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Abstract. We propose a methodology for system specification and ver-
ification based on UML diagrams and interpreted in terms of graphs and
graph transformations. Once a system is modeled in this framework, a
temporal graph logic can be used to express some of its relevant behav-
ioral properties. Then, under certain constraints, such properties can be
checked automatically. The approach is illustrated over a simple case
study, the so-called Airport Case Study, which has been widely used
along the first two years of the AGILE GC project.

1 Introduction

The use of visual modeling techniques, like the UML [22], for the design and de-
velopment of large applications is nowadays well established. In these approaches
a system specification consists of several related diagrams, that represent both
the statics and the dynamics of the system. Since the development process is
made easier if it is possible to reason about the system under development at
an early stage, in this paper we sketch a methodology which allows to express
interesting behavioral properties of the system in a suitable logic, and, under
certain constraints, to verify them automatically. We present our approach by
applying it to a simple case study, which has been widely used along the first
two years of the agile GC project [1], namely the Airport Case Study [2].

The first step of our methodology consists of representing a UML specification
as a Graph Transformation System (GTS). Since the various kinds of diagrams
used in a UML specification essentially are graphs annotated in various ways,
it comes as no surprise that many contributions in the literature use techniques
based on the theory of graph transformation to provide an operational semantics
for UML behavioral diagrams (see, among others, [10–13, 17, 18]). We will stick
to a tiny fragment of the UML, including (suitably restricted) class and instance
diagrams for the statics, and activity diagrams for the dynamics of a system
specification. The class diagram determines the shape of the graphs that will be
used for modeling instance diagrams, called instance graphs, while each activity
in a behavioral diagram will be represented as a graph transformation rule,
describing the effect of such activity on the instance graph.

� Research partially supported by the EU FET – GC Project IST-2001-32747 agile
and the EC RTN 2-2001-00346 SegraVis.

C. Priami and P. Quaglia (Eds.): GC 2004, LNCS 3267, pp. 18–33, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Specifying and Verifying UML Activity Diagrams Via Graph Transformation 19

Next, following an approach to the verification of graph transformation sys-
tems developed during the last few years (see [3–5]), we shall introduce a tem-
poral logic which allows for formulating relevant properties of a GTS. The logic
µL2 proposed in [5] (that we slightly modify in order to deal with a more gen-
eral class of graphs) is a propositional µ-calculus where the basic predicates
are monadic second-order formulae interpreted over graphs. For (fragments of)
this logic, verification techniques have been proposed for finite and infinite-state
systems, which exploit finite approximations of the unfolding of the GTS [4, 5].

The expressiveness of the proposed logic is tested against a collection of
properties concerned with the Airport Case Study, which were collected by the
members of the AGILE project in a meeting dedicated to modal and temporal
logics (the proceedings are available at [1]). Even if monadic second-order logic is
very expressive as far as graph properties are concerned, it turns out that some
interesting dynamic properties of the Airport Case Study cannot be encoded
directly in the proposed logic. Being the logic propositional at the temporal
layer, there is no way to write formulae predicating about the properties of a
specific object at different times. We briefly outline a more expressive graph logic,
which, extending µL2 with non-propositional features, allows for overcoming
the mentioned limitations. Unfortunately, the verification techniques in [4, 5] do
not directly apply to this logic, but we are confident that they can be suitably
generalized, at least in the finite-state case.

In the next section, after a brief introduction to the Airport Case Study and
to a partial specification of it using UML, we first show how the states of the
case study can be represented by graphs, and the corresponding activities by
graph transformation rules. Next we introduce the temporal logic for GTSs, and
finally we discuss to what extent some relevant properties can be expressed in
that logic, and which extensions of such logic would be needed.

2 The Airport Case Study

As anticipated above, in this paper we shall illustrate the main concepts using
as running example a fragment of the Airport Case Study, described in [2].

The case study consists of a system representing planes landing and taking
off from airports. The planes transport passengers. Departing passengers check
in and board the plane; their luggage is loaded in the plane. The plane is ready to
take off after all passengers have boarded the plane and their luggage is loaded.
After the plane has reached its destination airport, passengers get off the plane
and claim their luggage. On board, passengers may perform some activities,
such as consuming a meal. The specification and modeling of several aspects of
this case study using a variety of formalisms (UML, CommUnity, KLAIM and
Graph Transformations) is presented in [2].

