Chapter 3

CONCURRENT SEMANTICS OF
ALGEBRAIC GRAPH
TRANSFORMATIONS

PAOLO BALDAN, ANDREA CORRADINI
UGO MONTANARI, FRANCESCA ROSSI
University of Pisa, Computer Science Department,
Corso Italia 40, 56125 Pisa, Italy
{baldan,andrea,ugo,rossi} Qdi.unipi.it

HARTMUT EHRIG, MICHAEL LOWE
Techincal University of Berlin, Computer Science Department,
Franklinstrasse 28/29, 10587 Berlin, Germany.
{ehrig,loewe} @cs.tu-berlin.de

Graph transformation systems are widely recognized as a powerful formalism
for the specification of concurrent and distributed systems. Therefore, the need
emerges naturally of developing formal concurrent semantics for graph transforma-
tion systems allowing for a suitable description and analysis of their computational
properties. The aim of this chapter is to review and compare various concurrent se-
mantics for the double pushout (DPO) algebraic approach to graph transformation,
using different mathematical structures and describing computations at different
levels of abstraction. We first present a trace semantics, based on the classical shift
equivalence on graph derivations. Next we introduce graph processes, which lift
to the graph transformation framework the notion of non-sequential process for
Petri nets. Trace and process semantics are shown to be equivalent, in the sense
that given a graph transformation system, the corresponding category of derivation
traces and that of (concatenable) processes turns out to be isomorphic. Finally, a
more abstract description of graph transformation systems computations is given
by defining a semantics based on Winskel’s event structures.

107

108

Contents

3.1 Introduction. 109
3.2 Typed Graph Grammars in the DPO approach 114
3.2.1 Relation with Petrinets 122
3.3 Derivation trace semantics L 124
3.3.1 Abstraction equivalence and abstract derivations 125
3.3.2 Shift equivalence and derivation traces 128
3.4 Process Semantics 133
3.4.1 Graph Processes 134
3.4.2 Concatenable Graph Processes 142
3.5 Relating derivation traces and processes 146
3.5.1 Characterization of the ctc-equivalence 147
3.5.2 From processes to traces and backwards 151
3.6 Event Structure Semantics 157
3.6.1 Prime event structures and domains 158
3.6.2 Event structure semantics for a grammar 160
3.6.3 Processesandevents 171

3.6.4 Adequateness of PES: asymmetric conflict in graph gram-
00T 3 173
3.7 Related work 175

3.8

Appendix: Construction of canonical graphs 179

3.1. INTRODUCTION 109

3.1 Introduction

Graph transformation systems (or graph grammars) have been deeply studied
along the classical lines of the theory of formal languages, namely focusing
on the properties of the generated graph languages and on their decidability;
briefly, on the results of the generation process. However, quite early, graph
transformation systems have been recognized as a powerful tool for the spec-
ification of concurrent and distributed systems. The basic idea is that the
state of many distributed systems can be represented naturally (at a suitable
level of abstraction) as a graph, and (local) transformations of the state can
be expressed as production applications. Thus a stream of research has grown,
concentrating on the rewriting process itself seen as a modelling of system com-
putations, studying properties of derivation sequences, their transformations
and equivalences.

The appropriateness of graph grammars as models of concurrency is confirmed
by their relationship with another classical model of concurrent and distributed
systems, namely, Petri nets [1,2]. Basically a Petri net can be viewed as a graph
rewriting system that acts on a restricted kind of graphs, namely discrete,
labelled graphs (that can be considered as sets of tokens labelled by places),
the productions being the transitions of the net. In this view, general graph
transformation systems are a proper extension of Petri nets in two dimensions:

1. they allow for a more structured description of the state, that is an arbi-
trary, possibly non-discrete, graph;

2. they allow for the specification of context-dependent rewritings, where
part of the state is required for the rewriting step to take place, but is
not affected by the step.

Several approaches to graph transformation have been considered in the liter-
ature. The first volume of the Handbook of Graph Grammars and Computing
by Graph Transformation [3] provides a comprehensive introduction to the sub-
ject. The basic idea common to all these approaches is very simple: a graph
transformation system consists of a set of rules, called graph productions; each
production has the form ¢ : L ~» R and specifies that, under certain condi-
tions, once an occurrence (a match) of the left-hand side L in a graph G has
been detected, it can be replaced by the right-hand side R. The form of graph
productions, the notion of match and in general the mechanisms stating how a
production can be applied to a graph and what the resulting graph is, depend
on the specific graph transformation formalism.

This presentation is concerned with the so-called algebraic approach [4,5],
where the basic notions of production and direct derivation are defined in

110

terms of constructions and diagrams in a category. The resulting theory is
very general and flexible, easily adaptable to a very wide range of structures,
simply by changing the underlying category of objects which are rewritten.
More precisely we concentrate on the double-pushout (DPO) approach to graph
transformation, historically the first of the algebraic approaches, proposed in
the early seventies by H. Ehrig, M. Pfender and H.J. Schneider. The name
DPO is related to the fact that the application of a production to a graph is
defined via two pushout diagrams in the category of graphs and total graph
morphisms. Roughly speaking, the first pushout is intended to model the re-
moval of the left-hand side of the production from the graph to be rewritten,
and the second one the addition of the right-hand side.

Although not explicitly treated in this chapter, it is worth recalling the exis-
tence of an alternative algebraic approach to graph transformation, called the
single-pushout (SPO) approach [6,7], where a basic rewriting step is defined
via a single pushout diagram in the category of graphs and partial morphisms.

Semantics of graph transformation

For sequential systems it is often sufficient to consider an input/output se-
mantics and thus the appropriate semantic domain is usually a suitable class
of functions from the input to the output domains. When concurrent or
distributed features are involved, instead, typically more information about
the actual computation of the system has to be recorded in the semantic do-
main. For instance, one may want to know which steps of computation are
independent (concurrent), which are causally related and which are the (non-
deterministic) choice points. This information is necessary, for example, if one
wants to have a compositional semantics, allowing to reduce the complexity
of the analysis of concurrent systems built from smaller parts, or if one wants
to allocate a computation on a distributed architecture. Roughly speaking,
non-determinism can be represented either by collecting all the possible dif-
ferent computations in a set, or by merging the different computations in a
unique branching structure where the choice points are explicitly represented.
On the other hand, concurrent aspects can be represented by using a truly con-
current approach, where the causal dependencies among events are described
directly in the semantics using a partially ordered structure. Alternatively, an
interleaving approach can be adopted, where concurrency is reduced to non-
determinism, in the sense that the concurrent execution of events is represented
as the non-deterministic choice among the possible interleavings of such events.
Along the years, Petri nets have been equipped with rich, formal computation-
based semantics, including both interleaving and truly concurrent models (see,
among others, [8,9]). In many cases such semantics have been defined by using

3.1. INTRODUCTION 111

well-established categorical techniques, often involving adjunctions between
suitable categories of nets and corresponding categories of models [10,11,12,13].
To propose graph transformation systems as a suitable formalism for the spec-
ification of concurrent/distributed systems that generalizes Petri nets, we are
naturally led to the attempt of equipping them with a satisfactory semantic
framework, where the truly concurrent behaviour of grammars can be suitably
described and analyzed. After the seminal work of Kreowski [14], during the
last years many original contributions to the theory of concurrency for alge-
braic, both DPO and SPO, graph transformation systems have been proposed,
most of them inspired by the above outlined correspondence with Petri nets.
In particular, for the DPO approach to graph transformation a trace semantics
has been proposed in [15,5] developing some basic ideas of [14]. Furthermore,
graph processes [16,17] and event structure semantics [18,19] have been intro-
duced. The goal of this chapter is to review such semantics and to discuss the
formal relationships existing among them.

Trace semantics

Historically the first truly concurrent semantics proposed for graph grammars
has been the derivation trace semantics [14,15,5]. Derivation traces are de-
fined as equivalence classes of derivations with respect to the least equiva-
lence containing the abstraction equivalence and the shift equivalence relations,
which is called the concatenable truly-concurrent (ctc) equivalence. Abstrac-
tion equivalence [15] is a suitable refinement of the isomorphism relation on
derivations (needed to guarantee the concatenability of traces), which allows
to abstract from what we can call “representation details”, namely from the
concrete identity of the items of the graphs involved in a derivation. Shift
equivalence [14,20,21] relates derivations that differ only for the order in which
independent direct derivations are performed, and thus it is aimed at extract-
ing the truly concurrent behaviour of the grammar. Being concatenable, the
derivation traces of a grammar G can be seen as arrows of a category, having ab-
stract graphs as objects. Such category, denoted Tr[G] and called the category
of derivation traces (or the abstract truly concurrent model of computation), is
the most abstract model of computation for a grammar in a hierarchy of mod-
els originally presented in [5], and it can be reasonably assumed to express the
truly concurrent behaviour of a grammar at an adequate level of abstraction.

Process semantics

In the theory of Petri nets, (non-sequential deterministic Goltz-Reisig) pro-
cesses [9] are nets satisfying suitable acyclicity and conflict-freeness require-
ments. Processes include also a mapping to the original net, specifying how

112

transitions in the process can be identified with firings of transitions of the
original net. This notion has been lifted to graph grammars in [16], where a
graph process of a grammar G is defined as a special kind of grammar O, called
“occurrence grammar”, equipped with a mapping to the original grammar G.
This mapping is used to associate to the derivations of O corresponding deriva-
tions of G. The basic property of a graph process is that the derivations of G
which are in the range of such mapping constitute a full class of shift-equivalent
derivations. Therefore the process can be regarded as an abstract representa-
tion of such a class and plays a role similar to a canonical derivation [14].
The theory of Petri nets comprises also a very interesting notion of concaten-
able process [22,23]: Goltz-Reisig processes, enriched with an ordering of the
minimal and maximal places, can be composed sequentially. In this way they
can be seen as arrows of a category, which can be shown to capture the truly
concurrent behaviour of a net. Following the same idea, [17] introduces con-
catenable graph processes, which enrich graph processes with the additional
information needed to concatenate them, keeping track of the flow of causal-
ity. (Abstract) concatenable processes of a grammar G form the arrows of
a category CP[G], where objects are abstract graphs, called the category of
concatenable processes of the grammar G.

Event structure semantics

Graph processes, as well as derivation traces, represent single deterministic
computations of a grammar, taking care only of the concurrent nature of such
computations. The intrinsic non-determinism of a grammar is implicitly repre-
sented by the existence of several different “non confluent” processes (or traces)
having the same source. When working with concurrent non-deterministic
systems, a typical alternative approach consists of representing in a unique
branching structure all the possible computations of the system. This struc-
ture expresses not only the causal ordering between the events, but also gives
an explicit representation of the branching (choice) points of the computa-
tions. One of the most widely used models of this kind are Winskel’s event
structures [10,24,25], a simple event-based semantic model where events are
considered as atomic and instantaneous steps, which can appear only once in
a computation. An event can occur only after some other events (its causes)
have taken place and the execution of an event can inhibit the execution of
other events.

An event structure semantics for graph grammars can be derived from the cat-
egory of derivation traces via a comma category construction [19,18]. Starting
from the assumption that (concatenable) derivation traces are an adequate ab-
stract representation of the deterministic truly concurrent computations of a

3.1. INTRODUCTION 113

grammar, the category of objects of Tr[G] under the start graph of the gram-
mar G provides a synthetic representation of all the possible computations
of the grammar beginning from the start graph. For consuming grammars
(i.e., such that every production deletes something) the induced partial order
Dom|[G] turns out to be prime algebraic, finitely coherent and finitary, and
thus, by well known results [24], it determines an event structure. Actually,
the algebraic properties of the domain are proved indirectly, by providing an
explicit construction of an event structure ES[G] and then by showing that
its finite configurations are in one to one correspondence with the elements of
the domain Dom|[G]. Thus ES[G] and Dom|[G] are conceptually equivalent, in
the sense that one can be recovered from the other. It is worth noticing that
the event structure semantics differs from the previously described trace and
process semantics, not only because it represents in a unique structure both
the concurrent and non deterministic aspects of grammar computations, but
also because it is more abstract, since it completely forgets the structure of the
states of the system.

Relations among the semantics

Processes and derivation traces are based on the same fundamental ideas,
namely abstraction from representation details and true concurrency, but, as
stressed above, they have concretely a rather different nature. Derivation traces
provide a semantics for grammars where the independence of events is repre-
sented implicitly by the fact that derivations in which the events appear in
different orders are in the same trace. Processes, instead, provide a partial
order semantics, where the events and the relationships among them are rep-
resented explicitly. The natural question asking whether a precise relationship
can be established between the two semantics is answered positively. The cat-
egory CP[G] of concatenable processes can be shown to be isomorphic to the
category of derivation traces Tr[G] of the grammar. The process correspond-
ing to a trace can be obtained elegantly by performing a colimit construction
on any derivation belonging to the trace. Viceversa, given a process, a trace
can be obtained by considering the equivalence class of all derivations which
apply the productions of the process in any order compatible with the causal
ordering.

The isomorphism result is based on a suitable characterization of the ctc-
equivalence (used to define traces), which plays also a basic réle in the definition
of the event structure ES[G] associated to a grammar [18]. This fact, together
with the close relationship existing between traces and processes, allows us
to give an intuitive characterization of the events and configurations of ES[J]
in terms of processes. Basically, configurations are shown to be in one-to-one

114

correspondence with processes which have as source graph the start graph of
the grammar. Events are one-to-one with a subclass of such processes having a
production which is the maximum w.r.t. the causal ordering. This completes
the series of “unifying” results presented in the chapter.

The chapter is structured as follows. Section 3.2 reviews the basics of the
double pushout approach to graph transformation. The presentation slightly
differs from the classical one, since we consider typed graph grammars, a gen-
eralization of usual graph grammars where a more sophisticated labelling tech-
nique for graphs is considered. Section 3.3 reviews the definition of the cate-
gory of (concatenable) derivation traces Tr[G] for a grammar G. Section 3.4
discusses the graph process semantics and introduces the category CP[G] of
concatenable graph processes. In Section 3.5 the isomorphism between the
category Tr[G] of derivation traces and the category CP[G] of concatenable
processes of a grammar G is proved. Section 3.6 presents the construction of
the event structure for a graph grammar and its characterization in terms of
processes. Section 3.7 compares the results of the chapter with other related
works in the literature.

The chapter is closed by an Appendix presenting an effective construction of
canonical graphs, which are used for decorating traces and processes.

Chapter 3 in this book will show with some concrete examples how graph
rewriting can be used to model the behaviour of concurrent and distributed
systems. In particular, the work developed in the present chapter will be ap-
plied to give concurrent semantics to formalisms such as concurrent constraint
programming and the m-calculus.

3.2 Typed Graph Grammars in the DPO approach

In this section we review the basics of the algebraic approach to graph trans-
formation based on the double-pushout (DPO) construction [20]. In the last
subsection we will also give some more insights on the relation between DPO
graph grammar and Petri nets outlined in the Introduction.

The presentation slightly differs from the classical one since we consider typed
graph grammars [16], a generalization of usual graph grammars where a more
sophisticated labelling technique for graphs is considered: each graph is typed
on a structure that is itself a graph (called the graph of types) and the labelling
function is required to be a graph morphism, i.e., it must preserve the graphical
structure. This gives, in a sense, more control on the labelling mechanism.
Working with typed graph grammars just means changing the category over
which the rewriting takes place, from labelled graphs to typed graphs. From

3.2. TYPED GRAPH GRAMMARS IN THE DPO APPROACH 115

the formal side, to move from labelled to typed graphs we just replace the
category of labelled graphs with that of typed graphs in the definitions and
results of the DPO approach to graph transformation.

Definition 3.2.1 (graph)

A (directed, unlabelled) graph is a tuple G = (N, E, s,t), where N is a set of
nodes, E is a set of arcs, and s,t : E — N are the source and target functions.
A graph is discrete if it has no arcs. Sometimes we will denote by Ng and Eg
the set of nodes and arcs of a graph G and by sg, tg its source and target
functions.

A graph morphism f : G — G’ is a pair of functions f = (fy : N = N’ fg :
E — E’) which preserve sources and targets, i.e., such that fxy os = s’ o fg
and fy ot = t' o fg; it is an isomorphism if both fy and fg are bijections;
moreover, an abstract graph [G] is an isomorphism class of graphs, i.e., [G] =
{H | H ~ G}. An automorphism of G is an isomorphism h : G — G; it
is non-trivial if h # idg. The category having graphs as objects and graph
morphisms as arrows is called Graph.

Formally, the category of typed graphs can be defined as the category of graphs
over the graph of types. Let us recall this categorical notion first, together with
the symmetrical one.

Definition 3.2.2 (category of objects over/under a given object [26])
Let C be a category and let x be an object of C. The categorylof objects (of
C) over x, denoted (C | z), is defined as follows. The objects of (C | x) are
pairs (y, f) where f : y — x is an arrow of C. Furthermore, & : (y, f) — (z,9)
is an arrow of (C | z) if k : y — z is an arrow of C and f = go k.
Symmetrically, the category of objects (of C) under x, denoted (z | C), has
pairs like (f,y) as objects, where f : 2z — y is an arrow in C; and k : (f,y) —
(g,2) is an arrow of (z | C) if k: y — 2 is an arrow of C and ko f = g.

Definition 3.2.3 (category of typed graphs)

Given a graph TG, the category TG-Graph of TG-typed graphs is defined as
the category of graphs over TG, i.e., (Graph | TG). Objects of TG-Graph,
i.e., pairs like (G, m) where G is a graph and m : G — T'G is a graph morphism,
will be called simply typed graphs if TG is clear from the context; similarly,
arrows will be called typed graph morphisms.

It is worth stressing that the typing mechanism subsumes the usual labelling
technique, where there are two colour alphabets Q2 for nodes and Qg for arcs,
and, correspondingly, two labelling functions. In fact, consider the graph of

116

A—rb o
C

B

f
‘/ f/
D

\.
Y
D

R —
g

é

Figure 3.1: Pushout diagram.

types TGq = (Qn, Qe XQn xQn, s, t), with s(e,n1,n2) = ny and t(e,ny,ng) =
ng. It is easily seen that there is an isomorphism between the category of
labelled graphs over (Qn,Qg) and the category of TGg-typed graphs.

The very basic idea in the algebraic approach to graph transformation is that of
gluing of graphs, expressed in categorical term as a pushout construction [26].

Definition 3.2.4 (pushout)

Let C be a category and let b: A — B, ¢: A — C be a pair of arrows of C. A
triple (D, f : B — D,g : C — D) as in Figure 3.1 is called a pushout of (b, c)
if the following conditions are satisfied:

[Commutativity]
fob=gog

[Universal Property]
for any object D’ and arrows f' : B — D’ and ¢’ : C — D', with
f'ob = g’ oc, there exists a unique arrow h : D — D’ such that ho f = f’
and hog=y¢'.

In this situation, D is called a pushout object of (b, ¢). Moreover, given arrows
b: A— Band f: B — D, a pushout complementindexpushout complement, of
(b, f) is a triple (C,c: A — C,g : C — D) such that (D, f,g) is a pushout of
b and c. In this case C is called a pushout complement object of (b, f).

In the category Set of sets and (total) functions the pushout object can be
characterized as D = (B + C')/=, where = is the least equivalence on B+ C =
{{0,z) | = € BYU{(l,y) | y € C} such that, for each a € A, (0,b(a)) =
(1,¢(a)), or in words, D is the disjoint union of B and C, where the images
of A through b and ¢ are equated. The morphisms f and g are the obvious

3.2. TYPED GRAPH GRAMMARS IN THE DPO APPROACH 117

embeddings. One can see that, analogously, in the category of graphs and
(total) graph morphisms the pushout object can be thought of as the gluing of
B and C, obtained by identifying the images of A via b and ¢. According to
this interpretation, the pushout complement object C' of b and f, is obtained
by removing from D the elements of f(B) which are not images of b(A).

A typed production in the double-pushout approach is a span, i.e., a pair of
typed graph morphisms with common source. Moreover each production has
an associated name which allows one to distinguish between productions with
the same associated span. Such name plays no role when the production is
applied to a graph, but it is relevant in certain transformations of derivations
and when relating different derivations.

Definition 3.2.5 (typed production)

A (TG-typed graph) production (L LKS R) is a pair of injective typed graph
morphisms [: K — L and r : K — R. It is called consuming if morphism
l: K — L is not surjective. The typed graphs L, K, and R are called the left-
hand side, the interface, and the right-hand side of the production, respectively.

Although sometimes we will consider derivations starting from a generic typed
graph, a typed graph grammar comes equipped with a start graph, playing the
same role of the initial symbol in string grammars, or of the initial marking for
Petri nets. Conceptually, it represents the initial state of the system modeled
by the grammar.

