
Information and Computation 289 (2022) 104953
Contents lists available at ScienceDirect

Information and Computation

journal homepage: www.elsevier.com/locate/yinco

Intensional Kleene and Rice theorems for abstract program

semantics

Paolo Baldan a, Francesco Ranzato a,∗, Linpeng Zhang b

a Dipartimento di Matematica, University of Padova, Italy
b Department of Computer Science, University College London, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 September 2021
Received in revised form 18 August 2022
Accepted 27 August 2022
Available online 1 September 2022

Keywords:
Computability theory
Recursive function
Rice’s theorem
Kleene’s second recursion theorem
Program analysis
Affine program invariants

Classical results in computability theory, notably Rice’s theorem, focus on the extensional
content of programs, namely, on the partial recursive functions that programs compute.
Later work investigated intensional generalisations of such results that take into account
the way in which functions are computed, thus affected by the specific programs
computing them. In this paper, we single out a novel class of program semantics based
on abstract domains of program properties that are able to capture nonextensional aspects
of program computations, such as their asymptotic complexity or logical invariants, and
allow us to generalise some foundational computability results such as Rice’s Theorem
and Kleene’s Second Recursion Theorem to these semantics. In particular, it turns out
that for this class of abstract program semantics, any nontrivial abstract property is
undecidable and every decidable over-approximation necessarily includes an infinite set
of false positives which covers all the values of the semantic abstract domain.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Most classical results in computability theory focus on the so-called extensional properties of programs, i.e., on the
properties of the partial functions they compute. Notably, the renowned Rice’s Theorem [33] (see also standard textbooks
such as [12,28,36]) states that any nontrivial extensional property of programs is undecidable. Roughly speaking, a property
is extensional when it only concerns the function computed by a program, i.e., its input/output behaviour. Despite being
very general, Rice’s Theorem and similar results in computability theory, due to the requirement of extensionality, leave
out several intensional properties which are of utmost importance in the practice of programming. Essential intensional
properties of programs include their asymptotic complexity of computation, their logical invariants (e.g., relations between
variables at program points), or any event that might happen during the execution of the program while not affecting its
output.

State-of-the-art A generalisation of well-established results of computability theory to the realm of program complexity
has been put forward by Asperti [1]. A first observation is that Blum’s complexity classes [3], i.e., sets of recursive func-
tions (rather than sets of programs) with some given (lower or upper) bound on their (space and/or time) complexity, are
not adequate for investigating the decidability aspects of program complexity: in fact, viewed as program properties they

* Corresponding author.
E-mail address: ranzato@math.unipd.it (F. Ranzato).
https://doi.org/10.1016/j.ic.2022.104953
0890-5401/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ic.2022.104953
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2022.104953&domain=pdf
mailto:ranzato@math.unipd.it
https://doi.org/10.1016/j.ic.2022.104953

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
are trivially extensional. Thus, a key idea in [1] is to focus on the so-called complexity cliques, namely, sets of programs
(i.e., program indices) closed with respect to their extensional input/output behaviour and their asymptotic complexity.
Asperti [1] showed how this approach enables intensional versions of Rice’s theorem, Rice-Shapiro theorem, and Kleene’s
second recursion theorem ([12,36] are standard references for these foundational results) for complexity cliques.

More recently, a different approach has been considered by Moyen and Simonsen in [25], where the classical definition
of extensionality has been weakened to a notion of partial extensionality. Roughly, a given set of programs is partially
extensional if it includes the set of all programs computing a given partial recursive function. It is shown in [25] that if a
set of programs and its complement are partially extensional, then they cannot be recursive. Interestingly, this result can
be further generalised by replacing the extensionality with an equivalence relation on programs satisfying some suitable
structural conditions, notably, the existence of a so-called intricated switching family. Moyen and Simonsen [25] show how
to derive within their framework intensional versions of Rice’s Theorem — generalising Asperti’s result [1] — and Rice-
Shapiro Theorem.

Several results concerning the undecidability of specific intensional program properties of interest for static program
analysis have been put forward. It is worth recalling the undecidability of flow-sensitive alias analysis in languages with con-
ditional statements, loops, dynamic storage and recursive data structures [6,20], the undecidability of points-to analysis for
languages restricted to use scalar variables [6], the undecidability of associativity and commutativity analysis for functions
in parallel languages [7], and the undecidability of context-sensitive data-dependence analysis [32]. Notably, Müller-Olm and
Seidl [26] proved that for affine programs with positive affine guards it is undecidable whether a given nontrivial affine re-
lation holds at a given program point or not. This latter result relies on a reduction to the undecidable Post correspondence
problem, inspired by earlier reductions explored in data flow analysis [13,16], and is formulated by leveraging Karr’s lat-
tice [17], a well known abstract domain in static program analysis [9,24,34] consisting of affine equalities between program
variables, such as 2x − 3y = 1.

Main contributions The results in this paper yield undecidability guarantees for general classes of intensional program prop-
erties as those of interest for program analysis. In brief, for abstract semantics satisfying suitable conditions, we show that
all non-trivial properties of the semantics of programs are undecidable. In particular, our framework is instantiated to prove
some undecidability results for static program verifiers in a general setting for program analysis and verification by Cousot
et al. [11], and to re-discover as a particular case the undecidability of affine invariants for affine programs with positive
affine guards proved by Müller-Olm and Seidl [26]. More in detail, along the lines traced by Asperti [1], we investigate
whether and how some fundamental extensional results of computability theory can be systematically generalised to in-
tensional aspects of computation, but rather than focusing on specific intensional properties we deal with generic abstract
program semantics. More in detail, we distill two fundamental properties of abstract program semantics in our approach:
the strong smn property and the existence of a universal fair program, roughly, an interpreter that preserves the abstract se-
mantics. We show that for abstract semantics satisfying the strong smn property and admitting a universal fair program, a
generalisation of Kleene’s second recursion theorem can be proved. This, in turn, leads to a generalisation of Rice’s theorem.
As we will discuss in Section 6, the framework is general enough to be applicable to Asperti’s complexity cliques of [1].
Besides relying on a general abstract program semantics, inspired by Moyen and Simonsen’s approach [25], we also relax
the extensionality condition to partial extensionality. This weakening provides stronger impossibility results as it allows us
to show that every decidable over-approximation necessarily contains an infinite set of false positives which covers all the
values of the underlying semantic abstract domain. On a different route, we establish a precise connection with Moyen and
Simonsen’s work [25] by showing that for any abstract program semantics satisfying the strong smn property and a struc-
tural branching condition (roughly, expressing some form of conditional choice), we can prove the existence of an intricated
switching family, which turns out to be the crucial hypothesis in [25] for deriving an intensional version of Rice’s theorem.
This notion of intricated switching family is further explored by identifying a canonical one.

Therefore, on the one hand, we generalise the results in [1], going beyond complexity cliques, and, on the other hand,
we provide an explicit characterisation of a class of program semantics that admit intricated switching families so that the
results in [25] can be applied.

Finally, we show some applications of our intensional Rice’s theorem that generalise some undecidability results for
intensional properties used in static program analysis. In particular, we focus on program analysis in Karr’s abstract domain
of affine relations between program variables [17] and on the aforementioned undecidability result for affine programs with
positive affine guards by Müller-Olm and Seidl [26]. Here, we first show that the class of affine programs with positive affine
guards, modelled as control flow graphs, is Turing complete (something that, to the best of our knowledge, was previously
unknown in the literature). Then, this allows us to derive the undecidability result in [26] as a consequence of our results.

Outline The rest of the paper is structured as follows. In Section 2, we provide some background and our basic notions.
In Section 3, we introduce the strong smn property, fair universal programs, and the branching condition that will play a
fundamental role in our results. In Section 4, we provide our generalisation of Kleene’s second recursion theorem and use
it to derive our intensional Rice’s theorem. We also establish an explicit connection with the notion of intricated switching
family given in [25], and discuss some immediate applications for static program verifiers in the setting of Cousot et al. [11].
In Section 5, we prove first that the class of affine control flow graphs with positive affine guards is Turing complete, and
then we provide more applications of our results to the analysis of such affine programs. Section 6 discusses in detail the
2

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
relation with some of Asperti’s results [1] and with Rogers’ systems of indices [35,36]. Finally, Section 7 concludes and
outlines some directions of future work. This is a full and revised version of the conference paper [2].

2. Basic notions

Given an n-ary partial function f :Nn →N , we denote by dom(f) the domain of f and by rng(f) � { f (�x) : �x ∈ dom(f)}
its range. We write f (�x) ↓ if �x ∈ dom(f) and f (�x) ↑ if �x /∈ dom(f). Moreover, λ�x. ↑ denotes the always undefined function.
We denote by Fn � Nn → N the class of all n-ary (possibly partial) functions and by F �

⋃
n Fn the class of all such

functions. Additionally, Cn ⊆ Fn denotes the subset of n-ary partial recursive functions (C stands for computable) and C �⋃
n Cn the set of all partial recursive functions.

Assumption 2.1 (Turing completeness). Throughout the paper, we assume a fixed Turing complete model and we denote by
P the corresponding set of programs. Moreover, we consider a fixed Gödel numbering for the programs in P and, given an
index a ∈N , we write Pa for the a-th program in P . A program can take a varying number n of inputs and we denote by
φ

(n)
a ∈ Cn the n-ary partial function computed by Pa . By Turing completeness of the model, C = {φ(n)

a | a, n ∈N} holds. �
The binary relation between programs that compute the same n-ary function is called Rice’s equivalence and denoted by

∼n
R , i.e.,

a ∼n
R b

⇐⇒ φ
(n)
a = φ

(n)

b .

The classical Rice’s theorem [33] compares the extension of programs, i.e., the functions they compute, and shows that
unions of equivalence classes of programs computing the same function are undecidable. In Asperti’s work [1], by relying on
the notion of complexity clique, the asymptotic program complexity can be taken into account. Our idea here is to further
generalise the approach in [1] by considering generic program semantics rather than program complexity. Additionally,
an equivalence relation on program semantics allows us to further abstract and identify programs with different abstract
semantics. This turns out to be worthwhile in many applications, e.g., the precise time/space program complexity is typically
abstracted by considering asymptotic complexity classes.

Definition 2.2 (Abstract semantics). An abstract semantics is a pair 〈π, ≡π 〉 where:

(1) π :N2 →F associates a program index a and arity n with an n-ary function π(n)
a ∈Fn , called the semantics of a;

(2) ≡π ⊆F ×F is an equivalence relation between functions.

Given n ∈ N , the n-ary program equivalence induced by an abstract semantics 〈π, ≡π 〉 is the equivalence ∼n
π ⊆ N × N

defined as follows: for all a, b ∈N ,

a ∼n
π b

⇐⇒ π
(n)
a ≡π π

(n)

b . �
The notation for the case of arity n = 1 will be simplified by omitting the arity, e.g., we will write φa and ∼π in place

of φ(1)
a and ∼1

π , respectively. Abstract semantics can be viewed as a generalisation of the notion of system of indices (or
numbering), as found in standard reference textbooks [28,36]. This is discussed in detail later in Section 6.2. Let us now
show how the standard extensional interpretation of programs, complexity and complexity cliques can be cast into our
setting.

Example 2.3 (Concrete semantics). The concrete input/output semantics can be trivially seen as an abstract semantics 〈φ, =〉
where φ(n)

a is the n-ary function computed by Pa and = is the equality between functions. Observe that this concrete
semantics induces an n-ary program equivalence which is Rice’s equivalence ∼n

R . �
Example 2.4 (Domain semantics). For a given set of inputs S ⊆N , consider 〈φ, ≡S 〉 where φ(n)

a is the n-ary function computed
by Pa and for f , g :Nn →N , we define f ≡S g

⇐⇒ dom(f) ∩ S = dom(g) ∩ S . �
Example 2.5 (Blum complexity). Let � : N2 → C be a Blum complexity [3], i.e., for all a ∈ N and �x ∈ Nn , (1) �

(n)
a (�x) ↓ ⇔

φ
(n)
a (�x) ↓ holds, and (2) for all m ∈N , the predicate �(n)

a (�x) = m is decidable. Letting �(f) to denote the standard Big Theta
complexity class of a function f , the pair 〈�, ≡�〉 defined by

�
(n)
a ≡� �

(n)

b

⇐⇒ �

(n)
a ∈ �(�

(n)

b)

is an abstract semantics. �

3

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
Example 2.6 (Complexity clique). Complexity cliques as defined by Asperti in [1] can be viewed as an abstract semantics
〈π, ≡π 〉, that we will refer to as the complexity clique semantics. For each arity n and program index a let us define:

π
(n)
a � λ�y.〈〈φ(n)

a (�y),�
(n)
a (�y)〉〉

where 〈 〈_, _〉 〉 : N2 → N is an effective bijective encoding for pairs and � : N2 → C is a Blum complexity. The equivalence
≡π is defined as follows: for all a, b, n ∈N ,

π
(n)
a ≡π π

(n)

b

⇐⇒ φ

(n)
a = φ

(n)

b ∧ �
(n)
a ≡� �

(n)

b . �
The classical Rice’s theorem states the undecidability of extensional program properties. Following [25], we parameterise

extensional sets by means of a generic equivalence relation.

Definition 2.7 (∼-extensional set). Let ∼ ⊆ N ×N be an equivalence relation between programs whose equivalence classes
are denoted, for a ∈ A, by [a]∼. A set of indices A ⊆N is called:

• ∼-extensional when for all a, b ∈N , if a ∈ A and a ∼ b then b ∈ A;
• partially ∼-extensional when there exists a ∈N such that [a]∼ ⊆ A;
• universally ∼-extensional when for all a ∈N , [a]∼ ∩ A �=∅. �

In words, a set A is ∼-extensional if A is a union of ∼-equivalence classes, partially ∼-extensional if A contains at
least a whole ∼-equivalence class, and universally ∼-extensional if A contains at least an element from each ∼-equivalence
class, i.e., its complement N � A is not partially ∼-extensional. Notice that if A is not trivial (i.e., A �= ∅ and A �= N) and
∼-extensional then A is partially ∼-extensional and not universally ∼-extensional. Let us observe that ∼R -extensionality
is the standard notion of extensionality so that the classical Rice’s theorem [33] states that if A is ∼R -extensional and not
trivial then A is not recursive.1

3. Fair and strong smn semantics

In this section, we identify some fundamental properties of abstract semantics that will be later used in our intensional
computability results. A first basic property stems from the fundamental smn theorem and intuitively amounts to requiring
that the operation of fixing some parameters of a program is effective and preserves its abstract semantics.

