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Classical results in computability theory, notably Rice’s theorem, focus on the extensional 
content of programs, namely, on the partial recursive functions that programs compute. 
Later work investigated intensional generalisations of such results that take into account 
the way in which functions are computed, thus affected by the specific programs 
computing them. In this paper, we single out a novel class of program semantics based 
on abstract domains of program properties that are able to capture nonextensional aspects 
of program computations, such as their asymptotic complexity or logical invariants, and 
allow us to generalise some foundational computability results such as Rice’s Theorem 
and Kleene’s Second Recursion Theorem to these semantics. In particular, it turns out 
that for this class of abstract program semantics, any nontrivial abstract property is 
undecidable and every decidable over-approximation necessarily includes an infinite set 
of false positives which covers all the values of the semantic abstract domain.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Most classical results in computability theory focus on the so-called extensional properties of programs, i.e., on the 
properties of the partial functions they compute. Notably, the renowned Rice’s Theorem [33] (see also standard textbooks 
such as [12,28,36]) states that any nontrivial extensional property of programs is undecidable. Roughly speaking, a property 
is extensional when it only concerns the function computed by a program, i.e., its input/output behaviour. Despite being 
very general, Rice’s Theorem and similar results in computability theory, due to the requirement of extensionality, leave 
out several intensional properties which are of utmost importance in the practice of programming. Essential intensional 
properties of programs include their asymptotic complexity of computation, their logical invariants (e.g., relations between 
variables at program points), or any event that might happen during the execution of the program while not affecting its 
output.

State-of-the-art A generalisation of well-established results of computability theory to the realm of program complexity 
has been put forward by Asperti [1]. A first observation is that Blum’s complexity classes [3], i.e., sets of recursive func-
tions (rather than sets of programs) with some given (lower or upper) bound on their (space and/or time) complexity, are 
not adequate for investigating the decidability aspects of program complexity: in fact, viewed as program properties they 
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are trivially extensional. Thus, a key idea in [1] is to focus on the so-called complexity cliques, namely, sets of programs 
(i.e., program indices) closed with respect to their extensional input/output behaviour and their asymptotic complexity. 
Asperti [1] showed how this approach enables intensional versions of Rice’s theorem, Rice-Shapiro theorem, and Kleene’s 
second recursion theorem ([12,36] are standard references for these foundational results) for complexity cliques.

More recently, a different approach has been considered by Moyen and Simonsen in [25], where the classical definition 
of extensionality has been weakened to a notion of partial extensionality. Roughly, a given set of programs is partially 
extensional if it includes the set of all programs computing a given partial recursive function. It is shown in [25] that if a 
set of programs and its complement are partially extensional, then they cannot be recursive. Interestingly, this result can 
be further generalised by replacing the extensionality with an equivalence relation on programs satisfying some suitable 
structural conditions, notably, the existence of a so-called intricated switching family. Moyen and Simonsen [25] show how 
to derive within their framework intensional versions of Rice’s Theorem — generalising Asperti’s result [1] — and Rice-
Shapiro Theorem.

Several results concerning the undecidability of specific intensional program properties of interest for static program 
analysis have been put forward. It is worth recalling the undecidability of flow-sensitive alias analysis in languages with con-
ditional statements, loops, dynamic storage and recursive data structures [6,20], the undecidability of points-to analysis for 
languages restricted to use scalar variables [6], the undecidability of associativity and commutativity analysis for functions 
in parallel languages [7], and the undecidability of context-sensitive data-dependence analysis [32]. Notably, Müller-Olm and 
Seidl [26] proved that for affine programs with positive affine guards it is undecidable whether a given nontrivial affine re-
lation holds at a given program point or not. This latter result relies on a reduction to the undecidable Post correspondence 
problem, inspired by earlier reductions explored in data flow analysis [13,16], and is formulated by leveraging Karr’s lat-
tice [17], a well known abstract domain in static program analysis [9,24,34] consisting of affine equalities between program 
variables, such as 2x − 3y = 1.

Main contributions The results in this paper yield undecidability guarantees for general classes of intensional program prop-
erties as those of interest for program analysis. In brief, for abstract semantics satisfying suitable conditions, we show that 
all non-trivial properties of the semantics of programs are undecidable. In particular, our framework is instantiated to prove 
some undecidability results for static program verifiers in a general setting for program analysis and verification by Cousot 
et al. [11], and to re-discover as a particular case the undecidability of affine invariants for affine programs with positive 
affine guards proved by Müller-Olm and Seidl [26]. More in detail, along the lines traced by Asperti [1], we investigate 
whether and how some fundamental extensional results of computability theory can be systematically generalised to in-
tensional aspects of computation, but rather than focusing on specific intensional properties we deal with generic abstract 
program semantics. More in detail, we distill two fundamental properties of abstract program semantics in our approach: 
the strong smn property and the existence of a universal fair program, roughly, an interpreter that preserves the abstract se-
mantics. We show that for abstract semantics satisfying the strong smn property and admitting a universal fair program, a 
generalisation of Kleene’s second recursion theorem can be proved. This, in turn, leads to a generalisation of Rice’s theorem. 
As we will discuss in Section 6, the framework is general enough to be applicable to Asperti’s complexity cliques of [1]. 
Besides relying on a general abstract program semantics, inspired by Moyen and Simonsen’s approach [25], we also relax 
the extensionality condition to partial extensionality. This weakening provides stronger impossibility results as it allows us 
to show that every decidable over-approximation necessarily contains an infinite set of false positives which covers all the 
values of the underlying semantic abstract domain. On a different route, we establish a precise connection with Moyen and 
Simonsen’s work [25] by showing that for any abstract program semantics satisfying the strong smn property and a struc-
tural branching condition (roughly, expressing some form of conditional choice), we can prove the existence of an intricated 
switching family, which turns out to be the crucial hypothesis in [25] for deriving an intensional version of Rice’s theorem. 
This notion of intricated switching family is further explored by identifying a canonical one.

Therefore, on the one hand, we generalise the results in [1], going beyond complexity cliques, and, on the other hand, 
we provide an explicit characterisation of a class of program semantics that admit intricated switching families so that the 
results in [25] can be applied.

Finally, we show some applications of our intensional Rice’s theorem that generalise some undecidability results for 
intensional properties used in static program analysis. In particular, we focus on program analysis in Karr’s abstract domain 
of affine relations between program variables [17] and on the aforementioned undecidability result for affine programs with 
positive affine guards by Müller-Olm and Seidl [26]. Here, we first show that the class of affine programs with positive affine 
guards, modelled as control flow graphs, is Turing complete (something that, to the best of our knowledge, was previously
unknown in the literature). Then, this allows us to derive the undecidability result in [26] as a consequence of our results.

Outline The rest of the paper is structured as follows. In Section 2, we provide some background and our basic notions. 
In Section 3, we introduce the strong smn property, fair universal programs, and the branching condition that will play a 
fundamental role in our results. In Section 4, we provide our generalisation of Kleene’s second recursion theorem and use 
it to derive our intensional Rice’s theorem. We also establish an explicit connection with the notion of intricated switching 
family given in [25], and discuss some immediate applications for static program verifiers in the setting of Cousot et al. [11]. 
In Section 5, we prove first that the class of affine control flow graphs with positive affine guards is Turing complete, and 
then we provide more applications of our results to the analysis of such affine programs. Section 6 discusses in detail the 
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relation with some of Asperti’s results [1] and with Rogers’ systems of indices [35,36]. Finally, Section 7 concludes and 
outlines some directions of future work. This is a full and revised version of the conference paper [2].

2. Basic notions

Given an n-ary partial function f :Nn →N , we denote by dom( f ) the domain of f and by rng( f ) � { f (�x) : �x ∈ dom( f )}
its range. We write f (�x) ↓ if �x ∈ dom( f ) and f (�x) ↑ if �x /∈ dom( f ). Moreover, λ�x. ↑ denotes the always undefined function. 
We denote by Fn � Nn → N the class of all n-ary (possibly partial) functions and by F �

⋃
n Fn the class of all such 

functions. Additionally, Cn ⊆ Fn denotes the subset of n-ary partial recursive functions (C stands for computable) and C �⋃
n Cn the set of all partial recursive functions.

Assumption 2.1 (Turing completeness). Throughout the paper, we assume a fixed Turing complete model and we denote by 
P the corresponding set of programs. Moreover, we consider a fixed Gödel numbering for the programs in P and, given an 
index a ∈N , we write Pa for the a-th program in P . A program can take a varying number n of inputs and we denote by 
φ

(n)
a ∈ Cn the n-ary partial function computed by Pa . By Turing completeness of the model, C = {φ(n)

a | a, n ∈N} holds. �
The binary relation between programs that compute the same n-ary function is called Rice’s equivalence and denoted by 

∼n
R , i.e.,

a ∼n
R b


⇐⇒ φ
(n)
a = φ

(n)

b .

The classical Rice’s theorem [33] compares the extension of programs, i.e., the functions they compute, and shows that 
unions of equivalence classes of programs computing the same function are undecidable. In Asperti’s work [1], by relying on 
the notion of complexity clique, the asymptotic program complexity can be taken into account. Our idea here is to further 
generalise the approach in [1] by considering generic program semantics rather than program complexity. Additionally, 
an equivalence relation on program semantics allows us to further abstract and identify programs with different abstract 
semantics. This turns out to be worthwhile in many applications, e.g., the precise time/space program complexity is typically 
abstracted by considering asymptotic complexity classes.

Definition 2.2 (Abstract semantics). An abstract semantics is a pair 〈π, ≡π 〉 where:

(1) π :N2 →F associates a program index a and arity n with an n-ary function π(n)
a ∈Fn , called the semantics of a;

(2) ≡π ⊆F ×F is an equivalence relation between functions.

Given n ∈ N , the n-ary program equivalence induced by an abstract semantics 〈π, ≡π 〉 is the equivalence ∼n
π ⊆ N × N

defined as follows: for all a, b ∈N ,

a ∼n
π b


⇐⇒ π
(n)
a ≡π π

(n)

b . �
The notation for the case of arity n = 1 will be simplified by omitting the arity, e.g., we will write φa and ∼π in place 

of φ(1)
a and ∼1

π , respectively. Abstract semantics can be viewed as a generalisation of the notion of system of indices (or 
numbering), as found in standard reference textbooks [28,36]. This is discussed in detail later in Section 6.2. Let us now 
show how the standard extensional interpretation of programs, complexity and complexity cliques can be cast into our 
setting.

Example 2.3 (Concrete semantics). The concrete input/output semantics can be trivially seen as an abstract semantics 〈φ, =〉
where φ(n)

a is the n-ary function computed by Pa and = is the equality between functions. Observe that this concrete 
semantics induces an n-ary program equivalence which is Rice’s equivalence ∼n

R . �
Example 2.4 (Domain semantics). For a given set of inputs S ⊆N , consider 〈φ, ≡S 〉 where φ(n)

a is the n-ary function computed 
by Pa and for f , g :Nn →N , we define f ≡S g


⇐⇒ dom( f ) ∩ S = dom(g) ∩ S . �
Example 2.5 (Blum complexity). Let � : N2 → C be a Blum complexity [3], i.e., for all a ∈ N and �x ∈ Nn , (1) �

(n)
a (�x) ↓ ⇔

φ
(n)
a (�x) ↓ holds, and (2) for all m ∈N , the predicate �(n)

a (�x) = m is decidable. Letting �( f ) to denote the standard Big Theta 
complexity class of a function f , the pair 〈�, ≡�〉 defined by

�
(n)
a ≡� �

(n)

b

⇐⇒ �

(n)
a ∈ �(�

(n)

b )

is an abstract semantics. �
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Example 2.6 (Complexity clique). Complexity cliques as defined by Asperti in [1] can be viewed as an abstract semantics 
〈π, ≡π 〉, that we will refer to as the complexity clique semantics. For each arity n and program index a let us define:

π
(n)
a � λ�y.〈〈φ(n)

a (�y),�
(n)
a (�y)〉〉

where 〈 〈_, _〉 〉 : N2 → N is an effective bijective encoding for pairs and � : N2 → C is a Blum complexity. The equivalence 
≡π is defined as follows: for all a, b, n ∈N ,

π
(n)
a ≡π π

(n)

b

⇐⇒ φ

(n)
a = φ

(n)

b ∧ �
(n)
a ≡� �

(n)

b . �
The classical Rice’s theorem states the undecidability of extensional program properties. Following [25], we parameterise 

extensional sets by means of a generic equivalence relation.