Definition 3.2.6 (typed graph grammar)

A (TG-typed) graph grammar G is a tuple (T'G,Gs, P,), where G, is the
start (typed) graph, P is a set of production names, and 7 a function mapping
each production name in P to a graph production. Sometimes we shall write
q: (L LKL R) for m(q) = (L LK R). Grammar G is called consuming
if all its productions are consuming, and finite if the set of productions P is
finite.

Example 3.1 (client-server systems)

As a running example we will use the simple typed graph grammar shown in
Figure 3.2, which models the evolution of client-server systems (this is a little
modification of an example from [5]). The typing morphisms from the involved
graphs to the graph of types T'G are not depicted explicitly, but are encoded
by attaching to each item its type, i.e., its image in T'G, separated by a colon.
We use natural numbers for nodes, and underlined numbers for edges. For
example, the node 4 of the start graph Gy is typed over node C of TG.

118

REQ:

SER:

Figure 3.2: Productions, start graph and graph of types of the grammar C-S modeling
client-server systems.

The typed graphs represent possible configurations containing servers and
clients (represented by nodes of types S and C, respectively), which can be in
various states, as indicated by edges. A loop of type job on a client means that
the client is performing some internal activity, while a loop of type req means
that the client issued a request. An edge of type busy from a client to a server
means that the server is processing a request issued by the client.

Production REQ models the issuing of a request by a client. After producing
the request, the client continues its internal activity (job), while the request is
served asynchronously; thus a request can be issued at any time, even if other
requests are pending or if the client is being served by a server. Production
SER connects a client that issued a request with a server through a busy edge,
modeling the beginning of the service. Since the production deletes a node
of type S and creates a new one, the dangling condition (see below) ensures
that it will be applied only if the server has no incoming edges, i.e., if it is
not busy. Production REL (for release) disconnects the client from the server
(modeling the end of the service). Notice that in all rules the graph morphisms
are inclusions.

The grammar is called C-S (for client-server), and it is formally defined as
C-§ = (TG,Gy,{REQ, SER, REL},r), where m maps the production names
to the corresponding production spans depicted in Figure 3.2. a

Since in this chapter we work only with typed notions, when clear from the
context we omit the word “typed” and do not indicate explicitly the typing
morphisms.

3.2. TYPED GRAPH GRAMMARS IN THE DPO APPROACH 119

q1 qk

r l
LléKlﬁlRl LkéKkLRk q1 qk

Figure 3.3: (a) The parallel production ((q1,in'),..., (qx,in*)) : (L LK5 R) and (b) its
compact representation.

The application of a production produces a local transformation in the rewrit-
ten graph, hence the idea of allowing for the concurrent application of more
than one production naturally emerges. The idea of “parallel composition” of
productions is naturally formalized in the categorical setting by the notion of
parallel production.

Definition 3.2.7 ((typed) parallel productions)

A parallel production (over a given typed graph grammar G) has the form
{(q1,inY), ..., (q,in*)) : (L L K5 R) (see Figure 3.3), where k > 0, ¢; :
(L; 3 K; 5 R;) is a production of G for each i € k,* L is a coproduct object
of the typed graphs in (L1,...,Lx), and similarly R and K are coproduct
objects of (Ry,...,Ry) and (Kj,...,K}), respectively. Moreover, [and r
are uniquely determined, using the universal property of coproducts, by the
families of arrows {l;}icx and {r; };ck, respectively. Finally, for each i € k, in’
denotes the triple of injections (in% : L; — L,in% : K; — K,in% : R; — R).
The empty production is the (only) parallel production with & = 0, having the
empty graph) (initial object in TG-Graph) as left-hand side, right-hand side
and interface, and it is denoted by (.

In the rest of the chapter we will often denote the parallel production of Fig-

ure 3.3 (a) simply as ¢1 + ¢2 + ... + qr : (L LKL R); note however that
the “4” operator is not assumed to be commutative. We will also use the

%For each n € N, by n we denote the set {1,2,...,n} (thus 0 = 0).

120

q1 Gk
int znk
l A £ T
q: L K R
G D H
b d

Figure 3.4: (Parallel) direct derivation as double-pushout construction.

more compact drawing of Figure 3.3 (b) to depict the same parallel produc-
tion. Furthermore, we will freely identify a production ¢ of G with the parallel
production {(q, (idp,idk,idR})); thus, by default productions will be parallel
in the rest of the presentation.

The rewriting procedure involves two pushout diagrams in the category of
graphs, hence the name of double-pushout approach.

Definition 3.2.8 ((parallel) direct derivation)

Given a typed graph G, a parallel production ¢ = ¢1 +...+qx : (L Ly it R),
and a match (i.e., a graph morphism) g : L — G, a (parallel) direct derivation §
from G to H using q (based on g) exists if and only if the diagram in Figure 3.4
can be constructed, where both squares are required to be pushouts in TG-

Graph. In this case, D is called the context graph, and we write 6 : G =, H,

or also § : G =44 H; only seldom we shall write § : G <g’2>’l;’d> H, indicating

explicitly all the morphisms of the double-pushout. If ¢ = J, i.e., g is the empty
production, then G = H is called an empty direct derivation.

To have an informal understanding of the notion of direct derivation, one
should recall the interpretation of the pushout as gluing of graphs. According
to this interpretation, the rewriting procedure removes from the graph G the
images via g of the items of the left-hand side which are not in the image of
the interface, namely g(L — I(K)), producing in this way the graph D. Then
the items in the right-hand side, which are not in the image of the interface,
namely R — r(K), are added to D, obtaining the final graph H. Thus the
interface K (common part of L and R) specifies what is preserved. For what
regards the applicability of a production to a given match, it is possible to
prove that the situation in the category TG-Graph is exactly the same as in
Graph, namely pushouts always exist, while for the existence of the pushout

3.2. TYPED GRAPH GRAMMARS IN THE DPO APPROACH 121

complement some conditions have to be imposed, called gluing conditions [4],
which consist of two parts:

[Dangling condition]
No edge e € G — g(L) is incident to any node in g(L — I(K));

[Identification condition]
There is no z,y € L, x # y, such that g(z) = ¢g(y) and y & I(K).

Nicely, the gluing conditions have a very intuitive interpretation: the dangling
condition avoids the deletion of a node if some arc is still pointing to it, and
thus ensures the absence of dangling arcs in D. The identification condition
requires each item of G which is deleted by the application of ¢, to be the image
of only one item of L. Among other things, this ensures that the application
of a production cannot specify simultaneously both the preservation and the
deletion of an item (see [5] for a broader discussion). Uniqueness of the pushout
complement, up to isomorphism, follows from the injectivity of [.

Remark:

IftG <g’k:’}>l’@b’d> H is an empty direct derivation, then morphisms g, k, and h are
necessarily the only morphisms from the empty (typed) graph (since ((,) is
initial in TG-Graph), while b and d must be isomorphisms. Morphism dob™? :
G — H is called the isomorphism induced by the empty direct derivation.

Moreover, for any pair of isomorphic graphs G ~ H, there is one empty direct

derivation G @’m:’%b’d) H for each triple (D,b: D — G,d : D — H), where b
and d are isomorphisms. An empty direct derivation G <w’®:’g’@b’d> H will be also
briefly denoted as G <i’>"é,> H. O

A parallel derivation can be seen as a sequence of single steps of the system,
each one consisting of the concurrent execution of a set of independent basic
actions of the system, analogously to step sequences of Petri nets.

Definition 3.2.9 ((parallel) derivation)

A (parallel) derivation (over G) is either a graph G (called an identity deriva-
tion, and denoted by G : G =*), or a sequence of (parallel) direct derivations
p = {Gi—1 =, Gi}icn such that ¢; = gi1 + ... + gk, is a (parallel) produc-
tion over G for all i € n (as in Figure 3.6). In the last case, the derivation is
written p : Go =5 G, or simply p: Go =* G. If p: G =" H is a (possibly
identity) derivation, then graphs G and H are called the source and the target
graphs of p, and will be denoted by o(p) and 7(p), respectively. The length of
a derivation p, denoted by |p|, is the number of direct derivations in p, if it is
not an identity, and 0 otherwise. The order of p, denoted by #p, is the total

122

S:req 4:job S:req 4: job

Gy

Figure 3.5: A derivation of grammar C-S starting from graph Go.

number of elementary productions used in p, i.e., #p = > _, k,; moreover,
prod(p) : #p — P is the function returning for each j the name of the j-th

production applied in p—formally, prod(p)(j) = ¢ if j = (Zizl k‘r) + s.
The sequential composition of two derivations p and p’ is defined if and only
if 7(p) = o(p'); in this case it is denoted p; p’ : o(p) =* 7(p’), and it is the
diagram obtained by identifying 7(p) with o(p’) (thus if p : G =* H, then
G; p=p=p; H, where G and H are the identity derivations).

Example 3.2 (derivation)

Figure 3.5 shows a derivation p using grammar C-S and starting from the start
graph Gy. The derivation models the situation where a request is issued by
the client, and while it is handled by the server, a new request is issued. All
the horizontal morphisms are inclusions, while the vertical ones are annotated
by the relation on graph items they induce. O

3.2.1 Relation with Petri nets

The basic notions introduced so far allow us to give a more precise account
of the relation between Petri nets and graph grammars in the double pushout
approach. Being Petri nets one of the most widely accepted formalisms for the
representation of concurrent and distributed systems, people working on the

3.2. TYPED GRAPH GRAMMARS IN THE DPO APPROACH 123

l
Q1o Qg . Gs: L<K*R --- qni ... Qik,
ll‘PTl liv"‘i ln\kyrn
1 <— K1 — R L; <K;> R; L,<~— K, — R,
S T A A A L
GO-TDl T>G1 Gn’1<b%Di7-Gi Gn71<;DnT>Gn

Figure 3.6: A (parallel) derivation, with explicit drawing of the s-th production of the i-th
direct derivation.

concurrency theory of graph grammars have been naturally led to compare
their formalisms with nets. Therefore various encodings of nets into graph
graph grammars have been proposed along the years, all allowing to have
some correspondences between net-related notions and graph-grammars ones.
Some encodings involving the DPO approach can be found in [27,28,29], while
for a complete survey the reader can consult [30]. All these papers represent
a net as a grammar by explicitly encoding the topological structure of the net
as well as the initial marking in the start graph. A slightly simpler encoding
comes from the simple observation that a Petri net is essentially a rewriting
system on multisets, and that, given a set A, a multiset of A can be represented
as a discrete graph typed over A. In this view a P/T Petri net can be seen
as a graph grammar acting on discrete graphs typed over the set of places,
the productions being (some encoding of) the net transitions: a marking is
represented by a set of nodes (tokens) labelled by the place where they are, and,
for example, the unique transition ¢ of the net in Fig. 3.7.(a) is represented by
the graph production in the top row of Fig. 3.7.(b): such production consumes
nodes corresponding to two tokens in A and one token in B and produces new
nodes corresponding to one token in C' and one token in D. The interface is
empty since nothing is explicitly preserved by a net transition. Notice that in
this encoding the topological structure of the net is not represented at all: it
is only recorded in the productions corresponding to the transitions.

It is easy to check that this representation satisfies the properties one would
expect: a production can be applied to a given marking if and only if the corre-
sponding transition is enabled, and the double pushout construction produces
the same marking as the firing of the transition. For instance, the firing of
transition ¢, leading from the marking 3A + 2B to the marking A+ B+ C+ D
in Figure 3.7.(a) becomes the double pushout diagram of Figure 3.7.(b).

Figure 3.7: Firing of a transition and corresponding DPO derivation.

The considered encoding of nets into grammars further enlightens the dimen-
sions in which graph grammars properly extends nets. First of all grammars
allow for a more structured state, that is a general graph rather than a multiset
(discrete graph). Even if (multi)sets are sufficient for many purposes, it is easy
to believe that in more complex situations the state of a distributed system
cannot be faithfully described just as a set of components, because also rela-
tionships among components should be represented. Thus graphs turn out to
be more natural for representing distributed states. As a consequence, graph
rewriting appears as a suitable formalism for describing the evolution of a wide
class of systems, whose states have a natural distributed and interconnected
nature.

Perhaps more interestingly, graph grammars allow for productions where the
interface graph may not be empty, thus specifying a “context” consisting of
items that have to be present for the productions to be applied, but are not
affected by the application. In this respect, graph grammars are closer to some
generalizations of nets in the literature, called nets with read (test) arcs or
contextual nets (see e.g. [31,32,33]), which generalize classical nets by adding
the possibility of checking for the presence of tokens which are not consumed.

3.3 Derivation trace semantics

Historically, the first truly concurrent semantics for graph transformation sys-
tems proposed in the literature has been the derivation trace semantics. It
is based on the idea of defining suitable equivalences on concrete derivations,
equating those derivations which should be considered undistinguishable ac-
cording to the following two criteria:

o irrelevance of representation details, namely of the concrete identity of
the items in the graphs involved in a derivation, and

3.3. DERIVATION TRACE SEMANTICS 125

e true concurrency, namely the irrelevance of the order in which indepen-
dent productions are applied in a derivation.

The corresponding equivalences, called respectively abstraction equivalence and
shift equivalence, are presented below. Concatenable derivation traces are then
defined as equivalence classes of concrete derivations with respect to the least
equivalence containing both the abstraction and the shift equivalences. Due to
an appropriate choice of the abstraction equivalence, the obvious notion of se-
quential composition of concrete derivations induces an operation of sequential
composition at the abstract level. Thus, as suggested by their name, concaten-
able derivation traces can be sequentially composed and therefore they can be
seen as arrows of a category. Such category, called here the category of con-
catenable derivation traces, coincides with the abstract truly concurrent model
of computation of a grammar presented in [5], namely the most abstract model
in a hierarchy of models of computation for a graph grammar.

3.8.1 Abstraction equivalence and abstract derivations

Almost invariably, two isomorphic graphs are considered as representing the
same system state, being such a state determined only by the topological struc-
ture of the graph and by the typing. This is extremely natural in the algebraic
approach to graph transformation, where the result of the rewriting procedure
is defined in terms of categorical constructions and thus determined only up
to isomorphism.? A natural solution to reason in terms of abstract graphs and
abstract derivations consists of considering two derivations as equivalent if the
corresponding diagrams are isomorphic. Unfortunately, if one wants to have
a meaningful notion of sequential composition between abstract derivations
this approach does not work. For an extensive treatment of this problem we
refer the reader to [34,15]. Roughly speaking, the difficulty can be described
as follows. Two isomorphic graphs, in general, are related by more than one
isomorphism, but if we want to concatenate derivations keeping track of the
flow of causality we must specify in some way how the items of two isomorphic
graphs have to be identified. The solution we propose is suggested by the the-
ory of Petri nets, and in particular by the notion of concatenable net process
[22,23], and borrows a technique of [35]. We choose for each class of isomor-
phic typed graphs a specific graph, called canonical graph, and we decorate the
source and target graphs of a derivation with a pair of isomorphisms from the
corresponding canonical graphs to such graphs. In such a way we are able to

At the concrete level, the fact that the pushout and pushout complement constructions
are defined only up to isomorphism generates an undesirable and scarcely intuitive unbounded
non-determinism for each production application.

126

distinguish “equivalent”® elements in the source and target graphs of deriva-
tions and we can safely define their sequential composition. An alternative
equivalent solution has been proposed in [34,15], making use of a distinguished
class of standard isomorphisms. We refer the reader to Section 3.7 for a dis-
cussion about the relationship between the two techniques.

Definition 3.3.1 (canonical graphs)
We denote by Can the operation that associates to each (T'G-typed) graph its
canonical graph, satisfying the following properties:

1. Can(G) ~ G;
2. if G ~ G’ then Can(G) = Can(G).

The construction of the canonical graph can be performed by adapting to
our slightly different framework the ideas of [35] and a similar technique can
be used to single out a class of standard isomorphisms in the sense of [34,15].
Working with finite graphs the constructions are effective. The Appendix gives
a detailed description of a concrete construction of the canonical graph.

Definition 3.3.2 (decorated derivation)

A decorated derivationp : Go =* G, is a triple (m, p, M), where p : Go =* G,,
is a derivation and m : Can(Go) — Go, M : Can(G,,) — G,, are isomorphisms.
If p is an identity derivation then v is called discrete.

In the following we denote the components of a decorated derivation 1 by
My, py and My. For a decorated derivation 1, we write o(¢), 7(¢), #¢, ||,
prod (1) to refer to the results of the same operations applied to the underlying
derivation py.

Definition 3.3.3 (sequential composition)
Let 9 and 9" be two decorated derivations such that 7(¢) = o(¢') and M, =
myy. Their sequential composition, denoted by ¢ ; ¢, is defined as follows:

(Myy py s pyr, Myr).

One could have expected sequential composition of decorated derivations 1 and
¥’ to be defined whenever 7(1)) ~ o(¢)’), regardless of the concrete identity of
the items in the two graphs. We decided to adopt a more concrete notion
of concatenation since it is technically simpler and it induces, like the more
general one, the desired notion of sequential composition at the abstract level.

“With “equivalent” we mean here two items related by an automorphism of the graph,
that are, in absence of further informations, indistinguishable.

3.3. DERIVATION TRACE SEMANTICS 127

The abstraction equivalence identifies derivations that differ only for represen-
tation details. As announced it is a suitable refinement of the natural notion
of diagram isomorphism.

Definition 3.3.4 (abstraction equivalence)

Let ¢ and ¢’ be two decorated derivations, with py : Go =* G, and py :
Gl =* G, (whose i'" steps are depicted in the low rows of Figure 3.8).
Suppose that ¢; = gi1 + ... + gir; for each i € n, and ¢; = ¢j; +... + q;k3 for

each j € n’. Then they are abstraction equivalent, written 1) = v, if
1. n =1/, i.e., they have the same length;

2. for each i € n, k; = k] and for all s € ki, ¢is = ¢j,; i.e., the productions
applied in parallel at each direct derivation are the same and they are
composed in the same order; in particular #1) = #';

3. there exists a family of isomorphisms
{0x,: X; > X! | X €e{L,K,R,G,D}, i € n}U{lg,}
between corresponding graphs appearing in the two derivations such that

(a) the isomorphisms relating the source and target graphs commute
with the decorations, i.e., 0g, om =m' and 0g, o M = M’;

(b) the resulting diagram commutes (the middle part of Figure 3.8 rep-
resents the portion of the diagram relative to step ¢, indicating only
the s of the k; productions applied in parallel with the correspond-
ing injections).?

Notice that two derivations are abstraction equivalent if, not only they have
the same length and apply the same productions in the same order, but also,
in a sense, productions are applied to “corresponding” items (Condition 3). In
other words abstraction equivalence identifies two decorated derivations if one
can be obtained from the other by uniformly renaming the items appearing in
the involved graphs.

Relation =% is clearly an equivalence relation. Equivalence classes of deco-
rated derivations with respect to =% are called abstract derivations and are
denoted by [t)]aps, where 1 is an element of the class.

It is easy to prove that if 1p =2 ¢’ and 1 =% ¢/ then, if defined, ;1) =2b*
¥'; 1. Therefore sequential composition of decorated derivations lifts to com-
position of abstract derivations.

dNotice that the isomorphisms 0x, for X € {L, K, R}, relating corresponding parallel
productions, are uniquely determined by the properties of coproducts.

128

9i ‘ k; h;
b’ d’
, Gt G . Dj : G G ,
Can(Go) Cles i ;Ch_l ks /GDi h; /6‘01 ?cn Can(Gr)
m\
Go Gi—1 . D; ” Gi Gn ~—u

Figure 3.8: Abstraction equivalence of decorated derivations (the arrows in productions
spans are not labelled).

Definition 3.3.5 (category of abstract derivations)

The category of abstract derivations of a grammar G, denoted by Abs[G], has
abstract graphs as objects, and abstract derivations as arrows. In particular,
if ¢ : G =* H, then [¢]ups is an arrow from [G] to [H|. The identity arrow
on [G] is the abs-equivalence class of a discrete derivation (i, G, %), where i :
Can(G) — G is any isomorphism, and the composition of arrows [¥]qps :
(G] —> [H] and [1]as : [H] — [X] is defined as 5 1" Japs : [G] — [X], where
" € [¢']aps is such that the composition is defined.

It is worth stressing that, whenever 7(¢) ~ o(¢’), we can always rename the
items in the graphs of ¢/, in order to obtain a derivation 1", abs-equivalent to
1’ and composable with 1, namely such that 7(¢) = o(¢”) and My = my».
Basically, it suffices to substitute in the derivation ¢’ each item x in o(¢)") with

My (my) (z)).

