
Contents lists available at ScienceDirect
Information Systems

Information Systems 56 (2016) 304–325
http://d
0306-43

n Corr
E-m

baldan@
luciano.
journal homepage: www.elsevier.com/locate/infosys
Diagnosing behavioral differences between business process
models: An approach based on event structures

Abel Armas-Cervantes n,a, Paolo Baldan b, Marlon Dumas a,
Luciano Garcia-Bañuelos a

a Institute of Computer Science, University of Tartu, Estonia
b Department of Mathematics, University of Padova, Italy
a r t i c l e i n f o

Article history:
Received 18 December 2014
Received in revised form
16 September 2015
Accepted 21 September 2015
Available online 19 October 2015

Keywords:
Process model comparison
Asymmetric event structures
x.doi.org/10.1016/j.is.2015.09.009
79/& 2015 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: abel.armas@ut.ee (A. Armas-Ce
math.unipd.it (P. Baldan), marlon.dumas@u
garcia@ut.ee (L. Garcia-Bañuelos).
a b s t r a c t

Companies operating in multiple markets or segments often need to manage multiple
variants of the same business process. Such multiplicity may stem for example from
distinct products, different types of customers or regulatory differences across countries in
which the companies operate. During the management of these processes, analysts need
to compare models of multiple process variants in order to identify opportunities for
standardization or to understand performance differences across variants. To support this
comparison, this paper proposes a technique for diagnosing behavioral differences
between process models. Given two process models, it determines if they are behaviorally
equivalent, and if not, it describes their differences in terms of behavioral relations – like
causal dependencies or conflicts – that hold in one model but not in the other. The
technique is based on a translation from process models to event structures, a formalism
that describes the behavior as a collection of events (task instances) connected by binary
behavioral relations. A naïve version of this translation suffers from two limitations. First,
it produces redundant difference statements because an event structure describing a
process may contain unnecessary event duplications. Second, this translation is not
directly applicable to process models with cycles as the corresponding event structure is
infinite. To tackle the first issue, the paper proposes a technique for reducing the number
of events in an event structure while preserving the behavior. For the second issue, relying
on the theory of complete unfolding prefixes, the paper shows how to construct a finite
prefix of the unfolding of a possibly cyclic process model where all possible causes of
every activity is represented. Additionally, activities that can occur multiple times in an
execution of the process are distinguished from those that can occur at most once. The
finite prefix thus enables the diagnosis of behavioral differences in terms of activity
repetition and causal relations that hold in one model but not in the other. The method is
implemented as a prototype that takes as input process models in the Business Process
Model and Notation (BPMN) and produces difference statements in natural language.
Differences can also be graphically overlaid on the process models.

& 2015 Elsevier Ltd. All rights reserved.
rvantes),
t.ee (M. Dumas),
1. Introduction

Large organizations often need to manage multiple var-
iants of the same business process. For example, an order-

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.09.009
http://dx.doi.org/10.1016/j.is.2015.09.009
http://dx.doi.org/10.1016/j.is.2015.09.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.09.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.09.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.09.009&domain=pdf
mailto:abel.armas@ut.ee
mailto:baldan@math.unipd.it
mailto:marlon.dumas@ut.ee
mailto:luciano.garcia@ut.ee
http://dx.doi.org/10.1016/j.is.2015.09.009

Fig. 1. Variants of business process models (a) M1 and (b) M2.

1 This transformation does not cover some BPMN constructs such as
OR-joins, which cannot be straightforwardly translated into Petri nets [5].

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325 305
to-cash process may exist in multiple variants, corre-
sponding to different products, different types of customers,
different markets in which the company operates, or idio-
syncratic choices made by multiple business units over
time. During the ongoing management of these processes,
analysts need to compare models of multiple process var-
iants [1] in order to identify opportunities for standardiza-
tion or to understand relative performance differences
across variants.

Existing process model comparison methods can be
classified into those based on the structure of the models
and those based on their behavior. In some cases, a struc-
tural comparison – where nodes and/or edges are matched
based on the topology of the model – is sufficient to
understand the differences between two variants. However,
two process models may be structurally different, yet
behaviorally equivalent or they may be very similar struc-
turally yet quite different behaviorally, as changes in a few
gateways or edges might entail significant behavioral
differences.

In this setting, this paper faces the problem of diagnos-
ing behavioral differences between business process mod-
els. The paper presents a method to describe differences in
terms of binary behavioral relations and activity repetition
observed in one process but not in the other. We specifically
deal with three elementary types of behavioral relations
that, together with repetition, have been postulated as basic
control-flow workflow patterns [2], namely causal pre-
cedence (corresponding to “sequence” in a process model),
conflict (exclusive branches in a process model), and con-
currency (parallel branches in a process model). For exam-
ple, consider the models in BPMN notation in Fig. 1,
describing an order fulfillment process, as presented in [3].
We aim at describing their differences via statements of the
form: “In M1, there is a state after Prepare transportation

quote where Arrange delivery appointment can occur before
Produce shipment notice or Arrange delivery appointment can
be skipped, whereas in the matching state in M2, Arrange

delivery appointment always occurs before Produce shipment

notice”, and “In M1 activity Arrange delivery appointment

occurs 0,1 or more times, whereas in M2 it occurs at most
once”.

Throughout the paper we assume that the input process
models are given as Petri nets. This design choice enables
the application of the presented comparison technique to
any process modeling language with a mapping to this
formalism. For example, a transformation of a large subset
of BPMN to Petri nets can be found in [4].1 In addition to
providing a language-neutral representation, the use of
Petri nets allows us to reuse a large body of existing theo-
retical results, for example the theory of unfolding [6,7].

Given that we focus on describing differences in terms of
causality, conflict and concurrency relations, we adopt event
structures [7] as an abstract representation of processes that
explicitly recognizes these three types of relations. Event
structures are a well-established model of concurrency
where computations are represented as collections of
events (activity occurrences) endowed with behavioral
relations expressing dependencies between events. Various
types of event structures have been introduced in the lit-
erature, comprising different binary behavioral relations,
such as prime event structures [7] (PESs), where events are
related by causal dependency and symmetric conflict, and
asymmetric event structures [8] (AESs), where a form of
asymmetric conflict between events is taken as primitive.
A representation based on AESs can be more compact than
one based on PESs. In fact, in the latter occurrences of the
same activity in different contexts are necessarily repre-
sented as distinct events, leading to event duplication that
is sometimes avoidable in AESs. For the purpose of com-
parison, more compact representations are desirable as they
lead to more concise diagnoses of behavioral relations that
exist in one process and not in the other. For this reason, the
paper uses AESs as a basis for process model comparison.

In a prior work [9], we proposed a method for behavior-
preserving reduction of AESs based on a quotient operation,
which merges events corresponding to occurrences of the
same activity in different contexts while preserving the
overall behavior. However, the work in [9] shows that in
some cases multiple non-isomorphic “minimal” AESs exist.

In this setting, the contribution of the paper is threefold:
(i) we extend our previous work [9], by proposing a deter-
ministic order on the quotient of an AES that leads to a
uniquely determined minimal representation of a given
acyclic process model; (ii) we propose a method for calcu-
lating an error-correcting (partial) synchronized product of
two event structures from which differences can be diag-
nosed at the level of binary behavioral relations that hold in
a state of a process model but not in the matching state of
the other model; (iii) for cyclic process models, we rely on

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325306
the theory of unfolding prefixes for determining, for a given
process model, a finite structure describing all possible
causal dependencies between activities and providing use-
ful information on which activities are repeated and which
are not.

