
A Monoidal View on Fixpoint Checks⋆

Paolo Baldan1, Richard Eggert2(B), Barbara König2, Timo Matt3,
and Tommaso Padoan4

1 Università di Padova, Padova, Italy
2 Universität Duisburg-Essen, Duisburg, Germany

richard.eggert@uni-due.de
3 Universität Duisburg-Essen, Essen, Germany

4 Università di Trieste, Trieste, Italy

Abstract. Fixpoints are ubiquitous in computer science as they play a
central role in providing a meaning to recursive and cyclic definitions.
Bisimilarity, behavioural metrics, termination probabilities for Markov
chains and stochastic games are defined in terms of least or greatest fix-
points. Here we show that our recent work which proposes a technique
for checking whether the fixpoint of a function is the least (or the largest)
admits a natural categorical interpretation in terms of gs-monoidal cat-
egories. The technique is based on a construction that maps a function
to a suitable approximation and the compositionality properties of this
mapping are naturally interpreted as a gs-monoidal functor. This guides
the realisation of a tool, called UDEfix that allows to build functions
(and their approximations) like a circuit out of basic building blocks and
subsequently perform the fixpoints checks. We also show that a slight
generalisation of the theory allows one to treat a new relevant case study:
coalgebraic behavioural metrics based on Wasserstein liftings.

1 Introduction

For the compositional modelling of graphs and graph-like structures it has proven
useful to use the notion of monoidal categories [17], i.e., categories equipped
with a tensor product. There are several extensions of such categories, such as
gs-monoidal categories that have been shown to be suitable for specifying term
rewriting (see e.g. [15,16]). In essence gs-monoidal categories describe graph-
like structures with dedicated input and output interfaces, operators for disjoint
union (tensor), duplication and termination of wires, quotiented by the axioms
satisfied by these operators. Particularly useful are gs-monoidal functors that
preserve such operators and hence naturally describe compositional operations.

We show that gs-monoidal categories and the composition concepts that come
with them can be fruitfully used in a scenario that – at first sight – might seem

Partially supported by the DFG project SpeQt (project number 434050016) and by
the Ministero dell’Universtà e della Ricerca Scientifica of Italy, under Grant No.
201784YSZ5, PRIN2017 - ASPRA, and by project iNEST, No. J43C22000320006.
⋆

c⃝ The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Fernández and C. M. Poskitt (Eds.): ICGT 2023, LNCS 13961, pp. 3–21, 2023.
https://doi.org/10.1007/978-3-031-36709-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36709-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-36709-0_1

4 P. Baldan et al.

quite unrelated: methods for fixpoints checks. In particular, we build upon [8]
where a theory is proposed for checking whether a fixpoint of a given function
is the least (greatest) fixpoint. The theory applies to a variety of fairly diverse
application scenarios, such as bisimilarity [21], behavioural metrics [4,10,13,24],
termination probabilities for Markov chains [3] and simple stochastic games [11].

More precisely, the theory above deals with non-expansive functions
f : MY → MY , where M is a set of values (more precisely, an MV-chain) and Y is
a finite set. The rough idea consists in mapping such functions to corresponding
approximations, whose fixpoints can be computed effectively and give insights
on the fixpoints of the original function.

We show that the approximation framework and its compositionality prop-
erties can be naturally interpreted in categorical terms. This is done by intro-
ducing two gs-monoidal categories in which the concrete functions respectively
their approximations live as arrows, together with a gs-monoidal functor, called
#, mapping one to the other. Besides shedding further light on the theoretical
approximation framework of [8], this view guided the realisation of a tool, called
UDEfix that allows to build functions (and their approximations) like a circuit
out of basic building blocks and subsequently perform the fixpoints checks.

We also show that the functor # can be extended to deal with functions
f : MY → MY where Y is not necessarily finite, becoming a lax functor. We
prove some properties of this functor that enable us to give a recipe for finding
approximations for a special type of functions: predicate liftings that have been
introduced for coalgebraic modal logic [19,22]. This recipe allows us to include a
new case study for the machinery for fixpoint checking: coalgebraic behavioural
metrics, based on Wasserstein liftings.

The paper is organized as follows: In Sect. 2 we give some high-level motiva-
tion, while in Sect. 3 we review the theory from [8]. Subsequently in Sect. 4 we
introduce two (gs-monoidal) categories C, A (of concrete and abstract functions),
show that the approximation # is a (lax) functor between these categories and
prove some of its properties, which are used to handle predicate liftings (Sect. 5)
and behavioural metrics (Sect. 6). Next, we show that the categories C, A and
the functor # are indeed gs-monoidal (Sect. 7) and lastly discuss the tool UDEfix
in Sect. 8. We end by giving a conclusion (Sect. 9). Proofs and further material
can be found in the full version of the paper [5].

2 Motivation

We start with some motivations for our theory and the tool UDEfix, which is
based on it, via a case study on behavioural metrics. We consider probabilistic
transition systems (Markov chains) with labelled states, given by a finite set of
states X, a function δ : X → D(X) mapping each state x ∈ X to a probability
distribution on X and a labelling function ℓ : X → Λ, where Λ is a fixed set of
labels (for examples see Fig. 1). Our aim is to determine the behavioural distance
of two states, whose definition is based on the so-called Kantorovich or Wasser-
stein lifting [25] that measures the distance of two probability distributions on

A Monoidal View on Fixpoint Checks 5

X, based on a distance d : X × X → [0, 1]. In more detail: given d, we define
dD : D(X) × D(X) → [0, 1] as

dD(p1, p2) = inf{
∑

x1,x2∈X

d(x1, x2) · t(x1, x2) | t ∈ Γ (p1, p2)}

where Γ (p1, p2) is the set of couplings of p1, p2 (i.e., distributions t : X × X →
[0, 1] such that

∑
x2∈X t(x1, x2) = p1(x1),

∑
x1∈X t(x1, x2) = p2(x2)). The

Wasserstein lifting gives in fact the solution of a transport problem, where we
interpret p1, p2 as the supply respectively demand at each point x ∈ X. Trans-
porting a unit from x1 to x2 costs d(x1, x2) and t is a transport plan (= coupling)
whose marginals are p1, p2. In other words: dD(p1, p2) is the cost of the optimal
transport plan, moving the supply p1 to the demand p2.

Fig. 1. Two probabilistic transition systems.