We shall consider here only the part of the case study related to the Departure
Use Case, including the check-in and boarding of passengers, the loading of their
luggage and the take-off of the plane. A UML instance diagram representing the
initial state of the system is shown in Figure 1 (a), adopting the stereotypes
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mobile and location proposed in a recent extension for mobility of the language
developed inside the agile project; instead, Figure 2 shows an activity diagram
describing the relationships among the relevant activities. In the next subsections
we discuss how to model this system using graph transformation, representing
its states as graphs and the activities as rules.

2.1 Representing States as Hypergraphs

In order to model a UML specification as a graph transformation system, an
obvious pre-requisite is the formal definition of the structure of the graphs which
represent the states of the system, namely the instance graphs. However, there is
no common agreement about this: we shall present a novel formalization, which
shares some features with the one proposed in [14].

An instance graph includes a set of nodes, which represent all data belonging
to the state of an execution. Some of them represent the elements of primitive
data types, while others denote instances of classes. Every node may have at
most one outgoing hyperedge, i.e., an edge connecting it to zero or more nodes.1

Conceptually, the node can be interpreted as the “identity” of a data element,
while the associated hyperedge, if there is one, contains the relevant information
about its state. A node without outgoing hyperedges is a variable: variables only
appear in transformation rules, never in actual states.
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Fig. 1. An instance diagram (a) and the corresponding instance graph (b)

Typically, an instance of a class C is represented by a node n and by a hyper-
edge labeled with the pair 〈instanceName : C〉. This hyperedge has node n as its
only source, and for each attribute of the class C it has a link (a target tentacle)
labeled by the name of the attribute and pointing to the node representing the
attribute value. For the logic presented later in Section 3, we assume that the
source tentacle (linking a hyperedge to its source node) is implicitly labeled by

1 Formally, these graphs are term graphs [21].
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self. Every instance graph also includes, as unary hyperedges (i.e., hyperedges
having only the self tentacle), all constant elements of primitive data types, like
integers (0, 1, -1, . . . ) and booleans (true and false), as well as one edge null:C
for each relevant class C.

Figure 1 (a) shows an instance diagram which represents the initial state of
the Airport Scenario. As usual, the attributes of an instance may be represented
as directed edges labeled by the attribute name, and pointing to the attribute
value. The edge is unlabeled if the attribute name coincides with the class of the
value (e.g., lh123 is the value of the plane attribute of tck). An undirected edge
represents two directed edges between its extremes. The diagram conforms to a
class diagram that is not depicted here.

Figure 1 (b) shows the instance graph (according to the above definitions)
encoding the instance diagram. Notice that the graph contains two elements
of a basic data type, true and false: these are depicted as ovals, which stands
actually for a node attached through the self tentacle to a unary hyperedge. Up
to a certain extent (disregarding OCL formulas and cardinality constraints), a
class diagram can be encoded in a corresponding class graph as well; then the
existence of a graph morphism (i.e., a structure preserving mapping) from the
instance graph to the class graph formalizes the relation of conformance.

In the following we shall depict the states of the system as instance diagrams,
which are easier to draw and to understand, but they are intended to represent
the corresponding instance graphs.

take_off

check_in

load_luggageboard

Fig. 2. The Activity Diagram of the Use Case Departure

2.2 Representing Activities as Graph Transformation Rules

Figure 2 shows the activity diagram of the Use Case Departure of the Airport
Case Study. This behavioural diagram ignores the structure of the states and
the information about which instances are involved in each activity, but stresses
the causal dependencies among activities and the possible parallelism among
them. More precisely, from the diagram one infers the requirement that board
and load luggage can happen in any order, after check in and before take off.

By making explicit the roles of the various instances in the activities, we shall
implement each activity as a graph transformation rule. Such rules describe local
modifications of the instance graphs resulting from the corresponding activities.
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We will show that they provide a correct implementation of the activity diagram,
in the sense that the causality and independence relations between the rules are
exactly those prescribed in the activity diagram.

Let us first consider the activity board. Conceptually, in the simplified model
we are considering, its effect is just to change the location of the passenger (i.e.,
its atLoc attribute) from the airport to the plane. In the rule which implements
the activity, we make explicit the preconditions for its application: 1) the passen-
ger must have a ticket for the flight using that plane; 2) the value of the checked
attribute of the ticket must be true; 3) the plane and the passenger must be at
the same location, which is an airport.

