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—— Abstract

Classical results in computability theory, notably Rice’s theorem, focus on the extensional content
of programs, namely, on the partial recursive functions that programs compute. Later and more
recent work investigated intensional generalisations of such results that take into account the way in
which functions are computed, thus affected by the specific programs computing them. In this paper,
we single out a novel class of program semantics based on abstract domains of program properties
that are able to capture nonextensional aspects of program computations, such as their asymptotic
complexity or logical invariants, and allow us to generalise some foundational computability results
such as Rice’s Theorem and Kleene’s Second Recursion Theorem to these semantics. In particular,
it turns out that for this class of abstract program semantics, any nontrivial abstract property
is undecidable and every decidable overapproximation necessarily includes an infinite set of false
positives which covers all values of the semantic abstract domain.
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1 Introduction

Most classical results in computability theory focus on the so-called extensional properties
of programs, i.e., on the properties of the partial functions they compute. Notably, the
renowned Rice’s Theorem [25] states that any nontrivial extensional property of programs is
undecidable. Despite being very general, Rice’s Theorem and similar results in computability
theory, due to the requirement of extensionality, leave out several intensional properties which
are of utmost importance in the practice of programming. Essential intensional properties
of programs include their asymptotic complexity of computation, their logical invariants
(e.g., relations between variables at program points), or any event that might happen during
program computation while not affecting the program output.
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A Rice’s Theorem for Abstract Semantics

State-of-the-Art

A generalisation of well-established results of computability theory to the realm of program
complexity has been put forward by Asperti [1]. A first observation is that Blum’s complexity
classes [2], i.e., sets of recursive functions (rather than sets of programs) with some given
(lower or upper) bound on their (space and/or time) complexity, are not adequate for
investigating the decidability aspects of program complexity: in fact, viewed as program
properties they are trivially extensional. Thus, a key idea in [1] is to focus on the so-called
complezxity cliques, namely, sets of programs (i.e., program indices) closed with respect to their
extensional input/output behaviour and their asymptotic complexity. Asperti [1] showed
how this approach enables intensional versions of Rice’s theorem, Rice-Shapiro theorem, and
Kleene’s second recursion theorem ([8, 28] are standard references for these foundational
results) for complexity cliques.

More recently, a different approach has been considered by Moyen and Simonsen in [19],
where the classical definition of extensionality has been weakened to a notion of partial
extensionality. Roughly, a given set of programs is partially extensional if it includes the set
of all programs computing a given partial recursive function. It is shown in [19] that if a set
of programs and its complement are partially extensional, then they cannot be both recursive.
Interestingly, this result can be further generalised by replacing the extensionality with an
equivalence relation on programs satisfying some suitable structural conditions, notably, the
existence of a so-called intricated switching family. Moyen and Simonsen [19] show how to
derive within their framework intensional versions of Rice’s Theorem — generalising Asperti’s
result [1] — and Rice-Shapiro Theorem.

Main Contributions

Along the lines traced by Asperti [1], we investigate whether and how some fundamental
extensional results of computability theory can be systematically generalised to intensional
aspects of computation, but rather than focussing on specific intensional properties we
deal with generic abstract program semantics. More in detail, we distill two fundamental
properties of abstract program semantics in our approach: the strong smn property and the
existence of a universal fair program, roughly, an interpreter that preserves the abstract
semantics. We show that for abstract semantics satisfying the strong smn property and
admitting a universal fair program, a generalisation of Kleene’s second recursion theorem can
be proved. This, in turn, leads to a generalisation of Rice’s theorem. Besides relying on a
general abstract program semantics, inspired by Moyen and Simonsen’s approach [19], we also
relax the extensionality condition to partial extensionality. This weakening provides stronger
impossibility results as it allows us to show that it is undecidable whether a given program
can have a particular semantics, i.e., even nontrivial overapproximations of such properties
are undecidable. On a different route, we establish a precise connection with Moyen and
Simonsen’s work [19] by showing that for any abstract program semantics satisfying the
strong smn property and a structural branching condition (roughly, expressing some form of
conditional choice), we can prove the existence of an intricated switching family, which turns
out to be the crucial hypothesis in [19] for deriving an intensional version of Rice’s theorem.

Therefore, on the one hand, we generalise the results in [1], going beyond complexity
cliques, and, on the other hand, we provide an explicit characterisation of a class of program
semantics that admit intricated switching families so that the results in [19] can be applied.

Finally, we show some applications of our intensional Rice’s theorem that generalise some
undecidability results for intensional properties used in static program analysis. In particular,
we focus on program analysis in Karr’s abstract domain of affine relations between program
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variables [13]. By exploiting an acute reduction to the undecidable Post correspondence
problem, Miiller-Olm and Seidl [20] prove that for affine programs with positive affine guards
it is undecidable whether a given nontrivial affine relation holds at a given program point
or not. Here, we first show that this class of affine programs with positive affine guards,
modeled as control flow graphs, turns out to be Turing complete since, by selecting a suitable
program semantics, these programs can simulate a URM. Then, this allows us to derive the
undecidability result in [20] as a consequence of our results.

The rest of the paper is structured as follows. In Section 2, we provide some background
and our basic notions. In Section 3, we introduce the strong smn property, fair universal
programs, and the branching condition that will play a fundamental role in our results. In
Section 4, we provide our generalisation of Kleene’s second recursion theorem and use it
to derive our intensional Rice’s theorem. We also establish an explicit connection with the
notion of intricated switching family given in [19]. Section 5 provides some applications of
our results to the analysis of affine programs. Section 6 discusses in detail the relation with
some of Asperti’s results [1] and with Rogers’ systems of indices [27, 28]. Finally, Section 7
concludes and outlines some directions of future work.

