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We present a logical characterisation of the equivalences in the spectrum for labelled Prime 
Event Structures (PESs) and use it for also studying how such spectrum changes when 
restricting to subclasses of event structures. We first show that a minor modification of 
the logic characterising hereditary history preserving bisimilarity induces PES isomorphism 
as logical equivalence. Then, we distill fragments of the logic that characterise all 
the equivalences in the aforementioned spectrum. In particular, we single out logics 
for interleaving/step/pomset trace equivalences and weak (pomset) history preserving 
bisimilarity, which were missing. Finally, we apply our logical characterisation to investigate 
how the spectrum simplifies when we restrict to subclasses of event structures: Coherence 
Spaces, where causality is absent, and Elementary Event Structures, where instead conflicts 
are not allowed. Inclusions between behavioural equivalences are proved by providing 
encodings between the corresponding sublogics, whereas the non-inclusion between 
equivalences is witnessed by using distinguishing formulae, i.e., by providing structures 
which are identified by an equivalence and distinguished by a formula in the logics of the 
other equivalence.

© 2022 Elsevier Inc. All rights reserved.

0. Introduction

Event structures [42,57] are one of the best known models for the formal treatment of true concurrency. Basically, they 
are collections of events, some of which are in conflict (i.e., the execution of an event forbids the execution of other events), 
while others are causally dependent (i.e., an event cannot be executed if it has not been preceded by other ones). Prime 
Event Structures (written PESs) are the earliest and simplest form of event structures, where causality is a partial order and 
all the conflicts of one event are inherited by all its causal successors. Events are typically labelled, to represent different 
occurrences of the same action.

Differently from what happens in the so-called interleaving approach, where the concurrent execution of events is iden-
tified with the non-deterministic choice between their sequentialisations, in the true concurrent approach concurrency is 
represented primitively. This can be particularly convenient or essential when one is interested in describing the causal his-
tory of computational steps, the flow of information or the level of parallelism; see, e.g., [56] for a reasoned survey on the 
use of such causal models. In the literature, event structures have been used to study concurrency in weak memory models 
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[13,36,47], for process mining and differencing [19], and to study atomicity [7,20], information flow [1] and trust [37,38,41]
properties.

In order to grasp some intuition, let us hint at how PESs can be used to provide the semantics of the memory model 
of concurrent programming languages. Consider a simple programming language where all values are booleans, registers 
(ranged over by r) are thread-local and variables (ranged over by x and y) are global. In order to define the semantics 
compositionally, variable read can be defined as a choice among the possible values that might be read. Hence, the event 
structure for the two-threaded program

(r1= x; y= r1;) || (r2= y; x= r2;)
is:

W 0y W 1y W 0x W 1x

R 0x # R 1x R 0y # R 1y

Here, events are represented by their labels: for instance, the label R 0 x denotes reading value 0 from variable x.1 Fur-
thermore, arrows represent causality and # represent conflicts (only direct conflicts are represented explicitly, but if two 
events are in conflict, then all their causal consequences are so). In this setting, program executions correspond to configu-
rations, i.e., conflict-free and causally closed sets of events (the presence of an event requires the presence of all its causes). 
A possible (maximal) configuration of the above PES is {R 0 x , W 0 y , R 0 y , W 0 x} arising, e.g., by performing the four 
events (corresponding to the given labels) exactly in this order. Despite being very basic, this representation allows one to 
capture interesting aspects of computations, like identifying the source (write operation) of a datum which is read. This can 
be helpful for tracing the flow of information or for ensuring the absence of cyclic dependencies (related to the presence of 
“thin-air reads” in memory models).

Also note that some subtleties intervene in the definition of such models. For example the following basic program

x= 1; r= y

could be modelled by one of the following two PESs

R 0y # R 1y R 0y R 1y

W 1x (W 1x)1 # (W 1x)2

according to whether, in the execution of the program, one wants to observe the branching points (left-most PES, where 
the choice is done after writing variable x) or just the possible sequences of actions (right-most PES, where the choice is 
moved to the beginning of the computation, thus leading to two conflicting occurrences of the same write action on x, 
represented by events with the same label and different subscripts, the first followed by a read of value 0, the second by a 
read of value 1). This opens the questions of which model is “the” correct one or, at least, whether the two models are in 
some sense “equivalent” (we will see in Example 4 that the two models are equivalent only under notions of equivalence 
based on traces).

Indeed, in the setting of PESs, many equivalences have been developed, stemming from the notions of trace [35] and 
bisimulation [39]. In turn, these two families of equivalences depend on the unit of observation (a single event, a set of 
concurrent events – called step – or a set of events together with its causality and concurrency relations – called pomset), 
thus leading to six different equivalence relations: interleaving/step/pomset trace equivalences and interleaving/step/pomset 
bisimulation equivalences, respectively written ≈it , ≈st, ≈pt, ≈ib, ≈sb, and ≈pb [6,49]. Moreover, stronger notions of bisim-
ulation are obtained by imposing constraints on the causal structure of configurations related by a bisimulation: this leads 
to history preserving bisimilarity and its variants, namely weak, weak pomset and hereditary history preserving bisimilarity, 
respectively written ≈hb, ≈whb, ≈wphb, and ≈hhb [5,17,18,50]. These equivalences together with the most discriminating 
one, i.e. PES isomorphism (written ∼=), form a well known spectrum [21,51] (see Fig. 1 in Section 1).

On the logical side, various behavioural logics capable of expressing causal properties of computations have been pro-
posed (see, e.g., [5,8,15,31–33,40,44,48], just to mention a few). In particular, a logical characterisation of some relevant 
behavioural equivalences in the true concurrent spectrum [51] has been provided using event-based logics [3,46] and inter-
preted over event structures; this means that formulae include variables which can be bound to events in computations.

In this paper we thoroughly investigate the true concurrent spectrum from the logical point of view, studying also the 
impact on such spectrum of confining the attention to subclasses of event structures, where either causality or conflict is 

1 Note that, in this model, register values are resolved via substitution and therefore do not appear.
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removed. To this aim, we find it handier to work with a generalisation of the logic in [3], which predicates explicitly about 
dependencies between events.

As a first step, we need to complete the logical characterisation of the true concurrent spectrum, providing a uniform 
logical characterisation for all the equivalences mentioned above. In particular, all logics can be obtained as fragments of 
the logic characterising the most discriminating equivalence, i.e., PES isomorphism. Interestingly enough, by removing a 
well-formation constraint on formulae present in the logic for hereditary history preserving bisimilarity proposed in [3], 
we obtain a logic expressive enough to characterise PES isomorphism. A logic for isomorphism, apart from being useful to 
express very fine-grained system properties, is also interesting because it clearly singles out where the difference between 
isomorphism and hereditary-hp lies: they only differ when there are two (or more) conflicting identical branches. This 
testifies how close the two equivalences are: indeed, they remain distinct until conflict is present, whereas they collapse as 
soon as conflict is removed (see Section 4). Our characterizations extend the work in [3] where all bisimulation equivalences 
except for weak history preserving bisimilarities have been logically characterised. Then, for interleaving/step/pomset trace 
equivalences, the logic can be derived from the logic for the corresponding bisimilarity by simply removing negations and 
conjunctions (as it happens in process calculi).

By contrast, singling out fragments of the logic that capture weak history preserving bisimilarity and weak pomset 
history preserving bisimilarity is far from trivial. Intuitively, the distinguishing power of weak history preserving bisimilarity 
relies on the execution of events (or pomsets) with a specific label and on the check that the reached configurations are 
isomorphic as posets. As a consequence, the logic must contain formulae that offer exactly such distinguishing power. This 
requires some ingenuity, since the naming of variables and the order in which they have been bound must be irrelevant, 
while their labels and causal relations matter. A similar intuition is at the heart of the logic provided in [45] for weak 
history preserving bisimilarity, but our formalisation is necessarily quite different as their logic uses backward modalities, 
absent in our logic.

In the second part of the paper, we apply our logical characterisation to investigate the impact on the spectrum by 
considering two subclasses of PESs, along the lines of [26,27]. The first one is obtained by removing the causality relation 
and this essentially leads to (the web of) coherence spaces [25] (written CSs). CSs together with stable functions play a key 
role in building stable domains in the semantics of linear logic [25] and typed lambda-calculus [9,10]. The second one is 
obtained by removing the conflict relation; this leads to elementary event structures [42] (written EESs), that naturally arise 
as the deterministic subclass of PESs (see, e.g., [42,43,51]). As shown in [26,27], in both cases the spectrum turns out to 
be simplified, since some notions of equivalence coincide in the simplified settings. For CSs, the spectrum is simplified to 
a chain as depicted in Fig. 11 in Subsection 4.1: all trace equivalences coincide and represent the coarsest notion; they 
properly include bisimilarities that all coincide, except for hereditary history preserving bisimilarity. The latter, in turn is 
properly refined by PES isomorphism. For EESs pomset trace, pomset bisimilarity and all history preserving bisimilarities 
coincide with isomorphism, whereas interleaving/step trace/bisimulation equivalences are as in the general spectrum, as 
depicted in Fig. 12 of Subsection 4.2.

These results were known from [26,27], where they were proved for so called finitary PESs (i.e., PESs that admit a fi-
nite number of configurations of every finite cardinality). Here we provide a logical account of the same results. Inclusions 
between behavioural equivalences are shown by providing encodings between the corresponding sublogics, whereas the 
non-inclusion between equivalences is witnessed by using distinguishing formulae, i.e., by providing structures which are 
identified by an equivalence and distinguished by a formula in the logics of the other equivalence. Since the logical charac-
terisation works, as usual, for image-finite PESs (i.e. structures where every configuration can reach only finitely many others 
by means of a transition with a fixed label), our results hold in this setting, that slightly generalises that of finitary PESs. 
Notice that in [26,27] the case of countable EESs without finitariness assumption was also discussed. Since logics usually 
assume to have some form of finitariness, we do not consider general EESs here.

This paper is a completion of both [3] and [26,27]. With respect to [3], here we provide a uniform treatment of all the 
logics for the 11 equivalences of Fig. 1, including all trace equivalences, isomorphism and weak (pomset) history preserving 
bisimilarity: all these results are new in the framework of [3]. Furthermore, as mentioned above, we slightly strengthen the 
characterisations already in [3] by proving all our results in the framework of image-finite structures (instead of the smaller 
class of finitely-branching structures).

The rest of the paper is organised as follows. In Section 1, we recall the definition of the behavioural equivalences 
in the spectrum for PESs, as reported in [21]. In Section 2, we introduce the logic and a few basic derived operators. In 
Section 3, we prove that the logic presented characterises isomorphism, and then distill from it all the sublogics needed 
to characterise the behavioural equivalences introduced in Section 1. In Section 4, we logically study the impact on the 
spectrum of removing either causality or conflict. Section 5 concludes the paper. To streamline reading, some technical 
material is put into the Appendix.

1. Background: prime event structures and their equivalence spectrum

We start by briefly recalling some notions and results from the theory of event structures [42], by following the presen-
tation in [51].
3
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Definition 1 (Prime Event Structures [42,57]). A (labelled) prime event structure (PES, for short) over an alphabet A is a tuple 
E = (E, ≤, #, l) such that:

• E is a set of events;
• ≤ ⊆ E × E is the causality relation, i.e. a partial order such that, for all e ∈ E , the set �e	 = {e′ : e′ ≤ e} is finite;
• # ⊆ E × E is the conflict relation, i.e. an irreflexive and symmetric relation such that, for all e, e′, e′′ ∈ E , if e ≤ e′ and 

e#e′′ , then e′#e′′;
• l : E →A is the labeling function.

The PESs E = (E, ≤E , #E , lE ) and F = (F , ≤F , #F , lF ) are isomorphic, written E ∼= F , if there exists bijection f : E → F
that respects relations and labelling (i.e., for all e, e′ ∈ E , it holds e ≤E e′ iff f (e) ≤F f (e′), e#E e′ iff f (e)#F f (e′) and 
lE (e) = lF ( f (e))).

Intuitively, e′ ≤ e means that e cannot happen before e′ (so, the execution of e causally depends on the execution of e′), 
whereas e#e′ means that e and e′ are mutually exclusive (so, the execution of one prevents the execution of the other). The 
requirement for �e	 to be finite ensures that every event can be executed in a finite amount of time (i.e., after the execution 
of finitely many events).

Definition 2 (Consistency, Concurrency). Let E be a PES. We say that e, e′ ∈ E are consistent, written e �e′ , if ¬(e#e′). A subset 
X ⊆ E is called consistent if e � e′ for all e, e′ ∈ X . We say that e and e′ are concurrent, written e ‖ e′ , if ¬(e ≤ e′), ¬(e′ ≤ e)
and ¬(e#e′).

