
Bisimulation Equivalenes

for Graph Grammars

?

Paolo Baldan, Andrea Corradini, Ugo Montanari

Dipartimento di Informatia

Universit�a di Pisa

Abstrat. Along the years the onurrent behaviour of graph gram-

mars has been widely investigated, and, in partiular, several lassial

approahes to the semantis of Petri nets have been extended to graph

grammars. Most of the existing semantis for graph grammars provide

a (possibly onurrent) operational model of omputation, while little

interest has been devoted to the de�nition of abstrat observational se-

mantis. The aim of this paper is to introdue and study a behavioural

equivalene over graph grammars, inspired by the lassial history pre-

serving bisimulation. Several hoies are oneivable aording to the

kind of onurrent observation one is interested in. We onentrate on

the basi ase where the onurrent nature of a graph grammar ompu-

tation is desribed by means of a prime event struture. As it happens

for Petri nets, history preserving bisimulation an be studied in the gen-

eral framework of ausal automata | a variation of ordinary automata

introdued to deal with history dependent formalisms. In partiular, we

prove that history preserving bisimulation is deidable for �nite-state

graph grammars, by showing how the problem an be redued to deid-

ing the equivalene of �nite ausal automata.

1 Introdution

Graph grammars have been shown to be a powerful formalism for the spei�-

ation of onurrent and distributed systems, whih properly generalizes Petri

nets. Along the years their truly onurrent behaviour has been deeply studied

and a onsolidated theory of onurreny is now available [Roz97,EKMR99℄. In

partiular, several lassial approahes to the semantis of Petri nets, like pro-

ess and unfolding semantis, have been extended to graph grammars (see, e.g.,

[CMR96,Rib96,BCM98a,BCM99℄).

Most of the existing semantis for graph grammars de�ne a (possibly onur-

rent) operational model of omputation, whih gives a onrete desription of the

behaviour of the system in terms of non-e�etive (e.g., in�nite, non-deidable)

?

Researh partially supported by the EC TMR Network GETGRATS (General The-

ory of Graph Transformation Systems), by the ESPRIT Working Group APPLI-

GRAPH (Appliations of Graph Transformation), and by the MURST projet

TOSCA (Teoria della Conorrenza, Linguaggi di Ordine Superiore e Strutture di

Tipi).

strutures. Thus they annot be used diretly to reason about the modelled sys-

tem. Indeed, these operational models are intended to represent the basis for the

de�nition of more abstrat semantis, whih take into aount only some aspets

of interest for the system at hand, disregarding inessential details. At this level

one an de�ne e�etive tehniques for heking the equivalene of systems with

respet to the seleted observations, for verifying if a system satis�es a given

property or for synthesizing a system satisfying a given property. Roughly, we

an distinguish two main approahes to system veri�ation based on abstrat

semantis. First, one an verify a system by heking its equivalene with a spe-

ial system whih is known to be \orret". For instane, the fat that a system

is seure with respet to external attaks an be heked by verifying that the

system in isolation is semantially equivalent to the system under a generi at-

tak. Alternatively one an develop a logi, adequate with respet to the abstrat

semantis, whih is interpreted over the lass of systems at hand. Then to verify

that a system satis�es a ertain property, expressed as a formula in the logi,

one heks if it is a model (in logial sense) for the formula, hene the name

model heking for this approah.

Some e�ort has been devoted to the development of logis suited to spe-

ify the dynamis of graph transformation systems, with speial interest in the

integration of graphial spei�ations and temporal logi onstraints (see, e.g.,

[HEWC97,He98,Ko99,GHK00℄), but the study of abstrat behavioural seman-

tis and of the orresponding logis has reeived little attention. Here we move

some steps in this diretion, introduing an abstrat semantis for graph gram-

mars based on the lassial history preserving bisimulation (HP-bisimulation, for

short) [RT88,DD90℄, a behavioural equivalene whih, di�erently from ordinary

bisimulation, takes into aount the onurreny properties of a system. Infor-

mally, two systems are HP-bisimilar if every event in the �rst one an be simu-

lated by an event in the seond one with an equivalent ausal history and vie

versa. History preserving bisimulation on ordinary P/T nets [RT88,BDKP91℄

relies on the notions of proess and deterministi prime event struture (pes)

assoiated to a proess. Roughly speaking, two nets N

0

and N

1

are HP-bisimilar

if for any proess �

0

of N

0

we an �nd a proess �

1

of N

1

suh that the asso-

iated deterministi pes's are isomorphi. Whenever �

0

an perform an ation

beoming a proess �

0

0

, also �

1

an perform the same ation beoming �

0

1

and

vie versa. Moreover the isomorphism between the pes's assoiated to �

0

and �

1

is required to be extensible to an isomorphism between the pes's assoiated to

�

0

0

and �

0

1

. Intuitively, history preserving bisimulation is more appropriate than

ordinary bisimulation whenever in a system we are interested not only in the

events whih might happen, but also in the dependeny relations between suh

events. For instane, imagine to have a system where a subset of ations is on-

sidered ritial and suppose that for seurity reasons ritial ations must not be

inuened by non-ritial ations. This property, whih an be seen as a form of

non-interferene [GM82℄, an be formalized by asking that ritial ations do not

ausally depend on non-ritial ations and it is invariant for transformations of

the system whih preserve HP-bisimilarity.

2

A basi soure of inspiration for our work is the lose relation existing between

graph grammars and Petri nets. The simple but ruial observation is that Petri

nets are essentially rewriting systems on multisets, i.e., the markings of the net,

whih an be seen, in turn, as disrete graphs labelled over the plaes of the

net. Hene graph grammars an be viewed as a generalization of Petri nets: they

allow to give a more strutured desription of the state in term of a proper

graph and to speify \ontextual" rewriting steps where part of the state is

preserved. In this respet graph grammars are loser to some generalizations of

nets in the literature, alled nets with read (test) ars or ontextual nets (see,

e.g., [JK95,MR95,Vog97℄), where transitions an be enrihed with a ontext, i.e.,

with the possibility of heking the presene of tokens in the plaes of the net,

without onsuming suh tokens.

Indeed, our study of HP-bisimulation for graph grammars is guided by the

work on ordinary Petri nets [MP97,Vog91℄, whih has been generalized to on-

textual nets in [BCM00b℄. Graph grammars ome equipped with a notion of

deterministi (graph) proess [CMR96,BCM98a℄ and with an event struture

model [BCM99,Bal00℄, and thus the notion of HP-bisimulation an be gen-

eralized to graph grammars. We show that HP-bisimulation is deidable for

�nite-state graph grammars, alled here, by analogy with Petri nets, n-safe

graph grammars. To this aim, as in [MP97,BCM00b℄, we resort to ausal au-

tomata [MP97℄, a variation of ordinary automata where states are sets of names

(or events) and transitions allow for the reation of new names and the deallo-

ation of old ones. A generalization of ausal automata, alled history-dependent

automata (HD-automata), has been proposed as a general framework to study

history-dependent formalisms, like CCS with ausal and loation semantis or

with value-passing, and the �-alulus with the ordinary, early or late, or non-

interleaving semantis [MP98,Pis99℄.

The (possibly in�nite) transition system of proesses of a graph grammar,

whih is used to de�ne HP-bisimulation, is translated to a ausal automaton

via a onstrution whih respets (preserves and reets) bisimilarity. The au-

tomaton is proved to be �nite exatly for �nite-state graph grammars. Thus

HP-bisimilarity of any two �nite-state graph grammars an be heked by ver-

ifying the bisimilarity of the orresponding automata. This an be done on-

retely by using the algorithm proposed in [MP97℄, whih after removing from

the states of the automaton the events whih are useless, i.e., never referened in

the future, translates the ausal automaton into an ordinary automaton. Then

the standard tehniques for ordinary transition systems an be used to hek

bisimilarity or to obtain a minimal realization. More reent works [Pis99,MP00℄

show that a minimal realization exists and an be onstruted in the lass of

ausal automata themselves (atually, in the mentioned papers, the general ase

of HD-automata is worked out and a suitable extension of HD-automata, the

so-alled automata with symmetries, must be introdued to get this result). As

it happens for ordinary automata, also a ausal automaton an be seen as a

oalgebra for a suitable funtor and the minimal realization arises as the image

in the �nal oalgebra of the given automaton.

3

It is worth mentioning that when onsidering formalisms more expressive

than ordinary nets, like nets with read or inhibitor ars, or graph grammars

themselves, the dependenies between events in a omputation beome more

omplex than ausality and onit. For instane, the possibility of speifying

\read-only" operations over the state leads to an asymmetri form of onit:

if an event e reads a resoure whih is onsumed by another event e

0

, then the

exeution of e

0

disables e, while the onverse does not hold, i.e., e an preede

e

0

in a omputation. Hene the ausal struture of a proess an be desribed

at various degrees of abstration. At a basi level it an be represented as a

deterministi pes, a labelled partial order whih desribes only the preedenes

between events, disregarding their origin. But we an also onsider �ner de-

sriptions in terms of event strutures whih \observe", for instane, new kind

of dependenies arising from the possibility of preserving part of the state in

a rewriting step or from the need of maintaining the integrity of its graphial

struture. In this paper we will onentrate on the basi ase only, just hinting

at the other possibilities.

The rest of the paper is strutured as follows. First in Setion 2 we present

the basis of graph grammars and the notion of (deterministi) graph proess.

In Setion 3 we introdue HP-bisimulation for graph grammars. In Setion 4

we review ausal automata and the orresponding notion of ausal bisimulation.

Then in Setion 5 we show how a (�nite-state) graph grammar an be mapped to

a (�nite) ausal automaton via a transformation whih respets HP-bisimilarity,

thus o�ering the possibility of deiding HP-bisimulation and of building a mini-

mal automaton for a given grammar up to HP-bisimilarity. Finally, in Setion 6

we draw some onlusions and diretions for future work. In partiular we hint

at the possibility of de�ning di�erent notions of HP-bisimulation whih arise by

onsidering �ner observations of the ausal history of events. Furthermore we

give some ideas about the logial ounterpart of history preserving bisimulation,

presenting a logi in the style of Hennessy-Milner whih an be shown to be

adequate.