This paper is a revised and extended version of the
conference paper [10]. The main addition is the definition of
the partial synchronized product of two AESs and its
application to diagnosing behavioral differences. In [10], the
diagnostic is derived from an error-correcting graph
matching over the folded AESs which, as explained later,
can produce counterintuitive results as it does not take into
account the semantics of the relations in the AESs. In par-
ticular, it disregards the order of occurrence of activities in
the process models. Another addition is a refined descrip-
tion of the technique for identifying and verbalizing differ-
ences, which is only sketched in the conference version.

The paper is structured as follows. In Section 2 we dis-
cuss some related work. In Section 3 we provide the basics
notions for Petri nets and (asymmetric) event structures, as
needed in the rest of the paper. In Section 4 we present a
technique for determining a canonical AES for an acyclic
process model. Then in Section 5 we present the notion of
partial synchronized product and discuss how this product
allows us to identify behavioral differences between process
models. In Section 6 we suggest how the technique can be
extended to the analysis of cyclic models. In Section 7 we
illustrate a method for verbalizing the behavioral differ-
ences and present an evaluation of the corresponding tool
on several case studies. Finally, in Section 8 we summarize
the contributions and discuss future work.
2. Related work

Approaches for process model comparison can be divi-
ded into those based on node label similarity, process
structure similarity and behavioral similarity [1]. We
remark that node label similarity plays an important role in
the alignment of nodes (e.g., tasks) of the process models
being compared. In this paper we focus on behavioral
similarity, assuming that such an alignment is already
determined, i.e., for each node label in one model we are
given the corresponding (“equivalent”) node label in the
other model.

Many equivalence notions have been defined for con-
current systems [11], ranging from trace equivalence (pro-
cesses are equivalent if they have the same set of traces) to
bisimulation equivalence, taking into account also the
branching structure of computations, to finer equivalences
which consider some concurrency features (processes are
equivalent if they have same sets of runs taking into account
also concurrency between computational steps). Few
methods have been proposed to diagnose differences
between processes based on the latter kind of equivalences.
The paper [12] presents a technique for deriving equations
in a process algebra which characterize the differences
between two labeled transition systems (LTSs). On one hand,
the use of a process algebra rather than a graphical language
can make the feedback more difficult to grasp for end users
(process analysts, in our context). On the other hand, the
technique relies on interleaving bisimulation equivalence
and does not take into account the concurrent structure of
the process (a process model with concurrency and its
“interleaved” version are equivalent). In [13], a method for
assessing the difference of LTSs in terms of “edit” operations
is presented. However, for the analysts it can be difficult to
use such feedback on the LTSs to understand the “reasons”
of the behavioral differences, e.g., in terms of behavioral
relations that hold in one model and not in the other.
Additionally, also in this case concurrency is not taken into
account. Analogous remarks apply to [14] that presents a
method for diagnosing differences between process models
using standard automata theory. The idea here is to identify
discrepancies between processes classified according to a
predefined taxonomy of possible differences. As pointed out
by the author, the set of differences is not guaranteed to be
complete, and thus the technique might not report differ-
ences between inequivalent processes.

Behavioral profiles (BP) [15] and causal behavior profiles
[16] are approaches for representing processes using binary
relations. They abstract a process using a n� n matrix,
where n is the number of tasks in the process. Each cell
contains one out of three relations: strict order, exclusive
order or interleaving; plus an additional co-occurrence rela-
tion in the case of causal behavioral profiles. Both techni-
ques are incomplete as they mishandle several types of
constructs, e.g., task skipping (silent transitions), duplicate
tasks, and cycles. In this case, two processes can have
identical BPs despite not being equated by any classical
behavioral equivalence.

Alpha relations [17] are another representation of pro-
cesses using binary behavioral relations (direct causality,
conflict and concurrency), proposed in the context of process
mining. Alpha causality however is not transitive (i.e., caus-
ality has a localized scope) making alpha relations unsuitable
for behavior comparison [18]. Moreover, alpha relations
cannot capture so-called “short loops” and hidden tasks
(including task skipping). Relation sets [19] are a general-
ization of alpha relations. Instead of one matrix, the authors
use k matrices (with a variable k). In each matrix, causality is
computed with a different look-ahead. It is shown that 1-
look-ahead matrices induce trace equivalence for a restricted
family of Petri nets. The authors claim that using k matrices
improves accuracy. But it is unclear how a human-readable
diagnostic of behavioral differences could be extracted from
two sets of k matrices and it is unclear to what notion of
equivalence would this diagnostic correspond.
3. Preliminaries

In this section we recall some basics of Petri nets, we
define their branching processes and we introduce event
structures. These notions will be used throughout the rest of
the paper.

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325 307
3.1. Petri nets
Definition 1 (Petri net, net system). A (Petri) net is a tuple
N¼ ðP; T ; FÞ where P and T are disjoint sets of places and
transitions, respectively, and FD ðP � TÞ [ðT � PÞ is the flow
relation. A marking M: P-N0 is a function that associates
each place pAP with a natural number (the number of
tokens in the place). A net system N ¼ ðN;M0Þ is a Petri net
N¼ ðP; T ; FÞ with a fixed initial marking M0.

Hereafter the components of a net system N will be
implicitly named P, T, F and M, possibly with superscripts.

Places and transitions are conjointly referred to as nodes.
We write �y¼ fxAP [T jðx; yÞAFg and y� ¼ fzAP [
T jðy; zÞAFg to denote the preset and the postset of node y,
respectively. By F þ and Fn we denote the irreflexive and the
reflexive transitive closure of F, respectively.

The operational semantics of a net system is defined in
terms of markings and transition firings. A marking M
enables a transition t, denoted as ðN;MÞ½t〉, if MðpÞ40 for all
pA�t. In this case, the firing of t leads to a new marking M0,
with M0ðpÞ ¼MðpÞ�1 if pA �t⧹t�, M0ðpÞ ¼MðpÞþ1 if pAt�⧹�t,
and M0ðpÞ ¼MðpÞ otherwise. This is denoted as M⟶

t
M0.

A marking M0 is said to be reachable from M if there exists
a sequence of transitions σ ¼ t1t2…tn such that
M⟶

t1 M1⟶
t2 …⟶

tn M0. The set of all the markings reachable
from a marking M is denoted ½M〉. A marking M is coverable
if there exist a reachable marking M0 such that M0ðpÞZMðpÞ
for every pAP. A markingM is n-bounded if every place pAP
contains up to nAN0 tokens at M, i.e., MðpÞrn. The net
system N is n-bounded if all reachable markings are n-
bounded. It is called safe when it is 1-bounded.

Remark. In the paper we restrict to safe net systems and
we will often identify a safe marking M with the set
fpAPjMðpÞ ¼ 1g.

Our Petri nets (and net systems) will be labeled, i.e., they
will be associated with a function λ: T-Λ [fτg where Λ is a
fixed set of labels and τ=2Λ. A transition t will be called
visible if λðxÞaτ, and silent otherwise. An example of a
labeled net system is provided in Fig. 2. Visible transitions
carry their label inside the corresponding rectangle. Silent
transitions are marked by a τ located outside the transition.

3.2. Deterministic and branching processes

The partial order semantics of a net system can be for-
mulated in terms of branching processes [6],2 which repre-
sent in a tree-like structure several (possibly all) runs of the
original net system. A branching process consists of a
(branching) occurrence net [7] namely an acyclic net with-
out merging places, i.e., where p�

�
�

�
�r1 for all pAP. Instead,

branching places, namely places with several outgoing
transitions, representing nondeterministic choices, are
allowed. The behavior of an occurrence net can be described
in terms of three relations between nodes: causality,
2 Note that in this section, the term process refers to a control-flow
abstraction of a business process based on a partial order semantics.
concurrency and conflict. Before providing the definition of
(branching) occurrence nets and branching process, we
introduce such behavioral relations.