2 Basic Notions

Given an n-ary partial function f : N® — N, we denote by dom(f) the domain of f and
by rg(f) £ {f(¥) : ¥ € dom(f)} its range. We write f(¥) | if £ € dom(f) and f(Z) 1
if £ ¢ dom(f). Moreover, A\Z. 1 denotes the always undefined function. We denote by
Fn £ N" — N the class of all n-ary (possibly partial) functions and by F £ J, F,, the class
of all such functions. Additionally, C,, C F,, denotes the subset of n-ary partial recursive

functions (C stands for computable) and C £ |J, C,, the set of all partial recursive functions.

» Assumption 2.1 (Turing completeness). Throughout the paper, we assume a fixed Turing
complete model and we denote by P the corresponding set of programs. Moreover, we
consider a fixed Gédel numbering for the programs in P and, given an index a € N, we
write P, for the a-th program in P. A program can take a varying number n of inputs and

we denote by ¢((ln) € C, the n-ary partial function computed by P,. Therefore, by Turing
completeness, {gzb,(ln) | a,n € N} = C must hold. J

The binary relation between programs that compute the same n-ary function is called
Rice’s equivalence and denoted by ~, i.e.,

a~h b gl =gl

Classical Rice’s theorem [25] compares the extension of programs, i.e., the functions they
compute, and shows that unions of equivalence classes of programs computing the same
function are undecidable. In Asperti’s work [1], by relying on the notion of complexity
clique, the asymptotic program complexity can be taken into account. The idea here is to
further generalise the approach in [1] by considering generic program semantics rather than
asymptotic program complexity. Additionally, an equivalence relation on program semantics
allows us to further abstract and identify programs with different extensional semantics. More
precisely, such an equivalence relation allows us to reason on semantic program properties
that may not hold with functional equivalence.
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» Definition 2.2 (Abstract semantics). An abstract semantics is a pair {m,=,) where:

(1) m: N2 — F associates a program index a and arity n with an n-ary function m(ln) € Fa,
called semantics of a;
(2) = € F x F is an equivalence relation between functions.

Given n € N, the n-ary program equivalence induced by an abstract semantics (r, =) is the
equivalence ~7 C N x N defined as follows: for all a,b € N,

a~t b= =, Flgn). 4
The notation for the case of arity n = 1 will be simplified by omitting the arity, e.g., ¢,
instead of (;521) and ~ in place of ~L. Abstract semantics can be viewed as a generalisation of
the notion of system of indices (or numbering), as found in standard reference textbooks [22,
28] and discussed in detail later in Section 6.2. Let us now show how the standard extensional
interpretation of programs, complexity and complexity cliques can be cast into our setting.

» Example 2.3 (Concrete semantics). The concrete input/output semantics can be trivially
seen as an abstract semantics (¢, =) where d)fln) is the n-ary function computed by P, and =
is the equality between functions. Observe that this concrete semantics induces an n-ary
program equivalence which is Rice’s equivalence ~%. a

» Example 2.4 (Domain semantics). For a given set of inputs S C N, consider (¢, =g) where
qS((Ln) is the n-ary function computed by P, and for f, ¢ : N® — N, their equivalence is defined
by f =g g <= dom(f) NS = dom(g)NS. J

» Example 2.5 (Blum complexity). Let ® : N> — C be a Blum complexity [2], i.e., for all
a € Nand Z € N*, (1) (D((ln)(f) & ¢((ln) (Z) | holds, and (2) for all m € N, the predicate
@Eln)(f) = m is decidable. Letting ©(f) to denote the standard Big Theta complexity class
of a function f, the pair (®,=¢) defined by

() =4 oM 25 () c o(0l™)
is an abstract semantics. a

» Example 2.6 (Complexity clique). Complexity cliques as defined by Asperti in [1] can
be viewed as an abstract semantics (7, =), that we will refer to as the complexity clique
semantics. For each arity n and program index a let us define:

i £ X (o (@), 5 (7))
where ((_, )) : N2 — N is an effective bijective encoding for pairs and ® : N> — C is a Blum
complexity. The equivalence = is defined as follows: for all a,b,n € N,

) = Tl'l()n) < o = d)lgn) ADM =4 @gn). N

a

Classical Rice’s theorem states the undecidabilty of extensional program properties.
Following [19], we parameterise extensional sets by means of a generic equivalence relation.

» Definition 2.7 (~-extensional set). Let ~ C N x N be an equivalence relation between
programs whose equivalence classes are denoted by [a].. A set of indices A C N is called:

~-extensional when for all a,b € N, if a € A and a ~ b then b € A;
partially ~-extensional when there exists a € N such that [a]. C A4;
ungversally ~-extensional when for all a € N, [a]. N A # @. 4
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In words, a set A is ~-extensional if A is a union of ~-equivalence classes, partially
~-extensional if A contains at least a whole ~-equivalence class, and universally ~-exten-
sional if A contains at least an element from each ~-equivalence class, i.e., its complement
N~ A is not partially ~-extensional. Notice that if A is not trivial (i.e., A # @ and A # N)
and ~-extensional then A is partially ~-extensional and not universally ~-extensional. Let
us observe that ~p-extensionality is the standard notion of extensionality so that classical

Rice’s theorem [25] states that if A is ~p-extensional and not trivial then A is not recursive.!

3 Fair and Strong smn Semantics

In this section, we identify some fundamental properties of abstract semantics that will be
later used in our intensional computability results. A first basic property stems from the
fundamental smn theorem and intuitively amounts to requiring that the operation of fixing
some parameters of a program is effective and preserves its abstract semantics.

» Definition 3.1 (Strong smn semantics). An abstract semantics (7, =) has the strong smn
(ssmn) property if, given m,n > 1, there exists a total computable function s : N™+2 — N
such that for all a,b € N, ¥ € N™:

M (O™ (2), §) =x 7 2 (1)
In such a case, the abstract semantics (7w, =,) is called strong smn. J

The above definition requires the property (1) which is slightly stronger than one would
expect. The natural generalisation of the standard smn property, in the style, e.g., of [1], would
amount to asking that, given m,n > 1, there exists a total computable function s : N™+! + N
such that for any program index a € N and input & € N™_ it holds /\gj.m(lm+") (Z,9) =x 7'('27(25 .
The concrete semantics (¢, =) of Example 2.3 clearly satisfies this ssmn property. In fact, the
function Aa, b, g’.ﬁénﬂ)(qﬁgm) (Z),¥) is computable (by composition, relying on the existence
of universal functions), hence the existence of a total computable s : N2 — N such
that )\gj'.m(lnﬂ)( l(;m)(f), Y) =x Win(z b,z Dolds, as prescribed by Definition 3.1, follows by the
standard smn theorem. It is easil); seen that the same applies to the domain semantics of
Example 2.4.