Definition 2.7 (∼-extensional set). Let ∼ ⊆ N ×N be an equivalence relation between programs whose equivalence classes 
are denoted, for a ∈ A, by [a]∼. A set of indices A ⊆N is called:

• ∼-extensional when for all a, b ∈N , if a ∈ A and a ∼ b then b ∈ A;
• partially ∼-extensional when there exists a ∈N such that [a]∼ ⊆ A;
• universally ∼-extensional when for all a ∈N , [a]∼ ∩ A �=∅. �

In words, a set A is ∼-extensional if A is a union of ∼-equivalence classes, partially ∼-extensional if A contains at 
least a whole ∼-equivalence class, and universally ∼-extensional if A contains at least an element from each ∼-equivalence 
class, i.e., its complement N � A is not partially ∼-extensional. Notice that if A is not trivial (i.e., A �= ∅ and A �= N) and 
∼-extensional then A is partially ∼-extensional and not universally ∼-extensional. Let us observe that ∼R -extensionality 
is the standard notion of extensionality so that the classical Rice’s theorem [33] states that if A is ∼R -extensional and not 
trivial then A is not recursive.1

3. Fair and strong smn semantics

In this section, we identify some fundamental properties of abstract semantics that will be later used in our intensional 
computability results. A first basic property stems from the fundamental smn theorem and intuitively amounts to requiring 
that the operation of fixing some parameters of a program is effective and preserves its abstract semantics.

Definition 3.1 (Strong smn semantics). An abstract semantics 〈π, ≡π 〉 has the strong smn (ssmn) property if, given m, n ≥ 1, 
there exists a total computable function s :Nm+2 →N such that for all a, b ∈N , �x ∈Nm:

λ�y.π
(n+1)
a (φ

(m)

b (�x), �y) ≡π π
(n)

s(a,b,�x). (1)

In such a case, the abstract semantics 〈π, ≡π 〉 is called strong smn. �
It is worth noticing that the above definition requires property (1) which is slightly stronger than one would expect. In 

fact, the natural generalisation of the standard smn property, in the style, e.g., of [1], would amount to asking that, given 
m, n ≥ 1, there exists a total computable function s :Nm+1 →N such that for any program index a ∈N and input �x ∈Nm , 
λ�y.π

(m+n)
a (�x, �y) ≡π π

(n)

s(a,�x) holds.
The concrete semantics 〈φ, =〉 of Example 2.3 clearly satisfies this ssmn property (1). In fact, the function λa, b,

�y.π
(n+1)
a (φ

(m)

b (�x), �y) is computable (by composition, relying on the existence of universal functions), hence the existence 
of a total computable s : Nm+2 → N such that λ�y.π

(n+1)
a (φ

(m)

b (�x), �y) ≡π π
(n)

s(a,b,�x) holds, as prescribed by Definition 3.1, 
follows by the standard smn theorem. It is easily seen that the same applies to the domain semantics of Example 2.4.

The reason for the stronger requirement (1) in Definition 3.1 is that, to deal with generic abstract semantics, a suitable 
smn definition needs to embody a condition on program composition (of a and b in Definition 3.1). Indeed, if we consider 
the semantics based on program complexity (i.e., Examples 2.5 and 2.6), it turns out that whenever they enjoy the smn 
property in [1, Definition 11] and, additionally, they satisfy the linear time composition hypothesis in [1, Section 4] relating 
the asymptotic complexities of a program composition to those of its components, then they are ssmn semantics according 
to Definition 3.1. More details on the relationship with Asperti’s approach [1] will be given later in Section 6.1.

It is worth observing that for a ssmn abstract semantics 〈π, ≡π 〉, there always exists a program whose denotation is 
equivalent to the always undefined function, namely,

for any arity n ∈ N there exists an index e0 ∈N such that π
(n)
e0 ≡π λ�y.↑ . (2)

1 In [25], the term “extensional” is replaced by “compatible” when one refers to generic equivalence relations ∼.
4
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In fact, if b is a program index for the always undefined function λ�y. ↑ then, by (1), we have that λ�y.π
(n+1)
0 (φb(0), �y) =

λ�y.↑ ≡π π
(n)

s(0,b,0)
holds, so that we can pick e0 � s(0, b, 0).

It is also worth exhibiting an example of abstract semantics which is not ssmn. Let πa(�x) be defined as the number of 
different variables accessed in a computation of the program a on the input �x. Then, let us observe that the mere fact that 
πa is always a total function trivially makes the abstract semantics 〈π, =〉 non-ssmn.

To generalise Kleene’s second recursion theorem, besides the ssmn property, we need to postulate the existence of so-
called fair universal programs, namely, programs that can simulate every other program w.r.t. a given abstract semantics. 
This generalises the analogous notion in [1, Definition 26], where this simulation is specific to complexity cliques and must 
preserve both the computed function and its asymptotic complexity.

Definition 3.2 (Fair semantics). An index u ∈ N is a fair universal program for an abstract semantics 〈π, ≡π 〉 and an arity 
n ∈N if for all a ∈N:

π
(n)
a ≡π λ�y.π

(n+1)
u (a, �y).

An abstract semantics is fair if it admits a fair universal program for every arity. �
Clearly, the concrete (cf. Example 2.3) and domain (cf. Example 2.4) semantics are fair. In general, as noted in [1], the 

existence of a fair universal program may not only depend on the reference abstract semantics, but also on the underlying 
computational model. For instance, when considering program complexity, as argued by Asperti [1, Section 6] by relying 
on some remarks by Blum [4], multi-tape Turing machines seem not to admit fair universal programs. By contrast, single 
tape Turing machines do have fair universal programs, despite the fact that this is commonly considered a folklore fact and 
cannot be properly quoted. Hereafter, when referring to the complexity-based semantics of Examples 2.5 and 2.6, we will 
implicitly use the fact that they are ssmn and fair semantics.

4. Kleene’s second recursion theorem and Rice’s theorem

In this section, we show how some foundational results of computability theory can be extended to a general abstract 
semantics. The first approach relies on a generalisation of Kleene’s second recursion theorem, which is then used to derive a 
corresponding Rice’s theorem. A second approach consists in identifying conditions that ensure the existence of an intricated 
switching family in the sense of [25], from which Rice’s theorem also follows.

4.1. Kleene’s second recursion theorem

Kleene’s second recursion theorem is a classical result of computability theory, originally proved in [18]. In Rogers’ 
equivalent formulation [36], it states that for any total computable function h :N →N there exists a program index n ∈N
which is a fixpoint of h w.r.t. the concrete semantics, i.e., such that φn = φh(n) holds. Kleene’s second recursion theorem 
can be used to derive several other classical results, such as the undecidability of the halting problem, Rice’s Theorem, 
or to show the existence of quines, i.e., self-reproducing programs (for more details, we refer to standard textbooks such 
as [12,28,36]).

We show that Kleene’s second recursion theorem holds for any fair ssmn abstract semantics. This generalises the analo-
gous result proved by Asperti [1, Section 5] for complexity cliques.

Theorem 4.1 (Intensional Second Recursion Theorem). Let 〈π, ≡π 〉 be a fair ssmn abstract semantics. For any total computable func-
tion h :N →N and arity n ∈N , there exists an index a ∈N such that a ∼n

π h(a).

Proof. Since 〈π, ≡π 〉 is a fair semantics (Definition 3.2), there exists u, n ∈N such that u is an abstract universal program 
for n-ary functions. Hence, for all x ∈N:

π
(n)

h(φx(x)) ≡π λ�y.π
(n+1)
u (h(φx(x)), �y) ≡π λ�y.π

(n+1)
u (h(ψU (x, x)), �y),

where ψU is the standard unary universal function for the concrete semantics φ, i.e., ∀p ∈ N. λy.ψU (p, y) = φp . Note that 
h ◦ λz.ψU (z, z) is computable by composition of computable functions. Hence, there exists e such that φe = h ◦ λz.ψU (z, z). 
Since 〈π, ≡π 〉 is a ssmn semantics (Definition 3.1), there exists a total computable function s : N3 → N such that for all 
x ∈N:

λ�y.π
(n+1)
u (h(ψU (x, x)), �y) ≡π λ�y.π

(n+1)
u (φe(x), �y) ≡π π

(n)
s(u,e,x).

Since s is computable, by standard smn theorem, there exists m ∈N such that φm = λx. s(u, e, x). Hence, for all x ∈N:

π
(n) ≡π π

(n)
.
φm(x) h(φx(x))

5
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A [a0]∼π[a1]∼π

Fig. 1. A graphical representation of Theorem 4.3. Here, a1 is a program index whose ≡π -equivalence class [a1]∼π is overapproximated by a set A of 
programs, i.e., A includes all the programs that are ≡π -equivalent to a1. For the program index a0, its ≡π -equivalence class [a0]∼π is disjoint with A, 
i.e., all the programs in A are not ≡π -equivalent to a0. Whenever such conditions are met for a fair ssmn semantics π , it turns out that the set A is not 
recursive.

If we set x = m we obtain:

π
(n)
φm(m) ≡π π

(n)

h(φm(m))
.

Because φm = λx. s(u, e, x) is total, we can consider a = φm(m) and obtain:

π
(n)
a ≡π π

(n)

h(a)

which amounts to a ∼n
π h(a). �

As an example, this result, instantiated to the complexity semantics of Example 2.5, entails the impossibility of designing 
a program transformation that systematically modifies the asymptotic complexity of every program, even without preserving 
its input-output behaviour. The details are discussed below.

Example 4.2 (Fixpoints of Blum complexity semantics). Let 〈�,≡�〉 be the Blum complexity semantics of Example 2.5. A pro-
gram transformation h :N →N is a total computable function which maps indices of programs into indices of transformed 
programs. By applying Theorem 4.1, for any arity n ∈ N , we know that there exists a program index a such that a ∼n

π h(a)

holds. This means that the program transform h does not alter the asymptotic complexity of, at least, the program a. �
Our second recursion theorem allows us to obtain an intensional version of Rice’s theorem for fair and ssmn abstract 

semantics. Inspired by [25], we generalise the statement to cover partially extensional properties.

Theorem 4.3 (Rice by fair and ssmn semantics). Let 〈π, ≡π 〉 be a fair and ssmn semantics. If A ⊆N is partially ∼n
π -extensional and 

not universally ∼n
π -extensional, for some arity n ∈N , then A is not recursive.

Proof. Since A is partially ∼n
π -extensional and not universally ∼n

π -extensional, there are x0, x1 ∈N such that [x0]∼n
π
∩ A =∅

and [x1]∼n
π

⊆ A. Assume A is recursive, hence its characteristic function χA is computable. Then, we can define a function 
f :N →N defined as follows:

f (x) �
{

x0 if x ∈ A

x1 otherwise
= x0 · χA(x) + x1 · (1 − χA(x)).

Observe that f is clearly total and computable. We can now apply our intensional second recursion Theorem 4.1, and obtain 
that there exists a ∈N such that f (a) ∼π a. This easily leads to a contradiction that closes the proof. In fact, there are two 
cases, either a ∈ A or a /∈ A.

1. If a ∈ A then f (a) = x0 ∼π a and thus, since [x0]∼π ∩ A =∅, we have the contradiction a /∈ A.
2. Similarly, if a /∈ A then f (a) = x1 ∼π a and thus, since [x1]∼ ⊆ A, we deduce the contradiction a ∈ A. �

Fig. 1 provides a graphical representation of this result: if we can find two program indices a0, a1 ∈N such that A over-
approximates the ≡π -equivalence class [a1]∼π and A does not intersect [a0]∼π , then A cannot be recursive. Let us illustrate 
some applications of Theorem 4.3.

Example 4.4 (Halting set). Let 〈φ, ≡N〉 be the domain semantics of Example 2.4 with S =N , hence f ≡N g when dom( f ) =
dom(g). The halting set K � {a ∈ N | φa(a) ↓} can be proved to be non-recursive by resorting to Theorem 4.3 for 〈φ, ≡N〉. 
Let e0, e1 ∈N be such that φe0 = λx. ↑ and φe1 = λx.1. Since [e1]≡N is the set of programs that compute total functions, we 
have that [e1]≡N ⊆ K . Moreover, [e0]≡N is the set of nonterminating programs for any input, so that [e0]≡N ∩ K = ∅. This 
means that 〈φ, ≡N 〉 satisfies the hypotheses of Theorem 4.3, thus entailing that K is not recursive. �
6
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Example 4.5 (Complexity sets). Let 〈φ,=〉, 〈�,≡�〉 be, resp., the semantics of Examples 2.3 and 2.5. As observed in Section 3, 
on a suitable computational model such as single tape Turing machines, these are fair ssmn semantics, so that Theorem 4.3
applies.

Let sort : N → N be a total function that takes as input an encoded sequence of numbers and outputs the encoding 
of the corresponding sorted sequence. It turns out that by applying Theorem 4.3, the following sets can be proved to be 
non-recursive:

(1) A � {a | �a ∈ �(n log n) ∧ φa = sort};
(2) B � {a | �a ∈O(n log n)};
(3) C � {a | �a ∈ 	(n log n)}.