3.83.2 Shift equivalence and derivation traces

From a truly concurrent perspective two derivations should be considered as
equivalent when they apply the same productions to the “same” subgraph
of a certain graph, even if the order in which the productions are applied
may be different. The basic idea of equating derivations which differ only for
the order of independent production applications is formalized in the literature
through the notion of shift equivalence [14,36,4]. The shift equivalence is based
on the possibility of sequentializing a parallel direct derivation (the analysis

3.3. DERIVATION TRACE SEMANTICS 129

construction) and on the inverse construction (synthesis), which is possible only
in the case of sequential independence. The union of the shift and abstraction
equivalences will yield the (concatenable) truly concurrent equivalence, whose
equivalence classes are the (concatenable) derivation traces.

Let us start by defining the key notion of sequential independence.

Definition 3.3.6 (sequential independence)

A derivations d1; 02, consisting of two direct derivations d; : G =4 4, X and
02 + X =g 4, H (as in Figure 3.9) is sequentially independent if go(L2) N
hi1(R1) C g2(l2(K2)) N hy(r1(K7)); in words, if the images in X of the left-
hand side of ¢” and of the right-hand side of ¢’ overlap only on items that
are preserved by both derivation steps. In categorical terms, this condition
can be expressed by requiring the existence of two arrows s : Lo — D7 and
u : Ry — D5 such that dy o s = g9 and b o u = hy.

Example 3.3 (sequential independence)

Consider the derivation of Figure 3.5. The first two direct derivations are not
sequential independent; in fact, the edge 3:req of graph G is in the image of
both the right-hand side of the first production and the left-hand side of the
second one, but it is in the context of neither the first nor the second direct
derivation. On the contrary, in the same figure both the derivation from G;
to G3 and that from G5 to G4 are sequential independent. O

Notice that, differently from what happens for other formalisms, such as Petri
nets or term rewriting, two rewriting steps d; and d2 do not need to be applied
at completely disjoint matches to be independent. The graphs to which &,
and 0y are applied can indeed overlap on something that is preserved by both
rewriting steps. According to the interpretation of preserved items as read-
only resources, this fact can be expressed by saying that graph rewriting allows
for the concurrent access to read resources.

The next well-known result states that every parallel direct derivation can be
sequentialized in an arbitrary way as the sequential application of the compo-
nent productions, and, conversely, that every sequential independent derivation
can be transformed into a parallel direct derivation. These constructions, in
general non-deterministic, are used to define suitable relations among deriva-
tions (see, e.g., [14,37,5]). Unlike the usual definition of analysis and synthesis,
we explicitly keep track of the permutation of the applied productions induced
by the constructions. Therefore we first introduce some notation for permuta-
tions.

130

qd=¢q,+...+4q, " =qy+. .t G
11 1 la T2
[1<—Ki ——R1 Ly<— Ky —— R;
SR /?7\ I
h1 92
G D1 X Do H
by dy ba da

Figure 3.9: Sequential independent derivations.

Definition 3.3.7 (permutations)

A permutation on the set n = {1,2,...,n} is a bijective mapping Il : n — n.
The identity permutation on n is denoted by II7;. The composition of two
permutations II; and II; on n, denoted by II; o I, is their composition as
functions, while the concatenation of two permutations II; on n; and Il on
ng, denoted by II; | II5, is the permutation on n; + ny defined as

H1H2($)—{ Hy(x —ny) +my ifng <z <ng

Concatenation and composition of permutations are clearly associative.

Proposition 3.3.8 (analysis and synthesis)
Let p : G =, H be a parallel direct derivation using ¢ = q1 + ... + g :

(L LR " R). Then for each partition (I = {iy,...,in},J = {j1,---,Jm})
of k (ie, IUJ =k and INJ = () there is a constructive way—in general
non-deterministic—to obtain a sequential independent derivation p’ : G =4
X =4 H, called an analysis of p, where ¢ = ¢;;, + ...+ ¢;,, and ¢" =
¢, + ...+ q;, as in Figure 3.9. If p and p' are as above, we shall write
p =" p', where Il is the permutation on k defined as Il(i,) = = for x € n, and
I(j,) =n+x for x € m.

Conversely, let p : G =4 X =4+ H be a sequential independent derivation.
Then there is a constructive way to obtain a parallel direct derivation p' =

__syn

G =y ¢ H, called a synthesis of p. In this case, we shall write p =" p/,
where II = Hfflp . O

Informally, two derivations are shift equivalent if one can be obtained from the
other by repeatedly applying the analysis and synthesis constructions. The
next definition emphasizes the fact that the sets of productions applied in two

3.3. DERIVATION TRACE SEMANTICS 131

shift equivalent derivations are related by a permutation which is constructed
inductively starting from the permutations introduced by analysis and synthe-
sis.

Definition 3.3.9 (shift equivalence)

Derivations p and p’ are shift equivalent via permutation I1, written p = o/,
if this can be deduced by the following inference rules:
—1 _
g s ;Cﬁ s =7
P =ik P G=G' G i
—syn v —sh —sh ! —sh
(SH—syn) % (SH—sym) # (SH—trans) P= ,0 G P
=fp PEfap p=iton P

p1 =i ph, pe = n2 ph, T(p1) = o(p2)
P15 P2 = 1‘[1|]‘[2 pl) p2

(SH—comp)

Note that by (SH — @) an empty direct derivation is shift equivalent to the
identity derivation G if and only if the induced isomorphism is the identity.
The shift equivalence is the equivalence relation =% defined as p =" p’ iff
p =;h p for some permutation II.

It is worth stressing that the shift equivalence abstracts both from the order in
which productions are composed inside a single direct parallel step and from
the order in which independent productions are applied at different direct
derivations.

Example 3.4 (shift equivalence)

Figure 3.10 shows a derivation p’ which is shift equivalent to derivation p of
Figure 3.5. It is obtained by applying the synthesis construction to the sub-
derivation of p from G; to Gj. O

Despite the unusual definition, borrowed from [18], it is easy to check that the
shift equivalence just introduced is the same as in [14,4,15]. From the defini-
tions of the shift equivalence and of the analysis and synthesis constructions,
it follows that p =" p’ implies that p and p’ have the same order and the same
source and target graphs (i.e., #p = #p', o(p) = o(p’), and 7(p) = 7(p');
by the way, this guarantees that rules (SH — comp) and (SH — trans) are well-
defined. The shift equivalence can be extended in a natural way to decorated

derivations.

132

SER + REQ =

S:req 4:job S:req 4:job S:req 4:job

G3 Gy

Figure 3.10: A derivation p’ in grammar C-S, shift-equivalent to derivation p of Figure 3.5.

Definition 3.3.10
The shift equivalence on decorated derivations, denoted with the same symbol
=sh_is defined by (m, p, M) =" (m, p', M) if p =" p'.

Equivalence =% does not subsume abstraction equivalence, since, for example,
it cannot relate derivations starting from different but isomorphic graphs. We
introduce a further equivalence on decorated derivations, obtained simply as
the union of =% and =*", and we call it truly-concurrent (or tc-) equivalence,
since in our view it correctly equates all derivations which are not distinguish-
able from a true concurrency perspective, at an adequate degree of abstraction
from representation details. A small variation of this equivalence is introduced
as well, called ctc-equivalence, where the first “c” stays for “concatenable”.
Equivalence classes of (c¢)tc-equivalent decorated derivations are called (con-
catenable) derivation traces, a name borrowed from [38].

Definition 3.3.11 (truly-concurrent equivalences and traces)
Two decorated derivations ¢ and v’ are ctc-equivalent via permutation II,
written ¢ =§ ¢', if this can be deduced by the following inference rules:

Y ="y =i e R

(CTC—abs) —————~— (CTC—sh) ————— (CTC—trans)
Ecnqiw 04 Y =g Y’ Y =fpon (g
k3

Equivalence =°, defined as ¢ =° ¢’ iff ¢ = ¢’ for some permutation II, is
called the concatenable truly concurrent (ctc-) equivalence. Equivalence classes

3.4. PROCESS SEMANTICS 133

of derivations with respect to =° are denoted as [¢)]. and are called concatenable
derivation traces. A derivation trace is an equivalence class of derivations with
respect to the truly-concurrent (tc-) equivalence = defined by the following
rules:

Y=gy Y=nvY’ « discrete decor. deriv. s.t. 1/ ; « is defined

(TC—iso)
Y=y’ Y=Y’ a

(TC—ctc)

Equivalently, we could have defined tc-equivalence as ¥ =y 1 if and only if
Y =G (M, pyr, M'), for some isomorphism M’ : Can(r(¢’)) — 7(¢'). In-
formally, differently from ctc-equivalence, tc-equivalence does not take into
account the decorations of the target graphs of derivations, that is their end-
ing interface, and this is the reason why derivation traces are not concatenable.
Derivation traces will be used in Section 3.6 to define an event structure se-
mantics for a graph grammar.

Concatenable derivation traces, instead, are naturally equipped with an oper-
ation of sequential composition, inherited from concrete decorated derivations,
which allows us to see them as arrows of a category having abstract graphs as
objects. Such category is called the category of concatenable derivation traces
(or the abstract truly concurrent model of computation) of the grammar.

Definition 3.3.12 (category of concatenable derivation traces)

The category of concatenable derivation traces of a grammar G, denoted by
Tr[G], is the category having abstract graphs as objects, and concatenable
derivation traces as arrows. In particular, if ¢ : G = H then [¢]. is an arrow
from [G] to [H]. The identity arrow on [G] is the ctc-equivalence class of a
discrete derivation (i, G,i), where 4 is any isomorphism from Can(G) to G.
The composition of arrows [¢]. : [G] — [H| and [¢/]. : [H] — [X] is defined
as [¢; ¥"]c 1 [G] — [X], where ¢ € [¢']; is a decorated derivation such that
;" is defined.

Category Tr[G] is well-defined because so is the sequential composition of ar-
rows: in fact, if 1 =¢ ¥ and ¥] =° ¢4 then (if defined) v ;] = g ;)
(hence the attribution “concatenable”). As for abstract derivations, whenever
7(¢) = o(¢’), it is always possible to concatenate the corresponding traces,
namely one can always find a derivation ¢ € [¢)']. such that 1 ; ¢ is defined.

3.4 Process Semantics

Derivation traces represent (truly concurrent) deterministic computations of a
grammar, but they do not provide an explicit characterization of the events

134

occurring in computations and of the causal relationships among them. Graph
processes arise from the idea of equipping graph grammars with a semantics
which on the one hand explicitly represent events and relationships among
them, and on the other hand uses graph grammars themselves as semantic
domain.

Analogously to what happens for Petri nets, a graph process [16] of a graph
grammar G is defined as an “occurrence grammar” O, i.e., a grammar sat-
isfying suitable acyclicity and conflict freeness constraints, equipped with a
mapping from O to G. This mapping is used to associate to the derivations
in O corresponding derivations in G. The basic property of a graph process
is that the derivations in G which are in the range of such mapping consti-
tute a full class of shift-equivalent derivations. Therefore the process can be
regarded as an abstract representation of such a class and plays a role similar
to a canonical derivation [14].

Graph processes are not naturally endowed with a notion of sequential compo-
sition, essentially because of the same problem described for abstract deriva-
tions: if the target graph of a process is isomorphic to the source graph of a
second process, the naive idea of composing the two processes by gluing the
two graphs according to an isomorphism does not work. In fact, in general we
can find several distinct isomorphisms relating two graphs, which may induce
sequential compositions of the two processes which substantially differ from
the point of view of causality. Using the same technique adopted for deriva-
tions, concatenable graph processes [17] are defined as graph processes enriched
with the additional information (a decoration of the source and target graphs)
needed to concatenate them.

3.4.1 Graph Processes

Classically, in the theory of Petri net, processes have been considered only for
T-restricted nets, where transitions have non-empty precondition and postcon-
dition, or for consuming nets, where at least the precondition of each transition
is non-empty. Analogously, the theory of graph processes for DPO gram-
mars [16,17] has been developed just for consuming grammars. As for nets,
such a choice is motivated by the fact that in the non-consuming case some
technical and conceptual difficulties arise, essentially related to the possibil-
ity of applying in parallel several (causally) indistinguishable copies of the
same production (autoconcurrency). However, as we will see in Section 3.6,
the problem becomes serious only when trying to define an event structure
semantics, since the event structure generated for a non consuming grammar
is no more a meaningful representation of the behaviour of the grammar. To

3.4. PROCESS SEMANTICS 135

make clear which kind of problems arise and to stress where the hypothesis of
having consuming grammars is strictly necessary, in this presentation we take
a more liberal view, deferring the restriction to consuming grammars as long
as possible.

In the sequel it will be useful to consider graphs as unstructured sets of nodes
and arcs. The following definition provides some necessary notation.

Definition 3.4.1 (items of a graph)

For a given graph G, with Items(G) we denote the disjoint union of nodes
and edges of G; for simplicity, we will often assume that all involved sets are
disjoint, to be allowed to see Items(G) as a set-theoretical union.

Given a set S C ITtems(G) of items of G we denote by Ng the subset of S
containing only nodes, namely SN N¢g. Similarly Fg denotes the subset of arcs
in S, namely SN Eg. Finally Gr(S) denotes the structure (Ns, Es, 5|55, t|5s),
where s and t are the source and target functions of G. Notice that this is a
well-defined graph only if s(Eg) Ut(Eg) C Ng.

In the following, by L, (resp. K, R,) we will sometimes denote the graph L

(resp., K, R) of a production ¢ : (L LK R). Moreover, when we want
to specify the typing of Ly, K, and Ry, we will assume that L, = (LG, tl,),
K, = (KGg, tky), and Ry = (RGg, try).

The basic ingredient for the definition of graph processes is the notion of oc-
currence grammar, which is a special kind graph grammar satisfying suitable
acyclicity and conflict freeness constraints. Each production of an occurrence
grammar underlying a process is intended to represent a precise occurrence of
an application of a production in the original grammar. Therefore the “mean-
ingful” derivations of an occurrence grammar, representing computations of
the original grammar, are only those where each production is executed ex-
actly once. In the consuming case the fact that each production of an occur-
rence grammar is applied just once is ensured by the structure of the grammar
itself, while in the possibly non-consuming case, this restriction must be “im-
posed” explicitly. Consequently the grammar underlying a graph process will
be required to be “safe” only with respect to derivations which apply each
production at most once. The usual notion of strong safety and the weaker
one needed for non-consuming grammars are formalized as follows.

Definition 3.4.2 (safety properties for graph grammars)

Let G = (TG,Gs, P,m) be a graph grammar. A TG-typed graph (G,m) is
injective if the typing morphism m is injective. The grammar G is called
quasi safe if for all derivations G4 =* H using each production at most once,

136

the graph H is injective. The grammar G is called strongly safe if the above
condition holds for general derivations.

The definition is easily understood by observing that if we think of nodes and
arcs of the type graph as a generalization of places in Petri nets, then the
condition of safety for a marking (each place of the net is filled with at most
one token) is naturally generalized to typed graphs by requiring the injectivity
of the typing morphism.

We recall that if the gluing conditions are satisfied, then the application of a
production to a graph G via the match g (which may be non-injective) can
be thought of, at a concrete level, as removing g(L — I(K)) from G and then
adding h(R —r(K)) (see Figure 3.4 to understand the meaning of g and h) [4].
Intuitively, if we consider injective morphisms as inclusions then all graphs
reachable in a (quasi) safe grammar (by applying each production at most
once) can be seen as subgraphs of the graph of types. As a consequence, we will
say that a production, according to his typing, creates, preserves or consumes
an item of the type graph. Using a (contextual) net-like language, we speak
then of pre-set °q, context ¢ and post-set ¢* of a production g. The notions of
pre-set, post-set and context of a production, as well as the notion of causality
have a clear interpretation only under some safety condition. However for
technical reasons it is preferable to define them for general graph grammars.

Definition 3.4.3 (pre-set, post-set, context)
Let G be a graph grammar. For any ¢ € P we define

°q = Items(tly(LGq — (K Gy))) q* = Items(try(RGq — 1¢(KGy)))
q = Items(tky(KGy))

and we say that q consumes, creates and preserves items in *%, ¢* and g,
respectively. Similarly for a node or arc x € Items(TG) we write ®z, x* and
x to denote the sets of productions which create, consume and preserve z,
respectively.

Then a notion of causality between items of the type graph and productions
can be defined naturally as follows:

Definition 3.4.4 (causal relation)

The causal relation of a grammar G is given by the structure (Elem(G), <),
where Elem(G) is the set Items(T'G) U P and < is the transitive closure of the
relation < defined by the following clauses: for any node or arc x in T'G, and
for productions ¢q1,q € P

1. if z € °¢; then x < q1;

3.4. PROCESS SEMANTICS 137

2. if x € ¢1° then ¢ < z;

3. 4f (¢1° Ng2) U (g1 N *g2) # 0 then g1 < go;

As usual < is the reflexive closure of <. Pairs of elements of Elem(G) which
are not related by the causal relation are said to be concurrent.

Thinking of G as (some kind of) safe grammar, the first two clauses of the
definition of relation < are obvious: each production depends on all the items
in its left-hand side (but not in its interface graph) and causes all the items in
its right-hand side (but not in the interface graph). The third one formalizes
the fact that if an item is generated by ¢; and preserved by go, then g3 cannot
be applied before g1, and, symmetrically, that if an item is preserved by ¢; and
consumed by g2, then in a computation where all productions are applied ¢;
must precede ¢.

A (deterministic) occurrence grammar is a graph grammar where the causal
relation is a partial order (thus there are no cycles), each item of the type
graph is created (consumed) by at most one production, and all productions
consume and produce items of the type graph with “multiplicity” one (i.e.,
the typing morphism is injective on the produced and consumed part). As a
consequence the grammar is quasi safe and all its production are applicable.

Definition 3.4.5 (occurrence grammar)
An occurrence grammar is a graph grammar O = (T'G, G, P,) such that

1. its causal relation < is irreflexive and its reflexive closure < is a partial
order;

2. consider the sets Min of minimal elements and M ax of maximal elements
of (Items(TQG), <); then Min(O) = Gr(Min) and Max(O) = Gr(Mazx)
are well-defined subgraphs of T'G; moreover G coincides with Min(O),
typed by the inclusion;

3. for all productions g € P, the typing tl, is injective on LG, — I,(KG,),
and similarly ¢r, is injective on RG, — r,(KGy).

4. for all z € Items(T'G), x is consumed by at most one production in P,
and it is created by at most one production in P (i.e., |%¢|,|z®| < 1).

Since the start graph of an occurrence grammar O is determined by Min(O),
we often do not mention it explicitly.

138

Intuitively, the above conditions rephrase in the framework of graph grammars
the analogous conditions of deterministic occurrence nets. Condition (1) re-
quires causality to be acyclic. In particular, irreflexivity of < disallows an item
of the type graph to appear both in the pre-set and in the context (post-set) of
the same production. Condition (2) forces the set of minimal items of the type
graph to be a well-defined subgraph of the type graph T'G, coinciding with
the start graph of the grammar. Also the set of maximal items of the type
graph is asked to form a subgraph of T'G. It can be shown that this condition
implies that for each n € Np¢, e € Epg such that n € {s(e),t(e)}, and for any
production ¢ € P, if ¢ < n then ¢ < e, and if n < g then e < ¢q. Consequently
the dangling condition is satisfied in every derivation consistent with causal
dependency. Condition (3), instead, is closely related to safety and requires
that each production consumes and produces items with multiplicity one. To-
gether with irreflexivity of <, it disallows the presence of some productions
which surely could never be applied, because they fail to satisfy the identifi-
cation condition with respect to the typing morphism. Finally, Condition (4)
requires the absence of backward and forward conflicts.

Proposition 3.4.6 (occurrence and safe grammars)
Each occurrence grammar O is quasi safe. Moreover if O is consuming then O
is strongly safe.

Proof

Let O = (TG, P,7) be an occurrence grammar and let p : G5 =* G, be a
derivation in O, using each production of G at most once. To fix notation
suppose p = {Gi—1 =, Gi}icn. Without loss of generality we can assume
that each direct derivation of p applies a single production.

We show by induction on the order n of the derivation that the graph G, is
injective. For m = 0 just recall that G, is a subgraph of T'G, typed by the
inclusion. If n > 0, by inductive hypothesis G, _1 is injective. Moreover the
typing of g, is injective on RG,, —r4, (K G,). This observation, together with
the fact that the items of the start graph have empty pre-set (they are minimal
with respect to causality) and each item of the type graph is produced by at
most one production implies that the graph G,,, which can be expressed as

Gn_l - (Lan - lqn (Kan)) U (RGQn - r‘]n (KGQn))
is injective.
If the grammar is consuming, since each production has a non empty pre-set

and causality < is a partial order (there are no “cycles”), every derivation in
the grammar starting from the start graph can apply each production at most

3.4. PROCESS SEMANTICS 139

once. Thus for each such derivation the above reasoning applies and therefore
the grammar is strongly safe. a
Traditionally, occurrence grammars have been defined only in the consuming
case, and as strongly safe grammars satisfying Conditions (1)-(4) of Defini-
tion 3.4.5. The last proposition ensures that our notion of occurrence grammar
extends the classical one in a consistent way, in the sense that they coincide
when restricted to consuming grammars.