Definition 3.1 (Strong smn semantics). An abstract semantics 〈π, ≡π 〉 has the strong smn (ssmn) property if, given m, n ≥ 1,
there exists a total computable function s :Nm+2 →N such that for all a, b ∈N , �x ∈Nm:

λ�y.π
(n+1)
a (φ

(m)

b (�x), �y) ≡π π
(n)

s(a,b,�x). (1)

In such a case, the abstract semantics 〈π, ≡π 〉 is called strong smn. �
It is worth noticing that the above definition requires property (1) which is slightly stronger than one would expect. In

fact, the natural generalisation of the standard smn property, in the style, e.g., of [1], would amount to asking that, given
m, n ≥ 1, there exists a total computable function s :Nm+1 →N such that for any program index a ∈N and input �x ∈Nm ,
λ�y.π

(m+n)
a (�x, �y) ≡π π

(n)

s(a,�x) holds.
The concrete semantics 〈φ, =〉 of Example 2.3 clearly satisfies this ssmn property (1). In fact, the function λa, b,

�y.π
(n+1)
a (φ

(m)

b (�x), �y) is computable (by composition, relying on the existence of universal functions), hence the existence
of a total computable s : Nm+2 → N such that λ�y.π

(n+1)
a (φ

(m)

b (�x), �y) ≡π π
(n)

s(a,b,�x) holds, as prescribed by Definition 3.1,
follows by the standard smn theorem. It is easily seen that the same applies to the domain semantics of Example 2.4.

The reason for the stronger requirement (1) in Definition 3.1 is that, to deal with generic abstract semantics, a suitable
smn definition needs to embody a condition on program composition (of a and b in Definition 3.1). Indeed, if we consider
the semantics based on program complexity (i.e., Examples 2.5 and 2.6), it turns out that whenever they enjoy the smn
property in [1, Definition 11] and, additionally, they satisfy the linear time composition hypothesis in [1, Section 4] relating
the asymptotic complexities of a program composition to those of its components, then they are ssmn semantics according
to Definition 3.1. More details on the relationship with Asperti’s approach [1] will be given later in Section 6.1.

It is worth observing that for a ssmn abstract semantics 〈π, ≡π 〉, there always exists a program whose denotation is
equivalent to the always undefined function, namely,

for any arity n ∈ N there exists an index e0 ∈N such that π
(n)
e0 ≡π λ�y.↑ . (2)

1 In [25], the term “extensional” is replaced by “compatible” when one refers to generic equivalence relations ∼.
4

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
In fact, if b is a program index for the always undefined function λ�y. ↑ then, by (1), we have that λ�y.π
(n+1)
0 (φb(0), �y) =

λ�y.↑ ≡π π
(n)

s(0,b,0)
holds, so that we can pick e0 � s(0, b, 0).

It is also worth exhibiting an example of abstract semantics which is not ssmn. Let πa(�x) be defined as the number of
different variables accessed in a computation of the program a on the input �x. Then, let us observe that the mere fact that
πa is always a total function trivially makes the abstract semantics 〈π, =〉 non-ssmn.

To generalise Kleene’s second recursion theorem, besides the ssmn property, we need to postulate the existence of so-
called fair universal programs, namely, programs that can simulate every other program w.r.t. a given abstract semantics.
This generalises the analogous notion in [1, Definition 26], where this simulation is specific to complexity cliques and must
preserve both the computed function and its asymptotic complexity.

Definition 3.2 (Fair semantics). An index u ∈ N is a fair universal program for an abstract semantics 〈π, ≡π 〉 and an arity
n ∈N if for all a ∈N:

π
(n)
a ≡π λ�y.π

(n+1)
u (a, �y).

An abstract semantics is fair if it admits a fair universal program for every arity. �
Clearly, the concrete (cf. Example 2.3) and domain (cf. Example 2.4) semantics are fair. In general, as noted in [1], the

existence of a fair universal program may not only depend on the reference abstract semantics, but also on the underlying
computational model. For instance, when considering program complexity, as argued by Asperti [1, Section 6] by relying
on some remarks by Blum [4], multi-tape Turing machines seem not to admit fair universal programs. By contrast, single
tape Turing machines do have fair universal programs, despite the fact that this is commonly considered a folklore fact and
cannot be properly quoted. Hereafter, when referring to the complexity-based semantics of Examples 2.5 and 2.6, we will
implicitly use the fact that they are ssmn and fair semantics.

4. Kleene’s second recursion theorem and Rice’s theorem

In this section, we show how some foundational results of computability theory can be extended to a general abstract
semantics. The first approach relies on a generalisation of Kleene’s second recursion theorem, which is then used to derive a
corresponding Rice’s theorem. A second approach consists in identifying conditions that ensure the existence of an intricated
switching family in the sense of [25], from which Rice’s theorem also follows.

4.1. Kleene’s second recursion theorem

Kleene’s second recursion theorem is a classical result of computability theory, originally proved in [18]. In Rogers’
equivalent formulation [36], it states that for any total computable function h :N →N there exists a program index n ∈N
which is a fixpoint of h w.r.t. the concrete semantics, i.e., such that φn = φh(n) holds. Kleene’s second recursion theorem
can be used to derive several other classical results, such as the undecidability of the halting problem, Rice’s Theorem,
or to show the existence of quines, i.e., self-reproducing programs (for more details, we refer to standard textbooks such
as [12,28,36]).

We show that Kleene’s second recursion theorem holds for any fair ssmn abstract semantics. This generalises the analo-
gous result proved by Asperti [1, Section 5] for complexity cliques.

Theorem 4.1 (Intensional Second Recursion Theorem). Let 〈π, ≡π 〉 be a fair ssmn abstract semantics. For any total computable func-
tion h :N →N and arity n ∈N , there exists an index a ∈N such that a ∼n

π h(a).

Proof. Since 〈π, ≡π 〉 is a fair semantics (Definition 3.2), there exists u, n ∈N such that u is an abstract universal program
for n-ary functions. Hence, for all x ∈N:

π
(n)

h(φx(x)) ≡π λ�y.π
(n+1)
u (h(φx(x)), �y) ≡π λ�y.π

(n+1)
u (h(ψU (x, x)), �y),

where ψU is the standard unary universal function for the concrete semantics φ, i.e., ∀p ∈ N. λy.ψU (p, y) = φp . Note that
h ◦ λz.ψU (z, z) is computable by composition of computable functions. Hence, there exists e such that φe = h ◦ λz.ψU (z, z).
Since 〈π, ≡π 〉 is a ssmn semantics (Definition 3.1), there exists a total computable function s : N3 → N such that for all
x ∈N:

λ�y.π
(n+1)
u (h(ψU (x, x)), �y) ≡π λ�y.π

(n+1)
u (φe(x), �y) ≡π π

(n)
s(u,e,x).

Since s is computable, by standard smn theorem, there exists m ∈N such that φm = λx. s(u, e, x). Hence, for all x ∈N:

π
(n) ≡π π

(n)
.
φm(x) h(φx(x))

5

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
A [a0]∼π[a1]∼π

Fig. 1. A graphical representation of Theorem 4.3. Here, a1 is a program index whose ≡π -equivalence class [a1]∼π is overapproximated by a set A of
programs, i.e., A includes all the programs that are ≡π -equivalent to a1. For the program index a0, its ≡π -equivalence class [a0]∼π is disjoint with A,
i.e., all the programs in A are not ≡π -equivalent to a0. Whenever such conditions are met for a fair ssmn semantics π , it turns out that the set A is not
recursive.

If we set x = m we obtain:

π
(n)
φm(m) ≡π π

(n)

h(φm(m))
.

Because φm = λx. s(u, e, x) is total, we can consider a = φm(m) and obtain:

π
(n)
a ≡π π

(n)

h(a)

which amounts to a ∼n
π h(a). �

As an example, this result, instantiated to the complexity semantics of Example 2.5, entails the impossibility of designing
a program transformation that systematically modifies the asymptotic complexity of every program, even without preserving
its input-output behaviour. The details are discussed below.

Example 4.2 (Fixpoints of Blum complexity semantics). Let 〈�,≡�〉 be the Blum complexity semantics of Example 2.5. A pro-
gram transformation h :N →N is a total computable function which maps indices of programs into indices of transformed
programs. By applying Theorem 4.1, for any arity n ∈ N , we know that there exists a program index a such that a ∼n

π h(a)

holds. This means that the program transform h does not alter the asymptotic complexity of, at least, the program a. �
Our second recursion theorem allows us to obtain an intensional version of Rice’s theorem for fair and ssmn abstract

semantics. Inspired by [25], we generalise the statement to cover partially extensional properties.

Theorem 4.3 (Rice by fair and ssmn semantics). Let 〈π, ≡π 〉 be a fair and ssmn semantics. If A ⊆N is partially ∼n
π -extensional and

not universally ∼n
π -extensional, for some arity n ∈N , then A is not recursive.

Proof. Since A is partially ∼n
π -extensional and not universally ∼n

π -extensional, there are x0, x1 ∈N such that [x0]∼n
π
∩ A =∅

and [x1]∼n
π

⊆ A. Assume A is recursive, hence its characteristic function χA is computable. Then, we can define a function
f :N →N defined as follows:

f (x) �
{

x0 if x ∈ A

x1 otherwise
= x0 · χA(x) + x1 · (1 − χA(x)).

Observe that f is clearly total and computable. We can now apply our intensional second recursion Theorem 4.1, and obtain
that there exists a ∈N such that f (a) ∼π a. This easily leads to a contradiction that closes the proof. In fact, there are two
cases, either a ∈ A or a /∈ A.

1. If a ∈ A then f (a) = x0 ∼π a and thus, since [x0]∼π ∩ A =∅, we have the contradiction a /∈ A.
2. Similarly, if a /∈ A then f (a) = x1 ∼π a and thus, since [x1]∼ ⊆ A, we deduce the contradiction a ∈ A. �

Fig. 1 provides a graphical representation of this result: if we can find two program indices a0, a1 ∈N such that A over-
approximates the ≡π -equivalence class [a1]∼π and A does not intersect [a0]∼π , then A cannot be recursive. Let us illustrate
some applications of Theorem 4.3.

Example 4.4 (Halting set). Let 〈φ, ≡N〉 be the domain semantics of Example 2.4 with S =N , hence f ≡N g when dom(f) =
dom(g). The halting set K � {a ∈ N | φa(a) ↓} can be proved to be non-recursive by resorting to Theorem 4.3 for 〈φ, ≡N〉.
Let e0, e1 ∈N be such that φe0 = λx. ↑ and φe1 = λx.1. Since [e1]≡N is the set of programs that compute total functions, we
have that [e1]≡N ⊆ K . Moreover, [e0]≡N is the set of nonterminating programs for any input, so that [e0]≡N ∩ K = ∅. This
means that 〈φ, ≡N 〉 satisfies the hypotheses of Theorem 4.3, thus entailing that K is not recursive. �
6

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
Example 4.5 (Complexity sets). Let 〈φ,=〉, 〈�,≡�〉 be, resp., the semantics of Examples 2.3 and 2.5. As observed in Section 3,
on a suitable computational model such as single tape Turing machines, these are fair ssmn semantics, so that Theorem 4.3
applies.

Let sort : N → N be a total function that takes as input an encoded sequence of numbers and outputs the encoding
of the corresponding sorted sequence. It turns out that by applying Theorem 4.3, the following sets can be proved to be
non-recursive:

(1) A � {a | �a ∈ �(n log n) ∧ φa = sort};
(2) B � {a | �a ∈O(n log n)};
(3) C � {a | �a ∈ 	(n log n)}.

Let is, ms be different implementations of sort, i.e., φis = φms = sort , such that �is ∈ �(n2) and �ms ∈ �(n log n) — is and
ms could be, resp., insertion and merge sort. Recall that ∼R denotes Rice’s equivalence induced by 〈φ,=〉 (i.e., a ∼R b ⇔
φa = φb), and, in turn, let ∼�R = ∼� ∩ ∼R be the equivalence induced by the complexity clique semantics of Example 2.6,
which is a fair ssmn semantics. Then, we have that:

(1) since [is]∼�R ∩ A =∅ and [ms]∼�R ⊆ A, by Theorem 4.3, we have that A is non-recursive;
(2) since [is]∼�

∩ B =∅ and [ms]∼�
⊆ B , by Theorem 4.3, we have that B is non-recursive;

(3) let e be any program index such that �e ∈ �(1). Since [e]∼�
∩ C = ∅ and [is]∼�

⊆ C , by Theorem 4.3, we have that C
is non-recursive. �

It is worth remarking that in Example 4.5, n log n could be replaced by any function, thus showing the undecidability
of the asymptotic complexities “big O” (case (2)) and “big Omega” (case (3)). Let us also point out that Example 4.4 shows
how easily the halting set K can be proved to be non-recursive by applying Theorem 4.3.

4.2. Branching semantics

Let us investigate the connection between our results and the key notion of intricated switching family used by Moyen
and Simonsen [25] for proving their intensional version of Rice’s theorem. Firstly, we argue that every ssmn abstract seman-
tics admits an intricated switching family whenever it is able to express a suitable form of conditional branching. This allows
us to derive an intensional Rice’s theorem. Moreover, we show that for fair and ssmn semantics, the identity can always
play the role of intricated switching family.

Definition 4.6 (Branching and discharging semantics). An abstract semantics 〈π, ≡π 〉 is branching if, given n ≥ 1, there exists a
total computable function r :N4 →N such that ∀a, b, c1, c2, x ∈N with c1 �= c2:

λ�y.π
(n)

r(a,b,c1,c2)
(x, �y) ≡π

⎧⎪⎨
⎪⎩

λ�y.π
(n)
a (x, �y) if x = c1

λ�y.π
(n)

b (x, �y) if x = c2

λ�y.↑ otherwise.