The reason for the stronger requirement (1) in Definition 3.1 is that, to deal with generic
abstract semantics, thus going beyond asymptotic complexity, a suitable smn definition needs
to embody a condition on program composition (of @ and b in Definition 3.1). Indeed, if we
consider the semantics based on program complexity (i.e., Examples 2.5 and 2.6), it turns out
that whenever they enjoy the smn property in [1, Definition 11] and, additionally, they satisfy
the linear time composition hypothesis in [1, Section 4] relating the asymptotic complexities
of a program composition to those of its components, then they are ssmn semantics according
to Definition 3.1. More details on the relationship with Asperti’s approach [1] will be given
later in Section 6.1.

Note that for an ssmn abstract semantics (m, =), there always exists a program whose

denotation is equivalent to the always undefined function, namely,

for any arity n € N there exists a program index ey € N such that ﬁgg) = M1 (2

UIn [19], the term “extensional” is replaced by “compatible” when one refers to generic equivalence
relations ~.
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In fact, if b is a program index for the always undefined function Ag.1 then, by (1), we
have that Aﬁ.ﬂ6n+1)(¢b(0)7gj’) =My T =z ”g?o),b,oy so that we can pick ey = s(0,b,0).

It is also worth exhibiting an example of abstract semantics which is not ssmn. Let 7, (%)
be defined as the number of different variables accessed in a computation of the program a
on the input Z. Then, let us observe that the mere fact that 7, is always a total function
trivially makes the abstract semantics (r, =) non-ssmmn.

To generalise Kleene’s second recursion theorem, besides the ssmn property, we need
to postulate the existence of so-called fair universal programs, namely, programs that can
simulate every other program w.r.t. a given abstract semantics. This generalises the analogous
notion in [1, Definition 26], where this simulation is specific to complexity cliques and must
preserve both the computed function and its asymptotic complexity.

» Definition 3.2 (Fair semantics). An index u € N is a fair universal program for an abstract
semantics (m,=,) and an arity n € N if for all a € N:

7T((1") =, Agj’.ﬁg7l+1)(a,gj’).

An abstract semantics is fair if it admits a fair universal program for every arity. a

Clearly, the concrete (Example 2.3) and domain (Example 2.4) semantics are fair. In
general, as noted in [1], the existence of a fair universal program may not only depend on the
reference abstract semantics, but also on the underlying computational model. For instance,
when considering program complexity, as argued by Asperti [1, Section 6] by relying on some
remarks by Blum [3], multi-tape Turing machines seem not to admit fair universal programs.
By contrast, single tape Turing machines do have fair universal programs, despite the fact
that this is commonly considered a folklore fact and cannot be properly quoted. Hereafter,
when referring to the complexity-based semantics of Examples 2.5 and 2.6, we will implicitly
use that they are ssmn and fair semantics.

4 Kleene's Second Recursion Theorem and Rice’s Theorem

In this section, we show how some foundational results of computability theory can be
extended to a general abstract semantics. The first approach relies on a generalisation of
Kleene’s second recursion theorem, which is then used to derive a corresponding Rice’s
theorem. A second approach consists in identifying conditions that ensure the existence of
an intricated switching family in the sense of [19], from which Rice’s theorem also follows.

4.1 Kleene’s Second Recursion Theorem

We show that Kleene’s second recursion theorem holds for any fair ssmn abstract semantics.
This generalises the analogous result proved by Asperti [1, Section 5] for complexity cliques.

» Theorem 4.1 (Intensional Second Recursion Theorem). Let (w, =) be a fair ssmn abstract
semantics. For any total computable function h : N — N and arity n € N, there exists an
index a € N such that a ~I h(a).

As an example, this result, instantiated to the complexity semantics of Example 2.5,
entails the impossibility of designing a program transform that modifies the asymptotic
complexity of every program, even without preserving its input-output behavior.
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Figure 1 A graphical representation of Theorem 4.3.

» Example 4.2 (Fixpoints of Blum complexity semantics). Let (®,=4) be the Blum complexity
semantics of Example 2.5. A program transform h : N — N is a total computable function
which maps indices of programs into indices of transformed programs. By applying The-
orem 4.1, for any arity n € N, we know that there exists an index of a program a such that
a ~" h(a) holds, so that the program transform h necessarily does not alter the asymptotic
complexity of, at least, the program a. J

This second recursion theorem allows us to obtain an intensional version of Rice’s theorem
for fair and ssmn abstract semantics. Inspired by [19], we generalise the statement to cover
partially extensional properties.

» Theorem 4.3 (Rice by fair and ssmn semantics). Let (m,=) be a fair and ssmn semantics.
If A C N is partially ~7%-extensional and not universally ~7-extensional, for some arity
n € N, then A is not recursive.

Fig. 1 provides a graphical representation of this result: if we can find two program
indices ag, a; € N such that A overapproximates the =, -equivalence class [a1]~, and A does
not intersect [ag]~,, then A cannot be recursive. For example, as observed in Section 3,
the asymptotic complexity on a suitable computational model such as single tape Turing
machines is a fair ssmn semantics, so that Theorem 4.3 applies. Let us illustrate some further

applications of Theorem 4.3.

