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Abstra
t. Along the years the 
on
urrent behaviour of graph gram-

mars has been widely investigated, and, in parti
ular, several 
lassi
al

approa
hes to the semanti
s of Petri nets have been extended to graph

grammars. Most of the existing semanti
s for graph grammars provide

a (possibly 
on
urrent) operational model of 
omputation, while little

interest has been devoted to the de�nition of abstra
t observational se-

manti
s. The aim of this paper is to introdu
e and study a behavioural

equivalen
e over graph grammars, inspired by the 
lassi
al history pre-

serving bisimulation. Several 
hoi
es are 
on
eivable a

ording to the

kind of 
on
urrent observation one is interested in. We 
on
entrate on

the basi
 
ase where the 
on
urrent nature of a graph grammar 
ompu-

tation is des
ribed by means of a prime event stru
ture. As it happens

for Petri nets, history preserving bisimulation 
an be studied in the gen-

eral framework of 
ausal automata | a variation of ordinary automata

introdu
ed to deal with history dependent formalisms. In parti
ular, we

prove that history preserving bisimulation is de
idable for �nite-state

graph grammars, by showing how the problem 
an be redu
ed to de
id-

ing the equivalen
e of �nite 
ausal automata.

1 Introdu
tion

Graph grammars have been shown to be a powerful formalism for the spe
i�-


ation of 
on
urrent and distributed systems, whi
h properly generalizes Petri

nets. Along the years their truly 
on
urrent behaviour has been deeply studied

and a 
onsolidated theory of 
on
urren
y is now available [Roz97,EKMR99℄. In

parti
ular, several 
lassi
al approa
hes to the semanti
s of Petri nets, like pro-


ess and unfolding semanti
s, have been extended to graph grammars (see, e.g.,

[CMR96,Rib96,BCM98a,BCM99℄).

Most of the existing semanti
s for graph grammars de�ne a (possibly 
on
ur-

rent) operational model of 
omputation, whi
h gives a 
on
rete des
ription of the

behaviour of the system in terms of non-e�e
tive (e.g., in�nite, non-de
idable)
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stru
tures. Thus they 
annot be used dire
tly to reason about the modelled sys-

tem. Indeed, these operational models are intended to represent the basis for the

de�nition of more abstra
t semanti
s, whi
h take into a

ount only some aspe
ts

of interest for the system at hand, disregarding inessential details. At this level

one 
an de�ne e�e
tive te
hniques for 
he
king the equivalen
e of systems with

respe
t to the sele
ted observations, for verifying if a system satis�es a given

property or for synthesizing a system satisfying a given property. Roughly, we


an distinguish two main approa
hes to system veri�
ation based on abstra
t

semanti
s. First, one 
an verify a system by 
he
king its equivalen
e with a spe-


ial system whi
h is known to be \
orre
t". For instan
e, the fa
t that a system

is se
ure with respe
t to external atta
ks 
an be 
he
ked by verifying that the

system in isolation is semanti
ally equivalent to the system under a generi
 at-

ta
k. Alternatively one 
an develop a logi
, adequate with respe
t to the abstra
t

semanti
s, whi
h is interpreted over the 
lass of systems at hand. Then to verify

that a system satis�es a 
ertain property, expressed as a formula in the logi
,

one 
he
ks if it is a model (in logi
al sense) for the formula, hen
e the name

model 
he
king for this approa
h.

Some e�ort has been devoted to the development of logi
s suited to spe
-

ify the dynami
s of graph transformation systems, with spe
ial interest in the

integration of graphi
al spe
i�
ations and temporal logi
 
onstraints (see, e.g.,

[HEWC97,He
98,Ko
99,GHK00℄), but the study of abstra
t behavioural seman-

ti
s and of the 
orresponding logi
s has re
eived little attention. Here we move

some steps in this dire
tion, introdu
ing an abstra
t semanti
s for graph gram-

mars based on the 
lassi
al history preserving bisimulation (HP-bisimulation, for

short) [RT88,DD90℄, a behavioural equivalen
e whi
h, di�erently from ordinary

bisimulation, takes into a

ount the 
on
urren
y properties of a system. Infor-

mally, two systems are HP-bisimilar if every event in the �rst one 
an be simu-

lated by an event in the se
ond one with an equivalent 
ausal history and vi
e

versa. History preserving bisimulation on ordinary P/T nets [RT88,BDKP91℄

relies on the notions of pro
ess and deterministi
 prime event stru
ture (pes)

asso
iated to a pro
ess. Roughly speaking, two nets N

0

and N

1

are HP-bisimilar

if for any pro
ess �

0

of N

0

we 
an �nd a pro
ess �

1

of N

1

su
h that the asso-


iated deterministi
 pes's are isomorphi
. Whenever �

0


an perform an a
tion

be
oming a pro
ess �

0

0

, also �

1


an perform the same a
tion be
oming �

0

1

and

vi
e versa. Moreover the isomorphism between the pes's asso
iated to �

0

and �

1

is required to be extensible to an isomorphism between the pes's asso
iated to

�

0

0

and �

0

1

. Intuitively, history preserving bisimulation is more appropriate than

ordinary bisimulation whenever in a system we are interested not only in the

events whi
h might happen, but also in the dependen
y relations between su
h

events. For instan
e, imagine to have a system where a subset of a
tions is 
on-

sidered 
riti
al and suppose that for se
urity reasons 
riti
al a
tions must not be

in
uen
ed by non-
riti
al a
tions. This property, whi
h 
an be seen as a form of

non-interferen
e [GM82℄, 
an be formalized by asking that 
riti
al a
tions do not


ausally depend on non-
riti
al a
tions and it is invariant for transformations of

the system whi
h preserve HP-bisimilarity.
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A basi
 sour
e of inspiration for our work is the 
lose relation existing between

graph grammars and Petri nets. The simple but 
ru
ial observation is that Petri

nets are essentially rewriting systems on multisets, i.e., the markings of the net,

whi
h 
an be seen, in turn, as dis
rete graphs labelled over the pla
es of the

net. Hen
e graph grammars 
an be viewed as a generalization of Petri nets: they

allow to give a more stru
tured des
ription of the state in term of a proper

graph and to spe
ify \
ontextual" rewriting steps where part of the state is

preserved. In this respe
t graph grammars are 
loser to some generalizations of

nets in the literature, 
alled nets with read (test) ar
s or 
ontextual nets (see,

e.g., [JK95,MR95,Vog97℄), where transitions 
an be enri
hed with a 
ontext, i.e.,

with the possibility of 
he
king the presen
e of tokens in the pla
es of the net,

without 
onsuming su
h tokens.

Indeed, our study of HP-bisimulation for graph grammars is guided by the

work on ordinary Petri nets [MP97,Vog91℄, whi
h has been generalized to 
on-

textual nets in [BCM00b℄. Graph grammars 
ome equipped with a notion of

deterministi
 (graph) pro
ess [CMR96,BCM98a℄ and with an event stru
ture

model [BCM99,Bal00℄, and thus the notion of HP-bisimulation 
an be gen-

eralized to graph grammars. We show that HP-bisimulation is de
idable for

�nite-state graph grammars, 
alled here, by analogy with Petri nets, n-safe

graph grammars. To this aim, as in [MP97,BCM00b℄, we resort to 
ausal au-

tomata [MP97℄, a variation of ordinary automata where states are sets of names

(or events) and transitions allow for the 
reation of new names and the deallo-


ation of old ones. A generalization of 
ausal automata, 
alled history-dependent

automata (HD-automata), has been proposed as a general framework to study

history-dependent formalisms, like CCS with 
ausal and lo
ation semanti
s or

with value-passing, and the �-
al
ulus with the ordinary, early or late, or non-

interleaving semanti
s [MP98,Pis99℄.

The (possibly in�nite) transition system of pro
esses of a graph grammar,

whi
h is used to de�ne HP-bisimulation, is translated to a 
ausal automaton

via a 
onstru
tion whi
h respe
ts (preserves and re
e
ts) bisimilarity. The au-

tomaton is proved to be �nite exa
tly for �nite-state graph grammars. Thus

HP-bisimilarity of any two �nite-state graph grammars 
an be 
he
ked by ver-

ifying the bisimilarity of the 
orresponding automata. This 
an be done 
on-


retely by using the algorithm proposed in [MP97℄, whi
h after removing from

the states of the automaton the events whi
h are useless, i.e., never referen
ed in

the future, translates the 
ausal automaton into an ordinary automaton. Then

the standard te
hniques for ordinary transition systems 
an be used to 
he
k

bisimilarity or to obtain a minimal realization. More re
ent works [Pis99,MP00℄

show that a minimal realization exists and 
an be 
onstru
ted in the 
lass of


ausal automata themselves (a
tually, in the mentioned papers, the general 
ase

of HD-automata is worked out and a suitable extension of HD-automata, the

so-
alled automata with symmetries, must be introdu
ed to get this result). As

it happens for ordinary automata, also a 
ausal automaton 
an be seen as a


oalgebra for a suitable fun
tor and the minimal realization arises as the image

in the �nal 
oalgebra of the given automaton.
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It is worth mentioning that when 
onsidering formalisms more expressive

than ordinary nets, like nets with read or inhibitor ar
s, or graph grammars

themselves, the dependen
ies between events in a 
omputation be
ome more


omplex than 
ausality and 
on
i
t. For instan
e, the possibility of spe
ifying

\read-only" operations over the state leads to an asymmetri
 form of 
on
i
t:

if an event e reads a resour
e whi
h is 
onsumed by another event e

0

, then the

exe
ution of e

0

disables e, while the 
onverse does not hold, i.e., e 
an pre
ede

e

0

in a 
omputation. Hen
e the 
ausal stru
ture of a pro
ess 
an be des
ribed

at various degrees of abstra
tion. At a basi
 level it 
an be represented as a

deterministi
 pes, a labelled partial order whi
h des
ribes only the pre
eden
es

between events, disregarding their origin. But we 
an also 
onsider �ner de-

s
riptions in terms of event stru
tures whi
h \observe", for instan
e, new kind

of dependen
ies arising from the possibility of preserving part of the state in

a rewriting step or from the need of maintaining the integrity of its graphi
al

stru
ture. In this paper we will 
on
entrate on the basi
 
ase only, just hinting

at the other possibilities.