2 Typed graph grammars and proesses

This setion briey introdues typed graph grammars [CMR96℄, a variation of

lassial DPO graph grammars [Ehr87,CMR

+

97℄ where the rewriting takes plae

on so-alled typed graphs, namely graphs labelled over a struture (the graph of

types) that is itself a graph. After some basi de�nitions and a disussion about

the relationship between graph grammars and (ontextual) Petri nets, we will

reall the notion of proess for a typed graph grammar [CMR96,BCM98a℄, whih

plays a basi role in the de�nition of history preserving bisimulation.

2.1 Typed graph grammars

Let Graph be the ategory of (direted, unlabelled) graphs and total graph

morphisms. For a graph G we will denote by N

G

and E

G

the (disjoint) sets of

4

nodes and edges of G, and by s

G

; t

G

: E

G

! N

G

its soure and target funtions.

Given a graph TG, a typed graph G over TG is a graph hGi, together with a

morphism t

G

: hGi ! TG. A morphism between TG-typed graphs f : G

1

! G

2

is a graph morphisms f : hG

1

i ! hG

2

i onsistent with the typing, i.e., suh

that t

G

1

= t

G

2

Æ f . A typed graph G is alled injetive if the typing morphism

t

G

is injetive. More generally, for a �xed n 2 N, the graph is alled n-injetive

if for any item x in TG, jt

�1

G

(x)j � n, namely if the number of instanes of

\resoures" of any type x is bounded by n. The ategory of TG-typed graphs

and typed graph morphisms is denoted by TG-Graph and an be synthetially

de�ned as the omma ategory (Graph # TG).

Fixed a graph TG of types, a (TG-typed graph) prodution (L

l

 K

r

! R) is

a pair of injetive typed graph morphisms l : K ! L and r : K ! R, where hLi,

hKi and hRi are �nite graphs. It is alled onsuming if morphism l : K ! L is

not surjetive. The typed graphs L, K, and R are alled the left-hand side, the

interfae, and the right-hand side of the prodution, respetively.

De�nition 1 (typed graph grammar). A (TG-typed) graph grammar G is a

tuple hTG;G

s

; P; �i, where G

s

is the start (typed, �nite) graph, P is a �nite set

of prodution names, and � is a funtion whih assoiates a graph prodution to

eah prodution name in P . A labelled graph grammar is a pair hG; �

G

i, where

G is a graph grammar and �

G

: P ! At is a funtion from P to a �xed set of

ation names At.

We will denote by Elem(G) the set N

TG

[E

TG

[P . Furthermore, we will assume

that for eah prodution name q 2 P the orresponding prodution �(q) is

L

q

l

q

 K

q

r

q

! R

q

. The omponents of a graph grammar G will be denoted by TG,

G

s

, P and �, possibly with subsripts.

Sine in this paper we work only with typed notions, we will usually omit

the quali�ation \typed", and, sometimes, we will not indiate expliitly the

typing morphisms. Moreover, we will onsider only onsuming grammars, namely

grammars where all produtions are onsuming: this orresponds, in the theory

of Petri nets, to the usual requirement that transitions must have non-empty

pre-set.

De�nition 2 (diret derivation). Let G be a graph grammar. Given a typed

graph G, a prodution q 2 P , and a math (i.e., a graph morphism) g : L

q

! G,

a diret derivation Æ from G to H using q (based on g) exists, written Æ : G)

q

H

(or Æ : G)

G

H), if and only if the diagram

L

q

q :

g

K

q

l

q

r

q

k

R

q

h

G D

b d

H

an be onstruted, where both squares have to be pushouts in TG-Graph. For

a labelled grammar, if �

G

(q) = a, in this situation we write Æ : G)

a

q

H (or

Æ : G)

a

G

H).

5

A derivation in G is a sequene of diret derivations (in G) beginning from

the start graph G

s

.

Roughly speaking, the rewriting step removes from the graph G the items of the

left-hand side whih are not in the image of the interfae, namely L

q

� l

q

(K

q

),

produing in this way the graph D. Then the items in the right-hand side whih

are not in the image of the interfae, namely R

q

� r

q

(K

q

), are added to D,

obtaining the �nal graph H . Notie that the interfae graph K

q

(ommon part

of L

q

and R

q

) spei�es both what is preserved and how the added subgraph

has to be onneted to the remaining part. Given a math g : L

q

! G as in

the above diagram, the pushout omplement of l

q

and g (i.e., a graph D with

morphisms k and b suh that the left square is a pushout) exists if and only if

the gluing ondition is satis�ed. This onsists of two parts:

{ identi�ation ondition, requiring that if two distint nodes or edges of L

q

are mapped by g to the same image, then both must be in the image of l

q

;

{ dangling ondition, stating that no edge in G�g(L

q

) should be inident to a

node in g(L

q

� l

q

(K

q

)) (beause otherwise the appliation of the prodution

would leave suh an edge \dangling").

2.2 Relation with Petri nets.

Many de�nitions and onstrutions in this paper are better understood keeping

in mind the relation between Petri nets and DPO graph grammars. The basi

observation (whih belongs to the folklore, see, e.g., [Cor96℄) is that a P/T Petri

net is essentially a rewriting system on multisets, and that, given a set A, a

multiset of A an be represented as a disrete graph typed over A. In this view

a P/T net an be seen as a graph grammar ating on disrete graphs typed over

the set of plaes, the produtions being (some enoding of) the net transitions:

a marking is represented by a set of nodes (tokens) labelled by the plae where

they are, and, for example, the Petri net transition t in the top part of Fig. 1 is

represented by the graph prodution depited aside. Notie that the interfae is

empty sine nothing is expliitly preserved by a net transition. It is not diÆult

to show that this enoding satis�es the properties one would expet, namely

that there is a preise orrespondene between transition �rings in the original

net and derivations in the orresponding grammar.

The onsidered enoding of nets into grammars enlightens the dimensions

in whih graph grammars properly extend nets. First of all grammars allow for

a more strutured desription of state, that is a general graph rather than a

multiset (disrete graph). Furthermore, graph grammars allow for produtions

where the interfae graph may not be empty, thus speifying a \ontext" on-

sisting of items that have to be present for the produtions to be applied, but

whih are not a�eted by the appliation. The ontext an be interpreted as a

part of the state whih is aessed in a \read-only" way by the rewriting step,

and, onsistently with this view, several rewriting steps an be applied in parallel

sharing (part of) the ontext. In this respet, graph grammars are loser to some

6

s

0

2

s

1

1

t

11

s

2

s

3

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

s

0

s

0

s

1

s

2

s

3

s

0

2

s

1

1

t

0

11

1

s

s

2

s

3

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

s

1

s s

2

s

3

sss

0

s

0

Fig. 1. Petri net transitions and orresponding DPO produtions.

generalizations of Petri nets in the literature, alled nets with read (test) ars or

ontextual nets (see, e.g., [JK95,MR95,Vog97℄), whih generalize lassial nets

by adding the possibility of heking for the presene of tokens whih are not

onsumed. Conretely, a transition of a ontextual net, besides the pre-set and

post-set, has also a ontext speifying tokens whih must be present to enable

the transitions, but whih are not a�eted by the �ring. For instane, in the

bottom left part of Fig. 1, plae s is a ontext for transition t

0

, and hene t

0

, to

be enabled, requires a token in s whih is not onsumed. It is lear that the on-

text of a ontextual net transition losely orresponds to the interfae graph of a

DPO prodution, so that ontextual nets an be seen as speial graph grammars

ating on disrete graphs, but with produtions whih an have a non-empty

interfae (see the enoding of transition t

0

as a DPO graph prodution in the

bottom right part of Fig. 1).

2.3 Proesses of typed graph grammars

Graph proesses [CMR96,BCM98a℄ arise from the idea of equipping graph gram-

mars with a semantis whih on the one hand expliitly represents events and

relationships among them, and on the other hand uses graph grammars them-

selves as semanti domain. Analogously to what happens for Petri nets, a graph

proess of a graph grammar G is de�ned as an \ourrene grammar" O, i.e., a

grammar satisfying suitable ayliity and onit freeness onstraints, equipped

with a mapping fromO to G. This mapping is used to assoiate to the derivations

in O orresponding derivations in G. The basi property of a graph proess is

that the derivations in G whih are in the range of suh mapping onstitute a full

lass of shift-equivalent derivations, i.e., of derivations whih di�er only for the

order of \independent" rewriting steps. Therefore the proess an be regarded as

an abstrat representation of suh a lass and plays a role similar to a anonial

derivation [Kre77℄.

7

It is worth remarking that in the de�nitions of ourrene grammar and of

graph proess, later in this setion, we will slightly depart from the original

proposal in [CMR96℄, as we will use expliitly the relation of asymmetri on-

it (as we already did, e.g., in [BCM99℄). A �rst step towards the de�nition

of (deterministi) ourrene grammar is a suitable notion of safety for gram-

mars [CMR96℄, generalizing that for P/T nets. More generally, we extend to

graph grammars the notion of n-safety, whih amounts to the property of being

�nite-state.

De�nition 3 (safe grammar). For a �xed n 2 N, we say that a graph gram-

mar G is n-safe if, for all H suh that G

s

)

�

H, H is n-injetive. A 1-safe

grammar will be simply alled safe.

The de�nition an be understood by thinking of nodes and edges of the type

graph as a generalization of plaes in Petri nets. In this view the number of

di�erent items of a graph whih are typed on a given item of the type graph

orresponds to the number of tokens ontained in a plae, and thus the ondition

of (n-) safety for a Petri net marking, whih requires eah plae to ontain at

most 1 (n) tokens, is generalized to typed graphs by the (n-) injetivity of the

typing morphism. In the following, to mean that a graph grammar G is n-safe

for some n 2 N we will simply say that G is n-safe.