» Example 4.4 (Halting set). Let (¢, =n) be the domain semantics of Example 2.4 with
S =N, hence f =y g when dom(f) = dom(g). The halting set K = {a € N | ¢,(a)l} can
be proved to be non-recursive by resorting to Theorem 4.3 for (¢, =n). Let ep,e1; € N be
such that ¢., = Az.1T and ¢., = Az.1. Since [e1]=, is the set of programs that compute total
functions, we have that [e1]=, C K. Moreover, [eg]=, is the set of nonterminating programs
for any input, so that [eg]=, N K = @. This means that (¢, =) satisfies the hypotheses of
Theorem 4.3, thus entailing that K is not recursive. J

» Example 4.5 (Complexity sets). Let (¢, =), (P, =q) be, resp., the semantics of Examples 2.3
and 2.5. Let sort : N — N be a total function that takes as input an encoded sequence of
numbers and outputs the encoding of the corresponding sorted sequence. It turns out that
by applying Theorem 4.3, the following sets can be proved to be non-recursive:

(1) A= {a|®, € O(nlogn) A ¢, = sort},

(2) B2 {a| @, € O(nlogn)},

3) ¢ 2 {a]|®, € Qnlogn)}.

Let is, ms be different implementations of sort, i.e., ¢;s = dms = sort, such that ®;, € O(n?)
and ®,,; € O(nlogn) — is and ms could be, resp., insertion and merge sort. Recall that
~pr denotes the Rice equivalence induced by (¢, =) (i.e., a ~g b < ¢y = ¢p), and, in turn,
let ~4p = ~¢ N ~p be the equivalence induced by the complexity clique semantics of
Example 2.6, which is a fair ssmn semantics. Then, we have that:
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(1) since [is]my, N A =@ and [ms]

(2) since [is]~, N B = @ and [ms]., C B, by Theorem 4.3 B is non-recursive;

(3) let e be any program index such that ®. € ©(1). Since [e]., NC = & and [is]~, C C,
by Theorem 4.3, the set C' is non-recursive. a

~arn © A, by Theorem 4.3 A is non-recursive;

It is worth remarking that in Example 4.5, nlogn could be replaced by any function,
thus showing the undecidability of the asymptotic complexities “big O” (case (2)) and “big
Omega” (case (3)). Let us also point out that Example 4.4 shows how easily the halting set
K can be proved to be non-recursive by applying Theorem 4.3.

4.2 Branching Semantics

Let us investigate the connection between our results and the key notion of intricated
switching family used by Moyen and Simonsen [19] for proving their intensional version of
Rice’s theorem. Firstly, we argue that every ssmn abstract semantics admits an intricated
switching family whenever it is able to express a suitable form of conditional branching. This
allows us to derive an intensional Rice’s theorem. Moreover, we show that for fair and ssmn
semantics, the identity can always play the role of intricated switching family.

» Definition 4.6 (Branching and discharging semantics). An abstract semantics (7, =) is
branching if, given n > 1, there exists a total computable function r : N* — N such that
Ya,b,cy,co,x € N such that ¢; # co:

)\;J.ﬂ'((ln)(x, y) ifrx=c¢
(n)

)‘g'ﬂ-r(a,b,m,cz)(% Y) =x Ag'ﬁérb)(z» y) ifz=c

Ay T otherwise

Moreover, {7, =) is (variable) discharging if, for all n > 1, there exists a total computable
function ¢ : N — N such that for all a,x € N:
_ y~ (nt1 ~
WC(L”) =, Ay.ﬁt(gla) )(x,y). a
Hence, intuitively, an abstract semantics is branching when it is able to model the
branching structure of conditional statements with multiple positive guards, while the
property of being variable discharging holds when one can freely add fresh and unused

variables without altering the abstract semantics. Let us recall the notion of intricated
switching family from [19, Definition 5].2

» Definition 4.7 (Intricated switching family [19, Definition 5]). Let ~ C N x N be an
equivalence relation on program indices. An intricated switching family (ISF) w.r.t. ~ is
an indexed set of total computable functions {04} pen, With o4 : N — N, such that for
all a,b € N, the sets Agp = {x € N| 04p(z) ~ a} and B,y = {x € N | 04(x) ~ b} are
recursively inseparable (i.e., no recursive C' exists such that A, C C and CNByp = ). 4

Moyen and Simonsen [19, Theorem 3] show that if an equivalence ~ admits an ISF,
then every partially ~-extensional and not universally ~-extensional set is not recursive. A
simplified version of their intensional result, tailored for our setting, can be stated as follows.

2 For the sake of simplicity, [19, Definition 5] is here instantiated to the case of recursive sets.
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» Theorem 4.8 ([19, Theorem 3]). Let ~ C N x N be an equivalence relation. If A C N is
partially ~-extensional, not universally ~-extensional and there exists an ISF w.r.t. ~ then
A is not recursive.

Branching semantics allow us to derive the following intensional version of Rice’s Theorem.

» Theorem 4.9 (Rice by branching, discharging and ssmn semantics). Let (m,=,) be a branching,
discharging and ssmn semantics. If A C N is partially ~7-extensional and not universally
~T-extensional for some arity n € N, then A is not recursive.

Let us discuss more in detail the relationship with the approach in [19]. Firstly, it
turns out that a fair ssmn semantics always admits a canonical ISF, namely, the identity

ID S {(Ax-x)a,b}a,beN-

» Proposition 4.10. Let (m,=) be a fair and ssmn semantics. Then, the identity ID is an
ISF w.r.t. ~7, for alln > 1.

Let us point out that the identity function has not been exploited in [19], that instead
focuses on the standard switching family. It turns out that the identity function plays a key
role as ISF.

» Proposition 4.11. Let ~ C N x N be an equivalence relation. The following statements

are equivalent:

(1) Every set A C N partially ~-extensional and not universally ~-extensional is non-
recursive.

(2) The identity ID is an ISF w.r.t. ~.

(3) There exists an ISF w.r.t. ~.