An occurrence grammar is a fully fledged graph grammar, thus one may “exe-
cute” it by considering the possible derivations beginning from the start graph
Min(O). However, it is natural to consider only those derivations which are
consistent with the causal ordering. In fact for any finite subset of productions
P’ C P, closed with respect to causality, all productions in P’ can be applied
in a derivation with source in Min(Q), in any order compatible with < (i.e.,
if ¢ < ¢o then ¢ is applied first). Furthermore, all subgraphs of the type
graph reached in such derivations are made of concurrent nodes and edges,
and can be characterized in an elegant way using the causal relation. Here is
a summary of these results.

Definition 3.4.7 (reachable sets)
Let O = (T'G, P,) be an occurrence grammar, and let (P, <) be the restriction
of the causal relation to the productions of O. For any finite left-closed P’ C
P.% the reachable set associated to P’ is the set of nodes and arcs Spr C
Items(TG) defined as

xe€Sp ff VgeP.(x<q=q&€P)AN(x>q=q€P).

Theorem 3.4.8
Let O = (TG, P,w) be an occurrence grammar, and let Sp: be a reachable set
for some finite left-closed P’ C P. Then

1. The elements of Sp: are pairwise concurrent, and Gr(Sp/) is a graph.

2. The graph Gr(Sp:) is reachable from the start graph Min(O); more
precisely, Min(O) =%, Gr(Sp/) with a derivation which applies exactly
once every production in P’ in any order consistent with <. O

Notice that in particular Min(O) = Gr(Sy) and Max(O) = Gr(Sp). Thus,
by the above theorem, if O is a finite occurrence grammar
Min(O) =% Mazx(O)

€A subset Y of an ordered set (X, <) is left-closed if for any v € X and y € YV, z < y
implies x € Y.

140

RG' RG
: el) - :
q KG KG mpp(q) = ¢q
U / ‘ LL(‘Z/) /
LG LG tr
tk' o tk
tl’ tl
TG s TG

Figure 3.11: Mapping in a graph process.

using all productions in P exactly once, in any order consistent with <. This
makes clear why a graph process of a grammar G, that we are going to define
as a finite occurrence grammar plus a mapping to the original grammar, can
be seen as representative of a set of derivations of G where independent steps
may be switched.

Definition 3.4.9 (graph process)

Let G = (TG, G, P,) be a typed graph grammar. A (finite) process p for G
is a pair (Op, ¢p), where O, = (T'G,, Py, mp,) is a finite occurrence grammar
and ¢, = (Mmgp, MPp, Lp), Where

1. mg, : TG, — TG is a graph morphism;

2. mp, : P, — P is a function mapping each production ¢’ : (L' < K’ —
R') in P, to an isomorphic production ¢ = mp,(¢’) : (L <~ K — R) in P
and

3. 1, is a function mapping each production ¢’ € P, to a triple of isomor-
phisms 1,(¢") = (15(¢') : L = L',J)(¢') : K = K',/J{(¢/) : R —» R'),
making the diagram in Figure 3.11 commute.

The graphs Min(O) and Maxz(O) typed over TG by the corresponding restric-
tions of mg,, are denoted by Min(p) and Max(p) and called, respectively, the
source and target graphs of the process.

Example 3.5 (process)
Figure 3.12 shows a process for grammar C-S of Example 3.1. The typing
morphisms from the productions of the process to TG/, are inclusions, and the

3.4. PROCESS SEMANTICS 141

REQ :

REL':

Figure 3.12: A graph process of grammar C-S.

start graph is the subgraph of T'G,, containing items 5: .5, 0 : job and 4 : C
(thus exactly the start graph Gy of C-S), because these are the only items
which are not generated by any production.

The morphism mg, : TG, — T'G is shown as usual by typing the items of T'G,,
with their image in T'G, and the mapping from the productions of the process
to that of C-S is the obvious one. It is easy to check that all the conditions of
Definition 3.4.5 are satisfied. g

Definition 3.4.10 (isomorphism of processes)
Let G = (T'G,Gs, P,) be a typed graph grammar. An isomorphism f between
two processes p; and ps of G is a pair (fg, fp) : p1 — p2 such that

1. fg : (TGp,,mgp,) — (IT'Gp,,mgp,) is an isomorphism (of T'G-typed
graphs);

2. fp: Py, — Pp, is a bijection such that mp,, = mpy, o fp;

3. for each ¢1 : (L1 < K1 — R1) in Py, @2 = fp(q1) : (L2 < K2 = Ry) in
P,,, if ¢ = mpy, (q1) = mpp,(¢g2) : (L < K — R) in P, the diagram in
Figure 3.13 commutes.

To indicate that p; and po are isomorphic we write p; = ps.

As one could expect a process isomorphism from p; to po induces an isomor-
phism of ordered structures between Elem(O,,) and Elem(O,,).

142

R R

RG1 RG RG>

/ K / K /
KG, (q1) Ka / (a2)

LG, ‘) La ‘ La2) LG tro

2
the try tel [th2
tly tl tlo

TG, TG TGo
fg

Figure 3.13: Graph process isomorphism.

Proposition 3.4.11

Let p; and py be two processes of a grammar G, and let f = (fg, fp) : p1 = p2
be an isomorphism. Then fgU fp : (Elem(Op,), <p,) — (Elem(O,,), <,,) is
an isomorphism of partial orders.

Proof

By definition fgU fp is a bijection. Moreover it is monotone. In fact let us look
at the basic cases defining the causal relation <,, (see Definition 3.4.4). For
instance, for the first case suppose that z, ¢ € Elem(O,,), with < ¢ because
x € tly(LGy — l4(KG,)); then we have fg(x) € fg(tly(LG, — l,(KGy))) =
tp(g) (LG gpq) — K G p(q)), by definition of process isomorphism. Therefore
fg(z) <,, fp(q). Also in the other three cases we proceed straightforwardly
and thus we conclude that fgU fg is monotone. In the same way (fgU fp)~*
is monotone. Thus it is an isomorphism of partial orders. O

Corollary 3.4.12

Let p1 and ps be two processes of a grammar G. If p; & py then Min(p;) ~
Min(p2) and Max(p1) ~ Max(p2), the isomorphisms being established by the
corresponding restrictions of fg. a

3.4.2 Concatenable Graph Processes

A concatenable graph process is a graph process equipped with two isomor-
phisms relating its source and target graphs to the corresponding canonical
graphs. The two isomorphisms allow us to define a deterministic operation of
sequential composition of processes consistent with causal dependencies, which

3.4. PROCESS SEMANTICS 143

is then exploited to define a category CP[G] having abstract graphs as objects
and concatenable processes as arrows.

Definition 3.4.13 (concatenable process)
Let G = (TG,Gs, P,) be a typed graph grammar. A concatenable process
(c-process) for G is a triple

ep = (m,p, M)

where p is a process and m : Can(Min(p)) — Min(p), M : Can(Max(p)) —
Mazx(p) are isomorphisms (of TG-typed graphs). We denote with Min(cp)
and Max(cp) the graphs Min(p) and Max(p).

If the occurrence grammar O, associated to the process has an empty set of
productions (and thus Min(p) = Max(p) = TG,), the c-process cp is called a
discrete process and denoted as Symg(m, (TG, mg,), M).

It should be noted that the two isomorphisms to the source and target graphs
of a process play the same role of the ordering on maximal and minimal places
of concatenable processes in Petri net theory [22]. From this point of view,
concatenable graph processes are related to the graph processes of [16] in the
same way as the concatenable processes of [22] are related to the classical
Goltz-Reisig processes for P/T nets [9].

The notion of isomorphism between c-processes is the natural generalization
of that of graph processes isomorphism, namely the mapping between the type
graphs of the two processes is required to be “consistent” with the decorations.

Definition 3.4.14 (isomorphism of c-processes)

Let ¢p; = (mq,p1, M1) and ¢pa = (ma, pa, Ma) be two c-processes of a gram-
mar G. An isomorphism between cp; and cps is an isomorphism of processes
(fg, fp) : p1 — p2 such that the following diagrams commute:

Min(p1) Maz(p1)

Can(]\/|[|in(p1)) — T~ Can(]WHaa:(pl))
fg fg

Can(Min(p2)) — L Can(Mazx(p2))
> Min(p2) Max(ps)

where fg : Min(p1) = Min(ps) and fg : Max(p1) — Max(p2) denote the
restrictions of fg to the corresponding graphs.? If there exists an isomorphism

F'We omit the typing morphism mg and denote the discrete process as Symg(m, TGp, M),
when this cannot generate confusion.

9As shown in Corollary 3.4.12, for each pair of isomorphic processes p; and p2 the cor-
responding Min and Maz graphs are isomorphic as well, i.e., Min(p1) ~ Min(p2) and
Maz(p1) ~ Max(p2)

144

f:cp1 — cpo we say that ¢py and cpy are isomorphic and we write cp; = cps.

Definition 3.4.15 (abstract c-process)
An abstract c-process is an isomorphism class of c-processes. It is denoted by
[cp], where ¢p is a member of that class.

Proposition 3.4.16
Let G be a graph grammar and let Symg(m;, TG;, M;), for j = 1,2, be two
discrete processes, with TG, ~ TGy. Then they are isomorphic if and only if

myto My =myt o M.

Proof
First of all let us notice that in the case of discrete processes, since the sets of
productions are empty and Min(O;) = Max(O;) = TG}, using the fact that
TG1 ~ TG4, the isomorphism conditions reduce to the existence of a (typed)
graph isomorphism fg : (T'Gy,mg1) — (T'Ga,mgs) such that the following
diagram commutes:

TG

mi My
Can(TG1) / \ Can(TGh)

|| .
Can(TG2)

Can(TG2)
% L/Mz

Now if m;* o My = m5* o My then we can define fg = Myo M; ' = mgom] .
Viceversa if the discrete processes are isomorphic then, by commutativity of
the above diagram, we conclude that m{l oM, = m;l o M. O
By the previous proposition, an abstract discrete process [Symg(m, TG, M)]
can be characterized as:

{Symg(m/, TG,M") | TG ~TG', m" oM =m~'oM}.

The isomorphism m =1 o M is called the automorphism on Can(TG) induced
by the (abstract) discrete process.

Given two concatenable processes cp; and cps such that the target graph of the
first one and the source graph of the second one, as well as the corresponding
decorations, coincide, we can concatenate them by gluing the type graphs along
the common part.

Definition 3.4.17 (sequential composition)
Let G = (TG, Gs, P,m) be a typed graph grammar and let ¢py = (mq,p1, M1)
and cpy = (ma,pa, M) be two c-processes for G, such that Max(cp;) =

3.4. PROCESS SEMANTICS 145

Min(epy) and My = mg. Suppose moreover that the type graphs of ¢p; and
cpy overlap only on Maz(cp1) = Min(cps2) and suppose also P,, and P,, dis-
joint. Then the concrete sequential composition of c¢p; and cps, denoted by
cp1; ¢po is defined as

cp = <m17pa M2>7

where p is the (componentwise) union of the processes p; and py. More pre-
cisely the type graph T'G), is

TG, = <NTG,,1 U NTGPZ , ETGpl U ETGm , 81 U sg,t1 Uta),

where s; and t; are the source and target functions of the graph T'G), for
i € {1, 2}, and analogously the typing morphism mg, = mg,, Umgy,. Similarly
P, =P, UP,,, 1, = mp, UTp,, mpp = mpp, Umpy, and ¢, = 1p, Utp,. Finally,
the start graph is G, = Min(cpy).

It is not difficult to check that the sequential composition cp; ; cps is a well-
defined c-process. First of all O, is an occurrence grammar. In fact, TG,
and TG, overlap only on Maz(cp1) = Min(cps) and thus it is immediate to
see that the causal relation <, on O, is a partial order. Such relation can be
expressed as the transitive closure of the union of the causal orders of the two
processes with a “connection relation” r., suitably relating productions of ¢py
which use items of Max(cp;) with productions of ¢p, using the corresponding
items of Min(cpe). Formally, <,= (<,, U <,, U r.)*, where relation r, C
P, x P,, is defined by

_ dx € Maz(cpr) = Min(cpz).
Te = {<CI17Q2> I z € (q1® N o) U (QQ.QQ)U (¢1* ﬂ@) }

A routine checking allows us to conclude that Conditions 1 —4 of the definition
of occurrence grammar are satisfied. In particular Min(cp’) = Min(cpr) =
G’, and each element in Items(T'G,) is created (consumed) by at most one
productions since elements “shared” by the original processes can be created
only in ¢p; and consumed only in cps. Finally, the validity of conditions
regarding ¢, (see Definition 3.4.9) easily follows from the way it is defined
using ¢,, and ¢,,.

The reader could be surprised and somehow displeased by the restrictiveness
of the conditions which have to be satisfied in order to be able to compose two
concrete processes. To understand our restriction one should keep in mind that
the notion of sequential composition on concrete processes is not interesting in
itself, but it is just introduced to be lifted to a meaningful notion of sequential
composition on abstract processes. Since the restricted definition fulfills this

146

aim, we found it better to avoid a technically more involved (although more
general) definition, leading to a non-deterministic result. As in the case of
derivations, in fact, processes can be seen up to renaming of the items in their
components and thus, if Max(cp1) ~ Min(cps), we can always rename the
items of cps to make the sequential composition defined.

Proposition 3.4.18
Let G = (TG,Gs, P,w) be a typed graph grammar and let cp; = cp} and
cpa = cply be c-processes for G. Then (if defined) cpy ; cpa = cpl ; cph.

Proof

Just notice that if f; = (fg;, fp;) : cp; — ¢p); (j = 1,2) are c-process isomor-
phisms, then the isomorphism between cp; ; ¢pe and cp) ; c¢phy can be obtained
as (fg1 U fg2, fp1 U fp2). U
By the previous proposition we can lift the concrete operation of sequential
composition of c-processes to abstract processes:

[ep1] ;5 [epa] = [ep s cph]
for ¢p) € [ep1] and cph € [eps] such that the concrete composition is defined.

Definition 3.4.19 (category of concatenable processes)

Let G = (TG, Gg, P,7) be a typed graph grammar. We denote with CP[G]
the category of (abstract) c-processes having abstract graphs typed over TG
as objects and abstract c-processes as arrows. An abstract c-process [cp] is
an arrow from [Min(cp)] to [Max(cp)]. The identity on an abstract graph
[G] is the discrete process [Symg(i,G,4)] (where ¢ : Can(G) — G is any
isomorphism), whose induced automorphism is identity.

A routine checking proves that the operation o5f sequential composition on
c-processes is associative and that [Symg (i, G,)] satisfies the identity axioms.

3.5 Relating derivation traces and processes

Although based on the same fundamental ideas, namely abstraction from rep-
resentation details and true concurrency, processes and derivation traces have
concretely a rather different nature. Derivation traces provide a semantics for
grammars where the independence of events is represented implicitly by col-
lecting in the same trace derivations in which the events appear in different
orders. Processes, instead, provide a partial order semantics which represents
explicitly the events and their relationships. In this section we show that there

3.5. RELATING DERIVATION TRACES AND PROCESSES 147

exists a close relationship between the trace and the process semantics intro-
duced in the last two sections. More precisely we prove that the category Tr[G]
of concatenable (parallel) derivation traces (Definition 3.3.12) is isomorphic to
the category of concatenable (abstract) processes CPI[G].

3.5.1 Characterization of the ctc-equivalence

The isomorphism result relies on a characterization of the ctc-equivalence on
decorated derivations which essentially expresses the invariant of a derivation
trace. Roughly speaking, such characterization formalizes the intuition that
two derivations are (c)tc-equivalent whenever it is possible to establish a cor-
respondence between the productions that they apply and between the graph
items in the two derivations, in such a way that “corresponding” productions
consume and produce “corresponding” graph items. The correspondence be-
tween the graph items has to be compatible with the decorations on the source
(and target) graphs. These notions and results will also play a fundamental
role, in the next section, for the definition of an event structure associated to
a graph grammar.

The basic notions used in the characterization result presented below are those
of consistent four-tuple and five-tuple.

Definition 3.5.1 (consistent four-tuples and five-tuples)
If p: Go =" G, is the derivation depicted in Figure 3.6, let =, be the smallest
equivalence relation on |J!'_, Items(G;) containing relation ~,, defined as

r~,y & Iren.a € ltems(Groy) Ay € Items(Gr) A
A3z € Items(D,) . b.(2) =z A dp(2) = y.

Denote by Items(p) the set of equivalence classes of ~,, and by [z], the class
containing item x.” For a decorated derivation v, we will often write Items(z))
to denote Items(py).

A four-tuple {p, hy, f,p") is called consistent if p and p’ are derivations, h, :
a(p) — o(p’) is a graph isomorphism between their source graphs, f : #p —
#p' is an injective function such that prod(p) = prod(p’) o f, and there exists
a total function £ : Items(p) — Items(p’) satisfying the following conditions:

o Vz € Items(o(p)).&([z],) = [ho(x)],, ie., & must be consistent with
isomorphism h,;

hWithout loss of generality we assume here that the sets of items of the involved graphs
are pairwise disjoint.

148

i

e for each j € #p, let i and s be determined by j = (Zr:l kr) +s (i.e., the
j-th production of p is the s-th production of its i-th parallel direct deriva-

v

tion), and similarly let s and i’ satisfy f(j) = (Zl k;) + s’. Then

r=1
for each item = “consumed” by production prod(p)(j) : (L LKD R),

ie, z € L —I(K), it must hold &([gi(in (x))],) = [gi(in% (x))],. In
words, & must relate the items consumed by corresponding production
applications (according to f);

e A similar condition must hold for the items “created” by corresponding
production applications. Using the above notations, for each x € R —

r(K), €([hi(ing(2))],) = [By (ing ()],

Similarly, say that the five-tuple {p, he, f, hr, p’) is consistent if the “underly-
ing” four-tuple {p, h,, f, p’) is consistent, f is a bijection, h, : 7(p) — 7(p’)
is an isomorphism relating the target graphs, and the function £ is an iso-
morphism that is consistent with h, as well (i.e., for each item z € 7(p),

§([2l,) = [hr(2)],)-

The next theorem provides a characterization of (c)tc-equivalence in terms of
consistent four- (five-)tuples. We first recall some easy but useful composition
properties of consistent five-tuples.

Proposition 3.5.2
1. If {p1, he, f, R, p}) and (pa, h, f', k., p2) are consistent five-tuples, such
/

that p1; po and p}; py are defined, then (p1; pa, ho fIf', W ph s pb) is
consistent as well.

2. If {p,hg, fyhr,p') and (p',h., f' hl, p") are consistent five-tuples then
(pyhl o hg, f' o f,hl ohy,p"”) is consistent as well. O

Theorem 3.5.3 (characterization of ctc- and tc-equivalence)
Let G be any graph grammar (also non-consuming) and let v and v’ be deco-
rated derivations of G. Then

1. ¢ and ¢’ are ctc-equivalent if and only if there is a permutation IT such
that the five-tuple {py, My o mJl,H,MW o Mlzl,plm is consistent;

2. similarly, 1) and 1)’ are tc-equivalent if and only if there is a permutation
IT such that the four-tuple {py, My o m,;l, I1, py) is consistent.