The rest of the paper is stru
tured as follows. First in Se
tion 2 we present

the basi
s of graph grammars and the notion of (deterministi
) graph pro
ess.

In Se
tion 3 we introdu
e HP-bisimulation for graph grammars. In Se
tion 4

we review 
ausal automata and the 
orresponding notion of 
ausal bisimulation.

Then in Se
tion 5 we show how a (�nite-state) graph grammar 
an be mapped to

a (�nite) 
ausal automaton via a transformation whi
h respe
ts HP-bisimilarity,

thus o�ering the possibility of de
iding HP-bisimulation and of building a mini-

mal automaton for a given grammar up to HP-bisimilarity. Finally, in Se
tion 6

we draw some 
on
lusions and dire
tions for future work. In parti
ular we hint

at the possibility of de�ning di�erent notions of HP-bisimulation whi
h arise by


onsidering �ner observations of the 
ausal history of events. Furthermore we

give some ideas about the logi
al 
ounterpart of history preserving bisimulation,

presenting a logi
 in the style of Hennessy-Milner whi
h 
an be shown to be

adequate.

2 Typed graph grammars and pro
esses

This se
tion brie
y introdu
es typed graph grammars [CMR96℄, a variation of


lassi
al DPO graph grammars [Ehr87,CMR

+

97℄ where the rewriting takes pla
e

on so-
alled typed graphs, namely graphs labelled over a stru
ture (the graph of

types) that is itself a graph. After some basi
 de�nitions and a dis
ussion about

the relationship between graph grammars and (
ontextual) Petri nets, we will

re
all the notion of pro
ess for a typed graph grammar [CMR96,BCM98a℄, whi
h

plays a basi
 role in the de�nition of history preserving bisimulation.

2.1 Typed graph grammars

Let Graph be the 
ategory of (dire
ted, unlabelled) graphs and total graph

morphisms. For a graph G we will denote by N

G

and E

G

the (disjoint) sets of
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nodes and edges of G, and by s

G

; t

G

: E

G

! N

G

its sour
e and target fun
tions.

Given a graph TG, a typed graph G over TG is a graph hGi, together with a

morphism t

G

: hGi ! TG. A morphism between TG-typed graphs f : G

1

! G

2

is a graph morphisms f : hG

1

i ! hG

2

i 
onsistent with the typing, i.e., su
h

that t

G

1

= t

G

2

Æ f . A typed graph G is 
alled inje
tive if the typing morphism

t

G

is inje
tive. More generally, for a �xed n 2 N, the graph is 
alled n-inje
tive

if for any item x in TG, jt

�1

G

(x)j � n, namely if the number of instan
es of

\resour
es" of any type x is bounded by n. The 
ategory of TG-typed graphs

and typed graph morphisms is denoted by TG-Graph and 
an be syntheti
ally

de�ned as the 
omma 
ategory (Graph # TG).

Fixed a graph TG of types, a (TG-typed graph) produ
tion (L

l

 K

r

! R) is

a pair of inje
tive typed graph morphisms l : K ! L and r : K ! R, where hLi,

hKi and hRi are �nite graphs. It is 
alled 
onsuming if morphism l : K ! L is

not surje
tive. The typed graphs L, K, and R are 
alled the left-hand side, the

interfa
e, and the right-hand side of the produ
tion, respe
tively.

De�nition 1 (typed graph grammar). A (TG-typed) graph grammar G is a

tuple hTG;G

s

; P; �i, where G

s

is the start (typed, �nite) graph, P is a �nite set

of produ
tion names, and � is a fun
tion whi
h asso
iates a graph produ
tion to

ea
h produ
tion name in P . A labelled graph grammar is a pair hG; �

G

i, where

G is a graph grammar and �

G

: P ! A
t is a fun
tion from P to a �xed set of

a
tion names A
t.

We will denote by Elem(G) the set N

TG

[E

TG

[P . Furthermore, we will assume

that for ea
h produ
tion name q 2 P the 
orresponding produ
tion �(q) is

L

q

l

q

 K

q

r

q

! R

q

. The 
omponents of a graph grammar G will be denoted by TG,

G

s

, P and �, possibly with subs
ripts.

Sin
e in this paper we work only with typed notions, we will usually omit

the quali�
ation \typed", and, sometimes, we will not indi
ate expli
itly the

typing morphisms. Moreover, we will 
onsider only 
onsuming grammars, namely

grammars where all produ
tions are 
onsuming: this 
orresponds, in the theory

of Petri nets, to the usual requirement that transitions must have non-empty

pre-set.

De�nition 2 (dire
t derivation). Let G be a graph grammar. Given a typed

graph G, a produ
tion q 2 P , and a mat
h (i.e., a graph morphism) g : L

q

! G,

a dire
t derivation Æ from G to H using q (based on g) exists, written Æ : G)

q

H

(or Æ : G)

G

H), if and only if the diagram

L

q

q :

g

K

q

l

q

r

q

k

R

q

h

G D

b d

H


an be 
onstru
ted, where both squares have to be pushouts in TG-Graph. For

a labelled grammar, if �

G

(q) = a, in this situation we write Æ : G )

a

q

H (or

Æ : G)

a

G

H).
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A derivation in G is a sequen
e of dire
t derivations (in G) beginning from

the start graph G

s

.

Roughly speaking, the rewriting step removes from the graph G the items of the

left-hand side whi
h are not in the image of the interfa
e, namely L

q

� l

q

(K

q

),

produ
ing in this way the graph D. Then the items in the right-hand side whi
h

are not in the image of the interfa
e, namely R

q

� r

q

(K

q

), are added to D,

obtaining the �nal graph H . Noti
e that the interfa
e graph K

q

(
ommon part

of L

q

and R

q

) spe
i�es both what is preserved and how the added subgraph

has to be 
onne
ted to the remaining part. Given a mat
h g : L

q

! G as in

the above diagram, the pushout 
omplement of l

q

and g (i.e., a graph D with

morphisms k and b su
h that the left square is a pushout) exists if and only if

the gluing 
ondition is satis�ed. This 
onsists of two parts:

{ identi�
ation 
ondition, requiring that if two distin
t nodes or edges of L

q

are mapped by g to the same image, then both must be in the image of l

q

;

{ dangling 
ondition, stating that no edge in G�g(L

q

) should be in
ident to a

node in g(L

q

� l

q

(K

q

)) (be
ause otherwise the appli
ation of the produ
tion

would leave su
h an edge \dangling").

2.2 Relation with Petri nets.

Many de�nitions and 
onstru
tions in this paper are better understood keeping

in mind the relation between Petri nets and DPO graph grammars. The basi


observation (whi
h belongs to the folklore, see, e.g., [Cor96℄) is that a P/T Petri

net is essentially a rewriting system on multisets, and that, given a set A, a

multiset of A 
an be represented as a dis
rete graph typed over A. In this view

a P/T net 
an be seen as a graph grammar a
ting on dis
rete graphs typed over

the set of pla
es, the produ
tions being (some en
oding of) the net transitions:

a marking is represented by a set of nodes (tokens) labelled by the pla
e where

they are, and, for example, the Petri net transition t in the top part of Fig. 1 is

represented by the graph produ
tion depi
ted aside. Noti
e that the interfa
e is

empty sin
e nothing is expli
itly preserved by a net transition. It is not diÆ
ult

to show that this en
oding satis�es the properties one would expe
t, namely

that there is a pre
ise 
orresponden
e between transition �rings in the original

net and derivations in the 
orresponding grammar.

The 
onsidered en
oding of nets into grammars enlightens the dimensions

in whi
h graph grammars properly extend nets. First of all grammars allow for

a more stru
tured des
ription of state, that is a general graph rather than a

multiset (dis
rete graph). Furthermore, graph grammars allow for produ
tions

where the interfa
e graph may not be empty, thus spe
ifying a \
ontext" 
on-

sisting of items that have to be present for the produ
tions to be applied, but

whi
h are not a�e
ted by the appli
ation. The 
ontext 
an be interpreted as a

part of the state whi
h is a

essed in a \read-only" way by the rewriting step,

and, 
onsistently with this view, several rewriting steps 
an be applied in parallel

sharing (part of) the 
ontext. In this respe
t, graph grammars are 
loser to some
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Fig. 1. Petri net transitions and 
orresponding DPO produ
tions.

generalizations of Petri nets in the literature, 
alled nets with read (test) ar
s or


ontextual nets (see, e.g., [JK95,MR95,Vog97℄), whi
h generalize 
lassi
al nets

by adding the possibility of 
he
king for the presen
e of tokens whi
h are not


onsumed. Con
retely, a transition of a 
ontextual net, besides the pre-set and

post-set, has also a 
ontext spe
ifying tokens whi
h must be present to enable

the transitions, but whi
h are not a�e
ted by the �ring. For instan
e, in the

bottom left part of Fig. 1, pla
e s is a 
ontext for transition t

0

, and hen
e t

0

, to

be enabled, requires a token in s whi
h is not 
onsumed. It is 
lear that the 
on-

text of a 
ontextual net transition 
losely 
orresponds to the interfa
e graph of a

DPO produ
tion, so that 
ontextual nets 
an be seen as spe
ial graph grammars

a
ting on dis
rete graphs, but with produ
tions whi
h 
an have a non-empty

interfa
e (see the en
oding of transition t

0

as a DPO graph produ
tion in the

bottom right part of Fig. 1).

