
Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

c©2002 Society for Desing and Process Science

Static Analysis of Distributed Systems with Mobility
Specified by Graph Grammars—A Case Study

Paolo Baldan and Andrea Corradini
Dipartimento di Informatica, Università di Pisa, Italy

{baldan,andrea}@di.unipi.it
Barbara König

Institut für Informatik, Technische Universität München, Germany
koenigb@in.tum.de

ABSTRACT:We consider a distributed system with mo-
bility modelled as a graph transformation system. Then we
show that non-secure level processes cannot influence se-
cure level processes, a property formalized as the absence
of causal dependencies between such processes. This is
done by resorting to an analysis technique for graph trans-
formation systems, called approximated unfolding, based
on the construction of an approximation of the unfolding
semantics.

I. INTRODUCTION

Graph grammars have been shown to be an expres-
sive formalism for the specification of concurrent and dis-
tributed systems [15], [8]. The use of graphs to model sys-
tem states allows one to provide an explicit representation
of the physical or logical connections between system com-
ponents and, in particular, it eases the explicit representa-
tion of the topology of a distributed system. The rewrit-
ing rules add a dynamic dimension to the representation, in
that they permit to specify how such a topology evolves, a
capability which is essential to describe systems with mo-
bility. On the one hand, various calculi for mobility have
been defined directly using graphs and graph transforma-
tion as a basic language [6], [12]. On the other hand, graph
transformation systems have been used to provide a con-
current semantics for several calculi for mobility, like the
π-calculus [13] and the ambient calculus [10]. A set of
graph rewriting rules encodes the dynamics of such calculi,
acting over the graphical representations of agents. Hence
graph transformation systems can be seen as a common in-
termediate language where such calculi can be “compiled”.

In both cases, an advantage of resorting to graph gram-
mars is represented by the fact that their concurrent be-
haviour has been deeply studied in the last years and a con-
solidated theory of concurrency is now available [15], [8].
In particular, several classical approaches to the semantics
of Petri nets, like process and unfolding semantics, have

Research partially supported by the ESPRIT Working Group APPLI-
GRAPH (Applications of Graph Transformation), by the Joint CNR/CNPq
Project IQ-Mobile and by the IST Project AGILE: Architectures for Mo-
bility.

been extended to graph grammars (see, e.g., [4], [14], [2],
[3]). These concrete operational models provide a descrip-
tion of the behaviour in terms of (usually) non-effective
(e.g., infinite, non-decidable) structures, which cannot be
used directly to reason about the modelled system. How-
ever they can serve as a basis for the definition of more ab-
stract semantics and of effective techniques for the verifica-
tion of systems modelled in terms of graph transformation.

In this paper, following this line of research, we introduce
a simple distributed system with mobility represented as a
graph grammar. Then, by resorting to an analysis technique
for graph grammars presented in [1], we prove that in such
a system non-secure level processes cannot influence secure
level ones.

More precisely, the system consists of a set of locations
and a set of processes running on such locations. Loca-
tions are linked by connections through which processes
can travel. A subset of locations and a subset of connections
is considered to be secure. Secure locations are positioned
behind a firewall which processes can cross in one direc-
tion only. Hence one expects that in such system processes
running on secure locations cannot be influenced by those
running on non-secure locations, a property closely related
to multi-level security and non-interference [11], [9].

The mentioned property, formalized as the absence of
causal dependencies from non-secure to secure level pro-
cesses, is proved by using a static analysis technique for
graph grammars, proposed in [1], which is based on the
so-called unfolding of the grammar, a semantics which rep-
resents all the possible computations of the grammar in a
single branching structure. Given a graph transformation
system and a start graph, an algorithm produces a finite
structure consisting of a hypergraph decorated with tran-
sitions (Petri graph) which can be seen as an approximation
of the Winskel’s style unfolding of the graph transformation
system. The fact that any graph reachable in the grammar
has an homomorphic image in the Petri graph and the addi-
tional causal information provided by transitions allow us
to prove several interesting properties of the original sys-
tem. In particular, in our case, an analysis of the approx-
imated unfolding reveals that, as desired, processess run-



A

BC

Fig. 1. A hypergraph.

ning on secure locations will never be causally dependent
on processes running on non-secure locations.

