r
−→ R,

a match of p in a T-typed e-graph G is a morphism mL : L → G. A direct
derivation from G to H via production p at a match m is a diagram as depicted
in Fig. 1, where (1) and (2) are pushout squares in T-EGraph. It is called strict

if the match is regular mono. We write G
p/m
=⇒ H, where m = 〈mL, mK , mR〉, or

simply G =⇒ H.

Roughly, concerning the graphical part, the application of a production p
first removes all the items of G matched by L − l(K), leading to the context
graph D. Then the items of R − r(K) are added to D, thus obtaining H .

4

Concerning the equivalence part, the fact that l is a regular mono intuitively
means that equivalences among nodes are never deleted, that is, two nodes which
are equivalent in the e-graph L will still be equivalent in the e-graph R. Hence,
the equivalence in D is just the restriction of the equivalence in G. Instead,
whenever r is not a regular mono, as an effect of taking the second pushout,
some nodes which were not equivalent in D might become equivalent in H. On
the formal side, the regular mono requirement for l ensures that the pushout
complement, when it exists, is unique.

In several applications, e.g., in the encoding of nominal calculi, it is necessary
to consider injective matches only. When dealing with e-graphs, this property
corresponds to the requirement of having regular mono matches. The rest of the
paper will focus on strict derivations and left-linear e-gts, hence both qualifica-
tions “strict” and “left-linear” will be omitted.

A drawback of the approach is given by the fact that a single node in the
standard approach can be represented by an equivalence class of possibly un-
bounded size. Therefore, in order to model node deletion, also an unbounded
number of rules deleting equivalence classes of arbitrary size must be inserted
into a transformation system. However, notice that for modelling purposes, it is
often not restrictive to consider only rules which never delete nodes: indeed, this
is what happens on most graphical encodings of process calculi. Node deletion is
then simulated by leaving a node isolated, thus assuming an implicit mechanism
for performing garbage collection.

3 Concurrency in E-Graph Rewriting

In this section we show that the notion of sequential independence, characterising
independent steps in a computation, may be extended to the setting of e-graphs.
More importantly, also the notion of process may be generalised, thus providing
a partial order description of concurrency in computations: a generalization that
fails when considering standard graphs with coalescing rules.

3.1 Sequential independence and Shift-equivalence

The notion of sequential independence is aimed at characterising direct deriva-
tions which do not interfere with each other and thus which could be potentially
applied in any order (and concurrently). The definition below, a stronger version
of the standard one, is inspired to the notion proposed in [14] for dpo rewriting
with injective matches.

Definition 4 (sequential independence). Let G
p1/m1

=⇒ H
p2/m2

=⇒ M be a
derivation as in Fig. 2. Then, its components are sequentially independent if
there exists an independence pair among them, i.e., two e-graph morphisms
i1 : R1 → D2 and i2 : L2 → D1 such that l∗2 ◦ i1 = mL2

, r∗1 ◦ i2 = mR1
and r∗2 ◦ i1

is regular mono.

5

L1

mL1

K1

l1 r1

mK1

R1

mR1

L2

mL2

K2

l2 r2

mK2

R2

mR2

G D1

l∗
1

r∗

1

H D2

l∗
2

r∗

2

M

Fig. 2. (Strong) sequential independence for derivation ρ = G
p1/m1

=⇒ H
p2/m2

=⇒ M.

Requiring r∗2 ◦ i1 to be regular mono is motivated by the interplay between
the equivalences the application of a rule may produce and the request for the
matches to be regular mono. Roughly, the second direct derivation must not
equate items which are read by the first one: otherwise, the application of the
two productions could not be swapped, keeping the matches regular mono.

Proposition 5 (interchange operator). Let ρ = G
p1/m1

=⇒ H
p2/m2

=⇒ M be a
derivation, and let its components be sequentially independent via an indepen-

dence pair ξ. Then, a derivation ICπ(ρ) = G
p2/m∗

2=⇒ H∗
p1/m∗

1=⇒ M can be uniquely
chosen, such that its components are sequentially independent via a canonical
independence pair ξ∗.