2.3 Pro
esses of typed graph grammars

Graph pro
esses [CMR96,BCM98a℄ arise from the idea of equipping graph gram-

mars with a semanti
s whi
h on the one hand expli
itly represents events and

relationships among them, and on the other hand uses graph grammars them-

selves as semanti
 domain. Analogously to what happens for Petri nets, a graph

pro
ess of a graph grammar G is de�ned as an \o

urren
e grammar" O, i.e., a

grammar satisfying suitable a
y
li
ity and 
on
i
t freeness 
onstraints, equipped

with a mapping fromO to G. This mapping is used to asso
iate to the derivations

in O 
orresponding derivations in G. The basi
 property of a graph pro
ess is

that the derivations in G whi
h are in the range of su
h mapping 
onstitute a full


lass of shift-equivalent derivations, i.e., of derivations whi
h di�er only for the

order of \independent" rewriting steps. Therefore the pro
ess 
an be regarded as

an abstra
t representation of su
h a 
lass and plays a role similar to a 
anoni
al

derivation [Kre77℄.
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It is worth remarking that in the de�nitions of o

urren
e grammar and of

graph pro
ess, later in this se
tion, we will slightly depart from the original

proposal in [CMR96℄, as we will use expli
itly the relation of asymmetri
 
on-


i
t (as we already did, e.g., in [BCM99℄). A �rst step towards the de�nition

of (deterministi
) o

urren
e grammar is a suitable notion of safety for gram-

mars [CMR96℄, generalizing that for P/T nets. More generally, we extend to

graph grammars the notion of n-safety, whi
h amounts to the property of being

�nite-state.

De�nition 3 (safe grammar). For a �xed n 2 N, we say that a graph gram-

mar G is n-safe if, for all H su
h that G

s

)

�

H, H is n-inje
tive. A 1-safe

grammar will be simply 
alled safe.

The de�nition 
an be understood by thinking of nodes and edges of the type

graph as a generalization of pla
es in Petri nets. In this view the number of

di�erent items of a graph whi
h are typed on a given item of the type graph


orresponds to the number of tokens 
ontained in a pla
e, and thus the 
ondition

of (n-) safety for a Petri net marking, whi
h requires ea
h pla
e to 
ontain at

most 1 (n) tokens, is generalized to typed graphs by the (n-) inje
tivity of the

typing morphism. In the following, to mean that a graph grammar G is n-safe

for some n 2 N we will simply say that G is n-safe.

In parti
ular, safe graph grammars 
an be given a visual net-like representa-

tion, where the items of the type graph and the produ
tions play, respe
tively,

the role of pla
es and transitions. In fa
t, if G is a safe graph grammar, then

ea
h graph hhGi; t

G

i rea
hable in G 
an be identi�ed with the subgraph t

G

(hGi)

of the type graph TG and thus it 
an be represented by suitably de
orating the

nodes and edges of the type graph. Con
retely, a node is drawn as a �lled 
ir
le,

if it belongs to t

G

(hGi) and as an empty 
ir
le, otherwise, while an edge is drawn

as a plain (bold) line if it belongs to t

G

(hGi) and as a dotted line otherwise. For

instan
e, in the right part of Fig. 2, forgetting about the produ
tions q

i

and the


orresponding 
onne
tions, one 
an see a representation of the start graph G

s

of the graph grammar presented in the left part: nodes B, C, D are �lled sin
e

they belong to G

s

, while node A is empty and edge L is dotted sin
e they are

not in G

s

.

With this identi�
ation, in ea
h derivation of a safe grammar beginning from

the start graph a produ
tion q 
an be applied only to the subgraph of the type

graph whi
h is the image via the typing morphism of its left-hand side, i.e., to

t

L

q

(hL

q

i). Therefore a

ording to its typing, we 
an think that a produ
tion

produ
es, preserves and 
onsumes items of the type graph. Using a net-like lan-

guage, we speak of pre-set

�

q, 
ontext q and post-set q

�

of a produ
tion q. This

is expressed by representing produ
tions as arrow-shaped boxes, 
onne
ted to

the 
onsumed and produ
ed resour
es by in
oming and outgoing arrows, respe
-

tively, and to the preserved resour
es by undire
ted lines. Fig. 2 presents a safe

graph grammar and its net-like pi
torial representation. To have a lighter pre-

sentation in the examples, we assume that the a
tion label of ea
h produ
tion q

in grammar G is the name q of the produ
tion itself.

8



���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

TG =

A B

L

A

B

q

1

B C B

L

L

q

2

BBA B C

q

3

DB B B

q
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=

DC
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q

1

q

3

q

4

q

2

D

A

C

L

B

Fig. 2. A grammar G and its net-like representation.

The notions of pre-set, post-set and 
ontext of a produ
tion have a 
lear inter-

pretation only for safe grammars. However for te
hni
al reasons it is preferable

to de�ne them for general graph grammars.

De�nition 4 (pre-set, post-set, 
ontext). Let G be a graph grammar. For

any q 2 P we de�ne

�

q = t

L

q

(hL

q

i � l

q

(hK

q

i)) q

�

= t

R

q

(hR

q

i � r

q

(hK

q

i))

q = t

K

q

(hK

q

i)

seen as sets of nodes and edges, and we say that q 
onsumes, produ
es and

preserves items in

�

q, q

�

and q, respe
tively. Similarly for a node or an edge x

in TG we write

�

x, x and x

�

to denote the sets of produ
tions whi
h produ
e,

preserve and 
onsume x, respe
tively.

For instan
e, for grammar G in Fig. 2, the pre-set, 
ontext and post-set of pro-

du
tion q

1

are

�

q

1

= fCg, q

1

= fBg and q

1

�

= fA;Lg, while for the node B,

�

B = ;, B = fq

1

; q

2

; q

3

g and B

�

= fq

4

g.

We next introdu
e the relations of 
ausality and asymmetri
 
on
i
t, repre-

senting the dependen
ies between events in a graph grammar.

De�nition 5 (
ausal relation). The 
ausal relation of a grammar G is the

binary relation < over Elem(G) de�ned as the least transitive relation satisfying:

for any node or edge x in the type graph TG and for produ
tions q; q

0

2 P

1. if x 2

�

q then x < q;

2. if x 2 q

�

then q < x;

3. if q

�

\ q

0

6= ; then q < q

0

.

As usual � denotes the re
exive 
losure of <. Moreover, for x 2 Elem(G) we

write bx
 for the set of 
auses of x in P , namely fq 2 P j q � xg. We will

denote by Min(G) and Max (G) the sets of items of TG whi
h are minimal and

maximal, resp., with respe
t to �.

9



The �rst two 
lauses of the de�nition of relation < are obvious. The third one

formalizes the fa
t that if an item is generated by q and preserved by q

0

, then

q

0

, to be applied, requires that q had already been applied.

Noti
e that the fa
t that an item is preserved by q and 
onsumed by q

0

, i.e.,

q \

�

q

0

6= ;, does not imply q < q

0

. A
tually, sin
e q must pre
ede q

0

in any


omputation where both appear, in su
h 
omputations q a
ts as a 
ause of q

0

.

However, di�erently from a true 
ause, q is not ne
essary for q

0

to be applied.

Therefore we 
an think of the relation between the two produ
tions as a weak

form of 
ausal dependen
y. Equivalently, we 
an observe that the appli
ation of

q

0

prevents q to be applied, so that q 
an never follow q

0

in a derivation. But

the 
onverse is not true, sin
e q 
an be applied before q

0

. Thus this situation


an also be interpreted naturally as an asymmetri
 
on
i
t between the two

produ
tions (see, e.g., [BCM99℄). For instan
e, in the grammar G of Fig. 2 there

is an asymmetri
 
on
i
t between produ
tions q

3

and q

4

, sin
e B 2 q

3

\

�

q

4

.

De�nition 6 (asymmetri
 
on
i
t). The asymmetri
 
on
i
t relation of a

grammar G is the binary relation % over the set P of produ
tions, de�ned by:

1. if q \

�

q

0

6= ; then q % q

0

;

2. if

�

q \

�

q

0

6= ; and q 6= q

0

then q % q

0

;

3. if q < q

0

then q % q

0

.

Point (1) has been dis
ussed above. By point (2), the symmetri
 
on
i
t arising

when two produ
tions q and q

0


onsume a 
ommon resour
e is represented as

an asymmetri
 
on
i
t in both dire
tions q % q

0

and q

0

% q. Finally, point (3)

formalizes the intuition that asymmetri
 
on
i
t 
an be seen as a weak form of


ausality and thus it is implied by 
ausality.

A (deterministi
) o

urren
e grammar is now de�ned as a spe
ial grammar

satisfying suitable requirements of a
y
li
ity and absen
e of 
on
i
ts, whi
h will

allow to view its produ
tions as single event o

urren
es.

De�nition 7 ((deterministi
) o

urren
e grammar). A (deterministi
)

o

urren
e grammar is a graph grammar O = hTG;G

s

; P; �i su
h that

1. ea
h edge or node x in TG is 
reated by at most one produ
tion in P , namely

j

�

xj � 1;

2. %

O

is a
y
li
 and �nitary; thus (%

O

)

�

and �

O

are �nitary partial orders;

1

3. Min(O) and Max (O), with the graphi
al stru
ture inherited from TG, are

well-de�ned subgraphs of TG; furthermore the start graph G

s


oin
ides with

Min(O) (typed by the in
lusion);

4. for ea
h produ
tion q : L

q

l

q

 K

q

r

q

! R

q

, the typing t

L

q

is inje
tive on

the \
onsumed part" hL

q

i � l

q

(hK

q

i), and similarly t

R

q

is inje
tive on the

\produ
ed part" hR

q

i � r

q

(hK

q

i).

1

A relation r � X � X is 
alled �nitary if for any x 2 X the set fy 2 X : y r xg is

�nite. Furthermore r

�

denotes the re
exive and transitive 
losure of a relation r.