In partiular, safe graph grammars an be given a visual net-like representa-

tion, where the items of the type graph and the produtions play, respetively,

the role of plaes and transitions. In fat, if G is a safe graph grammar, then

eah graph hhGi; t

G

i reahable in G an be identi�ed with the subgraph t

G

(hGi)

of the type graph TG and thus it an be represented by suitably deorating the

nodes and edges of the type graph. Conretely, a node is drawn as a �lled irle,

if it belongs to t

G

(hGi) and as an empty irle, otherwise, while an edge is drawn

as a plain (bold) line if it belongs to t

G

(hGi) and as a dotted line otherwise. For

instane, in the right part of Fig. 2, forgetting about the produtions q

i

and the

orresponding onnetions, one an see a representation of the start graph G

s

of the graph grammar presented in the left part: nodes B, C, D are �lled sine

they belong to G

s

, while node A is empty and edge L is dotted sine they are

not in G

s

.

With this identi�ation, in eah derivation of a safe grammar beginning from

the start graph a prodution q an be applied only to the subgraph of the type

graph whih is the image via the typing morphism of its left-hand side, i.e., to

t

L

q

(hL

q

i). Therefore aording to its typing, we an think that a prodution

produes, preserves and onsumes items of the type graph. Using a net-like lan-

guage, we speak of pre-set

�

q, ontext q and post-set q

�

of a prodution q. This

is expressed by representing produtions as arrow-shaped boxes, onneted to

the onsumed and produed resoures by inoming and outgoing arrows, respe-

tively, and to the preserved resoures by undireted lines. Fig. 2 presents a safe

graph grammar and its net-like pitorial representation. To have a lighter pre-

sentation in the examples, we assume that the ation label of eah prodution q

in grammar G is the name q of the prodution itself.

8

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

TG =

A B

L

A

B

q

1

B C B

L

L

q

2

BBA B C

q

3

DB B B

q

4

B

B

G

s

=

DC

C D

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

q

1

q

3

q

4

q

2

D

A

C

L

B

Fig. 2. A grammar G and its net-like representation.

The notions of pre-set, post-set and ontext of a prodution have a lear inter-

pretation only for safe grammars. However for tehnial reasons it is preferable

to de�ne them for general graph grammars.

De�nition 4 (pre-set, post-set, ontext). Let G be a graph grammar. For

any q 2 P we de�ne

�

q = t

L

q

(hL

q

i � l

q

(hK

q

i)) q

�

= t

R

q

(hR

q

i � r

q

(hK

q

i))

q = t

K

q

(hK

q

i)

seen as sets of nodes and edges, and we say that q onsumes, produes and

preserves items in

�

q, q

�

and q, respetively. Similarly for a node or an edge x

in TG we write

�

x, x and x

�

to denote the sets of produtions whih produe,

preserve and onsume x, respetively.

For instane, for grammar G in Fig. 2, the pre-set, ontext and post-set of pro-

dution q

1

are

�

q

1

= fCg, q

1

= fBg and q

1

�

= fA;Lg, while for the node B,

�

B = ;, B = fq

1

; q

2

; q

3

g and B

�

= fq

4

g.

We next introdue the relations of ausality and asymmetri onit, repre-

senting the dependenies between events in a graph grammar.

De�nition 5 (ausal relation). The ausal relation of a grammar G is the

binary relation < over Elem(G) de�ned as the least transitive relation satisfying:

for any node or edge x in the type graph TG and for produtions q; q

0

2 P

1. if x 2

�

q then x < q;

2. if x 2 q

�

then q < x;

3. if q

�

\ q

0

6= ; then q < q

0

.

As usual � denotes the reexive losure of <. Moreover, for x 2 Elem(G) we

write bx for the set of auses of x in P , namely fq 2 P j q � xg. We will

denote by Min(G) and Max (G) the sets of items of TG whih are minimal and

maximal, resp., with respet to �.

9

The �rst two lauses of the de�nition of relation < are obvious. The third one

formalizes the fat that if an item is generated by q and preserved by q

0

, then

q

0

, to be applied, requires that q had already been applied.

Notie that the fat that an item is preserved by q and onsumed by q

0

, i.e.,

q \

�

q

0

6= ;, does not imply q < q

0

. Atually, sine q must preede q

0

in any

omputation where both appear, in suh omputations q ats as a ause of q

0

.

However, di�erently from a true ause, q is not neessary for q

0

to be applied.

Therefore we an think of the relation between the two produtions as a weak

form of ausal dependeny. Equivalently, we an observe that the appliation of

q

0

prevents q to be applied, so that q an never follow q

0

in a derivation. But

the onverse is not true, sine q an be applied before q

0

. Thus this situation

an also be interpreted naturally as an asymmetri onit between the two

produtions (see, e.g., [BCM99℄). For instane, in the grammar G of Fig. 2 there

is an asymmetri onit between produtions q

3

and q

4

, sine B 2 q

3

\

�

q

4

.

De�nition 6 (asymmetri onit). The asymmetri onit relation of a

grammar G is the binary relation % over the set P of produtions, de�ned by:

1. if q \

�

q

0

6= ; then q % q

0

;

2. if

�

q \

�

q

0

6= ; and q 6= q

0

then q % q

0

;

3. if q < q

0

then q % q

0

.

Point (1) has been disussed above. By point (2), the symmetri onit arising

when two produtions q and q

0

onsume a ommon resoure is represented as

an asymmetri onit in both diretions q % q

0

and q

0

% q. Finally, point (3)

formalizes the intuition that asymmetri onit an be seen as a weak form of

ausality and thus it is implied by ausality.

A (deterministi) ourrene grammar is now de�ned as a speial grammar

satisfying suitable requirements of ayliity and absene of onits, whih will

allow to view its produtions as single event ourrenes.

De�nition 7 ((deterministi) ourrene grammar). A (deterministi)

ourrene grammar is a graph grammar O = hTG;G

s

; P; �i suh that

1. eah edge or node x in TG is reated by at most one prodution in P , namely

j

�

xj � 1;

2. %

O

is ayli and �nitary; thus (%

O

)

�

and �

O

are �nitary partial orders;

1

3. Min(O) and Max (O), with the graphial struture inherited from TG, are

well-de�ned subgraphs of TG; furthermore the start graph G

s

oinides with

Min(O) (typed by the inlusion);

4. for eah prodution q : L

q

l

q

 K

q

r

q

! R

q

, the typing t

L

q

is injetive on

the \onsumed part" hL

q

i � l

q

(hK

q

i), and similarly t

R

q

is injetive on the

\produed part" hR

q

i � r

q

(hK

q

i).

1

A relation r � X � X is alled �nitary if for any x 2 X the set fy 2 X : y r xg is

�nite. Furthermore r

�

denotes the reexive and transitive losure of a relation r.

10

Intuitively, onditions (1){(4) reast in the framework of graph grammars the

analogous onditions of ourrene ontextual nets [BCM98b,VSY98℄. In parti-

ular the ayliity of% orresponds to the requirement of absene of onits in

ourrene Petri nets. Condition (4) is losely related to safety and requires that

eah prodution onsumes and produes items with \multipliity" one. Observe

that, together with ayliity of%, it disallows the presene of some produtions

whih surely ould never be applied, beause they fail to satisfy the identi�ation

ondition with respet to the typing morphism.

Sine the start graph of an ourrene grammar O is determined by Min(O),

we often do not mention it expliitly. Observe that, by the de�ning onditions,

eah ourrene grammar is safe.

A (deterministi) proess for a graph grammar, analogously to what happens

for ordinary and ontextual nets, is an ourrene grammar endowed with a

mapping to the original grammar and it an be seen as a representative of a set

of shift equivalent derivations of G.

De�nition 8 (graph proess). Let G = hTG;G

s

; P; �i be a typed graph gram-

mar. A (�nite marked) proess for G is a mapping ' : O

'

! G, suh that

O

'

= hTG

'

; P

'

; �

'

i is an ourrene grammar and ' = h'

T

; '

P

; �

'

i, where

1. '

T

: TG

'

! TG is a graph morphism;

2. '

P

: P

'

! P is a funtion mapping eah prodution q

0

: (L

0

 K

0

! R

0

) in

P

'

to an isomorphi prodution q = '

P

(q

0

) : (L K ! R) in P and

3. the �

'

omponent assoiates to eah prodution q

0

2 P

'

a triple of isomor-

phisms �

'

(q

0

) = h�

L

'

(q

0

) : L! L

0

; �

K

'

(q

0

) : K ! K

0

; �

R

'

(q

0

) : R! R

0

i, making

the diagram in the left part of Fig. 3 ommute. Furthermore it inludes an

isomorphism �

s

'

: hG

s

i ! hG

s

'

i, whih makes the diagram in the right part

of Fig. 3 ommute.

We denote by Min(') and Max (') the graphs Min(O) and Max (O). The same

graphs typed over TG by the restritions of '

T

are denoted by

�

' and '

�

and

alled, respetively, the soure and target graphs of the proess (observe that

�

' ' G

s

).

We all initial proess of G any proess ' with an empty set of produtions

(and thus with TG

'

' hG

s

i).

For instane, Fig. 4 presents several proesses of grammar G in Fig. 2 (for the

moment ignore the fat that proesses are partly shaded). For eah proess we

only give the net-like representation of the underlying ourrene grammar. The

mapping over the original grammar is impliitly represented by the labelling.

It is worth observing, that beause of the dangling ondition, a prodution q

whih onsumes a node n an be applied only if there are no edges with soure

or target in n whih remain dangling after the appliation of q. In other words,

the presene of an edge e with soure or target in n suh that e 62

�

q inhibits

the appliation of q (in [Bal00℄ this observation represents the basis to establish

a lose orrespondene between graph grammars and nets with inhibitor ars).