The behavioural metric is then defined as the least fixpoint of the func-
tion f : [0, 1]X×X → [0, 1]X×X where f(d)(x1, x2) = 1 if ℓ(x1) ̸= ℓ(x2) and
f(d)(x1, x2) = dD(δ(x1), δ(x2)) otherwise. For instance, the best transport plan
for the system on the left-hand side of Fig. 1 and the distributions δ(1), δ(2) is t
with t(3, 3) = 1/3, t(3, 4) = 1/6, t(4, 4) = 1/2 and 0 otherwise.

One can observe that the function f can be decomposed as

f = maxρ ◦(ck + (δ × δ)∗ ◦ minu ◦D̃),

where + stands for disjoint union and we use the functions given in Table 1.1
More concretely, the types of the components and the parameters k, u, ρ are
given as follows, where Y = X × X:

– ck : [0, 1]∅ → [0, 1]Y where k(x, x′) = 1 if ℓ(x) ̸= ℓ(x′) and 0 otherwise.
– D̃ : [0, 1]Y → [0, 1]D(Y).
– minu : [0, 1]D(Y) → [0, 1]D(X)×D(X) where u : D(Y) → D(X) × D(X), u(t) =

(p, q) with p(x) =
∑

x′∈X t(x, x′), q(x) =
∑

x′∈X t(x′, x).

– (δ × δ)∗ : [0, 1]D(X)×D(X) → [0, 1]Y .
– maxρ : [0, 1]Y+Y → [0, 1]Y where ρ : Y + Y → Y is the obvious map from the

coproduct (disjoint union) Y + Y to Y .

In fact this decomposition can be depicted diagrammatically, as in Fig. 2.
1 If the underlying sets are infinite, min, max can be replaced by inf, sup.

6 P. Baldan et al.

Table 1. Basic functions of type MY → MZ , a : Y → M.

Function ck g∗ minu maxu avD = D̃

k : Z → M g : Z → Y u : Y → Z u : Y → Z M = [0, 1], Z = D(Y)

Name constant reindexing minimum maximum expectation

a "→ . . . k a ◦ g λz. min
u(y)=z

a(y) λz. max
u(y)=z

a(y) λz.λy.
∑
y∈Y

z(y) · a(y)

Fig. 2. Decomposition of the fixpoint function for computing behavioural metrics.

The function f is a monotone function on a complete lattice, hence it has a
least fixpoint by Knaster-Tarski’s fixpoint theorem [23], which is the behavioural
metric. By giving a transport plan as above, it is possible to provide an upper
bound for the Wasserstein lifting and hence there are strategy iteration algo-
rithms that can approach a fixpoint from above. The problem with these algo-
rithms is that they might get stuck at a fixpoint that is not the least. Hence, it is
essential to be able to determine whether a given fixpoint is indeed the smallest
one (cf. [2]).

Consider for instance the transition system in Fig. 1 on the right. It contains
two states 1, 2 on a cycle. In fact these two states should be indistinguishable
and hence d(1, 2) = d(2, 1) = 0 if d = µf is the least fixpoint of f . However,
the metric a with a(1, 2) = a(2, 1) = 1 (0 otherwise) is also a fixpoint and the
question is how to determine that it is not the least.

For this, we use the techniques developed in [8] that require in particular that
f is non-expansive (i.e., given two metrics d1, d2, the sup-distance of f(d1), f(d2)
is smaller or equal than the sup-distance of d1, d2). In this case we can associate
f with an approximation fa

on subsets of X ×X such that, given Y ′ ⊆ X ×X,
fa
#(Y

′) intuitively contains all pairs (x1, x2) such that, decreasing function a by
some value δ over Y ′, resulting in a function b (defined as b(x1, x2) = a(x1, x2)−δ
if (x1, x2) ∈ Y ′ and b(x1, x2) = a(x1, x2) otherwise) and applying f , we obtain a
function f(b), where the same decrease took place at (x1, x2) (i.e., f(b)(x1, x2) =
f(a)(x1, x2)− δ). More concretely, here fa

#({(1, 2)}) = {(2, 1)}, since a decrease
at (1, 2) will cause a decrease at (2, 1) in the next iteration. In fact the greatest
fixpoint of fa

(here: {(1, 2), (2, 1)}) gives us those elements that have a potential
for decrease (intuitively there is “slack” or “wiggle room”) and form a vicious
cycle as above. It holds that a is the least fixpoint of f iff the the greatest fixpoint
of fa

is the empty set, a non-trivial result [6,8].

A Monoidal View on Fixpoint Checks 7

The importance of the decomposition stems from the fact that the approxi-
mation is in fact compositional, that is fa

can be built out of the approximations
of maxρ, ck, (δ × δ)∗, minu, D̃ = avD, which can be easily determined (see [8]).
For general functors, beyond the distribution functor, the characterization is
however still missing and will be provided in this paper.

We anticipate that in our tool UDEfix we can draw a diagram as in Fig. 2, from
which the approximation and its greatest fixpoint is automatically computed in
a compositional way, allowing us to perform such fixpoint checks.

3 Preliminaries

This section reviews some background used throughout the paper. This includes
the basics of lattices and MV-algebras, where the functions of interest take val-
ues. We also recap some results from [8] useful for detecting if a fixpoint of a
given function is the least (or greatest).

We will also need some standard notions from category theory, in particular
categories, functors and natural transformations. The definition of (strict) gs-
monoidal categories is spelled out in detail in Definition 7.1.

For sets X,Y , we denote by P(X) the powerset of X and Pf (X) the set of
finite subsets of X. The set of functions from X to Y is denoted by Y X .

A partially ordered set (P,⊑) is often denoted simply as P , omitting the
order relation. The join and the meet of a subset X ⊆ P (if they exist) are
denoted

⊔
X and

!
X. We write x ! y when x ⊑ y and x ̸= y.

A complete lattice is a partially ordered set (L,⊑) such that each subset
X ⊆ L admits a join

⊔
X and a meet

!
X. A complete lattice (L,⊑) always has

a least element ⊥ =
!
L and a greatest element ⊤ =

⊔
L.

A function f : L → L is monotone if for all l, l′ ∈ L, if l ⊑ l′ then f(l) ⊑
f(l′). By Knaster-Tarski’s theorem [23, Theorem 1], any monotone function on
a complete lattice has a least fixpoint µf and a greatest fixpoint νf .

For a set Y and a complete lattice L, the set of functions LY , with pointwise
order (for a, b ∈ LY , a ⊑ b if a(y) ⊑ b(y) for all y ∈ Y), is a complete lattice.

We are also interested in the set of finitely supported probability distributions
D(Y) ⊆ [0, 1]Y , i.e., functions β : Y → [0, 1] with finite support such that∑

y∈Y β(y) = 1.