Following the notation used in the introduction, we shall represent events in a PES by their labels, possibly numbered in 
order to distinguish events with the same label (numbering proceeds from left to right and from bottom to top); causality is 
represented by upwards arrows and conflicts by #-labelled dotted edges. Moreover, for the sake of simplicity, since causality 
is transitive, we shall usually represent the causality relation by its transitive reduction, i.e., only direct causes are depicted. 
For instance, the following picture

c

b2

a1

#

b1
#

a2

denotes a PES E = (E, ≤, #, l) where E = {a1, a2, b1, b2, c}, causality is given by e ≤ e (∀e ∈ E), a2 ≤ b2, a2 ≤ c, b2 ≤ c, # is 
the symmetric closure of {(a1, a2), (b1, a2), (a1, b2), (b1, b2), (a1, c), (b1, c)}, l(a1) = l(a2) = a, l(b1) = l(b2) = b and l(c) = c.

The possible states that the system modelled by a PES can pass through during its evolution are defined as follows.

Definition 3 (Configurations). Let E = (E, ≤, #, l) be a PES. A configuration of E is a finite set C ⊆ E such that

• ¬(e#e′), for every e, e′ ∈ C ; and
• �e	 ⊆ X , for every e ∈ C .

We denote with Conf (E) the set of configurations of E .

The way in which (the system modelled by) a PES evolves is usually given through some labelled transition system (LTS) 
over configurations. The idea is that inclusion between configurations represents computational extension, i.e., when C, C ′
are configurations and C ⊆ C ′ , then C can evolve to C ′ , by performing the events in C ′ \ C . Depending on the number 
and structure of the extension that can be realised in one single transition, we obtain different transition systems and, 
correspondingly, different notions of behavioural equivalences, as detailed below.

In the simplest case, a transition consists of the execution of one single event. Given configurations C, C ′ ∈ Conf (E), we 
write C a−→ C ′ whenever C ⊆ C ′ and C ′ \ C = {e}, with l(e) = a. In this case, we say that the event e is enabled in C . Notation 
C −→ (resp., C �−→) means that there exist a and C ′ (resp., no a and C ′) such that C

a−→ C ′ .
The two most basic equivalences we consider are derived from process algebras and are interleaving trace and bisimulation

equivalence.

Definition 4 (Interleaving trace equivalence [35]). Let E be a PES. A (sequential) trace of E is a sequence a1 . . .ak ∈A∗ such that 
there exist C0, . . . , Ck ∈ Conf (E) with C0 = ∅ and Ci

ai+1−−→ Ci+1, for i = 0, . . . , k − 1; by convention, the empty trace ε arises 
when k = 0. We denote with SeqTr(E) the set of all sequential traces of E .
4
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The PESs E and F are interleaving trace equivalent, written E ≈it F , if SeqTr(E) = SeqTr(F).

Definition 5 (Interleaving bisimilarity [39]). Let E and F be PESs. A relation R ⊆ Conf (E) × Conf (F) is an interleaving bisimu-
lation between E and F if:

• (∅, ∅) ∈ R;

• if (C, D) ∈ R and C
a−→ C ′ , then D a−→ D ′ , for some D ′ such that (C ′, D ′) ∈ R;

• if (C, D) ∈ R and D a−→ D ′ , then C
a−→ C ′ , for some C ′ such that (C ′, D ′) ∈ R .

When there is such R , we say that E and F are interleaving bisimilar, and write E ≈ib F .

Transitions involving one single action can be generalized to steps, i.e., sets of events that can be executed concurrently. A 
step transition will be labelled with the (finite) multiset of labels corresponding to the executed events. We write C

{{a1...an}}−−−−−→
C ′ if C ⊆ C ′ , C ′ \ C = {e1, . . . , en}, ∀i �= j . ei ‖ e j , and { {a1 . . .an} } denotes the multiset over A formed by the labels ai of the 
events ei . This yields the obvious generalization of interleaving trace and bisimulation equivalence, where the step traces of 
a PES E , denoted StepTr(E), are defined as expected (i.e., like sequential traces, but with steps in place of single events).

Definition 6 (Step trace equivalence [49]). The PESs E and F are step trace equivalent, written E ≈st F , if StepTr(E) = StepTr(F).

Definition 7 (Step bisimilarity [49]). Let E and F be PESs. A relation R ⊆ Conf (E) × Conf (F) is a step bisimulation between E
and F if:

• (∅, ∅) ∈ R;

• if (C, D) ∈ R and C
A−→ C ′ , then D A−→ D ′ , for some D ′ such that (C ′, D ′) ∈ R;

• if (C, D) ∈ R and D A−→ D ′ , then C
A−→ C ′ , for some C ′ such that (C ′, D ′) ∈ R .

When there is such R , we say that E and F are step bisimilar, and write E ≈sb F .

An equivalence finer than step semantics can be obtained by allowing a single transition to perform a generic consistent 
set of events, possibly not concurrent. Given configurations C, C ′ ∈ Conf (E) with C � C ′ , observe that Y = C ′ \ C can be seen 
as a partially ordered set (poset, for short), with the ordering given by ≤. We write poset(Y ) to denote the labelled poset 
(Y , ≤|Y , l|Y ), where ≤|Y and l|Y are the restrictions of ≤ and l to Y . A more abstract view is obtained by replacing events 
with their labels. This turns a poset into a so-called partially ordered multiset (pomset, for short). Formally, the pomset 
associated to Y , written pomset(Y ), is the isomorphism class of poset(Y ). We write C

p−→ C ′ when p = pomset(C ′ \ C).
Clearly, also entire configurations can be seen as posets and thus, given a configuration C , we can consider pomset(C), 

the pomset corresponding to C .

Definition 8 (Pomset trace equivalence [6]). Let E be a PES. The pomset trace language of E is Pom(E) = {pomset(C) | C ∈
Conf (E)}.

The PESs E and F are pomset trace equivalent, written E ≈pt F , if Pom(E) = Pom(F).

Notice that a pomset trace, differently from interleaving and step traces, consists of a single pomset, not of a sequence 
of pomsets. This is how pomset traces have been defined in [21], since it simplifies the treatment and it leads to the same 
equivalence (intuitively because a sequence of pomsets can be always captured by a single one and because trace semantics 
forgets about the branching points which might occur between two transitions).

Definition 9 (Pomset bisimilarity [6]). Let E and F be PESs. A relation R ⊆ Conf (E) ×Conf (F) is a pomset bisimulation between 
E and F if:

• (∅, ∅) ∈ R;

• if (C, D) ∈ R and C
p−→ C ′ , then D 

p−→ D ′ , for some D ′ such that (C ′, D ′) ∈ R;

• if (C, D) ∈ R and D 
p−→ D ′ , then C

p−→ C ′ , for some C ′ such that (C ′, D ′) ∈ R .

When there is such R , we say that E and F are pomset bisimilar, and write E ≈pb F .

An orthogonal way to generalise interleaving bisimilarity is to keep track of the causal dependencies inside the configu-
rations, and only relate configurations with the same causal history. This is done by requiring that the two configurations 
have isomorphic associated posets, i.e., that they represent the same pomset.
5
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≈it

≈ib ≈st

≈sb ≈pt

≈pb ≈whb

≈wphb

≈hb

≈hhb

∼=

Fig. 1. The spectrum of equivalences for PESs, where ‘→’ means ‘⊂’.

Definition 10 (Weak history preserving bisimilarities [17,51]). Let E and F be PESs. A relation R ⊆ Conf (E) × Conf (F) is a weak 
history preserving bisimulation between E and F if

• (∅, ∅) ∈ R , and
• if (C, D) ∈ R then

– pomset(C) = pomset(D);

– if C
a−→ C ′ , then D a−→ D ′ , for some D ′ such that (C ′, D ′) ∈ R;

– if D a−→ D ′ , then C
a−→ C ′ , for some C ′ such that (C ′, D ′) ∈ R .

When there is such R , we say that E and F are weak history preserving bisimilar (weak h-bisimilar) and write E ≈whb F . The 
definition of weak pomset h-bisimilarity, denoted ≈wphb, is obtained from the above by using pomset transitions.

Observe that one could also define a notion of weak step h-bisimilarity. However, it is not difficult to see that weak 
step h-bisimilarity would coincide with weak h-bisimilarity, since, as shown in [21], a weak h-bisimulation is also a step 
bisimulation.

A finer equivalence is obtained by requiring in the definition above that the isomorphism relating the target configura-
tions C ′ and D ′ extends the isomorphism relating the source configurations C and D . This leads to the following definition.

Definition 11 (History preserving bisimilarity [18,50]). Let E and F be PESs. A relation R ⊆ Conf (E) ×Conf (F) ×2Conf (E)×Conf (F)

is a history preserving bisimulation between E and F if

• (∅, ∅, ∅) ∈ R , and
• if (C, D, f ) ∈ R then

– f : poset(C) → poset(D) is an isomorphism;

– if C
a−→ C ′ , then D a−→ D ′ , for some D ′ such that (C ′, D ′, f ′) ∈ R , where f ′|C = f ;

– if D a−→ D ′ , then C
a−→ C ′ , for some C ′ such that (C ′, D ′, f ′) ∈ R , where f ′|C = f .

When such a relation R exists, we say that E and F are history preserving (h-)bisimilar and write E ≈hb F .

The notion of h-bisimulation can be made even finer by also asking for a ‘backwards’ bisimulation game, along the lines 
of back-and-forth bisimulation [16].

Definition 12 (Hereditary h-bisimilarity [5]). Let E and F be PESs. A h-bisimulation R between E and F is hereditary if, for 
every (C, D, f ) ∈ R , it holds that C ′ a−→ C implies (C ′, f (C ′), f |C ′ ) ∈ R and D ′ a−→ D implies ( f −1(D ′), D ′, f | f −1(D ′)) ∈ R .

When such a relation R exists, we say that E and F are hereditary history preserving bisimilar (hereditary h-bisimilar) and 
write E ≈hhb F .

All the equivalences presented so far form a well known spectrum [21,51], depicted in Fig. 1 (the only inclusions that are 
not present in [51] are ≈whb ⊂ ≈sb and ≈whb ⊂ ≈pt, that are proved in [21]). We next provide a series of examples (taken 
6
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a b

(a) E1

a1 b1

b2 a2

#

(b) E2

Fig. 2. E1 ≈ib E2 (hence E1 ≈it E2) but E1 �≈st E2 (hence E1 �≈sb E2).

a1 a2

b1 b2

(a) E3

a1 a2

b1 b2

(b) E4

Fig. 3. E3 ≈st E4 (hence E3 ≈it E4) but E3 �≈ib E4 (hence E3 �≈sb E4).

a b

(a) E5

a2 b1a1

b2

##

(b) E6

Fig. 4. E5 ≈sb E6 (hence E5 ≈st E6) but E5 �≈pt E6 (hence E5 �≈pb E6).

a

b c#

(a) E7

a1 a2

b c

#

(b) E8

Fig. 5. E7 ≈pt E8 (hence E7 ≈it E8 and E7 ≈st E8) but E7 �≈ib E8 (hence E7 �≈sb E8 and E7 �≈pb E8).

from the literature) that witness the strictness of the inclusions in Fig. 1. In Section 3.4, we shall provide a distinguishing 
logical formula for each of these examples; this will also show the usefulness of our logics as tools for reasoning on PESs 
and their equivalences.

Example 1. Consider the two PESs in Fig. 2, taken from [12]. It can be easily checked that E1 ≈ib E2 (and hence E1 ≈it E2). 
By contrast, E1 �≈st E2 (and hence E1 �≈sb E2): indeed, E1 can perform the step { {a b} } whereas E2 cannot.

Example 2. Consider the two PESs in Fig. 3 taken from [26, Prop. 8]. It can be easily checked that E3 ≈st E4 (and hence 
E3 ≈it E4). However, E3 �≈ib E4 (and hence E3 �≈sb E4): indeed, in E3 after every a-labelled event, we can always perform an 
event labelled b, whereas this is not the case for a2 in E4.

Example 3. Consider the two PESs in Fig. 4, taken from [51, Ex. 7.2]. It can be easily checked that E5 ≈sb E6 (and hence 
E5 ≈st E6). By contrast, E5 �≈pt E6 (and hence E5 �≈pb E6): indeed, E6 can perform a pomset transition labelled with b↑

a
whereas 

E5 cannot.

Example 4. Consider the two PESs in Fig. 5, taken from [51, Sect. 8]. It can be easily checked that E7 ≈pt E8 (and hence 
E7 ≈it E8 and E7 ≈st E8) but E7 �≈ib E8 (and hence E7 �≈sb E8 and E7 �≈pb E8). Indeed, this is the well-known Milner’s example 
a(b + c) versus ab + ac, used for distinguishing bisimulations from trace equivalences: the two are not bisimilar because, 
after executing a, E7 can choose between b and c, whereas E8 cannot.