All the above requirements are represented in the graph transformation rule
implementing the activity board, shown in Figure 3. Formally, this is a double-
pushout graph transformation rule [7], having the form L

l← K
r→ R, where L,

K and R are instance graphs, and l and r are graph morphisms. In this case l
and r are actually inclusions, represented implicitly by the position of nodes and
edges in the source and target graphs.

true
checked

:Ticket
:Plane

:Airport

true
checked

:Passenger

:Ticket

:Airport

:Plane

true
checked

:Passenger

:Ticket
:Plane

:Airport

at
Lo

c

planeluggage

pa
ss

en
ge

r

tic
ke

t

at
Lo

c

luggage

planeluggage

pa
ss

en
ge

r
atLoc

tic
ke

t

at
Lo

c

atLoc

luggage

planeluggage

pa
ss

en
ge

r

Fig. 3. The graph transformation rule for boarding

Intuitively, a rule states that whenever we find an occurrence of the left-hand
side L in a graph G we may replace it with the right-hand side R. The interface
graph K and the two morphisms l and r provide the embedding information, that
is, they specify where R should be glued with the context graph obtained from
G by removing L. More precisely, an occurrence of L in G is a graph morphism
g : L → G. The context graph D is obtained by deleting from G all the nodes
and edges in g(L− l(K)) (thus all the items in the interface K are preserved by
the transformation). The insertion of R in D is obtained by taking their disjoint
union, and then by identifying for each node or edge x in K its images g(x) in
G and r(x) in R: formally, this operation is a pushout in a suitable category.

Comparing the three graphs in the rule, one can see that, in order to change
the value of the attribute atLoc of the Passenger, the whole hyperedge is deleted
and created again: one cannot delete a single attribute, as the resulting structure
would not be a legal hypergraph.2 Instead, the node representing the identity
of the passenger is preserved by the rule. Also, all the other items present in

2 This is a design choice which forbids the simultaneous application of another rule
accessing the Passenger. Conceptually, this is equivalent to putting a “lock” on the
object whose attribute is changed.
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the left-hand side (needed to enforce the preconditions for the application of the
rule) are not changed by the rule.

In most cases, it is possible to use a much more concise representation of a
rule of this kind, by depicting it as a single graph (the union of L and R), and
annotating which items are removed and which are created by the rule. Figure
4 (a) shows an alternative but equivalent graphical representation of the rule
of Figure 3 as a degenerate kind of collaboration diagram (without sequence
numbers, guard conditions, etc.) according to [6].
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<<mobile location>>

:Airport
<<location>><<mobile>>

checked: true

{new}atLoc

board

{destroy}
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{new}{destroy}

check_in

checked:truechecked:false

<<mobile>>
atLoc

<<location>>

(a) (b)

Fig. 4. The rules for boarding (a) and for checking in (b) as collaboration diagrams

Here the state of the system is represented as an instance diagram, and the
items which are deleted by the rule (resp. created) are marked by {destroy} (resp.
{new}: beware that these constraints refer to the whole Passenger instance, and
not only to the atLoc tentacle). For graph transformation rules with injective
right-hand side (and no shared variable, like all those considered here), this
representation is equivalent to the one with explicit left-hand side, interface and
right-hand side graph, and for the sake of simplicity we will stick to it.

Figure 4 (b) and Figures 5 (a, b) show the rules implementing the remaining
three activities of Figure 2, namely check in, load luggage and take off: the corre-
sponding graphical representation can be recovered easily. Notice that the effect
of the take off rule is to change the value of the atLoc attribute of the plane: we
set it to null, indicating that the location is not meaningful after taking off; as a
different choice we could have used a generic location like Air or Universe.

The next statement, by exploiting definitions and results from the theory
of graph transformation, describes the causal relationships among the potential
rule applications to the instance graph of Figure 1 (b) (as depicted in Figure 6),
showing that the dependencies among activities stated in the diagram of Figure
2 are correctly realized by the proposed implementation.

