Bisimulation Equivalences
for Graph Grammars*

Paolo Baldan, Andrea Corradini, Ugo Montanari

Dipartimento di Informatica
Universita di Pisa

Abstract. Along the years the concurrent behaviour of graph gram-
mars has been widely investigated, and, in particular, several classical
approaches to the semantics of Petri nets have been extended to graph
grammars. Most of the existing semantics for graph grammars provide
a (possibly concurrent) operational model of computation, while little
interest has been devoted to the definition of abstract observational se-
mantics. The aim of this paper is to introduce and study a behavioural
equivalence over graph grammars, inspired by the classical history pre-
serving bisimulation. Several choices are conceivable according to the
kind of concurrent observation one is interested in. We concentrate on
the basic case where the concurrent nature of a graph grammar compu-
tation is described by means of a prime event structure. As it happens
for Petri nets, history preserving bisimulation can be studied in the gen-
eral framework of causal automata — a variation of ordinary automata
introduced to deal with history dependent formalisms. In particular, we
prove that history preserving bisimulation is decidable for finite-state
graph grammars, by showing how the problem can be reduced to decid-
ing the equivalence of finite causal automata.

1 Introduction

Graph grammars have been shown to be a powerful formalism for the specifi-
cation of concurrent and distributed systems, which properly generalizes Petri
nets. Along the years their truly concurrent behaviour has been deeply studied
and a consolidated theory of concurrency is now available [Roz97,EKMR99]. In
particular, several classical approaches to the semantics of Petri nets, like pro-
cess and unfolding semantics, have been extended to graph grammars (see, e.g.,
[CMR96,Rib96,BCM98a,BCM99)).

Most of the existing semantics for graph grammars define a (possibly concur-
rent) operational model of computation, which gives a concrete description of the
behaviour of the system in terms of non-effective (e.g., infinite, non-decidable)

* Research partially supported by the EC TMR Network GETGRATS (General The-
ory of Graph Transformation Systems), by the ESPRIT Working Group APPLI-
GRAPH (Applications of Graph Transformation), and by the MURST project
TOSCA (Teoria della Concorrenza, Linguaggi di Ordine Superiore e Strutture di
Tipi).

structures. Thus they cannot be used directly to reason about the modelled sys-
tem. Indeed, these operational models are intended to represent the basis for the
definition of more abstract semantics, which take into account only some aspects
of interest for the system at hand, disregarding inessential details. At this level
one can define effective techniques for checking the equivalence of systems with
respect to the selected observations, for verifying if a system satisfies a given
property or for synthesizing a system satisfying a given property. Roughly, we
can distinguish two main approaches to system verification based on abstract
semantics. First, one can verify a system by checking its equivalence with a spe-
cial system which is known to be “correct”. For instance, the fact that a system
is secure with respect to external attacks can be checked by verifying that the
system in isolation is semantically equivalent to the system under a generic at-
tack. Alternatively one can develop a logic, adequate with respect to the abstract
semantics, which is interpreted over the class of systems at hand. Then to verify
that a system satisfies a certain property, expressed as a formula in the logic,
one checks if it is a model (in logical sense) for the formula, hence the name
model checking for this approach.

Some effort has been devoted to the development of logics suited to spec-
ify the dynamics of graph transformation systems, with special interest in the
integration of graphical specifications and temporal logic constraints (see, e.g.,
[HEWC97,Hec98,Koc99,GHKO00]), but the study of abstract behavioural seman-
tics and of the corresponding logics has received little attention. Here we move
some steps in this direction, introducing an abstract semantics for graph gram-
mars based on the classical history preserving bisimulation (HP-bisimulation, for
short) [RT88,DD90], a behavioural equivalence which, differently from ordinary
bisimulation, takes into account the concurrency properties of a system. Infor-
mally, two systems are HP-bisimilar if every event in the first one can be simu-
lated by an event in the second one with an equivalent causal history and vice
versa. History preserving bisimulation on ordinary P/T nets [RT88,BDKP91]
relies on the notions of process and deterministic prime event structure (PES)
associated to a process. Roughly speaking, two nets No and Ny are HP-bisimilar
if for any process my of Ny we can find a process m; of Ny such that the asso-
ciated deterministic PES’s are isomorphic. Whenever my can perform an action
becoming a process 7, also m; can perform the same action becoming 7] and
vice versa. Moreover the isomorphism between the PES’s associated to mg and mq
is required to be extensible to an isomorphism between the PES’s associated to
my and 71 . Intuitively, history preserving bisimulation is more appropriate than
ordinary bisimulation whenever in a system we are interested not only in the
events which might happen, but also in the dependency relations between such
events. For instance, imagine to have a system where a subset of actions is con-
sidered critical and suppose that for security reasons critical actions must not be
influenced by non-critical actions. This property, which can be seen as a form of
non-interference [GM82], can be formalized by asking that critical actions do not
causally depend on non-critical actions and it is invariant for transformations of
the system which preserve HP-bisimilarity.

A basic source of inspiration for our work is the close relation existing between
graph grammars and Petri nets. The simple but crucial observation is that Petri
nets are essentially rewriting systems on multisets, i.e., the markings of the net,
which can be seen, in turn, as discrete graphs labelled over the places of the
net. Hence graph grammars can be viewed as a generalization of Petri nets: they
allow to give a more structured description of the state in term of a proper
graph and to specify “contextual” rewriting steps where part of the state is
preserved. In this respect graph grammars are closer to some generalizations of
nets in the literature, called nets with read (test) arcs or contextual nets (see,
e.g., [JK95,MR95,Vog97]), where transitions can be enriched with a context, i.e.,
with the possibility of checking the presence of tokens in the places of the net,
without consuming such tokens.

Indeed, our study of HP-bisimulation for graph grammars is guided by the
work on ordinary Petri nets [MP97,Vog91], which has been generalized to con-
textual nets in [BCMOOb]. Graph grammars come equipped with a notion of
deterministic (graph) process [CMR96,BCM98a] and with an event structure
model [BCM99,Bal00], and thus the notion of HP-bisimulation can be gen-
eralized to graph grammars. We show that HP-bisimulation is decidable for
finite-state graph grammars, called here, by analogy with Petri nets, n-safe
graph grammars. To this aim, as in [MP97,BCMO0Ob], we resort to causal au-
tomata [MP97], a variation of ordinary automata where states are sets of names
(or events) and transitions allow for the creation of new names and the deallo-
cation of old ones. A generalization of causal automata, called history-dependent
automata (HD-automata), has been proposed as a general framework to study
history-dependent formalisms, like CCS with causal and location semantics or
with value-passing, and the w-calculus with the ordinary, early or late, or non-
interleaving semantics [MP98,Pis99].

The (possibly infinite) transition system of processes of a graph grammar,
which is used to define HP-bisimulation, is translated to a causal automaton
via a construction which respects (preserves and reflects) bisimilarity. The au-
tomaton is proved to be finite exactly for finite-state graph grammars. Thus
HP-bisimilarity of any two finite-state graph grammars can be checked by ver-
ifying the bisimilarity of the corresponding automata. This can be done con-
cretely by using the algorithm proposed in [MP97], which after removing from
the states of the automaton the events which are useless, i.e., never referenced in
the future, translates the causal automaton into an ordinary automaton. Then
the standard techniques for ordinary transition systems can be used to check
bisimilarity or to obtain a minimal realization. More recent works [Pis99,MP00)
show that a minimal realization exists and can be constructed in the class of
causal automata themselves (actually, in the mentioned papers, the general case
of HD-automata is worked out and a suitable extension of HD-automata, the
so-called automata with symmetries, must be introduced to get this result). As
it happens for ordinary automata, also a causal automaton can be seen as a
coalgebra for a suitable functor and the minimal realization arises as the image
in the final coalgebra of the given automaton.

It is worth mentioning that when considering formalisms more expressive
than ordinary nets, like nets with read or inhibitor arcs, or graph grammars
themselves, the dependencies between events in a computation become more
complex than causality and conflict. For instance, the possibility of specifying
“read-only” operations over the state leads to an asymmetric form of conflict:
if an event e reads a resource which is consumed by another event €', then the
execution of e’ disables e, while the converse does not hold, i.e., e can precede
e’ in a computation. Hence the causal structure of a process can be described
at various degrees of abstraction. At a basic level it can be represented as a
deterministic PES, a labelled partial order which describes only the precedences
between events, disregarding their origin. But we can also consider finer de-
scriptions in terms of event structures which “observe”, for instance, new kind
of dependencies arising from the possibility of preserving part of the state in
a rewriting step or from the need of maintaining the integrity of its graphical
structure. In this paper we will concentrate on the basic case only, just hinting
at the other possibilities.