Let is, ms be different implementations of sort, i.e., φis = φms = sort , such that �is ∈ �(n2) and �ms ∈ �(n log n) — is and 
ms could be, resp., insertion and merge sort. Recall that ∼R denotes Rice’s equivalence induced by 〈φ,=〉 (i.e., a ∼R b ⇔
φa = φb), and, in turn, let ∼�R = ∼� ∩ ∼R be the equivalence induced by the complexity clique semantics of Example 2.6, 
which is a fair ssmn semantics. Then, we have that:

(1) since [is]∼�R ∩ A =∅ and [ms]∼�R ⊆ A, by Theorem 4.3, we have that A is non-recursive;
(2) since [is]∼�

∩ B =∅ and [ms]∼�
⊆ B , by Theorem 4.3, we have that B is non-recursive;

(3) let e be any program index such that �e ∈ �(1). Since [e]∼�
∩ C = ∅ and [is]∼�

⊆ C , by Theorem 4.3, we have that C
is non-recursive. �

It is worth remarking that in Example 4.5, n log n could be replaced by any function, thus showing the undecidability 
of the asymptotic complexities “big O” (case (2)) and “big Omega” (case (3)). Let us also point out that Example 4.4 shows 
how easily the halting set K can be proved to be non-recursive by applying Theorem 4.3.

4.2. Branching semantics

Let us investigate the connection between our results and the key notion of intricated switching family used by Moyen 
and Simonsen [25] for proving their intensional version of Rice’s theorem. Firstly, we argue that every ssmn abstract seman-
tics admits an intricated switching family whenever it is able to express a suitable form of conditional branching. This allows 
us to derive an intensional Rice’s theorem. Moreover, we show that for fair and ssmn semantics, the identity can always 
play the role of intricated switching family.

Definition 4.6 (Branching and discharging semantics). An abstract semantics 〈π, ≡π 〉 is branching if, given n ≥ 1, there exists a 
total computable function r :N4 →N such that ∀a, b, c1, c2, x ∈N with c1 �= c2:

λ�y.π
(n)

r(a,b,c1,c2)
(x, �y) ≡π

⎧⎪⎨
⎪⎩

λ�y.π
(n)
a (x, �y) if x = c1

λ�y.π
(n)

b (x, �y) if x = c2

λ�y.↑ otherwise.

Moreover, 〈π, ≡π 〉 is (variable) discharging if, for all n ≥ 1, there exists a total computable function t :N →N such that for 
all a, x ∈N:

π
(n)
a ≡π λ�y.π

(n+1)
t(a)

(x, �y). �
Hence, intuitively, an abstract semantics is branching when it is able to model the branching structure of conditional 

statements with multiple positive guards, while the property of being variable discharging holds when one can freely add 
fresh and unused variables without altering the abstract semantics. Let us first recall the notion of recursive inseparabil-
ity [37, Section 3] and of intricated switching family from [25, Definition 5].2

Definition 4.7 (Recursively inseparable sets). Two sets A, B ⊆ N of program indices are recursively inseparable if there exists 
no decidable set C ⊆N such that A ⊆ C and B ∩ C =∅. �
Definition 4.8 (Intricated switching family [25, Definition 5]). Let ∼ ⊆ N × N be an equivalence relation on program indices. 
An intricated switching family (ISF) w.r.t. ∼ is an indexed set of total computable functions {σa,b}a,b∈N , with σa,b : N → N , 
such that for all a, b ∈N , the sets Aa,b = {x ∈N | σa,b(x) ∼ a} and Ba,b = {x ∈N | σa,b(x) ∼ b} are recursively inseparable. �

2 Definition 5 in [25] is instantiated to the case of recursive sets and equivalence relations over program indices. This is the case of interest for this 
paper and such restriction simplifies the presentation. More precisely, Definition 4.8 is obtained from [25, Definition 5] by taking: (1) the sets S = T =N
(intuitively corresponding to sets of program indices); (2) the sets S = T = REC, where REC ⊆ P(N) is the set of decidable sets; (3) F and G such that 
∪F = ∪G =N . The requirement of REC-REC-continuity of each total function σa,b is replaced with the stronger condition that each σa,b is also computable.
7
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Moyen and Simonsen [25, Theorem 3] show that if an equivalence ∼ admits an ISF, then every partially ∼-extensional 
and not universally ∼-extensional set is not recursive. A simplified version of their intensional result, tailored for our setting, 
can be stated as follows.

Theorem 4.9 ([25, Theorem 3]). Let ∼ ⊆ N × N be an equivalence relation. If A ⊆ N is partially ∼-extensional, not universally 
∼-extensional and there exists an ISF w.r.t. ∼ then A is not recursive.

Branching discharging and ssmn semantics can be shown to admit an intricated switching family, in a way that, relying 
on Theorem 4.9 we can derive the following intensional version of Rice’s Theorem.

Theorem 4.10 (Rice by branching, discharging and ssmn semantics). Let 〈π, ≡π 〉 be a branching, discharging and ssmn semantics. If 
A ⊆N is partially ∼n

π -extensional and not universally ∼n
π -extensional for some arity n ∈N , then A is not recursive.

Proof. Let u ∈N be an index for the standard unary universal program. Consider the total computable functions r :N4 →N
and t : N → N of, resp., the branching and variable discharging properties. By the ssmn property, there exists a total 
computable function s :N4 →N such that ∀a, b, x ∈N:

π
(n)

s(r(t(a),t(b),0,1),u,x,0)
≡π λ�y.π

(n+1)

r(t(a),t(b),0,1)
(φ

(2)
u (x,0), �y) [by the ssmn property]

= λ�y.π
(n+1)

r(t(a),t(b),0,1)
(φx(0), �y)

≡π

⎧⎪⎨
⎪⎩

λ�y.π
(n+1)
t(a) (0, �y) if φx(0) = 0

λ�y.π
(n+1)

t(b)
(1, �y) if φx(0) = 1

λ�y. ↑ otherwise

[by the branching property]

≡π

⎧⎪⎨
⎪⎩

π
(n)
a if φx(0) = 0

π
(n)

b if φx(0) = 1

λ�y. ↑ otherwise

[by the variable discharging property]

For all a, b ∈N , we define the total computable function

σa,b(x) � s(r(t(a), t(b),0,1), u, x,0).

We claim that the family of functions {σa,b}a,b∈N is intricated w.r.t. ∼n
π (cf. Definition 4.8). In fact, for all a, b ∈ N , let 

Aa,b � {x ∈N | σa,b(x) ∼n
π a} and Ba,b � {x ∈N | σa,b(x) ∼n

π b}. We have four cases:

1. if π(n)
a ≡π π

(n)

b , then Aa,b = Ba,b and therefore they are trivially recursively inseparable;

2. if π(n)
a �≡π π

(n)

b and π(n)
a �≡π λ�x. ↑ �≡π π

(n)

b , we have that Aa,b = {x ∈N | φx(0) = 0} and Ba,b = {x ∈N | φx(0) = 1}. Hence, 
the sets Aa,b and Ba,b are recursively inseparable (cf. [29, Section 3.3]);

3. if π(n)

b �≡π π
(n)
a ≡π λ�x. ↑, we have that Ba,b = {x ∈N | φx(0) = 1} and Aa,b = {x ∈N | φx(0) �= 1} = Ba,b . The mere fact that 

Ba,b is not recursive (by the classical Rice’s Theorem) thus implies that Aa,b and Ba,b are not recursively separated;

4. if π(n)
a �≡π π

(n)

b ≡π λ�x. ↑, then we can take a′ = b and b′ = a and conclude by case 3.

Since in all cases Aa,b and Ba,b are recursively inseparable, it turns out that {σa,b}a,b∈N is an ISF w.r.t. ∼n
π and thus we 

conclude by Theorem 4.9. �
Let us discuss more in detail the relationship with the approach in [25]. Firstly, let us show a lemma which will be 

fundamental to prove the following results.

Lemma 4.11. Let ∼ be an equivalence relation on program indices. If every set A partially ∼-extensional and not universally ∼-
extensional is non-recursive then the identity Id is an ISF w.r.t. ∼.

Proof. Clearly, the identity Id � {(λx.x)a,b}a,b∈N is a family of total computable functions. Moreover, for a, b ∈ N we have 
Aa,b = {x ∈N : x ∼ a} = [a]∼ and Ba,b = {x ∈N : x ∼ b} = [b]∼ . Therefore, every set C ⊆N such that Aa,b ⊆ C and Ba,b ∩ C =
∅, is partially ∼-extensional and not universally ∼-extensional and thus, by hypothesis, not recursive. Hence, Aa,b and Ba,b
are recursively inseparable. �

It turns out that a fair ssmn semantics always admits a canonical ISF, namely, the identity Id � {(λx.x)a,b}a,b∈N .
8
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Proposition 4.12. Let 〈π, ≡π 〉 be a fair and ssmn semantics. Then, the identity Id is an ISF w.r.t. ∼n
π , for all n ≥ 1.

Proof. Since 〈π, ≡π 〉 is a fair ssmn semantics, by Theorem 4.3, every partially ∼n
π -extensional and not universally ∼n

π -
extensional set A is non-recursive. Therefore, we conclude by applying Lemma 4.11. �

Let us point out that the identity function has not been exploited in [25], that instead focuses on the standard switching 
family. It turns out that the identity function plays a key role as ISF.

Theorem 4.13. Let ∼ ⊆N ×N be an equivalence relation. The following statements are equivalent:

(1) Every set A ⊆N partially ∼-extensional and not universally ∼-extensional is non-recursive.
(2) The identity Id is an ISF w.r.t. ∼.
(3) There exists an ISF w.r.t. ∼.

Proof. (1 ⇒ 2): by Lemma 4.11;
(2 ⇒ 3): trivial;
(3 ⇒ 1): by Theorem 4.9. �

Therefore, the above result roughly states that the identity function is the “canonical” ISF, meaning that if an ISF exists, 
then Id is an ISF as well. Moreover, the intensional Rice’s Theorem 4.9 of [25] provides a sufficient condition (i.e., the exis-
tence of an ISF) for a partially and not universally extensional set to be undecidable. Theorem 4.13 enhances Theorem 4.9 by 
showing that such a sufficient condition is necessary as well, or, equivalently, that a partially and not universally extensional 
set is undecidable iff there exists an ISF.

We conclude this section by discussing an alternative notion of branching, which requires the preservation of a full 
conditional statement with positive and negative guards.

Definition 4.14 (Strongly branching semantics). An abstract semantics 〈π,≡π 〉 is strongly branching if, given n ≥ 1, there exists 
a total computable function r :N3 →N such that for all a, b, c, x ∈N:

λ�y.π
(n)

r(a,b,c)(x, �y) ≡π

{
λ�y.π

(n)
a (x, �y) if x = c

λ�y.π
(n)

b (x, �y) otherwise.
�

The condition above is an adaptation to our framework of a property that is needed in order to exploit a so-called stan-
dard switching family as defined in [25, Example 1]. Despite appearing to be more natural, the preservation of conditionals 
with positive and negative conditions is a stronger requirement than the one we considered in Definition 4.6. Indeed, it 
turns out that every ssmn and strongly branching semantics is a branching semantics.

Proposition 4.15 (Strongly branching implies branching). If 〈π, ≡π 〉 is a ssmn and strongly branching semantics, then 〈π, ≡π 〉 is a 
branching semantics.

Proof. Given an arity n, let r be the function of the strongly branching property of Definition 4.14. By (2) there exists an 
index e0 ∈ N such that π(n)

e0 ≡π λ�y. ↑. Now, we define the function σ : N4 → N such that for all a, b, c1, c2 ∈ N we have 
σ(a, b, c1, c2) = r(a, r(b, e0, c2), c1). Note that σ is a total computable function, by composition, and for all a, b, c1, c2, x ∈N
with c1 �= c2:

λ�y.π
(n)

σ (a,b,c1,c2)
(x, �y) = λ�y.π

(n)

r(a,r(b,e0,c2),c1)
(x, �y)

≡π

{
λ�y.π

(n)
a (x, �y) if x = c1

λ�y.π
(n)

r(b,e0,c2)
(x, �y) otherwise

[by the branching property]

≡π

⎧⎪⎨
⎪⎩

λ�y.π
(n)
a (x, �y) if x = c1

λ�y.π
(n)

b (x, �y) if x �= c1 ∧ x = c2

λ�y.π
(n)
e0 (x, �y) if x �= c1 ∧ x �= c2

[by the branching property]

≡π

⎧⎪⎨
⎪⎩

λ�y.π
(n)
a (x, �y) if x = c1

λ�y.π
(n)

b (x, �y) if x = c2

λ�y. ↑ otherwise

Thus, σ is the desired function for the branching property. �
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4.3. An application to static program verifiers

We adapt the general definition of static program verifier of Cousot et al. [11, Definition 4.3] to our framework. Given 
a program property P ⊆N to check, a static program verifier is a total recursive function V :N → {0, 1}. It is sound when 
for all p ∈ N , V(p) = 1 ⇒ p ∈ P , while V is precise if the reverse implication also holds, i.e., when V(p) = 1 ⇔ p ∈ P
holds. Informally, soundness guarantees that only false negatives are allowed, i.e., N � P is possibly a proper subset of 
{p ∈N : V(p) = 0}, while precise verifiers output true positives and true negatives only (i.e., they decide P ).