3.5. RELATING DERIVATION TRACES AND PROCESSES 149

Proof

Only if part of (1):

We show by induction that if two derivations are ctc- equivalent ie., v =f ¢
for some permutation II, then the five-tuple (py,, my omy, L s My oMJl, Py')
is consistent. By Deﬁmtlon 3.3.11, we have to consider the following cases:

(CTC —abs) If ¢ = ¢’ then consistency of {py,my: o mll,Hf;w,Ml/,/ °
MJl, pyr) follows directly by the conditions of Definition 3.3.4;

(CTC —sh) Since 1 =i ¢’ we have my, = my, My = My and p, =
py. Therefore thls case reduces to the proof that p = —Sh p' implies the
consistency of (p, id,(,), I1, id-(,y, p'). According to the rules of Definition
3.3.9, introducing shift equivalence on parallel derivations, we distinguish
various cases:

(SH —id) The five-tuple (p,idy(,), I Zd P idy(p, p) is trivially consistent;

(SH — @) The five-tuple (G, idg,0,idg,p : G =y G) is consistent, since
the isomorphism induced by p is idg;

(SH —an) If p ={* p', then the consistency of (p,idy(,),IL,id (), p")
can be grasped from the drawing of p’ in Figure 3.9. Consider
for example production g;; in ¢”: any item x it consumes in graph
X must be in the same ~,-equivalence class of an item of G (by
the existence of morphism s), which is exactly the item consumed
by the j;1-th production of p. To prove this formally one would need
an explicit analysis construction;

(SH —syn) If p =" p', the consistency of (p, idy(,, 11, id,(,), p’) follows
as in the prev1ous case;

(SH — sym) The consistency of (o, idg(p/)7H_1,idT(p/),p> follows imme-
diately from the consistency of (p, idy(,), I, id-(,), p'), since all map-
pings relating p and p’ are invertible;

(SH — comp) By the induction hypothesis (p1,idy(,,), 1, ZdT(pl {) and
(P2, g(py), U2, idr(,,), P2) are consistent. Therefore ,since T(pl) =
U(PQ), the consistency of <p1 y P2, ida(pl)a 11, | H27 idT(pz)’ pll ; pl2> fol-
lows from Proposition 3.5.2.(1);

(SH —trans) The consistency of (p,id, (), 11" o I1,id, (), p") follows by
Proposition 3.5.2.(2), from the consistency of (p,idy(,y,I1,id (), p')
and of (o, idy(yy, I, id(,ry, "), which hold by induction hypothe-

sis;

150

(CTC — trans) By induction hypothesis (o, My omll, IT, My OMJI, py) and
(pyr, My © m;,l, I, My o My, 1. pyn) are consistent. Thus, by Proposi-
tion 3.5.2.(2), (py, My omy, ,H oll, My o Mlzl,pu,//) is consistent as
well.

Only if part of (2):

Follows from the statement just proved and from the rules (TC — ctc) and
(TC —is0) defining equivalence =, since they do not affect the consistency of
the underlying four-tuple.

If part of (1):

Suppose that the five-tuple (py, My © m;HH My o Mﬁl,p¢/> is consistent,
and that II : #¢ — #1 is a bijection (thus ¢ and ¢’ have the same order). By
repeated applications of the analysis construction,) and 1)’ can be transformed
into equivalent, sequential derivations (i.e., such that at each direct derivation
only one production is applied) 1, and 1[)1, such that ¢ = *Sh 1 and 1’ :SH};
¥}, for suitable permutations IT; and II,. By the only zf part, five-tuples
<,0¢1,ida(wl),l'[fl,idf(wl)7pw> and <p¢/7id6(¢/),H2,idT(¢/),pwi) are consistent,
thus (pwl,mwi qullla I, OHOHfl, My, OMdfll7 pd,/l) is consistent as well. Now
there are two cases.

1. Suppose that I o IT o Hfl is the identity permutation. Then it is pos-
sible to build a family of isomorphisms between the graphs of deriva-
tions py, and pyy;, starting from my; omy ", and continuing inductively
by exploiting the function ¢ : Items(pw1 — Items(py;) of Definition
3.5.1. This family of isomorphisms satisfies all the conditions of Defini-
tion 3.3.4: thus it provides a proof that ¢; =° ¢, and therefore we
have 1) =" 1) =3 o)} =" ¢/, showing that 1) =¢ ¢)’.

9. 1% IIyo0Ilo H1_1 is not the identity permutation, let i = min{i €
#y | TI(4) # i}. Then it can be shown that the II(7)-th direct derivation
m’l is sequential independent from the preceding one, essentially be-
cause it can not consume any item produced or explicitly preserved after
the i-th step. By applying the synthesis and the analysis constructions
the two direct derivations can be exchanged, and this procedure can be

iterated producing eventually a derivation v such that) Ef-ﬁ 1 for

some permutation Ils, and such that II3 o II is the identity permutation.
Thus we are reduced to the case 1.

If part of (2):
Let (py, My omll, II, pyr) be a consistent four-tuple, where IT is a permutation.

3.5. RELATING DERIVATION TRACES AND PROCESSES 151

By exploiting isomorphisms m. o m;l, IT and & : Items(py) — Items(pyr), it
can be proved that the target graphs of p, and py are isomorphic, and that
there exists a unique isomorphism h, : 7(¢) — 7(¢') such that (py,my o
mll, II, h~, py) is & consistent five-tuple. Now, let o be the discrete decorated
derivation (My/, 7(¢'), hy o My). Then ¢';a = (mys, pyr, by o My). Clearly,
the five-tuple (py, my o m;l, II,hy o My o MJ17p,¢,/> is consistent, and by if
part of (1) we get ¢ =4’ ; . Then ¢ =4’ follows by rule (CTC —iso). O

3.5.2 From processes to traces and backwards

We are now ready to prove the isomorphism between the categories Tr[G] and
CP[G] for a given grammar G. First we introduce two functions which map
each trace into a process and viceversa. Then we show that such functions
extend to functors from Tr[G] to CP[G] and backward, which are inverse to
each other.

Given an abstract c-process [cp] we can obtain a derivation by “executing”
the productions of ¢p in any order compatible with the causal order and then
considering the corresponding concatenable derivation trace.

Definition 3.5.4 (linearization)
Let ¢cp = (m,p, M) be a c-process. A linearization of the set P, of productions
of ¢p is any bijection e : |P,| — P,, such that the corresponding linear order,
defined by qo C ¢ iff e71(qo) < e 1(q1), is compatible with the causal order
of ep, i.e., o <p 1 implies qo C ¢;.

Definition 3.5.5 (from processes to traces)
Let G = (T'G,Gs, P,) be a typed graph grammar and let [cp] be an abstract
c-process of G, where c¢p = (m, p, M). Consider any linearization e of P, and
define the decorated derivation 9 (cp, e) as follows:

1#(017’ 6) = <m7p7 M>’ where p= {Gj—l = 45,95 Gj}je‘Pﬂ
such that Gy = Min(cp), G|p,| = Maz(cp), and for each j € |P,|

e g; = mpp(e(h));

e Gj = Gr(Sfe(n).....e(j)}), i-e., the subgraph of the type graph T'G), of the
process determined by the reachable set Si.(1),....c(j)}, typed by mgp;

e cach derivation step Gj_1 =, 4, G; is as in Figure 3.14.(a), where un-
labelled arrows represent inclusions.

Finally, we associate to the abstract process [cp] the concatenable derivation
trace La([ep]) = [(cp,)]

152

T3

g+ LG, KG; RG,; G L; K, > R;
\
Lﬁ(e(j))l b;{ (;(J‘)) Fed)) 9i ki hi
U, r’ bi d;
e(j): LG <—— KG; —= RG, Gi—1 D; G
Gj D; G, TGy
(a) (b)

Figure 3.14: From abstract c-processes to concatenable derivation traces and backward.

By using Theorem 3.4.8, it is not difficult to prove that ¢ (cp,e) is a legal
decorated derivation in G. The proof can be carried out by adapting the
argument in [16], Theorem 29. The only differences, here, are the fact that
the source graph of the derivation is not, in general, the start graph of the
grammar and the presence of the decorations.

The following lemma shows that the mapping £ 4 can be lifted to a well-defined
functor L4 : CP[G] — Tr[G] from the category of abstract c-processes to the
category of derivation traces, which acts as identity on objects.

Lemma 3.5.6 (functoriality of £4)
Let G be a typed graph grammar, and let ¢py and cpy be c-processes of G.
Then
1. (L4 is a well-defined mapping from abstract c-processes to traces)
if ep1 = cpo then ¢ (cp1,e1) =€ (cpe, ea), for any choice of linearizations
e1 and es;
2. (L4 preserves sequential composition)
if defined, ¥(cp1 ; cpa,e) =€ ¥(cp1,e1); ¥(epa, ea), for any choice of lin-
earizations ey, eo and e;
3. (L4 maps discrete processes to discrete derivation traces, and, in partic-
ular, it preserves identities)
Y(Symg(m, G, M), e) =¢ (m,G, M), for any choice of linearization e.

Proof
1. Let ¢p1 = ¢ps be two isomorphic c-processes of G, with ¢p; = (my, p;, M;)

3.5. RELATING DERIVATION TRACES AND PROCESSES 153

for i € {1,2}. Let f = (fg, fp) : cp1 — cp2 be an isomorphism, and let e;
and ey be linearizations of P,, and P,,, respectively. We show that the two
decorated derivations 11 = ¥(cp1,e1) and 1y = ¥ (cps, e2) are cte-equivalent
by exhibiting a consistent five-tuple (py, , My, © mqlll, IT, My, o nglla Pia)-
First, it is quite easy to recognize that Jtems(1);) is (isomorphic to) ftems(T'Gp,),
for i € {1,2} (see Definition 3.5.1) and thus fg : TGp, — TGp, induces, in an
obvious way, an isomorphism & : Ttems(1) — Items(1)q).

By Corollary 3.4.12, the restrictions of fg to the source and target graphs of
the processes are isomorphisms, therefore we can take

ho = f9\Min(epr) : Min(cpr) — Min(cpz) and
h‘r = fg\]VIaa:(cpl) : Max(cpl) — M(l.’L’(Cpg),

which are compatible with 1, o mlll and My, o MJll, by definition of isomor-
phism of c-processes (and obviously compatible with £). Finally we can define
the permutation T : #4; — #s as T =e; ' o fpoe.

Now, it is not difficult to check that (py,, My, © mllll, IT, My, o MJll, Pys,) 1S a
consistent five-tuple. Thus, by Theorem 3.5.3.(1), we conclude that 1, =€ 1)s.

2. Letepy = (mq,p1, My) and epa = (ma, pa, Ma) be two c-processes such that
their sequential composition is defined, i.e., Max(cp1) = Min(cp2), M1 = ma
and all other items in ¢p; and c¢ps are distinct. Let ¢p = (mq,p, M) be their
sequential composition. Let us fix linearizations e;, es and e of P,,, P,, and
P,, respectively, and let ¢1 = 9(cp1,e1), Y2 = P(cpe, e2) and ¢ = (cp, e).
Observe that o(1p) = o(¢1) = o(¢1; ¥2) and similarly 7(¢) = 7(¢2) =
7(11; 12). Furthermore, we have that Items(y) and Items(i1;1)2) are (iso-
morphic to) Items(TG,) = Items(T'Gp,) U Items(T'Gp,). Therefore one can
verify that the five-tuple (py, idy (), I1, iy (), Py, 52), Where IT = (e3Uez) " oe
is consistent (the function £ being identity on classes). This fact, together with
the observation that my = my, = Mmy,.g, and My = My, = My, .y,, allows
us to conclude, by Theorem 3.5.3.(1), that ¢ =° ¢1; ¢s.

3. Obvious. O
The backward step, from concatenable derivation traces to processes, is per-
formed via a colimit construction that, applied to a decorated derivation),
essentially constructs the type graph as a copy of the source graph plus the
items created during the rewriting process. Productions are instances of pro-
duction applications.

Definition 3.5.7 (from derivations to processes)

Let G = (TG, Gs, P,) be a typed graph grammar and let ¢ = (m, p, M) be
a decorated derivation, with #¢ = n. We associate to ¥ a c-process cp(v)) =
(m/,p, M'), defined as follows:

154

e (T'G,,mg,) is a colimit object (in category TG-Graph) of the diagram
representing derivation 1, as depicted (for a single derivation step and
without typing morphisms) in Figure 3.14.(b);

o By = {{prod()(j),j) | j € n}. For all j € n, if prod(y)(j) = ¢is (no-
tation of Definition 3.2.9, Figure 3.6), then 7, ({prod(v)(j), j)) is essen-
tially production g¢;s, but typed over TG), (see Figure 3.14.(b)). Formally

mp({prod(v)(4), j)) is the production

lg, Tq

(Lqus,cg,;_log,;oinfg & <KquS,cdiok:ioianfS> L (RquS,cgiohioinZQ

and mp,({(prod(v)(5), 7)) = prod(¥)(j). Finally v,((prod(¥)(j),j)) =
(idre,, sidke,, .idrc,,)-

Note that for j; # jo we may have prod(v)(j1) = prod(¥)(j2); instead,
the productions in P, are all distinct, as they can be considered as pro-
duction occurrences of G;

e notice that Min(cp) = cgo(Go) and Max(cp) = cgn(G,) (and the cg;’s
are injective, because so are the horizontal arrows) so that we can define
m' = cgoom and M’ = cg,, o M;

Finally we define the image of the trace [¢]. as Pa([¢)]c) = [ep(¥)].

As an example, the process of Figure 3.12 can be obtained (up to isomor-
phism) by applying the construction just described to either the derivation of
Figure 3.5 or that of Figure 3.10.

Notice that it is quite easy to have a concrete characterization of the colimit
graph T'G,. Since all the squares in the diagram representing derivation :
Gy =* G,, commute (they are pushouts), TG, can be regarded equivalently as

the colimit of the bottom line of the derivation, Gg o D, d Gy 2 - Dy, dy
G,. Thus TG, can be characterized explicitly as the graph having as items
Items(py) (see Definition 3.5.1), and where source and target functions are
determined in the obvious way. The injections cx; (x € {g,d}) simply map
every item into its equivalence class.

Lemma 3.5.8 (P4 is well-defined)
Let G = (TG,Gs, P,m) be a typed graph grammar and let ¢ =° ¢ be two
decorated derivations of G. Then cp(11) = cp(i2).

3.5. RELATING DERIVATION TRACES AND PROCESSES 155

Proof

Let 97 and v be ctc-equivalent decorated derivations of G. Then, by Theo-
rem 3.5.3 there exists a five-tuple (py, , My, © mlllv I, My, o MJll, Pyy) With a
function £ : Items(v1) — Items(12) witnessing its consistence.

Let cp(y1) = ep1 = (ma, p1, M1) and cp(v2) = cpa = (ma, p2, Ma). First notice
that each Items(1;) is isomorphic to the set of items of the corresponding type
graph TG,, (i € {1,2}), and thus ¢ induces readily a function fg : TGp, —
TG),, which, by definition of consistent five-tuple, is consistent with the dec-
orations of the processes. Moreover the permutation IT induces a bijection
fp: Py, — By, defined as fp({prod(¢1)(j), 7)) = (prod(v2)(I1(5)),I1(5)), for
J € [Pyl

From the definition of consistent five-tuple it follows easily that (fg, fp) :
cp1 — ¢po is an isomorphism of c-processes. O
The next lemma shows that the constructions performed by P4 and L4 are,
at abstract level, “inverse” each other.

Lemma 3.5.9 (relating P4 and L4)
Let G be a graph grammar. Then:

1. Pa(La([ep])) = [cp], for any c-process cp and
2. LA(Pa([¥]e)) = [¥]e, for any decorated derivation 1.

Proof
1. Let e¢p = (m,p, M) be a c-process of G and let e : |P,| — P, be a lineariza-
tion of P,. Consider the decorated derivation: o

Y(ep,e) = (m, {Gi—1 =) Gitieip,), M)
as in Definition 3.5.5. o
Let us now construct the process ¢p; = ep(v)) = (mq,p1, M1) as in Defini-
tion 3.5.7, with the type graph T'G,, obtained as colimit of the diagram:

qi - L; K; R;
\
L,§<e<ml L{f<5(i>> lL,’?(e(m
e(i): Lj K} R;
tlil tki\L \Ltri
b d;
Gi—1 D; G

c\ C(Li .
gi—1 v Ccgi

TG,

156

Observe that a possible concrete choice for T'G,, is TG, with all cg;’s defined
as inclusions.

If we define fp: P,y — P, as fp({prod(vy)(i),i)) = e(i), for i € #1), then it is
easy to prove that f = (idrq,, fp) : cp1 — cp is a c-process isomorphism.

2. First of all, if 1 is a discrete decorated derivation, the result is obvious.
Otherwise we can suppose ¢ = (m,{Gi—1 =4, Gi}icn, M) to be a derivation
using a single production at each step (recall that, by Lemma 3.5.8, we can
apply the concrete construction to any derivation in the trace and that in [¢].
a derivation of this shape can always be found).

Let ¢p = ep(yp) = (m,p, M) the c-process built as in Definition 3.5.7. In
particular, the type graph T'G), is defined as the colimit of the diagram:

l; T

QZ LZ Kz Rz
gli kl ihl
b; d;
Gi—1 D; G
!
cgi—1 cgi
TG

The set of productions is P, = {q} = (¢;, 1) | i € n}, with m,(¢}) = (LG, cgi—10
gi) & (KGy,cd; o ki) LAY (RG, cg; o r;). Moreover m = cgg o my and M =
¢gn © My. Remember that all cg;’s are injections and cgo : Go — Min(cp),
¢gn : G = Maz(cp) are isomorphisms.

Now it is not difficult to verify that prod(i) is a linearization of P, and ¢’ =
Y(cp, prod(1))) is the derivation whose i*" step is depicted below.

q: Lj K; R;
C97‘,—‘1 °g; deoki cgi‘ohi

cgi-1(Gi—1) =— cdi(D;) — cgi(G;)

The family of isomorphism {fx, : X; — X/ | X € {G,D}, i € n} U {0g,}
between corresponding graphs in the two (linear) derivations defined as:

Op, = cd; and Oc, = cgi
satisfies the conditions of Definition 3.3.4 and thus we have that v’ =%).
Therefore [¢]. = [¢']c = La([ep]) = Pa(La([¢]e). O
The previous lemma, together with functoriality of L4, allows us to conclude
that P4 : Tr[G] — CP[G], defined as identity on objects and as Pa([¢)].) =

3.6. EVENT STRUCTURE SEMANTICS 157

[ep()] on morphisms, is a well-defined functor. In fact, given two decorated
derivations i and 5, we have

Pa([nles [W2le) = by Lemma 3.5.9.(2)
= PA(ﬁA(PA([¢1]c)) 5 ﬁA('PA(W}g]C))) = by functoriality of £a
= PA(ACA(PA<W1]c) ; PA([¢2]c))) = by Lemma 3.5.9.(1)

=Pa([t1]e); Pa([tha]c)

Similarly one proves also that P4 preserves identities. Moreover, again by
Lemma 3.5.9, functors £4 and P4 are inverse to each other, thus implying the
main result of this section.

Theorem 3.5.10
Let G be a graph grammar. Then L4 : CP[G] — Tr[G] and Pa : Tr[G] —
CPIG] are inverse to each other, establishing an isomorphism of categories. O

3.6 Event Structure Semantics

The aim of this section is to define a semantics for graph grammars based
on Winskel’s event structures [24], a simple event based semantic model where
events are considered as atomic and instantaneous steps, which can appear only
once in a computation. An event can occur only after some other events (its
causes) have taken place and the execution of an event can inhibit the execution
of other events. We concentrate here on prime event structures (with binary
conflict), shortly PES’s, where the above situation is formalized via two binary
relations: causality, modelled by a partial order relation, and conflict, modelled
by a symmetric and irreflexive relation, hereditary with respect to causality. It
is worth noticing that such semantics will differ from the previously described
trace and process semantics not only because it represents in a unique structure
both the concurrent and non-deterministic aspects of grammar computations,
but also because it abstracts out completely from the nature of the states of
the system.

Starting from the assumption that (concatenable) derivation traces are an ad-
equate abstract representation of deterministic truly concurrent computations
of a grammar, we construct the category of objects of Tr[G] under the start
graph G, namely (G5 | Tr[G]). Such category provides a synthetic repre-
sentation of all the possible computations of the grammar beginning from the
start graph. For consuming grammars, the obvious partial order Dom[G] in-
duced by the preorder associated to category (G | Tr[G]) is shown to have the
desired algebraic structure, namely to be a prime algebraic, finitely coherent

158

and finitary partial order, or briefly a domain. Thus, by well known results
of [24], Dom|[g] indirectly determines a PES. To prove the algebraic proper-
ties of the domain Dom|[G], we present first an explicit construction of a prime
event structure ES[G] associated to a graph grammar. Roughly speaking, in
the event structure ES[G] an event is determined by a specific direct derivation
« belonging to a derivation 1 that begins from the start graph of G, together
with all its causes (i.e., all the preceding direct derivations of ¢ that caused
a, either directly or indirectly). Then we show that, in the consuming case,
the finite configurations of ES[G] are one-to-one with the elements of the do-
main Dom|[G]. Thus these two structures are conceptually equivalent, in the
sense that one can be recovered from the other. This presentation has been
preferred to an explicit proof of the algebraic properties of the domain, since
we think it has the advantage of giving a more explicit understanding of the
event structure, and of simplifying slightly the proofs.

Nicely, the events and the configurations of the event structure ES[G] associ-
ated to a consuming grammar G can futhermore be characterized in terms of
processes. The corresponding result strongly relies on the the close relationship
between traces and processes proved in the previous section.