Moreover, 〈π, ≡π 〉 is (variable) discharging if, for all n ≥ 1, there exists a total computable function t :N →N such that for
all a, x ∈N:

π
(n)
a ≡π λ�y.π

(n+1)
t(a)

(x, �y). �
Hence, intuitively, an abstract semantics is branching when it is able to model the branching structure of conditional

statements with multiple positive guards, while the property of being variable discharging holds when one can freely add
fresh and unused variables without altering the abstract semantics. Let us first recall the notion of recursive inseparabil-
ity [37, Section 3] and of intricated switching family from [25, Definition 5].2

Definition 4.7 (Recursively inseparable sets). Two sets A, B ⊆ N of program indices are recursively inseparable if there exists
no decidable set C ⊆N such that A ⊆ C and B ∩ C =∅. �
Definition 4.8 (Intricated switching family [25, Definition 5]). Let ∼ ⊆ N × N be an equivalence relation on program indices.
An intricated switching family (ISF) w.r.t. ∼ is an indexed set of total computable functions {σa,b}a,b∈N , with σa,b : N → N ,
such that for all a, b ∈N , the sets Aa,b = {x ∈N | σa,b(x) ∼ a} and Ba,b = {x ∈N | σa,b(x) ∼ b} are recursively inseparable. �

2 Definition 5 in [25] is instantiated to the case of recursive sets and equivalence relations over program indices. This is the case of interest for this
paper and such restriction simplifies the presentation. More precisely, Definition 4.8 is obtained from [25, Definition 5] by taking: (1) the sets S = T =N
(intuitively corresponding to sets of program indices); (2) the sets S = T = REC, where REC ⊆ P(N) is the set of decidable sets; (3) F and G such that
∪F = ∪G =N . The requirement of REC-REC-continuity of each total function σa,b is replaced with the stronger condition that each σa,b is also computable.
7

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
Moyen and Simonsen [25, Theorem 3] show that if an equivalence ∼ admits an ISF, then every partially ∼-extensional
and not universally ∼-extensional set is not recursive. A simplified version of their intensional result, tailored for our setting,
can be stated as follows.

Theorem 4.9 ([25, Theorem 3]). Let ∼ ⊆ N × N be an equivalence relation. If A ⊆ N is partially ∼-extensional, not universally
∼-extensional and there exists an ISF w.r.t. ∼ then A is not recursive.

Branching discharging and ssmn semantics can be shown to admit an intricated switching family, in a way that, relying
on Theorem 4.9 we can derive the following intensional version of Rice’s Theorem.

Theorem 4.10 (Rice by branching, discharging and ssmn semantics). Let 〈π, ≡π 〉 be a branching, discharging and ssmn semantics. If
A ⊆N is partially ∼n

π -extensional and not universally ∼n
π -extensional for some arity n ∈N , then A is not recursive.

Proof. Let u ∈N be an index for the standard unary universal program. Consider the total computable functions r :N4 →N
and t : N → N of, resp., the branching and variable discharging properties. By the ssmn property, there exists a total
computable function s :N4 →N such that ∀a, b, x ∈N:

π
(n)

s(r(t(a),t(b),0,1),u,x,0)
≡π λ�y.π

(n+1)

r(t(a),t(b),0,1)
(φ

(2)
u (x,0), �y) [by the ssmn property]

= λ�y.π
(n+1)

r(t(a),t(b),0,1)
(φx(0), �y)

≡π

⎧⎪⎨
⎪⎩

λ�y.π
(n+1)
t(a) (0, �y) if φx(0) = 0

λ�y.π
(n+1)

t(b)
(1, �y) if φx(0) = 1

λ�y. ↑ otherwise

[by the branching property]

≡π

⎧⎪⎨
⎪⎩

π
(n)
a if φx(0) = 0

π
(n)

b if φx(0) = 1

λ�y. ↑ otherwise

[by the variable discharging property]

For all a, b ∈N , we define the total computable function

σa,b(x) � s(r(t(a), t(b),0,1), u, x,0).

We claim that the family of functions {σa,b}a,b∈N is intricated w.r.t. ∼n
π (cf. Definition 4.8). In fact, for all a, b ∈ N , let

Aa,b � {x ∈N | σa,b(x) ∼n
π a} and Ba,b � {x ∈N | σa,b(x) ∼n

π b}. We have four cases:

1. if π(n)
a ≡π π

(n)

b , then Aa,b = Ba,b and therefore they are trivially recursively inseparable;

2. if π(n)
a �≡π π

(n)

b and π(n)
a �≡π λ�x. ↑ �≡π π

(n)

b , we have that Aa,b = {x ∈N | φx(0) = 0} and Ba,b = {x ∈N | φx(0) = 1}. Hence,
the sets Aa,b and Ba,b are recursively inseparable (cf. [29, Section 3.3]);

3. if π(n)

b �≡π π
(n)
a ≡π λ�x. ↑, we have that Ba,b = {x ∈N | φx(0) = 1} and Aa,b = {x ∈N | φx(0) �= 1} = Ba,b . The mere fact that

Ba,b is not recursive (by the classical Rice’s Theorem) thus implies that Aa,b and Ba,b are not recursively separated;

4. if π(n)
a �≡π π

(n)

b ≡π λ�x. ↑, then we can take a′ = b and b′ = a and conclude by case 3.

Since in all cases Aa,b and Ba,b are recursively inseparable, it turns out that {σa,b}a,b∈N is an ISF w.r.t. ∼n
π and thus we

conclude by Theorem 4.9. �
Let us discuss more in detail the relationship with the approach in [25]. Firstly, let us show a lemma which will be

fundamental to prove the following results.

Lemma 4.11. Let ∼ be an equivalence relation on program indices. If every set A partially ∼-extensional and not universally ∼-
extensional is non-recursive then the identity Id is an ISF w.r.t. ∼.

Proof. Clearly, the identity Id � {(λx.x)a,b}a,b∈N is a family of total computable functions. Moreover, for a, b ∈ N we have
Aa,b = {x ∈N : x ∼ a} = [a]∼ and Ba,b = {x ∈N : x ∼ b} = [b]∼ . Therefore, every set C ⊆N such that Aa,b ⊆ C and Ba,b ∩ C =
∅, is partially ∼-extensional and not universally ∼-extensional and thus, by hypothesis, not recursive. Hence, Aa,b and Ba,b
are recursively inseparable. �

It turns out that a fair ssmn semantics always admits a canonical ISF, namely, the identity Id � {(λx.x)a,b}a,b∈N .
8

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
Proposition 4.12. Let 〈π, ≡π 〉 be a fair and ssmn semantics. Then, the identity Id is an ISF w.r.t. ∼n
π , for all n ≥ 1.

Proof. Since 〈π, ≡π 〉 is a fair ssmn semantics, by Theorem 4.3, every partially ∼n
π -extensional and not universally ∼n

π -
extensional set A is non-recursive. Therefore, we conclude by applying Lemma 4.11. �

Let us point out that the identity function has not been exploited in [25], that instead focuses on the standard switching
family. It turns out that the identity function plays a key role as ISF.

Theorem 4.13. Let ∼ ⊆N ×N be an equivalence relation. The following statements are equivalent:

(1) Every set A ⊆N partially ∼-extensional and not universally ∼-extensional is non-recursive.
(2) The identity Id is an ISF w.r.t. ∼.
(3) There exists an ISF w.r.t. ∼.

Proof. (1 ⇒ 2): by Lemma 4.11;
(2 ⇒ 3): trivial;
(3 ⇒ 1): by Theorem 4.9. �

Therefore, the above result roughly states that the identity function is the “canonical” ISF, meaning that if an ISF exists,
then Id is an ISF as well. Moreover, the intensional Rice’s Theorem 4.9 of [25] provides a sufficient condition (i.e., the exis-
tence of an ISF) for a partially and not universally extensional set to be undecidable. Theorem 4.13 enhances Theorem 4.9 by
showing that such a sufficient condition is necessary as well, or, equivalently, that a partially and not universally extensional
set is undecidable iff there exists an ISF.

We conclude this section by discussing an alternative notion of branching, which requires the preservation of a full
conditional statement with positive and negative guards.

Definition 4.14 (Strongly branching semantics). An abstract semantics 〈π,≡π 〉 is strongly branching if, given n ≥ 1, there exists
a total computable function r :N3 →N such that for all a, b, c, x ∈N:

λ�y.π
(n)

r(a,b,c)(x, �y) ≡π

{
λ�y.π

(n)
a (x, �y) if x = c

λ�y.π
(n)

b (x, �y) otherwise.
�

The condition above is an adaptation to our framework of a property that is needed in order to exploit a so-called stan-
dard switching family as defined in [25, Example 1]. Despite appearing to be more natural, the preservation of conditionals
with positive and negative conditions is a stronger requirement than the one we considered in Definition 4.6. Indeed, it
turns out that every ssmn and strongly branching semantics is a branching semantics.

Proposition 4.15 (Strongly branching implies branching). If 〈π, ≡π 〉 is a ssmn and strongly branching semantics, then 〈π, ≡π 〉 is a
branching semantics.

Proof. Given an arity n, let r be the function of the strongly branching property of Definition 4.14. By (2) there exists an
index e0 ∈ N such that π(n)

e0 ≡π λ�y. ↑. Now, we define the function σ : N4 → N such that for all a, b, c1, c2 ∈ N we have
σ(a, b, c1, c2) = r(a, r(b, e0, c2), c1). Note that σ is a total computable function, by composition, and for all a, b, c1, c2, x ∈N
with c1 �= c2:

λ�y.π
(n)

σ (a,b,c1,c2)
(x, �y) = λ�y.π

(n)

r(a,r(b,e0,c2),c1)
(x, �y)

≡π

{
λ�y.π

(n)
a (x, �y) if x = c1

λ�y.π
(n)

r(b,e0,c2)
(x, �y) otherwise

[by the branching property]

≡π

⎧⎪⎨
⎪⎩

λ�y.π
(n)
a (x, �y) if x = c1

λ�y.π
(n)

b (x, �y) if x �= c1 ∧ x = c2

λ�y.π
(n)
e0 (x, �y) if x �= c1 ∧ x �= c2

[by the branching property]

≡π

⎧⎪⎨
⎪⎩

λ�y.π
(n)
a (x, �y) if x = c1

λ�y.π
(n)

b (x, �y) if x = c2

λ�y. ↑ otherwise

Thus, σ is the desired function for the branching property. �

9

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
4.3. An application to static program verifiers

We adapt the general definition of static program verifier of Cousot et al. [11, Definition 4.3] to our framework. Given
a program property P ⊆N to check, a static program verifier is a total recursive function V :N → {0, 1}. It is sound when
for all p ∈ N , V(p) = 1 ⇒ p ∈ P , while V is precise if the reverse implication also holds, i.e., when V(p) = 1 ⇔ p ∈ P
holds. Informally, soundness guarantees that only false negatives are allowed, i.e., N � P is possibly a proper subset of
{p ∈N : V(p) = 0}, while precise verifiers output true positives and true negatives only (i.e., they decide P).

The classical Rice’s theorem clearly entails the impossibility of designing a precise verifier for a nontrivial extensional
property. However, one may wonder whether there exist sound verifiers with “few” false negatives. By applying our inten-
sional Theorem 4.3, we are able to show that sound but imprecise verifiers necessarily have at least one false negative for
each equivalence class of programs, even for intensional properties.

Example 4.16 (Constant value verifier). Assume we are interested in checking if a program can output a given constant value,
for instance, zero with the aim of statically detecting division-by-zero bugs. Let V be a sound static verifier for the set P=0 �
{p ∈ N | 0 ∈ rng(φp)} of programs that output zero for some input. The set N � {p ∈ N | V(p) = 0} is recursive since V is
assumed to be a total computable function. By soundness of V , we have that N � P=0 ⊆ N , so that N includes, for example,
the set of programs computing the constant function λx.1. Therefore, N is partially extensional, and, by Theorem 4.3, N
has to be universally extensional. This means that for any computable function f ∈ C there exists a program p ∈ N that
computes f such that V(p) = 0. Thus, when 0 ∈ rng(f) holds (e.g., for f = λx.0), V necessarily outputs a false negative for
p. Hence, V outputs infinitely many false negatives. �
Example 4.17 (Complexity verifier). Consider a speculative sound static verifier V for recognizing programs that meet some
lower bound, for instance, programs having a cubic lower bound P	(n3) � {p ∈N | �p = 	(n3)}. Thus, N � {p ∈N | V(p) =
0} has to be recursive and if ∼� is the program equivalence induced by the Blum complexity semantics 〈�, ≡�〉 of Ex-
ample 2.5 then, by soundness of V , we have, for example, {p ∈ N | �p = �(1)} ⊆ N . This means that N is partially
∼�-extensional and, by Theorem 4.3, N is universally extensional, namely, V will output 0 for at least a program in each
Blum complexity class. For instance, even some programs with an exponential lower bound will be wrongly classified by V
as programs that do not meet a cubic lower bound. �

As shown by Cousot et al. [11, Theorem 5.4], precise static verifiers cannot be designed (unless for trivial program
properties). The examples above prove that, additionally, we cannot have any certain information on an input program p
whenever the output of a sound (and imprecise) verifier for p is 0. In fact, when this happens, p could compute any partial
function (cf. Example 4.16) or have any complexity (cf. Example 4.17).

5. On the decidability of affine program invariants

Karr [17] put forward an algorithm that infers for each program point q of a control flow graph modelling an affine
program P (i.e., an unguarded program with non-deterministic branching and affine assignments) a set of affine equalities
that hold among the variables of P when the control reaches q, namely, an affine invariant for P . Müller-Olm and Seidl [26]
show that Karr’s algorithm actually computes the strongest affine invariant for affine programs (this result has been ex-
tended to a slightly larger class of affine programs in [30, Theorem 5.1]). Moreover, they design a more efficient algorithm
implementing this static analysis and they extend in [27] this algorithm for computing bounded polynomial invariants, i.e.,
the strongest polynomial equalities of degree at most a given d ∈N . Later, Hrushovski et al. [15] put forward a sophisticated
algorithm for computing the strongest unbounded polynomial invariants of affine programs, by relying on the Zariski closure
of semigroups.