The classical Rice’s theorem clearly entails the impossibility of designing a precise verifier for a nontrivial extensional 
property. However, one may wonder whether there exist sound verifiers with “few” false negatives. By applying our inten-
sional Theorem 4.3, we are able to show that sound but imprecise verifiers necessarily have at least one false negative for 
each equivalence class of programs, even for intensional properties.

Example 4.16 (Constant value verifier). Assume we are interested in checking if a program can output a given constant value, 
for instance, zero with the aim of statically detecting division-by-zero bugs. Let V be a sound static verifier for the set P=0 �
{p ∈ N | 0 ∈ rng(φp)} of programs that output zero for some input. The set N � {p ∈ N | V(p) = 0} is recursive since V is 
assumed to be a total computable function. By soundness of V , we have that N � P=0 ⊆ N , so that N includes, for example, 
the set of programs computing the constant function λx.1. Therefore, N is partially extensional, and, by Theorem 4.3, N
has to be universally extensional. This means that for any computable function f ∈ C there exists a program p ∈ N that 
computes f such that V(p) = 0. Thus, when 0 ∈ rng( f ) holds (e.g., for f = λx.0), V necessarily outputs a false negative for 
p. Hence, V outputs infinitely many false negatives. �
Example 4.17 (Complexity verifier). Consider a speculative sound static verifier V for recognizing programs that meet some 
lower bound, for instance, programs having a cubic lower bound P	(n3) � {p ∈N | �p = 	(n3)}. Thus, N � {p ∈N | V(p) =
0} has to be recursive and if ∼� is the program equivalence induced by the Blum complexity semantics 〈�, ≡�〉 of Ex-
ample 2.5 then, by soundness of V , we have, for example, {p ∈ N | �p = �(1)} ⊆ N . This means that N is partially 
∼�-extensional and, by Theorem 4.3, N is universally extensional, namely, V will output 0 for at least a program in each 
Blum complexity class. For instance, even some programs with an exponential lower bound will be wrongly classified by V
as programs that do not meet a cubic lower bound. �

As shown by Cousot et al. [11, Theorem 5.4], precise static verifiers cannot be designed (unless for trivial program 
properties). The examples above prove that, additionally, we cannot have any certain information on an input program p
whenever the output of a sound (and imprecise) verifier for p is 0. In fact, when this happens, p could compute any partial 
function (cf. Example 4.16) or have any complexity (cf. Example 4.17).

5. On the decidability of affine program invariants

Karr [17] put forward an algorithm that infers for each program point q of a control flow graph modelling an affine 
program P (i.e., an unguarded program with non-deterministic branching and affine assignments) a set of affine equalities 
that hold among the variables of P when the control reaches q, namely, an affine invariant for P . Müller-Olm and Seidl [26]
show that Karr’s algorithm actually computes the strongest affine invariant for affine programs (this result has been ex-
tended to a slightly larger class of affine programs in [30, Theorem 5.1]). Moreover, they design a more efficient algorithm 
implementing this static analysis and they extend in [27] this algorithm for computing bounded polynomial invariants, i.e., 
the strongest polynomial equalities of degree at most a given d ∈N . Later, Hrushovski et al. [15] put forward a sophisticated 
algorithm for computing the strongest unbounded polynomial invariants of affine programs, by relying on the Zariski closure 
of semigroups.

On the impossibility side, Müller-Olm and Seidl [26, Section 7] prove that for affine programs allowing positive affine 
guards it is undecidable whether a given nontrivial affine equality holds at a given program point or not. In practical 
applications, static analyses on Karr’s abstract domain of guarded affine programs ignore non-affine Boolean guards, while 
for an affine guard b, the current affine invariant i is propagated through the positive branch of b by the intersection i ∩ b, 
that remains an affine subspace. By the aforementioned undecidability result [26, Section 7], this latter analysis algorithm 
for guarded affine programs turns out to be sound but necessarily imprecise, thus inferring affine invariants that, in general, 
might not be the strongest ones. Müller-Olm and Seidl [26, Section 7] prove their undecidability result by exploiting an acute 
reduction to the undecidable Post correspondence problem, inspired by early reductions studied in data flow analysis [13,
16]. In this section, we show that our Theorem 4.10 allows us to derive and extend this undecidability result by exploiting 
an orthogonal intensional approach. More precisely, we prove that any nontrivial (and not necessarily affine) relation on 
the states of control flow graphs of programs allowing: (1) zero, variable and successor assignments, resp., x := 0, x := y
and x := y + 1, and (2) positive equality guards x = y? and x = v?, turns out to be undecidable. Since these control flow 
graphs form a subclass of affine programs with positive affine guards, the undecidability result of Müller-Olm and Seidl [26, 
Section 7] is retrieved as a consequence.

Following the standard approach, we consider control flow graphs that consist of program points connected by edges 
labelled by assignments and guards. Variables are denoted by xi , with i ∈ N , and store values ranging in N , while Karr’s 
10
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abstract domain is designed for variables assuming values in Q. Clearly, from a computability perspective, this is not a 
restriction since one can consider a computable bijection between N and Q.

Definition 5.1 (Basic affine control flow graph). A basic affine control flow graph (BACFG) is a tuple G = (N, E, s, e), where N is 
a finite set of nodes, s, e ∈ N are the start and end nodes, and E ⊆ N × Com×N is a set of labelled edges, and the set Com
of commands consists of assignments of type xn := 0, xn := xm , xn := xm + 1, and equality guards of type xn = xm?, xn = v?, 
with v ∈N . �

Let us remark that BACFGs only include basic affine assignments and positive affine guards, in particular inequality 
checks such as xn �= xm? and xn �= v? are not allowed. Thus, BACFGs are a subclass of affine programs with positive affine 
guards considered in [26, Section 7].

As in dataflow analysis and abstract interpretation [9,10,13,34], BACFGs have a collecting semantics where, given a set of 
input states In, each program point is associated with the set of states that occur in some program execution from some 
state in In. A finite number of variables may occur in a BACFG, so that a state of a BACFG G is a tuple (x1, . . . , xk) ∈ Nk , 
where k is the maximum variable index occurring in G and k = 0 is a degenerate case for trivial BACFGs with N0 = {•}. The 
collecting transfer function f(·)(·) : Com → ℘(Nk) → ℘(Nk) for k ∈N variables and with n, m ∈ [1, k] is defined as follows:

fxn:=0(S) � {(x1, . . . , xn−1,0, xn+1, . . . , xk) | �x ∈ S},
fxn:=xm (S) � {(x1, . . . , xn−1, xm, xn+1, . . . , xk) | �x ∈ S},

fxn:=xm+1(S) � {(x1, . . . , xn−1, xm + 1, xn+1, . . . , xk) | �x ∈ S},
fxn=v?(S) � {�x ∈ S | xn = v},

fxn=xm?(S) � {�x ∈ S | xn = xm}.
A no-op command denoted by ε is syntactic sugar for x1 := x1, i.e., fε � fx1:=x1 = λS.S . Given k, k′ ∈N and S ∈ ℘(Nk′

), the 
projection S �k∈ ℘(Nk) is defined as follows:

S �k �

⎧⎪⎨
⎪⎩

S ×Nk−k′
if 0 ≤ k′ < k

S if k′ = k

{(x1, . . . , xk) | �x ∈ S} if k < k′

Definition 5.2 (Collecting semantics of BACFGs). Given a BACFG G = (N, E, s, e) with k ∈ N variables and a set of input states 
S ⊆ Nk′

, with k′ ≤ k, the collecting semantics �G�S : N → ℘(Nk) is the least, w.r.t. pointwise set inclusion, solution in 
℘(Nk)|N| of the following system of constraints:{

�G�S [s] ⊇ S �k for the start node s

�G�S [v] ⊇ fc(�G�S [u]) for each edge (u, c, v) ∈ E.
�

Let us observe that, since the collecting transfer functions fc are additive on the complete lattice 〈℘(Nk),⊆〉, by Knaster-
Tarski fixpoint theorem, �G�S is well defined. For �x ∈Nk′

, we write �G��x instead of �G�{�x} . Notice that �G�(·) is an additive 
function, so that, for any program point u ∈ N , �G�S [u] = ⋃

�x∈S�G��x[u] holds.

5.1. Turing completeness of BACFGs

Let us recall that a ssmn abstract semantics needs an underlying Turing complete concrete semantics of programs (cf. 
Assumption 2.1). A crucial observation is that BACFGs are Turing complete despite not including full (both positive and 
negative) Boolean tests. This is proved by showing that any program of an Unlimited Register Machine (URM), which is a 
well-known Turing complete computational model [12], can be simulated by a BACFG.

Theorem 5.3 (Turing completeness of BACFGs). BACFGs are a Turing complete computational model.

Before getting into the technical details, it is worth providing, first, an intuition of the proof of Theorem 5.3. Using the 
definition and notation of Cutland [12, Section 1.2], let us recall the four types of instructions of URMs:

• z(n): sets register rn to 0 (rn ← 0) and transfers the control to the next instruction;
• s(n): increments register rn by 1 (rn ← rn + 1) and transfers the control to the next instruction;
• t(m, n): sets register rn to rm (rn ← rm) and transfers the control to the next instruction;
11
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qi

qi+1

xn := 0

qi

qi+1

xn := xn + 1

qi

qi+1

xn := xm

Fig. 2. BACFGs simulating: z(n) (left), s(n) (center), t(m,n) (right).

qi

inci

qi+1

qp

xm = xn? z := xm + 1

z := xn + 1

xn = z? xm = z?

z := z + 1

Fig. 3. BACFG simulating a jump instruction j(m,n, p).

• j(m, n, p): if rm = rn and I p is a proper instruction, then it jumps to the instruction I p ; otherwise, it skips to the next 
instruction;

It turns out that all these URM instructions can be simulated by the BACFGs depicted in Figs. 2 and 3. While the BACFGs 
in Fig. 2 are trivial, let us describe more in detail how the BACFG in Fig. 3 simulates a jump instruction j(m, n, p). Intuitively, 
a difficulty arises for simulating the negative branch xn �= xm?. Here, the BACFG at node qi initialises a fresh unused variable 
z with both xn +1 and xm +1 and transfers the control to a node inci where z is incremented infinitely many times. Thus, in 
the least fixpoint solution, at node inci the variable z stores any value v > min(xm, xn), including z = max(xm, xn). Suppose 
now that xn > xm holds: in this case, the guard xn = z? between nodes inci and qi+1 eventually will be made true and at 
the node qi+1 the store will retain the original values of all variables (xm and xn included), except for the new variable z
which will be ignored by the remaining nodes. The case xm > xn is analogous. Therefore, it turns out that the node qi+1 will 
be reached if and only if xm �= xn holds, while qp will be reached if and only if xm = xn holds, thus providing a simulation 
for the jump instruction j(m, n, p).

We next give a precise definition of a model of computation for BACFGs which is able to simulate URMs. Firstly, let us 
formalise the operational semantics of URMs. Given a URM program P = (I1, . . . , It) consisting of a sequence of t instruc-
tions I j , we denote its states by vectors �x ∈ NkP , where kP is the largest index of registers used by P (which is finite). A 
configuration of a URM is a pair 〈�x, c〉 ∈ NkP × N representing the state of the (possibly used) registers, and the current 
instruction Ic . Then, the operational semantics is as follows:

Definition 5.4 (Operational semantics ⇒ of URMs). Given a URM program P = (I1, . . . , It), its operational semantics is given 
by the transition function ⇒: (NkP ×N) → (NkP ×N) defined as follows: for all �x ∈NkP , 1 ≤ c ≤ t ,

〈�x, c〉 ⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈(x1, ..., xn−1,0, xn+1, ..., xkP ), c + 1〉 if Ic = z(n)

〈(x1, ..., xn−1, xn+1, xn+1, ..., xkP ), c + 1〉 if Ic = s(n)

〈(x1, ..., xm−1, xn, xm+1, ..., xkP ), c + 1〉 if Ic = t(m,n)

〈�x,q〉 if Ic = j(m,n,q) ∧ xm = xn

〈�x, c + 1〉 if Ic = j(m,n,q) ∧ xm �= xn

The URM halts when it reaches a configuration 〈�x, t + 1〉. �
Getting back to control flow graphs, let us point out that the collecting semantics of BACFGs of Definition 5.2 can be 

expressed in terms of Kleene’s iterates as follows.
12
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Definition 5.5 (Kleene’s iterates of BACFGs). Let G = (N, E, s, e) be a BACFG with kG variables. The corresponding initial state 
⊥s

�x : N → ℘(NkG ), with �x ∈ NkG , and transformer FG : (N → ℘(NkG )) → (N → ℘(NkG )) are defined as follows: for all 
v ∈ N and X ∈ N → ℘(NkG ),

⊥s
�x[v] �

{
{�x} if v = s

∅ otherwise

FG(X )[v] �
⋃

(u,c,v)∈E

fc(X [u]) ∪X [v]

The sequence of Kleene’s iterates of G starting from ⊥s
�x is the infinite (pointwise) ascending chain {F i

G (⊥s
�x)}i∈N ⊆ N →

℘(NkG ), where the powers of the function FG are inductively defined in the usual way: F 0
G(X ) � X and F i+1

G (X ) �
FG(F i

G(X )). �
Observe that the collecting semantics of Definition 5.2 coincides with the least fixed point of FG above ⊥s

�x w.r.t. the 
pointwise inclusion order of the complete lattice N → ℘(NkG ) obtained by lifting 〈℘(NkG ),⊆〉. Moreover, since FG is a 
Scott-continuous function (even more, FG preserves arbitrary least upper bounds), by Kleene’s fixpoint theorem, it turns out 
that

∪i∈N F i
G(⊥s

�x)[v] = �G��x[v].
Our key insight is that the states of our abstract computational model can be represented as “differences” between consec-
utive Kleene’s iterates of FG .