An MV-algebra [18] is a tuple M = (M,⊕, 0, (·)) where (M,⊕, 0) is a com-
mutative monoid and (·) : M → M maps each element to its complement, such
that for all x, y ∈ M (i) x = x; (ii) x ⊕ 0 = 0; (iii) (x ⊕ y) ⊕ y = (y ⊕ x) ⊕ x.

We define 1 = 0 and subtraction x ⊖ y = x ⊕ y.
MV-algebras are endowed with a partial order, the so-called natural order,

defined for x, y ∈ M , by x ⊑ y if x⊕ z = y for some z ∈ M . When ⊑ is total, M
is called an MV-chain. We will write M instead of M .

The natural order gives an MV-algebra a lattice structure where ⊥ = 0,
⊤ = 1, x ⊔ y = (x ⊖ y) ⊕ y and x ⊓ y = x ⊔ y = x ⊖ (x ⊖ y). We call the
MV-algebra complete if it is a complete lattice, which is not true in general, e.g.,
([0, 1] ∩ Q,≤).

8 P. Baldan et al.

Example 3.1. A prototypical MV-algebra is ([0, 1],⊕, 0, (·)) where x ⊕ y =
min{x + y, 1}, x = 1 − x and x ⊖ y = max{0, x − y} for x, y ∈ [0, 1].
The natural order is ≤ (less or equal) on the reals. Another example is
K = ({0, . . . , k},⊕, 0, (·)) where n ⊕ m = min{n + m, k}, n = k − n and
n ⊖ m = max{n − m, 0} for n,m ∈ {0, . . . , k}. Both MV-algebras are complete
and MV-chains.

We next briefly recap the theory from [8] which will be helpful in the paper
for checking whether a fixpoint is the least or the greatest fixpoint of some
underlying endo-function. For the purposes of the present paper we actually
need a generalisation of the theory which provides the approximation also for
functions with an infinite domain (while the theory in [8] was restricted to finite
sets). Hence in the following, sets Y and Z are possibly infinite.

Given a ∈ MY we define its norm as ||a|| = sup{a(y) | y ∈ Y }. A function
f : MY → MZ is non-expansive if for all a, b ∈ MY it holds ||f(b) ⊖ f(a)|| ⊑
||b ⊖ a||. It can be seen that non-expansive functions are monotone. A number
of standard operators are non-expansive (e.g., constants, reindexing, max and
min over a relation, average in Table 1), and non-expansiveness is preserved by
composition and disjoint union (see [8]). Given Y ′ ⊆ Y and δ ∈ M, we write δY ′

for the function defined by δY ′(y) = δ if y ∈ Y ′ and δY ′(y) = 0, otherwise.
Let f : MY → MY , a ∈ MY and 0 ! δ ∈ M. Define [Y]a = {y ∈ Y | a(y) ̸= 0}

and consider the functions αa,δ : P([Y]a) → [a ⊖ δ, a] and γa,δ : [a ⊖ δ, a] →
P([Y]a), defined, for Y ′ ∈ P([Y]a) and b ∈ [a ⊖ δ, a], by

αa,δ(Y ′) = a ⊖ δY ′ γa,δ(b) = {y ∈ [Y]a | a(y) ⊖ b(y) ⊒ δ}.

Here [a, b] = {c ∈ MY | a ⊑ c ⊑ b}. In fact, for suitable values of δ, the functions
αa,δ, γa,δ form a Galois connection.

For a non-expansive function f : MY → MZ and δ ∈ M, define
fa,δ
: P([Y]a) → P([Z]f(a)) as fa,δ

= γf(a),δ ◦ f ◦ αa,δ. The function fa,δ
is

antitone in the parameter δ and we define the a-approximation of f as

fa
=

⋃

δ!0

fa,δ
.

For finite sets Y and Z there exists a suitable value ιaf " 0, such that all
functions fa,δ

for 0 ! δ ⊑ ιaf are equal. Here, the a-approximation is given by
fa
= fa,δ

for δ = ιaf .
Intuitively, given some Y ′, the set fa

#(Y
′) contains the points where a decrease

of the values of a on the points in Y ′ “propagates” through the function f .
The greatest fixpoint of fa

gives us the subset of Y where such a decrease is
propagated in a cycle (so-called “vicious cycle”). Whenever νfa

is non-empty,
one can argue that a cannot be the least fixpoint of f since we can decrease
the value in all elements of νfa

#, obtaining a smaller prefixpoint. Interestingly,
for non-expansive functions, it is shown in [8] that also the converse holds, i.e.,
emptiness of the greatest fixpoint of fa

implies that a is the least fixpoint.

A Monoidal View on Fixpoint Checks 9

Theorem 3.2 (soundness and completeness for fixpoints). Let M be
a complete MV-chain, Y a finite set and f : MY → MY be a non-expansive
function. Let a ∈ MY be a fixpoint of f . Then νfa

= ∅ if and only if a = µf .

Using the above theorem we can check whether some fixpoint a of f is the
least fixpoint. Whenever a is a fixpoint, but not yet the least fixpoint of f , it
can be decreased by a fixed value in M (see [8] for the details) on the points in
νfa

to obtain a smaller pre-fixpoint.

Lemma 3.3. Let M be a complete MV-chain, Y a finite set and f : MY → MY

a non-expansive function, a ∈ MY a fixpoint of f , and let fa
be the corresponding

a-approximation. If a is not the least fixpoint and thus νfa
̸= ∅ then there is

0 ! δ ∈ M such that a ⊖ δνfa
#

is a pre-fixpoint of f .

The above theory can easily be dualised [8].

4 A Categorical View of the Approximation Framework

The framework from [8], summarized in the previous section, is not based on
category theory, but – as we shall see – can be naturally reformulated in a cate-
gorical setting. In particular, casting the compositionality results into a monoidal
structure (see Sect. 7) is a valuable basis for our tool. But first, we will show how
the operation # of taking the a-approximation of a function can be seen as a
(lax) functor between two categories: a concrete category C whose arrows are the
non-expansive functions for which we seek the least (or greatest) fixpoint and
an abstract category A whose arrows are the corresponding approximations.

More precisely, recall that given a non-expansive function f : MY → MZ ,
the approximation of f is relative to a fixed map a ∈ MY . Hence objects in
C are elements a ∈ MY and an arrow from a ∈ MY to b ∈ MZ is a non-
expansive function f : MY → MZ required to map a into b. The approximations
instead live in A. Recall that the approximation is fa

: P([Y]a) → P([Z]b). Since
their domains and codomains are dependent again on a map a, we still employ
elements of MY as objects, but functions between powersets as arrows.