Example 5. Consider the two PESs in Fig. 6, taken from [51, Ex. 9.3]. It can be checked that E9 ≈whb E10 (and hence 
E9 ≈pt E10). By contrast, E9 �≈pb E10 (and hence E9 �≈wphb E10): if E10 executes a2, it can no more perform a pomset transition 
labelled with b↑; by contrast, after every a possibly used by E9 for replying, such a pomset transition is always executable.
a

7



P. Baldan, D. Gorla, T. Padoan et al. Information and Computation 285 (2022) 104887
a1

b1

a2

b2

a3

#

#

(a) E9

a1

b1

a2

b2

a3

#

#

(b) E10

Fig. 6. E9 ≈whb E10 (hence E9 ≈pt E10) but E9 �≈pb E10 (hence E9 �≈wphb E10).

a

b1

b2

#

(a) E11

a1

b1

b2 a2

b3

#

#

#

(b) E12

Fig. 7. E11 ≈pb E12 (hence E11 ≈pt E12 and E9 ≈sb E10) but E11 �≈whb E12 (hence E11 �≈wphb E12).

a1

b1
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b3

#

# #

#

#

(a) E13

a1

b1

a2

b2

a3 a4

b3

#

# #

# #

(b) E14

Fig. 8. E13 ≈wphb E14 (hence E13 ≈whb E14) but E13 �≈hb E14.

a1 a2 b1 b2

c

# #

(a) E15

a1 a2 a3 b1 b2 b3

c1

c2

# #

# #

# #

(b) E16

Fig. 9. E15 ≈hb E16 but E15 �≈hhb E16.

Example 6. Consider the two PESs in Fig. 7, taken from [54]. It can be checked that E11 ≈pb E12 (and hence E11 ≈pt E12
and E9 ≈sb E10). Instead, E11 �≈whb E12 (and hence E11 �≈wphb E12): indeed, if E12 performs a2, then E11 must reply with a; 
however, now in E11 we can perform b1 that leads to the pomset a b, whereas in E12 the only possible reply is with b3

that leads to the pomset b↑
a
.

Example 7. Consider the two PESs in Fig. 8, taken from [51, Ex. 9.4]. It can be checked that E13 ≈wphb E14 (hence E13 ≈whb
E14). However, E13 �≈hb E14. To see this, let us perform in E13 first a1 and then a2; now, if we perform b1 we obtain the 
poset a2

b1↑
a1

, whereas if we perform b2 we obtain the poset a1

b2↑
a2

. This situation cannot be found in E14: whatever the reply 
in E14 to the two initial a’s is (i.e., a1 and a2 in any order, or a1 and a3 in any order, or a2 and a4 in any order), we cannot 
then execute both an event labelled b causally dependent from the first a and another causally dependent from the second 
a. By contrast, notice that, by changing the isomorphism (as the two weak h-bisimilarities allow to do), a proper reply to 
the challenge from E13 can be found in E14.

Example 8. Consider the two PESs in Fig. 9, taken from [22]. It can be checked that E15 ≈hb E16 but E15 �≈hhb E16. To see 
this, first consider the sequence of actions a3 and b1 in E16; these must be replied to by a2 and b1 in E15. Then, let us 
perform a backward step on both sides that removes the a’s and then perform a2 in E16; this must be replied to by a1
in E15. Now, let us perform a backward step on both sides that removes the b’s; after this, we are left with the pair of 
configurations {a1} in E15 and {a2} in E16. If we now perform b2 in E16, we have no suitable reply in E15 because {a2, b2}
in E16 can perform c2 whereas, whatever b we perform from {a1} in E15, we can never perform c.
8
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a

(a) E17

a1 a2

#

(b) E18

Fig. 10. E17 ≈hhb E18 but E17 � E18.

Example 9. Consider the two PESs in Fig. 10, taken from [5]. It can be easily checked that E17 ≈hhb E18 but, trivially, 
E17 � E18.

To conclude, in the rest of the paper, we will assume all PESs to be countable (i.e., with a countable number of events). 
Moreover, we will focus on image-finite PESs, where for every configuration C and label a ∈ A, there exist a finite number 
of configurations C ′ such that C

a−→ C ′ (observe that image-finiteness with respect to transitions consisting of single events 
implies image-finiteness also for step and pomset transitions). As already mentioned, the results in [26] were proved for 
finitary PESs, i.e., PESs that admit a finite number of configurations of every finite cardinality. Note that image-finite PESs 
properly include finitary PESs. For instance, assume that the set of labels is A = {ai | i ∈ N} and consider the PES E with 
events E = {ei | i ∈N}, labelling l(ei) = ai , and empty conflict and causality. It is easy to see that E is image-finite, but not 
finitary. In this view, the results presented in Section 4 extend those of [26,27]. As usual, we could get rid of any finitariness 
assumption, but we would then need to include infinite conjunctions in our logics to characterise bisimilarities.

2. Logics for event structures

We present the logic that we will use to study the spectrum of true concurrent behavioural equivalences. It is a smooth 
variation of the logic in [3], where formulae were constrained to satisfy a well-formedness requirement, a restriction needed 
to characterise hereditary h-bisimilarity. In the next section, we will see that the logic where such restriction is dropped is 
expressive enough to capture isomorphism of PESs. Then, we shall extract out from this logic a number of sub-logics able 
to characterise all the equivalences presented in Section 1.

Definition 13 (logic L). Let V be a denumerable set of variables ranged over by x, y, z, . . .. The syntax of formulae of logic L
is defined as follows, where a ranges over A and x and y denote finite (and possibly empty) sequences of pairwise different 
variables:

ϕ ::= T | ϕ ∧ ϕ | ¬ϕ | (x, y < a z) ϕ | 〈z〉 ϕ
Formulae that do not use the binder (x, y < a z) are called execution-only and denoted by ξ .

Intuitively, the formula (x, y < a z) ϕ holds in a configuration when in the future of the configuration there is an a-
labelled event e, consistent with the events bound to free variables in ϕ , such that, binding e to variable z, the formula ϕ
holds. Such an event is required to be caused (at least) by the events already bound to variables in x, and to be concurrent 
(at least) with those bound to variables in y . We stress that the event e might not be currently enabled; it is only required 
to be consistent with the current configuration, meaning that it could be enabled in the future of the current configuration. 
The formula 〈z〉 ϕ says that the event bound to z is either enabled by the current configuration and its execution produces 
a new configuration which satisfies the formula ϕ , or it already belongs to the current configuration that itself satisfies 
the formula ϕ . To simplify notations, we write (x < a z) ϕ for (x, ∅ < a z) ϕ , (y < a z) ϕ for (∅, y < a z) ϕ , and (a z) ϕ for 
(∅, ∅< a z) ϕ .

The operator (x, y < a z) acts as a binder for the variable z, as clarified by the following notion of free variables in a 
formula.

Definition 14 (free variables). The set of free variables of a formula ϕ , denoted fv(ϕ), is inductively defined by:

fv(T) = ∅

fv(ϕ1 ∧ ϕ2) = fv(ϕ1) ∪ fv(ϕ2)

fv(¬ϕ) = fv(ϕ)

fv((x, y < a z)ϕ) = x ∪ y ∪ (fv(ϕ) \ {z})
fv(〈z〉ϕ) = fv(ϕ) ∪ {z}

The satisfaction of a formula ϕ is defined with respect to a configuration C ∈ Conf (E), representing the state of the 
computation, and a (total) function η : V → E , called an environment, that binds free variables in ϕ to events in C or in 
the future of C . To this aim, given a configuration C , we denote by E[C] the residual of E after C , defined as E[C] = {e ∈
E \ C s.t. C � e}. We denote by EnvE the set of all environments η : V → E . Furthermore, given η ∈ EnvE and e ∈ E , we 
denote by η[z �→ e] the element of EnvE such that
9
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(η[z �→ e])(x) =
{

e if x = z

η(x) otherwise

Definition 15 (semantics of L). Let E be a PES. The denotation in E of a formula ϕ ∈ L, written { |ϕ| }E , is the subset of 
Conf (E) × EnvE inductively defined as follows:

{|T|}E = Conf (E) × EnvE

{|ϕ1 ∧ ϕ2|}E = {|ϕ1|}E ∩ {|ϕ2|}E

{|¬ϕ|}E = (Conf (E) × EnvE ) \ {|ϕ|}E

{|(x, y < a z)ϕ|}E = {(C, η) | ∃e ∈ E[C] : l(e) = a ∧ η(x) ≤ e ∧ η(y) ‖ e
∧ (C, η[z �→ e]) ∈ {|ϕ|}E }

{|〈z〉 ϕ|}E = {(C, η) | C ′ = C ∪ {η(z)} ∈ Conf (E) ∧ (C ′, η) ∈ {|ϕ|}E }

When (C, η) ∈ { |ϕ| }E , we say that the E satisfies ϕ in configuration C and environment η, and write E, C |=η ϕ . For closed 
formulae ϕ , we write E, C |= ϕ whenever E, C |=η ϕ for some η, and E |= ϕ whenever E, ∅ |= ϕ; in this case, we say that 
E satisfies ϕ .

It is worth noticing that the semantics of the binding operator does not prevent from choosing for z an event e that 
has already been bound to a different variable, i.e., the environment function η need not be injective. Furthermore, in 
the semantics of 〈z〉 ϕ , observe that the condition C ′ = C ∪ {η(z)} ∈ Conf (E) can be satisfied in two different ways. The 

first possibility is that C
l(η(z))−−−→ C ′ , i.e., in C the event η(z) is enabled and can be executed leading to C ′ = C ∪ {η(z)}. 

Alternatively, it can be that η(z) ∈ C , i.e., the event η(z) has been already executed in the past, and thus C = C ′ . This is a 
difference with respect to the original semantics in [3]. We will see that it does not alter the expressiveness of the fragments 
considered in [3], while allowing for a precise characterisation of the expressiveness of the full logic.

2.1. Derived operators

In what follows, we shall freely use disjunctions and F, obtained as usual from conjuctions and T by means of negations. 
We next provide a few derived operators that, on the one hand, clarify what can be expressed in the logic and, on the other 
hand, will be useful to define the fragments of the logic that correspond to the behavioural equivalences presented for PESs.

Executing a set of events Given a finite set of variables X ⊆ V , we write 〈X〉 ϕ for the formula inductively defined by

• 〈∅〉 ϕ � ϕ; and
• 〈X〉 ϕ �

∨
z∈X 〈z〉〈X \ {z}〉 ϕ , when X �= ∅.

Intuitively, 〈X〉 ϕ states that from the current state, the events bound to the variables in X either already belong to the 
current configuration or can be executed, in some order, and then ϕ holds.

Immediate execution We write

〈 |x, y < a z| 〉 ϕ for the formula (x, y < a z)〈z〉 ϕ
that states the existence of an event e enabled by the current configuration, and thus which can be immediately executed, 
such that after executing e the formula ϕ holds (with e bound to variable z). Notice that the fact that 〈z〉 is preceded by 
(x, y < a z) excludes the possibility of satisfying 〈z〉 by associating to z an event that is already in the current configuration.

Steps We introduce a notation also to predicate the existence (resp., the immediate execution) of concurrent events. We 
write

((a z)⊗ (b z′))ϕ for the formula (a z)(z < b z′)ϕ

(〈|a z|〉⊗ 〈|b z′|〉)ϕ for the formula ((a z)⊗ (b z′))〈z〉 〈z′〉ϕ
The first formula declares the existence of two concurrent events, labelled by a and b, respectively, such that, if we bind 
such events to z and z′ , then ϕ holds. The second formula states the existence of two concurrently enabled events, labelled 
by a and b, whose immediate execution leads to a state where ϕ holds.
10
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Clearly, this notation can be generalized to the quantification and the immediate execution of any number of concurrent 
events.

Well-formed quantification Later it will be convenient to restrict the use of the quantification (x, y < a z) ϕ , by requiring 
that the relation of z with each variable which occurs free in ϕ is specified.

Definition 16 (well-formedness). A quantification (x, y < a z) ϕ is well-formed if fv(ϕ) ⊆ x ∪ y ∪ {z}.

In order to ease the writing of formulae, whenever we are interested in specifying the relation of z only with some of 
the free variables of ϕ , we introduce the following notation:

((x, y < a z))ϕ �
∨

v⊆fv(ϕ)\(zx y)
w=fv(ϕ)\(zx yv)

(xv, yw < a z)ϕ

In words, for those variables in fv(ϕ) whose relation with z is not specified, we consider all possibilities of causes and 
concurrent events by taking all the possible bipartitions (in the sets v and w). Notice that this maintains well-formedness.