The rest of the paper is structured as follows. First in Section 2 we present
the basics of graph grammars and the notion of (deterministic) graph process.
In Section 3 we introduce HP-bisimulation for graph grammars. In Section 4
we review causal automata and the corresponding notion of causal bisimulation.
Then in Section 5 we show how a (finite-state) graph grammar can be mapped to
a (finite) causal automaton via a transformation which respects HP-bisimilarity,
thus offering the possibility of deciding HP-bisimulation and of building a mini-
mal automaton for a given grammar up to HP-bisimilarity. Finally, in Section 6
we draw some conclusions and directions for future work. In particular we hint
at the possibility of defining different notions of HP-bisimulation which arise by
considering finer observations of the causal history of events. Furthermore we
give some ideas about the logical counterpart of history preserving bisimulation,
presenting a logic in the style of Hennessy-Milner which can be shown to be
adequate.

2 Typed graph grammars and processes

This section briefly introduces typed graph grammars [CMR96], a variation of
classical DPO graph grammars [Ehr87,CMR™97] where the rewriting takes place
on so-called typed graphs, namely graphs labelled over a structure (the graph of
types) that is itself a graph. After some basic definitions and a discussion about
the relationship between graph grammars and (contextual) Petri nets, we will
recall the notion of process for a typed graph grammar [CMR96,BCM98a], which
plays a basic role in the definition of history preserving bisimulation.

2.1 Typed graph grammars

Let Graph be the category of (directed, unlabelled) graphs and total graph
morphisms. For a graph G we will denote by Ng and Eg the (disjoint) sets of

nodes and edges of G, and by sg,tq : Eq — Ng its source and target functions.
Given a graph TG, a typed graph G over TG is a graph (G), together with a
morphism t¢ : (G) — T'G. A morphism between T'G-typed graphs f: G; — G,
is a graph morphisms f : (G1) — (G2) consistent with the typing, i.e., such
that tq, = tg, o f. A typed graph G is called injective if the typing morphism
tc is injective. More generally, for a fixed n € N, the graph is called n-injective
if for any item z in TG, |t;'(z)| < n, namely if the number of instances of
“resources” of any type x is bounded by n. The category of T'G-typed graphs
and typed graph morphisms is denoted by T'G-Graph and can be synthetically
defined as the comma category (Graph | T'G).

Fixed a graph T'G of types, a (T'G-typed graph) production (L LKS R) is
a pair of injective typed graph morphisms [: K — L and r : K — R, where (L),
(K) and (R) are finite graphs. It is called consuming if morphism [: K — L is
not surjective. The typed graphs L, K, and R are called the left-hand side, the
interface, and the right-hand side of the production, respectively.

Definition 1 (typed graph grammar). A (T'G-typed) graph grammar G is a
tuple (TG, G, P,), where G is the start (typed, finite) graph, P is a finite set
of production names, and 7 is a function which associates a graph production to
each production name in P. A labelled graph grammar is a pair (G, \g), where
G is a graph grammar and \g : P — Act is a function from P to a fized set of
action names Act.

We will denote by Elem(G) the set Ny U EpeUP. Furthermore, we will assume
that for each production name ¢ € P the corresponding production w(q) is

L, (li K, “ R,. The components of a graph grammar G will be denoted by T'G,
G, P and 7, possibly with subscripts.

Since in this paper we work only with typed notions, we will usually omit
the qualification “typed”, and, sometimes, we will not indicate explicitly the
typing morphisms. Moreover, we will consider only consuming grammars, namely
grammars where all productions are consuming: this corresponds, in the theory
of Petri nets, to the usual requirement that transitions must have non-empty
pre-set.

Definition 2 (direct derivation). Let G be a graph grammar. Given a typed
graph G, a production ¢ € P, and a match (i.e., a graph morphism) g : Ly — G,
a direct derivation ¢ from G to H using g (based on g) exists, written : G =4 H
(or 0 : G =g H), if and only if the diagram

q:LqLKqLRq
Gy D~ H

can be constructed, where both squares have to be pushouts in TG-Graph. For
a labelled grammar, if Ag(q) = a, in this situation we write § : G =7 H (or
§:G=¢ H).

A derivation in G is a sequence of direct derivations (in G) beginning from
the start graph Gs.

Roughly speaking, the rewriting step removes from the graph G the items of the
left-hand side which are not in the image of the interface, namely L, — I,(K,),
producing in this way the graph D. Then the items in the right-hand side which
are not in the image of the interface, namely R, — r,(K,), are added to D,
obtaining the final graph H. Notice that the interface graph K, (common part
of L, and R,) specifies both what is preserved and how the added subgraph
has to be connected to the remaining part. Given a match g : L, = G as in
the above diagram, the pushout complement of I, and ¢ (i.e., a graph D with
morphisms k and b such that the left square is a pushout) exists if and only if
the gluing condition is satisfied. This consists of two parts:

— identification condition, requiring that if two distinct nodes or edges of L,
are mapped by g to the same image, then both must be in the image of [,;

— dangling condition, stating that no edge in G — g(L,) should be incident to a
node in g(L, —1,(K,)) (because otherwise the application of the production
would leave such an edge “dangling”).

2.2 Relation with Petri nets.

Many definitions and constructions in this paper are better understood keeping
in mind the relation between Petri nets and DPO graph grammars. The basic
observation (which belongs to the folklore, see, e.g., [Cor96]) is that a P/T Petri
net is essentially a rewriting system on multisets, and that, given a set A, a
multiset of A can be represented as a discrete graph typed over A. In this view
a P/T net can be seen as a graph grammar acting on discrete graphs typed over
the set of places, the productions being (some encoding of) the net transitions:
a marking is represented by a set of nodes (tokens) labelled by the place where
they are, and, for example, the Petri net transition ¢ in the top part of Fig. 1 is
represented by the graph production depicted aside. Notice that the interface is
empty since nothing is explicitly preserved by a net transition. It is not difficult
to show that this encoding satisfies the properties one would expect, namely
that there is a precise correspondence between transition firings in the original
net and derivations in the corresponding grammar.

The considered encoding of nets into grammars enlightens the dimensions
in which graph grammars properly extend nets. First of all grammars allow for
a more structured description of state, that is a general graph rather than a
multiset (discrete graph). Furthermore, graph grammars allow for productions
where the interface graph may not be empty, thus specifying a “context” con-
sisting of items that have to be present for the productions to be applied, but
which are not affected by the application. The context can be interpreted as a
part of the state which is accessed in a “read-only” way by the rewriting step,
and, consistently with this view, several rewriting steps can be applied in parallel
sharing (part of) the context. In this respect, graph grammars are closer to some

S0 So S1 S22 S3
L] L] L]

S0 So S1 S S S2 S3 S

L N J L] L] L] L] L]

Fig. 1. Petri net transitions and corresponding DPO productions.

generalizations of Petri nets in the literature, called nets with read (test) arcs or
contextual nets (see, e.g., [JK95,MR95,Vog97]), which generalize classical nets
by adding the possibility of checking for the presence of tokens which are not
consumed. Concretely, a transition of a contextual net, besides the pre-set and
post-set, has also a context specifying tokens which must be present to enable
the transitions, but which are not affected by the firing. For instance, in the
bottom left part of Fig. 1, place s is a context for transition ¢', and hence t', to
be enabled, requires a token in s which is not consumed. It is clear that the con-
text of a contextual net transition closely corresponds to the interface graph of a
DPO production, so that contextual nets can be seen as special graph grammars
acting on discrete graphs, but with productions which can have a non-empty
interface (see the encoding of transition ¢’ as a DPO graph production in the
bottom right part of Fig. 1).

2.3 Processes of typed graph grammars

Graph processes [CMR96,BCM98a] arise from the idea of equipping graph gram-
mars with a semantics which on the one hand explicitly represents events and
relationships among them, and on the other hand uses graph grammars them-
selves as semantic domain. Analogously to what happens for Petri nets, a graph
process of a graph grammar G is defined as an “occurrence grammar” O, i.e., a
grammar satisfying suitable acyclicity and conflict freeness constraints, equipped
with a mapping from O to G. This mapping is used to associate to the derivations
in O corresponding derivations in G. The basic property of a graph process is
that the derivations in G which are in the range of such mapping constitute a full
class of shift-equivalent derivations, i.e., of derivations which differ only for the
order of “independent” rewriting steps. Therefore the process can be regarded as
an abstract representation of such a class and plays a role similar to a canonical
derivation [Kre77].

It is worth remarking that in the definitions of occurrence grammar and of
graph process, later in this section, we will slightly depart from the original
proposal in [CMR96], as we will use explicitly the relation of asymmetric con-
flict (as we already did, e.g., in [BCM99]). A first step towards the definition
of (deterministic) occurrence grammar is a suitable notion of safety for gram-
mars [CMR96], generalizing that for P/T nets. More generally, we extend to
graph grammars the notion of n-safety, which amounts to the property of being
finite-state.

Definition 3 (safe grammar). For a fized n € N, we say that a graph gram-
mar G is n-safe if, for all H such that Gy =* H, H is n-injective. A 1-safe
grammar will be simply called safe.