Proposition 1 (Causal Dependencies Among Rules Implementing Ac-
tivities). Given the start instance graph G0 of Figure 1 (b) and the four graph
transformation rules of Figures 4 and 5,

– the only rule applicable to G0 is check in, producing, say, the instance graph
G1;
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Fig. 5. The rules for loading the luggage (a) and for taking off (b)

G0 G1 G2 G3

G"1

G’1

check_in take_off

board

load_luggageboard

load_luggage

Fig. 6. Dependencies among the graph transformation rules of the Departure Use Case

– both board and load luggage can be applied to graph G1, in any order or even
in parallel, resulting in all cases in the same graph (up to isomorphism), say
G2;

– rule take off can be applied to G2, but not to any other instance graph gen-
erated by the above mentioned rules.

2.3 Enriching the Model with Synchronized Hypergraph Rewriting

Quite obviously, the rule take off fits in the unrealistic assumption that the flight
has only one passenger. Let us discuss how this assumption can be dropped by
modeling the fact that the plane takes off only when all its passengers and all
their luggages are boarded.

We shall exploit the expressive power of Synchronized Hypergraph Rewriting
[15], an extension of hypergraph rewriting, to model this situation in a very
concise way. Intuitively, the plane has as attribute the collection of all the tickets
for its flight, and when taking off it broadcasts a synchronization request to all
the tickets in the collection. Each ticket can synchronize only if its passenger
and its luggage are on the plane. If the synchronization fails, the take off rule
cannot be applied. This activity can be considered as an abstraction of the check
performed by the hostess/steward before closing the gate.

Conceptually, a graph transformation rule with synchronization is a rule
where one or more nodes of the left-hand side may be annotated with an action.
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If the node is a variable, the action is interpreted as a synchronization request
issued to the instance which will be bound to the variable when applying the
rule. If the annotated node is the source of an instance, the action is interpreted
as an acknowledgment issued by that instance. Given an instance graph, a bunch
of such rules with synchronization can be applied simultaneously to it only if,
besides satisfying the usual conditions for parallel application, all the synchro-
nization requests are properly matched by a corresponding acknowledgment.
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Fig. 7. The rules for taking off while checking that all passengers are on board (a),

and for acknowledging the synchronization (b)

To use this mechanism in our case study, let us first assume that at the
class diagram level we inserted an association Plane

1 ∗⇐⇒ Ticket with the obvious
meaning: we call TicketList the corresponding attribute of a plane. Figure 7 (a)
shows rule take off synch: the plane takes off, changing its location from the
airport to null, only if its request for a synchronization with a boarded action
is acknowledged by its collection of tickets. In this rule we depict the state as
an instance graph, showing explicitly that a node representing the value of the
attribute ticketList of the plane is annotated by the boarded action. On the other
side, according to rule boarded ack of Figure 7 (b), a ticket can acknowledge a
boarded action only if its passenger and its luggage are both located on its plane.
Here the state is depicted again as an instance diagram, and the boarded action
is manifested on the node representing the identity of the ticket.

To complete the description of the system, we must explain how the tickets
for the flight of concern are linked to the ticketList attribute of the plane. In
order to obtain the desired synchronization between the plane and all its tickets,
we need to assume that there is a subgraph which has, say, one “input node”(the
ticketList attribute of the plane) and n “output nodes” (the tickets); furthermore,
this subgraph should be able to “match” synchronization requests on its input
to corresponding synchronization acknowledgments on its ouputs.

More concretely, this is easily obtained, for example, by assuming that the
collection of tickets is a linked list, and by providing rules for propagating the
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synchronization along the list: this is shown in Figure 8, where the rules should
be intended to be parametric with respect to the action act.

:List :ListNode

null

:ListNode
first

act

start_act next_act

act

act
next

act

last_act

act actact

next

elementelement

Fig. 8. The rules for broadcasting synchronizations along a linked list

3 A Logic for Graph Transformation Systems

This section presents a slight variation of the behavioral logic for graph trans-
formation systems proposed in [5], adapted to deal with hypergraphs. It is es-
sentially a variant of the propositional µ-calculus (i.e., a temporal logic enriched
with fixed-point operators) where propositional symbols range over arbitrary
state predicates, characterizing static graph properties, which are expressed in a
monadic second-order logic.

3.1 A Monadic Second-Order Logic for Graphs

We first introduce the monadic second-order logic L2 for specifying graph prop-
erties, i.e.,“static” properties of system states. Quantification is allowed over
edges, but not over nodes (as, e.g., in [8]).