The rest of the paper is structured as follows. In Sec-
tion II we outline the technique for the construction of the
approximated unfolding of a graph grammar and we point
out some of its relevant properties. To this aim, we first
review the basics of (hyper)graph rewriting and of the un-
folding semantics for graph transformation systems. Then,
in Section III we illustrate the approximated unfolding tech-
nique, by showing how it can be applied to prove a secu-
rity property for a simple distributed system with mobility,
modelled as a graph grammar. Finally, in Section IV we
draw some conclusions and point out directions for future
work.

We have tried to keep the paper as much self-contained
as possible, giving at least an informal description of the
essential notions and results. Still, the reader would very
much benefit from some basic knowledge of graph trans-
formation and of Petri net theory.

II. THE APPROXIMATED UNFOLDING TECHNIQUE

In this section we give an overview of the technique, pro-
posed in [1], for the construction of a finite approximation
of the unfolding of a graph grammar. More precisely, first
we introduce the class of (hyper)graph transformation sys-
tems we will deal with. Then we review the basic ideas
underlying the ordinary unfolding construction for graph
grammars [14], [3] and we describe Petri graphs, the struc-
ture combining hypergraphs and Petri nets, which is used to
approximate the behaviour of graph grammars. Finally, we
present the algorithm computing the approximated unfold-
ing of a graph grammar and we discuss some of its relevant
properties.

A. Hypergraph rewriting

The structures on which rewriting takes place are hyper-
graphs, i.e., a kind of graphs where each edge is attached
to a (possibly empty) list of nodes. For instance, Fig. 1
presents a hypergraph with three edges, depicted as rectan-
gles, and three nodes, depicted as small circles. Observe
that edges are labelled, while nodes are not. The edge la-
belled A is attached to three nodes, while the edge labelled
C only to one. Given a hypergraph G, we will denote by
VG and EG its sets of nodes and edges, respectively.

A rewriting rule r is a triple (L,R, α), whereL andR are
hypergraphs, called left-hand side and right-hand side, re-
spectively, and α : VL → VR is an injective function map-
ping nodes of the left-hand side to nodes of the right-hand

A

3

1 2

BC

D B

3

1 2

D

α

Fig. 2. A graph rewriting rule.

1 2

3

D B

3

1 2

D

1 2

3

A

BC

Fig. 4. A DPO rule corresponding to the rule in Fig. 2.

side. An example of a rewriting rule is presented in Fig. 2.
The mapping α is implicitly represented by the numbering
of nodes, namely, any node of the left-hand side is mapped
by α to the node of the right-hand side with the same num-
ber. Unnumbered nodes of the right-hand side are new, i.e.,
generated by the application of the rule.

We recall that in [1] the treatment is limited to so-called
basic rules, i.e., rules r = (L,R, α) where different edges
in the left-hand side L have different labels, no node in L is
isolated and no node in VR−α(VL) is isolated in R. These
restrictions are not strictly needed, but make the presenta-
tion simpler.

Intuitively, a rule r = (L,R, α) specifies that an occur-
rence of the left-hand side L can be “replaced” by R. More
concretely, to apply r to a graph G one must find a match
of r in G, i.e., an occurrence of the left-hand side L in G
(formally a graph morphism ϕ : L → G). The application
of r to G at the match ϕ first removes from G the image
of the edges of L. Then the graph G is extended by adding
the new nodes in R (i.e., the nodes in VR − α(VL)) and the
edges of R. Observe that the (images of the) nodes in L are
“preserved”, i.e., not affected by the rewriting step. Fig. 3
represents an application of the rule of Fig. 2. The match in
the left-hand graph is represented by the grey part.