Definition 2 (Behavioral relations). Let N be a Petri net and
let x; yAP [T be two nodes in N. Then

� x is a cause of y, denoted xoNy, if ðx; yÞAF þ . By rN we
denote the reflexive causal relation Fn.

� x and y are in conflict, denoted x #N y, if x; yAT , xay are
distinct transitions such that �x\�ya∅ (direct conflict) or
there are x0; y0AT such that x0#Ny0 and x0rNx, y0rNy
(inherited conflict).

� x and y are concurrent, denoted as xJNy, if neither xoNy,
nor yoNx, nor x #N y.

When it is clear from the context, the subscript N will be
omitted from the behavioral relations.

Definition 3 (Occurrence net). A net N¼ ðP; T ; FÞ is an
(branching) occurrence net when it satisfies

1. j�pjr1 for every pAP;
2. oN is acyclic (hence the causal relation rN is a partial

order);
3. the set of causes ⌊xc ¼ fyAT ∣yrNxg is finite for every

xAP [T;
4. #N is irreflexive, i.e., :ðx#NxÞ for any xAP [T .

In an occurrence net, coverability and reachability can be
characterized in terms of the behavioral relations. More
precisely, say that a set of places XDP is a co-set if X2D J ,
namely for all p; p0AX it holds pJp0. A cut is a maximal co-
set with respect to set inclusion. It can be shown that for
occurrence nets satisfying suitable finitariness conditions,
co-sets are exactly the coverable markings and cuts are the
reachable markings. In particular, this holds for occurrence
nets which have a finite initial marking and where any
reachable marking enables finitely many transitions. Note
that these conditions are satisfied by any occurrence net
underlying a branching process of a finite Petri net.

We can now introduce unfolding and branching pro-
cesses of a net system [6,7]. Given a function f :X-Y and a
subset X0DX, we write f ðX0Þ as a shorthand for ff ðxÞ∣xAX0g.

Definition 4 (Unfolding, branching process). Let N ¼ ðP; T ;
F;M0Þ be a net system. The unfolding of N is the tuple
Unf ðN Þ ¼ ðB; E;G; ρÞ consisting of an occurrence net ðB; E;GÞ
and a function ρ:B [E-P [T , generated by the inductive
rules in Fig. 3.
We call branching process of N any prefix of the unfolding,

i.e., any tuple β¼ ðB0; E0;G0; ρ0Þ such that B0DB, E0DE, for any
eAE0, ⌊ecDE0 and �e; e�DB0, and G0, ρ0 are the obvious
restriction of G and ρ.

Places and transitions in the unfolding are often referred
to as conditions and events, respectively. According to rule
ðIÞ, the set MinðβÞ of minimal elements of B [E with respect
to causality corresponds to the set of places in the initial
marking of N , i.e., ρðMinðβÞÞ ¼M0. Whenever a co-set in β
corresponds through ρ to the preset of some transition t of
the original net (meaning that such pre-set is coverable),

Fig. 2. The net N 2 corresponding to model M2 in Fig. 1(b).

Fig. 3. Branching process, inductive rules.

Fig. 4. The unfolding UðN 2Þ.

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325308
according to rule ðT1Þ the branching process can be exten-
ded with an event e representing the corresponding firing
of t. Rule ðT2Þ generates the postset of e. As an example, the
unfolding of the net system in Fig. 2 is provided in Fig. 4.

Intuitively the unfolding Unf ðN Þ represents any possible
behavior of the net system, while a branching processes
represents, in general, just some subset of the possible
computations.

In a branching process, different occurrences of the same
transition are represented as distinct events and the post-
sets of different events are disjoint. As a result, some nodes
in the net system are represented more than once in the
branching process. For example, the unfolding in Fig. 4
contains multiple events d which are all instances of a
single transition in the net system of Fig. 2.

Partially ordered runs of a net system can be expressed
in terms of configurations of a branching process. Roughly a
configuration is a set of events that can occur together in a
single run. Hence it does not contain events in conflict and
for any event it includes all of its causes. Below we formally
introduce the notion of a configuration in a branching
processes, which will be used in Section 6 to define the
complete prefixes of the unfolding.

Definition 5 (Configuration). Let β¼ ðB, E;G; ρÞ be a
branching process.

� A configuration C of β is a set of events, CDE, which is
(i) causally closed, i.e., if eAC then ⌊ecDC, and (ii) con-
flict free, i.e., for all e; e0AC, :ðe #β e0Þ. We denote by
Conf ðβÞ the set of configurations of the branching process
β and by MaxConf ðβÞ the subset of configurations max-
imal with respect to set inclusion.
� For an event eAE of β, its set of causes ⌊ec is a config-
uration called the local configuration of e.

Given a branching process β of a net systemN , the target
cut for a configuration CAConf ðβÞ is defined as
CutðCÞ ¼ ðMinðβÞ [⋃

eAC
e�Þ⧹ð ⋃

eAC

�eÞ. Its image ρðCutðCÞÞ in N is

a reachable marking that we denote by MarkðCÞ.
As a reference behavioral equivalence in this paper, we

use a variation of pomset equivalence, which ignores invi-
sible events and is sensible to termination [20,21]. Roughly
speaking, it equates systems which can execute the same
visible activities, with identical relations of causal depen-
dency and concurrency.

A pomset is a tuple 〈X; rX ; λX 〉, where X is a set of events,
rX is a partial order and λX is the labeling function. An
isomorphism between two pomsets X and Y is an iso-
morphism between the underlying sets, which respects
labels and order, i.e., a bijection f :X-Y such that, λX ¼ λY○f ,
and eoXe0 iff f ðeÞoY f ðe0Þ for all e; e0AX.

A configuration C can be seen as a pomset with the order
and labeling which are the restriction of those of the corre-
sponding net. For this reason we will use C to refer to the
configuration or to the corresponding pomset, inter-
changeably. For a configuration C, we denote by CΛ ¼
feAC∣λðeÞaτg the subset of visible events in C or the corre-
sponding pomset, which is called the visible pomset under-
lying C. Moreover, we denote by Conf ðβÞΛ the set of visible
pomsets underlying the configurations of a branching pro-
cess β, i.e., Conf ðβÞΛ ¼ fCΛ:CAConf ðβÞg. An analogous nota-
tion MaxConf ðβÞΛ is used for the maximal configurations.

Definition 6 (Completed pomset equivalence). We say that
two net systems N and N 0 are completed (visible) pomset
equivalent, denoted N � cpN 0, whenever MaxConf ðUnf ðN ÞÞΛ
¼MaxConf ðUnf ðN 0ÞÞΛ.

In words, N � cpN 0 when N and N 0 have maximal con-
figurations, corresponding to completed computations
(namely computation which cannot be further extended,
because they are either terminated or infinite), which
induce the same visible pomsets. This means that the con-
current structure of such computations (causal dependen-
cies and parallelism between visible events) is exactly
the same.

When comparing process models, the differences can
involve visible and silent events. Commonly, differences
determined only by silent events result irrelevant to the
user or they are hard to be properly reported. This is the
reason why the paper focus on a weak notion of equivalence
which abstracts from silent events. We will come back to
this point later.

3.3. Event structures

This section introduces two variants of event structures,
which are the cornerstones of our comparison technique,
prime event structures [7] and asymmetric event structures
[8].

Fig. 5. (a) A PES P and (b) the corresponding PES without silent events PΛ .
(For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325 309
3.3.1. Prime event structures
Prime event structures, introduced in [7], are probably

the most widely used event structure model.