Definition 4.1 (concrete and abstract categories). The concrete category
C has as objects maps a ∈ MY where Y is a (possibly infinite) set. Given a ∈ MY ,
b ∈ MZ an arrow f : a ##$ b is a non-expansive function f : MY → MZ , such
that f(a) = b. The abstract category A has again maps a ∈ MY as objects. Given
a ∈ MY , b ∈ MZ an arrow f : a ##$ b is a monotone (wrt. inclusion) function
f : P([Y]a) → P([Z]b). Arrow composition and identities are the obvious ones.

The lax functor #: C → A is defined as follows: for an object a ∈ MY , we
let #(a) = a and, given an arrow f : a ##$ b, we let #(f) = fa

#.

Note that abstract arrows are dashed (##$), while the underlying functions
are represented by standard arrows (→).

10 P. Baldan et al.

Lemma 4.2 (well-definedness). The categories C and A are well-defined and
is a lax functor, i.e., identities are preserved and #(f ◦ g) ⊆ #(f) ◦ #(g) for
composable arrows f, g in C.

It will be convenient to restrict to the subcategory of C where arrows are
reindexings and to subcategories of C, A with maps on finite sets.

Definition 4.3 (reindexing subcategory). We denote by C∗ the lluf 2 sub-
category of C where arrows are reindexing, i.e., given objects a ∈ MY , b ∈ MZ

we consider only arrows f : a ##$ b such that f = g∗ for some g : Z → Y (hence,
in particular, b = g∗(a) = a ◦ g). We denote E : C∗ ↪→ C the embedding functor.

Definition 4.4 (finite subcategories). We denote by Cf , Af the full sub-
categories of C,A where objects are of the kind a ∈ MY for a finite set Y .

Lemma 4.5. The lax functor #: C → A restricts to #: Cf → Af , which is a
(proper) functor.

5 Predicate Liftings

In this section we discuss how predicate liftings [19,22] can be integrated into
our theory. In this context the idea is to view a map in MY as a predicate over
Y with values in M (e.g., if M = {0, 1} we obtain Boolean predicates). Then,
given a functor F , a predicate lifting transforms a predicate over Y (a map in
MY), to a predicate over FY (a map in MFY). It must be remarked that every
complete MV-algebra is a quantale3 with respect to ⊕ and the inverse of the
natural order (see [14]) and predicate liftings for arbitrary quantales have been
studied, for instance, in [9].

First, we characterise which predicate liftings are non-expansive and second,
derive their approximations. We will address both these issues in this section
and then use predicate liftings to define behavioural metrics in Sect. 6.

The fact that there are some functors F , for which FY is infinite, even if
Y is finite, is the reason why the categories C and A also include infinite sets.
However note, that the resulting fixpoint function will be always defined for
finite sets, although intermediate functions might not conform to this.

Definition 5.1 (predicate lifting). Given a functor F : Set → Set, a pred-
icate lifting is a family of functions F̃Y : MY → MFY (where Y is a set), such
that for g : Z → Y , a : Y → M it holds that (Fg)∗(F̃Y (a)) = F̃Z(g∗(a)).

That is, predicate liftings must commute with reindexings. The index Y will
be omitted if clear from the context. Such predicate liftings are in one-to-one

2 A lluf sub-category is a sub-category that contains all objects.
3 A quantale is a complete lattice with an associative operator that distributes over
arbitrary joins.

A Monoidal View on Fixpoint Checks 11

correspondence to so called evaluation maps ev : FM → M.4 Given ev , we define
the corresponding lifting to be F̃ (a) = ev ◦ Fa : FY → M, where a : Y → M.

In the sequel we will only consider well-behaved liftings [4,9], i.e., we require
that (i) F̃ is monotone; (ii) F̃ (0Y) = 0FY where 0 is the constant 0-function;
(iii) F̃ (a ⊕ b) ⊑ F̃ (a) ⊕ F̃ (b) for a, b : Y → M; (iv) F preserves weak pullbacks.

We aim to have not only monotone, but non-expansive liftings.

Lemma 5.2. Let ev : FM → M be an evaluation map and assume that its cor-
responding lifting F̃ : MY → MFY is well-behaved. Then F̃ is non-expansive iff
for all δ ∈ M it holds that F̃ δY ⊑ δFY .

Example 5.3. We consider the (finitely supported) distribution functor D that
maps a set X to all maps p : X → [0, 1] that have finite support and satisfy∑

x∈X p(x) = 1. (Here M = [0, 1].) One evaluation map is ev : D[0, 1] → [0, 1]
with ev(p) =

∑
r∈[0,1] r · p(r), where p is a distribution on [0, 1] (expectation). It

is easy to see that D̃ is well-behaved and non-expansive. The latter follows from
D̃(δY) = δDY .

Example 5.4. Another example is given by the finite powerset functor Pf . We
are given the evaluation map ev : PfM → M, defined for finite S ⊆ M as
ev(S) = maxS, where max ∅ = 0. The lifting P̃f is well-behaved (see [4]) and
non-expansive. To show the latter, observe that P̃f (δY) = δPf (Y)\{∅} ⊑ δPf (Y).

Non-expansive predicate liftings can be seen as functors F̃ : C∗ → C∗. To
be more precise, F̃ maps an object a ∈ MY to F̃ (a) ∈ MFY and an arrow
g∗ : a ##$ a ◦ g, , where g : Z → Y , to (Fg)∗ : F̃ a ##$ F̃ (a ◦ g).

Proposition 5.5. Let F̃ be a (non-expansive) predicate lifting. There is a natu-
ral transformation β : #E ⇒ #EF̃ between (lax) functors #E,#EF̃ : C∗ → A,
whose components, for a ∈ MY , are βa : a ##$ F̃ (a) in A, defined by βa(U) =
F̃ a
#(U) for U ⊆ [Y]a.
That is, the following diagrams commute for every g : Z → Y (on the left the

diagram with formal arrows, omitting the embedding functor E, and on the right
the functions with corresponding domains). Note that #(g) = g−1.

#(a) #(a ◦ g)

#(F̃ a) #(F̃ (a ◦ g))

#(g∗)

βa βa◦g
#(F̃ (g∗))

P([Y]a) P([Z]a◦g)

P([FY]F̃ (a)) P([FZ]F̃ (a◦g))

g−1

F̃ a
F̃ a◦g

#
(Fg)−1

4 This follows from the Yoneda lemma, see e.g. [17].

12 P. Baldan et al.

6 Wasserstein Lifting and Behavioural Metrics

In this section we show how the framework for fixpoint checking described before
can be used to deal with coalgebraic behavioural metrics.