10



Intuitively, 
onditions (1){(4) re
ast in the framework of graph grammars the

analogous 
onditions of o

urren
e 
ontextual nets [BCM98b,VSY98℄. In parti
-

ular the a
y
li
ity of% 
orresponds to the requirement of absen
e of 
on
i
ts in

o

urren
e Petri nets. Condition (4) is 
losely related to safety and requires that

ea
h produ
tion 
onsumes and produ
es items with \multipli
ity" one. Observe

that, together with a
y
li
ity of%, it disallows the presen
e of some produ
tions

whi
h surely 
ould never be applied, be
ause they fail to satisfy the identi�
ation


ondition with respe
t to the typing morphism.

Sin
e the start graph of an o

urren
e grammar O is determined by Min(O),

we often do not mention it expli
itly. Observe that, by the de�ning 
onditions,

ea
h o

urren
e grammar is safe.

A (deterministi
) pro
ess for a graph grammar, analogously to what happens

for ordinary and 
ontextual nets, is an o

urren
e grammar endowed with a

mapping to the original grammar and it 
an be seen as a representative of a set

of shift equivalent derivations of G.

De�nition 8 (graph pro
ess). Let G = hTG;G

s

; P; �i be a typed graph gram-

mar. A (�nite marked) pro
ess for G is a mapping ' : O

'

! G, su
h that

O

'

= hTG

'

; P

'

; �

'

i is an o

urren
e grammar and ' = h'

T

; '

P

; �

'

i, where

1. '

T

: TG

'

! TG is a graph morphism;

2. '

P

: P

'

! P is a fun
tion mapping ea
h produ
tion q

0

: (L

0

 K

0

! R

0

) in

P

'

to an isomorphi
 produ
tion q = '

P

(q

0

) : (L K ! R) in P and

3. the �

'


omponent asso
iates to ea
h produ
tion q

0

2 P

'

a triple of isomor-

phisms �

'

(q

0

) = h�

L

'

(q

0

) : L! L

0

; �

K

'

(q

0

) : K ! K

0

; �

R

'

(q

0

) : R! R

0

i, making

the diagram in the left part of Fig. 3 
ommute. Furthermore it in
ludes an

isomorphism �

s

'

: hG

s

i ! hG

s

'

i, whi
h makes the diagram in the right part

of Fig. 3 
ommute.

We denote by Min(') and Max (') the graphs Min(O) and Max (O). The same

graphs typed over TG by the restri
tions of '

T

are denoted by

�

' and '

�

and


alled, respe
tively, the sour
e and target graphs of the pro
ess (observe that

�

' ' G

s

).

We 
all initial pro
ess of G any pro
ess ' with an empty set of produ
tions

(and thus with TG

'

' hG

s

i).

For instan
e, Fig. 4 presents several pro
esses of grammar G in Fig. 2 (for the

moment ignore the fa
t that pro
esses are partly shaded). For ea
h pro
ess we

only give the net-like representation of the underlying o

urren
e grammar. The

mapping over the original grammar is impli
itly represented by the labelling.

It is worth observing, that be
ause of the dangling 
ondition, a produ
tion q

whi
h 
onsumes a node n 
an be applied only if there are no edges with sour
e

or target in n whi
h remain dangling after the appli
ation of q. In other words,

the presen
e of an edge e with sour
e or target in n su
h that e 62

�

q inhibits

the appli
ation of q (in [Bal00℄ this observation represents the basis to establish

a 
lose 
orresponden
e between graph grammars and nets with inhibitor ar
s).

For example, in the grammar G of Fig. 2, edge L inhibits produ
tion q

4

sin
e

11



hR

0

i

t

R

0

hRi

�

R

'

(q

1

)

t

R

q

0

hK

0

i

t

K

0

hKi

�

K

'

(q

0

)

t

K

'

P

(q

0

) = q

hL

0

i

t

L

0

hLi

�

L

'

(q

0

)

t

L

TG

'

'

T

TG

hMin(')i hG

s

i

�

s

'

t

G

s

TG

'

'

T

TG

Fig. 3. Graph pro
esses.

q

4


onsumes node B whi
h is the target of L. Observe that produ
tions q

1

and

q

2

, respe
tively, produ
e and 
onsume su
h an edge, and therefore, on
e q

1

has

been applied, q

4


an o

ur only after the appli
ation of q

2

. That is, in a pro
ess

where all q

1

, q

2

and q

4

are applied, they must o

ur exa
tly in this order. Indeed,

q

1

and q

2

, to a
t on edge L must produ
e or preserve its target node B (in this


ase they both preserve B) and thus, by de�nition of asymmetri
 
on
i
t, we

have q

1

% q

4

and q

2

% q

4

. Hen
e in a deterministi
 
omputation where q

1

, q

2

and q

4

o

ur, the relation% already imposes the 
orre
t order of appli
ation for

them. This holds in general: there is no need to 
onsider expli
itly the inhibiting

e�e
ts due to the dangling 
ondition in a graph pro
ess, as they are subsumed

by the asymmetri
 
on
i
t relation. Note that this does not hold in the 
ase of

inhibitor nets, for whi
h the de�nition of pro
ess be
omes more involved [Bal00℄.

3 History preserving bisimulation on graph grammars

As mentioned in the introdu
tion, the theory of 
on
urren
y for graph grammars

has been deeply studied and a number of 
on
urrent operational models for graph

grammars has been proposed in the literature. However, until now the problem

of de�ning suitable abstra
t behavioural semanti
s for graph grammars has been

given little attention.

Observe that the notions of (labelled) graph grammar and of dire
t derivation

are enough to de�ne ordinary bisimulation over graph grammars. Intuitively, two

systems are bisimilar if every a
tion of the �rst one 
an be simulated by an a
tion

of the se
ond one, and vi
e versa. Formally, given two graph grammars G

1

and

G

2

, a simulation of G

1

into G

2

is a relation R between (abstra
t) graphs typed

over TG

1

and TG

2

, respe
tively, su
h that if G

1

RG

2

and G

1

)

a

G

1

H

1

then there

exists H

2

su
h that G

2

)

a

G

2

H

2

and H

1

RH

2

. The relation R is a bisimulation

if both R and R

�1

are simulations, and G

1

and G

2

are bisimilar if their initial

graphs are related by a bisimulation.

Ordinary bisimulation is an \interleaving" equivalen
e, in the sense that it

is not able to 
apture the 
on
urren
y properties of a system. For instan
e, it

12



equates the parallel 
omposition of two systems and the nondeterministi
 
hoi
e

of their possible sequentializations. Here we are interested in the so-
alled history

preserving bisimulation, a behavioural equivalen
e whi
h, instead, takes into a
-


ount the dependen
ies among events. Roughly speaking, it equates two systems

if ea
h a
tion of the �rst one 
an be simulated by an a
tion of the se
ond one with

an equivalent history, and vi
e versa. In this se
tion, relying on the work already

developed on 
ontextual nets [BCM00a℄, the notion of graph pro
ess is taken as

a basis to extend this idea to the 
ase of graph grammars. As a des
ription of the

\
on
urrent stru
ture" of a 
omputation we 
onsider the (labelled) prime event

stru
ture (pes) underlying a pro
ess, i.e., a partially ordered stru
ture where

the elements represent events (o

urren
es of produ
tions) and the partial or-

der represents the dependen
ies between events. This amounts to observing the

pre
eden
es between events, without taking 
are of their origin. We mentioned

that su
h pre
eden
es 
an arise both as ordinary 
ausal dependen
ies, indu
ed

by the 
ow of information, and as dependen
ies indu
ed by read-only operations

and inhibiting e�e
ts related to the dangling 
ondition. Other �ner observations,

taking into a

ount the diverse nature of these pre
eden
es, are 
on
eivable and

will be dis
ussed in the 
on
lusions.

The basi
 ingredient for the de�nition of history preserving bisimulation is a

transition system, asso
iated to ea
h graph grammar, where states are pro
esses.

The initial state is the empty pro
ess, 
orresponding to the start graph, and any

pro
ess 
an be extended by the \appli
ation" of any produ
tion whi
h is enabled

in its �nal (maximal) graph.

De�nition 9 (pro
ess moves). Given two pro
esses ' and '

0

of a labeled

graph grammar G, we write '

a

e

'

0

, saying that ' moves to '

0

performing

a
tion a, if

{ P

'

0

= P

'

[ feg, with e 62 P

'

and �

G

('

0

P

(e)) = a;

{ TG

'

is a subgraph of TG

'

0

;

{

�

e and e are in
luded in Max (');

{ '

T

, '

P

, �

'

and �

'

and are the restri
tions to O

'

of the 
omponents of '

0

.

Fig. 4 presents a sequen
e of pro
esses '

i

for the grammar G of Fig. 2, su
h

that ea
h '

i

moves to '

i+1

(the pro
ess '

3

is not represented expli
itly). For

instan
e '

0

q

1

e

1

'

1

.

To ea
h pro
ess ' of a graph grammar G we 
an naturally asso
iate a (de-

terministi
 labelled) pes where events are the produ
tions of the underlying

o

urren
e graph grammar, 
ausality is the transitive 
losure of the asymmetri



on
i
t relation and ea
h event is labelled by the a
tion label of the 
orrespond-

ing produ
tion in G.

De�nition 10 (prime event stru
ture for pro
esses). Let ' be a pro
ess

of a labelled graph grammar G. The pes asso
iated to ' is de�ned as:

ev (') = hP

'

; (%

'

)

�

; �

G

Æ '

P

i.
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Fig. 4. A sequen
e of pro
ess moves for grammar G in Fig. 2, starting from an initial

pro
ess. For any pro
ess the non-shaded part represents the 
orresponding partial

pro
ess.
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Based on the notions of pro
ess and of event stru
ture asso
iated to a pro
ess,

history preserving (HP-) bisimulation is readily de�ned.