Definition 7 (Prime event structure). A (labeled) prime event
structure (PES) is a triple P¼ 〈E; r ;#; λ〉, where r (causality
relation) is a partial order on E, # (conflict relation) is irre-
flexive, symmetric and hereditary with respect to r ,
namely if e#e0 and e0re″ then e#e″, for all e; e0; e″AE, and
λ: E-Λ [fτg is a labeling function. The set of configurations
Conf ðPÞ and of maximal configurations MaxConf ðPÞ of P are
defined exactly as for branching processes.

Given a branching process β¼ ðB; E;G; ρÞ of a net system
N , we can define the corresponding PES in an obvious way,
just forgetting the conditions and keeping the events, the
relations of causality and conflict over the events, and the
labeling function. Fig. 5(a) shows the PES extracted from the
unfolding in Fig. 4. Solid arrows represent causality, and
annotated dotted lines represent conflict. Two events are
concurrent if they are neither in causality nor in conflict
relation. For the sake of readability, it is common practice to
represent only direct causality, omitting the transitive clo-
sure, and direct conflicts, omitting the inherited ones.

As mentioned before, for process comparison we rely on
a weak behavioral equivalence, which abstracts from silent
events. We can also take a more radical solution which
consists in directly removing the silent events from the PES,
keeping only the visible events and their dependencies.

Definition 8 (Pruning silent events in PESs). For a given PES
P¼ 〈E; r ;#; λ〉, we denote by PΛ the PES having
E0 ¼ fe∣eAE4λðeÞaτg as events, with the natural restric-
tions of causality, conflict and labeling.

As an example, Fig. 5(b) reports the PES PΛ obtained from
the PES P in the same figure (for the moment ignore the
coloring).

This approach can be convenient as it produces a smaller
PES which can be further compacted as explained below.
However, it must be noted that the transformation is not
guaranteed to preserve completed pomset equivalence (while
it preserves pomset equivalence). An example can be found in
Fig. 6, where P1 ¼PΛ

0 and MaxConf ðP0Þ ¼ ffa;b; cg; fa; bgg
while MaxConf ðP1Þ ¼ fa; b; cg.

It is easy to see that the problem does not occur if we
consider process models where a silent events is never the
last event of a computation.
Proposition 1 (Pruning silent events preserves � cp). Let
P¼ 〈E; r ;#; λ〉 be a PES such that for any CAMaxConf ðPÞ and
eAC there is e0ACΛ such that ere0. Then P� cpP

Λ.

Proof. It is immediate to see that, under the hypothesis, for
any CAMaxConf ðPÞ we have C ¼⋃eACΛ⌊ecP AConf ðPÞ ð
where ⌊ecP denotes the set of causes of e in PÞ.
Now, if CAMaxConf ðPÞ in order to conclude that

CΛAConf ðPΛÞ is maximal, observe that if CΛDC 0 for some
C0AConf ðPΛÞ then, by the above, C ¼⋃eACΛ⌊ecPD⋃eAC0⌊ecP.
Since the latter is a configuration in P, by maximality of C we
have C ¼⋃eAC0⌊ecP hence CΛ ¼ ð⋃eAC0⌊ecPÞΛ ¼ C 0, as desired.
Vice versa, if CΛAMaxConf ðPÞ, in order to conclude that

CAConf ðPÞ is maximal, observe that if CDC1 for some
C1AConf ðPÞ then CΛDCΛ

1. By maximality of CΛ this means
that CΛ ¼ CΛ

1. Therefore C ¼⋃eACΛ⌊ecP ¼⋃eACΛ
1
⌊ecP ¼ C1, as

desired.□

The rest of the paper is compatible with both approa-
ches, namely, after the translation of a process model to a
PES one can either consider the underlying visible PES (if
the transformation is known to preserve the behavior) or
keep the silent events and ignore them in the later stage of
the comparison.

3.3.2. Asymmetric event structures
We now turn our attention to asymmetric event struc-

tures, where symmetric conflict is replaced by a possibly
non-symmetric relation. Below, for a relation rDX � Y and
X0DX we denote by rX0 the restriction of r to X0, namely
r \ ðX0 � YÞ.

Definition 9 (Asymmetric event structure). A (labeled)
asymmetric event structure (AES) is a tuple A¼ 〈E; r ;↗; λ〉,
where E is a set of events, r (causality) and ↗ (asymmetric
conflict) are binary relations on E, and λ: E-Λ [fτg is a
labeling function, such that r is a partial order and
⌊ec ¼ fe0AE∣e0reg is finite for all eAE, and↗ satisfies, for all
e; e0; e″AE (1) if eoe0 then e↗e0; (2) if e↗e0 and e0oe″ then
e↗e″; (3) ↗⌊ec is acyclic; (4) if ↗⌊ec[⌊e0c is cyclic then e↗e0.

Graphically, causality is still represented by a solid arrow
and asymmetric conflict with a dashed arrow. Intuitively,
for e↗e0 there are two interpretations:

(i) the occurrence of e0 prevents a subsequent occurrence of
e, or

(ii) e precedes e0 in all computations where both
events occur.

By (ii), asymmetric conflict can be seen as a weak form of
causality. This is why condition (1) above requires (strict)
causality to be included in asymmetric conflict. Asymmetric
conflict is inherited along causality, as expressed by (2) if
e↗e0oe″ then e↗e″, since e has to occur necessarily before
e″ when they occur in the same computation. Concerning
conditions (3) and (4), observe that events forming a cycle
of asymmetric conflict cannot appear in the same run, since
each event in the cycle should occur before itself in the run.
More generally, this holds for events including a cycle of
asymmetric conflict in their causes. In this view, condition
(3) corresponds to irreflexiveness of conflict in PES, while

Fig. 6. (a) PES P0 and (b) its restriction to observable behavior P1.

Fig. 7. (a) Inheritance of asymmetric conflict A0 and (b) Extension relation
on configurations A1.

Fig. 8. Equivalent AESs. (a) A2, (b) A3 and (c) A0
3.

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325310
condition (4) requires that binary symmetric conflict are
represented by asymmetric conflict in both directions. For
instance, for the AES A0 in Fig. 7(a) events fa; b; cg form a
cycle of asymmetric conflict: any computation includes at
most two of them. Hence events fd; e; f g, including fa; b; cg in
their causes, can never occur together in a computation.
Note that, by (3) we need to have a↗e, b↗f and c↗d.
Moreover, by (4) d; e; f are all in asymmetric conflict. All
these asymmetric conflicts do not appear in the pictures,
since in the graphical representation only direct causality
and non-inherited asymmetric conflict are depicted. More-
over causality takes precedence over asymmetric conflict.

Similar to what done for PESs, two events are said con-
current when they are neither in causal nor in asymmetric
conflict relation.

A configuration of an AES A is a set of events CDE such
that (i) for any eAC, ⌊ecDC (causal closedness); (ii) ↗C is
acyclic (conflict freeness). The set of configurations of A is
denoted by Conf ðAÞ. Also configurations of AESs will be
identified with pomsets by taking as order on events the
transitive closure of asymmetric conflict, namely a config-
uration CAConf ðAÞ will be seen as a pomset 〈C;↗�

C ; λC 〉.
In the case of PESs, given two configurations C;C0 such

that CDC0, we have that C can be extended by executing the
events in C0⧹C in any order compatible with causality.
Hence subset inclusion can be interpreted as an extension
relation for configurations. This is no longer true for AESs.
For instance, consider the AES A1 in Fig. 7(b). Note that
fa; bg can evolve to fa; b; cg, while fa; cg cannot because b↗c
and thus b cannot occur after c. Given two configurations
C;C0AConf ðAÞ, we say that C0 extends C, written C⊑C0, if
CDC0 and for all eAC1; e0AC2⧹C1, :ðe0↗eÞ.