We build on [4], where an approach is proposed for canonically defining a
behavioural pseudometric for coalgebras of a functor F : Set → Set, that is, for
functions of the form ξ : X → FX where X is a set. Intuitively ξ specifies a
transition system whose branching type is given by F . Given such a coalgebra
ξ, the idea is to endow X with a pseudo-metric dξ : X × X → M defined as the
least fixpoint of the map d 4→ dF ◦ (ξ × ξ) where F lifts a metric d : X ×X → M
to a metric dF : FX × FX → M. Here we focus on the so-called Wasserstein
lifting and show how approximations of the functions involved in the definition
of the pseudometric can be determined.

6.1 Wasserstein Lifting

Hereafter, F denotes a fixed endofunctor on Set and ξ : X → FX is a coalgebra
over a finite set X. We also fix a well-behaved non-expansive predicate lifting F̃ .

In order to define a Wasserstein lifting, a first ingredient is that of a coupling.
Given t1, t2 ∈ FX a coupling of t1 and t2 is an element t ∈ F (X ×X), such that
Fπi(t) = ti for i = 1, 2, where πi : X × X → X are the projections. We write
Γ (t1, t2) for the set of all such couplings.

Definition 6.1 (Wasserstein lifting). The Wasserstein lifting F : MX×X →
MFX×FX is defined for d : X × X → M and t1, t2 ∈ FX as

dF (t1, t2) = inf
t∈Γ (t1,t2)

F̃ d(t)

For more intuition on the Wasserstein lifting see Sect. 2. Note that a coupling
correspond to a transport plan. It can be shown that for well-behaved F̃ , the
lifting preserves pseudometrics (see [4,9]).

In order to make the theory for fixpoint checks effective we will need to
restrict to a subclass of liftings.

Definition 6.2 (finitely coupled lifting). We call a lifting F̃ finitely coupled
if for all X and t1, t2 ∈ FX there exists a finite Γ ′(t1, t2) ⊆ Γ (t1, t2), which can
be computed given t1, t2, such that inft∈Γ (t1,t2) F̃ d(t) = mint∈Γ ′(t1,t2) F̃ d(t).

Observe that whenever the infimum above is a minimum, there is trivially a
finite Γ ′(t1, t2). We however ask that there is an effective way to determine it.

The lifting in Example 5.4 (for the finite powerset functor) is obviously
finitely coupled. For the lifting D̃ from Example 5.3 we note that the set of
couplings t ∈ Γ (t1, t2) forms a polytope with a finite number of vertices, which
can be effectively computed and Γ ′(t1, t2) consists of these vertices. The infimum
(minimum) is obtained at one of these vertices [1, Remark 4.5].

A Monoidal View on Fixpoint Checks 13

6.2 A Compositional Representation

As mentioned above, for a coalgebra ξ : X → FX the behavioural pseudometric
d : X × X → M arises as the least fixpoint of W = (ξ × ξ)∗ ◦ (F) where (F) is
the Wasserstein lifting.

Example 6.3. We can recover the motivating example from Sect. 2 by setting
M = [0, 1] and using the functor FX = Λ×D(X), where Λ is a fixed set of labels.
We observe that couplings of (a1, p1), (a2, p2) ∈ FX only exist if a1 = a2 and –
if they do not exist – the Wasserstein distance is the empty infimum, hence 1. If
a1 = a2, couplings correspond to the usual Wasserstein couplings of p1, p2 and
the least fixpoint of W equals the behavioural metrics, as explained in Sect. 2.

Note that we do not use a discount factor to ensure contractivity and hence
the fixpoint might not be unique. Thus, given some fixpoint d, the d-approxima-
tion Wd

can be used for checking whether d = µW.
In the rest of the section we show how W can be decomposed into basic

components and study the corresponding approximation.
The Wasserstein lifting can be decomposed as F = minu ◦F̃ where F̃ :

MX×X → MF (X×X) is the predicate lifting – which we require to be non-
expansive (cf. Lemma 5.2) – and minu is the minimum over the coupling function
u : F (X×X) → FX×FX defined as u(t) = (Fπ1(t), Fπ2(t)), which means that
minu : MF (X×X) → MFX×FX (see Table 1).

We can now derive the corresponding d-approximation.

Proposition 6.4. Assume that F̃ is finitely coupled. Let Y = X ×X, where X
is finite. For d ∈ MY and Y ′ ⊆ [Y]d we have

Wd
#(Y

′) = {(x, y) ∈ [Y]d | ∃t ∈ F̃ d
#(Y

′), u(t) = (ξ(x), ξ(y)),

F̃ d(t) = mint′∈Γ (ξ(x),ξ(y)) F̃ d(t′)}.

Intuitively the statement of Proposition 6.4 means that the minimum must
be reached in a coupling based on Y ′.

For using the above result we next characterize F̃ d
#(Y

′). We rely on the fact
that d can be decomposed into d = π1 ◦ d̄, where the projection π1 is indepen-
dent of d and d̄ is dependent on Y ′, and exploit the natural transformation in
Proposition 5.5.

Proposition 6.5. We fix Y ′ ⊆ Y . Let π1 : M × {0, 1} → M be the projec-
tion to the first component and d̄ : Y → M × {0, 1} with d̄(y) = (d(y),χY ′(y))
where χY ′ : Y → {0, 1} is the characteristic function of Y ′. Then F̃ d

#(Y
′) =

(F d̄)−1(F̃π1
((M\{0}) × {1})).

Here F̃π1
((M\{0}) × {1}) ⊆ F (M × {0, 1}) is independent of d and has to

be determined only once for every predicate lifting F̃ . We will show how this set
looks like for our example functors.

14 P. Baldan et al.

Lemma 6.6. Consider the lifting of the distribution functor presented in Exam-
ple 5.3 and let Z = [0, 1] × {0, 1}. Then we have

D̃π1
((0, 1] × {1}) = {p ∈ DZ | supp(p) ∈ (0, 1] × {1}}.

This means intuitively that a decrease or “slack” can exactly be propagated
for elements whose probabilities are strictly larger than 0.

Lemma 6.7. Consider the lifting of the finite powerset functor from Exam-
ple 5.4 and let Z = M × {0, 1}. Then we have

(P̃f)π1
((M\{0}) × {1}) = {S ∈ [PfZ]P̃fπ1 | ∃(s, 1) ∈ S ∀(s′, 0) ∈ S : s " s′}.