Executability check Let X be a (finite) set of variables. We let

(a z〉X ϕ � ((a z)) (〈X〉 〈z〉T ∧ ϕ)

Intuitively, (a z〉X ϕ states that there is an a-labelled event that could be executed after the events in X and, if we bind such 
event to z without executing it, the formula ϕ holds.

3. Logical equivalences

The work in [3] shows that a number of behavioural equivalences in the true concurrent spectrum can be logically 
characterised in terms of suitable fragments of the logic L presented in the previous section. More specifically, the logic 
characterising hereditary h-bisimilarity is L restricted to well-formed formulae. In this section, we first show that the logic 
without well-formation characterises isomorphism of event structures. Moreover, we complete the spectrum by character-
ising various forms of trace equivalences and identifying fragments of the logic that capture weak h-bisimilarities, two 
behavioural equivalences which escaped the characterisations in [3].

In what follows, we will often refer to the notion of logical equivalence with respect to some fragment of the logic.

Definition 17 (logical equivalence). Let L′ be some fragment of the logic L. We say that two PESs E1 and E2 are logically 
equivalent with respect to L′ , written E1 ≡L′ E2, whenever they satisfy the same closed formulae of L′ .

3.1. Logical characterisation of the spectrum: what is known from [3]

We start with a recap of the results in [3]. As mentioned before, logic L in full generality results to be too expressive to 
characterise hereditary h-bisimilarity. For having ≈hhb as logical equivalence, we must consider a fragment where quantifi-
cations are well-formed, as defined in the previous section. Equivalently, one could restrict the semantics to the so-called 
legal pairs, but here (differently from [3]) we favour the syntactic approach.

Definition 18 (fragments of L corresponding to various behavioural equivalences).

Interleaving Logic (Li) ϕ ::= 〈|a x|〉ϕ | ϕ ∧ ϕ | ¬ϕ | T

Step Logic (Ls) ϕ ::= (〈|a1 x1|〉⊗ · · ·⊗ 〈|an xn|〉) ϕ | ϕ ∧ ϕ | ¬ϕ | T

Pomset Logic (Lp) ϕ ::= 〈|x, y < a z|〉ϕ | ϕ ∧ ϕ | ¬ϕ | T
where ¬ and ∧ are used only on closed formulae.

History Preserving ϕ ::= 〈|x, y < a z|〉ϕ | ϕ ∧ ϕ | ¬ϕ | T
Logic (Lh)

Hereditary History L where all quantifications are well-formed
Preserving Logic (Lhh)

It has been shown that the above fragments provide a logical characterisation of interleaving, step, pomset, history and 
hereditary history preserving bisimilarities.
11
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Theorem 1 (logical characterisation of bisimilarities [3]). Let E1 and E2 be two PESs. Then, E1 ≡Lα E2 if and only if E1 ≈αb E2 , for 
every α ∈ {i, s,p,h,hh}.

Recall that the semantics of operator 〈z〉 ϕ in this paper is slightly different from the one in [3], where the formula is 
false if the event bound to z has been already executed. However, it is trivial to see that this does not affect the result above. 
In fact, in all fragments except Lhh , an event is always executed immediately after being quantified, hence it is not possible 
to execute the same event twice. Instead, in the logic Lhh , it is not possible to bind the same event to different variables and 
later use them in execution modalities. In fact, by the well-formedness condition, the event bound to the second variable 
will be either concurrent or causally dependent on the event bound to first one and thus necessarily distinct. Therefore, the 
modification to the semantics plays a real role only in the full logic L.

3.2. Logical equivalence for L is isomorphism

We next show that the logic L is expressive enough to tell apart any two PESs which are not isomorphic. Intuitively, 
without the well-formedness requirement, we can reason on events which are in conflict; for instance, this could allow us 
to distinguish the PES consisting of a single a-labelled event from that consisting of two conflicting a-labelled events. In 
fact, the second PES satisfies (a x)(a y)〈x〉 ¬〈y〉 T, while the first one does not, since x and y must be bound to the unique 
event. This suggests that, for PESs, hereditary h-bisimilarity essentially differs from isomorphism only for the possibility of 
merging conflicting equivalent branches, i.e., for the addition of an axiom of the kind E + E = E; this is similar to what 
happens in other frameworks, as proved e.g. in [23] for BPP. A further evidence of this fact is that ≈hhb and ∼= remain 
different when causality is removed (i.e., in the setting of CSs), whereas they collapse as soon as conflict is removed (i.e., in 
the setting of EESs): see Figg. 11 and 12.

In order to prove the desired result, the idea is to show that, under the assumption of image-finiteness, a PES can 
be approximated by means of suitably defined finite prefixes. Observe that the idea of considering prefixes up to some 
fixed causal depth would not work, since these might be infinite. For instance, consider again the PES E with events 
E = {ei | i ∈N}, empty conflict and causality and labelling l(ei) = ai , where all ai are distinct labels. We observed that E is 
image-finite but all its infinitely many events have causal depth 0.

We proceed as follows. We fix some enumeration of the set of labels λ : A → N . Then, we define the level of an event 
as a suitable combination of the causal depth and the position of the label in the enumeration. More precisely, for an event 
e ∈ E , its level is inductively defined as lev(e) = max

({lev(e′) + 1 | e′ ∈ E \ {e} ∧ e′ ≤ e} ∪ {λ(l(e))}), where it is intended that 
max(∅) = 0.

Definition 19 (k-prefix of a PES). Let E be a PES. For k ∈N , let E(k) = {e | e ∈ E ∧ lev(e) ≤ k} be the set of events of E whose 
level is at most k. Then, the k-prefix of E is the PES defined as E (k) = (E(k), ≤|E(k) , #|E(k) , l|E(k) ).

Note that, by the very definition of level, lev(e′) ≤ lev(e) for all e′ ≤ e; hence, the k-prefix E(k) of a PES E is a causally 
closed subset of E . From this observation, it immediately follows that E (k) is indeed a PES, i.e., the definition is well-given.

While in general the k-prefix of a PES could be infinite because the PES could be infinite in width, this cannot happen 
for image-finite PESs.

Lemma 1 (finiteness of k-prefix). Let E be an image-finite PES. For all k ∈N , E(k) is finite, hence E (k) is finite.

Proof. In order to simplify the notation, denote by ai the label in A such that λ(ai) = i.
We proceed by induction on k.
(k = 0) Just note that E (0) includes events labelled by a0 and with empty set of causes. These are all enabled at the 

empty configuration and thus they are finitely many by image-finiteness.
(k → k + 1) Observe that, for each event e in E (k+1) \E (k) , by definition, lev(e) = k + 1. Therefore, l(e) = a j with j ≤ k + 1. 

Moreover, if we consider �e	, i.e. the set of causes of e, necessarily �e	 ⊆ E (k) . This means that e is enabled by some 
configuration in E (k) . Summing up, events in E (k+1) \ E (k) are enabled by some of the finitely many configurations of 
E (k) and are labelled by one of a0, . . . , ak+1. Therefore, they are necessarily finite, otherwise there would be at least one 
configuration in E (k) enabling infinitely many events with the same label. �

A simple but crucial observation is that non-isomorphic image-finite PESs can be distinguished at some finite level. This 
is expressed by the following lemma.

Lemma 2 (finite distinguishability). Let E1 and E2 be two image-finite PESs. Then E1 ∼= E2 iff E (k)
1

∼= E (k)
2 , for all k ∈N .

Proof. (⇒) This is immediate, since an isomorphism f : E1 → E2 restricts to an isomorphism f (k) : E (k) → E (k) , for every k.
1 2

12
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(⇐) Assume that, for each k, the prefixes E (k)
1 and E (k)

2 are isomorphic. If E (k)
1 is finite, we trivially conclude. Otherwise, 

consider the set I = ⋃
k∈N{ f (k) | f (k) : E (k)

1 → E (k)
2 isomorphism}. Ordered by subset inclusion, I is a tree: the root is the 

only isomorphism f (0) between the empty structures; each f (k) , with k > 0, has a unique predecessor, i.e., f (k)|E (k−1)
i

. 

Furthermore, it is finitely branching, since each E (k)
i is finite, and it is clearly infinite, since E1 and E2 are. Therefore, it has 

an infinite branch, say ( f (k))k∈N . It is easy to see that f = ⋃
k∈N f (k) : E1 → E2 is an isomorphism. �

The next crucial observation is that we can (almost) completely characterise a finite PES via a formula. Here and in what 
follows, given a PES E with n events, we denote with lin(E) the set of all linearisations of E , i.e., the set of all sequences 
e1, . . . , en such that, for all i, j ∈ {1, . . . , n}, if ei ≤E e j then i ≤ j.

Definition 20 (characteristic formula). Let E be a finite PES and e1, . . . , en ∈ lin(E). Let l(ei) = ai and consider a set of variables 
X = {x1, . . . , xn}. The characteristic formula of E , denoted by χ(E), is defined by

(a1 x1) (x<
2 , x‖

2 < a2 x2) . . . (x<
n , x‖

n < an xn)

⎛
⎝ ∧

xi∈X

〈x<
i 〉〈xi〉T ∧

∧
ei #e j

∧
X ′⊆X

¬〈X ′ ∪ {xi, x j}〉T
⎞
⎠

where x<
j � {xi : i < j ∧ ei ≤ e j} and x‖

j � {xi : i < j ∧ ei ‖ e j}.

In words, the characteristic formula asks for the existence of events, bound to x1, . . . , xn . The quantification of each xi

requires the corresponding event to be caused by events in x<
i and concurrent to events in x‖

i , mimicking what happens in 
the given event structure. Asking that 〈x<

i 〉〈xi〉T holds, imposes that the set of causes of xi is exactly x<
i (otherwise it could 

be larger). Finally, since all events have causes in X , asking that 
∧

ei #e j

∧
X ′⊆X ¬〈X ′ ∪ {xi, x j}〉T holds amounts to asking that 

the events bound to xi and x j are in conflict, whenever ei#e j .
The characteristic formula almost entirely characterises a finite event structure, in the sense formalised below.

Lemma 3 (rigid embedding). Let E and E ′ be two PESs, with E finite. Then E ′ |= χ(E) iff there is a rigid embedding of E into E ′ , i.e., 
an injective map f : E → E ′ such that, for all e1, e2 ∈ E , (i) f (�e1	) = � f (e1)	 and (ii) e1#e2 if and only if f (e1)# f (e2).

Proof. (⇒) Let E be a finite PES, (e1, . . . , en) ∈ lin(E), l(ei) = ai , and X = {x1, . . . , xn} be the variables used in the character-
istic formula χ(E). Since E ′ |= χ(E), it must be

E ′,∅ |=η

∧
xi∈X

〈x<
i 〉〈xi〉T ∧

∧
ei #e j

∧
X ′⊆X

¬〈X ′ ∪ {xi, x j}〉T

for a suitable environment η : V → E ′ . If we let η(xi) = e′
i , then by the shape of the quantifiers that bind x1, . . . , xn , for all 

i, j with i < j, if ei ≤ e j then e′
i ≤ e′

j , and if ei ‖ e j then e′
i ‖ e′

j . Since the first conjunct 
∧

xi∈X 〈x<
i 〉〈xi〉T is satisfied, all events 

e′
i have causes in {e′

j | j < i}. Since the second conjunct 
∧

ei #e j

∧
X ′⊆X ¬〈X ′ ∪ {xi, x j}〉T is satisfied, if ei#e j , then e′

i#e′
j , since 

they are not executable in the same computation.
Now, if we define a mapping f : E → E ′ by f (ei) = e′

i , for i ∈ {1, . . . , n}, we conclude that f is a rigid embedding of E
into E ′ . Note that f is indeed injective, since, if ei �= e j , then the two events are either causally dependent or concurrent or 
in conflict; the same must hold for f (ei) = e′

i and f (e j) = e′
j , which are thus different.

(⇐) Let χ(E) be the characteristic formula of E , as in Definition 20, and let e1, . . . , en be the linearisation of E used 
to construct the formula. Consider the events f (e1), . . . , f (en) in E ′ . Since f : E → E ′ is a rigid embedding, for all i, j ∈
{1, . . . , n} we have:

• ei ≤ e j iff f (ei) ≤ f (e j) and � f (ei)	 = { f (ek) | k ≤ i ∧ ek ≤ ei} (by property (i) of rigid embeddings)
• ei#e j iff f (ei)# f (e j) (by property (ii) of rigid embeddings)

Therefore, we conclude that E ′ |= χ(E), by binding variables x1, . . . , xn to f (e1), . . . , f (en). �
Lemma 4 (k-prefixes, logically). Let E be an image-finite PES. For every k ∈N , E satisfies the characteristic formula of E (k).