Any PES P¼ 〈E; r ;#; λ〉 can be seen as a special AES by
defining asymmetric conflict as ↗¼ #. AESs can provide a
more compact representation of a given set of pomsets than
PESs. As an example, consider the AESs in Fig. 8 (where
events are named by their label, possibly with a super-
script). The AES A2 can be seen as the direct translation of a
PES (it represents the colored events and relations in Fig. 5
(b)), and hence it includes event duplications. It is not dif-
ficult to see that A3 and A0

3 are smaller, visible-pomset
equivalent versions of A2. It can be seen that both A3 and
A0

3 are minimal, namely there is no AES representation for
the same behavior with a smaller number of events.
4. Canonical representation of acyclic process models

In the previous section we have seen how a business
process model, described as a Petri net, can be mapped to a
PES, which in turn can be seen as an AES. Here we face the
problem of producing a canonical reduced version of a given
AES. We exploit some previous results in [9] concerning the
possibility of merging distinct events in an AES without
altering the behavior. In order to ensure some form of
canonicity of the resulting reduced AES we leverage the
notion of canonical labeling of graphs. In this way, the
reduced AES is uniquely determined by the original model:
starting from two isomorphic PESs and repeatedly applying
the behavior preserving reduction operation, the resulting
minimal AESs are isomorphic.

We restrict to acyclic process models which – via the
unfolding construction – generate finite event structures.
We will discuss later in Section 6 how cyclic models can be
treated.

A basic notion in the reduction technique for AESs in [9]
is that of “quotient” of an AES with respect to a set of events.
We report it below, suitably adapted it to the needs of this
paper.

Definition 10 (Quotient of an AES). Let A¼ 〈E; r ;↗; λ〉 be
an AES and X be a set of events. The quotient of A with
respect to X, denoted A=X , is the structure obtained from A

by replacing the set of events X with a single event eX, such
that λðeXÞ is the label of all the events in X, the causes of eX
are ⌊eXc ¼⋂xAX⌊Xc the common causes of events in X and

� eXoe if xoe for some xAX;
� eX↗e if x↗e for all xAX;
� e↗eX if e↗x for all xAX.

The quotient is called behavior preserving when A=X is an
AES and A� cpA=X .

Fig. 9. Canonical labeling and quotient. (a) A4, (b) f ðA4Þ=fb;bg and (c) f þ ðA4Þ.

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325 311
The paper [9] provides sufficient conditions on the set of
events X ensuring that the quotient with respect to X is
behavior preserving (actually, in the paper the quotient is
shown to preserve history preserving bisimilarity, which is
finer than completed pomset equivalence). Roughly, the
events in X should represent different occurrences of the
same activity in different contexts a fact which is formalized
by requiring the events in X to have the same label, be in
conflict and have (essentially) the same asymmetric con-
flicts with the other events. Space limitations prevent from
reporting full technical details. Consistently with the ter-
minology of [9], a set of events X inducing a behavior pre-
serving quotient will be referred to as a combinable set of
events. At every iteration a combinable set of events is
chosen for merging, until one reaches a “minimal” AES,
where no further quotient step is possible.

Unfortunately, different choices of the sets of events to
be merged can lead to different minimal representations.
For instance, the AESs A3 and A0

3 in Fig. 8 can be obtained
from A2 by choosing the combinable sets of events b; b0 or
c; c0, respectively. In both cases, no further reduction is
possible and thus they provide minimal representations of
the same AES. In this regard, it is necessary to define a
deterministic order on the set of combinable events.
Unfortunately, features of the sets of events such as size or
labels of the events are not enough, since it is possible to
have different combinable sets with the same number of
events and same labels.

In order to address this problem, we leverage some
concepts from graph theory. Specifically we rely on the
concept of canonical labeling of a graph [22] that originates
as an approach to deciding graph isomorphism. Let
CanonðGÞ be a function that maps a graph G to a canonical
label in the sense that, given graphs G and H, we have
CanonðGÞ ¼ CanonðHÞ iff H and G are isomorphic. If we use
the string representation of the adjacency matrix of a graph,
then a canonical label for a graph G can be determined by
computing all permutations of its adjacency matrix and
selecting the largest (some authors take the smallest) with
respect to lexicographical order. Clearly, this approach is
computationally expensive, but state-of-the-art software
implement several practical heuristics to compute canonical
labels.

Formally, let G¼ ðV ;AÞ be a graph, where V is the set of
vertices and A the set of arcs. Moreover, let M(G) be the
adjacency matrix of G, in some fixed linear representation.
For any order of the set of vertices, represented as a num-
bering γ:V-f0;1;…jV jg, we get a corresponding string
MðGÞγ . Then the canonical label of G is the string induced by
an order γ̂ , such that MðGÞγr lexMðGÞγ̂ holds for every pos-
sible order γ. The order γ̂ is referred to as the
canonical order.

In our implementation, we use nauty [23] for computing
the graph canonical label and the corresponding order γ̂ on
the vertices which is mostly of interest for us. Nauty and
other similar tools work on graphs with unlabeled edges,
while AESs can be naturally seen as graphs with labeled
edges. The problem is easily overcome by using some
isomorphism-preserving transformation of edge-labeled
into edge-unlabeled graphs (we used the one in [24]).

The canonical order γ̂ on the vertices of the graph
associated to an AES can be easily used to establish a total
order on the possible quotients, thus yielding a minimal and
canonical AES for a PES. For a combinable set of events X, we
denote by X γ̂ the ordered string of numbers corresponding
to the events in X.

Definition 11 (Deterministic quotient). Let A be an AES, and
γ̂ : E-N0 be the canonical order of events given by nauty. Let
X;YDE be combinable sets of events. Then the precedence
of X over Y in a deterministic quotient is defined by the
following conditions, listed in decreasing order of
relevance:

(i) λðeÞ4 lexλðe0Þ where e0AY and eAX, or
(ii) λðeÞ ¼ lexλðe0Þ4 jXj4 jYj, or
(iii) λðeÞ ¼ lexλðe0Þ4 jXj ¼ jY j4X γ̂ 4 lexY

γ̂ .

Whenever, applying quotient steps according to such order,
we reach an AES where no further reduction steps are
possible, this is denoted by f þ ðAÞ and referred to asminimal
canonical quotient.

Since each quotient step replace two or more events
with a single one, starting from a finite AES the length of the
sequence of quotient steps will be necessarily bounded (by
the number of events), hence a minimal canonical quotient
is reached. The fact that the order on quotient steps given in
Definition 11 is clearly total, and thus the sequence of steps
is essentially deterministic, ensures that the reduction of a
finite AES will produce a uniquely determined result.

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325312
Proposition 2 (Canonical quotient of AES). Let A1 and A2 be
isomorphic finite AESs. Then the deterministic quotient of A1

and A2 produces a canonical AES, such that f þ ðA1Þ is iso-
morphic to f þ ðA2Þ.