The interchange operator can be used to formalise a notion of shift-
equivalence [6], identifying (as for the analogous, better-known permutation
equivalence of λ-calculus) those derivations which differ only for the scheduling
of independent steps. This equivalence abstracts also from the concrete identity
of items involved in a derivation, i.e., it considers derivations up-to isomorphism
(defined component-wise, in the obvious way).

Definition 6 (shift-equivalence). Two derivations ρ and ρ′ are shift-
equivalent, written ρ ≡s ρ′, if repeatedly applying the interchange operator to
ρ we can obtain a derivation isomorphic to ρ′.

The shift-equivalence class [ρ]s of a derivation ρ can be considered as a rep-
resentation of a concurrent derivation which abstracts from the order of non-
interfering rewriting steps.

3.2 Processes for e-graphs

A more concrete, yet equivalent notion of abstract derivation for an e-gts is
obtained by generalising the so-called graph process semantics [1]. As for the
similar notion on Petri nets [13], a graph process is aimed at describing a deriva-
tion abstracting away from the ordering of causally unrelated steps, and thus it
offers at the same time a concrete representative for a class of shift-equivalent
derivations. We will see that, differently from what happens in the case of graph
transformation systems with coalescing rules, the notion of process for e-graphs
provides a faithful partial order representation of concurrency in a derivation.

6

L1p1 :
mL1

K1

l1 r1

mK1

R1

mR1

Lipi :
mLi

Ki

li ri

mKi

Ri

mRi

Lnpn :
mLn

Kn

ln rn

mKn

Rn

mRn

G0 D1

l∗
1

r∗

1

G1
... Gi−1 Di

l∗i r∗

i
Gi

... Gn−1 Dn

l∗n r∗

n
Gn

〈Tφ,φT 〉

Fig. 3. Colimit construction for derivation ρ = G0

p1/m1

=⇒ . . .
pn/mn
=⇒ Gn.

Definition 7 (e-graph process). Let G be an e-gts and ρ = G0
p1/m1

=⇒

. . .
pn/mn
=⇒ Gn a derivation (upper part of Fig. 3). The e-graph process associated

to ρ is a tuple φ = 〈Oφ, φT , φP , I, F〉, where Oφ = 〈Tφ, Pφ, πφ〉 is an e-gts and
φT : Tφ → T is an e-graph morphism and φP : Pφ → P is a function, defined as

– 〈Tφ, φT 〉 is a colimit object (in T-Graph) of the diagram representing deriva-
tion ρ, as depicted in Fig. 3;

– Pφ = {〈pj , j〉 | j ∈ {1, . . . , n}}. For all j, πφ(〈pj , j〉) is essentially the pro-
duction pj, but retyped over Tφ by the morphisms uniquely induced by the
colimit (see Fig. 3). Moreover, φP (〈pj , j〉) = pj;

– I and F are the graphs G0 and Gn, typed over Tφ by the morphisms induced
by the colimit. They are called source and target of the process and denoted
src(Π(ρ)) and trg(Π(ρ)).

The process associated to a derivation ρ, as defined above, is denoted by Π(ρ).

The colimit construction applied to a derivation ρ essentially constructs the
type graph as a copy of the source graph plus the items created during the
derivation. Productions are instances of production applications. Additionally,
the colimit operation “collects” the generated equivalences: the equivalence on
the e-graph arising as type graph of Π(ρ) is the “union” of the equivalences of
the graphs occurring in ρ.

It can now be shown that two derivations are shift equivalent iff the cor-
responding processes are isomorphic, and thus processes properly capture the
notion of concurrency as expressed by shift-equivalence.

Proposition 8 (Shift equivalence vs processes). Let ρ and ρ′ be deriva-
tions. Then ρ ≡s ρ′ if and only if the processes Π(ρ) and Π(ρ′) are isomorphic.

The result above is standard in graph rewriting theory for rules where both
morphisms are monos. It was generalized to strict derivations and rules coalescing
nodes in [11, Thms 1–2]. However, in that setting it was impossible to provide a
technique for extracting from a process any information about the dependencies
between the single direct derivations occurring in it (see [11, Section 4.2]).

7

3.3 Full concurrency for e-graph processes

In order to extract from a process φ sound information about the dependencies
between events, as for rewriting over ordinary graphs, we define the pre-set,
post-set and context of a production, which roughly identify the items which are
deleted, produced and preserved by a production.