Therefore, the above result roughly states that the identity function is the “canonical”
ISF, meaning that if an ISF exists, then ID is an ISF as well. Moreover, the intensional
Rice’s Theorem 4.8 of [19] provides a sufficient condition (i.e., the existence of an ISF) for a
partially and not universally extensional set to be undecidable. Proposition 4.11 enhances
Theorem 4.8 by showing that such a sufficient condition is necessary as well, or, equivalently,
that a partially and not universally extensional set is undecidable iff there exists an ISF.

We conclude this section by discussing an alternative notion of branching, which requires
the preservation of a full conditional statement with positive and negative guards. This is
an adaptation to our framework of a property that would be needed to exploit a so-called
standard switching family as defined in [19, Example 1].

» Definition 4.12 (Strongly branching semantics). An abstract semantics (m, =) is strongly
branching if, given n > 1, there exists a total computable function  : N* — N such that for
all a,b,c,x € N:

A =, {0 @) ifr=c
r(ab,e) X " /\37-an) (x,%) otherwise N
Despite appearing to be more natural, the preservation of conditionals with positive and
negative conditions is a stronger requirement than the one we considered in Definition 4.6.
Indeed, it turns out that every ssmn and strongly branching semantics is a branching
semantics.

» Proposition 4.13 (Strongly branching implies branching). If (w,=) is an ssmn and strongly
branching semantics, then (w,=;) is branching.
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4.3 An Application to Static Program Verifiers

We adapt the general definition of static program verifier of Cousot et al. [7, Definition 4.3]
to our framework. Given a program property P C N to check, a static program verifier is a
total recursive function V : N — {0, 1}, which is sound when for all p e N, V(p) =1=p € P,
while V is precise if the reverse implication also holds, i.e., when V(p) = 1 < p € P holds.
Informally, soundness guarantees that only false negatives are allowed, i.e., N\ P is merely a
subset of {p € N : V(p) = 0}, while precise verifiers output true positives and true negatives
only (i.e., they decide P).

Classical Rice’s theorem clearly entails the impossibility of designing a precise verifier
for a nontrivial extensional property. However, one may wonder whether there exist sound
verifiers with “few” false negatives. By applying our intensional Theorem 4.3, we are able to
show that sound but imprecise verifiers necessarily have at least one false negative for each
equivalence class of programs, even for intensional properties.

» Example 4.14 (Constant value verifier). Assume we are interested in checking if a program
can output a given constant value, for instance, zero with the aim of statically detecting
division-by-zero bugs. Let V be a sound static verifier for the set P—_g = {p € N | 0 € rng(¢,)}
of programs that output zero for some input. The set N 2 {p € N | V(p) = 0} is recursive
since V is assumed to be a total computable function. By soundness of V, we have that
N~ P—y C N, so that N includes, for example, the programs computing the constant
function Az.1. Therefore, N is partially extensional, and, by Theorem 4.3, N has to be
universally extensional. This means that for any computable function f € C there exists a
program p € N that computes f such that V(p) = 0. Thus, when 0 € rng(f) holds (e.g., for
f = Az.0), V necessarily outputs a false negative for p. Hence, V outputs infinitely many
false negatives. J

» Example 4.15 (Complexity verifier). Consider a speculative sound static verifier V for
recognizing programs that meet some lower bound, for instance, programs having a cubic lower
bound Py,2) £ {p € N| ®, = Q(n®)}. Thus, N £ {p € N | V(p) = 0} has to be recursive
and if ~¢ is the program equivalence induced by the Blum complexity semantics (®,=¢) of
Example 2.5 then, by soundness of V, we have, for example, {p € N| &, = ©(1)} C N. This
means that N is partially ~g-extensional and, by Theorem 4.3, N is universally extensional,
namely, V will output 0 for at least a program in each Blum complexity class. For instance,
even some programs with an exponential lower bound will be wrongly classified by V as
programs that do not meet a cubic lower bound. a

As shown by Cousot et al. [7, Theorem 5.4], precise static verifiers cannot be designed
(unless for trivial program properties). The examples above prove that, additionally, we
cannot have any certain information on an input program p whenever the output of a sound
(and imprecise) verifier for p is 0. In fact, when this happens, p could compute any partial
function (cf. Example 4.14) or have any complexity (cf. Example 4.15).

5 On the Decidability of Affine Program Invariants

Karr’s abstract domain [13] consisting of affine equalities between program variables, such as
2z — 3y = 1, is well known and widely used in static program analysis [18, 26]. Karr [13] put
forward an algorithm that infers for each program point ¢ of a control flow graph modelling
an affine program P (i.e., an unguarded program with non-deterministic branching and
affine assignments) a set of affine equalities that hold among the variables of P when the
control reaches ¢, namely, an affine invariant for P. Miiller-Olm and Seidl [20] show that
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Karr’s algorithm actually computes the strongest affine invariant for affine programs (this

result has been extended to a slightly larger class of affine programs in [23, Theorem 5.1]).

Moreover, they design a more efficient algorithm implementing this static analysis and
they extend in [21] the algorithm for computing bounded polynomial invariants, i.e., the
strongest polynomial equalities of degree at most a given d € N. Later, Hrushovski et al. [11]
put forward a sophisticated algorithm for computing the strongest unbounded polynomial
invariants of affine programs, by relying on the Zariski closure of semigroups.

On the impossibility side, Miiller-Olm and Seidl [20, Section 7] prove that for affine
programs allowing positive affine guards it is undecidable whether a given nontrivial affine
equality holds at a given program point or not. In practical applications, static analyses on
Karr’s domain of guarded affine programs ignore non-affine Boolean guards, while for an
affine guard b, the current affine invariant 7 is propagated through the positive branch of b by
the intersection i N b, that remains an affine subspace. By the aforementioned undecidability
result [20, Section 7], this latter analysis algorithm for guarded affine programs turns out to
be sound but necessarily imprecise, thus inferring affine invariants which are not the strongest
ones.