For example, in the grammar G of Fig. 2, edge L inhibits prodution q

4

sine

11

hR

0

i

t

R

0

hRi

�

R

'

(q

1

)

t

R

q

0

hK

0

i

t

K

0

hKi

�

K

'

(q

0

)

t

K

'

P

(q

0

) = q

hL

0

i

t

L

0

hLi

�

L

'

(q

0

)

t

L

TG

'

'

T

TG

hMin(')i hG

s

i

�

s

'

t

G

s

TG

'

'

T

TG

Fig. 3. Graph proesses.

q

4

onsumes node B whih is the target of L. Observe that produtions q

1

and

q

2

, respetively, produe and onsume suh an edge, and therefore, one q

1

has

been applied, q

4

an our only after the appliation of q

2

. That is, in a proess

where all q

1

, q

2

and q

4

are applied, they must our exatly in this order. Indeed,

q

1

and q

2

, to at on edge L must produe or preserve its target node B (in this

ase they both preserve B) and thus, by de�nition of asymmetri onit, we

have q

1

% q

4

and q

2

% q

4

. Hene in a deterministi omputation where q

1

, q

2

and q

4

our, the relation% already imposes the orret order of appliation for

them. This holds in general: there is no need to onsider expliitly the inhibiting

e�ets due to the dangling ondition in a graph proess, as they are subsumed

by the asymmetri onit relation. Note that this does not hold in the ase of

inhibitor nets, for whih the de�nition of proess beomes more involved [Bal00℄.

3 History preserving bisimulation on graph grammars

As mentioned in the introdution, the theory of onurreny for graph grammars

has been deeply studied and a number of onurrent operational models for graph

grammars has been proposed in the literature. However, until now the problem

of de�ning suitable abstrat behavioural semantis for graph grammars has been

given little attention.

Observe that the notions of (labelled) graph grammar and of diret derivation

are enough to de�ne ordinary bisimulation over graph grammars. Intuitively, two

systems are bisimilar if every ation of the �rst one an be simulated by an ation

of the seond one, and vie versa. Formally, given two graph grammars G

1

and

G

2

, a simulation of G

1

into G

2

is a relation R between (abstrat) graphs typed

over TG

1

and TG

2

, respetively, suh that if G

1

RG

2

and G

1

)

a

G

1

H

1

then there

exists H

2

suh that G

2

)

a

G

2

H

2

and H

1

RH

2

. The relation R is a bisimulation

if both R and R

�1

are simulations, and G

1

and G

2

are bisimilar if their initial

graphs are related by a bisimulation.

Ordinary bisimulation is an \interleaving" equivalene, in the sense that it

is not able to apture the onurreny properties of a system. For instane, it

12

equates the parallel omposition of two systems and the nondeterministi hoie

of their possible sequentializations. Here we are interested in the so-alled history

preserving bisimulation, a behavioural equivalene whih, instead, takes into a-

ount the dependenies among events. Roughly speaking, it equates two systems

if eah ation of the �rst one an be simulated by an ation of the seond one with

an equivalent history, and vie versa. In this setion, relying on the work already

developed on ontextual nets [BCM00a℄, the notion of graph proess is taken as

a basis to extend this idea to the ase of graph grammars. As a desription of the

\onurrent struture" of a omputation we onsider the (labelled) prime event

struture (pes) underlying a proess, i.e., a partially ordered struture where

the elements represent events (ourrenes of produtions) and the partial or-

der represents the dependenies between events. This amounts to observing the

preedenes between events, without taking are of their origin. We mentioned

that suh preedenes an arise both as ordinary ausal dependenies, indued

by the ow of information, and as dependenies indued by read-only operations

and inhibiting e�ets related to the dangling ondition. Other �ner observations,

taking into aount the diverse nature of these preedenes, are oneivable and

will be disussed in the onlusions.

The basi ingredient for the de�nition of history preserving bisimulation is a

transition system, assoiated to eah graph grammar, where states are proesses.

The initial state is the empty proess, orresponding to the start graph, and any

proess an be extended by the \appliation" of any prodution whih is enabled

in its �nal (maximal) graph.

De�nition 9 (proess moves). Given two proesses ' and '

0

of a labeled

graph grammar G, we write '

a

e

'

0

, saying that ' moves to '

0

performing

ation a, if

{ P

'

0

= P

'

[feg, with e 62 P

'

and �

G

('

0

P

(e)) = a;

{ TG

'

is a subgraph of TG

'

0

;

{

�

e and e are inluded in Max (');

{ '

T

, '

P

, �

'

and �

'

and are the restritions to O

'

of the omponents of '

0

.

Fig. 4 presents a sequene of proesses '

i

for the grammar G of Fig. 2, suh

that eah '

i

moves to '

i+1

(the proess '

3

is not represented expliitly). For

instane '

0

q

1

e

1

'

1

.

To eah proess ' of a graph grammar G we an naturally assoiate a (de-

terministi labelled) pes where events are the produtions of the underlying

ourrene graph grammar, ausality is the transitive losure of the asymmetri

onit relation and eah event is labelled by the ation label of the orrespond-

ing prodution in G.

De�nition 10 (prime event struture for proesses). Let ' be a proess

of a labelled graph grammar G. The pes assoiated to ' is de�ned as:

ev (') = hP

'

; (%

'

)

�

; �

G

Æ '

P

i.

13

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

D

C

B

'

0

��
��
��

��
��
��

��
��
��

��
��
��

q

1

D

L

C

A

B

'

1

e

1

��
��
��

��
��
��

q

1

q

3

D

L

C

A

B

'

2

e

1

e

2

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

q

1

q

3

q

2

q

1

'

4

D

L

L

C

A

C

A

B

e

2

e

1

e

3

e

4

��
��
��
��

��
��
��
��

���
���
���

���
���
���

e

2

'

5

q

2

e

1

e

3

q

1

e

4

q

3

e

5

q

1

D

L

L

C

A

C

A

C

B

q

3

���
���
���

���
���
���

q

1

q

2

q

1

q

2

q

4

�

6

D

L

L

C

A

C

A

C

B

e

2

q

3

e

3

e

1

e

5

e

6

e

4

Fig. 4. A sequene of proess moves for grammar G in Fig. 2, starting from an initial

proess. For any proess the non-shaded part represents the orresponding partial

proess.

14

Based on the notions of proess and of event struture assoiated to a proess,

history preserving (HP-) bisimulation is readily de�ned.

De�nition 11 (HP-bisimulation). Let G

1

and G

2

be labelled graph grammars.

An HP-simulationR of G

1

in G

2

is a set of triples h'

1

; f; '

2

i where '

i

is a proess

of G

i

for i 2 f1; 2g, and f : ev ('

1

) ! ev('

2

) is an isomorphism of pes's, suh

that

1. h'

0

(G

1

); ;; '

0

(G

2

)i 2 R, with '

0

(G

i

) initial proess of G

i

for i 2 f1; 2g;

2. h'

1

; f; '

2

i 2 R^'

1

a

e

1

'

0

1

) '

2

a

e

2

'

0

2

^ h'

0

1

; f

0

; '

0

2

i 2 R^ f

0

jev('

1

)

= f .

An HP-bisimulation between G

1

and G

2

is a set of triples R suh that R

and R

�1

= fh'

2

; f

�1

; '

1

i : h'

1

; f; '

2

i 2 Rg are HP-simulations. The labelled

graph grammars G

1

and G

2

are HP-bisimilar, written G

1

�

hp

G

2

, if there is an

HP-bisimulation R between G

1

and G

2

.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

PG

2

= P

P P M

G

1

= P

M

out

send

Fig. 5. Modelling the transmission of messages.

Both ordinary and history preserving bisimulation represent an abstration of

the onrete operational semantis based on the shift equivalene, in the sense

that any two graph grammars with the same onurrent model of omputa-

tion [Roz97℄ are bisimilar and HP-bisimilar.

Conerning the relationship between ordinary bisimulation and history pre-

serving bisimulation over graph grammars, quite obviously, being based on a

more detailed observation, the latter is �ner than the former. To have a better

understanding of the di�erene between the two semantis onsider the pro-

dutions in Fig. 5, whih are intended to model the generation and delivery of

messages in a single node of a network. Edges labelled by P andM represent pro-

esses and messages, respetively. Rule out represents the generation of a message

by a proess, while rule send represents the delivery of the message: sine we on-

sider a single node of the newtwork the message whih is sent simply disappears.

This minimal subsystem is only aimed at illustrating some onepts in a setting

15

as simple as possible: to make the model more realisti one ould make expliit

the reeption of messages, the entire network ould be represented as a graph

and new rules ould be added to represent message delivery over the network.

Let G

1

and G

2

be the graph grammars with rules out and send, and with initial

graph G

1

and G

2

, respetively. It is easy to see that G

1

and G

2

are bisimilar, but

not HP-bisimilar. In fat, eah out operation performed by a proess ausally

depends on the previous one and eah send operation ausally depends on the

out operation whih generated the orresponding message. Therefore in G

1

there

is a single hain of ausally dependent out operations, while in G

2

there an be

two onurrent out operations, as shown by the orresponding event strutures

in Fig. 6.

It is worth observing that extending the grammars with an expliit rule

modelling the reeive operation, the (deterministi omponents of the) event

strutures would losely orrespond to Message Sequene Charts [RGG96℄, a

graphial and textual language for the desription and spei�ation of the inter-

ations between system omponents.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(a)

send

out

out

out

out

send

send

send

out

send

out

out

out

send

send

send

out

send

out

out

out

send

send

send

(b)

Fig. 6. The event strutures orresponding to the graph grammars (a) G

1

and (b) G

2

.

4 Causal automata

In this setion we review ausal automata, a generalization of ordinary automata

introdued in [MP97℄ as an appropriate model for history dependent formalisms

(see also [MP98,Pis99℄, where more general models, alled HD-automata, are

presented). Here ausal automata will be used as an abstrat framework where

HP-bisimulation over graph grammars an be studied. In partiular the deid-

ability of HP-bisimulation for �nite-state graph grammars will be proved by

showing that the problem an be redued to the bisimilarity of �nite ausal

automata.