Definition 9 (pre-set, post-set, context). Let φ = 〈Oφ, φT , φP , I, F〉 be a
process, where Oφ = 〈Tφ, Pφ, πφ〉. For any p ∈ Pφ we define

•p = tLp
(|Lp| − lp(|Kp|)) p• = tRp

(|Rp| − rp(|Kp|)) p = tKp
(|Kp|)

considered as sets of nodes and edges, and we say that p consumes, produces
and preserves items in •p, p• and p, respectively.

The mutual relationships between the pre-sets, post-sets and contexts of
productions naturally lead to a precedence relation between the productions in
a process (generalising to e-graphs the asymmetric conflict relation [3]).

Definition 10 (precedence relation). Let φ be a process as in Def. 9. The
precedence relation is the binary relation րφ over the set Pφ of productions,
defined by pրφ p′ if (1) p• ∩ (•p′ ∪ p′) 6= ∅ and p 6= p′ or (2) p ∪ ∩•p′ 6= ∅.

Observe that when p′ uses something produced by p necessarily p′ follows p
(point 1). Similarly, when p′ consumes an item read by p, the only possible order
of execution is p followed by p′ (point 2).

However, րφ alone does not suffice to faithfully mirror the relationship
between productions since additional dependencies arise whenever productions
“read” equivalences among nodes and generate new ones. Hence, we now char-
acterise the equalities between nodes needed and generated by any production.

Definition 11 (read and produced equivalences). Let φ be a process as in
Def. 9. For any p ∈ Pφ we define

req(p) = tLp
(∼Lp

) and grel(p) = tRp
(∼Rp

−tKp
(∼Kp

))

and call them the (symmetric) relations read and produced by p. Given a set of
productions X ⊆ Pφ we write geq(X) for the set (

⋃
p∈X grel(p)∪ ∼

src(φ))
∗.

Note that since all matches are regular monos, the application of a production
never generates an already existing equivalence. This implies that any equiva-
lence between nodes has a uniquely determined history, whose events are thus
causes for productions which read that equivalence.

Proposition 12 (generating relation). Let φ be a process as in Def. 9. Then
for any production p ∈ Pφ there exists a least subset of productions eq(p) ⊆ Pφ

such that req(p) ⊆ geq(eq(p)).

Now, all events in eq(p) must precede p in the computation, as expressed by
the relation defined below.

8

Definition 13 (e-precedence relation). Let φ be a process as in Def. 9. The
e-precedence relation is the binary relation րe

φ over the set Pφ of productions,
defined by

րφ ∪(
⋃

p∈Pφ

eq(p)× {p})

Then it can be shown that relation րe
φ faithfully captures the dependencies

between events in a process, i.e., we can prove the following result.

Proposition 14 (full concurrency). Let φ be a process. Then the productions
of φ, applied to in any order compatible with րe

φ, rewrite src(φ) into trg(φ) and
all such derivations are shift equivalent.

This “permutation” result does not hold for graph rewriting rules that may
coalesce nodes, hence the notion of process fails to work when dealing with
standard graphs. The reason for this failure is due to the fact that node identity
is lost after a fusion, while node equivalences allow for a natural way of taking
into account these additional dependencies.

4 Encoding a simple process calculus

In this section we put the e-graph formalism at work, showing that it allows for
encoding a simple (the simplest available, in fact) process calculus, namely, the
monadic solo calculus [16], one of the dialects of those nominal calculi whose
distinctive feature is name fusion [12, 18]. We will see that the tools introduced
in the previous section, like shift-equivalence and process semantics, allow for
providing a characterisation of concurrent reductions in the solo calculus.

4.1 The monadic fragment of the solo calculus

We next shortly introduce the monadic variant of the solo calculus, its structural
equivalence and the associated reduction semantics.

Definition 15 (processes). Let N be a set of names, ranged over by
x, y, w, The set of processes Proc is generated by the syntax

P ::= 0, σ, (νx)P, P1 | P2 for σ ∈ {x(y), xy}

The operators x(y) and xy are denoted as input and output, respectively, even if
their symmetric behaviour makes the distinction (typical instead of other calculi)
immaterial; collectively, each instance of them is called a solo, to emphasise
its lack of connections, except for some possible name sharing, with the other
operators. Finally, the first argument of the two operators, indicated by x, is
usually called the channel where the communication of information takes place.