The definition can be understood by thinking of nodes and edges of the type
graph as a generalization of places in Petri nets. In this view the number of
different items of a graph which are typed on a given item of the type graph
corresponds to the number of tokens contained in a place, and thus the condition
of (n-) safety for a Petri net marking, which requires each place to contain at
most 1 (n) tokens, is generalized to typed graphs by the (n-) injectivity of the
typing morphism. In the following, to mean that a graph grammar G is n-safe
for some n € N we will simply say that G is n-safe.

In particular, safe graph grammars can be given a visual net-like representa-
tion, where the items of the type graph and the productions play, respectively,
the role of places and transitions. In fact, if G is a safe graph grammar, then
each graph ((G),tq) reachable in G can be identified with the subgraph t¢((G))
of the type graph T'G and thus it can be represented by suitably decorating the
nodes and edges of the type graph. Concretely, a node is drawn as a filled circle,
if it belongs to t¢((G)) and as an empty circle, otherwise, while an edge is drawn
as a plain (bold) line if it belongs to t¢((G)) and as a dotted line otherwise. For
instance, in the right part of Fig. 2, forgetting about the productions ¢; and the
corresponding connections, one can see a representation of the start graph G
of the graph grammar presented in the left part: nodes B, C, D are filled since
they belong to G, while node A is empty and edge L is dotted since they are
not in G.

With this identification, in each derivation of a safe grammar beginning from
the start graph a production ¢ can be applied only to the subgraph of the type
graph which is the image via the typing morphism of its left-hand side, i.e., to
tr,((Lq)). Therefore according to its typing, we can think that a production
produces, preserves and consumes items of the type graph. Using a net-like lan-
guage, we speak of pre-set ®q, context q and post-set q° of a production g. This
is expressed by representing productions as arrow-shaped boxes, connected to
the consumed and produced resources by incoming and outgoing arrows, respec-
tively, and to the preserved resources by undirected lines. Fig. 2 presents a safe
graph grammar and its net-like pictorial representation. To have a lighter pre-
sentation in the examples, we assume that the action label of each production ¢
in grammar G is the name ¢ of the production itself.

o[2gl-[E - |
o[8[2[5 g
o[22l 8- ¢
Y —

Fig. 2. A grammar G and its net-like representation.

The notions of pre-set, post-set and context of a production have a clear inter-
pretation only for safe grammars. However for technical reasons it is preferable
to define them for general graph grammars.

Definition 4 (pre-set, post-set, context). Let G be a graph grammar. For
any q € P we define

.q:tLq«Lq) _lq(<Kq>)) ¢ :th(<Rq> _Tq(<Kq>))

q
= tx, ((Kq))

seen as sets of nodes and edges, and we say that q consumes, produces and
preserves items in ®q, q¢° and q, respectively. Similarly for a node or an edge x
in TG we write *z, x and z°* to denote the sets of productions which produce,
preserve and consume x, respectively.

For instance, for grammar G in Fig. 2, the pre-set, context and post-set of pro-
duction ¢; are *qy = {C}, ¢ = {B} and ¢:* = {A, L}, while for the node B,
B=10,B={q,q,q} and B = {qs}.

We next introduce the relations of causality and asymmetric conflict, repre-
senting the dependencies between events in a graph grammar.

Definition 5 (causal relation). The causal relation of a grammar G is the
binary relation < over Elem(G) defined as the least transitive relation satisfying:
for any node or edge x in the type graph TG and for productions q,q' € P

if t € °q then ¢ < q;
if © € ¢q° then q < z;
ifq*Ng #0 then g < ('

fo o~

As usual < denotes the reflexive closure of <. Moreover, for x € Elem(G) we
write |x| for the set of causes of x in P, namely {q € P | q < z}. We will
denote by Min(G) and Maz(G) the sets of items of TG which are minimal and
mazimal, resp., with respect to <.

The first two clauses of the definition of relation < are obvious. The third one
formalizes the fact that if an item is generated by ¢ and preserved by ¢', then
q', to be applied, requires that ¢ had already been applied.

Notice that the fact that an item is preserved by ¢ and consumed by ¢/, i.e.,
gnN *q¢" # 0, does not imply ¢ < ¢'. Actually, since ¢ must precede ¢’ in any
computation where both appear, in such computations ¢ acts as a cause of ¢'.
However, differently from a true cause, g is not necessary for ¢’ to be applied.
Therefore we can think of the relation between the two productions as a weak
form of causal dependency. Equivalently, we can observe that the application of
q' prevents ¢ to be applied, so that ¢ can never follow ¢’ in a derivation. But
the converse is not true, since g can be applied before ¢'. Thus this situation
can also be interpreted naturally as an asymmetric conflict between the two
productions (see, e.g., [BCM99]). For instance, in the grammar G of Fig. 2 there
is an asymmetric conflict between productions g3 and g4, since B € g3 N *qq.

Definition 6 (asymmetric conflict). The asymmetric conflict relation of a
grammar G is the binary relation ,/ over the set P of productions, defined by:

L ifqgn *q #0 thenq 7 q';
2. if *qn °q¢" #0 and q # ' then q 7 q';
3. ifqg<q thenq 7 q'.

Point (1) has been discussed above. By point (2), the symmetric conflict arising
when two productions ¢ and ¢’ consume a common resource is represented as
an asymmetric conflict in both directions ¢ /¢’ and ¢’ ¢. Finally, point (3)
formalizes the intuition that asymmetric conflict can be seen as a weak form of
causality and thus it is implied by causality.

A (deterministic) occurrence grammar is now defined as a special grammar
satisfying suitable requirements of acyclicity and absence of conflicts, which will
allow to view its productions as single event occurrences.

Definition 7 ((deterministic) occurrence grammar). A (deterministic)
occurrence grammar is a graph grammar O = (TG, G, P,w) such that

1. each edge or node x in TG is created by at most one production in P, namely
|*z| <1

2. N0 is acyclic and finitary; thus (/\0)* and <o are finitary partial orders;*

3. Min(O) and Mazx(O), with the graphical structure inherited from TG, are
well-defined subgraphs of TG furthermore the start graph G coincides with
Min(O) (typed by the inclusion);

q

!

4. for each production q : L, + K, I R,, the typing tr, is injective on
the “consumed part” (L,) — 1,((K,)), and similarly tg, is injective on the
“produced part” (Ry) —rq ((Ky)).

LA relation r C X x X is called finitary if for any 2 € X the set {y € X : yra} is
finite. Furthermore r* denotes the reflexive and transitive closure of a relation r.

10

Intuitively, conditions (1)—(4) recast in the framework of graph grammars the
analogous conditions of occurrence contextual nets [BCM98b,VSY98]. In partic-
ular the acyclicity of corresponds to the requirement of absence of conflicts in
occurrence Petri nets. Condition (4) is closely related to safety and requires that
each production consumes and produces items with “multiplicity” one. Observe
that, together with acyclicity of 7, it disallows the presence of some productions
which surely could never be applied, because they fail to satisfy the identification
condition with respect to the typing morphism.

Since the start graph of an occurrence grammar O is determined by Min(O),
we often do not mention it explicitly. Observe that, by the defining conditions,
each occurrence grammar is safe.

A (deterministic) process for a graph grammar, analogously to what happens
for ordinary and contextual nets, is an occurrence grammar endowed with a
mapping to the original grammar and it can be seen as a representative of a set
of shift equivalent derivations of G.

Definition 8 (graph process). Let G = (TG,Gs, P,) be a typed graph gram-
mar. A (finite marked) process for G is a mapping ¢ : O, — G, such that
O, = (TG, Py, my) is an occurrence grammar and ¢ = (@1, 9p, Ly), where

1. o7 : TGy, — TG is a graph morphism;

2. ¢p: P, — P is a function mapping each production ¢' : (L' < K" — R') in
P, to an isomorphic production ¢ = ¢p(q') : (L <+ K — R) in P and

3. the 1, component associates to each production ¢' € P, a triple of isomor-
phisms 1,(q') = (15(¢") : L - L', 5 (¢") : K = K',.(¢') : R — R'), making
the diagram in the left part of Fig. 3 commute. Furthermore it includes an
isomorphism 1%, : (Gs) — (Gs,), which makes the diagram in the right part

%)
of Fig. 3 commute.

We denote by Min(p) and Max(p) the graphs Min(O) and Maz(O). The same
graphs typed over TG by the restrictions of pr are denoted by ®¢ and ¢® and
called, respectively, the source and target graphs of the process (observe that
o~ Gy).

We call initial process of G any process @ with an empty set of productions
(and thus with TG, ~ (Gs)).