Definition 1 (Graph Formulae). Let X1 = {x, y, w, . . .} be a set of (first-
order) edge variables and X2 = {X,Y,W, . . .} be a set of (second-order) variables
ranging over edge sets. The set of graph formulae of logic L2 is defined as

F ::= x = y | x.attrx = y.attry |
type(x) = � | x ∈ X | (Predicates)
F ∨ F | F ∧ F | F ⇒ F | ¬F | (Connectives)
∀x.F | ∃x.F | ∀X.F | ∃X.F (Quantifiers)

where � belongs to a set Λ of labels, and attrx , attry to a fixed set of attribute
names. We denote by free(F ) and Free(F ) the sets of first-order and second-
order variables, respectively, occurring free in F .

Let G be an instance graph, let F be a graph formula in L2, and let σ :
free(F ) → Edges(G) and Σ : Free(F ) → P(Edges(G)) be valuations for the
free first- and second-order variables of F , respectively. The satisfaction relation
G |=σ,Σ F is defined inductively, in the usual way; for instance
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G |=σ,Σ x = y ⇐⇒ σ(x) and σ(y) are the same edge;
G |=σ,Σ x.attrx = y.attry ⇐⇒ edges σ(x) and σ(y) have attributes (tenta-

cles) attrx and attry, respectively, and they
point to the same node;

G |=σ,Σ type(x) = � ⇐⇒ the object represented by edge σ(x) is an in-
stance of class �;

G |=σ,Σ x ∈ X ⇐⇒ edge σ(x) belongs to the set of edges Σ(X).

If the formula F is closed then we will write G |= F instead of G |=∅,∅ F . As an
example, the formula ∃p.∃t.type(p) = Passenger ∧ type(t) = Ticket ∧ p.ticket =
t.self holds true in the instance graph of Figure 1, using the assumption that
the only source tentacle of each hyperedge is implicitly labeled by self.

We shall freely use the following obvious abbreviations for graph formulae

∀x : T . φ � ∀x . type(x) = T ⇒ φ

∃x : T . φ � ∃x . type(x) = T ∧ φ

x.attr = y � x.attr = y.self

and, in any context where a graph formula is expected,

x.attr � x.attr = true.self
¬(x.attr) � x.attr = false.self

where the constants true and false are interpreted over the (unary) hyperedges
encoding the booleans, which we assume to be included in every instance graph.

3.2 Introducing a Temporal Dimension

The behavioral logic for GTSs, called µL2, is a variant of the propositional
µ-calculus where propositional symbols range over formulae from L2.

Definition 2 (Logic Over GTSs). The syntax of µL2 formulae is given by

f ::= A | Z | �f | �f | ¬f | f1 ∨ f2 | f1 ∧ f2 | µZ.f | νZ.f

where A ranges over closed formulae in L2 and Z ∈ Z are proposition variables.

The formulae are evaluated over a graph transition system T = (Q,→), i.e., a
transition system where the set of states Q consists of (isomorphism classes of)
graphs. This can be thought of as the abstract representation of the behavior of
a graph grammar G: states in Q are (isomorphism classes) of graphs reachable
in G and two states q1 and q2 are related, i.e., q1 → q2, if q2 is reachable from
q1 via a rewriting step in G.

Intuitively, an atomic proposition A holds in a state q if q |= A according to
the satisfaction relation of the previous section. A formula �f / �f holds in a
state q if some / any single step leads to a state where f holds. Note that (as
in [19]) the operators � and � only refer to the next step and not (as defined
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elsewhere) to the whole computation. The connectives ¬,∨, ∧ are interpreted
in the usual way. The formulae µZ.f and νZ.f represent the least and greatest
fixed point over Z, respectively. When a transition system T has a distinguished
initial state q0, we say that T satisfies a (closed) formula f , written T |= f , if
the initial state q0 of T satisfies f . Since the logic is classical, � and ν could be
defined in terms of � and µ.