Causal automata extend ordinary automata by allowing sets of names to

appear expliitly in the states and labels of the automata. The names are loal,

16

namely they do not have a global identity, and the orrespondene between

the names of the soure and those of the target states of eah transition is

spei�ed expliitly. This allows for a ompat representation of systems sine

states di�ering only for the onrete identity of the names an be identi�ed.

Moreover ausal automata provide a mehanism for the generation of new names:

the problem of hoosing a fresh name disappears in this formalism where a new

name is simply a name whih does not orrespond to any name in the soure

state. In the spei� ase of Petri nets and graph grammars, names are identities

of transitions in a proess (events) and the orrespondene between names allows

to represent ausal dependenies.

De�nition 12 (ausal automaton). Let N be a �xed in�nite ountable set of

names (event names) and let At be a �xed set of labels. A ausal automaton is

a tuple A = hQ;n; 7�!; q

0

i, where

{ Q is the set of states;

{ n : Q! P

�n

(N) is a funtion assoiating to eah state a �nite set of names;

{ 7�! is a set of transitions, eah of the form q

a

M

�

q

0

, with

� q, q

0

the soure and target states;

� a 2 At the label;

� M � n(q) the set of dependenies of the transition;

� � : n(q

0

) ,! n(q) [f?g the injetive inverse renaming funtion;

{ q

0

2 Q is the initial state; it is required that n(q

0

) = ;.

For eah state q 2 Q the set of names n(q) is used to represent the past events

whih an (but not neessarily will) be referened by future transitions. Conep-

tually, eah transition q

a

M

�

q

0

depends on the past events mentioned in M .

Due to the loal sope of names, the funtion � : n(q

0

) ,! n(q) [f?g is needed

to relate the names of the target state to those of the soure. The event mapped

to ? (if any) represents the new event generated by the onsidered transition.

In the following the omponents of a ausal automaton will be often denoted by

using the name of the automaton as subsript.

The notion of bisimulation on ausal automata (CA-bisimulation) takes into

aount the fat that a state has attahed a set of loal names. Hene a bisimu-

lation not only relates states, but also the orresponding sets of loal names.

De�nition 13 (CA-bisimulation). Let A and B be two ausal automata. A

CA-simulation R of A in B is a set of triples hq; Æ; pi, where q 2 Q

A

, p 2 Q

B

and Æ is a partial injetive funtion from n

A

(q) to n

B

(p), suh that

1. hq

0

A

; ;; q

0

B

i 2 R;

2. if hq; Æ; pi 2 R and q

a

M

�

q

0

in A then

{ p

a

Æ(M)

�

p

0

in B for some p

0

and

17

{ hq

0

; Æ

0

; p

0

i 2 R for some Æ

0

suh that Æ

?

Æ � = � Æ Æ

0

, where Æ

?

is de�ned

as Æ [f(?; ?)g (see the diagram below).

n

A

(q) [f?g

Æ

?

n

B

(p) [f?g

n

A

(q

0

)

�

Æ

0

n

B

(p

0

)

�

A CA-bisimulation between A and B is a set of triples R suh that R and

R

�1

= fhp; Æ

�1

; qi : hq; Æ; pi 2 Rg are CA-simulations. The automata A and B

are CA-bisimilar, written A �

a

B, if there exists a bisimulation R between A

and B.

In [MP97℄ an algorithm has been proposed for heking the CA-bisimilarity

of (�nite) ausal automata. Given a ausal automaton A, �rst the \useless"

names, i.e., names never referened by future transitions, are removed from the

states of the automaton. For instane, in the ase of Petri nets, the useless

names are the events that belong to a state beause they have generated a

token whih still exists, but whih is never used later by any other event. Then

the basi step of the algorithm onstruts an ordinary labelled transition system

Unf (A), alled the unfolding of A, suh that A �

a

B i� the assoiated transition

systems Unf (A) and Unf (B) are bisimilar. Finally, standard algorithms (e.g., a

partition/re�nement algorithm) an be used to verify bisimilarity on the ordinary

transition systems or to obtain a minimal equivalent transition system.

As mentioned in the introdution, some more reent works [Pis99,MP00℄

show that, onsidering a generalization of the model, the so-alled automata with

symmetries, a minimal realization exists and an be onstruted in the lass of

ausal (or, more generally, HD) automata themselves. A ausal automaton an

be seen as a oalgebra of a suitable funtor and the minimal realization arises

as the image in the �nal oalgebra of the given automaton.

Abstration homomorphisms [CFM83,Cas87℄, whih are also alled zig-zag

morphisms [vB84℄ or transition preserving homomorphisms [FM90℄, are de�ned

in the setting of ordinary automata as morphisms whih \preserve" and \reet"

transitions. The existene of an abstration homomorphism ensures that the

soure and target automata are bisimilar. The next de�nition generalizes this

idea to ausal automata.

De�nition 14 (abstration homomorphism). Let A and B be ausal au-

tomata. An abstration homomorphism h : A ! B is a pair h = hh; fh

q

g

q2Q

A

i

where h : Q

A

! Q

B

is a funtion and for all q 2 Q

A

, h

q

: n

B

(h(q)) ! n

A

(q) is

an injetive funtion, suh that h(q

0

A

) = q

0

B

and

{ if q

a

M

�

q

0

in A then h(q)

a

h

�1

q

(M)

�

h(q

0

) in B, with � Æ h

q

0

= h

?

q

Æ � (see

Fig. 7.(a));

{ if h(q)

a

M

�

p

0

in B then q

a

h

q

(M)

�

q

0

in A for some q

0

, with h(q

0

) = p

0

and

� Æ h

q

0

= h

?

q

Æ � (see Fig. 7.(b)).

18

n

A

(q) [f?g n

B

(h(q)) [f?g

h

?

q

n

A

(q

0

)

�

n

B

(h(q

0

))

h

q

0

�

n

A

(q) [f?g n

B

(h(q)) [f?g

h

?

q

n

A

(q

0

)

�

n

B

(p

0

)

h

q

0

�

(a) (b)

Fig. 7. Diagrams for abstration homomorphisms.

Intuitively, via an abstration homomorphism h : A ! B several states of A

an ollapse into a single state of B, in a way that respets the behaviour and

the naming. In partiular, observe that for any state q 2 Q

A

, the funtion h

q

maps the names of h(q) (in B) into the names of q (in A). The idea is that the

names of q whih are not in the image of h

q

an be safely removed, obtaining

an equivalent system, namely, in a sense, they are \useless". Indeed, also in this

setting, the existene of an abstration homomorphism h : A ! B is suÆient

to onlude the bisimilarity of A and B.

Lemma 15. Let A and B be ausal automata. If there exists an abstration

homomorphism h : A ! B then A �

a

B.

It is worth observing that, as for ordinary automata, the above lemma does not

provide a neessary ondition. In [MP98℄, following the approah of [JNW96℄,

abstration homomorphisms have been desribed as open maps in a ategory of

ausal automata and it has been shown that two ausal automata are

CA-bisimilar if and only if they are related by a span of open maps.

5 Deiding HP-bisimulation on graph grammars

In this setion we show that it is possible to assoiate to any graph grammar G

a ausal automaton A

hp

(G), via a onstrution whih respets HP-bisimulation,

i.e., suh that two graph grammars G

1

and G

2

are HP-bisimilar if and only

if A

hp

(G

1

) and A

hp

(G

2

) are CA-bisimilar. Furthermore, for �nite-state graph

grammars, the orresponding automaton is proved to be �nite and thus the

general algorithms for ausal automata mentioned in Setion 4 an be used to

hek the bisimilarity of graph grammars and to onstrut a minimal realization.

First, note that, as in the ase of Petri nets, the de�nition of HP-bisimulation

on graph grammars relies on the transition system of proesses and proess

moves, whih is in�nite for any non-trivial system exhibiting a yli behaviour.

To redue it to a �nite ausal automaton, or, in general, to a �nite transition

system, at least in the ase of �nite-state systems, the leading idea, already

present in [DD90℄, is that not all the information arried by a proess is relevant

19

for deiding HP-bisimulation. Hene proesses may be replaed by more ompat

strutures where part of the past history is disarded.

For ordinary nets, as observed in [Vog91,MP97℄, one an restrit the attention

only to the set of events whih produed at least one token in the urrent state

and to the ausal ordering among them. In the ase of ontextual nets one must

keep information not only about the events whih produed a token in the urrent

state (\produers"), but also about the events whih read a token in the urrent

state (\readers"). Fortunately, among the readers, whih an be unbounded even

for a safe net, only the maximal ones play a signi�ant role, while the others an

be safely disarded. This allows to obtain a �nite desription of the transition

system of proesses for �nite-state ontextual nets [BCM00b℄.

We will show that the onstrution proposed for ontextual nets an be gen-

eralized to graph grammars. This an be better understood by realling that, as

already observed, for a deterministi omputation of a graph grammar the asym-

metri onits indued by the possibility of expressing \ontextual" rewritings

(read operations) play a signi�ant role in the ordering of events, while the in-

hibiting e�ets between prodution ourrenes related to the dangling ondition

an be disregarded sine they are subsumed by suh asymmetri onits.

The next de�nition formalizes the notions of produer and of (maximal)

reader for a proess of a graph grammar.

De�nition 16 (produers and (maximal) readers). Given a proess ' of

a graph grammar G, we de�ne

{ the set of produers

p(') = fq 2 P

'

: q

�

\Max (') 6= ;g;

{ the set of readers

r(') = fq 2 P

'

: q \Max (') 6= ;g;

{ the set of maximal readers

mr(') = fq 2 r(') : 9x 2 q \Max ('): q is %

'

�maximal in xg.

For instane, for proess '

5

of Fig. 4, the set of produers is p('

5

) = fe

5

g,

the set of readers is r('

5

) = fe

1

; e

2

; e

3

; e

4

; e

5

g, while the maximal readers are

mr('

5

) = fe

2

; e

5

g.