For instance, Fig. 4 presents several processes of grammar G in Fig. 2 (for the
moment ignore the fact that processes are partly shaded). For each process we
only give the net-like representation of the underlying occurrence grammar. The
mapping over the original grammar is implicitly represented by the labelling.
It is worth observing, that because of the dangling condition, a production ¢
which consumes a node n can be applied only if there are no edges with source
or target in n which remain dangling after the application of ¢. In other words,
the presence of an edge e with source or target in n such that e € ®q inhibits
the application of ¢ (in [Bal00] this observation represents the basis to establish
a close correspondence between graph grammars and nets with inhibitor arcs).
For example, in the grammar G of Fig. 2, edge L inhibits production ¢4 since

11

Ban)

a (K) er(d) =q
<L'>/ | Gk >/ n l Ltcs
\tkk/ " . TGy —7— 176
trr tr
TG, or TG

Fig. 3. Graph processes.

g4 consumes node B which is the target of L. Observe that productions ¢; and
G2, respectively, produce and consume such an edge, and therefore, once ¢; has
been applied, ¢4 can occur only after the application of g». That is, in a process
where all q1, g2 and g4 are applied, they must occur exactly in this order. Indeed,
¢1 and g2, to act on edge L must produce or preserve its target node B (in this
case they both preserve B) and thus, by definition of asymmetric conflict, we
have ¢; q4 and g2 ' q4. Hence in a deterministic computation where ¢, ¢2
and ¢4 occur, the relation already imposes the correct order of application for
them. This holds in general: there is no need to consider explicitly the inhibiting
effects due to the dangling condition in a graph process, as they are subsumed
by the asymmetric conflict relation. Note that this does not hold in the case of
inhibitor nets, for which the definition of process becomes more involved [Bal00].

3 History preserving bisimulation on graph grammars

As mentioned in the introduction, the theory of concurrency for graph grammars
has been deeply studied and a number of concurrent operational models for graph
grammars has been proposed in the literature. However, until now the problem
of defining suitable abstract behavioural semantics for graph grammars has been
given little attention.

Observe that the notions of (labelled) graph grammar and of direct derivation
are enough to define ordinary bisimulation over graph grammars. Intuitively, two
systems are bisimilar if every action of the first one can be simulated by an action
of the second one, and vice versa. Formally, given two graph grammars G; and
G2, a simulation of G, into G» is a relation R between (abstract) graphs typed
over T'G; and T'G5, respectively, such that if G; R G2 and G #81 H, then there
exists Hs such that G5 =g, Hs and H; R H. The relation R is a bisimulation
if both R and R~! are simulations, and G; and G, are bisimilar if their initial
graphs are related by a bisimulation.

Ordinary bisimulation is an “interleaving” equivalence, in the sense that it
is not able to capture the concurrency properties of a system. For instance, it

12

equates the parallel composition of two systems and the nondeterministic choice
of their possible sequentializations. Here we are interested in the so-called history
preserving bisimulation, a behavioural equivalence which, instead, takes into ac-
count the dependencies among events. Roughly speaking, it equates two systems
if each action of the first one can be simulated by an action of the second one with
an equivalent history, and vice versa. In this section, relying on the work already
developed on contextual nets [BCMO00a], the notion of graph process is taken as
a basis to extend this idea to the case of graph grammars. As a description of the
“concurrent structure” of a computation we consider the (labelled) prime event
structure (PES) underlying a process, i.e., a partially ordered structure where
the elements represent events (occurrences of productions) and the partial or-
der represents the dependencies between events. This amounts to observing the
precedences between events, without taking care of their origin. We mentioned
that such precedences can arise both as ordinary causal dependencies, induced
by the flow of information, and as dependencies induced by read-only operations
and inhibiting effects related to the dangling condition. Other finer observations,
taking into account the diverse nature of these precedences, are conceivable and
will be discussed in the conclusions.

The basic ingredient for the definition of history preserving bisimulation is a
transition system, associated to each graph grammar, where states are processes.
The initial state is the empty process, corresponding to the start graph, and any
process can be extended by the “application” of any production which is enabled
in its final (maximal) graph.

Definition 9 (process moves). Given two processes ¢ and @' of a labeled
graph grammar G, we write ¢ — @', saying that ¢ moves to ¢’ performing
action a, if

— P, =P, U{e}, withe & P, and A\g(¢¥p(e)) = a;

- TGy, is a subgraph of TGy ;

*c and ¢ are included in Max(p);

— o1, op, T, and L, and are the restrictions to O, of the components of ¢'.

Fig. 4 presents a sequence of processes ¢; for the grammar G of Fig. 2, such
that each ¢; moves to ¢;11 (the process 3 is not represented explicitly). For
instance g % ©1-

To each process ¢ of a graph grammar G we can naturally associate a (de-
terministic labelled) PES where events are the productions of the underlying
occurrence graph grammar, causality is the transitive closure of the asymmetric
conflict relation and each event is labelled by the action label of the correspond-
ing production in G.

Definition 10 (prime event structure for processes). Let ¢ be a process
of a labelled graph grammar G. The PES associated to ¢ is defined as:

ev(p) = (Py, (4)", Ag 0 op).

13

Fig. 4. A sequence of process moves for grammar G in Fig. 2, starting from an initial
process. For any process the non-shaded part represents the corresponding partial
process.

14

Based on the notions of process and of event structure associated to a process,
history preserving (HP-) bisimulation is readily defined.

Definition 11 (HP-bisimulation). Let G, and Go be labelled graph grammars.
An HP-simulation R of G1 in G» is a set of triples (p1, f, p=2) where @; is a process
of Gi fori € {1,2}, and f : ev(p1) — ev(p2) is an isomorphism of PES’s, such
that

1. {p0(G1),0,00(G2)) € R, with ©o(G;) initial process of G; fori € {1,2};

2. <(p17f7<p2> € R/\‘Pl % (pll = P2 % cpIQ A <<pllaf,a(pl2> € R/\f(ev(wl) = f

An HP-bisimulation between Gy and G, is a set of triples R such that R
and R=" = {{pa, 71, 01) : {1, f,p2) € R} are HP-simulations. The labelled
graph grammars Gy and Gy are HP-bisimilar, written G ~p, Ga, if there is an
HP-bisimulation R between G; and Gs.

out

e [o | (mem

send

e e e

Fig. 5. Modelling the transmission of messages.

Both ordinary and history preserving bisimulation represent an abstraction of
the concrete operational semantics based on the shift equivalence, in the sense
that any two graph grammars with the same concurrent model of computa-
tion [Roz97] are bisimilar and HP-bisimilar.

Concerning the relationship between ordinary bisimulation and history pre-
serving bisimulation over graph grammars, quite obviously, being based on a
more detailed observation, the latter is finer than the former. To have a better
understanding of the difference between the two semantics consider the pro-
ductions in Fig. 5, which are intended to model the generation and delivery of
messages in a single node of a network. Edges labelled by P and M represent pro-
cesses and messages, respectively. Rule out represents the generation of a message
by a process, while rule send represents the delivery of the message: since we con-
sider a single node of the newtwork the message which is sent simply disappears.
This minimal subsystem is only aimed at illustrating some concepts in a setting

15

as simple as possible: to make the model more realistic one could make explicit
the reception of messages, the entire network could be represented as a graph
and new rules could be added to represent message delivery over the network.
Let G; and G be the graph grammars with rules out and send, and with initial
graph G and G5, respectively. It is easy to see that G; and G, are bisimilar, but
not HP-bisimilar. In fact, each out operation performed by a process causally
depends on the previous one and each send operation causally depends on the
out operation which generated the corresponding message. Therefore in G; there
is a single chain of causally dependent out operations, while in G there can be
two concurrent out operations, as shown by the corresponding event structures
in Fig. 6.

It is worth observing that extending the grammars with an explicit rule
modelling the receive operation, the (deterministic components of the) event
structures would closely correspond to Message Sequence Charts [RGG96], a
graphical and textual language for the description and specification of the inter-
actions between system components.

out out out
send send send
out out out
send send send
out out out
send send send
out out out
send send send

(a) (b)

Fig. 6. The event structures corresponding to the graph grammars (a) Gi and (b) G».

4 Causal automata

In this section we review causal automata, a generalization of ordinary automata
introduced in [MP97] as an appropriate model for history dependent formalisms
(see also [MP98,Pis99], where more general models, called HD-automata, are
presented). Here causal automata will be used as an abstract framework where
HP-bisimulation over graph grammars can be studied. In particular the decid-
ability of HP-bisimulation for finite-state graph grammars will be proved by
showing that the problem can be reduced to the bisimilarity of finite causal
automata.

Causal automata extend ordinary automata by allowing sets of names to
appear explicitly in the states and labels of the automata. The names are local,

16

namely they do not have a global identity, and the correspondence between
the names of the source and those of the target states of each transition is
specified explicitly. This allows for a compact representation of systems since
states differing only for the concrete identity of the names can be identified.
Moreover causal automata provide a mechanism for the generation of new names:
the problem of choosing a fresh name disappears in this formalism where a new
name is simply a name which does not correspond to any name in the source
state. In the specific case of Petri nets and graph grammars, names are identities
of transitions in a process (events) and the correspondence between names allows
to represent causal dependencies.