We assume the standard definitions for the set of free names of a process P ,
denoted by fn(P). Similarly for α-convertibility, with respect to the restriction
operators (νy)P : the name y is bound in P , and it can be freely α-converted.
Using these definitions, the behaviour of a process P is described as a relation
obtained by closing a set of basic rules under a suitable congruence.

9

P | Q = Q | P P | 0 = P P | (Q | R) = (P | Q) | R

(νx)(νy)P = (νy)(νx)P (νx)0 = 0 (νx)(P | Q) = P | (νx)Q for x 6∈ fn(P)

Fig. 4. The set of structural axioms.

Definition 16 (reduction semantics). The reduction relation for processes
is the relation Rσ ⊆ Proc × Proc, closed under the structural congruence ≡
induced by the equations in Fig. 4, generated by the following inference rules

(r1)
y 6= w

(νw)(x(y) | xw | P)→ P{y/w}
(r2)

y 6= w

(νy)(x(y) | xw | P)→ P{w/y}

(r3)
x(y) | xy → 0

(r4)
P → Q

(νx)P → (νx)Q
(r5)

P → Q

P | R→ Q | R

where P → Q means that 〈P, Q〉 ∈ Rσ.

The top rules characterise the communication between restricted processes.
Consider the second: the process xw is ready to communicate the name w along
the channel x; it then synchronises with the process x(y), and the bound name
y is thus substituted by w on all the occurrences inside the residual process P .
Hence, the communication has a global effect on the process as a whole. Note that
one of the names among {y, w} has to be bound, so that, in principle, the rule does
not to alter the number of free names floating around and the possible choice
requires the presence of two different rules. The third rule expresses the fact
that there is no reason to bind a name during a reduction, if no substitution has
actually to occur. The latter two rules simply state the closure of the reduction
relation with respect to the operators of restriction and parallel composition.

The axioms for structural congruence in Fig. 4 state that a process is a collec-
tion of solos floating around, and interacting by forcing some name fusion. The
only difference with respect to the monadic fragment of the calculus proposed
in [16] is the lack of a match operator [x = y], avoided to simplify the presen-
tation, and the explicit presentation of the three reduction rules, which in [16]
are summarised as a unique rule equipped with constraints on the substitution
induced by the name fusion.

4.2 The graphical encoding of solos

This section informally presents an encoding of solos based on e-graphs. It re-
sembles the encoding using standard graphs presented in [11, Section 5], basi-
cally replacing node coalescing rules with rules generating node equivalences. Its
formal definition is not presented for space limitation: it is easily obtained by
adapting the proposals for mobile ambients and π-calculus in [9, 10].

10

in

c ◦

out

Fig. 5. The type graph Tσ.

In order to help intuition, we begin with a description of a suitable normal
form for structurally congruent processes. First notice that any process P is
equivalent to a process of the shape (νx1) . . . (νxn)(σ1 | . . . | σm) where all xi’s
are different, all σj ’s are solos, and the set X = {x1 . . . xn} contains only names
occurring in S = σ1 | . . . | σm, that is, X ⊆ fn(S). Thus we can denote a process
in normal form as (νX)P , for P a set of solos, since the order of the restriction
operators and of the solos is immaterial.

Definition 17 (disjoint normal form). Let P be a solo process and let (νX)P
be its normal form. We call disjoint normal form of P an expression of the kind
(νX)Dξ, where D is a set of solos with disjoint names such that X ∩ fn(D) = ∅
and ξ : fn(D)→ fn(P) is a surjective name substitution satisfying Dξ = P.

After renaming the solos, the substitution ξ picks a canonical representative
for each equivalence class of names. For example, the process Pe = (νw)(x(y) |
xw | w(z) | yz) can be described by the disjoint normal form (νw)Deξe where
De = {x2(y2), x1w2, w1(z2), y1z1} and ξe is the obvious substitution.