It is worth remarking that the PES and domain semantics are shown to give
a meaningful representation of the behaviour of the original grammar only in
the consuming case. Concretely, only part of the results are carried out for
general grammars and, in particular, what fails for consuming grammars is
the correspondence between the domain and the event structure associated
to a grammar. This limitation is not surprising. Similarly to what happens
for Petri nets, given a production with empty pre-set, an unbounded num-
ber of indistinguishable copies of such production can be applied in parallel
in a derivation. This phenomenon, called autoconcurrency, cannot be mod-
elled within Winskel’s event structures, since for a fixed set of events they can
describe only computations where each event can fire just once.

Another limitation of traditional event structures is their inability faithfully
modelling asymmetric conflicts, a kind of dependency among events arising
in formalisms, like graph grammars, where part of the state can be preserved
by a step of a computation. The adequateness of Winskel’s event structures
for representing the behaviour of grammars and the possibility of adopting
alternative formalisms will be discussed at the end of the section.

3.6.1 Prime event structures and domains

Let us start by introducing prime event structures and prime algebraic do-
mains, and recalling the relationships existing between such structures.

3.6. EVENT STRUCTURE SEMANTICS 159

Definition 3.6.1 (prime event structures)

A prime event structure (PES) is a tuple &€ = (E, <,#), where E is a set of
events and <, # are binary relations on E called causal dependency relation
and conflict relation, respectively, such that:

1. the relation < is a partial order, satisfying the aziom of finite causes,
ie., |e] ={¢ € E| ¢ <e} is finite for all e € E;

2. the relation # is irreflexive, symmetric and hereditary with respect to <,
i.e., efte’ and € < ¢” implies e#e” for all e, ¢, e’ € E;

A configuration of a PES is a set of events representing a possible computation
of the system modelled by the event structure.

Definition 3.6.2 (configuration)
A configuration C of a prime event structure £ is a subset of events C C F
such that

1. C is conflict-free: for all e, e’ € C, —(e#e’).
2. C is left-closed: for all e, e’ € E, ¢’ < e and e € C implies ¢’ € C.

Given two configurations C7 and Cy such that Cy C (5, configuration Cy can
be extended to Cy by performing the events in Co —C in any order compatible
with the causal order. Therefore set-theoretical inclusion on configurations can
be interpreted safely as a computational ordering.

Definition 3.6.3 (domain of configurations)

The domain of configurations of a prime event structure &£, denoted L(£), is
the partial order £(€) = (C,C), where C is the set of all configurations of &,
and C is the subset inclusion relation. The domain of finite configurations of
&, denoted FL(E), is the partial order of all finite configurations of £ ordered
by inclusion.

As anticipated in the introduction, the domain of finite configurations FL(E)
of a prime event structure £ has a very nice algebraic structure, namely it is
a prime algebraic, finitely coherent, finitary partial order,” briefly referred to

iRecall that a partial order (D, C) is finitely coherent if each pairwise compatible finite
subset X (namely each set where every pair of elements have a common upper bound) has a
least upper bound. A complete prime of D is an element p € D such that if p C | | X, with
X compatible subset of D, then p C x for some x € X. Then D is called prime algebraic
if each element in « € D is the least upper bound of the complete primes below z itself.
Finally D is finitary if for each € D the set of elements below z {y € D | y C z} is finite.

160

in the following as domain [39,24].7 Conversely, each domain (D,C) can be
viewed as the domain of finite configurations of a uniquely determined (up to
isomorphism) prime event structure £(D) = (Pr(D), <,#) where

1. Pr(D) is the set of complete primes of D,
2. p<piff pCp', and
3. p#p’ iff p and p” are incompatible, namely -3z € D. (p Tz A p' C z).

As shown by Winskel [24], the relation between PES’s and domains lifts, at
categorical level, to an equivalence of categories.

3.6.2 FEvent structure semantics for a grammar

Let G be a graph grammar and let Tr[G] be its category of concatenable deriva-
tion traces (see Definition 3.3.12). The construction of the domain associated
to a grammar strongly relies on the category of objects under [G;] in Tr[G]
(see Definition 3.2.2), namely ([G,] | Tr[G]).

We first observe that, for a consuming grammars such a category is a preorder,
i.e., for any pair of objects there is at most one arrow from the first one to
the second one. The result is an easy consequence of the following technical
lemma.

Lemma 3.6.4
Let G be a consuming graph grammar and let 11, v9,%7, 1% be decorated
derivations. If ¢y ;e =f ¥1; ¥y and ¢y =f,) then I, = II; and

g =€ 1y,

Proof
We first observe that if (p1; p2, ho, f, he, pi 5 ph) and (p1, ho, f1, B}, p}) are
consistent five-tuples then surely fi = fix,,. Otherwise, let i = min{i €

#p1 | f(i) # f1(1)}. Since the two five-tuples have the same h, and permu-
tations f and f; coincide for i < i, it is easy to see that the productions of
Py ; ph corresponding to the indexes f(i) and f; (i) should consume the same
items. But this is impossible since f(i) # f1(i) and productions really consume
something, being G consuming. Therefore the set {i € #p; | f(i) # f1(i)}
must be empty, namely f; = fj4, . Notice moreover that, in the situation

JUsually in the literature a domain is a complete partial order satisfying further suitable
algebraic properties. Here we call “domain” the set of finite elements of such a structure,
which uniquely determines the whole domain through an ideal completion. For example,
L(€) is the ideal completion of FL(E).

3.6. EVENT STRUCTURE SEMANTICS 161

above, (pa, hl, fa, hr, ph) is a consistent five-tuple as well, where f, is defined
as f2(j) = f(j + #p1) — #p1 for j € #po.

Now, let 11 ; 19 = o) ;) and ¢¥; =° ¢]. By Theorem 3.5.3 we can find
two consistent five-tuples (py, ; s, My © My, ~H 11, My © Mdj;,pw/l cyy) and

(pr s Mt © My, ~ 1 Tl My o Mq/:ll, py;). Therefore, as an instance of the ob-
servation above IIj4,, = II;. Moreover there is a consistent five-tuple

(Pyss My; © My Tly, Myy o MY, pyy). (3.1)

Since sequential composition is defined it must be My, = my, and My, = my,,
and therefore the existence of the five-tuple (3.1), by Theorem 3.5.3, implies

—C /
o = ¢2. O
In the following, we will use d,4’, 41, ... to range over concatenable derivation
traces, and 7,1', 11, ... to range over derivation traces.

Lemma 3.6.5 (structure of ([G;] | Tr[G]))
Let G be a consuming graph grammar. Then category ([G4] | Tr[G]) is a
pre-order.

Proof

By Definition 3.2.2, the objects of ([G,] | Tr[G]) have the form (4, [H]), with
d : [Gs] — [H] concatenable derivation trace, while an arrow 6 : (4, [H]) —
(6',[H']) is a concatenable derivation trace such that §; d; = ¢’. Now suppose
that there are two such arrows with the same source and target, §; and Js.
Then, since §; §; = ¢’ = J§; d2, by Definition 3.3.12 we have that if ¢ € ¢ is
a derivation, then v ; 1y =° ¥ ; ¥y for suitable ¥; € §; and ¥y € d5. Since
obviously ¢ =¢ ¢, by Lemma 3.6.4, 11 =° ¥5. Therefore §; = Js. O
Although, in general, for a possibly non-consuming grammar G, ([Gs] | Tr[G])
is not a preorder, we can associate to such category a preorder, called the pre-
domain of the grammar, in a canonical way. Then the domain of the grammar
is defined as the partial order induced by the pre-domain.

Definition 3.6.6 (pre-domain and domain of a graph grammar)

Let G = (TG,Gs, P,m) be a graph grammar. The pre-domain of G, denoted
PreDom|[J], is the preorder having objects of ([G4] | Tr[G]) as elements and
where x C y iff there exists an arrow f : x — y. The domain of G, denoted
Doml|G], is defined as the partial order induced by PreDom][G].

Recall that if ~ is the equivalence relation on objects of PreDom|G] defined
as ¢ ~y if v C y C x, namely if there are two arrows f : oz — y and g : y — =,
then Dom|[G] is the set of ~-equivalence classes of objects of PreDom/[J],

162

with the ordering given by [z]. < [y]~ iff there is an arrow f : — y in
PreDom|[J].

The next lemma characterizes the structure of the domain Dom[G]. The el-
ements of the domain can be identified with the derivation traces of G with
source in the start graph. The order is a kind of prefix ordering on such traces.

Lemma 3.6.7 (structure of Dom][G])

Let G be a graph grammar. Then the elements of the partial order Dom|[G] are
one-to-one with derivation traces starting from [G;), and the partial ordering
is given by n < 1/ iff there are concatenable derivation traces 6 C n and ¢’ such
that §; 6’ Cn'.

Proof

Let (0, [H]), (¢',[H']) be two elements of PreDom[G] and suppose (§, [H]) ~
(0',[H']), i.e., there exist d; and d2 such that ¢6;d; = ¢ and 0'; d2 = 4.
Thus §; 61; 6o = I, which is possible only if the order of both §; and s
is 0, i.e., they contain derivations using only empty or discrete derivations.
By Definition 3.3.11 it follows immediately that the elements of Dom|[G] are
exactly the derivation traces. The characterization of the ordering in Dom|[J]
follows from the definitions. O
We give now an explicit definition of the event structure of a graph grammar.
For consuming grammars such event structure will be shown to be closely
related with the domain just introduced. More precisely we will show that
Dom]|G] is isomorphic to the domain of finite configuration of the event struc-
ture.

Definition 3.6.8 ((prime) event structure of a graph grammar)

Let G = (T'G, G, P,) be a graph grammar. A pre-event for G is a pair (¢, «),
where 1) is a decorated derivation starting from a graph isomorphic to G, and
a is a direct derivation using a single production in P (namely #a = 1) such
that

1. ¢; o is defined (i.e., 7(¢) = o(a), and M, = m,) and

2. ¢¥; a =4 ¢ implies II(#¢ + 1) = #¢ + 1.
If (1,) is a pre-event, let €% be the corresponding derivation trace, namely
el =[; al.
An event ¢ for G is then defined as a derivation trace ¢ = Eg for some pre-event

(1, o). For each event ¢ let Der(e) denote the set of derivations containing such
event, formally defined as follows:

Der(e) = | {6 | 30. Ce. 3. 6.;8' = 6}

3.6. EVENT STRUCTURE SEMANTICS 163

Notice that in particular, € C Der(e), since for all §. C € we can concatenate it
with the (concatenable trace corresponding to) a discrete derivation. Then the
(prime) event structure of grammar G, denoted ES[G], is the triple ES[G] =
(E,<,#), where FE is the set of all events for G, ¢ < &’ if Der(¢’) C Der(e),
and e#te’ if Der(e) N Der(e') = 0.

It is worth explaining informally the last definition. Conceptually, an event %
of a grammar G is determined by the application of a production to a graph
reachable from the start graph of G (i.e., by the direct derivation «), together
with the history that generated the graph items needed by that production
application (i.e., the derivation ¢). The fact that in the pre-event ¢ ; « the last
step a cannot be shifted backward (requirement (2) for pre-events) guarantees
that « (causally) depends from all the previous steps in . It is worth stressing
that the same requirement implies that if ¥ ; o =§ ¢ then ¢ = ¢"; o/ with
P Eﬁ‘#w " and a =*° /. Clearly, isomorphic production applications or
different linearizations of the same history should determine the same event.
Therefore an event is defined as a set of derivations of G, namely the set of all
derivations having (a copy of) « as the last step and containing (a copy of) all
its causes in any order consistent with the causality relation.

Given this definition of event, the causality and conflict relations are easily
defined. In fact, considering for each event € the set Der(e) of all the derivations
that performed ¢ at some point, we have that two events are in conflict if there
is no derivation that can perform both of them, and they are causally related
if each derivation that performs one also performs the other.

Theorem 3.6.9 (ES[G] is well-defined)
ES|G] is a well-defined prime event structure.

Proof
By Definition 3.6.1, we have to show that < is a partial order satisfying the
axiom of finite causes, and that # is symmetric, irreflexive and hereditary.
Let us start by noticing that given two events €1 and &3, if Der(es) C Der(e1),
then g7 is a “prefix” of £5, namely

VCSQ g E9. 361 Q £1. 52 = 51 o 5, for some 9.
In fact, let Der(es) C Der(er). Given a concatenable trace dy C &9, recalling
that €2 C Der(ez), we have d2 C Der(e1) and thus by Definition 3.6.8, there
exists 47 C 1 and J such that d;; § = do.
In particular, if Der(e;) = Der(es) we deduce that e; = 9. In fact, for any
b9 C €9, we have

52 = 51 ; 5, (32)

164

for some 01 C 1. Symmetrically §; = 8% ; &', for some §} C 9. By definition of
event, 05 = da; dg, with &y (class of an) empty derivation and thus, summing up
do = 825 8p; &' ; 6. We conclude that dg; 6'; § consists of empty and discrete
derivations. Thus, by (3.2), we have that d C £, which suffices to conclude
€2 C 1. The converse inclusion follows by symmetry.

Now the proof that < is a partial order is trivial: if &1 < €5 and g9 < &7 then, by
definition of <, Der(e1) C Der(e3) and Der(ez) C Der(e1) and therefore, by
the previous observation, e = 5. The fact that < satisfies the axiom of finite
causes follows easily from the observation that the “prefixes” of a derivations
(modulo empty direct derivations) are finite.

For the properties of relation #, symmetry and irreflexivity are obvious; for
hereditarity, (e#te; A &1 < &3) = (Der(e) N Der(e;) = 0 A Der(es) C
Der(e1)) = (Der(e) N Der(ea) =0) = (e#e2). O

Example 3.6 (Event structure of grammar C-S)
Figure 3.15 depicts part of the event structure of the graph grammar C-S
of Example 3.1. Continuous arrows form the Hasse diagram of the causality
relation, while dotted lines connect events in direct conflict (inherited conflicts
are not drawn explicitly).
Recalling that, intuitively, an event of a grammar corresponds to a specific
application of a production together with its “history”, a careful analysis of
grammar C-S allows to conclude that its event structure contains the following
events:

E = {req(n)|neN} U {ser(w),rel(w) | w e N®}
where N® denotes the set of non-empty sequences of distinct natural numbers.
In fact, an application of production REQ only depends on previous applica-
tions of the same production (because it consumes a job edge, and only REQ
can produce one), and therefore a natural number is sufficient to represent its
history: conceptually, req(n) is the event corresponding to the n-th application
of REQ. An application of production SER, instead, depends both on a spe-
cific application of REQ (because it consumes a req edge), and, because of the
S node it consumes and produces, either on the start graph or on a previous
application of SER itself followed by REL (SER cannot be applied in presence
of a busy edge connected to node S because of the dangling condition). It is
not difficult to check that such an event can be determined uniquely by a non
empty sequence of distinct natural numbers: ser(ning---ny) is the event cor-
responding to the application of SER which serves the ng-th REQuest, after
requests nq, ..., Ny—1 have been served in this order. In turn, an application
of production REL only depends on a previous application of SER (because of
the busy edge), and we denote by rel(w) the event caused directly by ser(w).

3.6. EVENT STRUCTURE SEMANTICS 165

Figure 3.15: Event structure of the grammar C-S.

This informal description should be sufficient to understand the part of the
event structure shown in Figure 3.15, including only the events which are
caused by the first three requests, and the relationships among them. The
causality and conflict relations of event structure ES[C-S] are defined as fol-
lows:

o req(n) < req(m) iff n < m;

e req(n) < ser(w) iff n € w, that is, an application of SER only depends
on the request it serves and on those served in its history;

e ser(w) < ser(w’) iff w C w’, where C is the prefix ordering (the appli-
cation of SER depends only on applications of itself in its history);

o ser(w) < rel(w’) iff w C w';
o rel(w) < ser(w') iff w C w'.

o for x,y € {rel,ser}, z(w)#y(w') iff w and w’ are incomparable with
respect to the prefix ordering. O

The result relating the domain and the event structure of a grammar relies
on a property of tc-equivalence, which only holds for consuming grammars.

166

It essentially states that any two tc-equivalent derivations are related by a
unique “consistent” permutation among the applied productions. Therefore
each production application can be seen as a uniquely determined event. Notice
that this is the key point where the hypothesis of having a consuming grammar
plays a role.

Lemma 3.6.10 (unique function between productions)

Let p and p’ be two derivations of a consuming grammar G, and suppose that
(p,h, f,p") and {p,h, f', p') are consistent four-tuples. Then f = f’. The
corresponding statement holds for consistent five-tuples as well.

Proof

First note that for each equivalence class of items v € Items(p) and for each
graph G; in p, there is at most one item = € G; in : this is due to the
injectivity of all morphisms d;, b; in p (that follows from the injectivity of the
productions).

Now suppose by absurd that f # f', let i = min{i € #p | f(i) # f'(i)},
let prod(p)(%) : (L LKL R), and let x € L — [(K): such an x certainly
exists, because all productions are consuming. Suppose moreover that f(2) =
(ZT k;) + s and that f/(7) = (ZT, k’») + s’. Since both four-tuples are

Jj=1 J=1"]

consistent, by the conditions of Definition 3.5.1 we deduce that prod(p')(f (%)) =
prod(p')(f'(7)) and that g, (ing (+))],r = [gw (in§ ()]s = 7 (see Figure 3.6).
Now, since the squares in a derivation are pushouts and x € L—I(K), it follows
that g,(inf5 (z)) € d-(D,); this implies that G,_; is the last graph of p such
that Items(G,_1) N~y # (), because by the above observation G,_; contains at
most one item of . Applying the same reasoning to g, (mi/ (z)), we deduce
that r = ' (thus necessarily s # s') and g,(in% (z)) = g, (in% (x)). In words,
we have found two distinct applications of the same production in the r-th
direct derivation of p’, and both applications consume the same item of G,._;.
But this clearly violates the identification condition, implying that the left
square of the r-th direct derivation of p’ cannot be a pushout, thus yielding
a contradiction. More formally, this fact can be deduced by observing that
the images of = in the left-hand side L, of the r-th parallel production of p’
must be distinct (in% (x) # in$ (z)) because L, is a coproduct object; and that
neither in$ () nor in$ (z) is in I,.(K,).

The same proof applies to consistent five-tuples as well, by considering their
underlying consistent four-tuples. O
We stress that this result strongly relies on the assumption that productions are
consuming, and it implies that no “autoconcurrency” is possible for consuming

3.6. EVENT STRUCTURE SEMANTICS 167

productions. If instead grammar G contains a non-consuming production ¢
(ie, ¢ : (L L K5 R) and [is an isomorphism), then it is easy to find
a counterexample to Lemma 3.6.10. Consider indeed the parallel production
g + g, and the match g def [idr,idr] : L+ L — L: since [is an isomorphism,
the gluing conditions are satisfied, and thus there is a graph H such that
p: L =g HF Then it is easy to check that both (p,idr, 113, p) and
(p,idr, 112, p) are consistent four-tuples, where 112 (1) = 2 and TI2 (2) = 1.

Corollary 3.6.11 (unique permutation for tc-equivalent derivations)
Let ¢ and ¢’ be two decorated derivations of a consuming grammar. If{p = i/,
then there is a unique permutation IT on #1 such that ¢ =g .

A fortiori, the same holds for equivalence relations =¢, =", and =3,
Proof
The statement follows from Theorem 3.5.3 and from Lemma 3.6.10. O

As one would expect, the number of events “appearing” in a derivation trace
is bounded by the order of the trace. Moreover, as a consequence of the
Lemma 3.6.10, for consuming grammars the bound is reached.

Lemma 3.6.12 (counting events in a trace)
Let G be a graph grammar and let 1 be a derivation trace in G, with source in
the start graph. Then

{e € ES[G] [n € Der(e)}| < #n,

where #n denote the order of any derivation in 1. Moreover, if G is consuming
then the equality holds, namely |{e € ES[G] | n C Der(e)}| = #n.

Proof

For the first part, consider two different events €1 and e2 in ES[G] and let ¢
be a decorated derivation such that ¢ € Der(e;) N Der(e2). We show that
#1) > 2. By definition of Der(-), we have that

Y=t s and Y =4, Y,
for some decorated derivations ., € €;, 1; (i € {1,2}). Therefore ¢, ; 1 =5
Ve, ; Yo, and surely I(#1.,) # #.,. Otherwise, by definition of event we
could conclude €1 = €5. Thus necessarily #vy > 2.
The above observation can be easily generalized to prove that, for a derivation
trace n, [{e € ES[G] | n C Der(e)}| < #n.

k(Clearly, if | is not surjective, then the match g would not satisfy the identification
condition. Thus this counterexample does not apply if p is consuming.