On the impossibility side, Müller-Olm and Seidl [26, Section 7] prove that for affine programs allowing positive affine
guards it is undecidable whether a given nontrivial affine equality holds at a given program point or not. In practical
applications, static analyses on Karr’s abstract domain of guarded affine programs ignore non-affine Boolean guards, while
for an affine guard b, the current affine invariant i is propagated through the positive branch of b by the intersection i ∩ b,
that remains an affine subspace. By the aforementioned undecidability result [26, Section 7], this latter analysis algorithm
for guarded affine programs turns out to be sound but necessarily imprecise, thus inferring affine invariants that, in general,
might not be the strongest ones. Müller-Olm and Seidl [26, Section 7] prove their undecidability result by exploiting an acute
reduction to the undecidable Post correspondence problem, inspired by early reductions studied in data flow analysis [13,
16]. In this section, we show that our Theorem 4.10 allows us to derive and extend this undecidability result by exploiting
an orthogonal intensional approach. More precisely, we prove that any nontrivial (and not necessarily affine) relation on
the states of control flow graphs of programs allowing: (1) zero, variable and successor assignments, resp., x := 0, x := y
and x := y + 1, and (2) positive equality guards x = y? and x = v?, turns out to be undecidable. Since these control flow
graphs form a subclass of affine programs with positive affine guards, the undecidability result of Müller-Olm and Seidl [26,
Section 7] is retrieved as a consequence.

Following the standard approach, we consider control flow graphs that consist of program points connected by edges
labelled by assignments and guards. Variables are denoted by xi , with i ∈ N , and store values ranging in N , while Karr’s
10

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
abstract domain is designed for variables assuming values in Q. Clearly, from a computability perspective, this is not a
restriction since one can consider a computable bijection between N and Q.

Definition 5.1 (Basic affine control flow graph). A basic affine control flow graph (BACFG) is a tuple G = (N, E, s, e), where N is
a finite set of nodes, s, e ∈ N are the start and end nodes, and E ⊆ N × Com×N is a set of labelled edges, and the set Com
of commands consists of assignments of type xn := 0, xn := xm , xn := xm + 1, and equality guards of type xn = xm?, xn = v?,
with v ∈N . �

Let us remark that BACFGs only include basic affine assignments and positive affine guards, in particular inequality
checks such as xn �= xm? and xn �= v? are not allowed. Thus, BACFGs are a subclass of affine programs with positive affine
guards considered in [26, Section 7].

As in dataflow analysis and abstract interpretation [9,10,13,34], BACFGs have a collecting semantics where, given a set of
input states In, each program point is associated with the set of states that occur in some program execution from some
state in In. A finite number of variables may occur in a BACFG, so that a state of a BACFG G is a tuple (x1, . . . , xk) ∈ Nk ,
where k is the maximum variable index occurring in G and k = 0 is a degenerate case for trivial BACFGs with N0 = {•}. The
collecting transfer function f(·)(·) : Com → ℘(Nk) → ℘(Nk) for k ∈N variables and with n, m ∈ [1, k] is defined as follows:

fxn:=0(S) � {(x1, . . . , xn−1,0, xn+1, . . . , xk) | �x ∈ S},
fxn:=xm (S) � {(x1, . . . , xn−1, xm, xn+1, . . . , xk) | �x ∈ S},

fxn:=xm+1(S) � {(x1, . . . , xn−1, xm + 1, xn+1, . . . , xk) | �x ∈ S},
fxn=v?(S) � {�x ∈ S | xn = v},

fxn=xm?(S) � {�x ∈ S | xn = xm}.
A no-op command denoted by ε is syntactic sugar for x1 := x1, i.e., fε � fx1:=x1 = λS.S . Given k, k′ ∈N and S ∈ ℘(Nk′

), the
projection S �k∈ ℘(Nk) is defined as follows:

S �k �

⎧⎪⎨
⎪⎩

S ×Nk−k′
if 0 ≤ k′ < k

S if k′ = k

{(x1, . . . , xk) | �x ∈ S} if k < k′

Definition 5.2 (Collecting semantics of BACFGs). Given a BACFG G = (N, E, s, e) with k ∈ N variables and a set of input states
S ⊆ Nk′

, with k′ ≤ k, the collecting semantics �G�S : N → ℘(Nk) is the least, w.r.t. pointwise set inclusion, solution in
℘(Nk)|N| of the following system of constraints:{

�G�S [s] ⊇ S �k for the start node s

�G�S [v] ⊇ fc(�G�S [u]) for each edge (u, c, v) ∈ E.
�

Let us observe that, since the collecting transfer functions fc are additive on the complete lattice 〈℘(Nk),⊆〉, by Knaster-
Tarski fixpoint theorem, �G�S is well defined. For �x ∈Nk′

, we write �G��x instead of �G�{�x} . Notice that �G�(·) is an additive
function, so that, for any program point u ∈ N , �G�S [u] = ⋃

�x∈S�G��x[u] holds.

5.1. Turing completeness of BACFGs

Let us recall that a ssmn abstract semantics needs an underlying Turing complete concrete semantics of programs (cf.
Assumption 2.1). A crucial observation is that BACFGs are Turing complete despite not including full (both positive and
negative) Boolean tests. This is proved by showing that any program of an Unlimited Register Machine (URM), which is a
well-known Turing complete computational model [12], can be simulated by a BACFG.

Theorem 5.3 (Turing completeness of BACFGs). BACFGs are a Turing complete computational model.

Before getting into the technical details, it is worth providing, first, an intuition of the proof of Theorem 5.3. Using the
definition and notation of Cutland [12, Section 1.2], let us recall the four types of instructions of URMs:

• z(n): sets register rn to 0 (rn ← 0) and transfers the control to the next instruction;
• s(n): increments register rn by 1 (rn ← rn + 1) and transfers the control to the next instruction;
• t(m, n): sets register rn to rm (rn ← rm) and transfers the control to the next instruction;
11

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
qi

qi+1

xn := 0

qi

qi+1

xn := xn + 1

qi

qi+1

xn := xm

Fig. 2. BACFGs simulating: z(n) (left), s(n) (center), t(m,n) (right).

qi

inci

qi+1

qp

xm = xn? z := xm + 1

z := xn + 1

xn = z? xm = z?

z := z + 1

Fig. 3. BACFG simulating a jump instruction j(m,n, p).

• j(m, n, p): if rm = rn and I p is a proper instruction, then it jumps to the instruction I p ; otherwise, it skips to the next
instruction;

It turns out that all these URM instructions can be simulated by the BACFGs depicted in Figs. 2 and 3. While the BACFGs
in Fig. 2 are trivial, let us describe more in detail how the BACFG in Fig. 3 simulates a jump instruction j(m, n, p). Intuitively,
a difficulty arises for simulating the negative branch xn �= xm?. Here, the BACFG at node qi initialises a fresh unused variable
z with both xn +1 and xm +1 and transfers the control to a node inci where z is incremented infinitely many times. Thus, in
the least fixpoint solution, at node inci the variable z stores any value v > min(xm, xn), including z = max(xm, xn). Suppose
now that xn > xm holds: in this case, the guard xn = z? between nodes inci and qi+1 eventually will be made true and at
the node qi+1 the store will retain the original values of all variables (xm and xn included), except for the new variable z
which will be ignored by the remaining nodes. The case xm > xn is analogous. Therefore, it turns out that the node qi+1 will
be reached if and only if xm �= xn holds, while qp will be reached if and only if xm = xn holds, thus providing a simulation
for the jump instruction j(m, n, p).

We next give a precise definition of a model of computation for BACFGs which is able to simulate URMs. Firstly, let us
formalise the operational semantics of URMs. Given a URM program P = (I1, . . . , It) consisting of a sequence of t instruc-
tions I j , we denote its states by vectors �x ∈ NkP , where kP is the largest index of registers used by P (which is finite). A
configuration of a URM is a pair 〈�x, c〉 ∈ NkP × N representing the state of the (possibly used) registers, and the current
instruction Ic . Then, the operational semantics is as follows:

Definition 5.4 (Operational semantics ⇒ of URMs). Given a URM program P = (I1, . . . , It), its operational semantics is given
by the transition function ⇒: (NkP ×N) → (NkP ×N) defined as follows: for all �x ∈NkP , 1 ≤ c ≤ t ,

〈�x, c〉 ⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈(x1, ..., xn−1,0, xn+1, ..., xkP), c + 1〉 if Ic = z(n)

〈(x1, ..., xn−1, xn+1, xn+1, ..., xkP), c + 1〉 if Ic = s(n)

〈(x1, ..., xm−1, xn, xm+1, ..., xkP), c + 1〉 if Ic = t(m,n)

〈�x,q〉 if Ic = j(m,n,q) ∧ xm = xn

〈�x, c + 1〉 if Ic = j(m,n,q) ∧ xm �= xn

The URM halts when it reaches a configuration 〈�x, t + 1〉. �
Getting back to control flow graphs, let us point out that the collecting semantics of BACFGs of Definition 5.2 can be

expressed in terms of Kleene’s iterates as follows.
12

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
Definition 5.5 (Kleene’s iterates of BACFGs). Let G = (N, E, s, e) be a BACFG with kG variables. The corresponding initial state
⊥s

�x : N → ℘(NkG), with �x ∈ NkG , and transformer FG : (N → ℘(NkG)) → (N → ℘(NkG)) are defined as follows: for all
v ∈ N and X ∈ N → ℘(NkG),

⊥s
�x[v] �

{
{�x} if v = s

∅ otherwise

FG(X)[v] �
⋃

(u,c,v)∈E

fc(X [u]) ∪X [v]

The sequence of Kleene’s iterates of G starting from ⊥s
�x is the infinite (pointwise) ascending chain {F i

G (⊥s
�x)}i∈N ⊆ N →

℘(NkG), where the powers of the function FG are inductively defined in the usual way: F 0
G(X) � X and F i+1

G (X) �
FG(F i

G(X)). �
Observe that the collecting semantics of Definition 5.2 coincides with the least fixed point of FG above ⊥s

�x w.r.t. the
pointwise inclusion order of the complete lattice N → ℘(NkG) obtained by lifting 〈℘(NkG),⊆〉. Moreover, since FG is a
Scott-continuous function (even more, FG preserves arbitrary least upper bounds), by Kleene’s fixpoint theorem, it turns out
that

∪i∈N F i
G(⊥s

�x)[v] = �G��x[v].
Our key insight is that the states of our abstract computational model can be represented as “differences” between consec-
utive Kleene’s iterates of FG .

Definition 5.6 (Operational semantics
 of BACFGs). Given a BACFG G = (N, E, s, e), its operational semantics is given by the
function
G : (N → ℘(NkG)) → (N → ℘(NkG)) defined as follows: for all X : N → ℘(NkG) and v ∈ N ,

G (X)[v] � ⋃
(u,c,v)∈E

fc(X [u]). �

Therefore,
G(X)[v] is the standard “meet-over-paths” of classical dataflow analysis, namely, the join of the transfer
functions fc(X) over all the edges (u, c, v) of G .

Lemma 5.7. Let G = (N, E, s, e) be a BACFG. For all n ∈N , X : N → ℘(NkG), v ∈ N, we have that F n
G(X)[v] = ∪0≤i≤n
i

G(X)[v].

Proof. We proceed by induction on n ∈N .

• n = 0: F 0
G(X)[v] =X [v] =
0

G(X)[v] = ∪0≤i≤0

i
G(X)[v];

• n > 0:

F n
G(X)[v] = FG(F n−1

G (X))[v]
= ⋃

(u,c,v)∈E
fc(F n−1

G (X)[u]) ∪ F n−1
G (X)[v] [by ind. hyp.]

=
G(∪0≤i≤n−1

i
G(X))[v] ∪ (∪0≤i≤n−1

i
G(X)[v]) [by additivity of
G]

= ∪1≤i≤n

i
G(X)[v] ∪ (∪0≤i≤n−1

i
G(X)[v])

= ∪0≤i≤n

i
G(X)[v]

This closes the proof. �
In the following, we describe an effective procedure τ to translate a URM program P into a BACFG which simulates P .

Definition 5.8 (Transformer τ). Given a URM P = (I1, . . . , It), the procedure τ (P) starts from N0 = {q1, . . . , qt, qt+1} and
E0 =∅ as, resp., sets of nodes and edges. Then, for all the instructions Ii of P :

(i) If Ii ∈ {z(n), s(n), t(m, n) | n, m ∈ N} then τ (P) adds an edge between the nodes qi and qi+1 as depicted by the dia-
grams in Fig. 2. For instance, if Ii = z(n) the edge (qi, xn := 0, qi+1) is added to the set E; the other cases are analogous.

(ii) If Ii = j(m, n, q), for some m, n, q, then τ (P) adds a new node inci and the edges depicted by the diagram in Fig. 3.
We shall use the variable z as a syntactic shorthand for xkP +1, which is a fresh variable not used in P .
13

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
Let N and E denote the final sets of, resp., nodes and edges obtained by applying the above two steps (i)–(ii) for all the
instructions of P . Then, τ (P) returns a set of BACFGs {(N, E, qs, qe) | qs, qe ∈ N0}, where start and end nodes freely range
in N0 and each BACFG has kG ∈ {kP , kP + 1} variables. Without loss of generality, we assume kG � kP + 1: In fact, if the
program P contains no jump and the extra-variable z is actually not used, then we can add a useless edge involving the
extra-variable z. �

In the rest of this section, we prove that the BACFG G = (N, E, q1, qt+1) ∈ τ (P) simulates the original URM program P .
To prove our claim, we define an equivalence relation between sets of states of a BACFG in τ (P). Intuitively, two sets X
and X ′ are deemed equivalent if, for each node, X and X ′ induce the same invariant on the first kP variables, except for
the states inci whose variable z is already greater than the variables occurring in the outgoing guards.

Definition 5.9 (Equivalence ≈). Let P = (I1, . . . , It) be a URM program and G = (N, E, qs, qe) ∈ τ (P). Then, given X , X ′ : N →
℘(NkG), the relation X ≈X ′ is defined as follows:

(1) ∀i ∈ [1, t + 1]. X [qi] �kP =X ′[qi] �kP ;
(2) ∀i ∈ [1, t], ∀m ∈ [1, kP], ∀(inci, xm = z?, qi+1) ∈ E . {�x ∈X [inci] | z ≤ xm} = {�x ∈X ′[inci] | z ≤ xm}. �

Let us point out that condition (2) is motivated by the observation that for nodes of type inci , the states containing
values of xm below z do not matter. Clearly, observe that ≈ is an equivalence relation. Moreover, it turns out that the
operational semantic function
G of Definition 5.6 preserves this equivalence ≈.