The above characterisation naturally suggests a representation using typed
e-graphs. The type e-graph Tσ, represented in Fig. 5, has one node and three
different edges, corresponding to the operators of the calculus. The equivalence
on nodes is the identity, i.e., Tσ is essentially a standard graph. The typing will
be represented by labelling graph edges with in, out and c.

Let P be a process, and (νX)Dξ its disjoint normal form. Then the typed
e-graph GP associated to P has as many edges and nodes as operators and
names, respectively, occurring in D. The effect of the substitution ξ is repre-
sented by using the equivalence ∼GP

between nodes: given two nodes x and y
we have x ∼GP

y iff ξ(x) = ξ(y) or ξ(x) = y. So, consider again the process
Pe = (νw)(x(y) | xw | w(z) | yz) and its disjoint normal form. Its encoding is
represented in Fig. 6(a), where nodes, for the sake of clarity, are equipped with
the name they represent. Equivalence classes are represented by a dotted rect-
angle, encompassing those nodes belonging to the class. In the example there
are four equivalence classes: {y1, y2}, {x1, x2}, {z1, z2} and {w, w1, w2}. Some
intuition may be gained by looking at the graph Q(GPe

) depicted in Fig. 6(b),
obtained by collapsing equivalent nodes (this was indeed the encoding proposed
for process Pe in [11, Fig. 11]).

11

out ◦z1

in ◦z2 ◦w1 ◦y1

c ◦w

out ◦x1 ◦w2 ◦y2

in ◦x2

(a)

out

in ◦z

c ◦w ◦y

out ◦x

in

(b)

Fig. 6. (a) The e-graph GPe encoding a process Pe and (b) the quotient graph Q(GPe).

in ◦y

c ◦w1 ◦x1

out ◦w2 ◦x2

◦y

◦w1 ◦x1

◦w2 ◦x2

◦y

◦w1 ◦x1

◦w2 ◦x2

Fig. 7. The first production of Gσ.

4.3 Encoding reductions

We now introduce the e-gts Gσ in Tσ-EGraph, showing how it simulates the
reduction semantics for solo processes. It it basically contains just three produc-
tions (i.e., one for each axiom of the reduction system), plus some “instances” of
them. The first production pσ

1 is depicted in Fig. 7: the e-graph on the left-hand
side (center, right-hand side) is Lσ

1 (Kσ
1 and Rσ

1 , respectively). The action of the
rule is described by the names of the nodes: as an example, the nodes identified
by y and wi’s, distinct in Lσ

1 , are made equivalent in Rσ
1 . The node identifiers are

of course arbitrary: they are used just to characterise the span of morphisms.

The rule mimics (a disjoint variant of) the first axiom of the reduction seman-
tics, as given in Def. 16. Constraining the matches to be regular monos ensures
that the production is not applied to a graph where nodes y and wi’s are equiva-
lent. Nevertheless, this turns out to be too restrictive, since a reduction step can
be performed if name x coincides with either y or w. Hence, two additional pro-
ductions are needed: they are variations of pσ

1 , where nodes xi’s are equivalent
either to the node y or to the nodes wi’s. We leave these productions unnamed,
since they play a minor role in the paper.

A similar situation occurs when the name y on the input operator, instead of
the name w on the output operator, is bound: it suffices a production pσ

2 (together
with two instances) mirroring pσ

1 . Most important, a production pσ
3 is needed,

where nodes y and wi’s are already coalesced and the restriction operator is not
required, as depicted in Fig. 8. Additionally, an instance where the two names
coincide, and the corresponding nodes are thus equivalent, has to be included.

12

in ◦y1

◦x1 ◦y2

out ◦x2

◦y1

◦x1 ◦y2

◦x2

◦y1

◦x1 ◦y2

◦x2

Fig. 8. The third production of Gσ.

out ◦z1

in ◦z2 ◦w1 ◦y1

c ◦w

out ◦x1 ◦w2 ◦y2

in ◦x2

out ◦z1

in ◦z2 ◦w1 ◦y1

◦w

◦x1 ◦w2 ◦y2

◦x2

◦z1

◦z2 ◦w1 ◦y1

◦w

◦x1 ◦w2 ◦y2

◦x2

Fig. 9. The derived graphs of a derivation first applying pσ
1 and then pσ

3 .