De�nition 11 (HP-bisimulation). Let G

1

and G

2

be labelled graph grammars.

An HP-simulationR of G

1

in G

2

is a set of triples h'

1

; f; '

2

i where '

i

is a pro
ess

of G

i

for i 2 f1; 2g, and f : ev ('

1

) ! ev('

2

) is an isomorphism of pes's, su
h

that

1. h'

0

(G

1

); ;; '

0

(G

2

)i 2 R, with '

0

(G

i

) initial pro
ess of G

i

for i 2 f1; 2g;

2. h'

1

; f; '

2

i 2 R^'

1

a

e

1

'

0

1

) '

2

a

e

2

'

0

2

^ h'

0

1

; f

0

; '

0

2

i 2 R^ f

0

jev('

1

)

= f .

An HP-bisimulation between G

1

and G

2

is a set of triples R su
h that R

and R

�1

= fh'

2

; f

�1

; '

1

i : h'

1

; f; '

2

i 2 Rg are HP-simulations. The labelled

graph grammars G

1

and G

2

are HP-bisimilar, written G

1

�

hp

G

2

, if there is an

HP-bisimulation R between G

1

and G

2

.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

PG

2

= P

P P M

G

1

= P

M

out

send

Fig. 5. Modelling the transmission of messages.

Both ordinary and history preserving bisimulation represent an abstra
tion of

the 
on
rete operational semanti
s based on the shift equivalen
e, in the sense

that any two graph grammars with the same 
on
urrent model of 
omputa-

tion [Roz97℄ are bisimilar and HP-bisimilar.

Con
erning the relationship between ordinary bisimulation and history pre-

serving bisimulation over graph grammars, quite obviously, being based on a

more detailed observation, the latter is �ner than the former. To have a better

understanding of the di�eren
e between the two semanti
s 
onsider the pro-

du
tions in Fig. 5, whi
h are intended to model the generation and delivery of

messages in a single node of a network. Edges labelled by P andM represent pro-


esses and messages, respe
tively. Rule out represents the generation of a message

by a pro
ess, while rule send represents the delivery of the message: sin
e we 
on-

sider a single node of the newtwork the message whi
h is sent simply disappears.

This minimal subsystem is only aimed at illustrating some 
on
epts in a setting
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as simple as possible: to make the model more realisti
 one 
ould make expli
it

the re
eption of messages, the entire network 
ould be represented as a graph

and new rules 
ould be added to represent message delivery over the network.

Let G

1

and G

2

be the graph grammars with rules out and send, and with initial

graph G

1

and G

2

, respe
tively. It is easy to see that G

1

and G

2

are bisimilar, but

not HP-bisimilar. In fa
t, ea
h out operation performed by a pro
ess 
ausally

depends on the previous one and ea
h send operation 
ausally depends on the

out operation whi
h generated the 
orresponding message. Therefore in G

1

there

is a single 
hain of 
ausally dependent out operations, while in G

2

there 
an be

two 
on
urrent out operations, as shown by the 
orresponding event stru
tures

in Fig. 6.

It is worth observing that extending the grammars with an expli
it rule

modelling the re
eive operation, the (deterministi
 
omponents of the) event

stru
tures would 
losely 
orrespond to Message Sequen
e Charts [RGG96℄, a

graphi
al and textual language for the des
ription and spe
i�
ation of the inter-

a
tions between system 
omponents.
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(a)

send

out

out

out

out

send

send

send

out

send

out

out

out

send

send

send

out

send

out

out

out

send

send

send

(b)

Fig. 6. The event stru
tures 
orresponding to the graph grammars (a) G

1

and (b) G

2

.

4 Causal automata

In this se
tion we review 
ausal automata, a generalization of ordinary automata

introdu
ed in [MP97℄ as an appropriate model for history dependent formalisms

(see also [MP98,Pis99℄, where more general models, 
alled HD-automata, are

presented). Here 
ausal automata will be used as an abstra
t framework where

HP-bisimulation over graph grammars 
an be studied. In parti
ular the de
id-

ability of HP-bisimulation for �nite-state graph grammars will be proved by

showing that the problem 
an be redu
ed to the bisimilarity of �nite 
ausal

automata.

Causal automata extend ordinary automata by allowing sets of names to

appear expli
itly in the states and labels of the automata. The names are lo
al,
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namely they do not have a global identity, and the 
orresponden
e between

the names of the sour
e and those of the target states of ea
h transition is

spe
i�ed expli
itly. This allows for a 
ompa
t representation of systems sin
e

states di�ering only for the 
on
rete identity of the names 
an be identi�ed.

Moreover 
ausal automata provide a me
hanism for the generation of new names:

the problem of 
hoosing a fresh name disappears in this formalism where a new

name is simply a name whi
h does not 
orrespond to any name in the sour
e

state. In the spe
i�
 
ase of Petri nets and graph grammars, names are identities

of transitions in a pro
ess (events) and the 
orresponden
e between names allows

to represent 
ausal dependen
ies.

De�nition 12 (
ausal automaton). Let N be a �xed in�nite 
ountable set of

names (event names) and let A
t be a �xed set of labels. A 
ausal automaton is

a tuple A = hQ;n; 7�!; q

0

i, where

{ Q is the set of states;

{ n : Q! P

�n

(N ) is a fun
tion asso
iating to ea
h state a �nite set of names;

{ 7�! is a set of transitions, ea
h of the form q

a

M

�

q

0

, with

� q, q

0

the sour
e and target states;

� a 2 A
t the label;

� M � n(q) the set of dependen
ies of the transition;

� � : n(q

0

) ,! n(q) [ f?g the inje
tive inverse renaming fun
tion;

{ q

0

2 Q is the initial state; it is required that n(q

0

) = ;.

For ea
h state q 2 Q the set of names n(q) is used to represent the past events

whi
h 
an (but not ne
essarily will) be referen
ed by future transitions. Con
ep-

tually, ea
h transition q

a

M

�

q

0

depends on the past events mentioned in M .

Due to the lo
al s
ope of names, the fun
tion � : n(q

0

) ,! n(q) [ f?g is needed

to relate the names of the target state to those of the sour
e. The event mapped

to ? (if any) represents the new event generated by the 
onsidered transition.

In the following the 
omponents of a 
ausal automaton will be often denoted by

using the name of the automaton as subs
ript.

The notion of bisimulation on 
ausal automata (CA-bisimulation) takes into

a

ount the fa
t that a state has atta
hed a set of lo
al names. Hen
e a bisimu-

lation not only relates states, but also the 
orresponding sets of lo
al names.

De�nition 13 (CA-bisimulation). Let A and B be two 
ausal automata. A

CA-simulation R of A in B is a set of triples hq; Æ; pi, where q 2 Q

A

, p 2 Q

B

and Æ is a partial inje
tive fun
tion from n

A

(q) to n

B

(p), su
h that

1. hq

0

A

; ;; q

0

B

i 2 R;

2. if hq; Æ; pi 2 R and q

a

M

�

q

0

in A then

{ p

a

Æ(M)

�

p

0

in B for some p

0

and
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{ hq

0

; Æ

0

; p

0

i 2 R for some Æ

0

su
h that Æ

?

Æ � = � Æ Æ

0

, where Æ

?

is de�ned

as Æ [ f(?; ?)g (see the diagram below).

n

A

(q) [ f?g

Æ

?

n

B

(p) [ f?g

n

A

(q

0

)

�

Æ

0

n

B

(p

0

)

�

A CA-bisimulation between A and B is a set of triples R su
h that R and

R

�1

= fhp; Æ

�1

; qi : hq; Æ; pi 2 Rg are CA-simulations. The automata A and B

are CA-bisimilar, written A �


a

B, if there exists a bisimulation R between A

and B.

In [MP97℄ an algorithm has been proposed for 
he
king the CA-bisimilarity

of (�nite) 
ausal automata. Given a 
ausal automaton A, �rst the \useless"

names, i.e., names never referen
ed by future transitions, are removed from the

states of the automaton. For instan
e, in the 
ase of Petri nets, the useless

names are the events that belong to a state be
ause they have generated a

token whi
h still exists, but whi
h is never used later by any other event. Then

the basi
 step of the algorithm 
onstru
ts an ordinary labelled transition system

Unf (A), 
alled the unfolding of A, su
h that A �


a

B i� the asso
iated transition

systems Unf (A) and Unf (B) are bisimilar. Finally, standard algorithms (e.g., a

partition/re�nement algorithm) 
an be used to verify bisimilarity on the ordinary

transition systems or to obtain a minimal equivalent transition system.

As mentioned in the introdu
tion, some more re
ent works [Pis99,MP00℄

show that, 
onsidering a generalization of the model, the so-
alled automata with

symmetries, a minimal realization exists and 
an be 
onstru
ted in the 
lass of


ausal (or, more generally, HD) automata themselves. A 
ausal automaton 
an

be seen as a 
oalgebra of a suitable fun
tor and the minimal realization arises

as the image in the �nal 
oalgebra of the given automaton.

Abstra
tion homomorphisms [CFM83,Cas87℄, whi
h are also 
alled zig-zag

morphisms [vB84℄ or transition preserving homomorphisms [FM90℄, are de�ned

in the setting of ordinary automata as morphisms whi
h \preserve" and \re
e
t"

transitions. The existen
e of an abstra
tion homomorphism ensures that the

sour
e and target automata are bisimilar. The next de�nition generalizes this

idea to 
ausal automata.