Lemma 5.10. Let P = (I1, . . . , It) be a URM program and G = (N, E, qs, qe) ∈ τ (P). Then, for all X , X ′ : N → ℘(NkG), X ≈ X ′ ⇒

G(X) ≈
G(X ′).

Proof. Assume that X ≈X ′ . For all i ∈ [1, t + 1] we have:

G(X)[qi] �kP

= ⋃
(u,c,qi)∈E

fc(X [u]) �kP

= ⋃
(qu,c,qi)∈E

fc(X [qu]) �kP ∪ ⋃
(inci−1,xm=z?,qi)∈E

fxm=z?(X [inci−1]) �kP

= ⋃
(qu,c,qi)∈E

fc(X [qu]) �kP ∪ ⋃
(inci−1,xm=z?,qi)∈E

fxm=z?({�x ∈ X [inci−1] | z ≤ xm}) �kP [as X ≈ X ′]

= ⋃
(qu,c,qi)∈E

fc(X ′[qu]) �kP ∪ ⋃
(inci−1,xm=z?,qi)∈E

fxm=z?({�x ∈ X ′[inci−1] | z ≤ xm}) �kP

= ⋃
(qu,c,qi)∈E

fc(X ′[qu]) �kP ∪ ⋃
(inci−1,xm=z?,qi)∈E

fxm=z?(X ′[inci−1]) �kP

=
G(X ′)[qi] �kP .

Moreover, for all i ∈ [1, t], m ∈ [1, kP] such that (inci, xm = z?, qi+1) ∈ E:

{�x ∈
G(X)[inci] | z ≤ xm}
= {�x ∈ ⋃

(u,c,inci)∈E
fc(X [u]) | z ≤ xm}

= {�x ∈ ⋃
(qi ,c,inci)∈E

fc(X [qi]) | z ≤ xm} ∪ {�x ∈ f z:=z+1(X [inci]) | z ≤ xm}

= {�x ∈ f z:=xn+1(X [qi]) ∪ f z:=xm+1(X [qi]) | z ≤ xm}∪
{�x ∈ f z:=z+1(X [inci]) | z ≤ xm}

= {�x ∈ f z:=xn+1(X [qi]) | z ≤ xm} ∪ {�x ∈ f z:=z+1(X [inci]) | z ≤ xm},
for some n �= m. Since X [qi] �kP =X ′[qi] �kP it follows that f z:=xn+1(X [qi]) = f z:=xn+1(X ′[qi]). Also note that:

{�x ∈ f z:=z+1(X [inci]) | z ≤ xm}
= {�x ∈ f z:=z+1({�x ∈ X [inci] | z ≤ xm}) | z ≤ xm} [as X ≈ X ′]
= {�x ∈ f z:=z+1({�x ∈ X ′[inci] | z ≤ xm}) | z ≤ xm}
= {�x ∈ f z:=z+1(X ′[inci]) | z ≤ xm}.
14

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
Hence,

{�x ∈
G(X)[inci] | z ≤ xm}
= {�x ∈ f z:=xn+1(X [qi]) | z ≤ xm} ∪ {�x ∈ f z:=z+1(X [inci]) | z ≤ xm}
= {�x ∈ f z:=xn+1(X ′[qi]) | z ≤ xm} ∪ {�x ∈ f z:=z+1(X ′[inci]) | z ≤ xm}
= {�x ∈
G(X ′)[inci] : z ≤ xm}.

This therefore shows that
G (X) ≈
G(X ′). �
Let us now show that each transition of a URM program can be simulated by a finitely many applications, say k, of the

function
. Moreover, whenever
 is applied less than k times, we obtain the empty set of states for all the nodes. Let us
define the following concatenation operation for sequences: (a1, . . . , ak) : a � (a1, . . . , ak, a). Concatenation will be used to
deal with the fact that our transformed BACFG has an additional variable w.r.t. the original URM program.

Lemma 5.11. Let P = (I1, . . . , It) be a URM program. For all BACFGs G = (N, E, qs, qe) ∈ τ (P), �x, �x′ ∈NkP , s′ ∈N , if 〈�x, s〉 ⇒ 〈�x′, s′〉
then there exists k ∈N such that:

(1)
k
G(⊥qs

�x:0) ≈ ⊥qs′
�x′ :0;

(2) ∀i ∈ [1, k − 1], ∀ j ∈ [1, t + 1].
i
G(⊥qs

�x:0)[q j] =∅.

Proof. Assume that 〈�x, s〉 ⇒ 〈�x′, s′〉. We distinguish three cases.

(i) Let Is ∈ {z(n), s(n), t(m, n) | n, m ∈N}. Consider the case Is = z(n) for some n (the remaining cases are analogous), so that
s′ = s + 1. For k = 1 we have that:

G(⊥qs
�x:0) = λv.

⋃
(u,c,v)∈E

fc(⊥qs
�x:0[u])

= λv.

{
fxn:=0({�x : 0}) if v = qs+1

∅ otherwise
[by def. of G]

= λv.

{
�x′ : 0 if v = qs+1

∅ otherwise

= ⊥qs′
�x′:0 [as s′ = s + 1]

Thus,
G (⊥qs
�x:0) ≈ ⊥qs′

�x′ :0, i.e., property (1) holds with k = 1. Property (2) trivially holds since for k = 1, [1, k − 1] is the empty
set.

(ii) Let Is = j(m, n, p) and assume that xm = xn holds, so that the next instruction to execute is Iq , i.e., s′ = p. For k = 1 we
have that:

G(⊥qs
�x:0) = λv.

⋃
(u,c,v)∈E

fc(⊥qs
�x:0[u])

= λv.

⎧⎪⎨
⎪⎩

fxm=xn?({�x : 0}) if v = qp

fz:=xm+1({�x : 0}) ∪ f z:=xn+1({�x : 0}) if v = incs

∅ otherwise

[by def. of G]

= λv.

⎧⎪⎨
⎪⎩

{�x : 0} if v = qp

{�x : xm + 1} if v = incs

∅ otherwise

[as xm = xn]

Since s′ = p and �x = �x′ , we have that:

• for all i ∈ [1, t + 1],
G (⊥qs
�x:0)[qi] = ⊥qp

�x:0[qi] = ⊥qs′
�x′ :0[qi];

• for all i ∈ [1, t + 1] and m ∈ [1, kP] such that (inci, xm = z?, qi+1) ∈ E:

{�x ∈
G(⊥qs)[inci] | z ≤ xm} =∅ = {�x ∈ ⊥qs′′ [inci] | z ≤ xm}.
�x:0 �x :0

15

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
Thus,
G (⊥qs
�x:0) ≈ ⊥qs′

�x′ :0 holds, i.e., property (1) holds with k = 1. Moreover, once again property (2) trivially holds because
[1, k − 1] is empty.

(iii) The last possible case is Is = j(m, n, q) with xm �= xn , so that the next instruction to execute is Is+1, i.e., s′ = s + 1. We
first prove, by induction, that for all i ≥ 1, the following implication holds:

i ≤ |xm − xn| ⇒
i
G(⊥qs

�x:0) = λv.

{
f z:=xn+i({�x : 0}) ∪ f z:=xm+i({�x : 0}) if v = incs

∅ otherwise
(∗)

For the base case i = 1, we have that:

G(⊥qs
�x:0)

= λv.
⋃

(u,c,v)∈E
fc(⊥qs

�x:0[u])

= λv.

{
f z:=xn+1({�x : 0}) ∪ f z:=xm+1({�x : 0}) if v = incs

∅ otherwise
[by def. of G]

For the inductive case i > 1, assume that i ≤ |xm − xn| (if i > |xm − xn| the implication (∗) trivially holds). We have that:

i
G(⊥qs

�x:0)

=
G(
i−1
G (⊥qs

�x:0))

=
G

(
λv.

{
f z:=xn+i−1({�x : 0}) ∪ f z:=xm+i−1({�x : 0}) if v = incs

∅ otherwise

)
[by ind. hyp. for i − 1 ≤ |xm − xn|]

= λv.

{
f z:=z+1

(
f z:=xn+i−1({�x : 0}) ∪ f z:=xm+i−1({�x : 0})) if v = incs

∅ otherwise

[as (incs, z := z + 1, incs) is an edge of G and

xm �= xn + i − 1 and xn �= xm + i − 1 since i − 1 < |xm − xn|]

= λv.

{
f z:=xn+i({�x : 0}) ∪ f z:=xm+i({�x : 0}) if v = incs

∅ otherwise

We have therefore shown the implication (∗). Now, note that for k = |xm − xn| + 1 we have that:

|xm−xn|+1
G (⊥qs

�x:0)
=
G(

|xm−xn|
G (⊥qs

�x:0))

=
G

(
λv.

{
f z:=xn+|xm−xn|({�x : 0}) ∪ f z:=xm+|xm−xn|({�x : 0}) if v = incs

∅ otherwise

)
[by (∗)]

= λv.

⎧⎪⎨
⎪⎩

f z:=xn+|xm−xn|+1({�x : 0}) ∪ f z:=xm+|xm−xn|+1({�x : 0}) if v = incs

{�x : max(xm, xn)} if v = qs+1

∅ otherwise
[because max(xm, xn) = min(xm, xn) + |xm − xn|]

Since s′ = s + 1 and �x = �x′ , we have that:

• for all i ∈ [1, t + 1],
|xm−xn |+1
G (⊥qs

�x:0)[qi] �kP = ⊥qs+1
�x:0 [qi] �kP = ⊥qs′

�x′ :0[qi] �kP ;
• for all i ∈ [1, t + 1] and m ∈ [1, kP] such that (inci, xm = z?, qi+1) ∈ E:

{�x ∈

|xm−xn|+1
G (⊥qs

�x:0)[inci] | z ≤ xm} = ∅= {�x ∈ ⊥qs′
�x′:0[inci] : z ≤ xm}.

Therefore,
G(⊥qs
�x:0) ≈ ⊥qs′

�x′ :0 holds. Furthermore, for all i ∈ [1, |xm − xn|], by applying the implication (∗) we obtain:

i
G(⊥qs

�x:0) =
{

f z:=xn+i({�x : 0}) ∪ f z:=xm+i({�x : 0}) if v = incs

∅ otherwise.
16

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
Thus, for all j ∈ [1, t + 1],
i
G(⊥qs

�x:0)[q j] =∅ holds and this concludes the proof. �
Let us now generalise Lemma 5.11 to any number of execution steps ⇒n performed by a URM program. In particular, we

show that if the URM halts then our abstract model will reach, after finitely many steps, a state that stores the URM output
in its end node. Likewise, whenever the URM diverges, the state of the end node will be empty.

Proposition 5.12. Let P = (I1, . . . , It) be a URM program. Then, for all G = (N, E, qs, qe) ∈ τ (P), �x, �x′ ∈ NkP , n ∈ N , if 〈�x, s〉 ⇒n

〈�x′, t + 1〉 then there exists n′ ∈N such that:

(1)
n′
G (⊥qs

�x:0) ≈ ⊥qt+1
�x′ :0 ;

(2) ∀i ∈ [0, n′ − 1].
i
G(⊥qs

�x:0)[qt+1] =∅.

Proof. We proceed by induction on n ∈N .

• Base case n = 0, so that 〈�x, s〉 = 〈�x′, t + 1〉. Therefore, for n′ = 0 the property (1) holds because:

n′
G (⊥qs

�x:0) =
0
G(⊥qt+1

�x′:0) [as n′ = 0, t + 1 = s, �x′ = �x]

= ⊥qt+1
�x′:0 [as
0

G = λx.x]

Moreover, the property (2) trivially holds because [0, n′ − 1] is empty.
• Inductive case n > 0, so that 〈�x, s〉 ⇒ 〈�x′′, s′′〉 ⇒n−1 〈�x′, t + 1〉. We have that:

– by Lemma 5.11, and observing that s �= t + 1, we know that there exists m ∈ N such that: (1)
m
G (⊥qs

�x:0) ≈ ⊥qs′′
�x′′ :0;

(2) ∀i ∈ [0, m − 1].
i
G (⊥qs

�x:0)[qt+1] =∅.

– by inductive hypothesis there exists n′′ ∈N such that: (i)
n′′
G (⊥qs′′

�x′′ :0) ≈ ⊥qt+1
�x′ :0 ; (ii) ∀i ∈ [0, n′′−1].
i

G (⊥qs′′
�x′′ :0)[qt+1] =∅.

Therefore, it turns out that:

n′′+m
G (⊥qs

�x:0) =
n′′
G (
m

G (⊥qs
�x:0))

≈
n′′
G (⊥qs′′

�x′′:0) [as
m
G (⊥qs

�x:0) ≈ ⊥qs′′
�x′′:0, by Lemma 5.10]

≈ ⊥qt+1
�x′:0 [by ind. hyp.]

thus showing (1) for n′′ + m. Moreover, for all i ∈ [0, n′′ − 1]:

i+m
G (⊥qs

�x:0) =
i
G(
m

G (⊥qs
�x:0))

≈
i
G(⊥qs′′

�x′′:0). [as
m
G (⊥qs

�x:0) ≈ ⊥qs′′
�x′′:0, by Lemma 5.10]

Recall that, by inductive hypothesis,
i
G(⊥qs′′

�x′′ :0)[qt+1] = ∅, so that we obtain that for all i ∈ [m, n′′ + m − 1],

i

G(⊥qs
�x:0)[qt+1] = ∅ holds. Since, by Lemma 5.11, we have that for all i ∈ [0, m − 1],
i

G(⊥qs
�x:0)[qt+1] = ∅ holds, we

conclude that for all i ∈ [0, n′′ + m − 1],
i
G(⊥qs

�x:0)[qt+1] =∅, thus showing (2) for n′′ + m. �
Proposition 5.13. Let P = (I1, . . . , It) be a URM program. Then, for all G = (N, E, qs, qe) ∈ τ (P), �x ∈NkP , n ∈N:

if
n
G(⊥qs

�x:0)[qt+1] �= ∅ then ∃�x′ ∈ NkP ,∃n′ ∈N. 〈�x, s〉 ⇒n′ 〈�x′, t + 1〉.

Proof. We proceed by induction on n ∈N:

• n = 0: by hypothesis,
0
G (⊥qs

�x:0)[qt+1] = ⊥qs
�x:0[qt+1] �=∅, so that s = t + 1 and, in turn, 〈�x, s〉 ⇒0 〈�x, t + 1〉.