Definition 5.6 (Operational semantics 
 of BACFGs). Given a BACFG G = (N, E, s, e), its operational semantics is given by the 
function 
G : (N → ℘(NkG )) → (N → ℘(NkG )) defined as follows: for all X : N → ℘(NkG ) and v ∈ N ,


G (X )[v] � ⋃
(u,c,v)∈E

fc(X [u]). �

Therefore, 
G(X )[v] is the standard “meet-over-paths” of classical dataflow analysis, namely, the join of the transfer 
functions fc(X) over all the edges (u, c, v) of G .

Lemma 5.7. Let G = (N, E, s, e) be a BACFG. For all n ∈N , X : N → ℘(NkG ), v ∈ N, we have that F n
G(X )[v] = ∪0≤i≤n
i

G(X )[v].

Proof. We proceed by induction on n ∈N .

• n = 0: F 0
G(X )[v] =X [v] = 
0

G(X )[v] = ∪0≤i≤0

i
G(X )[v];

• n > 0:

F n
G(X )[v] = FG(F n−1

G (X ))[v]
= ⋃

(u,c,v)∈E
fc(F n−1

G (X )[u]) ∪ F n−1
G (X )[v] [by ind. hyp.]

= 
G(∪0≤i≤n−1

i
G(X ))[v] ∪ (∪0≤i≤n−1


i
G(X )[v]) [by additivity of 
G ]

= ∪1≤i≤n

i
G(X )[v] ∪ (∪0≤i≤n−1


i
G(X )[v])

= ∪0≤i≤n

i
G(X )[v]

This closes the proof. �
In the following, we describe an effective procedure τ to translate a URM program P into a BACFG which simulates P .

Definition 5.8 (Transformer τ ). Given a URM P = (I1, . . . , It), the procedure τ (P ) starts from N0 = {q1, . . . , qt, qt+1} and 
E0 =∅ as, resp., sets of nodes and edges. Then, for all the instructions Ii of P :

(i) If Ii ∈ {z(n), s(n), t(m, n) | n, m ∈ N} then τ (P ) adds an edge between the nodes qi and qi+1 as depicted by the dia-
grams in Fig. 2. For instance, if Ii = z(n) the edge (qi, xn := 0, qi+1) is added to the set E; the other cases are analogous.

(ii) If Ii = j(m, n, q), for some m, n, q, then τ (P ) adds a new node inci and the edges depicted by the diagram in Fig. 3. 
We shall use the variable z as a syntactic shorthand for xkP +1, which is a fresh variable not used in P .
13
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Let N and E denote the final sets of, resp., nodes and edges obtained by applying the above two steps (i)–(ii) for all the 
instructions of P . Then, τ (P ) returns a set of BACFGs {(N, E, qs, qe) | qs, qe ∈ N0}, where start and end nodes freely range 
in N0 and each BACFG has kG ∈ {kP , kP + 1} variables. Without loss of generality, we assume kG � kP + 1: In fact, if the 
program P contains no jump and the extra-variable z is actually not used, then we can add a useless edge involving the 
extra-variable z. �

In the rest of this section, we prove that the BACFG G = (N, E, q1, qt+1) ∈ τ (P ) simulates the original URM program P . 
To prove our claim, we define an equivalence relation between sets of states of a BACFG in τ (P ). Intuitively, two sets X
and X ′ are deemed equivalent if, for each node, X and X ′ induce the same invariant on the first kP variables, except for 
the states inci whose variable z is already greater than the variables occurring in the outgoing guards.

Definition 5.9 (Equivalence ≈). Let P = (I1, . . . , It) be a URM program and G = (N, E, qs, qe) ∈ τ (P ). Then, given X , X ′ : N →
℘(NkG ), the relation X ≈X ′ is defined as follows:

(1) ∀i ∈ [1, t + 1]. X [qi] �kP =X ′[qi] �kP ;
(2) ∀i ∈ [1, t], ∀m ∈ [1, kP ], ∀(inci, xm = z?, qi+1) ∈ E . {�x ∈X [inci] | z ≤ xm} = {�x ∈X ′[inci] | z ≤ xm}. �

Let us point out that condition (2) is motivated by the observation that for nodes of type inci , the states containing 
values of xm below z do not matter. Clearly, observe that ≈ is an equivalence relation. Moreover, it turns out that the 
operational semantic function 
G of Definition 5.6 preserves this equivalence ≈.

Lemma 5.10. Let P = (I1, . . . , It) be a URM program and G = (N, E, qs, qe) ∈ τ (P ). Then, for all X , X ′ : N → ℘(NkG ), X ≈ X ′ ⇒

G(X ) ≈ 
G(X ′).

Proof. Assume that X ≈X ′ . For all i ∈ [1, t + 1] we have:


G(X )[qi] �kP

= ⋃
(u,c,qi)∈E

fc(X [u]) �kP

= ⋃
(qu,c,qi)∈E

fc(X [qu]) �kP ∪ ⋃
(inci−1,xm=z?,qi)∈E

fxm=z?(X [inci−1]) �kP

= ⋃
(qu,c,qi)∈E

fc(X [qu]) �kP ∪ ⋃
(inci−1,xm=z?,qi)∈E

fxm=z?({�x ∈ X [inci−1] | z ≤ xm}) �kP [as X ≈ X ′]

= ⋃
(qu,c,qi)∈E

fc(X ′[qu]) �kP ∪ ⋃
(inci−1,xm=z?,qi)∈E

fxm=z?({�x ∈ X ′[inci−1] | z ≤ xm}) �kP

= ⋃
(qu,c,qi)∈E

fc(X ′[qu]) �kP ∪ ⋃
(inci−1,xm=z?,qi)∈E

fxm=z?(X ′[inci−1]) �kP

= 
G(X ′)[qi] �kP .

Moreover, for all i ∈ [1, t], m ∈ [1, kP ] such that (inci, xm = z?, qi+1) ∈ E:

{�x ∈ 
G(X )[inci] | z ≤ xm}
= {�x ∈ ⋃

(u,c,inci)∈E
fc(X [u]) | z ≤ xm}

= {�x ∈ ⋃
(qi ,c,inci)∈E

fc(X [qi]) | z ≤ xm} ∪ {�x ∈ f z:=z+1(X [inci]) | z ≤ xm}

= {�x ∈ f z:=xn+1(X [qi]) ∪ f z:=xm+1(X [qi]) | z ≤ xm}∪
{�x ∈ f z:=z+1(X [inci]) | z ≤ xm}

= {�x ∈ f z:=xn+1(X [qi]) | z ≤ xm} ∪ {�x ∈ f z:=z+1(X [inci]) | z ≤ xm},
for some n �= m. Since X [qi] �kP =X ′[qi] �kP it follows that f z:=xn+1(X [qi]) = f z:=xn+1(X ′[qi]). Also note that:

{�x ∈ f z:=z+1(X [inci]) | z ≤ xm}
= {�x ∈ f z:=z+1({�x ∈ X [inci] | z ≤ xm}) | z ≤ xm} [as X ≈ X ′]
= {�x ∈ f z:=z+1({�x ∈ X ′[inci] | z ≤ xm}) | z ≤ xm}
= {�x ∈ f z:=z+1(X ′[inci]) | z ≤ xm}.
14
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Hence,

{�x ∈ 
G(X )[inci] | z ≤ xm}
= {�x ∈ f z:=xn+1(X [qi]) | z ≤ xm} ∪ {�x ∈ f z:=z+1(X [inci]) | z ≤ xm}
= {�x ∈ f z:=xn+1(X ′[qi]) | z ≤ xm} ∪ {�x ∈ f z:=z+1(X ′[inci]) | z ≤ xm}
= {�x ∈ 
G(X ′)[inci] : z ≤ xm}.

This therefore shows that 
G (X ) ≈ 
G(X ′). �
Let us now show that each transition of a URM program can be simulated by a finitely many applications, say k, of the 

function 
. Moreover, whenever 
 is applied less than k times, we obtain the empty set of states for all the nodes. Let us 
define the following concatenation operation for sequences: (a1, . . . , ak) : a � (a1, . . . , ak, a). Concatenation will be used to 
deal with the fact that our transformed BACFG has an additional variable w.r.t. the original URM program.

Lemma 5.11. Let P = (I1, . . . , It) be a URM program. For all BACFGs G = (N, E, qs, qe) ∈ τ (P ), �x, �x′ ∈NkP , s′ ∈N , if 〈�x, s〉 ⇒ 〈�x′, s′〉
then there exists k ∈N such that:

(1) 
k
G(⊥qs

�x:0) ≈ ⊥qs′
�x′ :0;

(2) ∀i ∈ [1, k − 1], ∀ j ∈ [1, t + 1]. 
i
G(⊥qs

�x:0)[q j] =∅.

Proof. Assume that 〈�x, s〉 ⇒ 〈�x′, s′〉. We distinguish three cases.

(i) Let Is ∈ {z(n), s(n), t(m, n) | n, m ∈N}. Consider the case Is = z(n) for some n (the remaining cases are analogous), so that 
s′ = s + 1. For k = 1 we have that:


G(⊥qs
�x:0) = λv.

⋃
(u,c,v)∈E

fc(⊥qs
�x:0[u])

= λv.

{
fxn:=0({�x : 0}) if v = qs+1

∅ otherwise
[by def. of G]

= λv.

{
�x′ : 0 if v = qs+1

∅ otherwise

= ⊥qs′
�x′:0 [as s′ = s + 1]

Thus, 
G (⊥qs
�x:0) ≈ ⊥qs′

�x′ :0, i.e., property (1) holds with k = 1. Property (2) trivially holds since for k = 1, [1, k − 1] is the empty 
set.

(ii) Let Is = j(m, n, p) and assume that xm = xn holds, so that the next instruction to execute is Iq , i.e., s′ = p. For k = 1 we 
have that:


G(⊥qs
�x:0) = λv.

⋃
(u,c,v)∈E

fc(⊥qs
�x:0[u])

= λv.

⎧⎪⎨
⎪⎩

fxm=xn?({�x : 0}) if v = qp

fz:=xm+1({�x : 0}) ∪ f z:=xn+1({�x : 0}) if v = incs

∅ otherwise

[by def. of G]

= λv.

⎧⎪⎨
⎪⎩

{�x : 0} if v = qp

{�x : xm + 1} if v = incs

∅ otherwise

[as xm = xn]

Since s′ = p and �x = �x′ , we have that:

• for all i ∈ [1, t + 1], 
G (⊥qs
�x:0)[qi] = ⊥qp

�x:0[qi] = ⊥qs′
�x′ :0[qi];

• for all i ∈ [1, t + 1] and m ∈ [1, kP ] such that (inci, xm = z?, qi+1) ∈ E:

{�x ∈ 
G(⊥qs )[inci] | z ≤ xm} =∅ = {�x ∈ ⊥qs′′ [inci] | z ≤ xm}.
�x:0 �x :0
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Thus, 
G (⊥qs
�x:0) ≈ ⊥qs′

�x′ :0 holds, i.e., property (1) holds with k = 1. Moreover, once again property (2) trivially holds because 
[1, k − 1] is empty.

(iii) The last possible case is Is = j(m, n, q) with xm �= xn , so that the next instruction to execute is Is+1, i.e., s′ = s + 1. We 
first prove, by induction, that for all i ≥ 1, the following implication holds:

i ≤ |xm − xn| ⇒ 
i
G(⊥qs

�x:0) = λv.

{
f z:=xn+i({�x : 0}) ∪ f z:=xm+i({�x : 0}) if v = incs

∅ otherwise
(∗)

For the base case i = 1, we have that:


G(⊥qs
�x:0)

= λv.
⋃

(u,c,v)∈E
fc(⊥qs

�x:0[u])

= λv.

{
f z:=xn+1({�x : 0}) ∪ f z:=xm+1({�x : 0}) if v = incs

∅ otherwise
[by def. of G]

For the inductive case i > 1, assume that i ≤ |xm − xn| (if i > |xm − xn| the implication (∗) trivially holds). We have that:


i
G(⊥qs

�x:0)

= 
G(
i−1
G (⊥qs

�x:0))

= 
G

(
λv.