Proof. Just observe that the inclusion of E (k) into E is a rigid embedding, and exploit Lemma 3. �
Theorem 2 (logical characterisation of isomorphism). Let E1 and E2 be two image-finite PESs. Then, E1 ≡L E2 if and only if E1 ∼= E2 .
13
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Proof. (⇒). Assume that E1 ≡L E2. Then, for all k ∈ N , consider the characteristic formula of the k-prefix, χ(E (k)
1 ). By 

Lemma 4, we know that E1 |= χ(E (k)
1 ). Since E1 ≡L E2, this implies E2 |= χ(E (k)

1 ) and thus, by Lemma 3, there is a rigid 
embedding f : E (k)

1 → E2. Since a rigid embedding clearly preserves the causal depth of the events, i.e., d( f (e1)) = d(e1) for 
all e1 in E (k)

1 , it can be seen as a rigid embedding into the k-prefix of E2, i.e., f (k) : E (k)
1 → E (k)

2 . A symmetric argument shows 
that there is a rigid embedding g(k) : E (k)

2 → E (k)
1 . Since k-prefixes are finite, this implies that f (k) ◦ g(k) and g(k) ◦ f (k) are 

automorphisms. Therefore, f (k) : E (k)
1 → E (k)

2 is an isomorphism whose inverse is (g(k) ◦ ( f (k) ◦ g(k))−1) and thus E (k)
1

∼= E (k)
2 , 

as desired. Since this holds for all k, by Lemma 2 we conclude that E1 ∼= E2, as desired.
(⇐) Immediate. �

3.3. Completing the spectrum

In this section we discuss how to complete the characterisation of equivalences in the true concurrent spectrum. This 
requires including trace equivalences and weak h-bisimilarities.

Trace equivalences Logics characterising trace equivalences can be obtained from the fragments for corresponding bisimi-
larities, omitting conjunction and negation, but keeping F (that is, ¬T). Adding F does not change the logical equivalence 
induced, since such a formula is not satisfied by any PESs; however, it will allow for a simple encoding of one logic into 
another in Section 4.1.

Definition 21 (logics for trace equivalences). For α ∈ {i, s,p}, we write Lt
α to denote the logics obtained from Lα by removing 

the operators ∧ and ¬, and by adding F.

In order to get to the desired result, we first recall from [3] how to build a Lp formula associated to a given pomset. 
Given a tuple of variables z = z1, . . . , zn and a tuple of labels a = a1, . . . , an , we write az to indicate a tuple of labelled 
variables.

Definition 22 (pomsets as formulae in Lp). Let az = a1z1, . . . , anzn be a tuple of labelled variables and consider the poset 
paz = (az, <), where < is a strict order on z compatible with listing z (i.e., if zi < z j then i < j).

Given a formula ϕ ∈Lp , we denote by 〈 | paz| 〉ϕ the formula inductively defined as follows:

• If z is empty, then 〈 | paz| 〉ϕ � ϕ .
• If az = a′z′, bw , let x = {z ∈ z′ | z < w} and y = z′ \ x; then, 〈 | paz| 〉ϕ � 〈 | pa′z′ | 〉 〈 |x, y < b w| 〉ϕ .

Then, it is immediate to show the following:

Lemma 5 (transitions, logically). Let E be a PES and let C ∈ Conf (E) be a configuration. Then, C a−→ C ′ iff E, C |= 〈 |a x| 〉T. Similarly, for 
a multiset { {a1 . . .an} }, we have C

{{a1...an}}−−−−−→ C ′ iff E, C |= (〈 |a1 x1| 〉 ⊗ . . .⊗〈 |an xn| 〉)T. Finally, for a labelled poset paz = (az, <), we have 
C

pomset(paz)−−−−−−−→ C ′ iff E, C |=η 〈 | paz| 〉T.

Proof. The claim for interleaving and step holds by the semantics of L, whereas the claim for pomset holds by Lemma 5.3 
and 5.5 from [3]. �
Proposition 1 (logical characterisation of trace equivalences). Let E1 and E2 be two PESs. Then, E1 ≡Lt

α
E2 if and only if E1 ≈αt E2 , 

for every α ∈ {i, s, p}.

Proof. Given an interleaving/step trace t , we let 〈 | t| 〉 denote

• 〈 |a1 x1| 〉 . . . 〈 |an xn| 〉 whenever t = a1 . . .an;
• (〈 |a1

1 x1
1| 〉 ⊗ . . .⊗〈 |a1

m1
x1

m1
| 〉) . . . (〈 |an

1 xn
1| 〉 ⊗ . . .⊗〈 |an

mn
xn

mn
| 〉) whenever t = { {a1

1, . . . , a
1
m1

} } . . . { {an
1, . . . , a

n
mn

} }.

(⇒) First, suppose that t belongs to SeqTr(E1), StepTr(E1) or Pom(E1), respectively; by using Lemma 5, we have that 
E1 |= 〈 | t| 〉T. By hypothesis, E2 |= 〈 | t| 〉T that, by Definition 15, implies that t belongs to SeqTr(E2), StepTr(E2) or Pom(E2), 
respectively.

(⇐) Let ϕ ∈ Lt
α such that E1 |= ϕ . For α = i, we have that ϕ = 〈 |a1 x1| 〉 . . . 〈 |an xn| 〉T, for some n and a1, x1, . . . , an, xn; by 

Lemma 5, a1 . . .an ∈ SeqTr(E1). By hypothesis, a1 . . .an ∈ SeqTr(E2) and so, again by Lemma 5, E2 |= ϕ . A similar reasoning 
can be done for α = s, with (〈 |ai

1 xi
1| 〉 ⊗ . . .⊗〈 |ai

mi
xi

mi
| 〉) in place of 〈 |ai xi | 〉 and StepTr(·) in place of SeqTr(·). For α = p, we 

only have to prove that every formula of Lt
p satisfied by E denotes a pomset of E ; this is Lemma 5.3 of [3]. Then, the 

reasoning is like before, by using Pom(·) in place of StepTr(·) and SeqTr(·). �

14
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Weak history preserving bisimilarities We next identify fragments of L that correspond to weak and weak pomset h-
bisimilarities. We start with the logic for weak h-bisimilarity.

Definition 23 (logic for weak h-bisimilarity). Define, for a tuple of labelled variables ax

ϕax ::= T | ¬ϕax | ϕax ∧ ϕax | (b z〉x ϕax,bz |
∨

σ :ax→ax
automorphism

ξxσ

where it is intended that ξx is an execution-only formula (see Definition 13) with fv(ξx) ⊆ x, σ is a bijection over x which 
preserves the variable labels, and by ξxσ we denote the formula ξx where each variable x ∈ x is replaced by σ(x). Then, 
Lwh is the set of formulae arising with ax empty, i.e., ϕε .

We are now left with proving that Lwh characterises ≈whb. This requires some ingenuity and so corresponding proofs 
are relegated to the Appendix. Here we just provide the auxiliary notions and results needed for the proof.

Definition 24 (compatible environment). Let E be a PES and ax = a1x1, . . . , anxn be a tuple of labelled variables. We say that 
an environment η ∈ EnvE is ax-compatible when the following hold:

• |η(x)| = |x|, i.e., η is injective on x;
• l(η(xi)) = ai , for all i ∈ {1, . . . , n}; and
• η(x) ∈ Conf (E).

Observe that, for some fixed tuple of labelled variables ax and ax-compatible environment η, given a configuration 
C ⊆ η(x), we have that E, C |=η 〈x〉 T. Indeed, events in η(x) can be executed in some order starting from the configuration 
C and, by definition of the semantics of the operator 〈x〉 ϕ , events already executed are simply ignored.

In order to understand the logic for weak h-bisimilarity, recall that such behavioural equivalence can, in fact, be seen 
as an interleaving bisimulation that only relates isomorphic configurations. Indeed, the distinguishing power of weak h-
bisimilarity is based on two distinct capabilities: the possibility of checking the executability of events with a specific label, 
and the possibility of verifying that the reached configurations are in the same equivalence class with respect to poset 
isomorphism. The syntax of the logic fragment reflects such dichotomy. On the one hand, the operator (a z〉X ϕ allows 
for checking the executability of a (labelled) action. This part induces a behavioural equivalence which is (at least) an 
interleaving bisimulation. On the other hand, the execution-only formulae ξx allow for testing whether the configuration 
identified by η(x) belongs to a specific equivalence class of poset isomorphism; thus, only isomorphic configurations satisfy 
the same formulae. In order to make the naming of variables and the order in which they have been bound irrelevant and 
consider only their labels and causal relations, execution-only formulae are disjunctively applied to all possible renamings of 
variables preserving the labels. The strict separation between the two kinds of operators ensures that the logic is not more 
expressive than intended. The crucial intuition about execution-only formulae is formalised in the main auxiliary result 
below.

Lemma 6 (invariance under poset isomorphism). Let E1 and E2 be two PESs. Given a tuple of labelled variables ax and two ax-
compatible environments η1 ∈ EnvE1 and η2 ∈ EnvE2 , the following statements are equivalent:

1. poset(η1(x)) ∼= poset(η2(x));
2. E1, ∅ |=η1 ϕax if and only if E2, ∅ |=η2 ϕax , for every ax-parameterised formula ϕax of the form 

∨
σ :ax→ax

automorphism

ξxσ .

Another simple but useful technical result is that the satisfaction of any ax-parameterised formula ϕax is independent 
from the naming of the variables in x, as long as labels are preserved. Thus, given a compatible environment, one can apply 
any label preserving bijection to it, hence obtaining another compatible environment, without affecting the satisfaction of 
the formula.

Lemma 7 (semi-permutable semantics). Let E be a PES, ax = a1x1, . . . , anxn be labelled variables and ϕax be an ax-parameterised 
formula as in Definition 23. Given an ax-compatible environment η ∈ EnvE and a bijection σ : η(x) → η(x) such that σ ◦ η is ax-
compatible, it holds that E, ∅ |=η ϕax if and only if E, ∅ |=σ◦η ϕax .

Combining the facts above with the aforementioned intuition about the use of the executability check operator (a z〉X ϕ , 
we obtain the final desired result.

Theorem 3 (logical characterisation of ≈whb). Let E1 and E2 be two image-finite PESs. Then, E1 ≡L E2 if and only if E1 ≈whb E2 .
wh
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The logic for weak pomset h-bisimilarity can be obtained by slightly enlarging the fragment for weak h-bisimilarity 
with the possibility of checking for pomsets. More precisely, let us first adapt Definition 22, to quantification instead of 
executions.

Definition 25 (pomset quantification). Let az = a1z1 . . .anzn be a tuple of labelled variables and let paz = (az, <) be a poset 
with < a strict order compatible with the listing z (i.e., if zi < z j then i < j). Given a formula ϕ ∈ L, we denote by ( paz)ϕ
the formula inductively defined as follows:

• If z is empty, then ( paz)ϕ � ϕ .
• If az = a′z′, bw , let x = {z ∈ z′ | z < w} and y = z′ \ x; then ( paz)ϕ � ( pa′z′ ) (x, y < b w)ϕ .

Now we can define a formula, in the style of (a z〉X (see Subsection 16), that checks for the executability of a pomset 
instead of a single event. As above, let paz = (az, <) be a poset, where az = a1z1 . . .anzn is a tuple of labelled variables. 
Then, for X a (finite) set of variables, we define

( paz〉X ϕ � (( paz)) (〈X〉 〈z〉T ∧ ϕ)

Using this operator, we can extend the syntax of formulae given in Definition 23, allowing for checking the executability 
of a pomset, and so obtaining the logic for weak pomset h-bisimilarity.

Definition 26 (logic for weak pomset h-bisimilarity). Define, for a given tuple of labelled variables ax

ϕax ::= T | ¬ϕax | ϕax ∧ ϕax | ( pbz〉x ϕax,bz |
∨

σ :ax→ax
automorphism

ξxσ

Then, Lwph is the set of formulae arising with ax empty, i.e., ϕε .

We finally have:

Theorem 4 (logical characterisation of ≈wphb). Let E1 and E2 be two image-finite PESs. Then, E1 ≡Lwph E2 if and only if E1 ≈wphb E2 .

The result follows from the same intuitive reasoning described for weak h-bisimilarity, with the addition of pomsets. 
The presence of the pomset executability check operator ( paz〉X ϕ ensures that the induced behavioural equivalence is 
(at least) a pomset bisimulation. Then, again, the other part of the syntax, using the execution-only formulae, guarantees 
that only isomorphic configurations can be related. In this way we have a pomset bisimulation relating only isomorphic 
configurations, that is, a weak pomset h-bisimulation. Formally, the proof is a routine adaptation of that of Theorem 3. The 
only crucial observation is that, given a poset paz = (az, <), whenever E, ∅ |=η ( paz〉X ϕ , for an ax-compatible environment 
η, then η(X) is a configuration that can perform pomset(paz). In fact, the quantification part ( ( paz) ) of the formula ensures 
that there exist events with the labels and causal dependencies corresponding to the pomset. Then, the satisfaction of 
〈X〉 〈z〉 T ensures that the events bound to z are executable after η(X), and thus no cause can be missing.