Fig. 9 illustrates the canonical quotient of A4, which
corresponds to the PES P in Fig. 5, and the order γ̂ as
assigned by nauty. The combinable sets of events in A4 are
ffbð1Þ;bð2Þg; fcð3Þ; cð4Þg; fdð5Þ; dð6Þg; fdð7Þ, dð8Þgg. According to
Definition 11, the set fbð1Þ; bð2Þg takes precedence over the
others (by condition (i)). The AES produced by taking the
quotient with respect to fbð1Þ; bð2Þg is depicted in Fig. 9(b).
Note that a fresh event b is added, replacing the set
fbð1Þ; bð2Þg, and the order γ̂ is recalculated for the new AES.
The minimal and canonical AES f þ ðA4Þ is reported in Fig. 9
(c). In this case, in order to preserve the behavior, we need
to keep two events with label c and two with label d.
5. Comparison of acyclic process models

When comparing process models, differences may con-
cern the nature of the involved activities and the way such
activities are related. The presence of different activities
reduces, at the level of event structures, to the presence of
events with different labels, which is easy to detect and
describe. Instead, properly diagnosing and reporting differ-
ences in the way common activities (i.e., events carrying the
same label in both process models) are related in the pro-
cesses is a more complex problem.

Since an AES can be seen as a labeled graph, the com-
parison of AESs can be approached by approximate graph
matching techniques. This is, in fact, the technique used in
[10]. Clearly, if two AESs are diagnosed as isomorphic then
they are behaviorally equivalent, hence no difference diag-
nostic needs to be reported. Moreover, if an error-correcting
graph matching is used, the same algorithm would gather
information about the differences on event occurrences
(process tasks) and mismatching behavioral relations. Given
the intuitive interpretation of behavioral relations used by
AESs, the verbalization of such differences is straightfor-
ward. Unfortunately, a conventional approximate graph
matching would not take into account the order induced by
the behavioral relations of an AES, as illustrated by the
optimal graph matching shown in Fig. 10 between the
displayed AESs.

The numbers in brackets in Fig. 10 indicate the optimal
matching as computed by an error-correcting graph
matching technique on the AESs. Note that the graph
matching technique associates c‴1 with c02. However, c‴1
causally depends on c″1, which remains unmatched, and
thus the latter would seem a more reasonable matching for
c02. This suggests the unsuitability of a purely “syntactical”
approach and the opportunity of devising a new approach
for computing an optimal matching between the events of
different AESs, taking into account also the semantics of the
relation, i.e., the ordering they induced on events. Clearly,
the technique should not only diagnose the similarities but
also keep track of the differences found on the input AESs,
in the same spirit of the error-correcting graph matching
techniques.

In the remainder of this section we present some basic
bricks of our approach for comparing process models
working on the corresponding AESs: matching behavior and
identifying differences. Here we restrict to acyclic models and
thus to finite AESs. A generalization to cyclic models will be
discussed in Section 6.

5.1. Matching behavior

The first challenge is to determine how similar the
behavior of two given AESs is. As mentioned above, we
consider completed pomset equivalence as the reference for
behavioral equivalence for AESs. If two AESs exhibit differ-
ent behavior due to differences in the set of event labels or
in the underlying behavioral relations, then such differences
will emerge in their maximal computations and thus they
would not be completed pomset equivalent. In this case, we
are interested in finding the best (or at least a good)
approximated behavioral matching between the AESs in
order to provide to the user an explanation of the behavioral
differences.

We start by introducing the concept of partial match
between two configurations, which is intended to represent
a sort of approximated isomorphism between the corre-
sponding visible-pomsets. Note that the definitions in this
section are based on the notion of configuration and
extension. Hence, although formulated on AESs, they can be
easily adapted to other types of event structures. Below,
given a partial function f, we write f ðxÞ ¼ ? to indicate that
f is undefined on x.

Definition 12 (Partial match). Let A1 and A2 be AESs and
let CiAConf ðAiÞ, for iAf1;2g be configurations. A partial
match between C1 and C2 is a partial injective function
ξ:C1↛C2, such that for all e1; e01AE1, with ξðe1Þ; ξðe01Þa ? ,
the following holds:

1. λ1ðe1Þ ¼ λ2ðξðe1ÞÞ;
2. e1r1e01 iff ξðe1Þr2ξðe01Þ.

In words, a partial match is a function ξ that establishes a
correspondence between events of the two pomsets,
respecting labeling and order. It is partial and not necessa-
rily surjective, meaning that some events in C1 might not
correspond to any event in C2, and vice versa.

A partial match between configurations can be obtained
by starting from the initial (empty) configurations and
extending, step by step, such configurations by means of the
following operations:

1. matching (both configurations synchronously evolve by
executing events with the same label and causal relations
with the past), and

2. hiding (only one configuration evolves by executing an
event while the other stays idle, hence the event

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325 313
executed is in a sense “hidden” since it is not included in
the match).

Matching and hiding operations can be expressed by the
inductive rules in Fig. 11 that, when applied to a partial
match ξ:C1↛C2, produce another partial match involving
larger configurations. In the rules, given a partial match
ξ:C1↛C2, we write ξ½e1-e2�: ðC1 [fe1gÞ↛ðC2 [fe2gÞ to
denote the partial match obtained from ξ, by defining
ξ½e1-e2�ðe1Þ ¼ e2 and ξ½e1-e2�ðe3Þ ¼ ξðe3Þ for e3AC1⧹fe1g.
Finally, we write C⟶

e
λðeÞC [feg to denote that

C [fegAConf ðAÞ, for a configuration CAConf ðAÞ and an
event e=2C. Note that, in case silent events have not been
removed from the AESs during their extraction from the
process, the hiding operations are used also to ignore silent
events.

We aim at defining a technique for determining partial
matches between configurations that minimize the number
of hiding operations applied to visible events. Clearly, a
partial match built by applying the ðmatchÞ rule to visible
events and the ðhidexÞ rule to silent events is an iso-
morphism between the underlying visible pomsets. There-
fore, whenever it is possible to establish a correspondence
between the maximal configurations of two AESs by using
only such rules, we can conclude that the AESs are beha-
viorally equivalent. In general, the matches between max-
imal configurations that minimize the number of hidings on
visible events intuitively capture the best approximate
correspondence between the corresponding visible pomsets
(common behavior), highlighting the differences in the
form of hiding operations.

Definition 13 (Optimal partial match). Let A1 and A2 be
AESs and let ξ:C1↛C2 a partial match. The cost of ξ is
defined as

gðξÞ ¼ jCΛ
1 jþjCΛ

2 j�jξj � 2: ð1Þ

A partial match ξ:C1↛C2 is called optimal if it minimizes the
cost, namely

gðξÞ ¼minfgðξ0Þ∣ξ0:C1↛C2g:

The cost gðξÞ intuitively expresses the “quality” of the
partial match ξ. In fact, notice that gðξÞ is the number of
visible events in C1 and C2 which does not have a matching
event in the other configurations. Hence gðξÞ counts the
number of hide operations on visible events needed to
construct the partial match. As observed above, when
gðξÞ ¼ 0, the partial match ξ is actually an isomorphism
between the visible pomsets underlying C1 and C2. Note
that, for any two configurations C1 and C2, there is always a
trivial partial match (the worst one) consisting of the empty
function ∅:C1↛C2.

The partial matches between configurations of two AESs
can be collected in what we call a partial synchronized
product.
Definition 14 (Partial synchronized product). Let A1 and A2

be AESs. The partial synchronized product is the graph
G¼ 〈S; T〉 where:

� S is the set of partial matches ξ:C1↛C2, for CiAConf ðAiÞ
(iAf1;2g);

� T is the set of transitions ðξ:C1↛C2Þ⟶
op ðξ0:C0

1↛C0
2Þ defined

by the rules in Fig. 11.