Miiller-Olm and Seidl [20, Section 7] prove their undecidability result by exploiting an
acute reduction to the undecidable Post correspondence problem, inspired by early reductions
explored in data flow analysis [9, 12]. In this section, we show that our Theorem 4.9 allows
us to derive and extend this undecidability result by exploiting an orthogonal intensional
approach. More precisely, we prove that any nontrivial (and not necessarily affine) relation
on the states of control flow graphs of programs allowing: (1) zero, variable and successor
assignments, resp.,  := 0, x := y and x := y + 1, and (2) positive equality guards z = y?
and x = v?, turns out to be undecidable. Since these control flow graphs form a subclass
of affine programs with positive affine guards, the undecidability result of Miiller-Olm and
Seidl [20, Section 7] is retrieved as a consequence.

We consider control flow graphs that consist of program points connected by edges labeled
by assignments and guards. Variables are denoted by x;, with ¢ € N, and store values ranging
in N, while Karr’s abstract domain is designed for variables assuming values in Q. Clearly,
from a computability perspective, this is not a restriction simply by considering a computable
bijection between N and Q.

» Definition 5.1 (Basic affine control flow graph). A basic affine control flow graph (BACFG)
is a tuple G = (N, E, s,e), where N is a finite set of nodes, s,e € N are the start and end
nodes, and E C N x Com XN is a set of labelled edges, where the set Com of commands
consists of assignments of type z,, := 0, T, := Ty, Tn, = Ty + 1, and equality guards of type
Ty = T !, T, = 07, with v € N, J

Let us remark that BACFGs only include basic affine assignments and positive affine
guards, in particular inequality checks such as x,, # x,,? and x,, # v? are not allowed. Thus,
BACFGs are a subclass of affine programs with positive affine guards.

As in dataflow analysis and abstract interpretation [6, 9, 26], BACFGs have a collecting
semantics where, given a set of input states In, each program point is associated with the set
of states that occur in some program execution from some state in In. A finite number of
variables may occur in a BACFG, so that a state of a BACFG G is a tuple (z1,...,7;) € N¥,
where k is the maximum variable index occuring in G and k = 0 is a degenerate case for trivial
BACFGs with N° = {e}. The collecting transfer function f.y(-) : Com — p(N¥) — o(NF)
for k € N variables and with n,m € [1, k] is defined as follows:
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fzn::O(S) £ {(xlv cee 7mn7170axn+1? s ,Cl'k) ‘ TS S}’
fznzfzm(s) £ {(x17 sy Tn—1,Tmy Lntly .- - 7xk:) | Te 8}7
foriman 11(8) 2 {(z1, . Tt Ton + L, Tpy1, ., mp) | T € ST
f:rnfv?(S) £ {f €S | Ly = U},
fxn—xm?(s) £ {f €S | Ly = xm}~

A no-op € command is a syntactic sugar for ; := x1, i.e., fo = fr,.=s, = AS.S. Given
k,k € Nand S € p(N¥'), the projection S [,€ p(N¥) is defined as follows:

S x Nk=+ ifO<k <k
IR if k' =k
{(z1,...,2) | €8S} ifk<k

» Definition 5.2 (Collecting semantics of BACFGs). Given a BACFG G = (N, E, s,¢e) with
k € N variables and a set of input states S C NF | with k' < k, the collecting semantics
[G]s : N — p(NF) is the least, w.r.t. pointwise set inclusion, solution in p(N*)IVI of the
following system of constraints:

{[[Gﬂs[s] DS for the start node s
[Glslv] 2 fo([G]s[u]) for each edge (u,c,v) € E N

Let us observe that, since the collecting transfer functions f. are additive on the complete
lattice (p(NF), C), by Knaster-Tarski fixpoint theorem, [G]g is well defined. For & € N¥',
we write [G]z instead of [G]z. Notice that [G]. is an additive function, so that, for any
program point u € N, [G]s[u] = Uzcg[G]z[u] holds.

5.1 Turing Completeness of BACFGs

Let us recall that an ssmn abstract semantics needs an underlying Turing complete concrete
semantics of programs (cf. Assumption 2.1). A crucial observation is that any URM (Unlimited
Register Machine®) program, provided with suitable operational semantics, can be simulated
by a BACFG, that is, BACFGs turn out to be Turing complete despite not including full
(both positive and negative) Boolean tests.

» Theorem 5.3 (Turing completeness of BACFGs). BACFGs are a Turing complete computa-
tional model.

It is worth providing an intuition of the proof of Theorem 5.3. First, we point out that
all four types of instructions of URMs, namely, using the definition and notation of [8],
z(n): sets register ry, to 0 (r, < 0) and transfers the control to the next instruction;
s(n): increments register r, by 1 (r, < r, + 1) and transfers the control to the next
instruction;
t(m,n): sets register r, to ry, (r, < r,) and transfers the control to the next instruction;
j(m,n,p): if r,, = r, and I, is a proper instruction, then it jumps to the instruction I,;
otherwise, it skips to the next instruction;

3 Recall that URMs are a Turing complete computational model [8].
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Figure 2 BACFGs simulating: z(n) (left), (center), ) (right).

Figure 3 BACFG simulating a jump instruction j(m,n,p).

can be simulated by the BACFGs depicted in Figures 2 and 3. While the BACFGs in
Figure 2 are trivial, let us describe more in detail how to simulate a jump instruction by
the BACFG in Figure 3. Intuitively, a difficulty arises for simulating the negative branch
Ty # x,?. Here, the BACFG at node g¢; initialises a fresh unused variable z with both
T, + 1 and x,, + 1 and transfers the control to a node inc; where z is incremented infinitely
many times. Thus, in the least fixpoint solution, at node inc; the variable z stores any value
v > min(xy,, ,), including z = max(x,,, z,). Suppose now that z, > x,, holds: in this case,
the guard x,, = 27 between nodes inc; and ¢; 1 eventually will be made true and at the node
gi+1 the store will retain the original values of all variables (z,, and z,, included), except
for the new variable z which will be ignored by the remaining nodes. The case z,, > z,, is
analogous. Therefore, it turns out that the node ¢;41 will be reached if and only if z,, # =,
holds, while ¢, will be reached if and only if x,, = x,, holds, thus providing a simulation for
the jump instruction j(m,n,p).