Since properties of the form “eventually φ”, i.e., µZ.(φ ∨ �Z), and “always
φ”, i.e., νZ.(φ ∧ �Z), will be often used, we introduce the abbreviations

�∗φ � µZ . (φ ∨ �Z)
�∗φ � νZ . (φ ∧ �Z)

3.3 Specifying Some Properties of the Airport Scenario

In this section we discuss how some properties concerned with the Airport Case
Study can be modeled in our logic. As mentioned before, the main limitation of
the logic µL2 resides in its propositional nature which prevents from describing
the evolution of an object in time. We briefly discuss how this limitation can be
overcome by considering a non-propositional extension of the temporal logic.

Using the Logic µL2. The logic µL2 can be used to express properties about
the structure of system state, possibly at different instants.

– The plane leaves only if all passengers are aboard
Fixed an edge pl : Plane representing a plane, the formula

φ(pl) � ∃p:Passenger . (∃tk :Ticket . (p.ticket = tk ∧ tk .plane =
pl ∧ tk .checked ∧ p.atLoc �= pl))

means that there is a passenger p having a ticket tk associated with the
plane pl , the ticket is checked but the passenger is not aboard. Hence the
desired property can be expressed by saying that this can never happen for
any plane which is on air, i.e., such that its atLoc attribute is null

�∗(∀pl :Plane . (pl .atLoc = null ⇒ ¬φ(pl)))

– A passenger can eat only on air
This property is expressed by the formula:

�∗(∀p:Passenger .∀pl :Plane . ((p.eat ∧ p.atLoc = pl) ⇒ pl .atLoc = null))

which says, assuming the existence of a tentacle eat, that it is always true
that if a passenger is eating on a plane, then the plane is flying.

The validity of the above formulae over a finite-state system, like the Airport
Case Study with a given initial state, can be checked by using a technique based
on the unfolding semantics of GTSs and inspired to the approach originally
developed by McMillan for Petri nets [20]. Recall that the unfolding construction
for GTSs produces a structure which fully describes the concurrent behavior of
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the system, including all possible steps and their mutual dependencies, as well
as all reachable states. However, the unfolding is infinite for non-trivial systems,
and cannot be used directly for model-checking purposes. An algorithm proposed
in [4] allows for the construction of a finite initial fragment of the unfolding of
the given system which is complete, i.e., which provides full information about
the system as far as reachability (and other) properties are concerned. Once it
has been constructed, the prefix can be used to verify properties of the reachable
states, expressed in the logic L2. This is done by exploiting both the graphical
structure underlying the prefix and the concurrency information it provides.

We mention that approximated techniques, also based on the unfolding se-
mantics of GTSs, are available for systems which are not finite-state. In this
case, finite under- and over-approximations of the unfolding can be constructed,
which are used to check properties of a graph transformation system, like safety
and liveness properties, expressed in suitable fragments of µL2 [5].

A More General Logic. By experimenting with the Airport Case Study, it
turns out that some interesting properties of the system cannot be expressed in
µL2 essentially because of its propositional nature. Take, for instance, the prop-
erty “All boarded passengers arrive at destination”. The corresponding formula
should say that it is always true that, given any passenger, if in a certain state
the passenger is boarded then later, eventually the passenger will arrive at its
destination. This formula would have the shape

�∗(∀p:Passenger . p is boarded ⇒ �∗(p at destination))

which is not expressible in µL2 due to the presence of the modal operator “�∗”
in the scope of the quantifier “∀”.

The problem can be overcome by considering a more general,
non-propositional temporal graph logic, where quantifiers and temporal oper-
ators can be interleaved. A possible syntax is given below, where the operators
�∗ and �∗ are taken as primitive.

F ::= x = y | x.attrx = y.attry |
type(x) = � | x ∈ X | (Predicates)
F ∨ F | F ∧ F | F ⇒ F | ¬F | (Connectives)
∀x.F | ∃x.F | ∀X.F | ∃X.F (Quantifiers)
�∗F | �∗F (Temporal Operators)

As before attrx , attry belong to a fixed set of attribute names, and x, X are
first- and second-order variables, ranging over edges and set of edges, respec-
tively.