{
f z:=xn+i−1({�x : 0}) ∪ f z:=xm+i−1({�x : 0}) if v = incs

∅ otherwise

)
[by ind. hyp. for i − 1 ≤ |xm − xn|]

= λv.

{
f z:=z+1

(
f z:=xn+i−1({�x : 0}) ∪ f z:=xm+i−1({�x : 0})) if v = incs

∅ otherwise

[as (incs, z := z + 1, incs) is an edge of G and

xm �= xn + i − 1 and xn �= xm + i − 1 since i − 1 < |xm − xn|]

= λv.

{
f z:=xn+i({�x : 0}) ∪ f z:=xm+i({�x : 0}) if v = incs

∅ otherwise

We have therefore shown the implication (∗). Now, note that for k = |xm − xn| + 1 we have that:



|xm−xn|+1
G (⊥qs

�x:0)
= 
G(


|xm−xn|
G (⊥qs

�x:0))

= 
G

(
λv.

{
f z:=xn+|xm−xn|({�x : 0}) ∪ f z:=xm+|xm−xn|({�x : 0}) if v = incs

∅ otherwise

)
[by (∗)]

= λv.

⎧⎪⎨
⎪⎩

f z:=xn+|xm−xn|+1({�x : 0}) ∪ f z:=xm+|xm−xn|+1({�x : 0}) if v = incs

{�x : max(xm, xn)} if v = qs+1

∅ otherwise
[because max(xm, xn) = min(xm, xn) + |xm − xn|]

Since s′ = s + 1 and �x = �x′ , we have that:

• for all i ∈ [1, t + 1], 
|xm−xn |+1
G (⊥qs

�x:0)[qi] �kP = ⊥qs+1
�x:0 [qi] �kP = ⊥qs′

�x′ :0[qi] �kP ;
• for all i ∈ [1, t + 1] and m ∈ [1, kP ] such that (inci, xm = z?, qi+1) ∈ E:

{�x ∈ 

|xm−xn|+1
G (⊥qs

�x:0)[inci] | z ≤ xm} = ∅= {�x ∈ ⊥qs′
�x′:0[inci] : z ≤ xm}.

Therefore, 
G(⊥qs
�x:0) ≈ ⊥qs′

�x′ :0 holds. Furthermore, for all i ∈ [1, |xm − xn|], by applying the implication (∗) we obtain:


i
G(⊥qs

�x:0) =
{

f z:=xn+i({�x : 0}) ∪ f z:=xm+i({�x : 0}) if v = incs

∅ otherwise.
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Thus, for all j ∈ [1, t + 1], 
i
G(⊥qs

�x:0)[q j] =∅ holds and this concludes the proof. �
Let us now generalise Lemma 5.11 to any number of execution steps ⇒n performed by a URM program. In particular, we 

show that if the URM halts then our abstract model will reach, after finitely many steps, a state that stores the URM output 
in its end node. Likewise, whenever the URM diverges, the state of the end node will be empty.

Proposition 5.12. Let P = (I1, . . . , It) be a URM program. Then, for all G = (N, E, qs, qe) ∈ τ (P ), �x, �x′ ∈ NkP , n ∈ N , if 〈�x, s〉 ⇒n

〈�x′, t + 1〉 then there exists n′ ∈N such that:

(1) 
n′
G (⊥qs

�x:0) ≈ ⊥qt+1
�x′ :0 ;

(2) ∀i ∈ [0, n′ − 1]. 
i
G(⊥qs

�x:0)[qt+1] =∅.

Proof. We proceed by induction on n ∈N .

• Base case n = 0, so that 〈�x, s〉 = 〈�x′, t + 1〉. Therefore, for n′ = 0 the property (1) holds because:


n′
G (⊥qs

�x:0) = 
0
G(⊥qt+1

�x′:0 ) [as n′ = 0, t + 1 = s, �x′ = �x]

= ⊥qt+1
�x′:0 [as 
0

G = λx.x]

Moreover, the property (2) trivially holds because [0, n′ − 1] is empty.
• Inductive case n > 0, so that 〈�x, s〉 ⇒ 〈�x′′, s′′〉 ⇒n−1 〈�x′, t + 1〉. We have that:

– by Lemma 5.11, and observing that s �= t + 1, we know that there exists m ∈ N such that: (1) 
m
G (⊥qs

�x:0) ≈ ⊥qs′′
�x′′ :0; 

(2) ∀i ∈ [0, m − 1]. 
i
G (⊥qs

�x:0)[qt+1] =∅.

– by inductive hypothesis there exists n′′ ∈N such that: (i) 
n′′
G (⊥qs′′

�x′′ :0) ≈ ⊥qt+1
�x′ :0 ; (ii) ∀i ∈ [0, n′′−1]. 
i

G (⊥qs′′
�x′′ :0)[qt+1] =∅.

Therefore, it turns out that:


n′′+m
G (⊥qs

�x:0) = 
n′′
G (
m

G (⊥qs
�x:0))

≈ 
n′′
G (⊥qs′′

�x′′:0) [as 
m
G (⊥qs

�x:0) ≈ ⊥qs′′
�x′′:0, by Lemma 5.10]

≈ ⊥qt+1
�x′:0 [by ind. hyp.]

thus showing (1) for n′′ + m. Moreover, for all i ∈ [0, n′′ − 1]:


i+m
G (⊥qs

�x:0) = 
i
G(
m

G (⊥qs
�x:0))

≈ 
i
G(⊥qs′′

�x′′:0). [as 
m
G (⊥qs

�x:0) ≈ ⊥qs′′
�x′′:0, by Lemma 5.10]

Recall that, by inductive hypothesis, 
i
G(⊥qs′′

�x′′ :0)[qt+1] = ∅, so that we obtain that for all i ∈ [m, n′′ + m − 1], 

i

G(⊥qs
�x:0)[qt+1] = ∅ holds. Since, by Lemma 5.11, we have that for all i ∈ [0, m − 1], 
i

G(⊥qs
�x:0)[qt+1] = ∅ holds, we 

conclude that for all i ∈ [0, n′′ + m − 1], 
i
G(⊥qs

�x:0)[qt+1] =∅, thus showing (2) for n′′ + m. �
Proposition 5.13. Let P = (I1, . . . , It) be a URM program. Then, for all G = (N, E, qs, qe) ∈ τ (P ), �x ∈NkP , n ∈N:

if 
n
G(⊥qs

�x:0)[qt+1] �= ∅ then ∃�x′ ∈ NkP ,∃n′ ∈N. 〈�x, s〉 ⇒n′ 〈�x′, t + 1〉.

Proof. We proceed by induction on n ∈N:

• n = 0: by hypothesis, 
0
G (⊥qs

�x:0)[qt+1] = ⊥qs
�x:0[qt+1] �=∅, so that s = t + 1 and, in turn, 〈�x, s〉 ⇒0 〈�x, t + 1〉.

• n > 0: by hypothesis, we have that 
n
G(⊥qs

�x:0)[qt+1] �= ∅. We consider s �= t + 1, otherwise, one can trivially pick 
n′ = 0. By construction, there exist �x′′, s′′ such that 〈�x, s〉 ⇒ 〈�x′′, s′′〉, and, by Lemma 5.11, there exists m such that 

m

G (⊥qs
�x:0) ≈ ⊥qs′′

�x′′ :0. Note that n ≥ m holds, since for all i ∈ [1, m − 1], 
i
G(⊥qs

�x:0)[qt+1] = ∅ holds. By Lemma 5.10, it 
follows that 
n−m

G (
m
G (⊥qs

�x:0)) ≈ 
n−m
G (⊥qs′′

�x′′ :0), By hypothesis and Definition 5.9, we have that 
n−m
G (
m

G (⊥qs
�x:0))[qt+1] =


n−m
G (⊥qs′′

�x′′ :0)[qt+1] �= ∅. We conclude by applying the inductive hypothesis, that entails the existence of m′ such that 
〈�x, s〉 ⇒ 〈�x′′, s′′〉 ⇒m′ 〈�x′, s′〉. �

The next two results show that for a given URM program P = (I1, . . . , It), the BACFG G = (N, E, q1, qt) ∈ τ (P ) simulates 
the operational semantics of P starting from its first instruction I1.
17
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Proposition 5.14. Let P = (I1, . . . , It) be a given URM program and G = (N, E, q1, qt+1) ∈ τ (P ). Then, for all �x, �x′ ∈NkP and n ∈N:

if 〈�x,1〉 ⇒n 〈�x′, t + 1〉 then �G��x:0[qt+1] �kP = {�x′}.

Proof. By Proposition 5.12 there exists n′ such that 
n′
G (⊥q1

�x:0) ≈ ⊥qt+1
�x′ :0 and for all i ∈ [0, n′ − 1], 
i

G(⊥q1
�x:0)[qt+1] = ∅. Let us 

prove, by induction on i, that for all i > n′ , 
i
G(⊥q1

�x:0) ≈ λv.∅.

• i = n′ + 1:


n′+1
G (⊥q1

�x:0) = 
G(
n′
G (⊥q1

�x:0))
≈ 
G(⊥t+1

�x′:0 ) [as 
n′
G (⊥q1

�x:0) ≈ ⊥t+1
�x′:0 , by Lemma 5.10]

= λv.∅. [by def. of G]

• i > n′ + 1:


i
G(⊥q1

�x:0) = 
G(
i−1
G (⊥q1

�x:0))
≈ 
G(λv.∅) [by ind. hyp. and Lemma 5.10]

= λv.∅

Thus, for all i �= n′ , we have that 
i
G (⊥q1

�x:0)[qt+1] =∅. Therefore:

�G��x:0[qt+1]�kP = ∪i∈N F i(⊥q1
�x:0)[qt+1]�kP [by Kleene’s fixpoint theorem]

= ∪i∈N
i
G(⊥q1

�x:0)[qt+1]�kP [by Lemma 5.7]

= 
n′
G (⊥q1

�x:0)[qt+1]�kP [as ∀i �= n′.
i
G(⊥q1

�x:0)[qt+1] =∅]

= {�x′}. [as 
n′
G (⊥q1

�x:0) ≈ ⊥t+1
�x′:0 ]

This therefore closes the proof. �
Proposition 5.15. Let P = (I1, . . . , It) be a given URM program and G = (N, E, q1, qt+1) ∈ τ (P ). Then, for all �x ∈NkP :

if for all �x′ ∈NkP ,n ∈N, 〈�x,1〉 �n 〈�x′, t + 1〉 then �G��x:0[qt+1] = ∅.

Proof. For all n′ ∈N , by Proposition 5.13, we have that 
n′
G (⊥q1

�x:0)[qt+1] =∅ holds. As a consequence:

�G��x:0[qt+1] = ∪i∈N F i(⊥q1
�x:0)[qt+1] [by Kleene’s fixpoint theorem]

= ∪i∈N
i
G(⊥q1

�x:0)[qt+1] [by Lemma 5.7]

= ∅. �
We are now in position to prove the main result of this section.

Theorem 5.3 (Turing completeness of BACFGs). BACFGs are a Turing complete computational model.

Proof. This follows from Propositions 5.14 and 5.15 and Turing completeness of URMs [12, Theorem 4.7]. �
5.2. Concrete and abstract semantics

A key insight is that our concrete semantics is given by URM programs that satisfy the Assumption 2.1 of Turing com-
pleteness, while BACFGs provide the abstract semantics. Let us consider two Gödel numberings for URMs and BACFGs, so 
that for an index a ∈ N , RMa and Ga denote, resp., the a-th URM and BACFG programs. The concrete semantics 〈φ, =〉 for 
URMs is defined as follows: for any index a ∈N , arity n ∈N , and input �x ∈Nn ,

φ
(n)
a (�x) �

{
y if RMa on input �x halts with y stored on its first register

↑ otherwise.
(3)

The abstract semantics of BACFGs is defined as follows.
18
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s

sa sb

ea eb

e

x1 = c1? x1 = c2?

Ga Gb

Fig. 4. The BACFG Gr(a,b,c1,c2) , output of the function r.

Definition 5.16 (State semantics of BACFGs). Let Q ⊆ ℘(Nt) be a predicate on sets of states with t ∈ N variables. The state 
semantics 〈Q , =〉 of BACFGs, for any index a ∈ N and arity n ∈ N , is given by the function Q (n)

a : Nn → {0, 1} defined as 
follows: for all input �x ∈Nn ,

Q (n)
a (�x) �

⎧⎪⎨
⎪⎩

1 if �Ga��x[ea] �= ∅∧ �Ga��x[ea]�t ∈ Q

0 if �Ga��x[ea] �= ∅∧ �Ga��x[ea]�t /∈ Q

↑ if �Ga��x[ea] = ∅,

where ea is the end node of the BACFG Ga . �
Predicates of type Q ⊆ ℘(Nt) are also known as hyperproperties [8] in program security and the state semantics of 

Definition 5.16 models the validity of a given predicate Q at the end node of a BACFG. Note that, from a computability 
perspective, it is not restrictive to focus on the end node, since this can be arbitrarily chosen in a BACFG.