De�nition 14 (abstra
tion homomorphism). Let A and B be 
ausal au-

tomata. An abstra
tion homomorphism h : A ! B is a pair h = hh; fh

q

g

q2Q

A

i

where h : Q

A

! Q

B

is a fun
tion and for all q 2 Q

A

, h

q

: n

B

(h(q)) ! n

A

(q) is

an inje
tive fun
tion, su
h that h(q

0

A

) = q

0

B

and

{ if q

a

M

�

q

0

in A then h(q)

a

h

�1

q

(M)

�

h(q

0

) in B, with � Æ h

q

0

= h

?

q

Æ � (see

Fig. 7.(a));

{ if h(q)

a

M

�

p

0

in B then q

a

h

q

(M)

�

q

0

in A for some q

0

, with h(q

0

) = p

0

and

� Æ h

q

0

= h

?

q

Æ � (see Fig. 7.(b)).
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n

A

(q) [ f?g n

B

(h(q)) [ f?g

h

?

q

n

A

(q

0

)

�

n

B

(h(q

0

))

h

q

0

�

n

A

(q) [ f?g n

B

(h(q)) [ f?g

h

?

q

n

A

(q

0

)

�

n

B

(p

0

)

h

q

0

�

(a) (b)

Fig. 7. Diagrams for abstra
tion homomorphisms.

Intuitively, via an abstra
tion homomorphism h : A ! B several states of A


an 
ollapse into a single state of B, in a way that respe
ts the behaviour and

the naming. In parti
ular, observe that for any state q 2 Q

A

, the fun
tion h

q

maps the names of h(q) (in B) into the names of q (in A). The idea is that the

names of q whi
h are not in the image of h

q


an be safely removed, obtaining

an equivalent system, namely, in a sense, they are \useless". Indeed, also in this

setting, the existen
e of an abstra
tion homomorphism h : A ! B is suÆ
ient

to 
on
lude the bisimilarity of A and B.

Lemma 15. Let A and B be 
ausal automata. If there exists an abstra
tion

homomorphism h : A ! B then A �


a

B.

It is worth observing that, as for ordinary automata, the above lemma does not

provide a ne
essary 
ondition. In [MP98℄, following the approa
h of [JNW96℄,

abstra
tion homomorphisms have been des
ribed as open maps in a 
ategory of


ausal automata and it has been shown that two 
ausal automata are

CA-bisimilar if and only if they are related by a span of open maps.

5 De
iding HP-bisimulation on graph grammars

In this se
tion we show that it is possible to asso
iate to any graph grammar G

a 
ausal automaton A

hp

(G), via a 
onstru
tion whi
h respe
ts HP-bisimulation,

i.e., su
h that two graph grammars G

1

and G

2

are HP-bisimilar if and only

if A

hp

(G

1

) and A

hp

(G

2

) are CA-bisimilar. Furthermore, for �nite-state graph

grammars, the 
orresponding automaton is proved to be �nite and thus the

general algorithms for 
ausal automata mentioned in Se
tion 4 
an be used to


he
k the bisimilarity of graph grammars and to 
onstru
t a minimal realization.

First, note that, as in the 
ase of Petri nets, the de�nition of HP-bisimulation

on graph grammars relies on the transition system of pro
esses and pro
ess

moves, whi
h is in�nite for any non-trivial system exhibiting a 
y
li
 behaviour.

To redu
e it to a �nite 
ausal automaton, or, in general, to a �nite transition

system, at least in the 
ase of �nite-state systems, the leading idea, already

present in [DD90℄, is that not all the information 
arried by a pro
ess is relevant
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for de
iding HP-bisimulation. Hen
e pro
esses may be repla
ed by more 
ompa
t

stru
tures where part of the past history is dis
arded.

For ordinary nets, as observed in [Vog91,MP97℄, one 
an restri
t the attention

only to the set of events whi
h produ
ed at least one token in the 
urrent state

and to the 
ausal ordering among them. In the 
ase of 
ontextual nets one must

keep information not only about the events whi
h produ
ed a token in the 
urrent

state (\produ
ers"), but also about the events whi
h read a token in the 
urrent

state (\readers"). Fortunately, among the readers, whi
h 
an be unbounded even

for a safe net, only the maximal ones play a signi�
ant role, while the others 
an

be safely dis
arded. This allows to obtain a �nite des
ription of the transition

system of pro
esses for �nite-state 
ontextual nets [BCM00b℄.

We will show that the 
onstru
tion proposed for 
ontextual nets 
an be gen-

eralized to graph grammars. This 
an be better understood by re
alling that, as

already observed, for a deterministi
 
omputation of a graph grammar the asym-

metri
 
on
i
ts indu
ed by the possibility of expressing \
ontextual" rewritings

(read operations) play a signi�
ant role in the ordering of events, while the in-

hibiting e�e
ts between produ
tion o

urren
es related to the dangling 
ondition


an be disregarded sin
e they are subsumed by su
h asymmetri
 
on
i
ts.

The next de�nition formalizes the notions of produ
er and of (maximal)

reader for a pro
ess of a graph grammar.

De�nition 16 (produ
ers and (maximal) readers). Given a pro
ess ' of

a graph grammar G, we de�ne

{ the set of produ
ers

p(') = fq 2 P

'

: q

�

\Max (') 6= ;g;

{ the set of readers

r(') = fq 2 P

'

: q \Max (') 6= ;g;

{ the set of maximal readers

mr(') = fq 2 r(') : 9x 2 q \Max ('): q is %

'

�maximal in xg.

For instan
e, for pro
ess '

5

of Fig. 4, the set of produ
ers is p('

5

) = fe

5

g,

the set of readers is r('

5

) = fe

1

; e

2

; e

3

; e

4

; e

5

g, while the maximal readers are

mr('

5

) = fe

2

; e

5

g.

A 
ru
ial observation is that for any n-safe graph grammar G the sets p(')

and mr('), with ' ranging over the pro
esses of G are bounded. In the sequel,

given a graph G we will denote by jGj the 
ardinality of the (disjoint) union of

the node and edge sets of G. More generally, with abuse of notation, a graph will

be sometimes identi�ed with the set 
onsisting of the (disjoint) union of its node

and edge sets, and we will use on graphs the ordinary set-theoreti
al relations

and operations.

Lemma 17. Let G be a n-safe graph grammar. Then, for any pro
ess ' of G we

have jp(')j � n � jTG

G

j and jmr(')j � (n � jTG

G

j)

2

.

Proof (sket
h). By the basi
 properties of graph pro
esses, for any pro
ess ', the

graph '

�

, namely Max (') typed over TG

G

by the restri
tion of '

T

, is rea
hable

in G. Sin
e any graph rea
hable in G is n-inje
tive, we 
an establish the following

bound for the number of items (nodes and edges) of Max ('),
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jMax (')j � n � jTG

G

j.

Hen
e it is immediate to 
on
lude that n�jTG

G

j is a bound also for the 
ardinality

of p(') sin
e for ea
h q; q

0

2 p(') we have q

�

\Max (') 6= ; and q

�

\ q

0�

= ;.

Furthermore, for any item x in Max (') the set A

x

of maximal events in

x 
onsists of 
on
urrent events. Hen
e also the 
orresponding pre-set

�

A

x

is


on
urrent and therefore j

�

A

x

j is bounded by n � jTG

G

j. Sin
e produ
tions are


onsuming, i.e., they have a non-empty pre-set, and for any q; q

0

2 A

x

it must be

�

q\

�

q

0

= ;, we 
on
lude that n � jTG

G

j is a bound also for the 
ardinality of A

x

.

Therefore the number of produ
tions in mr(') is bounded by (n � jTG

G

j)

2

. ut

We next de�ne partial pro
esses, whi
h represent abstra
tions of graph pro-


esses where only a relevant part for dis
riminating non HP-bisimilar states is

kept, namely the target graph of the pro
ess (i.e., the subgraph 
onsisting of the

maximal items), the produ
ers, the maximal readers and their dependen
ies. For

te
hni
al reasons we �rst introdu
e pre-partial pro
esses whi
h are required to

satisfy weaker requirements.

De�nition 18 (pre-partial pro
ess). A pre-partial pro
ess of a graph gram-

mar G is a tuple 
 = hG




; E




;�




; �




; post




; 
ont




i, where

{ G




is a TG

G

-typed graph;

{ E




is a set of events;

{ �




� E




�E




is a partial order;

{ �




: E




! A
t is a labelling fun
tion over a �xed set of a
tions A
t;

{ 
ont




; post




: E




! P(N

hG




i

[E

hG




i

) are fun
tions whi
h map ea
h e 2 E




to the sets of items in hG




i whi
h are read and produ
ed, respe
tively, by e.

For any x 2 hG




i we denote by 
ont




(x) the set of readers of x, i.e., the set

fe 2 E




: x 2 
ont




(e)g.

An isomorphism of pre-partial pro
esses i : 


1

! 


2

is a pair of fun
tions i =

hi

T

; i

E

i where i

T

: G




1

! G




2

is an isomorphism of TG

G

-typed graphs and

i

E

: E




1

! E




2

is a bije
tion su
h that i

E

establishes an isomorphism of labelled

partial orders between hE




1

;�




1

; �




1

i and hE




2

;�




2

; �




2

i and, for any e 2 E




1

,

post(i

E

(e)) = i

T

(post(e)) and 
ont(i

E

(e)) = i

T

(
ont(e)).

As for ordinary graph pro
ess, for any pre-partial pro
ess 
 we de�ne the

sets of produ
ers and of maximal readers.

De�nition 19. Let 
 be a pre-partial pro
ess. The set of produ
ers of 
 is

de�ned as p(
) = fe 2 E




: post




(e) 6= ;g. The set of maximal readers of 
 is

de�ned as mr(
) = fe 2 E




: 9x 2 
ont




(e): e is �




-maximal in 
ont




(x)g.

Partial pro
esses are de�ned as pre-partial pro
esses where ea
h event is a

produ
er or a maximal reader.

De�nition 20 (partial pro
ess). A partial pro
ess of a graph grammar G is

a pre-partial pro
ess 
 su
h that E




= p(
) [mr(
). The initial partial pro
ess

for G is the partial pro
ess over the initial graph, with an empty set of events,

i.e., 


0

= hG

s

G

; ;; ;; ;; ;; ;i.
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An obvious 
onstru
tion asso
iates to ea
h pre-partial pro
ess the 
orre-

sponding partial pro
ess.