A graph transformation system G is a finite set of rewrit-
ing rules. A graph transformation system with a start graph
(G, GG) is called a graph grammar. Often, with abuse of
notation, the graph GG will be omitted and we will speak
of the graph grammar G.

The reader who is familiar with the double-pushout
(DPO) approach [7], [5] to graph rewriting might have rec-
ognized that our rules (L,R, α) can be seen as special DPO
rules (L←↩ VL

α
↪→ R) and that our notion of rewriting cor-

responds to a DPO construction. For instance Fig. 4 shows
a DPO rule corresponding to the rule in Fig. 2.

B. Unfolding of graph grammars

Let G be a graph grammar. The unfolding of the gram-
mar [14], [3] is constructed inductively beginning from the

2



A

C C

A

B

1

3

2
A

C

D B

D

1

3

2

Fig. 3. An application of the rule in Fig. 2.

A
21

A
21

B

Rule r Start graph

A

Fig. 5. A simple graph grammar S.

start graph and then applying at each step in all possible
ways the rules, without deleting the left-hand side, and
recording each occurrence of a rule and each new graph
item generated in the rewriting process. As a result one
obtains an acyclic branching structure describing the be-
haviour of G. In particular every reachable graph embeds
in (a concurrent subgraph of) the graph produced by the
unfolding construction.

For instance, consider the very simple graph grammar S
in Fig. 5, with only one rewriting rule r. A fragment of its
unfolding U(S) is represented in Fig. 6, in the form of a
structure, called Petri graph.

A Petri graph for a graph transformation system G con-
sists of a hypergraph G together with a Petri net having the
graph edges as places. Any marking m of the Petri graph G
can be interpreted as a graph Gm. For a safe marking Gm
is the subgraph of G consisting only of the marked edges.
More generally, for a (possibly) non-safe marking the graph
Gm can include multiple copies of the same edge of G, one
for each token marking that edge. For instance, the mark-
ing of the Petri graph in Fig. 6 represents the start graph
of the grammar, consisting of a singleA-labelled edge. The
transitions, which are represented as small black rectangles,
can be interpreted as occurrences of rewriting rules. Each
transition t is labelled by the corresponding rule r (written
as t : r) and it consumes and produces tokens in the edges
of the graph, as denoted by the dashed arrows, according to
the shape of the left- and right-hand side of r. For instance,
transition t1 in Fig. 6 represents the application of rule r
to the start graph of the grammar and indeed it consumes a
token in the edge labelled by A, producing new tokens in
edges labelled by A and B, respectively. Similarly, t2 rep-
resents the application of r to the edge A produced by the
first occurrence of r, and so on.

It is worth noting that the unfolding makes explicit the
causal dependencies among the rule occurrences and the
produced graph items. For instance, t2 causally depends on
t1 since it consumes a token (in an A-labelled edge) pro-
duced by t1. Formally, the causality relation is defined as
the least transitive relation such that t < t′ whenever t′

consumes a token produced by t. In other words, t < t′

A

B

AB

A

B A

t1 : r

t2 : r

t3 : r

Fig. 6. A fragment of the unfolding of the graph grammar S of Fig. 5.

if there exists a chain of transitions t0 = t, t1, . . . , tn−1,
tn = t′ such that each ti consumes an item produced by
its predecessor ti−1. Therefore, the causality relation can
be informally interpreted as a relation revealing the flow of
information in the system. Altenatively, we can think that
t < t′ means that the presence of t′ in the past history of t is
relevant for t, and thus that rule r labelling t influences the
behaviour of rule r′ labelling t′. Following this intuition,
we will later formalize our security property relying on the
causality relation.

C. Approximated unfolding

The unfolding is usually infinite, also in the case of finite-
state systems. To ensure that the construction produces a
finite structure, in [1] we propose to consider—besides the
unfolding rule, which extends the graph by simulating the
application of a rule—a folding rule, which, under suitable
conditions, allows us to “merge” different parts of the struc-
ture which has been generated.