Observe that, during the reductions, isolated nodes may arise in correspon-
dence of unused names. Hence, in the encoding a process P actually corresponds
to a class of e-graphs, including GP , as defined in the previous section, and all
the e-graphs which differ from GP for the presence of additional isolated nodes.

4.4 Concurrency via fusion

Consider the process (νw)(x(y) | xw | w(z) | yz), and its graphical depiction
GPe

in Fig. 6(a). A possible derivation consists of the two steps below, applying
rules r1 and r3, respectively.

(νw)(x(y) | xw | w(z) | yz) → (w(z) | yz){y/w} = y(z) | yz → 0

Being the context rules immaterial, we end up by applying to the graph in the
left-hand side of Fig. 9 first the rule pσ

1 , and then the rule pσ
3 . The derivation

(the derived graphs) is shown in Fig. 9, and the associated process is in Fig. 10.
It can be easily seen that the two steps are not sequentially independent.

This is indeed recorded in the process Π(ρ), as depicted in Fig. 10. The pro-
duction pσ

1 consumes three edges, reads three equivalence classes (namely, those
for nodes {w, w2}, xi’s and yi’s), and generates the symmetric relation contain-
ing {〈w, yj〉, 〈wi, yj〉 | i, j = 1, 2}. For the sake of readability, productions have
dotted arrows only to (the smallest) equivalence relations including ∼

src(ρ) that
they read or generate. Now, pσ

3 reads the class {w1, y1}, so that req(pσ
3) is con-

tained in geq({pσ
1}): thus, differently from what happens considering just the

relation ր, here pσ
1 ր

e pσ
3 , i.e., the dependency between (the applications of)

the production pσ
1 and the production pσ

3 is properly recorded.

13

out ◦z1

in ◦z2 ◦y1

pσ
3 ◦w1

c ◦w

pσ
1 ◦w2

out ◦x1 ◦y2

in ◦x2

Fig. 10. The process of the derivation in Fig. 9.

out ◦z1 ◦w0

in ◦z2 ◦w1

c ◦w

out ◦x1 ◦w2 ◦y2

in ◦x2

out ◦z1 ◦w0

in ◦z2 ◦w1

◦w

◦x1 ◦w2 ◦y2

◦x2

◦z1 ◦w0

◦z2 ◦w1

◦w

◦x1 ◦w2 ◦y2

◦x2

Fig. 11. The derived graphs of another derivation first applying pσ
1 and then pσ

3 .

Let us now consider the process (νw)(x(y) | xw | w(z) | wz), which dif-
fers from the process above just for the name occurring in the right-most solo
(namely, wz instead of yz). The same sequence of rule applications as for the
derivation depicted in Fig. 9 can now be replicated, and the result (the derived
graphs) is presented in Fig. 11. The process Π(ρ′) is depicted in Fig. 12: with
respect to the process in Fig. 10, production pσ

3 now reads the equivalence class
containing {w0, w1}, instead of the class containing the w, wi’s and y generated
by pσ

1 : thus, req(pσ
3) is contained in ∼

src(ρ′), and no casual dependency holds
between the production occurrences. Hence the components of the derivation
are sequentially independent, since the coalescing of nodes w, wi’s and y is not
needed for the second direct derivation.

14

out ◦z1

in ◦z2 ◦w0

pσ
3 ◦w1

c ◦w

pσ
1 ◦w2

out ◦x1 ◦y2

in ◦x2

Fig. 12. The process of the derivation in Fig. 11.

5 Conclusions and further works

The paper introduces a novel formalism for the analysis of distributed systems,
graphs with equivalences : typed (hyper-)graphs equipped with an equivalence re-
lation over their nodes. The formalism is amenable to the usual tools of the dpo

approach to graph transformation: in particular, the theoretical results associ-
ated to the concurrent features of the approach (the paradigm of graph processes
for representing shift-equivalent derivations) can be lifted to the new formalism.

We are planning two related strands of research. On the one side, we would
like to properly establish the connection between the category of graphs and of
graph with equivalences, making precise the correspondence briefly hinted at in
Section 2. On the other side, we need to further develop the theory surrounding
the graph process construction, drawing a link with respect to a suitable notion of
event structure, amenable to model non-determinism in derivations. The latter
characterisation would provide a further sanity check, providing a concurrent
semantics for nominal calculi, to be compared with already existing proposals.