Theorem 5.17. The state semantics of BACFGs in Definition 5.16 is ssmn, branching and discharging.

We split the proof of Theorem 5.17 into three separate results that are given below. In BACFGs, we write the command 
[xa, xa+i] := [xb, xb+i], for some indices a, b and i ≥ 0, to denote a sequence of adjacent edges with commands xa := xb , 
xa+1 := xb+1, . . . , xa+i := xb+i . Likewise, [xa, xa+i] := 0 denotes a sequence of adjacent edges labelled with xa := 0, xa+1 := 0, 
. . . , xa+i := 0.

Proposition 5.18. The state semantics of BACFGs in Definition 5.16 is branching.

Proof. Let 〈Q , =〉 be the state semantics of Definition 5.16 for a given predicate Q ⊆ ℘(Nt) on sets of states with t ∈
N variables. We define a total computable function r : N4 → N as follows: given two indices a, b of BACFGs, say Ga =
(Na, Ea, sa, ea) and Gb = (Nb, Eb, sb, eb), and two values c1, c2 ∈N , the function r suitably renames the nodes of Ga and Gb
to avoid clashes, and adds two fresh nodes s (for start) and e (for end) whose in/outgoing edges are depicted by the BACFG 
in Fig. 4, thus denoted by Gr(a,b,c1,c2) .

Observe that in the BACFG Gr(a,b,c1,c2) with start and end nodes, resp., s and e, with inputs ranging in Nn , for some 
n ∈ N , the maximum variable index is k = max(ka, kb, n), where ka, kb are, resp., the maximum variable indices in Ga and 
Gb . Moreover, for all inputs �y = (y1, y2, . . . , yn) ∈Nn and c1 �= c2, it turns out that:

• if y1 = c1 then �Gr(a,b,c1,c2)��y[ea] = �Ga��y[ea] �k and �Gr(a,b,c1,c2)��y[eb] =∅;
• if y1 = c2 then �Gr(a,b,c1,c2)��y[eb] = �Gb��y[eb] �k and �Gr(a,b,c1,c2)��y[ea] =∅;
• otherwise, i.e. when y1 /∈ {c1, c2}, we have that �Gr(a,b,c1,c2)��y[ea] = �Gr(a,b,c1,c2)��y[eb] =∅.

Consequently:

�Gr(a,b,c1,c2)��y[e] = �Gr(a,b,c1,c2)��y[ea] ∪ �Gr(a,b,c1,c2)��y[eb] =

⎧⎪⎨
⎪⎩

�Ga��y[ea] �k if y1 = c1

�Gb��y[eb] �k if y1 = c2

∅ otherwise.

Hence, r is a total computable function such that for all a, b, c1, c2, x ∈N with c1 �= c2:
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λ�y.Q (n)

r(a,b,c1,c2)
(x, �y)

= λ�y.

⎧⎪⎨
⎪⎩

1 if �Gr(a,b,c1,c2)�x:�y[e] �= ∅∧ �Gr(a,b,c1,c2)�x:�y[e] �t∈ Q

0 if �Gr(a,b,c1,c2)�x:�y[e] �= ∅∧ �Gr(a,b,c1,c2)�x:�y[e] �t /∈ Q

↑ if �Gr(a,b,c1,c2)�x:�y[e] = ∅

= λ�y.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if �Ga�x:�y[ea] �=∅∧ �Ga�x:�y[ea] �k�t∈ Q ∧ x = c1

0 if �Ga�x:�y[ea] �=∅∧ �Ga�x:�y[ea] �k�t /∈ Q ∧ x = c1

↑ if �Ga�x:�y[ea] =∅∧ x = c1

1 if �Gb�x:�y[eb] �= ∅∧ �Gb�x:�y[eb] �k�t∈ Q ∧ x = c2

0 if �Gb�x:�y[eb] �= ∅∧ �Gb�x:�y[eb] �k�t /∈ Q ∧ x = c2

↑ if �Gb�x:�y[eb] = ∅∧ x = c2

↑ otherwise

= λ�y.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if �Ga�x:�y[ea] �=∅∧ �Ga�x:�y[ea] �t∈ Q ∧ x = c1

0 if �Ga�x:�y[ea] �=∅∧ �Ga�x:�y[ea] �t /∈ Q ∧ x = c1

↑ if �Ga�x:�y[ea] =∅∧ x = c1

1 if �Gb�x:�y[eb] �= ∅∧ �Gb�x:�y[eb] �t∈ Q ∧ x = c2

0 if �Gb�x:�y[eb] �= ∅∧ �Gb�x:�y[eb] �t /∈ Q ∧ x = c2

↑ if �Gb�x:�y[eb] = ∅∧ x = c2

↑ otherwise

= λ�y.

⎧⎪⎨
⎪⎩

Q (n)
a (x, �y) if x = c1

Q (n)

b (x, �y) if x = c2

↑ otherwise

=

⎧⎪⎨
⎪⎩

λ�y.Q (n)
a (x, �y) if x = c1

λ�y.Q (n)

b (x, �y) if x = c2

λ�y. ↑ otherwise

Therefore, r satisfies the branching property of Definition 4.6. �
Proposition 5.19. The state semantics of BACFGs in Definition 5.16 is discharging.

Proof. Let 〈Q , =〉 be a state semantics for a predicate Q ⊆ ℘(Nt) on sets of states with t ∈ N variables. Similarly to the 
proof of Proposition 5.18, let us define a total computable function r : N → N as follows: given an index a of a BACFG 
Ga = (Na, Ea, sa, ea), where ka is the maximum variable index occurring in Ga , the function r suitably renames the nodes of 
Ga to avoid clashes, and adds two fresh nodes s and e whose in/outgoing edges are depicted by the BACFG in Fig. 5.

Notice that in the BACFG Gr(a) with start and end nodes, resp., s and ea , given n ≥ 1, for all input �y = (y1, y2, . . . , yn) ∈
Nn and x ∈N we have that �Gr(a)�x:�y[ea] �t= �Ga��y[ea] �t : this happens because the command [x1, xn] := [x2, xn+1] left shifts 
the variables and the assignment xn+1 := xmax(n+1,ka+1,t)+1 guarantees that xn+1 is undefined. Hence, r is a total computable 
function such that for all a, x ∈N:

λ�y.Q (n+1)
r(a) (x, �y)

= λ�y.

⎧⎪⎨
⎪⎩

1 if �Gr(a)�x:�y[ea] �=∅∧ �Gr(a)�x:�y[ea] �t∈ Q

0 if �Gr(a)�x:�y[ea] �=∅∧ �Gr(a)�x:�y[ea] �t /∈ Q

↑ if �Gr(a)�x:�y[ea] =∅

= λ�y.

⎧⎪⎨
⎪⎩

1 if �Ga��y[ea] �= ∅∧ �Ga��y[ea] �t∈ Q

0 if �Ga��y[ea] �= ∅∧ �Ga��y[ea] �t /∈ Q

↑ if �Ga��y[ea] = ∅

= λ�y.Q (n)
a (�y).

Thus, r is a function satisfying the discharging property of Definition 4.6. �
Proposition 5.20. The state semantics of BACFGs in Definition 5.16 is ssmn.
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s

sa

ea

[x1, xn] := [x2, xn+1]

xn+1 := xmax(n+1,ka+1,t)+1

Ga

Fig. 5. The BACFG Gr(a) , output of the function r , where irrelevant node names are omitted.

Proof. Let m, n ≥ 1 and 〈Q , =〉 be a state semantics for a given predicate Q ⊆ ℘(N p) on sets of states with p ∈ N
variables. We define a total computable function s : Nm+2 →N which takes as input two indices a, b and a m-dimensional 
vector �z ∈ Nm . Intuitively, to satisfy the ssmn property of Definition 3.1, the output of s(a, b, �z) should be a BACFG that 
simulates the computation of the concrete semantics φ(m)

b as defined in (3). Since this latter concrete semantics is defined 
on URMs, it is enough to simulate the program RMb = (I1, . . . , It). To this aim, recall that the total computable function τ
of Definition 5.8 transforms URMs into BACFGs having equivalent semantics. Roughly, the BACFG Gs(a,b,�z) on input �y ∈ Nn

first simulates Gb′ = (Nb′ , Eb′ , q1, qt+1) ∈ τ (RMb) on input �z, and, then, simulates Ga = (Na, Ea, sa, ea) on input φ(m)

b (�z) : �y. 
Before going into the details, recall that, in general, URMs set unused registers to 0, so that, by a slight abuse of notation, 
we define the vector projection �z�k∈Nk , for all �z = (z1, . . . , zk′ ) ∈Nk′

, as follows:

�z�k �
{

(z1, . . . , zk′ ,0)�k if 0 ≤ k′ < k

(z1, . . . , zk) if k ≤ k′

Let ka and kb be the maximum variable (or register) index occurring, resp., in Ga and RMb . Recall the operational semantics 
⇒ for URMs of Definition 5.4 and notice that:

φ
(m)

b (�z) =
{

z′
1 if ∃�z′ ∈Nkb .〈�z �kb ,1〉 ⇒∗ 〈�z′, t + 1〉

↑ otherwise.

Therefore, by Propositions 5.14 and 5.15, in order to simulate φ(m)

b (�z) it is enough to execute Gb′ on input �z �kb : 0. More in 
detail, the transform s(a, b, �z) will add the following commands:

1. [xkb+2, xkb+n+1] := [x1, xn], to safely store the original input �y ∈Nn; in fact, the execution of �Gb′��z�kb
:0 will use the first 

kb + 1 variables only;
2. [x1, xmin(m,kb)] := [z1, zmin(m,kb)], so that the first min(m, kb) variables contain �z �kb except for the 0-padding;
3. [xmin(m,kb)+1, xkb+1] := 0, to (possibly) add the missing 0-padding;

This allows us to execute Gb′ on input (�z �kb : 0) : �y. The next step is to execute Ga on input φ(m)

b (�z) : �y. Therefore, we add 
the following commands:

4. [x2, xn+1] := [xkb+2, xkb+n+1], to restore the original input (�y) on the variables starting from x2;
5. [xn+2, xmax(ka,p)] := [xkb+n+2, xkb+max(ka,p)], to ensure that all the remaining variables up to xmax(ka,p) are left undefined.

Finally, the BACFG Ga is executed. The resulting BACFG Gs(a,b,�z) , with start and end nodes s and ea , resp., is described by 
the graph in Fig. 6. Observe that, by definition:

• if φ(m)

b (�z) ↑ then, by Proposition 5.15, �Gs(a,b,�z)��y[ea] = �Gb′��z[qt+1] =∅;
• otherwise, by Proposition 5.14, �Gs(a,b,�z)��y[ea] �p = �Ga� (m) � � [ea] �p .
φb (z):y

21
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s

q1

qt+1

sa

ea

[xkb+2, xkb+n+1] := [x1, xn]

[x1, xmin(m,kb)] := [z1, zmin(m,kb)]

[xmin(m,kb)+1, xkb+1] := 0

Gb′

[x2, xn+1] := [xkb+2, xkb+n+1]

[xn+2, xmax(ka ,p)] := [xkb+n+2, xkb+max(ka ,p)]

Ga

Fig. 6. The BACFG Gs(a,b,�z) , output of the function s, where irrelevant node names are omitted.

Hence, we defined a total computable function s such that for all a, b ∈N and �z ∈Nm:

λ�y.Q (n)

s(a,b,�z)(�y)

= λ�y.

⎧⎪⎨
⎪⎩

1 if �Gs(a,b,�z)��y[ea] �= ∅∧ �Gs(a,b,�z)��y[ea] �p∈ Q

0 if �Gs(a,b,�z)��y[ea] �= ∅∧ �Gs(a,b,�z)��y[ea] �p /∈ Q

↑ if �Gs(a,b,�z)��y[ea] = ∅

= λ�y.

⎧⎪⎪⎨
⎪⎪⎩

1 if φ
(m)

b (�z) ↓ ∧�Ga�φ(m)

b (�z):�y[ea] �= ∅∧ �Ga�φ(m)

b (�z):�y[ea] �p∈ Q

0 if φ
(m)

b (�z) ↓ ∧�Ga�φ(m)

b (�z):�y[ea] �= ∅∧ �Ga�φ(m)

b (�z):�y[ea] �p /∈ Q

↑ otherwise

= λ�y.Q (n+1)
a (φ

(m)

b (�z), �y)

Therefore, s is a function satisfying the ssmn property of Definition 3.1. �

5.3. An application to affine program invariants

Consider a state semantics 〈Q , =〉 for some predicate Q ⊆ ℘(Nt). For all n ≥ 1, let us define two sets A∀Q and A∃Q , by 
distinguishing two cases depending on whether Q includes the empty set, that models nontermination, or not:
22
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(1) If ∅ /∈ Q then:
A∀Q � {a ∈N | ∀�y. Q (n)

a (�y) = 1};
A∃Q � {a ∈N | ∃�y. Q (n)

a (�y) = 1}.
(2) If ∅ ∈ Q then:

A∀Q � {a ∈N | ∀�y. Q (n)
a (�y) ∈ {1, ↑}};

A∃Q � {a ∈N | ∃�y. Q (n)
a (�y) ∈ {1, ↑}}.