The idea is that the maximum of a set S decreases if we decrease at least
one its values and all values which are not decreased are strictly smaller.

Remark 8. Note that # is a functor on the subcategory Cf , while some liftings
(e.g., the one for the distribution functor) work with infinite sets. In this case,
given a finite set Y , we actually focus on a finite D ⊆ FY . (This is possible
since we consider coalgebras with finite state space and assume that all liftings
are finitely coupled.) Then we consider F̃Y : MY → MFY and e : D ↪→ FY (the
embedding of D into FY). We set f = e∗ ◦ F̃Y . Given a : Y → M, we view f as
an arrow a ##$ F̃ (a)◦e in C. The approximation in this subsection adapts to the
“reduced” lifting, which can be seen as follows (cf. [5]: # preserves composition
if one of the arrows is a reindexing):

fa
= #(f) = #(e∗ ◦ F̃Y) = #(e∗) ◦ #(F̃Y) = e−1 ◦ #(F̃Y) = #(F̃Y) ∩ D.

7 GS-Monoidality

We will now show that the categories Cf and Af can be turned into gs-monoidal
categories. This will give us a way to assemble functions and their approximations
compositionally and this method will form the basis for the tool. We first define
gs-monoidal categories in detail:

Definition 7.1. A strict gs-monoidal category is a strict symmetric monoidal
category, where ⊗ denotes the tensor and e its unit and symmetries are given
by ρa,b : a ⊗ b → b ⊗ a. For every object a there exist morphisms ∇a : a → a × a
(duplicator) and !a : a → e (discharger) satisfying the axioms given below. (See
also the visualizations as string diagrams in Fig. 3.)

1. functoriality of tensor:
– (g ⊗ g′) ◦ (f ⊗ f ′) = (g ◦ f) ⊗ (g′ ◦ f ′)
– ida⊗b = ida ⊗ idb

2. monoidality:
– (f ⊗ g) ⊗ h = f ⊗ (g ⊗ h)
– f ⊗ ide = f = ide ⊗ f

A Monoidal View on Fixpoint Checks 15

3. naturality:
– (f ′ ⊗ f) ◦ ρa,a′ = ρb,b′ ◦ (f ⊗ f ′)

4. symmetry:
– ρe,e = ide

– ρb,a ◦ ρa,b = ida⊗b

– ρa⊗b,c = (ρa,c ⊗ idb) ◦ (ida ⊗ ρb,c)
5. gs-monoidality:

– !e = ∇e = ide

– coherence axioms:
• (ida ⊗ ∇a) ◦ ∇a = (∇a ⊗ ida) ◦ ∇a

• ida = (ida⊗!a) ◦ ∇a

• ρa,a ◦ ∇a = ∇a

– monoidality axioms:
• !a⊗b =!a⊗!b
• (ida ⊗ ρa,b ⊗ idb) ◦ (∇a ⊗ ∇b) = ∇a⊗b

(or, equivalently, ∇a ⊗ ∇b = (ida ⊗ ρb,a ⊗ idb) ◦ ∇a⊗b)

A functor #: C → D is gs-monoidal if the following holds:

1. C and D are gs-monoidal categories
2. monoidality:

– #(e) = e′

– #(a ⊗ b) = #(a) ⊗′ #(b)
3. symmetry:

– #(ρa,b) = ρ′
#(a),#(b)

4. gs-monoidality:
– #(!a) =!′#(a)

– #(∇a) = ∇′
#(a)

where the primed operators are from the category D, the others from C.
In fact, in order to obtain strict gs-monoidal categories with disjoint union,

we will work with the skeleton categories where every finite set Y is repre-
sented by an isomorphic copy {1, . . . , |Y |}. This enables us to make disjoint
union strict, i.e., associativity holds on the nose and not just up to isomor-
phism. In particular for finite sets Y,Z, we define disjoint union as Y + Z =
{1, . . . , |Y |, |Y |+ 1, . . . , |Y |+ |Z|}.

Theorem 7.2. The category Cf with the following operators is gs-monoidal:

1. The tensor ⊗ on objects a ∈ MY and b ∈ MZ is defined as

a ⊗ b = a+ b ∈ MY+Z

where for k ∈ Y + Z we have (a + b)(k) = a(k) if k ≤ |Y | and (a + b)(k) =
b(k − |Y |) if |Y | < k ≤ |Y |+ |Z|.
On arrows f : a ##$ b and g : a′ ##$ b′ (with a′ ∈ MY ′

, b′ ∈ MZ′
) tensor is

given by

f ⊗ g : MY+Y ′
→ MZ+Z′

, (f ⊗ g)(u) = f(⃗uY) + g(u⃗Y)

for u ∈ MY+Y ′
where ⃗uY ∈ MY and u⃗Y ∈ MY ′

, defined as ⃗uY (k) = u(k)
(1 ≤ k ≤ |Y |) and u⃗Y (k) = u(|Y |+ k) (1 ≤ k ≤ |Y ′|).

16 P. Baldan et al.

Fig. 3. String diagrams of the axioms satisfied by gs-monoidal categories.

2. The symmetry ρa,b : a ⊗ b ##$ b ⊗ a for a ∈ MY , b ∈ MZ is defined for
u ∈ MY+Z as

ρa,b(u) = u⃗Y + ⃗uY .

3. The unit e is the unique mapping e : ∅ → M.
4. The duplicator ∇a : a ##$ a ⊗ a for a ∈ MY is defined for u ∈ MY as

∇a(u) = u+ u.

5. The discharger !a : a ##$ e for a ∈ MY is defined for u ∈ MY as !a(u) = e.

We now turn to the abstract category Af . Note that here functions have as
parameters sets of the form U ⊆ [Y]a ⊆ Y . Hence, (the cardinality of) Y can
not be determined directly from U and we need extra care with the tensor.