Definition 12 (causal automaton). Let N be a fized infinite countable set of
names (event names) and let Act be a fized set of labels. A causal automaton is
a tuple A = {(Q,n,—,qo), where

— (@ is the set of states;
— n:Q = Pan(N) is a function associating to each state a finite set of names;

— > is a set of transitions, each of the form q +———, q', with

q, ¢’ the source and target states;

a € Act the label;

M C n(q) the set of dependencies of the transition;

o :n(q") = n(q) U{x} the injective inverse renaming function;

— qo € Q is the initial state; it is required that n(qy) = 0.

For each state ¢ € @ the set of names n(q) is used to represent the past events
which can (but not necessarily will) be referenced by future transitions. Concep-

tually, each transition ¢ ———, ¢’ depends on the past events mentioned in M.

Due to the local scope of names, the function o : n(q¢") = n(q) U {x} is needed
to relate the names of the target state to those of the source. The event mapped
to * (if any) represents the new event generated by the considered transition.
In the following the components of a causal automaton will be often denoted by
using the name of the automaton as subscript.

The notion of bisimulation on causal automata (CA-bisimulation) takes into
account the fact that a state has attached a set of local names. Hence a bisimu-
lation not only relates states, but also the corresponding sets of local names.

Definition 13 (CA-bisimulation). Let A and B be two causal automata. A
CA-simulation R of A in B is a set of triples (q,9,p), where ¢ € Q4, p € Qp
and 0 is a partial injective function from na(q) to np(p), such that

1. <q0A7w7qOB> € R’
2. if (q,0,p) € R and q ——, q' in A then

— p +——, p' in B for some p' and

5(M)

17

—{¢",8",p") € R for some &' such that 6* oo = pod', where §* is defined
as 0 U {(x,%)} (see the diagram below).

5
na(q) U{x} —=np(p) U {x}
gl 1o
nald) ———=ns()

A CA-bisimulation between A and B is a set of triples R such that R and
Rt ={{p,d7t,q): (q,0,p) € R} are CA-simulations. The automata A and B
are CA-bisimilar, written A ~., B, if there exists a bisimulation R between A
and B.

In [MP97] an algorithm has been proposed for checking the CA-bisimilarity
of (finite) causal automata. Given a causal automaton A, first the “useless”
names, i.e., names never referenced by future transitions, are removed from the
states of the automaton. For instance, in the case of Petri nets, the useless
names are the events that belong to a state because they have generated a
token which still exists, but which is never used later by any other event. Then
the basic step of the algorithm constructs an ordinary labelled transition system
Unf(A), called the unfolding of A, such that A ~., B iff the associated transition
systems Unf(A) and Unf(B) are bisimilar. Finally, standard algorithms (e.g., a
partition/refinement algorithm) can be used to verify bisimilarity on the ordinary
transition systems or to obtain a minimal equivalent transition system.

As mentioned in the introduction, some more recent works [Pis99,MP00)
show that, considering a generalization of the model, the so-called automata with
symmetries, a minimal realization exists and can be constructed in the class of
causal (or, more generally, HD) automata themselves. A causal automaton can
be seen as a coalgebra of a suitable functor and the minimal realization arises
as the image in the final coalgebra of the given automaton.

Abstraction homomorphisms [CFM83,Cas87], which are also called zig-zag
morphisms [vB84] or transition preserving homomorphisms [FM90], are defined
in the setting of ordinary automata as morphisms which “preserve” and “reflect”
transitions. The existence of an abstraction homomorphism ensures that the
source and target automata are bisimilar. The next definition generalizes this
idea to causal automata.

Definition 14 (abstraction homomorphism). Let A and B be causal au-
tomata. An abstraction homomorphism h : A — B is a pair h = (h, {hy}sc0)
where h: Q4 — Qp is a function and for all ¢ € Qa, hy : np(h(q)) = nalq) is
an injective function, such that h(qo 4) = qop and

—if ¢ . q" in A then h(q) ++(>),, h(q") in B, with 0 o hy = hj o p (see
h; M

Fig. 7.(a));
— ifh(q) +—, p' in B then q rﬁ, q" in A for some ', with h(q') = p' and

ogohy =hyop (see Fig. 7.(b)).

18

na(q') ~ ns(h(q')) na(q') %, ns(p')
(a) (0)

Fig. 7. Diagrams for abstraction homomorphisms.

Intuitively, via an abstraction homomorphism h : A — B several states of A
can collapse into a single state of B, in a way that respects the behaviour and
the naming. In particular, observe that for any state ¢ € 4, the function h,
maps the names of h(q) (in B) into the names of ¢ (in A). The idea is that the
names of ¢ which are not in the image of h, can be safely removed, obtaining
an equivalent system, namely, in a sense, they are “useless”. Indeed, also in this
setting, the existence of an abstraction homomorphism h : 4 — B is sufficient
to conclude the bisimilarity of A and B.

Lemma 15. Let A and B be causal automata. If there exists an abstraction
homomorphism h: A — B then A ~., B.

It is worth observing that, as for ordinary automata, the above lemma does not
provide a necessary condition. In [MP98], following the approach of [TNW96],
abstraction homomorphisms have been described as open maps in a category of
causal automata and it has been shown that two causal automata are
CA-bisimilar if and only if they are related by a span of open maps.

5 Deciding HP-bisimulation on graph grammars

In this section we show that it is possible to associate to any graph grammar G
a causal automaton Ap,(G), via a construction which respects HP-bisimulation,
i.e., such that two graph grammars G; and G, are HP-bisimilar if and only
if App(Gi) and App(G2) are CA-bisimilar. Furthermore, for finite-state graph
grammars, the corresponding automaton is proved to be finite and thus the
general algorithms for causal automata mentioned in Section 4 can be used to
check the bisimilarity of graph grammars and to construct a minimal realization.

First, note that, as in the case of Petri nets, the definition of HP-bisimulation
on graph grammars relies on the transition system of processes and process
moves, which is infinite for any non-trivial system exhibiting a cyclic behaviour.
To reduce it to a finite causal automaton, or, in general, to a finite transition
system, at least in the case of finite-state systems, the leading idea, already
present in [DD90], is that not all the information carried by a process is relevant

19

for deciding HP-bisimulation. Hence processes may be replaced by more compact
structures where part of the past history is discarded.

For ordinary nets, as observed in [Vog91,MP97], one can restrict the attention
only to the set of events which produced at least one token in the current state
and to the causal ordering among them. In the case of contextual nets one must
keep information not only about the events which produced a token in the current
state (“producers”), but also about the events which read a token in the current
state (“readers”). Fortunately, among the readers, which can be unbounded even
for a safe net, only the maximal ones play a significant role, while the others can
be safely discarded. This allows to obtain a finite description of the transition
system of processes for finite-state contextual nets [BCMOOb].

We will show that the construction proposed for contextual nets can be gen-
eralized to graph grammars. This can be better understood by recalling that, as
already observed, for a deterministic computation of a graph grammar the asym-
metric conflicts induced by the possibility of expressing “contextual” rewritings
(read operations) play a significant role in the ordering of events, while the in-
hibiting effects between production occurrences related to the dangling condition
can be disregarded since they are subsumed by such asymmetric conflicts.

The next definition formalizes the notions of producer and of (maximal)
reader for a process of a graph grammar.

Definition 16 (producers and (maximal) readers). Given a process ¢ of
a graph grammar G, we define

— the set of producers

p(p) = {q € P, : ¢°* N Maz(p) # 0};
— the set of readers

r(¢) ={q € P, : ¢\ Maz(p) # 0};
— the set of maximal readers
mr(p) = {q € r(p) : Iz € ¢N Maz(yp). ¢ is ', —maximal in z}.

For instance, for process @ of Fig. 4, the set of producers is p(¢5) = {es},
the set of readers is r(p5) = {e1, e, e3,e4,e5}, while the maximal readers are
mr(ps) = {ez,es}.

A crucial observation is that for any n-safe graph grammar G the sets p(y)
and mr(p), with ¢ ranging over the processes of G are bounded. In the sequel,
given a graph G we will denote by |G| the cardinality of the (disjoint) union of
the node and edge sets of G. More generally, with abuse of notation, a graph will
be sometimes identified with the set consisting of the (disjoint) union of its node
and edge sets, and we will use on graphs the ordinary set-theoretical relations
and operations.

Lemma 17. Let G be a n-safe graph grammar. Then, for any process ¢ of G we
have |p(¢)| < n - [TGg| and [mr(p)| < (n- |TGg))*.

Proof (sketch). By the basic properties of graph processes, for any process ¢, the
graph ¢*, namely Maz(yp) typed over TGg by the restriction of ¢, is reachable
in G. Since any graph reachable in G is n-injective, we can establish the following
bound for the number of items (nodes and edges) of Maz (),

20

|Maz ()| < - [TGg].