5.2 Concrete and Abstract Semantics

One key insight is that the concrete semantics is defined on the URM programs that satisfy
the Assumption 2.1 of Turing completeness, while the abstract semantics is defined on
BACFGs. Let us consider two Godel numberings for BACFGs and URMs, so that for an
index a € N, G, and RM, denote, resp., the a-th BACFG and URM programs. The concrete
semantics (¢, =) of URMs, for an index a € N and an arity n € N, is defined as follows: for
all ¥ € N™,

¢(n)(_,) N {y if RM,, on input Z halts with value y on its first register,
€Tr) =

1 otherwise.

On the other hand, the abstract semantics of BACFGs is as follows.
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» Definition 5.4 (State semantics of BACFGs). Let @ C o(N') be a predicate on sets of
states with ¢ € N variables. The state semantics (Q,=) of BACFGs, for any index a € N and
arity n € N, is given by the function an) : N™ — {0, 1} defined as follows: for all ¥ € N™,

1 if [[Ga]]f[ea] 75 TN [[Ga]]j‘[ea] [+ € Q
QU(E) £ 40 if [Gulilea) # @ A [Galileal I+ & Q
T i [Gazled) = 2

where e, is the end node of the a-th BACFG G,,. g

Predicates of type Q C p(N) are also known as hyperproperties [5] and the state semantics
of Definition 5.4 models the validity of a given predicate @) at the end node of a BACFG.
Note that it is not restrictive to consider the end node, since this can be arbitrarily chosen
in a BACFG.

» Theorem 5.5. The state semantics of Definition 5.4 is ssmn, branching and discharging.

Let us now consider a state semantics (@, =) for some predicate Q C p(N?). For all n > 1,
let us define two sets A¥? and A7, by distinguishing two cases depending on whether Q
includes the empty set, that models nontermination, or not:

(1) if @ ¢ Q then A"Q £ {qa € N | V7. Q) () = 1} and 479 2 {a € N | 37. Q" (§) = 1}
(2) if @ € Q then AQ 2 {a € N | V7. Q™ () € {1,1}} and AFQ 2 {a e N | 37. Q™ (7)) €
{1,1}}.

Hence, A9 (A3?) is the set of BACFGs such that Q holds at e, for any (some) input
state. It turns out that if AY? is nontrivial then it is not recursive. Indeed, observe that
AYQ is ~g-extensional, so that Theorem 5.5 enables applying Theorem 4.9 to (Q,=). The
same argument applies to the existential version A39. We have therefore the following
consequence.

» Corollary 5.6. If Q is not trivial then AY? and A9 are not recursive.

Corollary 5.6 means that we cannot decide if a nontrivial predicate ¢ holds at a given
program point of a BACFG for all input states, neither whether there exists an input state
that will make @ true. It is worth remarking that the predicates ) are arbitrary and
include, but are not limited to, relational predicates between program variables such as affine
equalities of Karr’s abstract domain. Let us define some noteworthy examples of predicates:

(1) Given a set of affine equalities aff = {aj - ¥ = b;}72,, with a; € Z' and b; € Z,
Qug 2 (S € p(N') | VF € S € [L,m]. a5 = b;}:

(2) Giveni e [l,t]and c €N, Q—. = {S € p(N') | T € S. v; = c};

(3) Given a size k € N, Qgin, = {5 € p(N*) | |S] = k} and Qgn £ UrenQfiny, -

Therefore, Corollary 5.6 for AY?« entails the undecidability result of Miiller-Olm and
Seidl [20, Section 7] discussed above. The predicate Q=. can be used to derive the unde-
cidability of checking if some variable x; may store a given constant ¢ for affine programs
with positive affine guards, e.g., for ¢ = 0 this amounts to the undecidability of detecting
division-by-zero bugs. Finally, with Qan, we obtain the undecidability of dead code elim-
ination, Qsy, entails the well-known undecidability of constant detection [9, 24], while the
existential predicate Qg, encodes whether some program point may only have finitely many
different states.
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6 Discussion of Related Work

In this section we discuss in detail the relation with some of Asperti’s results [1] and with
Rogers’ systems of indices [27, 28].

6.1 Relation with Asperti’s Approach

We show that our ssmn property in Definition 3.1 is a generalisation of the smn property
in Asperti’s approach [1], in a way that the Kleene’s second recursion theorem and Rice’s
theorem for complexity cliques in [1] arise as instances of the corresponding results in our
approach. Let us first recall and elaborate on the axioms for the complexity of function
composition studied by Lischke [15, 16, 17] and assumed in [1, Section 4].

» Definition 6.1 (Linear time and space complexity composition). Consider a given concrete
semantics ¢ and a Blum complexity ®. The pair (¢, ®) has the linear time composition
property if there exists a total computable function h : N> — N such that for all 4, j € N:
(1) bn(ij) = dio by,

(2) Ppiij) € O(Piod; + P;).

If (2) is replaced by

(2) Ppiy) € O(max{®; 0 ¢;,P;})

then (¢, @) has the linear space composition property. J

Roughly speaking, the linear time composition property states that there exists a program
h(i, j) which computes the composition ¢;(¢;(z)) in an amount of time which is asymptotically
equivalent to the sum of the time needed for computing P; on input ¢;(z) and the time to
compute P; on input . On the other hand, the linear space composition property aims at
modeling the needed space, so that rather than adding the complexities of F; and P;, their
maximum is considered, since this intuitively is the maximum amount of space needed for
computing a composition of programs.

By observing that ©(max{®; o0 ¢;, ®;}) = O(P; 0 ¢; + ;) we can merge the linear time
and space properties of Definition 6.1 and extend them for n-ary compositions as follows.