3.4. Distinguishing non-equivalent PESs, logically

We conclude this section by providing logical formulae that distinguish the PESs given in Figs. 2–10 with respect to 
the therein considered behavioural equivalences. The formulae provide a concise and formal description of the reason why 
every pair of PESs are not equivalent, according to the equivalence considered; hence, they formalise the intuitive arguments 
described in words in Examples 1–9.

Fig. 2: E1 �≈st E2

(〈|a x|〉⊗〈|b y|〉)T ∈ Lt
s

This formula expresses the possibility of performing the step { {a b} } and it is satisfied by E1 but not by E2.
Fig. 3: E3 �≈ib E4

〈|a x|〉¬〈|b y|〉T ∈ Li

This formula expresses the possibility of executing an a not followed by any b and it is satisfied by E4 but not by 
E3.
16
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Fig. 4: E5 �≈pt E6

〈|a x|〉 〈|x < b y|〉T ∈ Lt
p

This formula expresses the possibility of performing a pomset b↑
a

and it is satisfied by E6 but not by E5.

Fig. 5: E7 �≈ib E8

〈|a x|〉(〈|b y|〉T ∧ 〈|c z|〉T) ∈ Li

This formula expresses the possibility of choosing to perform b or c after the starting a and it is satisfied by E7 but 
not by E8.

Fig. 6: E9 �≈pb E10

〈|a x|〉¬〈|a y|〉 〈|y < b z|〉T ∈ Lp

This formula expresses the possibility of performing an a after which the pomset b↑
a

cannot be executed any longer; 
it is satisfied by E10 but not by E9.

Fig. 7: E11 �≈whb E12

(a x〉∅ ¬(b y〉{x} 〈y〉 〈x〉T ∈ Lwh

This formula says that there is an executable a for which there is no b, executable after the a, such that they can 
also be executed in the reverse order, hence they are causally independent; it is satisfied by E12 but not by E11.

Fig. 8: E13 �≈hb E14

〈|a x|〉 〈|x < a y|〉 (〈|x < b z|〉T ∧ 〈|y < b w|〉T) ∈ Lh

This formula says that there are two concurrent a’s, each one causing some b immediately executable after them; 
this happens in E13 but not in E14.

Fig. 9: E15 �≈hhb E16

(a x) (x < b y) ((x < c u)T ∧ (y < c v)T ∧ ¬(x, y < c z)T) ∈ Lhh

This formula says that there are two concurrent events, labelled by a and b, respectively, such that: (1) there is an 
event labelled c in the future caused by a; (2) the same holds for b as well; (3) there is no c in the future caused 
by both a and b. This formula is satisfied by E16: we can choose as the starting pair either a2 and b1, or a3 and b2. 
By contrast, the formula is not satisfied by E15: if we choose a1 and b1, condition (1) fails; if we choose a2 and b2, 
condition (2) fails; if we choose a2 and b1, condition (3) fails; if we choose a1 and b2, both conditions (1) and (2) 
fail.
Notice that the argument in Example 8 is much more involved than exhibiting this formula and arguing why E16
satisfies it, whereas E15 does not.

Fig. 10: E17 � E18

(a x) (a y)¬〈x〉 〈y〉T ∈ L

This formula states that there are two a’s, possibly not distinct, such that either the first a cannot be executed or 
the second one cannot be executed after the first one. This happens in E18, where we can bind x and y to the two 
conflicting a’s, but not in E17, where we are forced to bind x and y to the unique a, which is executable. Notice 
that the quantification of y in the formula is not well-formed, since the relation of y with x is not declared.

4. The spectrum for subclasses of PESs

In this section we study how the spectrum of behavioural equivalences changes when restricting the models to special 
subclasses of PESs, where either causality or conflicts are removed. Differently from [26,27], here we base our results on 
the logics characterising the various equivalences, identified in the previous section. The general pattern for showing that 
some equivalence is included into another will consist in proving that the logic for the latter equivalence can be encoded 
in the one for the former. Non-inclusion between equivalences will be witnessed by using distinguishing formulae, i.e., 
by providing structures which are identified by an equivalence and distinguished by a formula in the logics of the other 
equivalence.
17
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≈it = ≈st = ≈pt

≈ib = ≈sb = ≈pb = ≈whb = ≈wphb = ≈hb

≈hhb

∼=

Fig. 11. The spectrum for CSs.

4.1. Conflict without causality: coherence spaces

In this subsection we focus on the subclass of PESs obtained by considering an empty causality relation. These structures 
are also called coherence spaces [25], a model largely studied, e.g., in the field of linear logic and in the semantics of typed 
lambda-calculus [9,10,25].

Definition 27 (coherence spaces). A coherence space (written CS) is a PES E where the causality relation is empty.

In the setting of CSs, several definitions are radically simplified. For example, two events are concurrent if they are 
consistent, implying that any finite and consistent subset of E is a configuration. Moreover, a pomset in a CS is simply a 
multiset and, hence, pomsets and steps coincide.

Consequently, several behavioural equivalences collapse and the spectrum in Fig. 1 reduces to a chain. All trace equiva-
lences coincide. They are properly coarser than bisimilarities, that all coincide, except for ≈hhb that properly refines them. 
The latter, in turn, is still strictly coarser than isomorphism. The resulting spectrum for CSs is depicted in Fig. 11. While 
these results are already known from [26,27], here we show how they can be recovered for image-finite CSs by relying on 
the logical characterisation of behavioural equivalences.

First, we show that interleaving bisimilarity coincides with h-bisimilarity. This immediately follows from the fact that 
every closed formula ϕ of Lh can be encoded as a (closed) formula enci(ϕ) of Li such that E |= ϕ if and only if E |= enci(ϕ), 
for every CS E .

Definition 28 (encoding Lh into Li for CSs). The encoding procedure enci(·) :Lh →Li is inductively defined as follows:

enci(T) = T

enci(¬ϕ) = ¬enci(ϕ)

enci(ϕ1 ∧ ϕ2) = enci(ϕ1) ∧ enci(ϕ2)

enci(〈|x, y < a z|〉ϕ) =
{ 〈|az|〉 enci(ϕ) if x = ε

F otherwise

It is easy to see that the definition above is well-given, i.e., enci(ϕ) is a formula of Li , for every formula ϕ of Lh . The 
idea underlying the encoding is simple. The only subtle clause is the last one. Since causality is empty, every formula asking 
for the presence of causalities is false. Instead, since all events that can be executed in the same computation are concurrent, 
the requirement of concurrency is voided.

Proposition 2 (soundness of the encoding). Let E be a CS and let ϕ be a closed formula of Lh. Then, E |= ϕ if and only if E |= enci(ϕ).

Proof. We show this by proving a more general property, that is, for every formula ϕ of Lh , configuration C ∈ Conf (E) and 
environment η ∈ EnvE such that η(fv(ϕ)) ⊆ C , it holds that E, C |=η ϕ if and only if E, C |=η enci(ϕ). This clearly implies the 
desired result for C =∅ when ϕ is closed. We proceed by induction on the formula ϕ .

• ϕ = T and hence enci(ϕ) = T: Immediate.
• ϕ = ¬ψ and hence enci(ϕ) = ¬enci(ψ): By definition of the semantics, E, C |=η ¬ψ iff E, C �|=η ψ , which, by inductive 

hypothesis, happens iff E, C �|=η enci(ψ), which in turn, by definition of the semantics, holds iff E, C |=η ¬enci(ψ).
• ϕ = ψ1 ∧ ψ2 and hence enci(ϕ) = enci(ψ1) ∧ enci(ψ2): By definition of the semantics, E, C |=η ψ1 ∧ ψ2 iff E, C |=η ψ1

and E, C |=η ψ2, which, by inductive hypothesis, happen iff E, C |=η enci(ψ1) and E, C |=η enci(ψ2). Again by definition 
of the semantics, this holds iff E, C |=η enci(ψ1) ∧ enci(ψ2).
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• ϕ = 〈 |y < az| 〉 ψ and hence enci(ϕ) = 〈 |az| 〉 enci(ψ): By definition of the semantics E, C |=η 〈 |y < az| 〉 ψ iff there is a 

transition C
l(e)−−→ C ′ = C ∪ {e} s.t. e ‖ η(y) and E, C ′ |=η[z �→e] ψ . Observe that the requirement e ‖ η(y) is irrelevant since 

CSs have empty causality relation. Since fv(ψ) ⊆ fv(ϕ) ∪ {z}, η[z �→ e](z) ∈ C ′ and by hypothesis η(x) ⊆ C ⊂ C ′ , we 
must have that η[z �→ e](fv(ψ)) ⊆ C ′ . Then, by inductive hypothesis, we deduce that E, C |=η 〈 |y < az| 〉 ψ iff there is a 

transition C
l(e)−−→ C ′ such that E, C ′ |=η[z �→e] enci(ψ), which, by definition of the semantics, holds iff E, C |=η 〈 |az| 〉 enci(ψ).

• ϕ = 〈 |x, y < a z| 〉 ψ , for x �= ε , and hence enci(ϕ) = F: By definition of the semantics, it always holds that E, C �|=η F. So 
we just need to prove that also E, C �|=η 〈 |x, y < a z| 〉 ψ . But, clearly, this holds as well, since by hypothesis η(x) ⊆ C and 
CSs have empty causality relation, therefore the diamond operator cannot be ever satisfied. �

Corollary 1 (≈hb collapses to ≈ib for CSs). Let E and F be CSs. If E ≈ib F then E ≈hb F

Proof. Immediate consequence of Theorem 1 and Proposition 2. �
Interestingly, we can exploit Proposition 2 also to show that, on CSs, interleaving trace equivalence coincides with pomset 

trace equivalence. In fact, it can be seen that, for every formula ϕ of Lt
p , the formula enci(ϕ) is actually a formula of Lt

i . 
Then, by Proposition 2 (and Theorem 1) we immediately obtain the desired result.

Corollary 2 (≈pt collapses to ≈it for CSs). Let E and F be CSs. If E ≈it F then E ≈pt F .

In the rest of this subsection, we exhibit separating formulae for those equivalences that remain different.

• ≈ib � ≈it: Consider the CSs from [26, Prop. 3]:

E � a1 # a3 # a2 F � a1 a2

They are interleaving trace equivalent, i.e., E ≈it F . In fact, SeqTr(E) = SeqTr(F) = {ε, a, aa}. The fact that E �≈ib F can 
be witnessed by a formula in Li , namely ϕ = 〈 |a x| 〉¬〈 |a y| 〉T, stating that there exists an a after which no other a is 
available. In fact, it is easily seen that E |= ϕ while F �|= ϕ . Note that ϕ essentially relies on negation, hence it is not 
part of Lt

i .
• ≈hhb � ≈hb: Consider the CSs from [26, Prop. 4]:

E � a1
#

a2
#

a3 a4 F � a1
#

a2
#

a3 a4 a5
#

#
#

#

a6
##

#
#

It can be seen that E ≈hb F by providing a h-bisimulation. The bisimulation associates ai in E with ai in F , for 
i = 1, . . . , 4. The delicate issue is when F challenges with a5 or a6: in both cases, the first reply of E must be with a3, 
to definitely exclude a1 and a2, and leave only a4 enabled for execution; for more details, see [26].
The fact that E �≈hhb F is witnessed by a formula in Lhh , e.g. ϕ = ((a x) ⊗ (a y))((〈x〉 ¬((a z) ⊗ (a w))T) ∧ (〈y〉 ¬((a z) ⊗
(a w))T)). Intuitively, it states that there are two concurrent a’s such that no other a’s is concurrent with either of the 
two (and thus, since we are in CSs, all remaining as are in conflict with both of them). Clearly, F |= ϕ by binding x and 
y to the two rightmost a-events. By contrast, E �|= ϕ . In fact, in whichever way we bind x and y, there will always be 
at least one further a that is concurrent with either x or y (or both).

• ∼= � ≈hhb: Consider the CSs from [26, Prop. 5]:

E � a1 # a2 F � a

It can be seen that E ≈hhb F . In fact, the relation R = {(∅, ∅, ∅), ({a1}, {a}, [a1 �→ a]), ({a2}, {a}, [a2 �→ a])} is a heredi-
tary h-bisimulation. Clearly, E �F and, indeed, in L we can find the formula ϕ = (a x)(a y)〈x〉 ¬〈y〉 T such that E |= ϕ
while F �|= ϕ .