A ruial observation is that for any n-safe graph grammar G the sets p(')

and mr('), with ' ranging over the proesses of G are bounded. In the sequel,

given a graph G we will denote by jGj the ardinality of the (disjoint) union of

the node and edge sets of G. More generally, with abuse of notation, a graph will

be sometimes identi�ed with the set onsisting of the (disjoint) union of its node

and edge sets, and we will use on graphs the ordinary set-theoretial relations

and operations.

Lemma 17. Let G be a n-safe graph grammar. Then, for any proess ' of G we

have jp(')j � n � jTG

G

j and jmr(')j � (n � jTG

G

j)

2

.

Proof (sketh). By the basi properties of graph proesses, for any proess ', the

graph '

�

, namely Max (') typed over TG

G

by the restrition of '

T

, is reahable

in G. Sine any graph reahable in G is n-injetive, we an establish the following

bound for the number of items (nodes and edges) of Max ('),

20

jMax (')j � n � jTG

G

j.

Hene it is immediate to onlude that n�jTG

G

j is a bound also for the ardinality

of p(') sine for eah q; q

0

2 p(') we have q

�

\Max (') 6= ; and q

�

\ q

0�

= ;.

Furthermore, for any item x in Max (') the set A

x

of maximal events in

x onsists of onurrent events. Hene also the orresponding pre-set

�

A

x

is

onurrent and therefore j

�

A

x

j is bounded by n � jTG

G

j. Sine produtions are

onsuming, i.e., they have a non-empty pre-set, and for any q; q

0

2 A

x

it must be

�

q\

�

q

0

= ;, we onlude that n � jTG

G

j is a bound also for the ardinality of A

x

.

Therefore the number of produtions in mr(') is bounded by (n � jTG

G

j)

2

. ut

We next de�ne partial proesses, whih represent abstrations of graph pro-

esses where only a relevant part for disriminating non HP-bisimilar states is

kept, namely the target graph of the proess (i.e., the subgraph onsisting of the

maximal items), the produers, the maximal readers and their dependenies. For

tehnial reasons we �rst introdue pre-partial proesses whih are required to

satisfy weaker requirements.

De�nition 18 (pre-partial proess). A pre-partial proess of a graph gram-

mar G is a tuple = hG

; E

;�

; �

; post

; ont

i, where

{ G

is a TG

G

-typed graph;

{ E

is a set of events;

{ �

� E

�E

is a partial order;

{ �

: E

! At is a labelling funtion over a �xed set of ations At;

{ ont

; post

: E

! P(N

hG

i

[E

hG

i

) are funtions whih map eah e 2 E

to the sets of items in hG

i whih are read and produed, respetively, by e.

For any x 2 hG

i we denote by ont

(x) the set of readers of x, i.e., the set

fe 2 E

: x 2 ont

(e)g.

An isomorphism of pre-partial proesses i :

1

!

2

is a pair of funtions i =

hi

T

; i

E

i where i

T

: G

1

! G

2

is an isomorphism of TG

G

-typed graphs and

i

E

: E

1

! E

2

is a bijetion suh that i

E

establishes an isomorphism of labelled

partial orders between hE

1

;�

1

; �

1

i and hE

2

;�

2

; �

2

i and, for any e 2 E

1

,

post(i

E

(e)) = i

T

(post(e)) and ont(i

E

(e)) = i

T

(ont(e)).

As for ordinary graph proess, for any pre-partial proess we de�ne the

sets of produers and of maximal readers.

De�nition 19. Let be a pre-partial proess. The set of produers of is

de�ned as p() = fe 2 E

: post

(e) 6= ;g. The set of maximal readers of is

de�ned as mr() = fe 2 E

: 9x 2 ont

(e): e is �

-maximal in ont

(x)g.

Partial proesses are de�ned as pre-partial proesses where eah event is a

produer or a maximal reader.

De�nition 20 (partial proess). A partial proess of a graph grammar G is

a pre-partial proess suh that E

= p() [mr(). The initial partial proess

for G is the partial proess over the initial graph, with an empty set of events,

i.e.,

0

= hG

s

G

; ;; ;; ;; ;; ;i.

21

An obvious onstrution assoiates to eah pre-partial proess the orre-

sponding partial proess.

De�nition 21. Given any pre-partial proess , the orresponding partial pro-

ess, denoted by Cut(), is de�ned as follows:

{ G

Cut()

= G

;

{ E

Cut()

= p() [mr();

and �

Cut()

, �

Cut()

, post

Cut()

and ont

Cut()

are the restritions to E

Cut()

of the orresponding relations and funtions of .

Given any proess ' of a graph grammar, we an onstrut a orresponding

partial proess by keeping only the produers and the maximal readers of '.

Tehnially this is done by �rst onstruting a pre-partial proess and then

using the operation Cut(�).

De�nition 22 (partial proess assoiated to a proess). Let ' be a proess

of a graph grammar G. The orresponding partial proess, denoted by ('), is

de�ned as Cut() where is the pre-partial proess satisfying

{ G

= '

�

= hMax ('); '

T

jMax(')

i;

{ E

= P

'

;

{ �

= (%

'

)

�

;

{ �

= �

G

Æ '

P

;

{ for any q 2 E

, ont

(q) = q \Max (') and post

(q) = q

�

\Max (').

In Fig. 4, for every proess '

i

, the orresponding partial proess ('

i

) is obtained

by onsidering only the non-shaded part. The next lemma makes expliit the easy

fat that the events in the partial proess assoiated to a proess ' are exatly

the produers and the maximal readers of the original proess '.

Lemma 23. Let G be a labelled graph grammar and let ' be a proess of G.

Then p((')) = p(') and mr((')) = mr(').

Next we introdue amove relation on partial proesses: given a partial proess

, whenever a prodution of the original grammar is appliable to the graph G

,

the partial proess an evolve aordingly. This leads to a transition system of

partial proesses whih represents the �rst step in the onstrution of the ausal

automaton assoiated to a graph grammar.

De�nition 24 (partial proesses move). Given two partial proesses and

0

of a labelled graph grammar G we write

a

e

0

0

, and we say that moves

to

0

performing the ation a if

0

= Cut(

00

) where

00

is a pre-partial proess

satisfying the following onditions: there is a prodution q 2 P

G

q : L

q

l

q

 K

q

r

q

! R

q

22

and a math m : L

q

! G

suh that, if X = m(hL

q

i � l

q

(hK

q

i)) and C =

m(l

q

(hK

q

i)), then

{ G

)

a

q

G

00

using math m; more spei�ally we assume that hG

i �X �

hG

00

i, i.e., the items whih are preserved remains onretely the same;

{ E

00

= E

[fe

0

g and e

0

62 E

;

{ �

00

= (�

[f(e; e

0

) : e 2 E

^ (post(e)\ (X [C))[(ont(e)\X) 6= ;g)

�

;

{ �

00

(e) = �

(e) for any e 2 E

and �

00

(e

0

) = a = �

G

(q);

{ for any e 2 E

, post

00

(e) = post

(e) �X, ont

00

(e) = ont

(e) �X, and

ont

00

(e

0

) = C, post

00

(e

0

) = hG

00

i � hG

i.

As mentioned above, a partial proess of a grammar G an perform a move

when there exists a prodution q in G whih is appliable to its graphial om-

ponent G

. The graph G

0

underlying the new partial proess is obtained by

rewriting G

using q. Observe that the new event e

0

, representing the our-

rene of q, depends on the events whih have generated a graph item whih is

onsumed or read by q (ausality), and also on the events whih have read an

item onsumed by q (asymmetri onit). The funtions ont and post are ex-

tended to the new event e

0

, but they must be updated also to take into aount

the fat that some items of G

might have been deleted. Consequently an event

might ease to be a produer or a maximal reader and thus, by e�et of the

appliation of Cut(�), some events an disappear. A sequene of partial proess

move is exempli�ed in Fig. 4, if we onsider only the non-shaded parts.

To eah proess and partial proess move we assoiate the set of maximal

(weak or strong) auses of the exeuted prodution, whih will play a basi role in

the de�nition of the automaton. In fat, to observe the partial order assoiated

to an evolving omputation it is suÆient to look, step by step, only at the

immediate maximal auses of eah single prodution (the other dependenies

being impliitly given by the transitivity of the partial order).

De�nition 25 (immediate and maximal auses). The set of immediate

(weak or strong) auses of a proess move '

a

e

'

0

is de�ned as IC('

a

e

'

0

) =

fq 2 P

'

: q

�

\ (e[

�

e) 6= ; _ q\

�

e 6= ;g. We denote by MC('

a

e

'

0

) the set of

maximal auses, namely the subset of %

'

-maximal elements of IC('

a

e

'

0

).

The set of immediate auses of a partial proess move

a

e

0

, adopting

the notation of De�nition 24, is de�ned by IC(

a

e

0

0

) = fe 2 E

: (post

(e)\

(X [C))[(ont

(e)\X) 6= ;g. The set of maximal auses MC(

a

e

0

0

) is the

subset of �

-maximal immediate auses.

For example, onsidering transition '

5

q

4

e

6

'

6

in Fig. 4, the immediate auses

are fe

1

; e

2

; e

3

; e

4

; e

5

g, while the immediate maximal auses are fe

2

; e

5

g.

The next lemma relates the transition system of proesses and the transition

system of partial proesses.

23

Lemma 26. Let G be any labelled graph grammar.

1. If ' and '

0

are proesses of G and '

a

e

'

0

then we have (')

a

e

('

0

),

with MC('

a

e

'

0

) = MC((')

a

e

('

0

));

2. If ' is a proess of G and (')

a

e

0

then there exists a proess '

0

of G,

suh that '

a

e

0

'

0

, with

0

and ('

0

) isomorphi and MC((')

a

e

0

) =

MC('

a

e

0

'

0

).

It is worth noting that we annot replae point (2) above with the stronger

\if (')

a

e

0

then there exists a proess '

0

of G, suh that '

a

e

'

0

, with

0

= ('

0

)", sine in general the event e and the new graph items in G

0

an

appear in '.