• n > 0: by hypothesis, we have that
n
G(⊥qs

�x:0)[qt+1] �= ∅. We consider s �= t + 1, otherwise, one can trivially pick
n′ = 0. By construction, there exist �x′′, s′′ such that 〈�x, s〉 ⇒ 〈�x′′, s′′〉, and, by Lemma 5.11, there exists m such that

m

G (⊥qs
�x:0) ≈ ⊥qs′′

�x′′ :0. Note that n ≥ m holds, since for all i ∈ [1, m − 1],
i
G(⊥qs

�x:0)[qt+1] = ∅ holds. By Lemma 5.10, it
follows that
n−m

G (
m
G (⊥qs

�x:0)) ≈
n−m
G (⊥qs′′

�x′′ :0), By hypothesis and Definition 5.9, we have that
n−m
G (
m

G (⊥qs
�x:0))[qt+1] =

n−m
G (⊥qs′′

�x′′ :0)[qt+1] �= ∅. We conclude by applying the inductive hypothesis, that entails the existence of m′ such that
〈�x, s〉 ⇒ 〈�x′′, s′′〉 ⇒m′ 〈�x′, s′〉. �

The next two results show that for a given URM program P = (I1, . . . , It), the BACFG G = (N, E, q1, qt) ∈ τ (P) simulates
the operational semantics of P starting from its first instruction I1.
17

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
Proposition 5.14. Let P = (I1, . . . , It) be a given URM program and G = (N, E, q1, qt+1) ∈ τ (P). Then, for all �x, �x′ ∈NkP and n ∈N:

if 〈�x,1〉 ⇒n 〈�x′, t + 1〉 then �G��x:0[qt+1] �kP = {�x′}.

Proof. By Proposition 5.12 there exists n′ such that
n′
G (⊥q1

�x:0) ≈ ⊥qt+1
�x′ :0 and for all i ∈ [0, n′ − 1],
i

G(⊥q1
�x:0)[qt+1] = ∅. Let us

prove, by induction on i, that for all i > n′ ,
i
G(⊥q1

�x:0) ≈ λv.∅.

• i = n′ + 1:

n′+1
G (⊥q1

�x:0) =
G(
n′
G (⊥q1

�x:0))
≈
G(⊥t+1

�x′:0) [as
n′
G (⊥q1

�x:0) ≈ ⊥t+1
�x′:0 , by Lemma 5.10]

= λv.∅. [by def. of G]

• i > n′ + 1:

i
G(⊥q1

�x:0) =
G(
i−1
G (⊥q1

�x:0))
≈
G(λv.∅) [by ind. hyp. and Lemma 5.10]

= λv.∅

Thus, for all i �= n′ , we have that
i
G (⊥q1

�x:0)[qt+1] =∅. Therefore:

�G��x:0[qt+1]�kP = ∪i∈N F i(⊥q1
�x:0)[qt+1]�kP [by Kleene’s fixpoint theorem]

= ∪i∈N
i
G(⊥q1

�x:0)[qt+1]�kP [by Lemma 5.7]

=
n′
G (⊥q1

�x:0)[qt+1]�kP [as ∀i �= n′.
i
G(⊥q1

�x:0)[qt+1] =∅]

= {�x′}. [as
n′
G (⊥q1

�x:0) ≈ ⊥t+1
�x′:0]

This therefore closes the proof. �
Proposition 5.15. Let P = (I1, . . . , It) be a given URM program and G = (N, E, q1, qt+1) ∈ τ (P). Then, for all �x ∈NkP :

if for all �x′ ∈NkP ,n ∈N, 〈�x,1〉 �n 〈�x′, t + 1〉 then �G��x:0[qt+1] = ∅.

Proof. For all n′ ∈N , by Proposition 5.13, we have that
n′
G (⊥q1

�x:0)[qt+1] =∅ holds. As a consequence:

�G��x:0[qt+1] = ∪i∈N F i(⊥q1
�x:0)[qt+1] [by Kleene’s fixpoint theorem]

= ∪i∈N
i
G(⊥q1

�x:0)[qt+1] [by Lemma 5.7]

= ∅. �
We are now in position to prove the main result of this section.

Theorem 5.3 (Turing completeness of BACFGs). BACFGs are a Turing complete computational model.

Proof. This follows from Propositions 5.14 and 5.15 and Turing completeness of URMs [12, Theorem 4.7]. �
5.2. Concrete and abstract semantics

A key insight is that our concrete semantics is given by URM programs that satisfy the Assumption 2.1 of Turing com-
pleteness, while BACFGs provide the abstract semantics. Let us consider two Gödel numberings for URMs and BACFGs, so
that for an index a ∈ N , RMa and Ga denote, resp., the a-th URM and BACFG programs. The concrete semantics 〈φ, =〉 for
URMs is defined as follows: for any index a ∈N , arity n ∈N , and input �x ∈Nn ,

φ
(n)
a (�x) �

{
y if RMa on input �x halts with y stored on its first register

↑ otherwise.
(3)

The abstract semantics of BACFGs is defined as follows.
18

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
s

sa sb

ea eb

e

x1 = c1? x1 = c2?

Ga Gb

Fig. 4. The BACFG Gr(a,b,c1,c2) , output of the function r.

Definition 5.16 (State semantics of BACFGs). Let Q ⊆ ℘(Nt) be a predicate on sets of states with t ∈ N variables. The state
semantics 〈Q , =〉 of BACFGs, for any index a ∈ N and arity n ∈ N , is given by the function Q (n)

a : Nn → {0, 1} defined as
follows: for all input �x ∈Nn ,

Q (n)
a (�x) �

⎧⎪⎨
⎪⎩

1 if �Ga��x[ea] �= ∅∧ �Ga��x[ea]�t ∈ Q

0 if �Ga��x[ea] �= ∅∧ �Ga��x[ea]�t /∈ Q

↑ if �Ga��x[ea] = ∅,

where ea is the end node of the BACFG Ga . �
Predicates of type Q ⊆ ℘(Nt) are also known as hyperproperties [8] in program security and the state semantics of

Definition 5.16 models the validity of a given predicate Q at the end node of a BACFG. Note that, from a computability
perspective, it is not restrictive to focus on the end node, since this can be arbitrarily chosen in a BACFG.

Theorem 5.17. The state semantics of BACFGs in Definition 5.16 is ssmn, branching and discharging.

We split the proof of Theorem 5.17 into three separate results that are given below. In BACFGs, we write the command
[xa, xa+i] := [xb, xb+i], for some indices a, b and i ≥ 0, to denote a sequence of adjacent edges with commands xa := xb ,
xa+1 := xb+1, . . . , xa+i := xb+i . Likewise, [xa, xa+i] := 0 denotes a sequence of adjacent edges labelled with xa := 0, xa+1 := 0,
. . . , xa+i := 0.

Proposition 5.18. The state semantics of BACFGs in Definition 5.16 is branching.

Proof. Let 〈Q , =〉 be the state semantics of Definition 5.16 for a given predicate Q ⊆ ℘(Nt) on sets of states with t ∈
N variables. We define a total computable function r : N4 → N as follows: given two indices a, b of BACFGs, say Ga =
(Na, Ea, sa, ea) and Gb = (Nb, Eb, sb, eb), and two values c1, c2 ∈N , the function r suitably renames the nodes of Ga and Gb
to avoid clashes, and adds two fresh nodes s (for start) and e (for end) whose in/outgoing edges are depicted by the BACFG
in Fig. 4, thus denoted by Gr(a,b,c1,c2) .

Observe that in the BACFG Gr(a,b,c1,c2) with start and end nodes, resp., s and e, with inputs ranging in Nn , for some
n ∈ N , the maximum variable index is k = max(ka, kb, n), where ka, kb are, resp., the maximum variable indices in Ga and
Gb . Moreover, for all inputs �y = (y1, y2, . . . , yn) ∈Nn and c1 �= c2, it turns out that:

• if y1 = c1 then �Gr(a,b,c1,c2)��y[ea] = �Ga��y[ea] �k and �Gr(a,b,c1,c2)��y[eb] =∅;
• if y1 = c2 then �Gr(a,b,c1,c2)��y[eb] = �Gb��y[eb] �k and �Gr(a,b,c1,c2)��y[ea] =∅;
• otherwise, i.e. when y1 /∈ {c1, c2}, we have that �Gr(a,b,c1,c2)��y[ea] = �Gr(a,b,c1,c2)��y[eb] =∅.

Consequently:

�Gr(a,b,c1,c2)��y[e] = �Gr(a,b,c1,c2)��y[ea] ∪ �Gr(a,b,c1,c2)��y[eb] =

⎧⎪⎨
⎪⎩

�Ga��y[ea] �k if y1 = c1

�Gb��y[eb] �k if y1 = c2

∅ otherwise.

Hence, r is a total computable function such that for all a, b, c1, c2, x ∈N with c1 �= c2:
19

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
λ�y.Q (n)

r(a,b,c1,c2)
(x, �y)

= λ�y.

⎧⎪⎨
⎪⎩

1 if �Gr(a,b,c1,c2)�x:�y[e] �= ∅∧ �Gr(a,b,c1,c2)�x:�y[e] �t∈ Q

0 if �Gr(a,b,c1,c2)�x:�y[e] �= ∅∧ �Gr(a,b,c1,c2)�x:�y[e] �t /∈ Q

↑ if �Gr(a,b,c1,c2)�x:�y[e] = ∅

= λ�y.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if �Ga�x:�y[ea] �=∅∧ �Ga�x:�y[ea] �k�t∈ Q ∧ x = c1

0 if �Ga�x:�y[ea] �=∅∧ �Ga�x:�y[ea] �k�t /∈ Q ∧ x = c1

↑ if �Ga�x:�y[ea] =∅∧ x = c1

1 if �Gb�x:�y[eb] �= ∅∧ �Gb�x:�y[eb] �k�t∈ Q ∧ x = c2

0 if �Gb�x:�y[eb] �= ∅∧ �Gb�x:�y[eb] �k�t /∈ Q ∧ x = c2

↑ if �Gb�x:�y[eb] = ∅∧ x = c2

↑ otherwise

= λ�y.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if �Ga�x:�y[ea] �=∅∧ �Ga�x:�y[ea] �t∈ Q ∧ x = c1

0 if �Ga�x:�y[ea] �=∅∧ �Ga�x:�y[ea] �t /∈ Q ∧ x = c1

↑ if �Ga�x:�y[ea] =∅∧ x = c1

1 if �Gb�x:�y[eb] �= ∅∧ �Gb�x:�y[eb] �t∈ Q ∧ x = c2

0 if �Gb�x:�y[eb] �= ∅∧ �Gb�x:�y[eb] �t /∈ Q ∧ x = c2

↑ if �Gb�x:�y[eb] = ∅∧ x = c2

↑ otherwise

= λ�y.

⎧⎪⎨
⎪⎩

Q (n)
a (x, �y) if x = c1

Q (n)

b (x, �y) if x = c2

↑ otherwise

=

⎧⎪⎨
⎪⎩

λ�y.Q (n)
a (x, �y) if x = c1

λ�y.Q (n)

b (x, �y) if x = c2

λ�y. ↑ otherwise

Therefore, r satisfies the branching property of Definition 4.6. �
Proposition 5.19. The state semantics of BACFGs in Definition 5.16 is discharging.

Proof. Let 〈Q , =〉 be a state semantics for a predicate Q ⊆ ℘(Nt) on sets of states with t ∈ N variables. Similarly to the
proof of Proposition 5.18, let us define a total computable function r : N → N as follows: given an index a of a BACFG
Ga = (Na, Ea, sa, ea), where ka is the maximum variable index occurring in Ga , the function r suitably renames the nodes of
Ga to avoid clashes, and adds two fresh nodes s and e whose in/outgoing edges are depicted by the BACFG in Fig. 5.

Notice that in the BACFG Gr(a) with start and end nodes, resp., s and ea , given n ≥ 1, for all input �y = (y1, y2, . . . , yn) ∈
Nn and x ∈N we have that �Gr(a)�x:�y[ea] �t= �Ga��y[ea] �t : this happens because the command [x1, xn] := [x2, xn+1] left shifts
the variables and the assignment xn+1 := xmax(n+1,ka+1,t)+1 guarantees that xn+1 is undefined. Hence, r is a total computable
function such that for all a, x ∈N:

λ�y.Q (n+1)
r(a) (x, �y)

= λ�y.

⎧⎪⎨
⎪⎩

1 if �Gr(a)�x:�y[ea] �=∅∧ �Gr(a)�x:�y[ea] �t∈ Q

0 if �Gr(a)�x:�y[ea] �=∅∧ �Gr(a)�x:�y[ea] �t /∈ Q

↑ if �Gr(a)�x:�y[ea] =∅

= λ�y.

⎧⎪⎨
⎪⎩

1 if �Ga��y[ea] �= ∅∧ �Ga��y[ea] �t∈ Q

0 if �Ga��y[ea] �= ∅∧ �Ga��y[ea] �t /∈ Q

↑ if �Ga��y[ea] = ∅

= λ�y.Q (n)
a (�y).

Thus, r is a function satisfying the discharging property of Definition 4.6. �
Proposition 5.20. The state semantics of BACFGs in Definition 5.16 is ssmn.
20

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
s

sa

ea

[x1, xn] := [x2, xn+1]

xn+1 := xmax(n+1,ka+1,t)+1

Ga

Fig. 5. The BACFG Gr(a) , output of the function r , where irrelevant node names are omitted.

Proof. Let m, n ≥ 1 and 〈Q , =〉 be a state semantics for a given predicate Q ⊆ ℘(N p) on sets of states with p ∈ N
variables. We define a total computable function s : Nm+2 →N which takes as input two indices a, b and a m-dimensional
vector �z ∈ Nm . Intuitively, to satisfy the ssmn property of Definition 3.1, the output of s(a, b, �z) should be a BACFG that
simulates the computation of the concrete semantics φ(m)

b as defined in (3). Since this latter concrete semantics is defined
on URMs, it is enough to simulate the program RMb = (I1, . . . , It). To this aim, recall that the total computable function τ
of Definition 5.8 transforms URMs into BACFGs having equivalent semantics. Roughly, the BACFG Gs(a,b,�z) on input �y ∈ Nn

first simulates Gb′ = (Nb′ , Eb′ , q1, qt+1) ∈ τ (RMb) on input �z, and, then, simulates Ga = (Na, Ea, sa, ea) on input φ(m)

b (�z) : �y.
Before going into the details, recall that, in general, URMs set unused registers to 0, so that, by a slight abuse of notation,
we define the vector projection �z�k∈Nk , for all �z = (z1, . . . , zk′) ∈Nk′

, as follows:

�z�k �
{

(z1, . . . , zk′ ,0)�k if 0 ≤ k′ < k

(z1, . . . , zk) if k ≤ k′

Let ka and kb be the maximum variable (or register) index occurring, resp., in Ga and RMb . Recall the operational semantics
⇒ for URMs of Definition 5.4 and notice that:

φ
(m)

b (�z) =
{

z′
1 if ∃�z′ ∈Nkb .〈�z �kb ,1〉 ⇒∗ 〈�z′, t + 1〉

↑ otherwise.