As a final remark, observe that e-graphs resemble the so-called structures, as
defined in [8]. Indeed, along the same lines of [15, Section 6] that the category
EGraph can be proved quasi-adhesive, thus inheriting part of the rich theory
developed for such formalism. That very same paper develops a general theory
of dpo rewriting for (quasi-)adhesive categories and a theory of processes is
proposed in [2]. Unfortunately, this could not be helpful for our purposes, since
the use of rules where right-hand side morphisms are not regular monos makes
a relevant part of such theory not applicable.

15

References

1. P. Baldan, A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. Con-
current semantics of algebraic graph transformation. In H. Ehrig, H.-J. Kreowski,
U. Montanari, and G. Rozenberg, editors, Handbook of Graph Grammars and Com-
puting by Graph Transformation, volume 3, pages 107–187. World Scientific, 1999.

2. P. Baldan, A. Corradini, T. Heindel, B. König, and P. Sobociński. Processes for
adhesive rewriting systems. In L. Aceto and A. Ingólfsdóttir, editors, Foundations
of Software Science and Computation Structures, volume 3921 of Lect. Notes Comp.
Sc., pages 202–216. Springer, 2006.

3. P. Baldan, A. Corradini, and U. Montanari. Unfolding and event structure seman-
tics for graph grammars. In W. Thomas, editor, Foundations of Software Science
and Computation Structures, volume 1578 of Lect. Notes Comp. Sc., pages 73–89.
Springer, 1999.

4. L. Cardelli and A. Gordon. Mobile ambients. Th. Comp. Sc., 240:177–213, 2000.
5. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-

maticae, 26:241–265, 1996.
6. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Alge-

braic approaches to graph transformation I: Basic concepts and double pushout
approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformation, volume 1, pages 163–245. World Scientific, 1997.

7. F. Drewes, A. Habel, and H.-J. Kreowski. Hyperedge replacement graph grammars.
In G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph
Transformation, volume 1, pages 95–162. World Scientific, 1997.

8. H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and concur-
rency in high-level replacement systems. Math. Str. Comp. Sc., 1:361–404, 1991.

9. F. Gadducci. Term graph rewriting and the π-calculus. In A. Ohori, editor, Pro-
gramming Languages and Semantics, volume 2895 of Lect. Notes Comp. Sc., pages
37–54. Springer, 2003.

10. F. Gadducci and U. Montanari. A concurrent graph semantics for mobile ambients.
In S. Brookes and M. Mislove, editors, Mathematical Foundations of Programming
Semantics, volume 45 of El. Notes Th. Comp. Sc. Elsevier Science, 2001.

11. F. Gadducci and U. Montanari. Graph processes with fusions: concurrency by
colimits, again. In H.-J. Kreowski, U. Montanari, F. Orejas, G. Rozenberg, and
G. Taentzer, editors, Formal Methods (Ehrig Festschrift), volume 3393 of Lect.
Notes Comp. Sc., pages 84–100. Springer, 2005.

12. P. Gardner and L. Wischik. Explicit fusion. In M. Nielsen and B. Rovan, editors,
Mathematical Foundations of Computer Science, volume 1893 of Lect. Notes Comp.
Sc., pages 373–382. Springer, 2000.

13. U. Golz and W. Reisig. The non-sequential behaviour of Petri nets. Information
and Control, 57:125–147, 1983.

14. A. Habel, J. Müller, and D. Plump. Double-pushout graph transformation revis-
ited. Math. Str. Comp. Sc., 11:637–688, 2001.

15. S. Lack and P. Sobociński. Adhesive and quasiadhesive categories. Informatique
Théorique et Applications/Theor. Informatics and Applications, 39:511–545, 2005.

16. C. Laneve and B. Victor. Solos in concert. Math. Str. Comp. Sc., 13:675–683.
17. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Part I and

II. Information and Computation, 100:1–77, 1992.
18. J. Parrow and B. Victor. The fusion calculus: Expressiveness and simmetry in

mobile processes. In V. Pratt, editor, Logic in Computer Science, pages 176–185.
IEEE Computer Society Press, 1998.

16