168

Suppose now that G is a consuming grammar, let 77 be a derivation trace and
let v € n be a decorated derivation. To gain more intuition, without loss of
generality, we can restrict ourselves to “sequential” derivations which apply
just one production at each step.

For each i € #1) choose a derivation 1; such that ¢ =f; 1;, which minimizes
the value of II;(7) and let k; be such a value. Let ¢; =] ; ¥}, with #¢] = k;
(working with linear derivations surely v; is decomposable in this way). It is
easy to verify that e; = [¢}] is an event in ES[G]. Moreover, all such events are
distinct. In fact suppose that for i1,42 € #1 the events ¢;, and ¢;, coincide.
Then ¢ =f ¥, ; g, where vy is a suitable decorated discrete derivation.
Notice that necessarily, by definition of event, IT maps k;, = k;, into itself.
Now, let II' be the permutation relating 1;, and ;,, namely ¢;, =§, 1¥;,. Since

Vi, =y 5) and i, = 5 by 1/;@_1 ; ¥y, by Lemma 3.6.4, HT#w; =1II and

thus also IT" maps k;, into itself. Summing up

¥ =i, Y =i Yie = ¥
and therefore, by two applications of (CTC — tr;ns) we obtain 1 =¢ 9 via a
permutation H;zl o Il' o I1;,, mapping i; into ip. Since G is consuming, by
Lemma 3.6.10, such permutation must be the identity and thus ¢; = ?s.
This means that all events ¢; are distinct, showing that also the converse
inequality |{e¢ € ES[G] | n C Der(e)}| > #n holds. 0
We are now ready to show the main result of this section, namely, that the
domain of a consuming grammar is exactly the domain of finite configurations
of the associated event structure.

Theorem 3.6.13 (domain and event structure)
The domain Dom|[G] of a consuming graph grammar G is isomorphic to the
domain of finite configurations of its event structure ES[G].

Proof
If A is a set of decorated derivations, let the order of A, denoted #A, be the

smallest among the orders of derivations in A, i.e., #A = min{#y | Y € A},
and let p(A) C A be the set of all the derivations of A which have minimal
order: p(A) = {yp € A | #¢ = #A}.

For each configuration C of ES[G], let u(C) = u (N.cc Der(e)). We prove that
w: FL(ES[G]) — Dom|[G] is a well-defined function from finite configurations
of ES[G] to elements of Dom[G], i.e., that ;(C) is a derivation trace, by
showing (1) that ¢ € u(C) A ¢ =’ = ¢’ € p(C), and (2) that ¢,¢’ €
wC) = =4

1. Suppose that ¢ € u(C) and ¥ = ', or equivalently ¢ =+’ ; ¥" where

3.6. EVENT STRUCTURE SEMANTICS 169

1" is a discrete decorated derivation. Therefore for all ¢ € C, there
exists 0. and ¢ such that [¢]. = 0. ; §. Recalling that ¢ =° ¢'; ¢, we
conclude that ¢ ; 9" is in Der(e) and therefore that ¢’ € Der(g) for all
¢ € C. Therefore, observing that v’ has the same order of 1), we conclude

Y e u(C).

2. Suppose now that 1,9’ € u(C). They clearly have the same order, and a
permutation IT on #1 can be defined as follows: II(x) = y iff there exists
an event ¢ € C and 11,19 € € such that 1, ; ¥} =f, ¥, Yo Yy =g,
and Iy (z) = Ha(y) = #%1. It can be shown that II is well-defined (by
using the defining property of events) and that the resulting four-tuple
(py, Myr © mzzl, II, pyr) is consistent; thus ¢ = ¢’ by Theorem 3.5.3.

Now, given a derivation trace 7 starting from [G;], let x(n) = {e € ES[G] | n C
Der(e)}. Tt is easy to verify that x(n) is a configuration, i.e., it is conflict-free
(because ({Der(c) | e € ES[G] A €€ x(n)} 2 n #0), and left-closed, since
¢ < &' implies Der(e’) C Der(e). Finally, functions u and x are inverse of each
other. B

In fact, for any derivation trace n

wx(n)) =
= p({e € ES[G] | n C Der(e)})
= p(({Der(c) | e € ES[G] A 1 C Der(e)})

Let A = (\{Der(e) | € € ES[G] A n C Der(e)}. Then, as observed above,
A D n. Moreover, by Lemma 3.6.12, we have |{e € ES[G] | n C Der(e)}| = #n.
Thus for any ¥ € A, by applying again the same lemma, we conclude that
#1v > #n. Therefore the derivations in 7 has minimum length and thus
px(n) = p(A) =n.

Viceversa, for every configuration C,

x(p(C)) = {e € ES[G] | u(C) € Der(e)}-

Consider an event € € ES[G] such that u(C) C Der(e) and let ¢ € u(C). Since
1 € Der(e) there are 1. € € and ¢’ suitable decorated derivations such that
¥ =§ e ; Y. Then it is not difficult to prove that e coincides with the event
of C, corresponding to the I1~!(#1.) production application in 1. Therefore
Xx(1(C)) € C. The converse inclusion follows trivially from the definitions.

O
From this result it follows as an immediate consequence the main result of the
section.

170

1

¢ e —o !

¢ e . l .
(Z)<—V)—>on1 l

(a) (b) (c)

Figure 3.16: Domain and event structure for a consuming grammar.

Corollary 3.6.14 (algebraic structure of the domain of a grammar)
The domain of a consuming grammar G, Dom|[§], is a a prime algebraic,
finitely coherent and finitary partial order.

Proof
The statement follows from Theorem 3.6.13 because such algebraic properties
uniquely characterize the domain of finite configurations of a PES [25]. O

It is worth remarking that the correspondence between Dom[G] and ESI[J]
fails to hold when G is a non-consuming grammar. Consider, for instance, a
grammar Gy with a unique production ¢, depicted in Figure 3.16.(a). It is not
difficult to see that ES[Gp] contains a unique event e, namely the derivation
trace containing the derivation of Figure 3.16.(b), decorated in the only pos-
sible way. This fact is extremely intuitive: the unique event e represents the
application of the production ¢, with the unique possible history, namely the
empty history.

Computations in Gy would be hypothetically represented by sets of copies (mul-
tisets) of such event. We already noticed that in this situation the configu-
rations of traditional event structures are not sufficiently expressive. Conse-
quently, the domain Dom|[Gy] associated to the grammar, which is depicted in
Figure 3.16.(c), is not isomorphic to the domain of configurations of ES[Gy)].
In fact, the event structure associated to Dom[Gp] has a countably infinite
set of events {e; | i € N}, with e; < e;41 for each i € N. Intuitively, we
can think that e; represents the " firing of the event e and this justifies the
causal dependencies among events: the i + 1" occurrence of e must follow the
it" occurrence. However this interpretation is meaningful only if we limit our-
selves to sequential (non parallel) computations, which is unacceptable for a
formalism which is intended as a model of concurrency.

3.6. EVENT STRUCTURE SEMANTICS 171

3.6.8 Processes and events

The domain Dom|[G] and the event structure ES[G] of a consuming grammar
G have been constructed by using the category of derivation traces Tr[G] of
the grammar. Thanks to the very close relation existing between concatenable
processes and concatenable derivation traces, we are able to provide a nice
characterization of the finite configurations (elements of the domain Dom|[G])
and of the events of ES[G] in terms of processes. The result resembles the
analogous correspondence existing for P/T nets [13] and is based on a similar
notion of left concatenable process.

Definition 3.6.15 (abstract left c-process)

Two c-processes cp; and cps are left isomorphic, denoted by cp1 = cpo, if
there exists a pair of functions f = (fg, fp) satisfying all the requirements of
Definition 3.4.14, but, possibly, the commutativity of the right triangle of the
correspondent figure. An abstract left c-process is a class of left isomorphic
c-processes [cpl;. It is initial if Min(cp) ~ Gs. It is prime if the causal order
< of ¢p, restricted to the set P of its productions, has a maximum element.

It is worth noticing that abstract left c-processes are the process-theoretical
counterpart of (non concatenable) derivation traces. Indeed, it can be shown
that abstract left c-processes are one-to-one with derivation traces, the corre-
spondence being induced by the (arrow component of) functors £4 and Py.
The next lemma states a property of concatenable derivation traces which
is used in the characterization of the event structure of a grammar in terms
of processes. However the result is also of some interest in itself. In fact,
it formalizes the claim, reported several times in the chapter as an informal
statement, according to which the dependency between two events in a trace
is represented implicitly by the fact that the two events appears in the same
order in all the derivations contained in the trace.

Lemma 3.6.16
Let ¢ be a decorated derivation of a grammar G and let i,j € #. Con-
sider the process cp = cp(vp) = (m,p, M) and let q; = (prod(¢)(4),i) and
q; = (prod(1)(5), j) be the productions of cp corresponding to the i and j™
productions applied in the derivation. Then

II(:) <TII(j), for all ¢’ such that ¢ =§)’ =3 g < gj.

Proof

(=) The proof is done by contraposition. Suppose ¢; £ g¢;; then we can

find a linearization e of P, such that e~!(g;) > e '(¢;). By the proof of

Lemma 3.5.9.(2) we have that ¢ =, v(cp, prod(y)) and, by the proof of
id

172

Lemma 3.5.6.(1), ¥(cp, prod(v)) =g ¥(cp, e), with Il = ¢! oidp, o prod (i) =
e~! o prod(¢). Therefore ¥ = 9(cp,e) and notice that I1(i) = e (g;) >
II(j) = e *(gj), by the choice of e. This concludes the proof of the right
implication.

(«<=) Suppose g; < g;. Let ¢’ be a derivation such that ¢ =f ¢’ and consider the
process c¢p’ = cp(¢’). Since ¥ =§ ¢, by Lemma 3.5.8, ¢p = ¢p’ via an isomor-
phism f = (fg, fp), with fp((prod(1)(k), k) = (prod(v)(IL(k)), I1(k)). Since
by Corollary 3.4.11 the function fp is monotonic w.r.t. causal order, we have
F0(45) Sep p(a5), mamely (prod(v)(IL(5)), TI(@)) <. prod(w’)(TL(;)), TI(5)).
Recalling the way the function c¢p(-) is defined one concludes that necessarily
II(7) < II(y). O
We finally obtain the announced characterization, which has a clear intuitive
meaning if one thinks of the productions of (the occurrence grammar of) a
process as instances of production applications in the original grammar G, and
therefore as possible events in G.

Theorem 3.6.17
Let G be a consuming grammar. Then there is a one to one correspondence
between:

1. initial left c-processes and elements of Dom|[G];

2. prime initial left c-processes and elements of ES[G].

Proof
1. Just use the correspondence between abstract left c-processes and deriva-
tion traces stressed before, and then Lemma 3.6.7.

2. By Lemma 3.6.16 it is immediate to conclude that prime initial left c-
processes are one-to-one with derivation traces [¢] such that for all ¢’ =§ ¢/,
II(#v) = #1. Then, to conclude, simply notice that such derivation traces
are exactly the events of ES[G]. O
This result confirms the appropriateness of the chosen notion of (concatenable)
process and makes us confident on the possibility of carrying on the program
of extending notions and results from the theory of Petri nets to graph trans-
formation systems.

Notice that, although developed under the assumption that grammar G is con-
suming, most of the results of this subsection hold for non consuming grammars
as well. More precisely, the only result which uses the assumption of having
consuming grammars in an essential way is point (2) of Theorem 3.6.17.

3.6. EVENT STRUCTURE SEMANTICS 173

3.6.4 Adequateness of PES: asymmetric conflict in graph grammars

The result presented in this section, as well as many other contributions in the
literature, consider (prime) event structures as an adequate semantic domain
for graph transformation systems. However, not all researchers agree on this.
The point is that graph transformation systems manifest a form of asymmetric
conflict that cannot be faithfully captured by prime event structures.

In fact, suppose that there is an item that is only read by a production ¢
(i.e., it is in the interface graph K;) and consumed by another production gs.
Then one would say that these production have some conflicting behavior on
the common item. Indeed after having applied g; we can safely apply g2, but
the application of g2 inhibits ¢;. This situation cannot be modelled in a direct
way within a traditional prime event structure: ¢; and gs are neither in conflict
nor concurrent nor causal dependent. Simply, as for a traditional conflict, the
application of ¢o prevents g; to be executed, so that g; can never follow g
in a derivation. But the converse is not true, since q; can be applied before
q2- Therefore, this situation can be naturally interpreted as an asymmetric
conflict between the two productions. Equivalently, since g; precedes ¢o in any
derivation where both are applied, in such derivations, g; acts as a cause of ¢s.
However, differently from a true cause, ¢; is not necessary for gs to be applied.
Therefore we can also think of the relation between the two transition as a
weak form of causal dependency.

This problem has been overcome in our approach via a reasonable encoding
of this situation in a PES, namely representing the application of g with
two distinct mutually exclusive events: ¢j, representing the execution of ¢o
that prevents ¢;, thus mutually exclusive with ¢;, and ¢}, representing the
application of go after ¢ (caused by ¢1).

#

s a

E

1
q2

This encoding can be unsatisfactory since it determines an “explosion” of
the number of events (notice that not only g2, but also all its consequences
are duplicated) and it does not represent faithfully the dependencies between
events. Solutions which explicitly take into account the presence of asym-
metric conflicts have been proposed in [40,41,42], where generalized notions
of event structure are defined, enriched with an explicit relation modeling a
non-symmetric version of conflict. In particular, in [40,43] Pinna and Poigné,
starting from the “operational” notion of event automaton, suggest an enrich-

174

ment of prime event structures and flow event structures with possible causes.
The basic idea is that if e is a possible cause of €/, then e can precede €’ or it
can be ignored, but the execution of e never follows ¢’. This is formalized by
introducing an explicit subset of possible events in prime event structures or
adding a “possible flow relation” (weak causality) in flow event structures. As
one could expect the asymmetric conflict relation allows to represent the usual
symmetric conflict [41,42]. Moreover, in [42] the relation with traditional PES
(and with domains) is formalized by showing that there exists a coreflection
between the category of PES and a category of asymmetric event structures.
This allows for an elegant translation from the asymmetric event structure
semantics to the PES semantics via an adjoint functor.

Some authors have also explored the possibility of allowing the parallel exe-
cution of weakly dependent events. Under this assumption also a generalized
(in the sense described above) event structure semantics is no more suited (in
the sense that it does not express the fact that two events can happen concur-
rently without allowing for all possible serializations of them): new semantic
domains have to be looked for, possibly based on the work by Janicki and
Koutny [44,45], who address similar problems in the setting of Petri nets with
inhibitor arcs. It is interesting to recall that, although the classical solution
for the DPO approach consists in forbidding the parallel application of weakly
dependent productions, some proposals exist in the literature (see e.g., [46])
exploring the possibility of allowing for the synchronized application of weakly
dependent productions.

Besides discussing the problems and the possible solutions arising when one
tries to provide graph grammars with an event structure semantics, one could
also wonder how far event structures are adequate as a concurrent semantics
for graph grammars. An event structure semantics abstracts completely from
the structure of states, as it only shows the causal and conflict relations among
the transitions of a system. Thus, since both nets and grammars have a set of
transitions, it comes of no surprise that, under a certain degree of abstraction,
they have a similar semantics. However, being the state of a graph grammar
far more complex than the state of a net, the doubt arises that in the case of
grammars, forgetting completely the structure of the state is no more a rea-
sonable choice and the obtained semantics turns out to be scarcely significant
with respect to the real behaviour of the original system.

Obviously the answer is not unique and depends on what aspects of the com-
putation of a grammar one is interested to observe. On the one hand a more
concrete semantics is readily given by graph processes, where the type graph
provides full information on the state. On the other hand one could also con-
sider the event structure semantics too concrete, since it does not validate, for

3.7. RELATED WORK 175

instance, the natural equality P = P + P, for a process P. To gain such level
of abstraction one could resolve to “observe” the behaviour of grammars via
suitable bisimulation relations. Notice that based on the process and event
structure semantics for grammars, classical notions of bisimulation (e.g., his-
tory preserving bisimulation) can be used. However also in this case trying to
define new notions of bisimulation, explicitly tailored on graph transformation
systems, seems an interesting task.

3.7 Related work

Various authors have proposed concurrent semantics for graph transformation
systems that are related to the process and event structure semantics presented
in the previous sections. Here we give a short overview of the contributions to
the literature we are aware of.

Given the strong relationship between Petri nets and graph grammars sketched
in the Introduction and elaborated in Section 3.2.1, and considering the im-
portance of the notion of process in Petri net theory, it is not surprising that
various kinds of notions related to processes have been considered for the con-
current semantics of graph grammars as well. Kreowski and Wilharm [28]
define derivation processes as partial orders of direct derivations. An equiv-
alence is defined on processes, that essentially relates all processes contain-
ing the same derivation steps, disregarding the order and the multiplicity in
which they appear. Complete processes, i.e., processes that for each pair of
independent derivation steps contain the whole Church-Rosser diamond, are
shown to be standard representatives of equivalence classes. In particular,
complete conflict-free processes are representatives of shift-equivalence classes
of sequential derivations, and thus they are one-to-one with the graph pro-
cesses of Section 3.4. The main difference is that derivation processes of [28]
are not themselves grammars. The same authors study various kinds of trans-
formations of derivation processes in [47].

A process semantics has been proposed by Janssens for Extended Structure
Morphisms systems, which are an evolution of Actor Grammars [48], based
on the Node Label Controlled approach to graph transformation. In [49] the
notion of computation structure is introduced, which formalizes a rewriting
process of an ESM system. The notion may be seen as a generalized version
of the computation graphs of [50]. Moreover, it is shown in [51] that abstract
computation structures and concrete configuration graphs form a category that
is a natural generalization of the well-known notion of a transition system. The
set (or category) of computation structures may be taken as the basic process
semantics of an ESM system.

176

In [52] Ribeiro proposes a notion of non-deterministic unfolding of graph gram-
mars in the SPO approach. Such unfolding is itself a grammar and can be
regarded as a non-deterministic process. Interestingly, the construction is car-
ried out at categorical level, by defining an unfolding functor from a category
of graph grammars to a category of (abstract) occurrence grammars, and then
showing that it is a right adjoint to a suitable folding functor. This result
is then exploited to prove that the unfolding semantics is compositional with
respect to certain operations on grammars defined in terms of limits.
Maggiolo and Winkowski introduce in [35] dynamic graphs, which are partially
ordered structures closely related to (a nondeterministic variant of) the oc-
currence grammars underlying the concatenable processes of Section 3.4. Such
dynamic graphs are studied as mathematical structures of their own, emphasiz-
ing their composition/decomposition properties. Even if they are quite similar
to concatenable processes, they miss a formal result of correspondence with
graph derivations, and they are not defined as grammars.

For what concerns the event structure semantics of graph transformation sys-
tems, the first proposal on the topic, to our knowledge, is the paper by Schied
[38], where a PES is associated to a grammar by using a deterministic varia-
tion of the DPO approach. The key idea in his approach is that at each direct
derivation the derived graph is uniquely determined by the host graph, the
applied production and the occurrence morphism. This is achieved by giving
to newly created items of the derived graph an identity that is uniquely deter-
mined by their generation history. To obtain a PES from the collection of all
derivations of a grammar starting from the start graph, as intermediate step
a trace language (defined using the shift-equivalence) is constructed, and then
general results from [53] are applied to extract the event structure from the
trace language.

The equivalence of the event structure semantics by Schied and that of Section
3.6 has been proved recently in [54], where a further equivalent characteriza-
tion of the PES of a grammar is proposed. The idea there is to build first a
nondeterministic unfolding of the graph grammar, and then to extract from it
the prime algebraic domain of its configurations, which uniquely determines a
PES. This approach is the closest (among those we are aware of) to the clas-
sical way of extracting a prime event structure from a Petri net, as described
in [10].

For the algebraic Single-Pushout approach to graph transformation, an event
structure semantics has been proposed by Korff in [55], together with an appli-
cation to Actor Systems. In a more abstract framework, Richard Banach pro-
poses in [56] a very general categorical construction based on “op-fibrations”,
intended to be applicable to various graph rewriting formalisms. The proposed

3.7. RELATED WORK 177

construction is able to associate an event structure semantics with a variety
of graph transformation approaches. However, in the case of the algebraic,
DPO approach, the resulting event structure does not coincide with ours: The
precise reasons of this mismatch deserve further investigation.

Let us conclude by recalling the main sources of the technical material pre-
sented in this chapter, and by pointing out some little changes that we adopted
in our presentation.