To perform an unfolding step one must find a match ϕ
of a rule r, i.e., an occurrence of its left-hand side, in the
current graph. Then the rule is applied without deleting the
match, but only adding the new items as specified by the
right-hand side of the rule. In a folding step, instead, one
has to find two matches of the same rule r. Then the two
occurrences of the left-hand side of r in the current graph
are merged. In both kinds of steps the matches are required
to be coverable, i.e., when interpreted as markings of the
Petri graph they must be covered by a marking reachable
from the initial marking in the Petri graph. Fig. 7 presents
an unfolding step and a folding step for the graph grammar
in Fig. 5. The involved matches are depicted in grey.

The algorithm for the construction of the approximated
unfolding of a graph grammar G can be described as fol-
lows:

3



A

B

r

A

A

Fold
A

B

r

Unfold

Fig. 7. An unfolding and a folding step for the graph grammar S in Fig. 5.

(Step 0) Begin from the start graph of the grammar;

(Step i + 1) Let Ui be the Petri graph produced at step i.
Choose non-deterministically one of the following actions
? Folding: Find a rule r and two (coverable) matches of r
in Ui such that one causally depends on the other, i.e., each
item x in the second match causally depends on the transi-
tion labelled r applied to the first match or coincides with
an item in the first match. Then merge these two matches.
? Unfolding: Find a rule r and a (coverable) match of r in
Ui such that the match cannot be involved in a folding step
(and no other r-labelled transition has this match as pre-
condition). Then apply the unfolding step to such a match.

The algorithm stops when no (folding or unfolding) step can
be performed. The resulting Petri graph is called approxi-
mated unfolding of G and denoted by A(G).

For instance, the approximated unfolding of the graph
grammar S in Fig. 5, is the rightmost Petri graph in Fig. 7.
It is obtained by performing first an unfolding and then a
folding step. Observe that, after the first step, another un-
folding step applied to the newly produced A-labelled edge
would not be legal, according to the application conditions
outlined above, since the same match can be involved in a
folding step.

D. Properties of the approximated unfolding

The algorithm for the construction of the approximated
unfolding can be shown to be terminating and confluent.
Hence by a classical result, its result is uniquely determined
and finite.

Moreover, although the Petri graph A(G) introduces a
degree of approximation in the representation of the be-
haviour of a graph grammar G, it enjoys some properties
which allow one to use the approximated unfolding for ver-
ification purposes.

First of all, every graph G reachable in the original
graph grammar G can be mapped homomorphically to the
graph underlying A(G), i.e., there exists a (graph) mor-
phism ϕ : G → A(G). Furthermore, the ϕ-image of G
in A(G) corresponds to a marking which is reachable in
the Petri graph. Therefore, both the graphical and the Petri
net structure of the approximated unfolding can be help-
ful for verification. Properties which are reflected by graph
morphisms, like the non-adjacency of some labels, the non-
existence of a given path of edges or the absence of cy-
cles, can be checked directly on the graph underlying the

approximated unfolding. The Petri net underlying the ap-
proximated unfolding can be analyzed with standard Petri
net techniques, e.g., to establish a bound to the number of
edges with a certain label in reachable graphs. Usually, the
more fruitful approach consists of using both kinds of in-
formation at the same time.

A second relevant property is the existence of a mor-
phism from the full unfolding to the approximated unfolding
Ψ : U(G) → A(G), which “preserves” the causal rela-
tion, i.e., such that for any pair of items x and y in U(G),
if y causally depends on x then also their Ψ-images are in
the same relation. This can be helpful to show that some
items in the full unfolding are not causally dependent, a
fact which can be proved by showing that their Ψ-images
in the approximated unfolding are not causally related.