Hence it is immediate to conclude that n-|T'G¢| is a bound also for the cardinality
of p(p) since for each q,q" € p(p) we have ¢* N Max(p) # 0 and ¢* N¢'* = 0.
Furthermore, for any item z in Maz(p) the set A, of maximal events in
x consists of concurrent events. Hence also the corresponding pre-set ®A, is
concurrent and therefore | *A4,| is bounded by n - |TGg|. Since productions are
consuming, i.e., they have a non-empty pre-set, and for any ¢, ¢ € A, it must be
*qN *q’ =), we conclude that n-|TGg| is a bound also for the cardinality of A,.
Therefore the number of productions in mr(p) is bounded by (n - |[TGg|)?. O

We next define partial processes, which represent abstractions of graph pro-
cesses where only a relevant part for discriminating non HP-bisimilar states is
kept, namely the target graph of the process (i.e., the subgraph consisting of the
maximal items), the producers, the maximal readers and their dependencies. For
technical reasons we first introduce pre-partial processes which are required to
satisfy weaker requirements.

Definition 18 (pre-partial process). A pre-partial process of a graph gram-
mar G is a tuple v = (G, By, <y, Ay, post.,, cont,), where

— G is a TGg-typed graph;

— E, is a set of events;

- «4,C FE, x E, is a partial order;

— Ayt By = Act is a labelling function over a fized set of actions Act;

— cont,post, : By, — P(Na,y U Eq.y) are functions which map each e € E,
to the sets of items in (G.) which are read and produced, respectively, by e.

For any x € (G,) we denote by cont~(x) the set of readers of x, i.e., the set
{e € Ey :x € conty(e)}.

An isomorphism of pre-partial processes i : 7y; — 79 is a pair of functions i =
(iT,ig) where ip : G, — G, is an isomorphism of T'Gg-typed graphs and
ig : E,, = E,, is a bijection such that ig establishes an isomorphism of labelled
partial orders between (E,,, <, , Ay,) and (E,, <+,, \y,) and, for any e € E,,,
post(ig(e)) = ir(post(e)) and cont(ig(e)) = ir(cont(e)).

As for ordinary graph process, for any pre-partial process v we define the
sets of producers and of maximal readers.

Definition 19. Let v be a pre-partial process. The set of producers of ~y is
defined as p(y) = {e € E, : post.(e) # 0}. The set of maximal readers of 7 is
defined as mr(y) = {e € E, : Iz € cont(e). e is K -mazimal in cont,(x)}.

Partial processes are defined as pre-partial processes where each event is a
producer or a maximal reader.

Definition 20 (partial process). A partial process of a graph grammar G is
a pre-partial process vy such that E., = p(y) U mr(y). The initial partial process
for G is the partial process over the initial graph, with an empty set of events,

i.e., vo = (Gsg,0,0,0,0,0).

21

An obvious construction associates to each pre-partial process the corre-
sponding partial process.

Definition 21. Given any pre-partial process v, the corresponding partial pro-
cess, denoted by Cut(y), is defined as follows:

- GCut(v) = G’y;
- ECut(’y) = p(’)/) U mT(W);

and K cut(~), ACut(v)s POSt Ciyp () and cont cyi() are the restrictions to E oy
of the corresponding relations and functions of ~y.

Given any process @ of a graph grammar, we can construct a corresponding
partial process by keeping only the producers and the maximal readers of .
Technically this is done by first constructing a pre-partial process and then
using the operation Cut(-).

Definition 22 (partial process associated to a process). Let ¢ be a process
of a graph grammar G. The corresponding partial process, denoted by v(p), is
defined as Cut(y) where v is the pre-partial process satisfying

- G’Y = (p. = (Ma‘x((p)acpT|Maz(<p)>;

- E,=P,;
- <= (/@0)*?
- A'Y = Ag ocpyp;

— for any q € E,, cont,(q) = ¢ N Maz(p) and post.(q) = ¢* N Maz(p).

In Fig. 4, for every process ¢;, the corresponding partial process y(y;) is obtained
by considering only the non-shaded part. The next lemma makes explicit the easy
fact that the events in the partial process associated to a process ¢ are exactly
the producers and the maximal readers of the original process ¢.

Lemma 23. Let G be a labelled graph grammar and let ¢ be a process of G.
Then p(v(p)) = p(p) and mr(y(p)) = mr(p).

Next we introduce a move relation on partial processes: given a partial process
v, whenever a production of the original grammar is applicable to the graph G,
the partial process can evolve accordingly. This leads to a transition system of
partial processes which represents the first step in the construction of the causal
automaton associated to a graph grammar.

Definition 24 (partial processes move). Given two partial processes v and
v" of a labelled graph grammar G we write v -~ v', and we say that v moves

to 7' performing the action a if v/ = Cut(y") where "' is a pre-partial process

satisfying the following conditions: there is a production q € Pg
!
q:L, < K, e R,

22

and a match m : Ly — G- such that, if X = m((Ly) — ;((K,))) and C =
m(ly((Ky))), then

— Gy =4 Gy using match m; more specifically we assume that (G) — X C

(G4n), i.e., the items which are preserved remains concretely the same;

E,i =E,U{ep} and ey & Ev;

— K= (K U{(e,e0) e € Ey A (post(e)N(XUC))U (cont(e)NX) # 0})*;

— Ay(e) = Ay(e) for any e € E, and Ay (eg) = a = Ag(q);

— for any e € E, post..(e) = post,(e) — X, cont,n(e) = cont,(e) — X, and
contyn(eg) = C, post,u(eg) = (Gyr) — (G).

As mentioned above, a partial process v of a grammar G can perform a move
when there exists a production ¢ in G which is applicable to its graphical com-
ponent GG,. The graph G, underlying the new partial process is obtained by
rewriting G, using ¢. Observe that the new event ey, representing the occur-
rence of g, depends on the events which have generated a graph item which is
consumed or read by ¢ (causality), and also on the events which have read an
item consumed by ¢ (asymmetric conflict). The functions cont and post are ex-
tended to the new event eg, but they must be updated also to take into account
the fact that some items of GG, might have been deleted. Consequently an event
might cease to be a producer or a maximal reader and thus, by effect of the
application of Cut(-), some events can disappear. A sequence of partial process
move is exemplified in Fig. 4, if we consider only the non-shaded parts.

To each process and partial process move we associate the set of maximal
(weak or strong) causes of the executed production, which will play a basic role in
the definition of the automaton. In fact, to observe the partial order associated
to an evolving computation it is sufficient to look, step by step, only at the
immediate maximal causes of each single production (the other dependencies
being implicitly given by the transitivity of the partial order).

Definition 25 (immediate and maximal causes). The set of immediate
(weak or strong) causes of a process move ¢ — ' is defined as 1C(p — ¢') =
{ge P, q*n(eU®e) #D V gn e # 0}. We denote by MC(¢ — ') the set of
maximal causes, namely the subset of /,-mazimal elements of IC(p — ¢').
The set of immediate causes of a partial process move v — v, adopting
the notation of Definition 24, is defined by IC(y -~ v') = {e € E, : (post.,(e) N
(XUQ))U(conty(e)NX) # D}. The set of mazimal causes MC(y = +') is the

subset of K. -mazimal immediate causes.

. . o . q.
For example, considering transition ¢s $> g in Fig. 4, the immediate causes

are {e1, e2, €3, eq, €5}, while the immediate maximal causes are {es,e5}.
The next lemma relates the transition system of processes and the transition
system of partial processes.

23

Lemma 26. Let G be any labelled graph grammar.

1. If ¢ and ¢’ are processes of G and o — ¢’ then we have ¥(p) — v(¢'),
with MC(p = ¢') = MC(v(p) > 7(¥));

2. If v is a process of G and y(p) — «' then there exists a process ¢' of G,
such that ¢ = ¢', with v' and y(¢") isomorphic and MC(y(¢) — +') =

MC(e ==).

It is worth noting that we cannot replace point (2) above with the stronger
“f v(¢) — ~' then there exists a process ¢' of G, such that ¢ — ¢, with

v = ~(¢")”, since in general the event e and the new graph items in G/ can
appear in ¢.

By Lemma 26 we conclude that if a partial process 7y of a graph grammar G
is reachable from an initial partial process via a finite sequence of moves, then
~v = 7v(p) for some process ¢ of G. Hence, when the graph grammar G is n-safe,
the definition of v(p) and Lemmata 17 and 23 allow us to conclude the validity
of the following result.

»

Lemma 27. For any n-safe labelled graph grammar the set of partial processes
reachable from the initial process (and taken up to isomorphism) is finite.

We are now ready to present the construction of the causal automaton as-
sociated to a graph grammar for checking HP-bisimilarity. To obtain a “com-
pact” automaton (with a finite number of states for n-safe graph grammar) we
must, consider partial processes up to isomorphism. To this aim we fix a stan-
dard representative in each class of isomorphic partial processes. Furthermore
we consider a normalization function norm such that for any partial process 7,
norm(y) = (v',4), where 4/ is the standard representative in the isomorphism
class of v and i : v — + is a chosen partial process isomorphism. We assume
that the names of the productions in any (partial) process v are taken from A/,
namely that E, C N.