By Lemma 26 we onlude that if a partial proess of a graph grammar G

is reahable from an initial partial proess via a �nite sequene of moves, then

 = (') for some proess ' of G. Hene, when the graph grammar G is n-safe,

the de�nition of (') and Lemmata 17 and 23 allow us to onlude the validity

of the following result.

Lemma 27. For any n-safe labelled graph grammar the set of partial proesses

reahable from the initial proess (and taken up to isomorphism) is �nite.

We are now ready to present the onstrution of the ausal automaton as-

soiated to a graph grammar for heking HP-bisimilarity. To obtain a \om-

pat" automaton (with a �nite number of states for n-safe graph grammar) we

must onsider partial proesses up to isomorphism. To this aim we �x a stan-

dard representative in eah lass of isomorphi partial proesses. Furthermore

we onsider a normalization funtion norm suh that for any partial proess ,

norm() = h

0

; ii, where

0

is the standard representative in the isomorphism

lass of and i :

0

! is a hosen partial proess isomorphism. We assume

that the names of the produtions in any (partial) proess are taken from N ,

namely that E

� N .

De�nition 28 (ausal automaton for HP-bisimulation). Let G be a la-

belled graph grammar. The HP-ausal automaton assoiated to G is the automa-

ton A

hp

(G) = hQ;n; 7�!; q

0

i, having (standard representatives of) partial pro-

esses as states. The initial state q

0

is the standard representative

0

of the initial

partial proesses of G and whenever 2 Q then

{ n() = E

;

{ if

a

e

0

and norm(

0

) = h

00

; ii then

00

2 Q and

a

M

�

00

where

� � : E

00

,! E

[f?g is de�ned as � = (id

E

[f(e; ?)g) Æ i

E

;

� M = MC(

a

e

0

).

24

Observe that the renaming funtion in a transition of the ausal automaton is

obtained from the isomorphism given by the normalization funtion norm, simply

by redireting the new name e to ? (if e belongs to E

0

). As antiipated, the

maximal auses of a proess move are used as dependenies in the automaton

transition.

The states of the automaton are standard representatives of partial proesses

reahable from the initial partial proess. Hene by Lemma 27 we dedue that

for any n-safe graph grammar the above de�ned automaton has a �nite number

of states (and also a �nite number of transitions leaving from eah state, sine

the number of produtions is �nite). Vie versa, if the graph grammar is not

n-safe for some n, then the automaton will have an in�nite number of states.

Theorem 29. Let G be a labelled graph grammar. Then G is n-safe for some n

i� the automaton A

hp

(G) is �nite.

To e�etively build the automaton we an perform an indutive onstrution

based on De�nition 28. The only thing to observe is that, given a partial proess

, there might be in�nitely many moves

a

e

0

sine the event e an be hosen

arbitrarily among the unused events in N and a similar onsideration holds for

the new graph items in G

0

. However, without loss of generality, we an limit our

attention only to some partial proess moves, alled the representative moves,

where the newly generated name and items are hosen in a anonial way. For

instane we an suppose that the set of names N is well-ordered and assume

that a transition

a

e

0

to be representative must satisfy e = min(N � P

).

The main result now states that there is a preise orrespondene between

HP-bisimulation on graph grammars and CA-bisimulation on ausal automata.

Hene HP-bisimilarity of graph grammars an be heked on the orresponding

automata.

Theorem 30. Let G

1

and G

2

be two labelled graph grammars. Then G

1

�

hp

G

2

if and only if A

hp

(G

1

) �

a

A

hp

(G

2

).

Proof (sketh). The proof is organized in two steps. First observe that the tran-

sition system of proesses of a graph grammar G an be seen itself as a ausal

automaton A

pr

(G) = hQ;n; 7�!; q

0

i, where

{ Q is the set of proesses ' of G and n(') = P

'

for any proess ';

{ '

a

M

�

'

0

if, aording to De�nition 9, '

a

e

'

0

,M = MC('

a

e

'

0

), and

the naming � : P

'

0

! P

'

[f?g is de�ned as the identity for x 2 P

'

0

� feg,

while �(e) = ?;

{ the initial state q

0

is any initial proess of G.

Then, it is possible to prove that HP-bisimulation on graph grammars oinides

with CA-bisimulation on the ausal automata of proesses, namely G

1

�

hp

G

2

i� A

pr

(G

1

) �

a

A

pr

(G

2

).

The seond step of the proof shows that, for any graph grammar G there exists

an abstration homomorphism h : A

pr

(G) ! A

hp

(G), and thus, by Lemma 15,

25

A

pr

(G) �

a

A

hp

(G). The abstration homomorphism h = hh; fh

'

g

'

i an be

de�ned as follows: for any proess ' (state of A

pr

(G)), if norm((')) = h

0

; ii

then h(') =

0

and h

'

: E

0

! P

'

is simply i

E

. To prove that h satis�es the

onditions in De�nition 14 one essentially resorts to Lemma 26.

Summing up, by the above onsiderations we have that A

pr

(G

i

) �

a

A

hp

(G

i

)

for i 2 f1; 2g, and moreover A

pr

(G

1

) �

a

A

pr

(G

2

) i� G

1

�

hp

G

2

. Hene the thesis

easily follows. ut

By Theorems 29 and 30 we immediately onlude the desired deidability

result.

Corollary 31. HP-bisimulation on n-safe graph grammars is deidable.

It is worth observing that, in this setting, due to the Turing ompleteness

of graph grammars, di�erently from what happens for ordinary and ontextual

nets, the property of being n-safe for some n, i.e., the property of being �nite-

state, is not deidable.

6 Conlusions

In this paper we have introdued an abstrat semantis for graph grammars

inspired by the lassial history preserving bisimulation. Extending the work

already developed on ordinary and ontextual P/T nets, we have shown how

history preserving bisimulation on graph grammars an be studied in the general

framework of ausal automata. A translation of graph grammars into ausal

automata has been proposed, whih respets (preserves and reets) history

preserving bisimulation. The translation produes �nite automata for �nite-state

graph grammars, thus allowing to reuse the algorithms existing for this general

formalism in order to deide bisimulation and to obtain a minimal realization.

We onlude by disussing two possible diretions of further investigation

whih we �nd interesting: on the one hand the possibility of de�ning di�erent

notions of history preserving bisimulation by onsidering observations of the

ausal history of a omputation �ner than the assoiated pes; on the other hand

the development of a logi in the style of Hennessy-Milner for HP-bisimulation.

6.1 Re�ning the observation

The notion of HP-bisimulation onsidered in this paper is obtained by taking

as observation of a onurrent omputation of a graph grammar the pes un-

derlying the orresponding graph proess. We have already mentioned that this

orresponds to observe only the preedenes between events, onfusing the weak

ausality deriving from the possibility of preserving part of the state in a rewrit-

ing step, the inhibiting e�ets related to the dangling ondition and the \strong"

ausality deriving from the ow of information. It ould be reasonable to on-

sider, instead, equivalenes whih arise by assuming di�erent, �ner desriptions

of onurrent omputations.

26

For instane, a natural re�nement onsists of distinguishing the ow of in-

formation from the other dependenies. This is easily ahieved by extrating

from a proess a di�erent event struture, whih is alled asymmetri event

struture [BCM98b,BCM00a℄ where ausality and asymmetri onit are kept

separate. The asymmetri event struture assoiated to a graph proess ' is

de�ned as

aev (') = hP

'

;�

'

;%

'

; �

G

Æ '

P

i.

Then the orresponding bisimulation, whih an be alled read history preserv-

ing (RHP-) bisimulation, is de�ned as HP-bisimulation, by simply re�ning the

observation, namely by hanging ev('

i

) with aev('

i

) in De�nition 11.

Any RHP-bisimulation relating two graph grammar G

1

and G

2

is also an

HP-bisimulation. In fat if '

1

and '

2

are proesses of G

1

and G

2

, respetively,

and f : aev('

1

) ! aev ('

2

) is an isomorphism of asymmetri event strutures

then it is easy to see that f is also an isomorphism of pes's between ev ('

1

)

and ev ('

2

). Therefore G

1

�

rhp

G

2

implies G

1

�

hp

G

2

. As for ontextual nets,

the onverse impliation, instead, does not hold. Regarding the deidability of

RHP-bisimulation, the natural extension of the onstrution whih has been

introdued for HP-bisimulation onsists of onsidering partial proesses where

all the readers (not only the maximal ones) are kept. Unfortunately in this way

the onstrution produes a ausal automaton whih may be in�nite also for

safe graph grammars. Indeed, the deidability of RHP-bisimulation is an open

question already for ontextual nets [BCM00b℄.

6.2 Hennessy-Milner logi for HP-bisimulation

The ordinary bisimulation over transition systems has a logial ounterpart, the

so-alled Hennessy-Milner logi [HM85℄, a kind of modal logi with two basi

modalities whih an be interpreted as possibility and neessity. The syntax of

formulae is the following

� ::= true j � ^ � j :� j hai�.

The formula onstruted with the \diamond" modality hai�, where a is an ation

and � a formula, intuitively is satis�ed by any state from whih an a-ation an

be exeuted leading to a state whih satis�es �. The dual modality, i.e., the

\box" modality [a℄�, an be de�ned as :hai:�. It is satis�ed by all the states

where any a-ation leads to a state that satis�es �. Hennessy-Milner logi an be

shown to be adequate for bisimulation in the sense that, two states of a transition

system are bisimilar if and only if they satisfy the same set of formulae [HM85℄.

An interesting diretion of further researh is the study of an analogue of

Hennessy-Milner logi for HP-bisimulation, whih has been initiated in [Bar99℄.

The basi syntax of formulae is the following

� ::= true j � ^ � j :� j EXfn; a;Mg�.