The partial synchronized product is inductively gener-
ated by the rules in Fig. 11, starting from an “initial” node
ð∅:∅↛∅Þ corresponding to the unique partial match for the
empty configurations. Note that rules ðhidelÞ and ðhiderÞ can
increase the cost by one (when the hidden event is visible)
or leave it unchanged (when the hidden event is silent),
while rule ðmatchÞ always leaves the cost unchanged.
Therefore, whenever ðξ:C1↛C2Þ⟶

op ðξ0:C0
1↛C 0

2Þ, then
gðξÞrgðξ0Þ. This fact, when searching for optimal partial
matches allows for some pruning in the generation of the
partial synchronized product.

The partial synchronized product obviously contains all
optimal matches (as it contains all partial matches). How-
ever, the size of a partial synchronized product is expo-
nential, making its full exploration computationally
unfeasible.

We adopt a branch an bound approach, more specifically
an adaptation of the well-known An algorithm [25], in order
to build some informative part of the partial synchronized
product. The An algorithm requires two cost functions: one
to evaluate the cost from the root of the state space to a
given node, referred to as the function g or past-cost func-
tion, and a heuristic function to estimate the distance to the
goal state, referred to as the function h or future-cost
function. For a partial match ξ:C1↛C2, we use the cost
gðξÞ, defined in (1), as the past-cost function, while the
future-cost function hðξÞ is defined as

hðξÞ ¼ jðλðE01Þ [λðE02ÞÞ⧹ðλðE01Þ \ λðE02ÞÞj ð2Þ

where for iAf1;2g, the set E0i ¼ feAEi∣∄e0ACi: e↗e0g con-
tains the events which can possibly executed in the future
of the current configuration Ci. Note that h counts the
number of activities (event labels) which are in the future
of a configuration and not in the future of the other. It is
intended to provide an estimate of the number of events to
be hidden in the construction of a partial match of max-
imal configurations including C1 an C2. For this, it opti-
mistically assumes that events with the same label will
indeed contribute to a one-to-one match between the two
configurations (and unmatched events with the same label
are counted only once). It can be seen that this function is
admissible in the sense required in [26] for the use of the
algorithm An.

The pseudo-code for the search algorithm is presented in
Algorithm 1. It refers to a function η which is the sum of the
past- and future-cost functions, namely ηðξÞ ¼ gðξÞþhðξÞ for
any partial match ξ:C1↛C2.

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325314
Note that the An algorithm is tightly coupled with the
semantics of the underlying AESs in the sense that the
match and hide operations are based on the possible
extensions of the configurations. Fig. 12 shows two AESs
and a part of their partial synchronized product, which
contains the optimal matches for the maximal configura-
tions. Observe that, in the partial synchronized product,
the fact that two operations can be applied independently
leads to diamonds-like shapes in the graph. E.g., in Fig. 12,
starting from ξ¼ ½a1↦a2�: fa1g↛fa2g, we can apply rule
(match) to the events labeled b, thus producing the partial
match ξ1 ¼ ξ½b1↦b2�: fa1; b1g↛fa2;b2g, and then apply
(hidel) to the c-labeled event c1, thus getting
ξ1: fa1; b1; c1g↛fa2;b2g, or vice versa, apply first (hidel) and
then(match).

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325 315
Algorithm 1. Computing partial matches.
5.2. Identifying differences

The partial synchronized product is a rich structure that
represents all possible partial matches (obtained through
match and hide operations). Let us assume that some partial
matches between maximal configurations have been cho-
sen, possibly optimal or simply good, when determined
with some heuristic approach.

We now discuss how the information provided by such
matches can be used in order to explain the behavioral
F
p

Fig. 11. Partial matching operations.

Fig. 10. Event mappings computed with an error-correcting graph
matching technique. (a) A5 and (b) A6.

Fig. 12. AESs (a) Aa (b) Ab and (c) their partial sy
differences between two AES models. A first possibility
consists in simply verbalizing the hide operations. Note
that, differently from the “syntactical” approach based on
graph matching algorithms, in this way we capture how
early a discrepancy can arise during the execution of the
processes. More specifically, the closer a hide operation is to
the “initial” node ð∅:∅↛∅Þ, the sooner the discrepancy can
occur. For instance, in Fig. 12, consider the hide operations
ðξ¼ ½a1↦a2�: fa1g↛fa2gÞ ⟶

hideðc1 ;_Þðξ: fa1; c1g↛fa2gÞ and ðξ0 ¼
ξ½b1↦b2�: fa1; b1g↛fa2; b2gÞ ⟶

hideðc1 ;_Þðξ0: fa1; b1; c1g↛fa2; b2gÞ. If
expressed just mentioning the hidden events, they would
lead to the same behavioral diagnostic, namely: “In model 1,
there is a state where c can occur, whereas in the matching
state in model 2, it cannot”. This explanation of the differ-
ence is not very informative. The reason is that we com-
pletely ignore the states where the difference emerges,
hereafter often referred as the context of the difference. On
the other hand, if we take fully into account the context and
provide a diagnostic statement per each hide operation,
then the output is largely redundant and, again, difficult to
interpret.

A more abstract explanation of the differences, e.g., in
terms of behavioral relations that hold in one process and
not in the other, can be convenient and easier to understand
for the user. We next present an approach that aims at
gathering the differences in the behavioral relations of two
AESs models which, in some sense, explain the dis-
ig. 13. Matrix for (a) partial match ðfa1 ;b1; c1g; ξ; fa2 ; b2gÞ and (b) extended
artial match ðfa1 ; b1 ; c1g; ζ; fa2; b2gÞ.

nchronized product with the optimal matches.

Fig. 14. Extended match rules.

Fig. 15. (a) Petri net N 1 and two different unfoldings (b) β1 and (c) β2. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325316
crepancies emerging (in the form of hide operations) in the
partial synchronized product. For instance, the behavioral
difference between the AESs in Fig. 12 could be expressed
with the single diagnostic statement “In model 1, b and c are
in parallel, whereas in model 2, b and c are mutually
exclusive”.

As a first step, observe that we can view a partial match
ξ:C1↛C2, with ξ¼ ½a1↦a2; b1↦b2�, as a matrix of behavioral
relations, where columns represent matched events in ξ and
the rows represent the hidden (unmatched) events. For
instance, the partial match ξ: fa1; b1; c1g↛fa2; b2g (Fig. 12)
leads to the matrix in Fig. 13(a). The only unmatched event
c1AC1 is represented by the row ðc1; _Þ that reports that
a1oc1 and b1 Jc1.

The overall idea in order to diagnose the differences in
terms of behavioral relations is the following. Given a par-
tial match ξ:C1↛C2 between maximal configurations, we
extend it as far as possible to the unmatched events by
weakening the requirement that the match should respect
the order in the pomsets (hence two events e1 and e2 can be
paired when they have the same label, even if their
dependencies with the previously matched events differ)
and possibly choosing events outside the configurations. For
instance, in Fig. 13(a), the reason why c1 is unmatched is
that there is no event in C2, with the same label and that
relates with a2 and b2, in the same way as c1 relates with a1
and b1. In this case, we could match c1 with c2, despite the
fact that c2 =2C2 is in conflict – rather than concurrent – with
b1 (see Fig. 13(b)). Following some heuristics, we will try to
match events whose dependencies with past events are as
similar as possible.

Definition 15 (Extended partial match). Let A1 ¼ 〈E1; r1;

↗1; λ1〉 and A2 ¼ 〈E2; r2;↗2; λ2〉 be AESs and let ξ:C1↛C2 a
partial match between configurations C1 and C2. A extended
partial match for ξ is an injective partial function ζ: E1↛E2
such that (i) ξDζ, (ii) for any e1AC1 such that ζðe1Þa ? it
holds λ2ðζðe1ÞÞ ¼ λ1ðe1Þ and (iii) for any e1AE1, if ζðe1Þa ?
then either e1AC1 or ζðe1ÞAC2.