4.2. Causality without conflict: elementary ESs

A second restriction of PESs is obtained by considering an empty conflict relation; this yields elementary event struc-
tures [42].

Definition 29 (elementary event structures). An elementary event structure (written EES) is a PES E where the conflict relation 
is empty.
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≈it

≈ib ≈st

≈sb

≈pb = ≈pt = ≈whb =
≈wphb = ≈hb = ≈hhb = ∼=

Fig. 12. The spectrum for (image-finite) EESs.

Having an empty conflict relation, makes the picture simpler: two events are always concurrent when they are not 
causally dependent. The spectrum of Fig. 1 reduces to that in Fig. 12 where some equivalences collapse (less than what 
happens for CSs).

In this situation, pomset trace equivalence, and thus all the equivalences in between, collapses to isomorphism. This fact 
follows by observing that, whenever two EESs are logically equivalent under Lt

p , then they are isomorphic.

Proposition 3 (≡Lt
p

is isomorphism for EESs). Let E1 and E2 be two image-finite EESs. If E1 ≡Lt
p
E2 then E1 ∼= E2 .

Proof. Assume that E1 ≡Lt
p
E2. Then, for every closed formula ϕ of Lt

p , we know that E1 satisfies ϕ if and only if E2 does. 

Observe that, since E1 and E2 are image-finite EESs, for each k ∈ N , the corresponding k-prefixes E (k)
1 and E (k)

2 are both 
finite pomsets, by Lemma 1 and the fact that EESs have empty conflict relation. Therefore, there must be a closed formula 
ϕ1 of Lt

p requiring exactly the possibility to execute the pomset E (k)
1 , and, similarly, a closed formula ϕ2 for the pomset 

E (k)
2 . Since we know that E1 and E2 satisfy the same closed formulae of Lt

p , and each formula is surely satisfied by the 
corresponding EES, we have that both EESs satisfy both formulae. Thus, the two pomsets must be isomorphic. Then, we can 
immediately conclude that E1 ∼= E2 by Lemma 2. �

For interleaving and step equivalences, instead, the spectrum for EESs is the same as that for general PESs: the (strict) 
inclusions depicted in the upper part of Fig. 1 also hold for EESs. Here we provide examples of EESs distinguished by 
formulae of the proper fragments showing these facts.

• ≈ib � ≈st: Consider the EESs from [26, Prop. 6]:

E � a2

a1

F � a1 a2

They are trivially interleaving equivalent (both trace and bisimulation), whereas they are not step-trace equivalent. This 
can be witnessed by a formula in Lt

s , namely (〈 |a x| 〉 ⊗〈 |a y| 〉)T, satisfied by F and not by E .
• ≈st � ≈ib: Consider the EESs from [26, Prop. 8]:

E = b1 b2

a1 a2

F = b1 b2

a1 a2

We have that E ≈st F , in fact StepTr(E) = StepTr(F) = {ε, a, aa, ab, aab, aba, aabb, abab, { {aa} }, a{ {ab} }, aa{ {bb} }, a{ {ab} }b,

{ {aa} }bb, { {aa} }{ {bb} }}. Instead, E �≈ib F , as it can be witnessed by a formula in Li , namely 〈 |a x| 〉¬〈 |b y| 〉T, satisfied by E
and not by F .

• As corollary of the two results above, we obtain that, for EESs, ≈ib and ≈st do not contain ≈it , nor either of them 
is contained in ≈sb. This can be easily deduced from the incomparability of the two equivalences proved above. For 
instance, if ≈ib would contain (hence collapse on) ≈it , since we already know that for general PESs ≈it includes ≈st, 
then we would obtain that ≈ib includes ≈st.
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• ≈sb � ≈pt: Consider the EESs from [26, Prop. 9]:

a8

a7

E = a3 a4 a5 a6

a1 a2

a7 a8

F = a3 a4 a5 a6

a1 a2

It can be seen that E ≈sb F (see [26,27]). The fact that E �≈pt F is witnessed by a formula in Lt
p , i.e., 〈 |a x0| 〉〈 |a x1| 〉〈 |x0, x1<

a x3| 〉〈 |x0, x1 < a x4| 〉〈 |x3, x4 < a x6| 〉T, satisfied by E and not by F .
• An easy corollary of the previous result is that, for EESs, ≈sb is not contained in ≈pb, ≈whb, ≈wphb, ≈hb, ≈hhb, and ∼=.

5. Conclusion

We proposed an enhancement of the logical framework developed in [3] able to fully characterise the whole spectrum 
of behavioural equivalences provided in [21,51]. In particular, we showed that, by removing a well-formedness condition 
from the logic introduced in [3] for characterising hereditary history preserving bisimilarity, the logic becomes expressive 
enough to tell apart non-isomorphic PESs. We then distilled sublogics able to characterise all the equivalences in the true 
concurrent spectrum for image-finite PESs. We applied the logic framework developed to rediscover the spectra of equiv-
alences provided in [26,27] for PESs where either causality or conflict is removed, namely in the framework of coherence 
spaces and elementary event structures, respectively.

A natural question regards the possibility of obtaining analogous results for event structure models beyond PESs. The 
extension to models where some notion of causality can be defined, at least locally to each configuration (like in stable 
event structures [55]), could require little modifications to the logics. Instead, for unstable models, one could still explore 
the potentiality of a variant of the logics L investigated in [2], where causality and concurrency are not used explicitly. 
Indeed, in unstable models, causality becomes ambiguous also within configurations, because an event may be enabled 
in more than one way even in a single configuration. Still, in each configuration every event has a well-defined set of 
possible causes, as illustrated by Winskel’s example of a parallel switch [55, p. 328]. In a companion paper [4], we provide 
a first attempt in this direction and study history preserving behavioural equivalences over configuration structures [53], a 
model which generalises the families of (finite) configurations of event structures. There, we show that history preserving 
bisimilarity and its hereditary version admit a particularly simple characterisation, similar in spirit to those for prime and 
stable event structures. This is exploited for identifying two behavioural logics that characterise such equivalences.

In the same direction, one could try to investigate classes of models with a more involved interplay of causality and 
conflict. An interesting example is basic parallel processes (BPPs) [14]. Recently many results have been attained for sub-
classes of these models such as simple (S)BPPs [24], i.e., BPPs where summation and recursion are required to be guarded, 
and the corresponding BPP nets [28]. It would be worthwhile to study the spectrum of equivalences in the setting of BPPs 
and SBPPs, which identify subclasses of PESs, clearly more expressive than CSs and EESs. Such a goal is beyond the scope of 
this paper, but the mentioned results in the literature and some preliminary investigation show that, in fact, in such setting 
the behavioural equivalences in the spectrum have less coincidences than on CSs and EESs. For instance, pomset bisimilarity 
and weak h-bisimilarity, which coincide in the case of both CSs and EESs, turn out to be distinct in the case of BPPs. Indeed, 
consider the BPPs P = a.(b + c) + (a ‖ b) and Q = a.(b + c) + (a ‖ b) + a.b, borrowed from [11] (where they are shown to be 
pomset bisimilar): they are distinguished by the Lwh formula (a x〉∅((b y〉{x}¬〈y〉 〈x〉 T ∧ ¬(c z〉{x}T), requiring an a causing 
b but not allowing the execution of c: the formula holds only on Q , and hence P and Q are not weak h-bisimilar. However, 
the same might not be true for the subclass of SBPPs. Indeed, not all summations in the processes above are guarded, and 
it does not seem possible to make them so while preserving the (in)equivalence results.

In recent works [29,30], a novel bisimulation, named team bisimilarity, was introduced and proved to be finer than 
interleaving bisimilarity; actually, this coincides with a slight strengthening of h-bisimilarity on BPP nets. Furthermore, a 
logic, called team modal logic (TML) and that induces such an equivalence, was also introduced. Like our logic L, also TML 
is an extension of Hennessy-Milner logic [34]. Given the similarities, an interesting research direction would be to identify, 
if possible, a fragment of our logic L inducing team bisimilarity on BPP nets, and to confront it with TML. Additionally, one 
could try a logical investigation of other equivalences (e.g., those presented in [52, Sect. 3] or other hereditary equivalences 
as those in [46]). In particular, although this is not explored in full detail in this paper, we believe that the derived operator 
(a z〉X , in combination with execution-only formulae, could be used to uniformly characterise all equivalences up to history 
preserving bisimilarity: for basic equivalences (interleaving, step, pomset bisimilarity), execution-only formulae would be 
omitted; for the corresponding weak history preserving equivalences, execution-only formulae are used in a constrained 
way as we did in this paper; for history preserving equivalences, they are freely used.
21



P. Baldan, D. Gorla, T. Padoan et al. Information and Computation 285 (2022) 104887
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgments

We are grateful to the anonymous reviewers for their careful reading and for their suggestions that improved our work.

Appendix A. Omitted proofs from Section 3

Proof of Lemma 6. (1)⇒(2). Assume poset(η1(x)) ∼= poset(η2(x)), hence there is an isomorphism f : η1(x) → η2(x). Let 
ϕax = ∨

σ :ax→ax
automorphism

ξxσ . We just show that E1, ∅ |=η1 ϕax implies E2, ∅ |=η2 ϕax since the other direction is symmetric. 

From the premise, by definition of the semantics, we know that there exists an automorphism σ1 : ax → ax such that 
E1, ∅ |=η1 ξxσ1. Let σ2 : ax → ax be defined as σ2(x) = y such that η2(y) = f (η1(σ1(x))). Since η1 and η2 are ax-compatible, 
f is an isomorphism and σ1 preserves the labels, we have that σ2 is a bijection which preserves the labels, hence an auto-
morphism over ax. Then, it is enough to prove that E2, ∅ |=η2 ξxσ2, which implies E2, ∅ |=η2 ϕax .

We actually prove a stronger property, that is, given an execution-only formula ξ such that fv(ξ) ⊆ x, and two configu-
rations C1 ∈ Conf (E1) and C2 ∈ Conf (E2) such that C1 ⊆ η1(x) and C2 = f (C1) ⊆ η2(x), it holds that E1, C1 |=η1 ξσ1 if and 
only if E2, C2 |=η2 ξσ2. This clearly encompasses the more specific case above where C1 = C2 = ∅. We proceed by induction 
on the shape of ξ . We discuss only some cases and a single direction, the other being symmetric.

ξ = ¬ ξ ′: Assume that E1, C1 |=η1 ¬ ξ ′σ1. By definition of the semantics, we know that E1, C1 �|=η1 ξ ′σ1. Then, since fv(ξ ′) =
fv(ξ) ⊆ x, by inductive hypothesis we have that E2, C2 �|=η2 ξ ′σ2. Again by definition of the semantics, we conclude 
that E2, C2 |=η2 ¬ ξ ′σ2.

ξ = 〈z〉 ξ ′: Assume that E1, C1 |=η1 〈σ1(z)〉 (ξ ′σ1). By definition of the semantics, we know that either the event e =
η1(σ1(z)) ∈ C1 and E1, C1 |=η1 ξ ′σ1, or e = η1(σ1(z)) can be executed from C1 obtaining a configuration C ′

1 =
C1 ∪ {e} such that E1, C ′

1 |=η1 ξ ′σ1.
In the first case, since C2 = f (C1), we must have that η2(σ2(z)) = f (η1(σ1(z))) = f (e) ∈ C2. Furthermore, since 

fv(ξ ′) ⊆ fv(ξ) ⊆ x, by inductive hypothesis we have that E2, C2 |=η2 ξ ′σ2.
In the second case, observe that e must have been minimal in the poset η1(x) \ C1, and the same must hold for 

η2(σ2(z)) = f (e) in η2(x) \ C2, since C2 = f (C1). Therefore, f (e) can be executed from C2 obtaining the configura-
tion C ′

2 = C2 ∪ { f (e)}. Since fv(ξ ′) ⊆ fv(ξ) ⊆ x, C ′
1 ⊆ η1(x), C ′

2 ⊆ η2(x) and C ′
2 = f (C ′

1), by inductive hypothesis we 
have that E2, C ′

2 |=η2 ξ ′σ2.
Thus, in both cases, by the properties of f (e) above, we can conclude that E2, C2 |=η2 〈σ2(z)〉 (ξ ′σ2).