The semantics of such logic can be defined by mimicking what is done, e.g.,
for first-order or second-order modal and temporal logics (see [16], or the more
recent [9], where a graph logic is considered). Roughly, the logic is interpreted
over a Kripke structure or a transition system where states are (first- or second-
order) models. Since the logic allows to track the evolution of an individual,
when a state q1 can evolve to q2, there must exist an explicit relationship among
the elements of the models underlying such states.
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More precisely, our logic could be interpreted over an extended graph tran-
sition system (Q,F ), with Q a set of graphs and F a set of triples (q1, f, q2),
where q1, q2 are states in Q and f : q1 → q2 is a partial graph morphism. The
presence of a triple (q1, f, q2) intuitively means that the graph q1 can evolve to
q2. The function f relates any item in the graph q1 which is not deleted by the
rewriting step to the corresponding item in q2.

By using this extended logic, several properties previously not expressible in
µL2 can now be easily modeled.

– All boarded passengers arrive at destination
This property can be encoded by the following formula

�∗(∀p:Passenger .∀pl :Plane . ((p.atLoc = pl) ⇒ ∃a:Airport . (pl .dest =
a ∧ �∗(p.atLoc = a))))

which says that, in any state, if a passenger p is boarded on a plane pl , whose
destination is airport a, then the passenger p will eventually arrive at a.

– All passengers go on board
This property can be encoded by the following formula

�∗(∀p:Passenger .∀t :Ticket .∀pl :Plane . (p.ticket = t ∧ t.plane = pl ⇒
�∗(p.atLoc = pl)))

which says that, in any state, each passenger with a ticket associated to a
plane pl will eventually board on pl .

– Airports cannot move
This property can be encoded by the following formula

�∗(∀a:Airport .∀x . (a.atLoc = x ⇒ �∗(a.atLoc = x)))

which says that an airport which is at some location will always stay there.
– Passengers change airport only by plane

This property can be encoded by the following formula

�∗(∀p:Passenger .∀a1 :Airport . (p.atLoc = a1 ∧ �∗(¬∃pl :Plane . (p.atLoc =
pl)) ⇒ �∗(∀a2 :Airport . ((p.atLoc = a2) ⇒ a2 = a1))))

which says that a passenger which is at an airport a1 and which does not
take any plane will be always in a1 .

– Baggage travels with passengers (each bag with its owner)
This property can be encoded by the following formula

�∗(∀p:Passenger .∀l : Luggage .∀pl :Plane . (p.atLoc = pl ∧ p.luggage = l ⇒
�∗(p.atLoc = pl ∧ l.atLoc = pl))
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which says that, in any state, if a passenger p has a luggage l and it boards
on a plane pl then, eventually, also the luggage will be in pl together with
the passenger.

– Passengers change location with their plane
This property is interpreted as “a passenger on a plane will reach the same
destination as the plane itself”. This can be encoded by the following formula

�∗(∀p:Passenger .∀pl :Plane .∀a:Airport . (p.atLoc = pl ∧ pl.dest = a ⇒
�∗(p.atLoc = a)))

which says that, in any state, if a passenger p is on a plane pl with destination
airport a then p eventually reaches airport a.

Unfortunately, the unfolding-based verification techniques mentioned for µL2
do not immediately extend to this more general framework. Understanding to
what extent such techniques can be adapted to the new framework is an open
and stimulating direction of further research.

4 Conclusions

We presented a general approach to the specification and verification of systems
modeled using UML diagrams, interpreted as graph transformation systems.
More precisely, we discussed how to interpret instance diagrams as graphs, and
how to implement the activities of an activity diagram as graph transformation
rules. A temporal logic over monadic second-order graph predicates allows for
formalizing relevant properties of the resulting system, and for fragments of such
logic automatic verification techniques are available. The overall approach was
presented quite informally, using a simple case study as running example.

The theoretical foundations of the methodology for verifying graph transfor-
mation systems presented in the second part of the paper are already quite well
developed [3, 4, 5]. The most valuable contribution of this paper, in our view, is
the idea of applying it for the verification of systems synthesized from a UML
specification. This allowed us to identify some weaknesses of the approach, as
described in the previous section, that we intend to address in the next future
by generalizing the verification approach to more expressive logics and to graph
transformation systems with synchronization.

Concerning the modeling of UML diagrams as graph transformation systems,
the informal approach we discussed is clearly very preliminary, as it addresses
only (restricted forms of) two kinds of diagrams. Nevertheless, we are confident,
also on the basis of other contributions concerned with this topic [10, 11, 12, 13,
17, 18], that such an approach can be extended to cover a meaningful part of the
UML. This represents another interesting topic for future research.
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