Hence, A∀Q (A∃Q ) is the set of BACFGs such that Q holds at ea for any (some) input state. It turns out that if the 
property Q is nontrivial then neither A∀Q nor A∃Q can be recursive.

Corollary 5.21. If Q is not trivial then A∀Q and A∃Q are not recursive.

Proof. Observe that A∀Q is ∼Q -extensional. Thus, Theorem 5.17 enables applying our intensional Theorem 4.10 to the state 
semantics 〈Q , =〉 to derive that A∀Q is not recursive. The same argument applies to the existential version A∃Q . �

Thus, Corollary 5.21 means that we cannot decide if a nontrivial predicate Q holds at a given program point of a BACFG 
for all input states, neither whether there exists an input state that will make Q true. Let us remark that the predicates Q
are arbitrary and include, but are not limited to, relational predicates between program variables such as affine equalities of 
Karr’s abstract domain. Let us define some noteworthy examples of predicates:

(i) Given a set of affine equalities aff = { �a j · �x = b j}m
j=1, with �a j ∈Zt and b j ∈Z, Q aff � {S ∈ ℘(Nt) | ∀�v ∈ S.∀ j ∈ [1, m]. �a j ·

�v = b j};
(ii) Given i ∈ [1, t] and c ∈N , Q =c � {S ∈ ℘(Nt) | ∃�v ∈ S. vi = c};

(iii) Given a size k ∈N , Q fink � {S ∈ ℘(Nt) | |S| = k} and Q fin � ∪k∈N Q fink .

Therefore, it turns out that Corollary 5.21 for A∀Q aff entails the undecidability result of Müller-Olm and Seidl [26, Sec-
tion 7] discussed at the beginning of Section 5. The predicate Q =c can be used to derive the undecidability of checking if 
some variable xi may store a given constant c for affine programs with positive affine guards, e.g., for c = 0 this amounts to 
the undecidability of detecting division-by-zero bugs. Finally, with Q fin0 we obtain the undecidability of dead code elimina-
tion, Q fin1 entails the well-known undecidability of constant detection [13,31], while the existential predicate Q fin encodes 
whether some program point may only have finitely many different states.

6. Discussion of related work

In this section we discuss more in detail the relation with some of Asperti’s results [1] and with Rogers’ systems of 
indices [35,36].

6.1. Relation with Asperti’s approach

We show that our ssmn property in Definition 3.1 is a generalisation of the smn property in Asperti’s approach [1], 
in a way that Kleene’s second recursion theorem and Rice’s theorem for complexity cliques in [1] arise as instances of 
the corresponding results in our approach. Let us first recall and elaborate on the axioms for the complexity of function 
composition studied by Lischke [21–23] and assumed in [1, Section 4].

Definition 6.1 (Linear time and space complexity composition). Consider a given concrete semantics φ and a Blum complexity 
�. The pair 〈φ, �〉 has the linear time composition property if there exists a total computable function h :N2 →N such that 
for all i, j ∈N:

(1) φh(i, j) = φi ◦ φ j ,
(2) �h(i, j) ∈ �(�i ◦ φ j + � j).

If (2) is replaced by

(2′) �h(i, j) ∈ �(max{�i ◦ φ j, � j})

then 〈φ, �〉 is said to have the linear space composition property. �
Roughly speaking, the linear time composition property states that there exists a program h(i, j) which computes the 

composition φi(φ j(x)) in an amount of time which is asymptotically equivalent to the sum of the time needed for computing 
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P j on input x, eventually producing some output φ j(x), and the time form computing Pi on such value. On the other hand, 
the linear space composition property aims at modelling the needed space, so that rather than adding the complexities of 
Pi and P j , their maximum is considered, since this intuitively is the maximum amount of space needed for computing a 
composition of programs.

By observing that �(max{�i ◦ φ j, � j}) = �(�i ◦ φ j + � j) we can merge the linear time and space properties of Defini-
tion 6.1 and extend them for n-ary compositions as follows.

Definition 6.2 (Linear complexity composition). Given a concrete semantics φ and a Blum complexity �, the pair 〈φ, �〉 has 
the linear complexity composition property if, given n, m ≥ 1, there exists a total computable function h : N2 →N such that 
for all i, j ∈N:

φ
(m+n)

h(i, j) = λ�xλ�y. φ(n+1)
i (φ

(m)
j (�x), �y),

�
(m+n)

h(i, j) ∈ �(λ�xλ�y. (�(n+1)
i (φ

(m)
j (�x), �y)) + �

(m)
j (�x))). �

We can now recall the smn property as defined in [1, Definition 11].

Definition 6.3 (Asperti’s smn property). Given a concrete semantics φ, a Blum complexity � and m, n ≥ 1, the pair 〈φ, �〉 has 
the Asperti’s smn property if there exists a total computable function s :Nm+1 →N such that ∀e ∈N, �x ∈Nm:

λ�y.φ
(m+n)
e (�x, �y) = φ

(n)

s(e,�x) ,

λ�y.�
(m+n)
e (�x, �y) ∈ �(λ�y.�

(n)

s(e,�x)(�y)). �
Informally, the smn property of Definition 6.3 states that the operation of fixing parameters preserves both the concrete 

semantics and the asymptotic complexity. Under these assumptions, we can show that Asperti’s complexity clique semantics 
satisfies our ssmn property. The proof is a simple adaptation of the one used in Section 3 to argue that the concrete 
semantics of Example 2.3 is ssmn.

Lemma 6.4. Let 〈π, ≡π 〉 be the complexity clique semantics of Example 2.6. If 〈π, ≡π 〉 satisfies Asperti’s smn and linear complexity 
composition properties then 〈π, ≡π 〉 is ssmn.

Proof. We have to show that given m, n ≥ 1, there exists a total computable function s : Nm+2 → N such that for all 
a, b ∈N , �x ∈Nm:

λ�y.π
(n+1)
a (φ

(m)

b (�x), �y) ≡π π
(n)

s(a,b,�x).

We have that

λ�y.π
(n+1)
a (φ

(m)

b (�x), �y) =
= λ�y.〈〈φ(n+1)

a (φ
(m)

b (�x), �y),�
(n+1)
a (φ

(m)

b (�x), �y)〉〉
[by definition of πa]
≡π λ�y.〈〈φ(m+n)

h(a,b)
(�x, �y),�

(m+n)

h(a,b)
(�x, �y)〉〉

[with h : N2 → N total computable, by linear complexity composition]
≡π λ�y.〈〈φ(n)

s′(h(a,b),�x)(�y),�
(n)

s′(h(a,b),�x)(�y)〉〉
[with s′ :Nm+1 → N total computable, by Asperti’s smn property]
= 〈〈φ(n)

s′(h(a,b),�x),�
(n)

s′(h(a,b),�x)〉〉 = π
(n)

s′(h(a,b),�x)

The desired function s : Nm+2 → N can therefore be defined as s(a, b, �x) � s′(h(a, b), �x). Note that s is total computable 
since h and s′ are so. �

This result, together with the observation that the notion of fairness in Definition 3.2 instantiated to the complexity 
clique semantics is exactly that of [1, Definition 26], allows us to retrieve Kleene’s second recursion theorem and Rice’s 
theorem for complexity cliques in [1] as instances of our corresponding results in Section 4.1.
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6.2. Relation with systems of indices

As mentioned in Section 2, our definition of abstract semantics resembles the acceptable systems of indices [28, Defi-
nition II.5.1] or numberings [36, Exercise 2-10], firstly studied by Rogers [35]. In this section we discuss how such notions 
compare.

Definition 6.5 (System of indices [28, Definition II.5.1]). A system of indices is a family of functions {ψn}n∈N such that each 
ψn :N → Cn is a surjective map that associates program indices to n-ary partial recursive functions.

• {ψn}n∈N has the parametrization (or smn) property if for every m, n ∈ N there is a total computable function 
s :Nm+1 →N such that ∀e ∈N, �x ∈Nm:

λ�y.ψm+n
e (�x, �y) = ψn

s(e,�x).

• {ψn}n∈N has the enumeration property if for every n ∈N there exists u ∈N such that for all and e ∈N and �y ∈Nn:

ψn
e = λ�y.ψn+1

u (e, �y). �
Any standard Gödel numbering associating a program with the function it computes is a system of indices with the 

parametrization and enumeration properties. Moreover, exactly as we did in Example 2.3, any system of indices {ψn}n∈N can 
be viewed as an abstract semantics 〈π, =〉 with πa

n � ψn
a . In this context, the enumeration and parametrization properties 

correspond to our fairness and ssmn conditions: fairness is exactly enumeration while ssmn follows from parametrization 
and enumeration, as discussed in Section 3 for the concrete semantics (cf. Example 2.3).

A system of indices is defined to be acceptable if it allows to get back and forth with a given system of indices satisfying 
the parametrization and enumeration properties through a pair of total computable functions.

Definition 6.6 (Acceptable system of indices [35, Definition 4]). Let {ϕn}n∈N be a given system of indices with the parametriza-
tion and enumeration properties. A system of indices {ψn}n∈N is acceptable if there exist two total computable functions 
f , g :N →N such that for all a, n ∈N:

ψn
a = ϕn

f (a) and ϕn
a = ψn

g(a). �
As shown in [28, Proposition II.5.3], it turns out that a system of indices is acceptable if and only if it satisfies both 

enumeration and parametrization (a proof of this characterization was first given by Rogers [35, Section 2]). Consequently, 
an acceptable system of indices {ψn}n∈N can be viewed as an abstract semantic 〈π, =〉, where πn

a = ψn
a , which, by this 

characterization of acceptability, is ssmn and fair, and therefore, by Theorem 4.1 it enjoys Kleene’s second recursion theorem, 
as already known from [28, Corollary II.5.4].

Under this perspective, a generic abstract semantics according to Definition 2.2 can be viewed as a proper generalisation 
of the notion of acceptable system of indices, in the sense that the latter merely encodes a change of program numbering 
and does not allow to take into account an actual abstraction of the concrete input/output behaviour of programs.

7. Conclusion and future work

This work generalises some traditional extensional results of computability theory, notably Kleene’s second recursion 
theorem and Rice’s theorem, to intensional abstract program semantics that include the complexity cliques investigated by 
Asperti [1]. Our approach was also inspired by Moyen and Simonsen [25] and relies on weakening the classical definition 
of extensional program property to a notion of partial extensionality w.r.t. abstract program semantics that satisfy some 
structural conditions. As an application, after showing the Turing completeness of the class of affine control flow graphs 
with positive affine guards (BACFGs), we strengthened and generalised a result by Müller-Olm and Seidl [26] proving that 
for affine programs with positive affine guards it is undecidable whether an affine relation holds at a given program point. 
Our results also shed further light on the claim that these undecidability results hinge on the Turing completeness of the 
underlying computational model, as argued in [25].

It is worth observing that our approach, similarly to those of [1,25], relies on the possibility of constructing or trans-
forming programs while preserving the abstract semantics as required, e.g., by the fairness property (cf. Definition 3.2) or 
the branching property (cf. Definition 4.6). These requirements can be hard to meet when the semantics of interest is too 
concrete. For instance, properties of programs related to the exact complexity (e.g., the set of programs p terminating in 
exactly �p(n) = n2 + 2 steps), can hardly be cast into our framework, even though we do not provide a formal impossibility 
result.

As future work, an interesting direction concerns the chance of leveraging our framework to achieve new (or already 
known) undecidability results of static program analyses. Some viable candidates appear to be the undecidability results al-
ready mentioned in the introduction, such as the undecidability of flow-sensitive alias analysis [6,20], points-to analysis [6], 
and context-sensitive data-dependence analysis [32].
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A further stimulating task would be to investigate intensional generalisations of Rice-Shapiro’s theorem that fit our 
framework based on abstract semantics. This appears to be a nontrivial challenge. Generalisations of Rice-Shapiro’s theorem 
have been given in [1, Section 5] and [25, Section 5.1]. A generalisation in the vein of the approach in [1] seems to be 
viable, but would require structural assumptions on abstract program semantics that, while natural in [1] whose focus 
is on complexity properties, would be artificial for abstract program semantics and would limit a general applicability. A 
further stimulating research topic is to apply our approach to abstract semantics as defined by abstract interpretation of 
programs [9], in particular for investigating the relationship with the notion of abstract extensionality studied by Bruni et 
al. [5]. Finally, while our framework relies on the assumption of an underlying Turing complete computational model, in a 
different direction, one could try to consider intensional properties for classes of programs indexing subrecursive functions 
(e.g., primitive recursive functions), whose extensional properties have been already studied (see, e.g., [14,19]). Despite 
the fact that we suppose that our approach will fall short on these program classes, as one cannot expect to have a 
universal program inside the class itself or the validity of Kleene’s second recursion theorem, we think that this represents 
an intriguing research challenge.
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