Therefore, by Propositions 5.14 and 5.15, in order to simulate φ(m)

b (�z) it is enough to execute Gb′ on input �z �kb : 0. More in
detail, the transform s(a, b, �z) will add the following commands:

1. [xkb+2, xkb+n+1] := [x1, xn], to safely store the original input �y ∈Nn; in fact, the execution of �Gb′��z�kb
:0 will use the first

kb + 1 variables only;
2. [x1, xmin(m,kb)] := [z1, zmin(m,kb)], so that the first min(m, kb) variables contain �z �kb except for the 0-padding;
3. [xmin(m,kb)+1, xkb+1] := 0, to (possibly) add the missing 0-padding;

This allows us to execute Gb′ on input (�z �kb : 0) : �y. The next step is to execute Ga on input φ(m)

b (�z) : �y. Therefore, we add
the following commands:

4. [x2, xn+1] := [xkb+2, xkb+n+1], to restore the original input (�y) on the variables starting from x2;
5. [xn+2, xmax(ka,p)] := [xkb+n+2, xkb+max(ka,p)], to ensure that all the remaining variables up to xmax(ka,p) are left undefined.

Finally, the BACFG Ga is executed. The resulting BACFG Gs(a,b,�z) , with start and end nodes s and ea , resp., is described by
the graph in Fig. 6. Observe that, by definition:

• if φ(m)

b (�z) ↑ then, by Proposition 5.15, �Gs(a,b,�z)��y[ea] = �Gb′��z[qt+1] =∅;
• otherwise, by Proposition 5.14, �Gs(a,b,�z)��y[ea] �p = �Ga� (m) � � [ea] �p .
φb (z):y

21

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
s

q1

qt+1

sa

ea

[xkb+2, xkb+n+1] := [x1, xn]

[x1, xmin(m,kb)] := [z1, zmin(m,kb)]

[xmin(m,kb)+1, xkb+1] := 0

Gb′

[x2, xn+1] := [xkb+2, xkb+n+1]

[xn+2, xmax(ka ,p)] := [xkb+n+2, xkb+max(ka ,p)]

Ga

Fig. 6. The BACFG Gs(a,b,�z) , output of the function s, where irrelevant node names are omitted.

Hence, we defined a total computable function s such that for all a, b ∈N and �z ∈Nm:

λ�y.Q (n)

s(a,b,�z)(�y)

= λ�y.

⎧⎪⎨
⎪⎩

1 if �Gs(a,b,�z)��y[ea] �= ∅∧ �Gs(a,b,�z)��y[ea] �p∈ Q

0 if �Gs(a,b,�z)��y[ea] �= ∅∧ �Gs(a,b,�z)��y[ea] �p /∈ Q

↑ if �Gs(a,b,�z)��y[ea] = ∅

= λ�y.

⎧⎪⎪⎨
⎪⎪⎩

1 if φ
(m)

b (�z) ↓ ∧�Ga�φ(m)

b (�z):�y[ea] �= ∅∧ �Ga�φ(m)

b (�z):�y[ea] �p∈ Q

0 if φ
(m)

b (�z) ↓ ∧�Ga�φ(m)

b (�z):�y[ea] �= ∅∧ �Ga�φ(m)

b (�z):�y[ea] �p /∈ Q

↑ otherwise

= λ�y.Q (n+1)
a (φ

(m)

b (�z), �y)

Therefore, s is a function satisfying the ssmn property of Definition 3.1. �

5.3. An application to affine program invariants

Consider a state semantics 〈Q , =〉 for some predicate Q ⊆ ℘(Nt). For all n ≥ 1, let us define two sets A∀Q and A∃Q , by
distinguishing two cases depending on whether Q includes the empty set, that models nontermination, or not:
22

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
(1) If ∅ /∈ Q then:
A∀Q � {a ∈N | ∀�y. Q (n)

a (�y) = 1};
A∃Q � {a ∈N | ∃�y. Q (n)

a (�y) = 1}.
(2) If ∅ ∈ Q then:

A∀Q � {a ∈N | ∀�y. Q (n)
a (�y) ∈ {1, ↑}};

A∃Q � {a ∈N | ∃�y. Q (n)
a (�y) ∈ {1, ↑}}.

Hence, A∀Q (A∃Q) is the set of BACFGs such that Q holds at ea for any (some) input state. It turns out that if the
property Q is nontrivial then neither A∀Q nor A∃Q can be recursive.

Corollary 5.21. If Q is not trivial then A∀Q and A∃Q are not recursive.

Proof. Observe that A∀Q is ∼Q -extensional. Thus, Theorem 5.17 enables applying our intensional Theorem 4.10 to the state
semantics 〈Q , =〉 to derive that A∀Q is not recursive. The same argument applies to the existential version A∃Q . �

Thus, Corollary 5.21 means that we cannot decide if a nontrivial predicate Q holds at a given program point of a BACFG
for all input states, neither whether there exists an input state that will make Q true. Let us remark that the predicates Q
are arbitrary and include, but are not limited to, relational predicates between program variables such as affine equalities of
Karr’s abstract domain. Let us define some noteworthy examples of predicates:

(i) Given a set of affine equalities aff = { �a j · �x = b j}m
j=1, with �a j ∈Zt and b j ∈Z, Q aff � {S ∈ ℘(Nt) | ∀�v ∈ S.∀ j ∈ [1, m]. �a j ·

�v = b j};
(ii) Given i ∈ [1, t] and c ∈N , Q =c � {S ∈ ℘(Nt) | ∃�v ∈ S. vi = c};

(iii) Given a size k ∈N , Q fink � {S ∈ ℘(Nt) | |S| = k} and Q fin � ∪k∈N Q fink .

Therefore, it turns out that Corollary 5.21 for A∀Q aff entails the undecidability result of Müller-Olm and Seidl [26, Sec-
tion 7] discussed at the beginning of Section 5. The predicate Q =c can be used to derive the undecidability of checking if
some variable xi may store a given constant c for affine programs with positive affine guards, e.g., for c = 0 this amounts to
the undecidability of detecting division-by-zero bugs. Finally, with Q fin0 we obtain the undecidability of dead code elimina-
tion, Q fin1 entails the well-known undecidability of constant detection [13,31], while the existential predicate Q fin encodes
whether some program point may only have finitely many different states.

6. Discussion of related work

In this section we discuss more in detail the relation with some of Asperti’s results [1] and with Rogers’ systems of
indices [35,36].

6.1. Relation with Asperti’s approach

We show that our ssmn property in Definition 3.1 is a generalisation of the smn property in Asperti’s approach [1],
in a way that Kleene’s second recursion theorem and Rice’s theorem for complexity cliques in [1] arise as instances of
the corresponding results in our approach. Let us first recall and elaborate on the axioms for the complexity of function
composition studied by Lischke [21–23] and assumed in [1, Section 4].

Definition 6.1 (Linear time and space complexity composition). Consider a given concrete semantics φ and a Blum complexity
�. The pair 〈φ, �〉 has the linear time composition property if there exists a total computable function h :N2 →N such that
for all i, j ∈N:

(1) φh(i, j) = φi ◦ φ j ,
(2) �h(i, j) ∈ �(�i ◦ φ j + � j).

If (2) is replaced by

(2′) �h(i, j) ∈ �(max{�i ◦ φ j, � j})

then 〈φ, �〉 is said to have the linear space composition property. �
Roughly speaking, the linear time composition property states that there exists a program h(i, j) which computes the

composition φi(φ j(x)) in an amount of time which is asymptotically equivalent to the sum of the time needed for computing
23

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
P j on input x, eventually producing some output φ j(x), and the time form computing Pi on such value. On the other hand,
the linear space composition property aims at modelling the needed space, so that rather than adding the complexities of
Pi and P j , their maximum is considered, since this intuitively is the maximum amount of space needed for computing a
composition of programs.

By observing that �(max{�i ◦ φ j, � j}) = �(�i ◦ φ j + � j) we can merge the linear time and space properties of Defini-
tion 6.1 and extend them for n-ary compositions as follows.

Definition 6.2 (Linear complexity composition). Given a concrete semantics φ and a Blum complexity �, the pair 〈φ, �〉 has
the linear complexity composition property if, given n, m ≥ 1, there exists a total computable function h : N2 →N such that
for all i, j ∈N:

φ
(m+n)

h(i, j) = λ�xλ�y. φ(n+1)
i (φ

(m)
j (�x), �y),

�
(m+n)

h(i, j) ∈ �(λ�xλ�y. (�(n+1)
i (φ

(m)
j (�x), �y)) + �

(m)
j (�x))). �

We can now recall the smn property as defined in [1, Definition 11].

Definition 6.3 (Asperti’s smn property). Given a concrete semantics φ, a Blum complexity � and m, n ≥ 1, the pair 〈φ, �〉 has
the Asperti’s smn property if there exists a total computable function s :Nm+1 →N such that ∀e ∈N, �x ∈Nm:

λ�y.φ
(m+n)
e (�x, �y) = φ

(n)

s(e,�x) ,

λ�y.�
(m+n)
e (�x, �y) ∈ �(λ�y.�

(n)

s(e,�x)(�y)). �
Informally, the smn property of Definition 6.3 states that the operation of fixing parameters preserves both the concrete

semantics and the asymptotic complexity. Under these assumptions, we can show that Asperti’s complexity clique semantics
satisfies our ssmn property. The proof is a simple adaptation of the one used in Section 3 to argue that the concrete
semantics of Example 2.3 is ssmn.

Lemma 6.4. Let 〈π, ≡π 〉 be the complexity clique semantics of Example 2.6. If 〈π, ≡π 〉 satisfies Asperti’s smn and linear complexity
composition properties then 〈π, ≡π 〉 is ssmn.

Proof. We have to show that given m, n ≥ 1, there exists a total computable function s : Nm+2 → N such that for all
a, b ∈N , �x ∈Nm:

λ�y.π
(n+1)
a (φ

(m)

b (�x), �y) ≡π π
(n)

s(a,b,�x).

We have that

λ�y.π
(n+1)
a (φ

(m)

b (�x), �y) =
= λ�y.〈〈φ(n+1)

a (φ
(m)

b (�x), �y),�
(n+1)
a (φ

(m)

b (�x), �y)〉〉
[by definition of πa]
≡π λ�y.〈〈φ(m+n)

h(a,b)
(�x, �y),�

(m+n)

h(a,b)
(�x, �y)〉〉

[with h : N2 → N total computable, by linear complexity composition]
≡π λ�y.〈〈φ(n)

s′(h(a,b),�x)(�y),�
(n)

s′(h(a,b),�x)(�y)〉〉
[with s′ :Nm+1 → N total computable, by Asperti’s smn property]
= 〈〈φ(n)

s′(h(a,b),�x),�
(n)

s′(h(a,b),�x)〉〉 = π
(n)

s′(h(a,b),�x)

The desired function s : Nm+2 → N can therefore be defined as s(a, b, �x) � s′(h(a, b), �x). Note that s is total computable
since h and s′ are so. �

This result, together with the observation that the notion of fairness in Definition 3.2 instantiated to the complexity
clique semantics is exactly that of [1, Definition 26], allows us to retrieve Kleene’s second recursion theorem and Rice’s
theorem for complexity cliques in [1] as instances of our corresponding results in Section 4.1.
24

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
6.2. Relation with systems of indices

As mentioned in Section 2, our definition of abstract semantics resembles the acceptable systems of indices [28, Defi-
nition II.5.1] or numberings [36, Exercise 2-10], firstly studied by Rogers [35]. In this section we discuss how such notions
compare.

Definition 6.5 (System of indices [28, Definition II.5.1]). A system of indices is a family of functions {ψn}n∈N such that each
ψn :N → Cn is a surjective map that associates program indices to n-ary partial recursive functions.

• {ψn}n∈N has the parametrization (or smn) property if for every m, n ∈ N there is a total computable function
s :Nm+1 →N such that ∀e ∈N, �x ∈Nm:

λ�y.ψm+n
e (�x, �y) = ψn

s(e,�x).

• {ψn}n∈N has the enumeration property if for every n ∈N there exists u ∈N such that for all and e ∈N and �y ∈Nn:

ψn
e = λ�y.ψn+1

u (e, �y). �
Any standard Gödel numbering associating a program with the function it computes is a system of indices with the

parametrization and enumeration properties. Moreover, exactly as we did in Example 2.3, any system of indices {ψn}n∈N can
be viewed as an abstract semantics 〈π, =〉 with πa

n � ψn
a . In this context, the enumeration and parametrization properties

correspond to our fairness and ssmn conditions: fairness is exactly enumeration while ssmn follows from parametrization
and enumeration, as discussed in Section 3 for the concrete semantics (cf. Example 2.3).

A system of indices is defined to be acceptable if it allows to get back and forth with a given system of indices satisfying
the parametrization and enumeration properties through a pair of total computable functions.

Definition 6.6 (Acceptable system of indices [35, Definition 4]). Let {ϕn}n∈N be a given system of indices with the parametriza-
tion and enumeration properties. A system of indices {ψn}n∈N is acceptable if there exist two total computable functions
f , g :N →N such that for all a, n ∈N:

ψn
a = ϕn

f (a) and ϕn
a = ψn

g(a). �
As shown in [28, Proposition II.5.3], it turns out that a system of indices is acceptable if and only if it satisfies both

enumeration and parametrization (a proof of this characterization was first given by Rogers [35, Section 2]). Consequently,
an acceptable system of indices {ψn}n∈N can be viewed as an abstract semantic 〈π, =〉, where πn

a = ψn
a , which, by this

characterization of acceptability, is ssmn and fair, and therefore, by Theorem 4.1 it enjoys Kleene’s second recursion theorem,
as already known from [28, Corollary II.5.4].