III. VERIFYING A SECURITY PROPERTY OF A
DISTRIBUTED SYSTEM WITH MOBILITY

In this section we consider a distributed system with mo-
bility, suggesting how it can be modelled as a graph gram-
mar. Then the verification technique described in the pre-
vious section is used to show that no process running on a
secure location can ever be influenced by a process running
on a non-secure location.

A. Modelling a distributed system with mobility

We consider a simple distributed system with mobility,
with locations and processes running on these locations,
represented as a graph grammar. Locations, connections
and processes are represented as hyperedges. The mean-
ing of the edge labels is the following: P denotes a process
running on a location, Q stands for a process which travels
between locations. The labels L and sL stand for locations
and secure locations, respectively, and, in the same way,
conn and sconn stand for connections and secure connec-
tions, respectively. And finally firewall represents the fire-
wall connection which can only be crossed in one direction.
For instance, the start graph in Fig. 8 represents a network
with three locations, one of which is secure. Observe that
the secure location is connected to the others through fire-
walls and initially no process is running. The dynamics of
the system is modelled by the rewriting rules in Fig. 8.

Most of the rules come in two versions, the se-
cure and the non-secure version, referred to as [s-rule
name] and [rule name], which are obtained by keep-
ing or removing, respectively, in all the edges of a

4



L

firewall firewall

L

sL

conn

Start graph

1 2

(s)L

Q
1 2

(s)conn

Q
1 2

firewall

1 2

(s)L

1 2

P (s)L
1 2

Q(s)L

(s)conn (s)L

[(s-)create proc]

[(s-)leave/enter loc]

[cross firewall]

[(s-)create loc]

[(s-)cross/back conn]

Rewriting rules

1

firewall

1 2

Q

Q
2

(s)conn

P
1 2

(s)L

1 2

(s)L

Fig. 8. A start graph and rewriting rules for mobile processes (graph grammar M).

rule the letter “s” in brackets. The rules enable a lo-
cation to create processes or new connected locations
(rules [(s-)create proc] and [(s-)create loc]), they al-
low a process to leave a location (rule [(s-)leave loc]),
to travel along connections (rules [(s-)cross conn] and
[(s-)back conn]) and firewalls (rule [cross firewall]), and
to reenter a location (rule [(s-)enter loc]). Note that some
rules for process movement can be applied in both direc-
tions, as indicated by the presence of a double arrow. This
is clearly not possible in the case of firewalls.

Let us denote by M the graph grammar consisting of
the start graph and rewriting rules specified in Fig. 8. A
possible evolution ofM is depicted in Fig. 9: a new secure
location is created which afterwards spawns a new process.
This process travels along the new secure connection and
then crosses a firewall.

B. The approximated unfolding at work

We want to make sure that in the system described in the
previous section no process running on a secure location is
ever influenced by a process running on a non-secure lo-
cation. Instead, an influence in the opposite direction is
allowed.

The intuitive idea of “influence” is formalized by resort-
ing to the notion of causality, i.e., we require that processes
running on secure locations are never causally dependent on
processes running on non-secure locations. The absence of
such causal dependencies could be detected in the full un-

folding of the system, which however, being infinite, can-
not be directly constructed and analyzed. Therefore, we
exploit the algorithm described in the previous section to
construct the approximated unfolding. Since causality is
preserved by the mapping from the full into the approxi-
mated unfolding, we are sure that whenever two processes
are not causally related in the approximation, they are con-
sequently not causally related in the full unfolding.

The algorithm applied to the graph grammarM in Fig. 8,
performs several folding and unfolding steps and finally
produces the Petri graphA(M) in Fig. 10, where the initial
marking corresponds to the start graph of the grammar.