Theorem 7.3. The category Af with the following operators is gs-monoidal:

1. The tensor ⊗ on objects a ∈ MY and b ∈ MZ is again defined as a⊗b = a+b.
On arrows f : a ##$ b and g : a′ ##$ b′ (where a′ ∈ MY ′

, b′ ∈ MZ′
and

f : P([Y]a) → P([Z]b
′
), g : P([Y ′]a

′
) → P([Z ′]b

′
) are the underlying func-

tions), the tensor is given by

f ⊗ g : P([Y + Y ′]a+a′
) → P([Z + Z ′]b+b′

), (f ⊗ g)(U) = f(⃗UY)∪Z g(U⃗Y)

A Monoidal View on Fixpoint Checks 17

where ⃗UY = U ∩ {1, . . . , |Y |} and U⃗Y = {k | |Y |+ k ∈ U}. Furthermore:

U ∪Y V = U ∪ {|Y |+ k | k ∈ V } (where U ⊆ Y)

2. The symmetry ρa,b : a ⊗ b ##$ b ⊗ a for a ∈ MY , b ∈ MZ is defined for
U ⊆ [Y + Z]a+b as

ρa,b(U) = U⃗Y ∪Z
⃗UY ⊆ [Z + Y]b+a

3. The unit e is again the unique mapping e : ∅ → M.
4. The duplicator ∇a : a ##$ a ⊗ a for a ∈ MY is defined for U ⊆ [Y]a as

∇a(U) = U ∪Y U ⊆ [Y + Y]a+a.

5. The discharger !a : a ##$ e for a ∈ MY is defined for U ⊆ [Y]a as !a(U) = ∅.

Finally, the approximation # is indeed gs-monoidal, i.e., it preserves all the
additional structure (tensor, symmetry, unit, duplicator and discharger).

Theorem 7.4. #: Cf → Af is a gs-monoidal functor.

8 UDEfix: A Tool for Fixpoints Checks

We exploit gs-monoidality as discussed before and present a tool, called UDEfix,
where the user can compose his or her very own function f : MY → MY as
a sort of circuit. Exploiting the fact that the functor # is gs-monoidal, this
circuit is then transformed automatically and in a compositional way into the
corresponding abstraction fa

#, for some given a ∈ MY . By computing the greatest
fixpoint of fa

and checking for emptiness, UDEfix can check whether a = µf .
In fact, UDEfix can handle all functions presented in Sect. 2, where for minu,

maxu we also allow u to be a relation, instead of a function. Moreover, addition
and subtraction by a fixed constant (both non-expansive functions) can be han-
dled (see [7] for details). In addition to fixpoint checks, it is possible to perform
(non-complete) checks whether a given post-fixpoint a is below the least fixpoint
µf . The dual checks (for greatest fixpoint and pre-fixpoints) are implemented as
well.

Building the desired function f : MY → MY requires three steps:

– Choosing the MV-algebra M. Currently the MV-chains [0, 1] and {0, . . . , k}
(for arbitrary k) are supported.

– Creating the required basic functions by specifying their parameters.
– Assembling f from these basic functions.

UDEfix is a Windows-Tool created in Python, which can be obtained from
https://github.com/TimoMatt/UDEfix. The GUI of UDEfix is separated into
three areas: Content area, Building area and Basic-Functions area. Under File the
user can save/load contents and set the MV-algebra in Settings. Functions built
in the Building area can be saved and loaded.

https://github.com/TimoMatt/UDEfix

18 P. Baldan et al.

Fig. 4. Assembling the function f from Sect. 2.

Basic-Functions area: The Basic-Functions area contains the basic functions,
encompassing those listed in Table 1 and additional ones. Via drag-and-drop
(or right-click) these basic functions can be added to the Building area to create
a Function box. Each such box requires three (in the case of D̃ two) Contents:
The Input set, the Output set and the required parameters. These Contents are
to be created in the Content area. Additionally the Basic-Functions area contains
the auxiliary function Testing which we will discuss in the next paragraph.

Building area: The user can connect the created Function boxes to obtain the
function of interest. Composing functions is as simple as connecting two Function
boxes in the correct order and disjoint union is achieved by connecting two boxes
to the same box. We note that Input and Output sets of connected Function
boxes need to match, otherwise the function is not built correctly. Revisiting the
example in Fig. 1, we display in Fig. 4 how this function can be assembled.

The special box Testing is always required at the end. Here, the user can
enter some mapping a : Y → M, test if a is a fixpoint/pre-fixpoint/post-fixpoint
of the built function f and afterwards compute the greatest fixpoint of the
approximation (νfa

if we want to check whether µf = a). If the result is not
the empty set (νf#

a ̸= ∅) one can compute a suitable value for decreasing a,
needed for iterating to the least fixpoint from above (respectively increasing a
for iterating to the greatest fixpoint from below). There is additional support
for comparison with pre- and post-fixpoints.

In the left-hand system in Fig. 1, the function d : Y → [0, 1] with d(3, 3) = 0,
d(1, 1) = 1/2, d(1, 2) = d(2, 1) = d(2, 2) = 2/3 and 1 for all other pairs is a fixpoint
of f (d is not a pseudometric). By clicking Compute in the Testing-box, UDEfix
displays that d is a fixpoint and tells us that d is in fact not the least and not the
greatest fixpoint. It also computes the greatest fixpoints of the approximations
step by step and displays the results to the user.

Content area: Here the user can create sets, mappings and relations which are
used to specify the basic functions. Creating a set is done by entering a name
for the new set and clicking on the plus (“+”). The user can create a variety

A Monoidal View on Fixpoint Checks 19

Fig. 5. Contents: Set Y , Mapping d, Relation ρ.

of different types of sets, for example the basic set X = {1, 2, 3, 4} or the set
D = {p1, p2, p3, p4} which is a set of mappings resp. probability distributions.

Once, Input and Output sets are created we can define the required parameters
(cf. Table 1). Here, the created sets can be chosen as domain and co-domain.
Relations can be handled in a similar fashion: Given the two sets one wants
to relate, creating a relation can be easily achieved by checking some boxes.
Additionally the user has access to some useful in-built relations: “is-element-
of”-relation and projections to the i-th component.

To ease the use, by clicking on the “+” in a Function box a new matching
content with chosen Input and Output sets is created. The additional parameters
(cf. Table 1) have domains and co-domains which need to be created or are the
chosen MV-algebra. The Testing function d is a mapping as well.

See Fig. 5 for examples on how to create the contents Y (set), d (distance
function) and ρ (relation).

Examples: There are pre-defined functions, implementing examples, that are
shipped with the tool. These concern case studies on termination probability,
bisimilarity, simple stochastic games, energy games, behavioural metrics and
Rabin automata. See [7,8] for more details.

9 Conclusion, Related and Future Work

We have shown how our framework from [8] can be cast into a gs-monoidal
setting, justifying the development of the tool UDEfix for a compositional view
on fixpoint checks. In addition we studied properties of the gs-monoidal functor
#, mapping from the concrete to the abstract universe and giving us a general
procedure for approximating predicate liftings.