Under this perspective, a generic abstract semantics according to Definition 2.2 can be viewed as a proper generalisation
of the notion of acceptable system of indices, in the sense that the latter merely encodes a change of program numbering
and does not allow to take into account an actual abstraction of the concrete input/output behaviour of programs.

7. Conclusion and future work

This work generalises some traditional extensional results of computability theory, notably Kleene’s second recursion
theorem and Rice’s theorem, to intensional abstract program semantics that include the complexity cliques investigated by
Asperti [1]. Our approach was also inspired by Moyen and Simonsen [25] and relies on weakening the classical definition
of extensional program property to a notion of partial extensionality w.r.t. abstract program semantics that satisfy some
structural conditions. As an application, after showing the Turing completeness of the class of affine control flow graphs
with positive affine guards (BACFGs), we strengthened and generalised a result by Müller-Olm and Seidl [26] proving that
for affine programs with positive affine guards it is undecidable whether an affine relation holds at a given program point.
Our results also shed further light on the claim that these undecidability results hinge on the Turing completeness of the
underlying computational model, as argued in [25].

It is worth observing that our approach, similarly to those of [1,25], relies on the possibility of constructing or trans-
forming programs while preserving the abstract semantics as required, e.g., by the fairness property (cf. Definition 3.2) or
the branching property (cf. Definition 4.6). These requirements can be hard to meet when the semantics of interest is too
concrete. For instance, properties of programs related to the exact complexity (e.g., the set of programs p terminating in
exactly �p(n) = n2 + 2 steps), can hardly be cast into our framework, even though we do not provide a formal impossibility
result.

As future work, an interesting direction concerns the chance of leveraging our framework to achieve new (or already
known) undecidability results of static program analyses. Some viable candidates appear to be the undecidability results al-
ready mentioned in the introduction, such as the undecidability of flow-sensitive alias analysis [6,20], points-to analysis [6],
and context-sensitive data-dependence analysis [32].
25

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
A further stimulating task would be to investigate intensional generalisations of Rice-Shapiro’s theorem that fit our
framework based on abstract semantics. This appears to be a nontrivial challenge. Generalisations of Rice-Shapiro’s theorem
have been given in [1, Section 5] and [25, Section 5.1]. A generalisation in the vein of the approach in [1] seems to be
viable, but would require structural assumptions on abstract program semantics that, while natural in [1] whose focus
is on complexity properties, would be artificial for abstract program semantics and would limit a general applicability. A
further stimulating research topic is to apply our approach to abstract semantics as defined by abstract interpretation of
programs [9], in particular for investigating the relationship with the notion of abstract extensionality studied by Bruni et
al. [5]. Finally, while our framework relies on the assumption of an underlying Turing complete computational model, in a
different direction, one could try to consider intensional properties for classes of programs indexing subrecursive functions
(e.g., primitive recursive functions), whose extensional properties have been already studied (see, e.g., [14,19]). Despite
the fact that we suppose that our approach will fall short on these program classes, as one cannot expect to have a
universal program inside the class itself or the validity of Kleene’s second recursion theorem, we think that this represents
an intriguing research challenge.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

We are grateful to Roberto Giacobazzi for thorough discussions and comments.
Paolo Baldan and Francesco Ranzato have been partially funded by University of Padova, under the SID 2018 project

“Analysis of STatic Analyses (ASTA)”, and by Italian Ministry of University and Research, under the PRIN 2017 project no.
201784YSZ5 “AnalysiS of PRogram Analyses (ASPRA)”. Francesco Ranzato has been partially funded by Facebook Research,
under a “Probability and Programming Research Award”, and by an Amazon Research Award for “AWS Automated Reasoning”.

References

[1] Andrea Asperti, The intensional content of Rice’s theorem, in: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2008, ACM, New York, NY, USA, 2008, pp. 113–119.

[2] Paolo Baldan, Francesco Ranzato, Linpeng Zhang, A Rice’s theorem for abstract semantics, in: Nikhil Bansal, Emanuela Merelli, James Worrell (Eds.),
Proceedings of the 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, in: LIPIcs, vol. 198, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021, 117.

[3] Manuel Blum, A machine-independent theory of the complexity of recursive functions, J. ACM 14 (2) (April 1967) 322–336.
[4] Manuel Blum, On effective procedures for speeding up algorithms, J. ACM 18 (2) (April 1971) 290–305.
[5] Roberto Bruni, Roberto Giacobazzi, Roberta Gori, Isabel Garcia-Contreras, Dusko Pavlovic, Abstract extensionality: on the properties of incomplete

abstract interpretations, in: Proceedings of the ACM on Programming Languages (POPL 2020), 2020, 4.
[6] Venkatesan T. Chakaravarthy, New results on the computability and complexity of points-to analysis, in: Proceedings of the ACM on Programming

Languages (POPL 2003), ACM, 2003, pp. 115–125.
[7] Arthur Charlesworth, The undecidability of associativity and commutativity analysis, ACM Trans. Program. Lang. Syst. 24 (5) (2002) 554–565.
[8] Michael R. Clarkson, Fred B. Schneider, Hyperproperties, J. Comput. Secur. 18 (6) (2010) 1157–1210.
[9] Patrick Cousot, Principles of Abstract Interpretation, MIT Press, 2021.

[10] Patrick Cousot, Radhia Cousot, Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of
fixpoints, in: Proc. 4th ACM Symp. on Principles of Programming Languages (POPL 1977), ACM, 1977.

[11] Patrick Cousot, Roberto Giacobazzi, Francesco Ranzato, Program analysis is harder than verification: a computability perspective, in: Proc. Int. Conf. on
Computer Aided Verification (CAV 2018), Springer, 2018, pp. 75–95.

[12] Nigel Cutland, Computability: An Introduction to Recursive Function Theory, Cambridge University Press, 1980.
[13] Matthew S. Hecht, Flow Analysis of Computer Programs, Elsevier, 1977.
[14] Mathieu Hoyrup, The decidable properties of subrecursive functions, in: Proc. Int. Coll. on Automata, Languages and Programming (ICALP 2016), in:

LIPIcs, vol. 55, 2016, 108.
[15] Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, James Worrell, Polynomial invariants for affine programs, in: Proceedings of the 33rd Annual ACM/IEEE

Symposium on Logic in Computer Science (LICS 2018), ACM, New York, NY, USA, 2018, pp. 530–539.
[16] John B. Kam, Jeffrey D. Ullman, Monotone data flow analysis frameworks, Acta Inform. 7 (1977) 305–317.
[17] Michael Karr, Affine relationships among variables of a program, Acta Inform. 6 (1976) 133–151.
[18] Stephen C. Kleene, On notation for ordinal numbers, J. Symb. Log. 3 (4) (1938) 150–155.
[19] Dexter Kozen, Indexings of subrecursive classes, Theor. Comput. Sci. 11 (1980) 277–301.
[20] William Landi, Undecidability of static analysis, ACM Lett. Program. Lang. Syst. 1 (4) (dec 1992) 323–337.
[21] Gerhard Lischke, Über die Erfüllung gewisser Erhaltungssätze durch Kompliziertheitsmasse, Math. Log. Q. 21 (1) (1975) 159–166.
[22] Gerhard Lischke, Natürliche Kompliziertheitsmasse und Erhaltungssätze I, Math. Log. Q. 22 (1) (1976) 413–418.
[23] Gerhard Lischke, Natürliche Kompliziertheitsmasse und Erhaltungssätze II, Math. Log. Q. 23 (13–15) (1977) 193–200.
[24] Antoine Miné, Tutorial on static inference of numeric invariants by abstract interpretation, Found. Trends Program. Lang. 4 (3–4) (2017) 120–372.
[25] Jean-Yves Moyen, Jakob Grue Simonsen, More intensional versions of Rice’s theorem, in: Proc. Computability in Europe (CIE 2019), Computing with

Foresight and Industry, Springer, 2019, pp. 217–229.
[26] Markus Müller-Olm, Helmut Seidl, A note on Karr’s algorithm, in: Proc. Int. Coll. on Automata, Languages and Programming (ICALP 2004), Springer,

2004, pp. 1016–1028.
[27] Markus Müller-Olm, Helmut Seidl, Precise interprocedural analysis through linear algebra, in: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL 2004), ACM, New York, NY, USA, 2004, pp. 330–341.
26

http://refhub.elsevier.com/S0890-5401(22)00108-0/bib882BCBDEC09010A5DE83488A4DDF62DCs1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib882BCBDEC09010A5DE83488A4DDF62DCs1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib1EC1BACD7947A33A6D6D14DDA26EA9B9s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib1EC1BACD7947A33A6D6D14DDA26EA9B9s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib1EC1BACD7947A33A6D6D14DDA26EA9B9s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib1B8EC8373F8AA8E9292B21542D9EDE65s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibF55FEA264D9D4E1B2EBC1A4BEF337852s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibABE1028BC49A00F8809388F047D7972Ds1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibABE1028BC49A00F8809388F047D7972Ds1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibD3CC926B70F1C97F000353F09F93E7A7s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibD3CC926B70F1C97F000353F09F93E7A7s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibADBADC88C51C5CD46BBA336806A25D59s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib74BCDC242A8B788FA42865132E093EC3s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib5225DC03564DE5D9F00666383710D761s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibD0C36425265CE5653894347E75209AE0s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibD0C36425265CE5653894347E75209AE0s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibEACFA764AFACC9A467439B75E03614FDs1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibEACFA764AFACC9A467439B75E03614FDs1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib6574A378A0975B0B71234C18BCBD3AB2s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib70E5BD4534E715A1483F6FFDBD5F86EBs1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib85571ACAAAD98FF4A9A2F1B08E20BA63s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib85571ACAAAD98FF4A9A2F1B08E20BA63s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib0D8699A40296E59C2CDCF0D7F6E2EEF2s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib0D8699A40296E59C2CDCF0D7F6E2EEF2s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibB44EBB79FE5CDAEE1415F8FD176EC26Bs1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibB067A68ADAA26131F50B150FF9487C80s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib2E928CCF81ECF03A6A6DCD7A9DE1DC65s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibB0367CDF9B175C7313DD5E1392A27570s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib36012C290A35EF6F4EC71E1389513956s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibB972420C677EEA2F450E9EC3ACF9A47Ds1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib1BFF8B4DE658048FCC83BE7D55F1674Bs1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibA6CED4723A5E9BB3686E7D505BE3905As1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib584A0AC5DDCB2E072C267259D3599615s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib0EB70AAE5AA1FBB7B950A57B37ADDCFFs1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib0EB70AAE5AA1FBB7B950A57B37ADDCFFs1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibD0F6D6BE1D21156D592835E79096EA94s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibD0F6D6BE1D21156D592835E79096EA94s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib668AED4F976C5D0E44BB3F6613832E96s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib668AED4F976C5D0E44BB3F6613832E96s1

P. Baldan, F. Ranzato and L. Zhang Information and Computation 289 (2022) 104953
[28] Piergiorgio Odifreddi, Classical Recursion Theory: The Theory of Functions and Sets of Natural Numbers, sole distributors for the USA and Canada,
Elsevier Science Pub. Co., 1989.

[29] Christos H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[30] Francesco Ranzato, Decidability and synthesis of abstract inductive invariants, in: Proc. 31st International Conference on Concurrency Theory (CONCUR

2020), in: LIPIcs, vol. 171, 2020, 30.
[31] John H. Reif, Harry R. Lewis, Symbolic evaluation and the global value graph, in: Proc. 4th ACM Symp. on Principles of Programming Languages (POPL

1977), ACM, 1977, pp. 104–118.
[32] Thomas W. Reps, Undecidability of context-sensitive data-independence analysis, ACM Trans. Program. Lang. Syst. 22 (1) (2000) 162–186.
[33] G. Rice Henry, Classes of recursively enumerable sets and their decision problems, Trans. Am. Math. Soc. 74 (1953) 358–366.
[34] Xavier Rival, Kwangkeun Yi, Introduction to Static Analysis – An Abstract Interpretation Perspective, MIT Press, 2020.
[35] Hartley Rogers, Gödel numberings of partial recursive functions, J. Symb. Log. 23 (3) (1958) 331–341.
[36] Hartley Rogers, Theory of Recursive Functions and Effective Computability, Higher Mathematics Series, McGraw-Hill, 1967.
[37] Raymond M. Smullyan, Undecidability and recursive inseparability, Math. Log. Q. 4 (7–11) (1958) 143–147.
27

http://refhub.elsevier.com/S0890-5401(22)00108-0/bibF44FF7447966845A914A3AB95DB0D7D1s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibF44FF7447966845A914A3AB95DB0D7D1s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib6B1392700D814AC188820F4F9654B87Bs1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibCC9D3ED3DB690CA6E56F8D8056C589FFs1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibCC9D3ED3DB690CA6E56F8D8056C589FFs1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib9BE011DE37C10EFD93CC75018D677249s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib9BE011DE37C10EFD93CC75018D677249s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibC7FE65D4DEEE62A5FD232F061FC19252s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibA434B6EB995C3A7553C649454BF4F856s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bib7606DDC3B82E910994BBB26CE329598As1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibE7E8CD97F9F3FEEE7CD893789976F12Bs1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibE5CF34923AD39A0D51250F7BE8EDFA64s1
http://refhub.elsevier.com/S0890-5401(22)00108-0/bibECE20902F395A6B85F1C2E7D95B2FF6Fs1

	Intensional Kleene and Rice theorems for abstract program semantics
	1 Introduction
	2 Basic notions
	3 Fair and strong smn semantics
	4 Kleene’s second recursion theorem and Rice’s theorem
	4.1 Kleene’s second recursion theorem
	4.2 Branching semantics
	4.3 An application to static program verifiers

	5 On the decidability of affine program invariants
	5.1 Turing completeness of BACFGs
	5.2 Concrete and abstract semantics
	5.3 An application to affine program invariants

	6 Discussion of related work
	6.1 Relation with Asperti’s approach
	6.2 Relation with systems of indices

	7 Conclusion and future work
	Declaration of competing interest
	Acknowledgments
	References