Some of these unfolding and folding steps are presented
in Fig. 11:
1. We begin from the start graph of the system in Fig. 8.
2. We choose—non-deterministically—to apply an unfold-
ing step corresponding to the creation of a new process at a
non-secure location (rule [create proc]).
3. Since the newly created location is a match for rule [cre-
ate proc] and it causally dependends on transition t which
corresponds to rule [create proc], a folding step allows us
to merge such an edge and the precondition of t.
4. A sequence of several similar unfolding and folding
steps follows.
5. Since the process P and its location on the right rep-
resent a match for rule [leave loc] and they both causally
depend on transition t′, the match and the precondition of
t′ are consequently merged.

5



L conn

P

firewall firewall

L

sLsconnsL

L conn

Q

firewall firewall

L

sLsconnsL

L

firewall firewall

sL

conn L

L conn

Q

firewall firewall

L

sLsconnsL

L conn

firewall firewall

L

sLsconnsL

Q

L conn

firewall firewall

L

sLsconnsL

[s-create loc]

[s-leave loc]

[s-back conn]

[s-create proc]

[cross firewall]

Fig. 9. A few transformation steps of the mobile system.

Q

LP

firewall

firewall

Q

P

sconnconn

sL

Fig. 10. Approximated unfolding of the graph grammar M in Fig. 8.

Several more steps finally lead to the Petri graph in Fig. 10.

An analysis of the approximated unfolding A(M) re-
veals that no process running on a non-secure location can
be a cause for a process running on a secure location. In
fact, let Ψ : U(M) → A(M) be the morphism from the
full unfolding to the approximated unfolding of the system.
Observe that in the approximated unfolding the edge P on
the right represents processes running on secure locations
(i.e., processes running on secure locations in the full un-
folding are mapped by Ψ to this edge), the edge P on the
left represents processes running on non-secure locations.
Furthermore the left-hand P is not a cause for the right-

hand P , since there is no chain of transitions such that the
first one consumes a token in the left-hand P , each of the in-
termediate transitions consumes a token which is produced
by its predecessor and the last one produces a token in the
right-hand P . Since causality is preserved in the approxi-
mation, i.e., the mapping Ψ preserves causality, we can con-
clude that, as desired, no process running on a non-secure
location is a cause for a process running on a secure loca-
tion.

Note that the system would not satisfy this security prop-
erty any more if we replaced one of the firewalls by a secure
or non-secure connection, even if there is no explicit com-

6



FoldUnf

...

Fold ...

L

firewall firewall

L

sL

conn

(1)

LL

firewall firewall

sL

conn

P

L

(2)

t

LL

firewall firewall

sL

conn

P (3)

t

LL

Q QP P

firewall firewall

sL

conn

(4)
t′

firewall firewall

sL

P Q

L

conn Q

t′
(5)

Fig. 11. Folding and unfolding steps in the approximated unfolding technique.

munication between processes. The reason for this is that a
process running on a non-secure location could move along
the connection and influence a secure location (in practice
this could mean modifying some of its data) which after-
wards creates a new process.

The example could of course be extended by introducing
rewriting rules which model explicit process communica-
tion. The same technique would allow to prove the same
property at the price of having a larger approximated un-
folding.

IV. CONCLUSIONS

We have shown how a static analysis technique based on
the construction of an approximation of the Winskel’s style
unfolding can be used to verify a security property in a sim-
ple graph-based formalism for systems with mobility.

Our current investigations concern the applicability of
(variants of) the presented technique to the verification of
more sophisticated graph-based distributed systems with
mobility. Moreover, as already mentioned, also the graph-
ical representations of calculi for mobility proposed in the
literature offer an interesting framework where our tech-
nique could be applied.

In this context our future work will address the problem
of understanding which safety properties can be analyzed
by our technique and how it can be adapted to the various
needs arising in the specification and analysis of systems
with mobility.