Related work: This paper is based on fixpoint theory, coalgebras, as well as
on the theory of monoidal categories. Monoidal categories [17] are categories
equipped with a tensor. It has long been realized that monoidal categories can
have additional structure such as braiding or symmetries. Here we base our work

20 P. Baldan et al.

on so called gs-monoidal categories [12,16], called s-monoidal in [15]. These are
symmetric monoidal categories, equipped with a discharger and a duplicator.
Note that “gs” originally stood for “graph substitution” and such categories
were first used for modelling term graph rewriting.

We view gs-monoidal categories as a means to compositionally build mono-
tone non-expansive functions on complete lattices, for which we are interested
in the (least or greatest) fixpoint. Such fixpoints are ubiquitous in computer sci-
ence, here we are in particular interested in applications in concurrency theory
and games, such as bisimilarity [21], behavioural metrics [4,10,13,24] and sim-
ple stochastic games [11]. In recent work we have considered strategy iteration
procedures inspired by games for solving fixpoint equations [7].

Fixpoint equations also arise in the context of coalgebra [20], a general frame-
work for investigating behavioural equivalences for systems that are parameter-
ized – via a functor – over their branching type (labelled, non-deterministic, prob-
abilistic, etc.). Here in particular we are concerned with coalgebraic behavioural
metrics [4], based on a generalization of the Wasserstein or Kantorovich lifting
[25]. Such liftings require the notion of predicate liftings, well-known in coalge-
braic modal logics [22], lifted to a quantitative setting [9].

Future Work: One important question is still open: we defined a lax functor #,
relating the concrete category C of functions of type MY → MZ – where Y,Z
might be infinite – to their approximations, living in A. It is unclear whether # is
a proper functor, i.e., preserves composition. For finite sets functoriality derives
from a non-trivial result in [8] and it is unclear whether it can be extended to
the infinite case. If so, this would be a valuable step to extend the theory.

In this paper we illustrated the approximation for predicate liftings via the
powerset and the distribution functor. It would be interesting to study more
functors and hence broaden the applicability to other types of transition systems.

Concerning UDEfix, we plan to extend the tool to compute fixpoints, either
via Kleene iteration or strategy iteration (strategy iteration from above and
below), as detailed in [7]. Furthermore for convenience it would be useful to
have support for generating fixpoint functions directly from a given coalgebra
respectively transition system.

References

1. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On-the-fly exact computation of
bisimilarity distances. Logic. Meth. Comput. Sci. 13(2:13), 1–25 (2017)

2. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R., Tang, Q., van Breugel, F.: Com-
puting probabilistic bisimilarity distances for probabilistic automata. Logic. Meth.
Comput. Sci. 17(1) (2021)

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
4. Baldan, P., Bonchi, F., Kerstan, H., König, B.: Coalgebraic behavioral metrics.

Logic. Meth. Comput. Sci. 14(3) (2018). Selected Papers of the 6th Conference on
Algebra and Coalgebra in Computer Science (CALCO 2015)

5. Baldan, P., Eggert, R., König, B., Matt, T., Padoan, T.: A monoidal view on
fixpoint checks (2023). arXiv:2305.02957

http://arxiv.org/abs/2305.02957

A Monoidal View on Fixpoint Checks 21

6. Baldan, P., Eggert, R., König, B., Padoan, T.: Fixpoint theory - upside down
(2023). arXiv:2101.08184

7. Baldan, P., Eggert, R., König, B., Padoan, T.: A lattice-theoretical view of strategy
iteration. In: Proceedings of CSL 2023, vol. 252 of LIPIcs, pp. 7:1–7:19. Schloss
Dagstuhl - Leibniz Center for Informatics (2023)

8. Baldan, P., Eggert, R., König, B., Padoan, T.: Fixpoint theory - upside down. In:
Proceedings of FOSSACS 2021, pp. 62–81. Springer (2021). LNCS/ARCoSS 12650

9. Bonchi, F., König, B., Petrişan, D.: Up-to techniques for behavioural metrics via
fibrations. In: Proceedings of CONCUR 2018, volume 118 of LIPIcs, pp. 17:1–17:17.
Schloss Dagstuhl - Leibniz Center for Informatics (2018)

10. Chen, D., van Breugel, F., Worrell, J.: On the complexity of computing probabilis-
tic bisimilarity. In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 437–451.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28729-9 29

11. Condon, A.: On algorithms for simple stochastic games. In: Advances in Computa-
tional Complexity Theory, volume 13 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pp. 51–71 (1990)

12. Corradini, A., Gadducci, F.: An algebraic presentation of term graphs, via GS-
monoidal categories. Appl. Categor. Struct. 7, 299–331 (1999)

13. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled
Markov processes. Theor. Comput. Sci. 318, 323–354 (2004)

14. Di Nola, A., Gerla, B.: Algebras of Lukasiewicz’s logic and their semiring reducts.
In: Idempotent Mathematics and Mathematical Physics, vol. 377 of Proceedings
of the AMS, pp. 131–144 (2005)

15. Gadducci, F.: On the Algebraic Approach To Concurrent Term Rewriting. PhD
thesis, University of Pisa (1996)

16. Gadducci, F., Heckel, R.: An inductive view of graph transformation. In: Presicce,
F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 223–237. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-64299-4 36

17. Mac Lane, S.: Categories for the Working Mathematician. Springer-Verlag (1971)
18. Mundici, D.: MV-algebras. A short tutorial. http://www.matematica.uns.edu.ar/

IXCongresoMonteiro/Comunicaciones/Mundici tutorial.pdf
19. Pattinson, D.: Coalgebraic modal logic: soundness, completeness and decidability

of local consequence. Theor. Comput. Sci. 309(1), 177–193 (2003)
20. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci.

249, 3–80 (2000)
21. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-

sity Press (2011)
22. Schröder, L.: Expressivity of coalgebraic modal logic: the limits and beyond. Theor.

Comput. Sci. 390, 230–247 (2008)
23. Tarski, A.: A lattice-theoretical theorem and its applications. Pacific J. Math. 5,

285–309 (1955)
24. van Breugel, F.: Probabilistic bisimilarity distances. ACM SIGLOG News 4(4),

33–51 (2017)
25. Villani, C.: Optimal Transport - Old and New, volume 338 of A Series of Compre-

hensive Studies in Mathematics. Springer (2009)

http://arxiv.org/abs/2101.08184
https://doi.org/10.1007/978-3-642-28729-9_29
https://doi.org/10.1007/3-540-64299-4_36
http://www.matematica.uns.edu.ar/IXCongresoMonteiro/Comunicaciones/Mundici_tutorial.pdf
http://www.matematica.uns.edu.ar/IXCongresoMonteiro/Comunicaciones/Mundici_tutorial.pdf