(2)⇒(1). Assume that E1, ∅ |=η1 ϕax if and only if E2, ∅ |=η2 ϕax for every ax-parameterised formula ϕax of the form ∨
σ :ax→ax

automorphism

ξxσ . In particular, this holds for

ϕax =
∨

σ :ax→ax
automorphism

⎛
⎜⎜⎝ ∧

(η1(x1),...,η1(xn))∈lin(η1(x))
{x1,...,xn}=x

〈σ(x1)〉 . . . 〈σ(xn)〉T ∧
∧

(η1(y1),...,η1(yn))/∈lin(η1(x))
{y1,...,yn}=x

¬〈σ(y1)〉 . . . 〈σ(yn)〉T

⎞
⎟⎟⎠

where lin(·) denotes all the linearisations of a set of events (that respects causes).
We first show that E1, ∅ |=η1 ϕax . Take σ : ax → ax as the identity function. Observe that, given a linearisation 

(e1, . . . , en) ∈ lin(E) of some E , it is guaranteed that ei is minimal in E \ {e1, . . . , ei−1}. This means that, for every lineari-
sation (η1(x1), . . . , η1(xn)) of η1(x), since η1 is ax-compatible, we immediately have that E1, ∅ |=η1 〈x1〉 . . . 〈xn〉 T. On the 
other hand, given a sequence (η1(y1), . . . , η1(yn)) which is not a linearisation of η1(x), let i, j ∈ {1, . . . , n} be such that i < j
and η1(y j) ≤E1 η1(yi). From the configuration {η1(y1), . . . , η1(yi−1)}, if even reachable, it will not be possible to execute 
η1(yi) since it is caused by η1(y j) which has not been executed yet. Therefore, we must have that E1, ∅ �|=η1 〈y1〉 . . . 〈yn〉 T, 
hence E1, ∅ |=η1 ¬ 〈y1〉 . . . 〈yn〉 T.

Then, by hypothesis we have that also E2, ∅ |=η2 ϕax . By definition of the semantics, this means that there ex-
ists an automorphism σ over ax such that, for every linearisation (η1(x1), . . . , η1(xn)) of η1(x), it holds that E2, ∅ |=η2〈σ(x1)〉 . . . 〈σ(xn)〉 T, and, for every sequence (η1(y1), . . . , η1(yn)) which is not a linearisation of η1(x), it holds that 
E2, ∅ �|=η2 〈σ(y1)〉 . . . 〈σ(yn)〉 T. Observe that the function f : η1(x) → η2(x) defined by f = η2 ◦ σ ◦ η−1

1 is a well-
defined bijection which preserves the labels, because η1 and η2 are ax-compatible. Moreover, the image through f of 
every linearisation (η1(x1), . . . , η1(xn)) of η1(x) is a linearisation of η2(x), since f (η1(xi)) = η2(σ (xi)) for all i ∈ {1, . . . , n}, 
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and E2, ∅ |=η2 〈σ(x1)〉 . . . 〈σ(xn)〉 T. On the other hand, for every sequence (η1(y1), . . . , η1(yn)) which is not a linearisa-
tion of η1(x), its image through f is not a linearisation of η2(x), since f (η1(yi)) = η2(σ (yi)) for all i ∈ {1, . . . , n}, and 
E2, ∅ �|=η2 〈σ(y1)〉 . . . 〈σ(yn)〉 T.

Therefore, we deduce that lin(η2(x)) = f (lin(η1(x))), and so f is actually an isomorphism between η1(x) and η2(x). 
Indeed, for every pair of variables x, x′ ∈ x, we have η1(x) ≤E1 η1(x′) if and only if η1(x) appears before η1(x′) in every 
linearisation of η1(x), which holds if and only if f (η1(x)) appears before f (η1(x′)) in every linearisation of η2(x), since 
lin(η2(x)) = f (lin(η1(x))), which holds if and only if f (η1(x)) ≤E2 f (η1(x′)). �
Proof of Lemma 7. We proceed by induction on the shape of the formula ϕax . We discuss only some cases and a single 
direction, the other being symmetric.

ϕax = ¬ψax: Assume that E, ∅ |=η ¬ ψax . By definition of the semantics, we know that E, ∅ �|=η ψax . Then, since η and 
σ ◦ η are still ax-compatible, by inductive hypothesis we have that E, ∅ �|=σ◦η ψax . Again by definition of the 
semantics, we conclude that E, ∅ |=σ◦η ¬ ψax .

ϕax = (b z〉x ψa′x′ , where a′x′ = ax,bz: Assume that E, ∅ |=η (b z〉x ψa′x′ . By definition of the semantics, we know that there 

exists an event e ∈ E such that l(e) = b, ∅ → . . . → η(x) b−→ η(x) ∪ {e} = η[z �→ e](x′) and E, ∅ |=η[z �→e] ψa′x′ . 
Observe that the function σ ′ = σ ∪{(e, e)} is a bijection over η[z �→ e](x′). Then, since η[z �→ e] and σ ′ ◦ (η[z �→ e])
are both a′x′-compatible, by inductive hypothesis we have that E, ∅ |=σ ′◦(η[z �→e]) ψa′x′ . Furthermore, since σ ′ ◦
(η[z �→ e]) = (σ ◦ η)[z �→ e], we know that E, ∅ |=(σ◦η)[z �→e] ψa′x′ . Then, for the same transition above σ(η(x)) b−→
σ(η(x)) ∪ {e} = (σ ◦ η)[z �→ e](x′), we can conclude that E, ∅ |=σ◦η (b z〉x ψa′x′ .

ϕax = ∨
σ ′ :ax→ax

automorphism

ξxσ
′: Immediate by Lemma 6, since η and σ ◦ η are ax-compatible, and η(x) = (σ ◦ η)(x), hence isomor-

phic. �
Proof of Theorem 3. (⇒). We first introduce some notation. We fix a surjective environment η : V → E1. Then, given an 
event e ∈ E1, we write xe to denote a fixed distinguished variable such that η(xe) = e. Similarly, for a configuration C =
{e1, . . . , en}, we denote by aC xC the corresponding tuple of labelled variables (l(e1)xe1 , . . . , l(en)xen ). Then, note that clearly 
η is aC xC -compatible.

Assuming E1 ≡Lwh E2, we now show that the relation R ⊆ Conf (E1) × Conf (E2) defined by

R = {(C1, C2) | poset(C1) ∼= poset(C2) ∧ ∀ϕaC1 xC1
∀ f : C1 → C2 isomorphism.

E1,∅ |=η ϕaC1 xC1
iff E2,∅ |= f ◦η ϕaC1 xC1

}
is a weak h-bisimulation between E1 and E2.

We proceed by contradiction. Assume that (C1, C2) ∈ R and, without loss of generality, that C1
l(e)−−→ C ′

1, but for all e′ ∈ E2

such that l(e′) = l(e) and C2
l(e′)−−→ C ′

2, we have (C ′
1, C

′
2) /∈ R . This can happen either because poset(C ′

1) � poset(C ′
2) or because 

there exists a formula ϕaC ′
1

xC ′
1

and an isomorphism f : C ′
1 → C ′

2 such that E1, ∅ |=η ϕaC ′
1

xC ′
1

and E2, ∅ �|= f ◦η ϕaC ′
1

xC ′
1

(or vice 
versa, that is analogous, and so omitted).

Note that there must be at least one such transition C2
l(e′)−−→ C ′

2, labelled l(e′) = l(e), otherwise we would have E1, ∅ |=η

(l(e) xe〉xC1
T and E2, ∅ �|= f ◦η (l(e) xe〉xC1

T for any isomorphism f : C1 → C2, contradicting the fact that (C1, C2) ∈ R .

Furthermore, since by hypothesis E1 and E2 are image-finite, there are finitely many transitions C2
l(ei)−−→ C i

2, for 
i ∈ {1, . . . , h}, complying with the previous conditions. Then, for each i ∈ {1, . . . , h}, by hypothesis we know that either 
poset(C ′

1) � poset(C i
2) or there are a formula ψ i

aC ′
1

xC ′
1

and an isomorphism f i : C ′
1 → C i

2 such that E1, ∅ |=η ψ i
aC ′

1
xC ′

1
and 

E2, ∅ �|= f i◦η ψ i
aC ′

1
xC ′

1
.

Split these configurations in two subsets, A = {C i
2 : poset(C ′

1) � poset(C i
2)} and B = {C i

2 : poset(C ′
1) ∼= poset(C i

2)}. Then, 
for every C i

2 ∈ A, since poset(C ′
1) � poset(C i

2) and η and ( f ◦ η)[xe �→ ei] are aC ′
1
xC ′

1
-compatible, for any isomorphism f :

C1 → C2, by Lemma 6 we know that there must exist a formula θ i
aC ′

1
xC ′

1
of the form 

∨
σ :aC ′

1
xC ′

1
→aC ′

1
xC ′

1
automorphism

ξxC ′
1
σ such that E1, ∅ |=η

θ i
aC ′

1
xC ′

1
and E2, ∅ �|=( f ◦η)[xe �→ei ] θ i

aC ′
1

xC ′
1

. Now consider the formula

ϕaC ′
1

xC ′
1

= (l(e) xe〉xC1

⎛
⎜⎝ ∧

i : C i
2∈A

θ i
aC ′

1
xC ′

1
∧

∧
i : C i

2∈B

ψ i
aC ′

1
xC ′

1

⎞
⎟⎠

By hypothesis it is easy to see that E1, ∅ |=η ϕa ′ x ′ . However, for any isomorphism f : C1 → C2
C1 C1
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• for every i s.t. C i
2 ∈ A, we know that E2, ∅ �|=( f ◦η)[xe �→ei ] θ i

aC ′
1

xC ′
1

; and

• for every i s.t. C i
2 ∈ B , we know that E2, ∅ �|= f i◦η ψ i

aC ′
1

xC ′
1

, and so, taking σ = ( f ∪ {(e, ei)}) ◦ f −1
i , hence σ ◦ f i ◦η = ( f ◦

η)[xe �→ ei], since f i ◦ η and ( f ◦ η)[xe �→ ei] are both aC ′
1
xC ′

1
-compatible, by Lemma 7 we have that E2, ∅ �|=( f ◦η)[xe �→ei ]

ψ i
aC ′

1
xC ′

1
.

Therefore, we would have that E2, ∅ �|= f ◦η ϕaC1 xC1
contradicting the fact that (C1, C2) ∈ R . Thus, we can conclude that R is 

a weak h-bisimulation by observing that (∅, ∅) ∈ R , since clearly poset(∅) ∼= poset(∅) and by hypothesis E1 ≡Lwh E2.
(⇐). Assume we have a weak h-bisimulation R between E1 and E2. We prove that E1 ≡Lwh E2, i.e., they satisfy the 

same ε-parameterised formulae. Actually, we show that, for every pair of configurations (C1, C2) ∈ R (hence isomorphic), 
for every formula ϕax and for every pair of ax-compatible environments η1 ∈ EnvE1 and η2 ∈ EnvE2 such that η1(x) = C1
and η2(x) = C2, it holds E1, ∅ |=η1 ϕax if and only if E2, ∅ |=η2 ϕax . Observing that environments are irrelevant when x = ε , 
this is enough since by hypothesis (∅, ∅) ∈ R , implying that the two PESs would satisfy the same ε-parameterised formulae, 
i.e., the same (closed) formulae of Lwh .

We proceed by induction on the shape of the formula ϕax . We discuss only some cases and a single direction, the other 
being symmetric.

ϕax = ¬ψax: Assume that E1, ∅ |=η1 ¬ ψax . By definition of the semantics, we know that E1, ∅ �|=η1 ψax . Then, since 
η1(x) = C1 and η2(x) = C2, by inductive hypothesis we have that E2, ∅ �|=η2 ψax . Again by definition of the se-
mantics, we conclude that E2, ∅ |=η2 ¬ ψax .

ϕax = (b z〉x ψa′x′ , where a′x′ = ax,bz: Assume that E1, ∅ |=η1 (b z〉x ψa′x′ . By definition of the semantics we know that there 

exists an event e ∈ E such that l(e) = b, η1(x) = C1
b−→ C ′

1 = C1 ∪ {e} = η1[z �→ e](x′) and E1, ∅ |=η1[z �→e] ψa′x′ .

Since (C1, C2) ∈ R , there must also exist a transition η2(x) = C2
b−→ C ′

2 = C2 ∪ {e′}, for some event e′ , such that 
l(e′) = l(e) = b and poset(C ′

1) ∼= poset(C ′
2). Then, since η1[z �→ e] and η2[z �→ e′] are a′x′-compatible, by induc-

tive hypothesis we have that E2, ∅ |=η2[z �→e′] ψa′x′ . Again by definition of the semantics, we can conclude that 
E2, ∅ |=η2 (b z〉x ψa′x′ .

ϕax = ∨
σ :ax→ax

automorphism

ξxσ : Immediate by Lemma 6, since by hypothesis we know that η1 and η2 are ax-compatible, poset(C1) ∼=

poset(C2), η1(x) = C1 and η2(x) = C2. �
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