Another interesting issue is the automation of the de-
scribed technique, including the generation of the approxi-
mated unfolding for a given graph grammar and its analy-
sis. As already mentioned, any property of reachable states
which is reflected by graph morphisms can be checked di-

7



rectly on the graph underlying the approximated unfolding.
Furthermore most of the properties regarding causality are
concerned with the structure of the approximated unfolding
itself, seen as a graph, and, in particular, with the presence
of certain (causal) paths. Hence we believe that classic al-
gorithms and tools for the analysis of graph properties could
be of great help. On the other hand, since the Petri net
underlying the approximated unfolding provides an over-
approximation of the behaviour of the original rewriting
system (i.e., any computation in the original system is a
legal computation in the approximated unfolding) any tech-
nique and tool devised for ordinary Petri nets is potentially
useful for the analysis of the approximated unfolding.

REFERENCES

[1] P. Baldan, A. Corradini, and B. König. A static analysis technique for
graph transformation systems. In K.G. Larsen and M. Nielsen, edi-
tors, Proceedings of CONCUR 2001, volume 2154 of LNCS, pages
381–395. Springer Verlag, 2001.

[2] P. Baldan, A. Corradini, and U. Montanari. Concatenable graph pro-
cesses: relating processes and derivation traces. In Proceedings of
ICALP’98, volume 1443 of LNCS, pages 283–295. Springer Verlag,
1998.

[3] P. Baldan, A. Corradini, and U. Montanari. Unfolding and Event
Structure Semantics for Graph Grammars. In W. Thomas, editor,
Proceedings of FoSSaCS ’99, volume 1578 of LNCS, pages 73–89.
Springer Verlag, 1999.

[4] A. Corradini, U. Montanari, and F. Rossi. Graph processes. Funda-
menta Informaticae, 26:241–265, 1996.

[5] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and
M. Löwe. Algebraic Approaches to Graph Transformation I: Basic
Concepts and Double Pushout Approach. In [15].

[6] F. L. Dotti and L. Ribeiro. Specification of mobile code systems
using graph grammars. In Proc. of FMOODS ’00. Kluwer Academic
Publishers, 2000.

[7] H. Ehrig. Introduction to the algebraic theory of graph grammars. In
V. Claus, H. Ehrig, and G. Rozenberg, editors, Proceedings of the 1st
International Workshop on Graph-Grammars and Their Application
to Computer Science and Biology, volume 73 of LNCS, pages 1–69.
Springer Verlag, 1979.

[8] H. Ehrig, J. Kreowski, U. Montanari, and G. Rozenberg, editors.
Handbook of Graph Grammars and Computing by Graph Transfor-
mation, Vol. 3: Concurrency, Parallelism and Distribution. World
Scientific, 1999.

[9] R. Focardi, R. Gorrieri, and F. Martinelli. Non interference for the
analysis of cryptographic protocols. In U. Montanari, J. Rolim, and
E. Welzl, editors, Proceedings of the 27th ICALP, volume 1853 of
LNCS, pages 354–372. Springer Verlag, 2000.

[10] F. Gadducci and U. Montanari. A concurrent graph semantics for
mobile ambients. In S. Brookes and M. Mislove, editors, Proceed-
ings of the 17th MFPS, volume 45 of Electronic Notes in Computer
Science. Elsevier Science, 2001.

[11] J. A. Goguen and J. Meseguer. Security policies and security mod-
els. In Proceedings 1982 IEEE Symposium on Security and Privacy,
pages 11–20. IEEE Computer Society, 1982.

[12] B. König. Description and Verification of Mobile Processes with
Graph Rewriting Techniques. PhD thesis, Technische Universität
München, 1999.

[13] U. Montanari and M. Pistore. Concurrent semantics for the π-
calculus. In Proceedings of the 11th MFPS, volume 1 of Electronic
Notes in Computer Science. Elsevier Science, 1995.

[14] L. Ribeiro. Parallel Composition and Unfolding Semantics of Graph
Grammars. PhD thesis, Technische Universität Berlin, 1996.

[15] G. Rozenberg, editor. Handbook of Graph Grammars and Comput-
ing by Graph Transformation, Vol. 1: Foundations. World Scientific,
1997.

8