27

The existential modality allows to onstrut a formula EXfe; a;Mg� whih, intu-

itively, is satis�ed by a state where an ation a an be exeuted, whih generates

a new name (or event) e diretly aused by the set of events in M , leading to a

state whih satis�es �. Also in this ase there is a dual universal modality: the

formula AXfn; a;Mg�, de�ned as :EXfe; a;Mg:�, is satis�ed by a state where

any ation a whih an be exeuted, generates a new name (or event) e diretly

aused by the set of events in M , leading to a state whih satis�es �.

Like ordinary Hennessy-Milner logi is naturally interpreted over transition

systems (labelled graphs), this variation of the logi has a natural interpretation

over ausal automata, but also over the transition system of proesses of a net or

of a graph grammar. The possibility of delaring new names/events in a formula

is reeted, at semantial level, by the the presene in the model of a kind of

environment whih links the events in the urrent state and the names \delared"

in the formula. An adequateness result for suh a logi over ausal automata has

been proved in [Bar99℄ showing that two automata A

1

and A

2

are CA-bisimilar

i� they satisfy the same set of formulae. Resorting to our results, adequateness

for the logi over graph grammars would be easily proved by showing that for

any labelled graph grammar G

G � , A

pr

(G) �.

where \" means \is a model of".

As in the ase of ordinary Hennessy-Milner logi, the expressiveness would

greatly bene�t form the introdution of some \reursion" operator, e.g., mini-

mal/maximal �x-point operators in the style of the �-alulus (�-alulus). This

should be done by retaining some interesting properties of the logi, like deid-

ability, at least for a signi�ant fragment.

Aknowledgements. We are grateful to the anonymous referees for their in-

sightful omments and suggestions.

Referenes

[Bal00℄ P. Baldan. Modelling onurrent omputations: from ontextual Petri nets

to graph grammars. PhD thesis, Department of Computer Siene, Univer-

sity of Pisa, 2000. Available as tehnial report n. TD-1/00.

[Bar99℄ R. Bartolini. Model heking di propriet�a ausali di reti di Petri. MS

Thesis, University of Pisa, 1999. (In Italian).

[BCM98a℄ P. Baldan, A. Corradini, and U. Montanari. Conatenable graph proesses:

relating proesses and derivation traes. In Proeedings of ICALP'98, vol-

ume 1443 of LNCS, pages 283{295. Springer Verlag, 1998.

[BCM98b℄ P. Baldan, A. Corradini, and U. Montanari. An event struture semantis

for P/T ontextual nets: Asymmetri event strutures. In M. Nivat, editor,

Proeedings of FoSSaCS '98, volume 1378 of LNCS, pages 63{80. Springer

Verlag, 1998.

28

[BCM99℄ P. Baldan, A. Corradini, and U. Montanari. Unfolding and Event Struture

Semantis for Graph Grammars. In W. Thomas, editor, Proeedings of

FoSSaCS '99, volume 1578 of LNCS, pages 73{89. Springer Verlag, 1999.

[BCM00a℄ P. Baldan, A. Corradini, and U. Montanari. Contextual Petri nets, asym-

metri event strutures and proesses. To appear in Information and Com-

putation., 2000.

[BCM00b℄ P. Baldan, A. Corradini, and U. Montanari. History preserving bisimula-

tions for ontextual nets. In D. Bert and C. Choppy, editors, WADT'99

Conferene Proeedings, number 1827 in LNCS, pages 291{310. Springer

Verlag, 2000.

[BDKP91℄ E. Best, R. Devillers, A. Kiehn, and L. Pomello. Conurrent bisimulations

in Petri nets. Ata Informatia, 28(3):231{264, 1991.

[Cas87℄ I. Castellani. Bisimulations and abstration homomorphisms. Journal of

Computer and System Sienes, 34(2/3):210{235, 1987.

[CFM83℄ I. Castellani, P. Franeshi, and U. Montanari. Labeled event strutures: a

model for observable onurreny. In D. Bj�rner, editor, Proeedings of IFIP

TC2 Working Conferene on Formal Desription of Programming Conepts

{ II, pages 383{389. North-Holland, 1983.

[CMR96℄ A. Corradini, U. Montanari, and F. Rossi. Graph proesses. Fundamenta

Informatiae, 26:241{265, 1996.

[CMR

+

97℄ A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Hekel, and M. L�owe. Al-

gebrai Approahes to Graph Transformation I: Basi Conepts and Double

Pushout Approah. In G. Rozenberg, editor, Handbook of Graph Grammars

and Computing by Graph Transformation. Volume 1: Foundations. World

Sienti�, 1997.

[Cor96℄ A. Corradini. Conurrent graph and term graph rewriting. In U. Montanari

and V. Sassone, editors, Proeedings of CONCUR'96, volume 1119 of LNCS,

pages 438{464. Springer Verlag, 1996.

[DD90℄ P. Darondeau and P Degano. Causal trees: Interleaving + ausality. In

Pro. 18th

�

Eole de Printemps sur la Semantique de Parallelism, number

469 in LNCS, pages 239{255. Springer Verlag, 1990.

[Ehr87℄ H. Ehrig. Tutorial introdution to the algebrai approah of graph-

grammars. In H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors,

Proeedings of the 3rd International Workshop on Graph-Grammars and

Their Appliation to Computer Siene, volume 291 of LNCS, pages 3{14.

Springer Verlag, 1987.

[EKMR99℄ H. Ehrig, J. Kreowski, U. Montanari, and G. Rozenberg, editors. Hand-

book of Graph Grammars and Computing by Graph Transformation, Vol.

2: Conurreny, Parallelism and Distribution. World Sienti�, 1999.

[FM90℄ G. Ferrari and U. Montanari. Towards the uni�ation of models of on-

urreny. In A. Arnold, editor, Proeedings of CAAP '90, volume 431 of

LNCS, pages 162{176. Springer-Verlag, 1990.

[GHK00℄ F. Gaddui, R. Hekel, and M. Koh. A fully abstrat model for graph-

interpreted temporal logi. In H. Ehrig, G. Engels, H.J. Kreowski, and

G. Rozenberg, editors, Proeedings of TAGT'98, volume 1764 of LNCS,

pages 310{322. Springer Verlag, 2000.

[GM82℄ J. A. Goguen and J. Meseguer. Seurity poliies and seurity models. In

Proeedings 1982 IEEE Symposium on Seurity and Privay, pages 11{20.

IEEE Computer Soiety, 1982.

29

[He98℄ R. Hekel. Open Graph Transformation Systems: A New Approah to the

Compositional Modelling of Conurrent and Reative Systems. PhD thesis,

TU Berlin, 1998.

[HEWC97℄ R. Hekel, H. Ehrig, U. Wolter, and A. Corradini. Integrating the Spei�-

ation Tehniques of Graph Transformation and Temporal Logi. In Pro-

eedings of MFCS'97, number 1295 in LNCS. Springer Verlag, 1997.

[HM85℄ M. Hennessy and R. Milner. Algebrai laws for indeterminism and onur-

reny. Journal of the ACM, 32:137{162, 1985.

[JK95℄ R. Janiki and M. Koutny. Semantis of inhibitor nets. Information and

Computation, 123:1{16, 1995.

[JNW96℄ A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps. In-

formation and Computation, 127(2):164{185, 1996.

[Ko99℄ M. Koh. Integration of graph transformation and temporal logi for the

spei�ation of distributed systems. PhD thesis, TU Berlin, 1999.

[Kre77℄ H.-J. Kreowski. Manipulation von Graphmanipulationen. PhD thesis, Teh-

nishe Universit�at Berlin, 1977.

[MP97℄ U. Montanari and M. Pistore. Minimal transition systems for history-

preserving bisimulation. In 14th Annual Symposium on Theoretial As-

pets of Computer Siene, volume 1200 of LNCS, pages 413{425. Springer

Verlag, 1997.

[MP98℄ U. Montanari and M. Pistore. History-dependent automata. Tehni-

al Report TR-98-11, Dipartimento di Informatia, 1998. Available as

ftp://ftp.di.unipi.it/pub/tehreports/TR-98-11.ps.Z.

[MP00℄ U. Montanari and M. Pistore. Strutured oalgebras and minimal HD-

automata. In M. Nielsen and B. Roman, editors, Pro. of MFCS 2000,

volume 1983 of LNCS, pages 569{578. Springer Verlag, 2000.

[MR95℄ U. Montanari and F. Rossi. Contextual nets. Ata Informatia, 32(6), 1995.

[Pis99℄ M. Pistore. History Dependent Automata. PhD thesis, Department of Com-

puter Siene, University of Pisa, 1999.

[RGG96℄ E. Rudolph, J. Grabowski, and P. Graubmann. Tutorial on Message Se-

quene Charts. Computer Networks and ISDN Systems, 28(12):1629{1641,

1996.

[Rib96℄ L. Ribeiro. Parallel Composition and Unfolding Semantis of Graph Gram-

mars. PhD thesis, Tehnishe Universit�at Berlin, 1996.

[Roz97℄ G. Rozenberg, editor. Handbook of Graph Grammars and Computing by

Graph Transformation, Vol. 1: Foundations. World Sienti�, 1997.

[RT88℄ A. Rabinovih and B. A. Trakhtenbrot. Behavior Strutures and Nets.

Fundamenta Informati�, 11(4):357{404, 1988.

[vB84℄ J. van Bentham. Correspondene theory. In Handbook of Philosophial

Logi, volume II. Reidel, 1984.

[Vog91℄ W. Vogler. Deiding history preserving bisimilarity. In J. Leah Albert,

B. Monien, and M. Rodr��guez-Artalejo, editors, Proeedings of ICALP'91,

volume 510 of LNCS, pages 495{505. Springer-Verlag, 1991.

[Vog97℄ W. Vogler. EÆieny of asynhronous systems and read ars in Petri nets.

In Proeedings of ICALP'97, volume 1256 of LNCS, pages 538{548. Springer

Verlag, 1997.

[VSY98℄ W. Vogler, A. Semenov, and A. Yakovlev. Unfolding and �nite pre�x for

nets with read ars. In Proeedings of CONCUR'98, volume 1466 of LNCS,

pages 501{516. Springer-Verlag, 1998.

30