Definition 28 (causal automaton for HP-bisimulation). Let G be a la-
belled graph grammar. The HP-causal automaton associated to G is the automa-
ton App(G) = (Q,n,—, qo), having (standard representatives of) partial pro-
cesses as states. The initial state qo is the standard representative o of the initial
partial processes of G and whenever v € Q then

- n(y) = E,;
—ify 7 and norm(y') = (v",i) then " € Q and v +——, 7" where

e 0:E = E,U{x} is defined as 0 = (idg, U {(e,*)}) oip;
o M =MC(y = 7).

24

Observe that the renaming function in a transition of the causal automaton is
obtained from the isomorphism given by the normalization function norm, simply
by redirecting the new name e to x (if e belongs to E,/). As anticipated, the
maximal causes of a process move are used as dependencies in the automaton
transition.

The states of the automaton are standard representatives of partial processes
reachable from the initial partial process. Hence by Lemma 27 we deduce that
for any n-safe graph grammar the above defined automaton has a finite number
of states (and also a finite number of transitions leaving from each state, since
the number of productions is finite). Vice versa, if the graph grammar is not
n-safe for some n, then the automaton will have an infinite number of states.

Theorem 29. Let G be a labelled graph grammar. Then G is n-safe for some n
iff the automaton App(G) is finite.

To effectively build the automaton we can perform an inductive construction
based on Definition 28. The only thing to observe is that, given a partial process
7, there might be infinitely many moves v —— ' since the event e can be chosen
arbitrarily among the unused events in A/ and a similar consideration holds for
the new graph items in G,.. However, without loss of generality, we can limit our
attention only to some partial process moves, called the representative moves,
where the newly generated name and items are chosen in a canonical way. For
instance we can suppose that the set of names N is well-ordered and assume
that a transition v — ' to be representative must satisfy e = min(N — P,).

The main result now states that there is a precise correspondence between
HP-bisimulation on graph grammars and CA-bisimulation on causal automata.
Hence HP-bisimilarity of graph grammars can be checked on the corresponding
automata.

Theorem 30. Let G; and Gy be two labelled graph grammars. Then Gy ~pp, Go
if and only if App(G1) ~ca Anp(G2).

Proof (sketch). The proof is organized in two steps. First observe that the tran-
sition system of processes of a graph grammar G can be seen itself as a causal
automaton A,,(G) = (Q,n,—, qo), where

— @ is the set of processes ¢ of G and n(p) = P, for any process ¢;

— ¢ ' if, according to Definition 9, ¢ = ¢', M = MC(¢ — ¢'), and
the naming o : P,y — P, U {x} is defined as the identity for z € P, — {e},
while o(e) = %;

— the initial state go is any initial process of G.

Then, it is possible to prove that HP-bisimulation on graph grammars coincides
with CA-bisimulation on the causal automata of processes, namely G; ~j;, Ga
iff Apr(gl) ~ca Apr(g2)-

The second step of the proof shows that, for any graph grammar G there exists
an abstraction homomorphism h : A4,,(G) — App(G), and thus, by Lemma 15,

25

Apr(G) ~ca Anp(G). The abstraction homomorphism h = (h, {h,},) can be
defined as follows: for any process ¢ (state of A,.(G)), if norm(y(p)) = (v',4)
then h(¢) = 7" and hy, : Ey+ — P, is simply ig. To prove that h satisfies the
conditions in Definition 14 one essentially resorts to Lemma 26.

Summing up, by the above considerations we have that Ap-(G;) ~ca Anp(Gi)
for i € {1,2}, and moreover A, (G1) ~cq Apr(G2) iff Gi ~pp Go. Hence the thesis
easily follows. m|

By Theorems 29 and 30 we immediately conclude the desired decidability
result.

Corollary 31. HP-bisimulation on n-safe graph grammars is decidable.

It is worth observing that, in this setting, due to the Turing completeness
of graph grammars, differently from what happens for ordinary and contextual
nets, the property of being n-safe for some n, i.e., the property of being finite-
state, is not decidable.

6 Conclusions

In this paper we have introduced an abstract semantics for graph grammars
inspired by the classical history preserving bisimulation. Extending the work
already developed on ordinary and contextual P/T nets, we have shown how
history preserving bisimulation on graph grammars can be studied in the general
framework of causal automata. A translation of graph grammars into causal
automata has been proposed, which respects (preserves and reflects) history
preserving bisimulation. The translation produces finite automata for finite-state
graph grammars, thus allowing to reuse the algorithms existing for this general
formalism in order to decide bisimulation and to obtain a minimal realization.

We conclude by discussing two possible directions of further investigation
which we find interesting: on the one hand the possibility of defining different
notions of history preserving bisimulation by considering observations of the
causal history of a computation finer than the associated PES; on the other hand
the development of a logic in the style of Hennessy-Milner for HP-bisimulation.

6.1 Refining the observation

The notion of HP-bisimulation considered in this paper is obtained by taking
as observation of a concurrent computation of a graph grammar the PES un-
derlying the corresponding graph process. We have already mentioned that this
corresponds to observe only the precedences between events, confusing the weak
causality deriving from the possibility of preserving part of the state in a rewrit-
ing step, the inhibiting effects related to the dangling condition and the “strong”
causality deriving from the flow of information. It could be reasonable to con-
sider, instead, equivalences which arise by assuming different, finer descriptions
of concurrent computations.

26

For instance, a natural refinement consists of distinguishing the flow of in-
formation from the other dependencies. This is easily achieved by extracting
from a process a different event structure, which is called asymmetric event
structure [BCM98b,BCMO00a] where causality and asymmetric conflict are kept
separate. The asymmetric event structure associated to a graph process ¢ is
defined as

aev(@) = <P<pa Sap:/‘cp:/\g °<PP>-

Then the corresponding bisimulation, which can be called read history preserv-
ing (RHP-) bisimulation, is defined as HP-bisimulation, by simply refining the
observation, namely by changing ev(p;) with aev(p;) in Definition 11.

Any RHP-bisimulation relating two graph grammar G; and G, is also an
HP-bisimulation. In fact if ¢; and @2 are processes of G; and G, respectively,
and f : aev(p1) — aev(ps) is an isomorphism of asymmetric event structures
then it is easy to see that f is also an isomorphism of PES’s between ev(p)
and ev(yp2). Therefore Gy ~ppp Go implies Gi ~p;, Go. As for contextual nets,
the converse implication, instead, does not hold. Regarding the decidability of
RHP-bisimulation, the natural extension of the construction which has been
introduced for HP-bisimulation consists of considering partial processes where
all the readers (not only the maximal ones) are kept. Unfortunately in this way
the construction produces a causal automaton which may be infinite also for
safe graph grammars. Indeed, the decidability of RHP-bisimulation is an open
question already for contextual nets [BCMOOb].

6.2 Hennessy-Milner logic for HP-bisimulation

The ordinary bisimulation over transition systems has a logical counterpart, the
so-called Hennessy-Milner logic [HMS85], a kind of modal logic with two basic
modalities which can be interpreted as possibility and necessity. The syntax of
formulae is the following

pu=true | ¢AQ | =g | (a)o.

The formula constructed with the “diamond” modality (a)¢, where a is an action
and ¢ a formula, intuitively is satisfied by any state from which an a-action can
be executed leading to a state which satisfies ¢. The dual modality, i.e., the
“bor” modality [a]@, can be defined as —{a)—¢. It is satisfied by all the states
where any a-action leads to a state that satisfies ¢. Hennessy-Milner logic can be
shown to be adequate for bisimulation in the sense that, two states of a transition
system are bisimilar if and only if they satisfy the same set of formulae [HMS85].

An interesting direction of further research is the study of an analogue of
Hennessy-Milner logic for HP-bisimulation, which has been initiated in [Bar99].
The basic syntax of formulae is the following

pu=true | oAG | 0¢ | EX{n,a, M}o.

27

The ezistential modality allows to construct a formula EX{e, a, M }¢ which, intu-
itively, is satisfied by a state where an action a can be executed, which generates
a new name (or event) e directly caused by the set of events in M, leading to a
state which satisfies ¢. Also in this case there is a dual universal modality: the
formula AX{n,a, M }¢, defined as =EX{e, a, M }—¢, is satisfied by a state where
any action a which can be executed, generates a new name (or event) e directly
caused by the set of events in M, leading to a state which satisfies ¢.

Like ordinary Hennessy-Milner logic is naturally interpreted over transition
systems (labelled graphs), this variation of the logic has a natural interpretation
over causal automata, but also over the transition system of processes of a net or
of a graph grammar. The possibility of declaring new names/events in a formula
is reflected, at semantical level, by the the presence in the model of a kind of
environment which links the events in the current state and the names “declared”
in the formula. An adequateness result for such a logic over causal automata has
been proved in [Bar99] showing that two automata 4; and As are CA-bisimilar
iff they satisfy the same set of formulae. Resorting to our results, adequateness
for the logic over graph grammars would be easily proved by showing that for
any labelled graph grammar G

GIE¢ & Ay (9) Ik g.

where “IF” means “is a model of”.