De�nition 21. Given any pre-partial pro
ess 
, the 
orresponding partial pro-


ess, denoted by Cut(
), is de�ned as follows:

{ G

Cut(
)

= G




;

{ E

Cut(
)

= p(
) [mr(
);

and �

Cut(
)

, �

Cut(
)

, post

Cut(
)

and 
ont

Cut(
)

are the restri
tions to E

Cut(
)

of the 
orresponding relations and fun
tions of 
.

Given any pro
ess ' of a graph grammar, we 
an 
onstru
t a 
orresponding

partial pro
ess by keeping only the produ
ers and the maximal readers of '.

Te
hni
ally this is done by �rst 
onstru
ting a pre-partial pro
ess and then

using the operation Cut(�).

De�nition 22 (partial pro
ess asso
iated to a pro
ess). Let ' be a pro
ess

of a graph grammar G. The 
orresponding partial pro
ess, denoted by 
('), is

de�ned as Cut(
) where 
 is the pre-partial pro
ess satisfying

{ G




= '

�

= hMax ('); '

T

jMax(')

i;

{ E




= P

'

;

{ �




= (%

'

)

�

;

{ �




= �

G

Æ '

P

;

{ for any q 2 E




, 
ont




(q) = q \Max (') and post




(q) = q

�

\Max (').

In Fig. 4, for every pro
ess '

i

, the 
orresponding partial pro
ess 
('

i

) is obtained

by 
onsidering only the non-shaded part. The next lemma makes expli
it the easy

fa
t that the events in the partial pro
ess asso
iated to a pro
ess ' are exa
tly

the produ
ers and the maximal readers of the original pro
ess '.

Lemma 23. Let G be a labelled graph grammar and let ' be a pro
ess of G.

Then p(
(')) = p(') and mr(
(')) = mr(').

Next we introdu
e amove relation on partial pro
esses: given a partial pro
ess


, whenever a produ
tion of the original grammar is appli
able to the graph G




,

the partial pro
ess 
an evolve a

ordingly. This leads to a transition system of

partial pro
esses whi
h represents the �rst step in the 
onstru
tion of the 
ausal

automaton asso
iated to a graph grammar.

De�nition 24 (partial pro
esses move). Given two partial pro
esses 
 and




0

of a labelled graph grammar G we write 


a

e

0




0

, and we say that 
 moves

to 


0

performing the a
tion a if 


0

= Cut(


00

) where 


00

is a pre-partial pro
ess

satisfying the following 
onditions: there is a produ
tion q 2 P

G

q : L

q

l

q

 K

q

r

q

! R

q
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and a mat
h m : L

q

! G




su
h that, if X = m(hL

q

i � l

q

(hK

q

i)) and C =

m(l

q

(hK

q

i)), then

{ G




)

a

q

G




00

using mat
h m; more spe
i�
ally we assume that hG




i �X �

hG




00

i, i.e., the items whi
h are preserved remains 
on
retely the same;

{ E




00

= E




[ fe

0

g and e

0

62 E




;

{ �




00

= (�




[f(e; e

0

) : e 2 E




^ (post(e)\ (X [C))[ (
ont(e)\X) 6= ;g)

�

;

{ �




00

(e) = �




(e) for any e 2 E




and �




00

(e

0

) = a = �

G

(q);

{ for any e 2 E




, post




00

(e) = post




(e) �X, 
ont




00

(e) = 
ont




(e) �X, and


ont




00

(e

0

) = C, post




00

(e

0

) = hG




00

i � hG




i.

As mentioned above, a partial pro
ess 
 of a grammar G 
an perform a move

when there exists a produ
tion q in G whi
h is appli
able to its graphi
al 
om-

ponent G




. The graph G




0

underlying the new partial pro
ess is obtained by

rewriting G




using q. Observe that the new event e

0

, representing the o

ur-

ren
e of q, depends on the events whi
h have generated a graph item whi
h is


onsumed or read by q (
ausality), and also on the events whi
h have read an

item 
onsumed by q (asymmetri
 
on
i
t). The fun
tions 
ont and post are ex-

tended to the new event e

0

, but they must be updated also to take into a

ount

the fa
t that some items of G




might have been deleted. Consequently an event

might 
ease to be a produ
er or a maximal reader and thus, by e�e
t of the

appli
ation of Cut(�), some events 
an disappear. A sequen
e of partial pro
ess

move is exempli�ed in Fig. 4, if we 
onsider only the non-shaded parts.

To ea
h pro
ess and partial pro
ess move we asso
iate the set of maximal

(weak or strong) 
auses of the exe
uted produ
tion, whi
h will play a basi
 role in

the de�nition of the automaton. In fa
t, to observe the partial order asso
iated

to an evolving 
omputation it is suÆ
ient to look, step by step, only at the

immediate maximal 
auses of ea
h single produ
tion (the other dependen
ies

being impli
itly given by the transitivity of the partial order).

De�nition 25 (immediate and maximal 
auses). The set of immediate

(weak or strong) 
auses of a pro
ess move '

a

e

'

0

is de�ned as IC('

a

e

'

0

) =

fq 2 P

'

: q

�

\ (e[

�

e) 6= ; _ q\

�

e 6= ;g. We denote by MC('

a

e

'

0

) the set of

maximal 
auses, namely the subset of %

'

-maximal elements of IC('

a

e

'

0

).

The set of immediate 
auses of a partial pro
ess move 


a

e




0

, adopting

the notation of De�nition 24, is de�ned by IC(


a

e

0




0

) = fe 2 E




: (post




(e)\

(X [C))[ (
ont




(e)\X) 6= ;g. The set of maximal 
auses MC(


a

e

0




0

) is the

subset of �




-maximal immediate 
auses.

For example, 
onsidering transition '

5

q

4

e

6

'

6

in Fig. 4, the immediate 
auses

are fe

1

; e

2

; e

3

; e

4

; e

5

g, while the immediate maximal 
auses are fe

2

; e

5

g.

The next lemma relates the transition system of pro
esses and the transition

system of partial pro
esses.
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Lemma 26. Let G be any labelled graph grammar.

1. If ' and '

0

are pro
esses of G and '

a

e

'

0

then we have 
(')

a

e


('

0

),

with MC('

a

e

'

0

) = MC(
(')

a

e


('

0

));

2. If ' is a pro
ess of G and 
(')

a

e




0

then there exists a pro
ess '

0

of G,

su
h that '

a

e

0

'

0

, with 


0

and 
('

0

) isomorphi
 and MC(
(')

a

e




0

) =

MC('

a

e

0

'

0

).

It is worth noting that we 
annot repla
e point (2) above with the stronger

\if 
(')

a

e




0

then there exists a pro
ess '

0

of G, su
h that '

a

e

'

0

, with




0

= 
('

0

)", sin
e in general the event e and the new graph items in G




0


an

appear in '.

By Lemma 26 we 
on
lude that if a partial pro
ess 
 of a graph grammar G

is rea
hable from an initial partial pro
ess via a �nite sequen
e of moves, then


 = 
(') for some pro
ess ' of G. Hen
e, when the graph grammar G is n-safe,

the de�nition of 
(') and Lemmata 17 and 23 allow us to 
on
lude the validity

of the following result.

Lemma 27. For any n-safe labelled graph grammar the set of partial pro
esses

rea
hable from the initial pro
ess (and taken up to isomorphism) is �nite.

We are now ready to present the 
onstru
tion of the 
ausal automaton as-

so
iated to a graph grammar for 
he
king HP-bisimilarity. To obtain a \
om-

pa
t" automaton (with a �nite number of states for n-safe graph grammar) we

must 
onsider partial pro
esses up to isomorphism. To this aim we �x a stan-

dard representative in ea
h 
lass of isomorphi
 partial pro
esses. Furthermore

we 
onsider a normalization fun
tion norm su
h that for any partial pro
ess 
,

norm(
) = h


0

; ii, where 


0

is the standard representative in the isomorphism


lass of 
 and i : 


0

! 
 is a 
hosen partial pro
ess isomorphism. We assume

that the names of the produ
tions in any (partial) pro
ess 
 are taken from N ,

namely that E




� N .

De�nition 28 (
ausal automaton for HP-bisimulation). Let G be a la-

belled graph grammar. The HP-
ausal automaton asso
iated to G is the automa-

ton A

hp

(G) = hQ;n; 7�!; q

0

i, having (standard representatives of) partial pro-


esses as states. The initial state q

0

is the standard representative 


0

of the initial

partial pro
esses of G and whenever 
 2 Q then

{ n(
) = E




;

{ if 


a

e




0

and norm(


0

) = h


00

; ii then 


00

2 Q and 


a

M

�




00

where

� � : E




00

,! E




[ f?g is de�ned as � = (id

E




[ f(e; ?)g) Æ i

E

;

� M = MC(


a

e




0

).
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Observe that the renaming fun
tion in a transition of the 
ausal automaton is

obtained from the isomorphism given by the normalization fun
tion norm, simply

by redire
ting the new name e to ? (if e belongs to E




0

). As anti
ipated, the

maximal 
auses of a pro
ess move are used as dependen
ies in the automaton

transition.

The states of the automaton are standard representatives of partial pro
esses

rea
hable from the initial partial pro
ess. Hen
e by Lemma 27 we dedu
e that

for any n-safe graph grammar the above de�ned automaton has a �nite number

of states (and also a �nite number of transitions leaving from ea
h state, sin
e

the number of produ
tions is �nite). Vi
e versa, if the graph grammar is not

n-safe for some n, then the automaton will have an in�nite number of states.

Theorem 29. Let G be a labelled graph grammar. Then G is n-safe for some n

i� the automaton A

hp

(G) is �nite.