The derivation trace semantics presented in Section 3.3 is essentially taken
from [17]. Tt is obtained by rephrasing in the setting of typed graph grammars
the construction proposed in [18,5] for classical DPO grammars. The main dif-
ference with respect to those papers is the technical solution adopted to make
traces concatenable. The solution used in [15,18,5] consists of choosing for each
pair of isomorphic graphs a distinguished isomorphism relating them, named
standard isomorphism (see Definition 3.8.3). Then two concrete derivations
are called abstraction equivalent if they are isomorphic and, in addition, the
two isomorphisms relating the source and the target graphs, respectively, are
standard. Like the decoration of the source and target graphs of a derivation
adopted in this chapter, this technique ensures that the sequential composition
of derivations, defined at the concrete level, can be lifted naturally to the com-
position of abstract derivations. Interestingly, the resulting category of deriva-
tion traces, say Tr®[G], turns out to be isomorphic to category Tr[G] of Defini-
tion 3.3.12. In fact two functors can be defined, UnDec : Tr[G] — Tr’[G] and
Dec : Tr°[G] — Tr[G] that are inverse each other. Intuitively, Dec is defined
on the basis of a transformation that equips a given derivation with a “canon-
ical decoration”, consisting of the standard isomorphisms from the canonical
graphs to the source and target graphs. Viceversa, UnDec essentially trans-
forms every decorated derivation into a derivation between canonical graphs,
by pre- and post-composing it with suitable empty derivations.

Both technical solutions have their advantages. On the one hand, standard iso-
morphisms allow to define the composition of derivations as they are defined in
the classical way, as sequences of double pushout diagrams (without additional
decorations). On the other hand, a drawback of this approach is that the no-
tion of equivalence between derivations does depend on representation details,
i.e., on the real identity of the items of the graphs involved in the derivation.
For instance, given a derivation, if we change uniformly the name of a node
in all the involved graphs and relations, in general we obtain a new derivation
that can be non-equivalent to the original one. On the contrary, it has been
already emphasized in the chapter that the solution based on decorations does
not suffer of this problem.

The definitions of abstraction equivalence here and in [5,18] differ for another

178

little point. According to [5,18] derivations which differ for the order in which
productions are composed inside a single direct parallel steps are abstraction
equivalent. Instead, in our approach also this kind of “switching” is taken into
account only by the shift equivalence.

With respect to [17], a minor, technical difference of our presentation of the
trace semantics resides in the way the sequential composition of decorated
derivations is defined. Here two such derivations v and ¢’ are composable only
if the target graph of 1 and the source graph of 1’, as well as the corresponding
decorations M, and my-, coincide, while according to [17] it was sufficient
that 7(¢) ~ o(¢'), and the composed derivation was defined by inserting in
the middle a suitable empty derivation. Despite that, we already emphasized
that the notion of concatenation induced at a more abstract level on traces is
exactly the same.

The contents of Section 3.4 is elaborated from [16] for the part concerning
graph processes, and from [17] for concatenable processes. With respect to the
original definition in [16], our graph processes exhibit a subtle but relevant dif-
ference. According to our definition the isomorphisms between productions in
the process and corresponding productions in the grammar (the isomorphisms
“” of Definition 3.4.9) are part of the process, and the notion of process iso-
morphism is required to be consistent with such isomorphisms. In [16], instead,
such isomorphisms are not explicitly provided, but they are only required to
exist: This leads to a looser notion of process isomorphism. Furthermore,
unlike [16], we allow processes to start from any graph and not only from
the start graph of the grammar. This is clearly needed to define a reasonable
notion of concatenable process. With respect to the concatenable processes
originally proposed in [17] the only difference is, again, that sequential compo-
sition is defined in a more restrictive way at the concrete level, but the notions
of composition at the level of abstract processes coincide.

Finally, the construction of the event structure ES[G] for a grammar G in
Section 3.6 is essentially taken from [18], by adapting the definitions and some
of the results to the “typed” framework and to non-consuming grammars.

Acknowledgements

Most of the research results presented in this chapter have been developed with
the support of TMR Network GETGRATS, Esprit WG APPLIGRAPH and
MURST project Tecniche Formali per Sistemi Software.

3.8. APPENDIX: CONSTRUCTION OF CANONICAL GRAPHS 179

3.8 Appendix: Construction of canonical graphs

We present here an explicit construction of the canonical graph associated to
a given finite typed graph, as introduced in Definition 3.3.1. This construc-
tion is a straightforward adaptation to the typed framework of the analogous
construction of [35] for labelled graphs. We also discuss how a class of stan-
dard isomorphism in the sense of [34,15] can be defined using canonical graphs,
under a mild assumption on the category of graphs.

In the following we suppose that TG = (N’ E’, s',t') is a fixed type graph.
Furthermore, we assume that the set of nodes N’ and the set of arcs £’ of TG
are equipped with fixed total orders.!

Definition 3.8.1 (arranged graph)
Let G = ((N, E,s,t), f) be a finite graph typed over TG. An arranged graph
associated with G is a typed graph G, isomorphic to G, obtained as follows:

e for each A € N’, the nodes of G labelled with A (i.e., in fy'(\)) are

arranged in a sequence
N0y ey Miy ooy € fFTHA)
and then renamed as
A 0), .y (N), (A D)
e for each v : A = p € E’ and for each pair of (renamed) nodes (A, i),

{11, 7) the arcs of G labelled with v (i.e., in f5'(r)) with source (), i) and
target (u,j) are arranged in a sequence

€0y vy Chye . yq € [TH(1V)
and then renamed as
(Vo (A1), (1,50, 00,y (v (N 8)s (s 9)5 k), (v, (AL 8) (1)5 @)

We assign to G a code
code(G1) = uv,

!Recall that a partial order (A, <) is a total order if for all a,b € A, a < bor b < a.
The partial order (A, <) is a well-order if each non-empty subset of A has a least element.
Clearly each finite total order is well-ordered.

180

where wu is the sequence of ordered nodes and v is the sequence of ordered
arcs.™

Notice that the code of an arranged graph uniquely determines the graph and
its typing. Hence if G; and G5 are two arranged graphs with code(Gy) =
code(G3) then G; = Gs.

Obviously if two arranged graphs G; and G are isomorphic then code(G1) =
uvy and code(G2) = uwvs, i.e., they have the same node code and arc codes of
the same length.

Moreover since N’ and E’ are well-ordered, also the set of “arranged edges”,
AE = E' x (N’ x N)2 x N, with the lexicographical order, is well-ordered.
Therefore the set of sequences of arranged edges of fixed length AE™ (ordered
lexicographically) is well-ordered, for each choice of n. Thus we can asso-
ciate to each finite graph G typed over TG an (isomorphic) arranged graph
with minimum code. We denote such a graph by Can(G), and we call it the
canonical graph for G.

The following proposition ensures that the second condition of Definition 3.3.1
is satisfied as well, i.e., that we can consider C'an as an operation on abstract
graphs.

Proposition 3.8.2
Let G and G’ be graphs typed over TG. If G ~ G’, then Can(G) = Can(G’).

Proof

Let f: G — G’ be an isomorphism and let i : Can(G) — G, i’ : Can(G') —
G’ be the obvious isomorphisms induced by the construction of the arranged
graph.

Since foi: Can(G) — G’ is an isomorphism, Can(G) is an arranged graph
for graph G’. Hence code(Can(G")) < code(Can(G)) and in the same way
code(Can(G)) < code(Can(G")). Therefore code(Can(G)) = code(Can(G"))
and thus Can(G) = Can(G"). O
We show now how a class of standard isomorphisms can be defined by using
the construction of canonical graphs just presented. As summarized in the
previous section, standard isomorphisms were introduced in [34,15] to define
the composition of abstract derivations, therefore as an alternative technique
with respect to the use of decorations. Let us fist recall the definition.

"We consider on arranged nodes and arcs the usual lexicographical order.

3.8. APPENDIX: CONSTRUCTION OF CANONICAL GRAPHS 181

Definition 3.8.3 (standard isomorphisms)

A family s of standard isomorphisms in category TG-Graph is a family of
isomorphisms indexed by pairs of isomorphic graphs (i.e., s = {s(G,G’) | G ~
G'}), satisfying the following conditions for each G, G’ and G” € |TG-Graph|:

e 5(G,G"):G— G,
e 5(G,G) =idg;
e 5(G",G")os(G,G") = s(G,G").

Now let G be a finite graph typed over T'G. An isomorphism f : Can(G) — G
can be represented as a sequence of pairs:
<n0’ f(n0)>’ R <np7 f(np)>7 <607 f(€0)>7) <eq? f(eq)>7
with n; € Noan(a) and e, € Egan(q)- Therefore, if we suppose that the sets of
(possible) nodes and arcs are well-ordered, we can choose a minimum (w.r.t.
lexicographical order) isomorphism, denoted by
i(G) : Can(G) — G.
Now, given two T'G-typed graphs G and G’ we can define the standard iso-
morphism s(G,G’) as
s(G,G") =i(G") oi(G)~L
It is immediate to check that this definition satisfies the conditions Definition
3.8.3. Notice also that if we consider only finite graphs, we can safely assume
that the sets of nodes and arcs of the type graph and of all the other graphs we
deal with are well-ordered without assuming the axiom of choice: for example,
we can simply assume that nodes and arcs are natural numbers. Under this
assumption the construction of both Can(G) and of the standard isomorphisms
is effective.

References

1. C.A. Petri. Kommunikation mit Automaten. Schriften des Institutes fiir
Instrumentelle Matematik, Bonn. 1962.

2. W. Reisig. Petri Nets: An Introduction. EACTS Monographs on
Theoretical Computer Science. Springer Verlag, 1985.

3. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation. Volume 1: Foundations. World Scientific, 1997.

4. H. Ehrig. Tutorial introduction to the algebraic approach of graph-
grammars. In H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, edi-
tors, Proceedings of the 3rd International Workshop on Graph-Grammars
and Their Application to Computer Science, volume 291 of LNCS, pages
3-14. Springer Verlag, 1987.

182

10.

11.

12.

13.

14.

15.

16.

17.

A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Lowe.
Algebraic Approaches to Graph Transformation I: Basic Concepts and
Double Pushout Approach. In G. Rozenberg, editor, Handbook of Graph
Grammars and Computing by Graph Transformation. Volume 1: Foun-
dations. World Scientific, 1997.

M. Lowe. Algebraic approach to single-pushout graph transformation.
Theoret. Comput. Sci., 109:181-224, 1993.

H. Ehrig, R. Heckel, M. Korff, M. Léwe, L. Ribeiro, A. Wagner, and
A. Corradini. Algebraic Approaches to Graph Transformation II: Single
Pushout Approach and comparison with Double Pushout Approach. In
G. Rozenberg, editor, Handbook of Graph Grammars and Computing by
Graph Transformation. Volume 1: Foundations. World Scientific, 1997.
G. Rozenberg. Behaviour of Elementary Net Systems. In Petri Nets:
Central Models and Their Properties, volume 254 of LNCS, pages 60-94.
Springer Verlag, 1987.

U. Golz and W. Reisig. The non-sequential behaviour of Petri nets.
Information and Control, 57:125-147, 1983.

M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures
and Domains, Part 1. Theoret. Comput. Sci., 13:85-108, 1981.

G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky,
D. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Com-
puter Science. Volume 4: Semantic Modelling. Oxford University Press,
1995.

J. Meseguer and U. Montanari. Petri nets are monoids. Information
and Computation, 88:105-155, 1990.

J. Meseguer, U. Montanari, and V. Sassone. On the semantics of Petri
nets. In Proceedings CONCUR 92, volume 630 of LNCS, pages 286-301.
Springer Verlag, 1992.

H.-J. Kreowski. Manipulation von Graphmanipulationen. PhD thesis,
Technische Universitéat Berlin, 1977.

A. Corradini, H. Ehrig, M. Léwe, U. Montanari, and F. Rossi. Abstract
Graph Derivations in the Double-Pushout Approach. In H.-J. Schnei-
der and H. Ehrig, editors, Proceedings of the Dagstuhl Seminar 9301
on Graph Transformations in Computer Science, volume 776 of LNCS,
pages 86-103. Springer Verlag, 1994.

A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta
Informaticae, 26:241-265, 1996.

P. Baldan, A. Corradini, and U. Montanari. Concatenable graph pro-
cesses: relating processes and derivation traces. In Proceedings of
ICALP’98, volume 1443 of LNCS, pages 283-295. Springer Verlag, 1998.

3.8.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

APPENDIX: CONSTRUCTION OF CANONICAL GRAPHS 183

A. Corradini, H. Ehrig, M. Lowe, U. Montanari, and F. Rossi. An Event
Structure Semantics for Graph Grammars with Parallel Productions. In
J. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors, Proceedings
of the 5th International Workshop on Graph Grammars and their Ap-
plication to Computer Science, volume 1073 of LNCS. Springer Verlag,
1996.

A. Corradini, H. Ehrig, M. Lowe, U. Montanari, and F. Rossi. An event
structure semantics for safe graph grammars. In E.-R. Olderog, editor,
Programming Concepts, Methods and Calculi, IFIP Transactions A-56,
pages 423-444. North-Holland, 1994.

H. Ehrig. Introduction to the Algebraic Theory of Graph Grammars.
In V. Claus, H. Ehrig, and G. Rozenberg, editors, Proceedings of the 1st
International Workshop on Graph-Grammars and Their Application to
Computer Science and Biology, volume 73 of LNCS, pages 1-69. Springer
Verlag, 1979.

H. Ehrig. Aspects of Concurrency in Graph Grammars. In H. Ehrig,
M. Nagl, and G. Rozenberg, editors, Proceedings of the 2nd International
Workshop on Graph-Grammars and Their Application to Computer Sci-
ence, volume 153 of LNCS, pages 58-81. Springer Verlag, 1983.

P. Degano, J. Meseguer, and U. Montanari. Axiomatizing the algebra of
net computations and processes. Acta Informatica, 33:641-647, 1996.
V. Sassone. An axiomatization of the algebra of Petri net concatenable
processes. Theoret. Comput. Sci., 170:277-296, 1996.

G. Winskel. Event Structures. In Petri Nets: Applications and Rela-
tionships to Other Models of Concurrency, volume 255 of LNCS, pages
325-392. Springer Verlag, 1987.

G. Winskel. An Introduction to Event Structures. In Linear Time,
Branching Time and Partial Order in Logics and Models for Concur-
rency, volume 354 of LNCS, pages 325-392. Springer Verlag, 1989.

S. Mac Lane. Categories for the working mathematician. Springer
Verlag, 1971.

H.-J. Kreowski. A comparison between Petri nets and graph grammars.
In H. Noltemeier, editor, Proceedings of the Workshop on Graphtheoretic
Concepts in Computer Science, volume 100 of LNCS, pages 306-317.
Springer Verlag, 1981.

H.-J. Kreowski and A. Wilharm. Net processes correspond to derivation
processes in graph grammars. Theoret. Comput. Sci., 44:275-305, 1986.
H.-J. Schneider. On categorical graph grammars integrating struc-
tural transformations and operations on labels. Theoret. Comput. Sci.,
109:257-274, 1993.

184

30

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

. A. Corradini. = Concurrent Graph and Term Graph Rewriting. In
U. Montanari and V. Sassone, editors, Proceedings CONCUR’96, vol-
ume 1119 of LNCS, pages 438-464. Springer Verlag, 1996.

. R. Janicki and M. Koutny. Semantics of inhibitor nets. Information and

Computation, 123:1-16, 1995.

U. Montanari and F. Rossi. Contextual nets. Acta Informatica, 32,

1995.

W. Vogler. Efficiency of asynchronous systems and read arcs in Petri

nets. Technical Report 352, Institiit fiir Mathematik, Augsburg Univer-

sity, 1996.

A. Corradini, H. Ehrig, M. Lowe, U. Montanari, and F. Rossi. Note

on standard representation of graphs and graph derivations. In H.-J.

Schneider and H. Ehrig, editors, Proceedings of the Dagstuhl Seminar

9301 on Graph Transformations in Computer Science, volume 776 of

LNCS, pages 104-118. Springer Verlag, 1994.

A. Maggiolo-Schettini and J. Winkowski. Dynamic Graphs. In Proceed-

ings of MFCS’96, volume 1113 of LNCS, pages 431-442, 1996.

H.-J. Kreowski. Is parallelism already concurrency? Part 1: Deriva-

tions in graph grammars. In H. Ehrig, M. Nagl, G. Rozenberg, and

A. Rosenfeld, editors, Proceedings of the 3rd International Workshop on

Graph-Grammars and Their Application to Computer Science, volume

291 of LNCS, pages 343—-360. Springer Verlag, 1987.

H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism

and Concurrency in High-Level Replacement Systems. Mathematical

Structures in Computer Science, 1:361-404, 1991.

G. Schied. On relating Rewriting Systems and Graph Grammars to

Event Structures. In H.-J. Schneider and H. Ehrig, editors, Proceedings

of the Dagstuhl Seminar 9301 on Graph Transformations in Computer

Science, volume 776 of LNCS, pages 326—-340. Springer Verlag, 1994.

G. Berry. Stable models of typed lambda-calculi. In Proceeding of the

5™ ICALP, volume 62 of LNCS, pages 72-89. Springer-Verlag, 1978.

G. M. Pinna and A. Poigné. On the nature of events. In Mathematical

Foundations of Computer Science, volume 629 of LNCS, pages 430-441.

Springer Verlag, 1992.

R. Langerak. Bundle Event Structures: A Non-Interleaving Seman-

tics for Lotos. In 5™ Intl. Conf. on Formal Description Techniques

(FORTE’92), pages 331-346. North-Holland, 1992.

P. Baldan, A. Corradini, and U. Montanari. An event structure seman-

tics for P/T contextual nets: Asymmetric event structures. In M. Nivat,

editor, Proceedings of FoSSaCS 98, volume 1378, pages 63-80. Springer

3.8.

43.

44.

45.

46.

47.

48.

49.

50.

ol.

52.

93.

54.

95.

APPENDIX: CONSTRUCTION OF CANONICAL GRAPHS 185

Verlag, 1998.

G. M. Pinna and A. Poigné. On the nature of events: another perspective
in concurrency. Theoretical Computer Science, 138:425-454, 1995.

R. Janicki and M. Koutny. Invariant semantics of nets with inhibitor
arcs. In Proceedings CONCUR 91, volume 527 of LNCS. Springer Ver-
lag, 1991.

R. Janicki and M. Koutny. Structure of concurrency. Theoret. Comput.
Sei., 112:5-52, 1993.

A. Corradini and F. Rossi. Synchronized Composition of Graph Gram-
mar Productions. In J. Cuny, H. Ehrig, G. Engels, and G. Rozenberg,
editors, Proceedings of the 5th International Workshop on Graph Gram-
mars and their Application to Computer Science, volume 1073 of LNCS.
Springer Verlag, 1996.

H.-J. Kreowski and A. Wilharm. Is parallelism already concurrency?
Part 2: Non-sequential processes in graph grammars. In H. Ehrig,
M. Nagl, G. Rozenberg, and A. Rosenfeld, editors, Proceedings of the
3rd International Workshop on Graph-Grammars and Their Application
to Computer Science, volume 291 of LNCS, pages 361-377. Springer
Verlag, 1987.

D. Janssens and G. Rozenberg. Actor Grammars. Mathematical Systems
Theory, 22:75-107, 1989.

D. Janssens. ESM systems and the composition of their computations.
In Graph Transformations in Computer Science, volume 776 of LNCS,
pages 203-217. Springer Verlag, 1994.

D. Janssens, M. Lens, and G. Rozenberg. Computation graphs for actor
grammars. Journal of Computer and System Science, 46:60-90, 1993.
D. Janssens and T. Mens. Abstract semantics for ESM systems. Fun-
damenta Informaticae, 26:315-339, 1996.

L. Ribeiro. Parallel Composition and Unfolding Semantics of Graph
Grammars. PhD thesis, Technische Universitat Berlin, 1996.

M.A. Bednarczyk. Categories of asynchronous systems. PhD thesis,
University of Sussex, 1988. Report no. 1/88.

P. Baldan, A. Corradini, and U. Montanari. Unfolding and Event Struc-
ture Semantics for Graph Grammars. In W. Thomas, editor, Proceedings
of FoSSaCS 99, volume 1578, pages 73-89. Springer Verlag, 1999.

M. Korff. True Concurrency Semantics for Single Pushout Graph Trans-
formations with Applications to Actor Systems. In Proceedings Interna-
tional Workshop on Information Systems — Corretness and Reusability,
IS-CORE’9), pages 244-258. Vrije Universiteit Press, 1994. Tech. Re-
port IR-357.

186

56. R. Banach. DPO Rewriting and Abstract Semantics via
Opfibrations. In A. Corradini and U. Montanari, editors,
Proceedings SEGRAGRA’95, volume 2 of FElectronic Notes
in Theoretical Computer Science. Elsevier Sciences, 1995.

http://www.elsevier.nl/locate/entcs/volume2.html.