As in the case of ordinary Hennessy-Milner logic, the expressiveness would
greatly benefit form the introduction of some “recursion” operator, e.g., mini-
mal/maximal fix-point operators in the style of the u-calculus (v-calculus). This
should be done by retaining some interesting properties of the logic, like decid-
ability, at least for a significant fragment.

Acknowledgements. We are grateful to the anonymous referees for their in-
sightful comments and suggestions.

References

[Bal00] P. Baldan. Modelling concurrent computations: from contertual Petri nets
to graph grammars. PhD thesis, Department of Computer Science, Univer-
sity of Pisa, 2000. Available as technical report n. TD-1/00.

[Bar99] R. Bartolini. Model checking di proprieta causali di reti di Petri. MSc
Thesis, University of Pisa, 1999. (In Italian).

[BCM98a] P. Baldan, A. Corradini, and U. Montanari. Concatenable graph processes:
relating processes and derivation traces. In Proceedings of ICALP’98, vol-
ume 1443 of LNCS, pages 283-295. Springer Verlag, 1998.

[BCM98b] P. Baldan, A. Corradini, and U. Montanari. An event structure semantics
for P/T contextual nets: Asymmetric event structures. In M. Nivat, editor,
Proceedings of FoSSaCS °98, volume 1378 of LNCS, pages 63-80. Springer
Verlag, 1998.

28

[BCMO9]

[BCMO00a]

[BCMOOb]

[BDKP91]

[Cas87]

[CFM83)

[CMR96]

[CMR197]

[Cor96]

[DDY0]

[Ehr87]

P. Baldan, A. Corradini, and U. Montanari. Unfolding and Event Structure
Semantics for Graph Grammars. In W. Thomas, editor, Proceedings of
FoSSaCS 99, volume 1578 of LNCS, pages 73-89. Springer Verlag, 1999.
P. Baldan, A. Corradini, and U. Montanari. Contextual Petri nets, asym-
metric event structures and processes. To appear in Information and Com-
putation., 2000.

P. Baldan, A. Corradini, and U. Montanari. History preserving bisimula-
tions for contextual nets. In D. Bert and C. Choppy, editors, WADT’99
Conference Proceedings, number 1827 in LNCS, pages 291-310. Springer
Verlag, 2000.

E. Best, R. Devillers, A. Kiehn, and L. Pomello. Concurrent bisimulations
in Petri nets. Acta Informatica, 28(3):231-264, 1991.

I. Castellani. Bisimulations and abstraction homomorphisms. Journal of
Computer and System Sciences, 34(2/3):210-235, 1987.

I. Castellani, P. Franceschi, and U. Montanari. Labeled event structures: a
model for observable concurrency. In D. Bjgrner, editor, Proceedings of IFIP
TC2 Working Conference on Formal Description of Programming Concepts
— II, pages 383-389. North-Holland, 1983.

A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta
Informaticae, 26:241-265, 1996.

A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Lowe. Al-
gebraic Approaches to Graph Transformation I: Basic Concepts and Double
Pushout Approach. In G. Rozenberg, editor, Handbook of Graph Grammars
and Computing by Graph Transformation. Volume 1: Foundations. World
Scientific, 1997.

A. Corradini. Concurrent graph and term graph rewriting. In U. Montanari
and V. Sassone, editors, Proceedings of CONCUR’96, volume 1119 of LNCS,
pages 438-464. Springer Verlag, 1996.

P. Darondeau and P Degano. Causal trees: Interleaving + causality. In
Proc. 18th Ecole de Printemps sur la Semantique de Parallelism, number
469 in LNCS, pages 239-255. Springer Verlag, 1990.

H. Ehrig. Tutorial introduction to the algebraic approach of graph-
grammars. In H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors,
Proceedings of the 3rd International Workshop on Graph-Grammars and
Their Application to Computer Science, volume 291 of LNCS, pages 3—14.
Springer Verlag, 1987.

[EKMR99] H. Ehrig, J. Kreowski, U. Montanari, and G. Rozenberg, editors. Hand-

[FMO90]

[GHKO0]

[GM82]

book of Graph Grammars and Computing by Graph Transformation, Vol.
2: Concurrency, Parallelism and Distribution. World Scientific, 1999.

G. Ferrari and U. Montanari. Towards the unification of models of con-
currency. In A. Arnold, editor, Proceedings of CAAP ’90, volume 431 of
LNCS, pages 162-176. Springer-Verlag, 1990.

F. Gadducci, R. Heckel, and M. Koch. A fully abstract model for graph-
interpreted temporal logic. In H. Ehrig, G. Engels, H.J. Kreowski, and
G. Rozenberg, editors, Proceedings of TAGT’98, volume 1764 of LNCS,
pages 310-322. Springer Verlag, 2000.

J. A. Goguen and J. Meseguer. Security policies and security models. In
Proceedings 1982 IEEE Symposium on Security and Privacy, pages 11-20.
IEEE Computer Society, 1982.

29

[Hec98]

R. Heckel. Open Graph Transformation Systems: A New Approach to the
Compositional Modelling of Concurrent and Reactive Systems. PhD thesis,
TU Berlin, 1998.

[HEWC97] R. Heckel, H. Ehrig, U. Wolter, and A. Corradini. Integrating the Specifi-

[FIM85]
[TK95]
[INW96]
[Koc99]
[Kre77]

[MP97]

[MP98]

[MP00]

[MR95]

[Pis99]

[RGG96]

[Rib96]
[R0797]
[RTSS]
[vB84]

[Vog91]

[Vog97]

[VSY9S]

cation Techniques of Graph Transformation and Temporal Logic. In Pro-
ceedings of MFCS’97, number 1295 in LNCS. Springer Verlag, 1997.

M. Hennessy and R. Milner. Algebraic laws for indeterminism and concur-
rency. Journal of the ACM, 32:137-162, 1985.

R. Janicki and M. Koutny. Semantics of inhibitor nets. Information and
Computation, 123:1-16, 1995.

A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps. In-
formation and Computation, 127(2):164-185, 1996.

M. Koch. Integration of graph transformation and temporal logic for the
specification of distributed systems. PhD thesis, TU Berlin, 1999.

H.-J. Kreowski. Manipulation von Graphmanipulationen. PhD thesis, Tech-
nische Universitat Berlin, 1977.

U. Montanari and M. Pistore. Minimal transition systems for history-
preserving bisimulation. In 1/th Annual Symposium on Theoretical As-
pects of Computer Science, volume 1200 of LNCS, pages 413-425. Springer
Verlag, 1997.

U. Montanari and M. Pistore. History-dependent automata. Techni-
cal Report TR-98-11, Dipartimento di Informatica, 1998. Available as
ftp://ftp.di.unipi.it/pub/techreports/ TR-98-11.ps.Z.

U. Montanari and M. Pistore. Structured coalgebras and minimal HD-
automata. In M. Nielsen and B. Roman, editors, Proc. of MFCS 2000,
volume 1983 of LNCS, pages 569-578. Springer Verlag, 2000.

U. Montanari and F. Rossi. Contextual nets. Acta Informatica, 32(6), 1995.
M. Pistore. History Dependent Automata. PhD thesis, Department of Com-
puter Science, University of Pisa, 1999.

E. Rudolph, J. Grabowski, and P. Graubmann. Tutorial on Message Se-
quence Charts. Computer Networks and ISDN Systems, 28(12):1629-1641,
1996.

L. Ribeiro. Parallel Composition and Unfolding Semantics of Graph Gram-
mars. PhD thesis, Technische Universitat Berlin, 1996.

G. Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. 1: Foundations. World Scientific, 1997.

A. Rabinovich and B. A. Trakhtenbrot. Behavior Structures and Nets.
Fundamenta Informatice, 11(4):357-404, 1988.

J. van Bentham. Correspondence theory. In Handbook of Philosophical
Logic, volume II. Reidel, 1984.

W. Vogler. Deciding history preserving bisimilarity. In J. Leach Albert,
B. Monien, and M. Rodriguez-Artalejo, editors, Proceedings of ICALP’91,
volume 510 of LNCS, pages 495-505. Springer-Verlag, 1991.

W. Vogler. Efficiency of asynchronous systems and read arcs in Petri nets.
In Proceedings of ICALP’97, volume 1256 of LNCS, pages 538-548. Springer
Verlag, 1997.

W. Vogler, A. Semenov, and A. Yakovlev. Unfolding and finite prefix for
nets with read arcs. In Proceedings of CONCUR’98, volume 1466 of LNCS,
pages 501-516. Springer-Verlag, 1998.

30