» Definition 6.2 (Linear complexity composition). Given a concrete semantics ¢ and a Blum
complexity @, the pair (¢, ®) has the linear complexity composition property if, given n,m > 1,
there exists a total computable function h : N> — N such that for all 4, j € N:
m—+n o\ — n+1 m) ;- —»
e = aaag. o (6 (), ),
pty € OOENT. (0" (6™ (@), ) + 2" (@))). .
We can now recall the smn property as defined in [1, Definition 11].

» Definition 6.3 (Asperti's smn property). Given a concrete semantics ¢, a Blum complexity ®
and m,n > 1, the pair (¢, @) has the Asperti’s smn property if there exists a total computable
function s : N™*! — N such that Ve € N, & € N™:
S (mAn) =
Mo () = oL 4,

A7 o (z, ) € (MG L (7). -

s(e,@)

Informally, the smn property of Definition 6.3 states that the operation of fixing para-
meters preserves both the concrete semantics and the asymptotic complexity. Under these
assumptions, we can show that Asperti’s complexity clique semantics satisfies our ssmn

property.
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» Lemma 6.4. Let (m,=,) be the complexity clique semantics of Example 2.6. If (m,=,)
satisfies Asperti’s smn and linear complezity composition properties then (mw,=,) is ssmn.

This result, together with the observation that the notion of fairness (Definition 3.2)
instantiated to the complexity clique semantics is exactly that of [1, Definition 26], allows
us to retrieve Kleene’s second recursion theorem and Rice’s theorem for complexity cliques
in [1] as instances of our corresponding results given in Section 4.1.

6.2 Relation with Systems of Indices

As mentioned in Section 2, our definition of abstract semantics resembles the acceptable
systems of indices [22, Definition II.5.1] or numberings [28, Exercise 2-10], firstly studied by
Rogers [27]. In this section we discuss how such notions compare.

» Definition 6.5 (System of indices [22, Definition I11.5.1]). A system of indices is a family of
functions {¢"™},en such that each ¢¥™ : N — C, is a surjective map that associates program
indices to n-ary partial recursive functions.

{Y"}nen has the parametrization (or smn) property if for every m,n € N there is a total
computable function s : N™*! — N such that Ve € N, Z € N™:

AGATTE, ) = Doz

{Y"}n.en has the enumeration property if for every n € N there exists « € N such that
for all and e € N and § € N™:

%” = )\?J~1/J3+1(€»?7)- -

Any standard Goédel numbering associating a program with the function it computes is a
system of indices with the parametrization and enumeration properties. Moreover, exactly as
we did in Example 2.3, any system of indices {¢)" },,cn can be viewed as an abstract semantics
(m,=) with 7 £ ™. In this context, the enumeration and parametrization properties
correspond to our fairness and ssmn conditions: fairness is exactly enumeration while ssmn
follows from parametrization and enumeration, as discussed in Section 3 for the concrete
semantics (cf. Example 2.3).

A system of indices is defined to be acceptable if it allows to get back and forth with a
given system of indices satisfying the parametrization and enumeration properties through a
pair of total computable functions.

» Definition 6.6 (Acceptable system of indices [27, Definition 4]). Let {¢"},en be a given
system of indices with the parametrization and enumeration properties. A system of indices
{Y"}nen is acceptable if there exist two total computable functions f, g : N — N such that
for all a,n € N:

Ya = P and  9g =Yg .

As shown in [22, Proposition I1.5.3], it turns out that a system of indices is acceptable if
and only if it satisfies both enumeration and parametrization (a proof of this characterization
was first given by Rogers [27, Section 2]). Consequently, an acceptable system of indices
{Y"}nen can be viewed as an abstract semantic (m, =), where 77} = ¢”, which, by this

characterization of acceptability, is ssmn and fair, and therefore, by Theorem 4.1 it enjoys
Kleene’s second recursion theorem, as already known from [22, Corollary I1.5.4]. Under this



P. Baldan, F. Ranzato, and L. Zhang

perspective, a generic abstract semantics according to Definition 2.2 can be viewed as a
proper generalisation of the notion of acceptable system of indices, which merely encodes a
change of program numbering and does not allow to take into account an actual abstraction
of the concrete input/output behaviour of programs.

7 Conclusion and Future Work

This work generalises some traditional extensional results of computability theory, notably
Kleene’s second recursion theorem and Rice’s theorem, to intensional abstract program
semantics that include the complexity cliques investigated by Asperti [1]. Our approach was
also inspired by Moyen and Simonsen [19] and relies on weakening the classical definition of
extensional program property to a notion of partial extensionality w.r.t. abstract program
semantics that satisfy some structural conditions. As an application, we strengthened and
generalised a result by Miller-Olm and Seidl [20] proving that for affine programs with
positive affine guards it is undecidable whether an affine relation holds at a given program
point. Our results also shed further light on the claim that these undecidability results hinge
on the Turing completeness of the underlying computational model, as argued in [19].

As future work, a natural question would be to investigate intensional extensions of
Rice-Shapiro’s theorem that fit our framework based on abstract semantics. This appears to
be a nontrivial challenge. Generalisations of Rice-Shapiro’s theorem have been given in [1,
Section 5] and [19, Section 5.1]. A generalisation in the vein of the approach in [1] seems to be
viable, but would require structural assumptions on abstract program semantics that, while
natural in [1] whose focus is on complexity properties, would be artificial for abstract program
semantics and would limit a general applicability. A further stimulating research topic is to
apply our approach to abstract semantics as defined by abstract interpretation of programs,
in particular for investigating the relationship with the notion of abstract extensionality
studied by Bruni et al. [4]. Finally, while our framework relies on the assumption of an
underlying Turing complete computational model, in a different direction, one could try to
consider intensional properties for classes of programs indexing subrecursive functions (e.g.,
primitive recursive functions), whose extensional properties have been already studied (see,
e.g., [10, 14]). Despite the fact that we suppose that our approach will fall short on these
program classes, as one cannot expect to have a universal program inside the class itself or
the validity of Kleene’s second recursion theorem, we think that this represents an intriguing
research challenge.
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