To e�e
tively build the automaton we 
an perform an indu
tive 
onstru
tion

based on De�nition 28. The only thing to observe is that, given a partial pro
ess


, there might be in�nitely many moves 


a

e




0

sin
e the event e 
an be 
hosen

arbitrarily among the unused events in N and a similar 
onsideration holds for

the new graph items in G




0

. However, without loss of generality, we 
an limit our

attention only to some partial pro
ess moves, 
alled the representative moves,

where the newly generated name and items are 
hosen in a 
anoni
al way. For

instan
e we 
an suppose that the set of names N is well-ordered and assume

that a transition 


a

e




0

to be representative must satisfy e = min(N � P




).

The main result now states that there is a pre
ise 
orresponden
e between

HP-bisimulation on graph grammars and CA-bisimulation on 
ausal automata.

Hen
e HP-bisimilarity of graph grammars 
an be 
he
ked on the 
orresponding

automata.

Theorem 30. Let G

1

and G

2

be two labelled graph grammars. Then G

1

�

hp

G

2

if and only if A

hp

(G

1

) �


a

A

hp

(G

2

).

Proof (sket
h). The proof is organized in two steps. First observe that the tran-

sition system of pro
esses of a graph grammar G 
an be seen itself as a 
ausal

automaton A

pr

(G) = hQ;n; 7�!; q

0

i, where

{ Q is the set of pro
esses ' of G and n(') = P

'

for any pro
ess ';

{ '

a

M

�

'

0

if, a

ording to De�nition 9, '

a

e

'

0

,M = MC('

a

e

'

0

), and

the naming � : P

'

0

! P

'

[ f?g is de�ned as the identity for x 2 P

'

0

� feg,

while �(e) = ?;

{ the initial state q

0

is any initial pro
ess of G.

Then, it is possible to prove that HP-bisimulation on graph grammars 
oin
ides

with CA-bisimulation on the 
ausal automata of pro
esses, namely G

1

�

hp

G

2

i� A

pr

(G

1

) �


a

A

pr

(G

2

).

The se
ond step of the proof shows that, for any graph grammar G there exists

an abstra
tion homomorphism h : A

pr

(G) ! A

hp

(G), and thus, by Lemma 15,
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A

pr

(G) �


a

A

hp

(G). The abstra
tion homomorphism h = hh; fh

'

g

'

i 
an be

de�ned as follows: for any pro
ess ' (state of A

pr

(G)), if norm(
(')) = h


0

; ii

then h(') = 


0

and h

'

: E




0

! P

'

is simply i

E

. To prove that h satis�es the


onditions in De�nition 14 one essentially resorts to Lemma 26.

Summing up, by the above 
onsiderations we have that A

pr

(G

i

) �


a

A

hp

(G

i

)

for i 2 f1; 2g, and moreover A

pr

(G

1

) �


a

A

pr

(G

2

) i� G

1

�

hp

G

2

. Hen
e the thesis

easily follows. ut

By Theorems 29 and 30 we immediately 
on
lude the desired de
idability

result.

Corollary 31. HP-bisimulation on n-safe graph grammars is de
idable.

It is worth observing that, in this setting, due to the Turing 
ompleteness

of graph grammars, di�erently from what happens for ordinary and 
ontextual

nets, the property of being n-safe for some n, i.e., the property of being �nite-

state, is not de
idable.

6 Con
lusions

In this paper we have introdu
ed an abstra
t semanti
s for graph grammars

inspired by the 
lassi
al history preserving bisimulation. Extending the work

already developed on ordinary and 
ontextual P/T nets, we have shown how

history preserving bisimulation on graph grammars 
an be studied in the general

framework of 
ausal automata. A translation of graph grammars into 
ausal

automata has been proposed, whi
h respe
ts (preserves and re
e
ts) history

preserving bisimulation. The translation produ
es �nite automata for �nite-state

graph grammars, thus allowing to reuse the algorithms existing for this general

formalism in order to de
ide bisimulation and to obtain a minimal realization.

We 
on
lude by dis
ussing two possible dire
tions of further investigation

whi
h we �nd interesting: on the one hand the possibility of de�ning di�erent

notions of history preserving bisimulation by 
onsidering observations of the


ausal history of a 
omputation �ner than the asso
iated pes; on the other hand

the development of a logi
 in the style of Hennessy-Milner for HP-bisimulation.

6.1 Re�ning the observation

The notion of HP-bisimulation 
onsidered in this paper is obtained by taking

as observation of a 
on
urrent 
omputation of a graph grammar the pes un-

derlying the 
orresponding graph pro
ess. We have already mentioned that this


orresponds to observe only the pre
eden
es between events, 
onfusing the weak


ausality deriving from the possibility of preserving part of the state in a rewrit-

ing step, the inhibiting e�e
ts related to the dangling 
ondition and the \strong"


ausality deriving from the 
ow of information. It 
ould be reasonable to 
on-

sider, instead, equivalen
es whi
h arise by assuming di�erent, �ner des
riptions

of 
on
urrent 
omputations.
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For instan
e, a natural re�nement 
onsists of distinguishing the 
ow of in-

formation from the other dependen
ies. This is easily a
hieved by extra
ting

from a pro
ess a di�erent event stru
ture, whi
h is 
alled asymmetri
 event

stru
ture [BCM98b,BCM00a℄ where 
ausality and asymmetri
 
on
i
t are kept

separate. The asymmetri
 event stru
ture asso
iated to a graph pro
ess ' is

de�ned as

aev (') = hP

'

;�

'

;%

'

; �

G

Æ '

P

i.

Then the 
orresponding bisimulation, whi
h 
an be 
alled read history preserv-

ing (RHP-) bisimulation, is de�ned as HP-bisimulation, by simply re�ning the

observation, namely by 
hanging ev('

i

) with aev('

i

) in De�nition 11.

Any RHP-bisimulation relating two graph grammar G

1

and G

2

is also an

HP-bisimulation. In fa
t if '

1

and '

2

are pro
esses of G

1

and G

2

, respe
tively,

and f : aev('

1

) ! aev ('

2

) is an isomorphism of asymmetri
 event stru
tures

then it is easy to see that f is also an isomorphism of pes's between ev ('

1

)

and ev ('

2

). Therefore G

1

�

rhp

G

2

implies G

1

�

hp

G

2

. As for 
ontextual nets,

the 
onverse impli
ation, instead, does not hold. Regarding the de
idability of

RHP-bisimulation, the natural extension of the 
onstru
tion whi
h has been

introdu
ed for HP-bisimulation 
onsists of 
onsidering partial pro
esses where

all the readers (not only the maximal ones) are kept. Unfortunately in this way

the 
onstru
tion produ
es a 
ausal automaton whi
h may be in�nite also for

safe graph grammars. Indeed, the de
idability of RHP-bisimulation is an open

question already for 
ontextual nets [BCM00b℄.

6.2 Hennessy-Milner logi
 for HP-bisimulation

The ordinary bisimulation over transition systems has a logi
al 
ounterpart, the

so-
alled Hennessy-Milner logi
 [HM85℄, a kind of modal logi
 with two basi


modalities whi
h 
an be interpreted as possibility and ne
essity. The syntax of

formulae is the following

� ::= true j � ^ � j :� j hai�.

The formula 
onstru
ted with the \diamond" modality hai�, where a is an a
tion

and � a formula, intuitively is satis�ed by any state from whi
h an a-a
tion 
an

be exe
uted leading to a state whi
h satis�es �. The dual modality, i.e., the

\box" modality [a℄�, 
an be de�ned as :hai:�. It is satis�ed by all the states

where any a-a
tion leads to a state that satis�es �. Hennessy-Milner logi
 
an be

shown to be adequate for bisimulation in the sense that, two states of a transition

system are bisimilar if and only if they satisfy the same set of formulae [HM85℄.

An interesting dire
tion of further resear
h is the study of an analogue of

Hennessy-Milner logi
 for HP-bisimulation, whi
h has been initiated in [Bar99℄.

The basi
 syntax of formulae is the following

� ::= true j � ^ � j :� j EXfn; a;Mg�.
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The existential modality allows to 
onstru
t a formula EXfe; a;Mg� whi
h, intu-

itively, is satis�ed by a state where an a
tion a 
an be exe
uted, whi
h generates

a new name (or event) e dire
tly 
aused by the set of events in M , leading to a

state whi
h satis�es �. Also in this 
ase there is a dual universal modality: the

formula AXfn; a;Mg�, de�ned as :EXfe; a;Mg:�, is satis�ed by a state where

any a
tion a whi
h 
an be exe
uted, generates a new name (or event) e dire
tly


aused by the set of events in M , leading to a state whi
h satis�es �.

Like ordinary Hennessy-Milner logi
 is naturally interpreted over transition

systems (labelled graphs), this variation of the logi
 has a natural interpretation

over 
ausal automata, but also over the transition system of pro
esses of a net or

of a graph grammar. The possibility of de
laring new names/events in a formula

is re
e
ted, at semanti
al level, by the the presen
e in the model of a kind of

environment whi
h links the events in the 
urrent state and the names \de
lared"

in the formula. An adequateness result for su
h a logi
 over 
ausal automata has

been proved in [Bar99℄ showing that two automata A

1

and A

2

are CA-bisimilar

i� they satisfy the same set of formulae. Resorting to our results, adequateness

for the logi
 over graph grammars would be easily proved by showing that for

any labelled graph grammar G

G 
 � , A

pr

(G) 
 �.

where \
" means \is a model of".

As in the 
ase of ordinary Hennessy-Milner logi
, the expressiveness would

greatly bene�t form the introdu
tion of some \re
ursion" operator, e.g., mini-

mal/maximal �x-point operators in the style of the �-
al
ulus (�-
al
ulus). This

should be done by retaining some interesting properties of the logi
, like de
id-

ability, at least for a signi�
ant fragment.
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