In words, an extension for a partial match ξ is any label-
preserving partial function extending ξ. Condition (iii) says
that extensions are only allowed when they permit to
match some previously unmatched event in C1 or in C2.
Note that also events outside the configurations can be
involved. When we need to match an event in one config-
uration with an event outside the other, e.g., if for e1AC1 we
have ζðe1Þ=2C2, it means that ζðe1Þ – the natural candidate
for matching e1 – cannot be included in C2 due to some
conflict. Hence this situation witnesses some behavioral
difference concerning conflicts between activities.

As in the case of partial matches, we introduce some
measure of the “quality” of an extension. Intuitively, we try
to minimize the number of dependencies on which the
matched events differ.

Definition 16 (Cost of an extended partial match). Let A1

and A2 be AESs and let ζ: E1↛E2 be an extended partial
match, between configurations C1 and C2. The cost of ζ is
defined as

KðζÞ ¼ jfðe1; rel; e01Þ: relAf↗þ ; og4ζðe1Þa ?
4ζðe01Þa ? 4:ðe1rel e01 ⟺ ζðe1Þ rel ζðe01ÞÞgj

Roughly, the cost KðζÞ measures the number of events,
which are paired in ζ, despite having mismatching relations.
Actually, we also count the number of relations on which
the events differ. For instance, if we have events a; b with
aob (hence a↗b) and it is not the case that ζðaÞoζðbÞ, then
we have two possibilities: either ζðaÞ↗ζðbÞ or not. In the
first case, the mismatch increments the cost by 1, in the
second by 2.

We are interested in maximal extensions of a partial
match, namely extension where all pairs of events with the
same labels have been matched, which minimize the cost. If
the explicit computation of a maximal extension with least
cost is computationally too expensive, one can use a local
search criteria, i.e., start from a partial match and add a
single pair of events each time, by applying rule (Extl) in
Fig. 14, or its dual (Extr) that is not reported, minimizing the
cost at each step.

Consider for example the partial match
ξ: fa1; b1; c1g↛fa2; b2g (Fig. 12). The corresponding optimal

Fig. 16. “Cyclic” net system N 3 and its unfolding UðN 3Þ.

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325 317
maximal extension is ζ ¼ ξ½c1↦c2�: fa1; b1; c1g-fa2;b2g,
shown in Fig. 13(b). The cost is KðζÞ ¼ 2 since c2#b2, hence
c2↗b2 while it is not the case that c1↗b1, and b1oc1 while
it is not the case that b2oc2. In this case, finding ζ is very
simple since event c1 can be only matched with c2.

In general, there can be several optimal partial matches
for a maximal configuration and also several optimal
extensions for each partial match, possibly leading to dif-
ferent explanations. In the absence of any other intuitive
criteria for distinguishing optimal matches and extensions,
we select any of the possible optimal solutions for gen-
erating a verbalization of the differences. A description of
the verbalization phase, along with a corresponding tool,
will be given in Section 7.
6. Finite representation of cyclic process models

A fundamental problem with cyclic process models is
that their unfolding is typically infinite. The seminal work in
[27], later developed by many authors (see, e.g., [28] and
references therein), introduced sophisticated strategies for
truncating the unfolding at a finite level, thus obtaining
what is called a complete unfolding prefix (CP) that provides
a representation of any reachable state. The authors in [29]
introduced a framework where a canonical unfolding prefix,
complete with respect to a chosen property, not limited to
reachability, can be constructed. Our own work relies on
such a framework for determining a finite fragment of the
unfolding providing information about causal dependencies
and multiplicity of activities.

6.1. Causal dependencies between activities

Consider the net system N 1 and its unfolding prefix β1 in
Fig. 15, which can be shown to be marking complete, i.e.,
each marking reachable in N 1 is represented by some cut in
β1. The procedure for computing a marking-complete
unfolding prefix consists in applying the inductive rules in
Fig. 3, starting from the initial marking and stopping at so-
called cut-off events, namely events that do not provide new
“information” concerning reachability. In our example, it is
possible to stop at the cut-off events b and c, generating the
conditions b2 and b4, respectively, since any other addition
to the prefix would duplicate information about reachability
and executability already represented. Although this prefix
includes a representation of all reachable markings and all
executable transitions, it does not include the information
that we require to diagnose the behavioral differences of
business processes. For instance, the fact that c causally
precedes b and d is not explicitly represented in this prefix.
In order to obtain a larger prefix that represents explicitly
all the causal relations between activities, we will use a
stronger cut-off condition. In the case of the net system N 1

in Fig. 15(a), an unfolding prefix complete with respect to
this stronger notion is β2 in Fig. 15(c). The colors of the
places are used to indicate the conditions from which the
behavior will start repeating, thus suggesting why maximal
events are cut-offs (the notion formally introduced below in
Definition 17).

As mentioned above, we resort to the notion of cutting
context in [29]. A cutting context is a tuple Θ¼ ð	 ;◃; CÞ
where E is an equivalence relation over configurations, ◃ is
a total order over configurations, and C is the set of con-
figurations considered for checking the cut-off condition.
For example, the cutting context used in [27] is
ΘMcM ¼ ð	 mark;◃size; ClocÞ, where 	 mark equates two config-
urations when they produce the same marking, ◃size is the
total order induced by the size of configurations, and
Cloc ¼ f⌊ec∣eAEg is the set of local configurations. This is the
cutting context producing the unfolding prefix β1, complete
for reachability. For instance, if we consider the local con-
figurations ⌊cc ¼ fa; τ; cg and ⌊ac ¼ fag, then one can easily
check that Markð⌊acÞ ¼Markð⌊ccÞ ¼ fp1g. Moreover, since
j⌊acjo j⌊ccj, event c is a cut-off. The cutting context in [30],
denoted ΘERV ¼ ð	 mark;◃slf ; ClocÞ, differs from ΘMcM for the
definition of the partial order ◃slf , which is refined by
including action labels in the comparison. This leads to
more cut-offs and smaller prefixes (see [30] for details). For
our purposes, we consider a cutting context which is a
modification of ΘERV with a refined equivalence relation
over configurations taking into account also some infor-
mation about the history of the current state, namely the
labels of the events that produced the current marking.
Roughly speaking, each token stores also the labels of the
events in its history.

Definition 17 (h-marking, Eh). Let N ¼ 〈N;m0〉 be a net
system, where N¼ ðP; T ; F; λÞ and let Unf ðN Þ ¼ ðB; E;G; ρÞ be
its unfolding. For a configuration CAConf ðUnf ðN ÞÞ, we
define the history marking as

hMarkðCÞ ¼ f〈ρðbÞ; ρð⌊bcΛÞ〉∣bACutðCÞg:
The configurations C1;C2AConf ðUnf ðN ÞÞ are deemed
equivalent, written C1 	 hC2, if hMarkðC1Þ ¼ hMarkðC2Þ. An
unfolding prefix β¼ ðB0; E0;G0; ρ0Þ is called h-complete (com-
plete for Eh) when for any configuration CAConf ðUnf ðN ÞÞ
there exists C0AConf ðβÞ such that C 	 hC

0.

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325318
We rely on the cutting context Θh ¼ ð 	 h;◃slf ; ClocÞ.
According to the theory in [29], once we have proved that
the equivalence Eh and the adequate order ◃slf are pre-
served by finite configuration extensions, we immediately
have an algorithm for constructing a canonical, finite h-
complete prefix of the unfolding.

Since our cutting context is a slight variation of that in
[30], we can rely on their work for the proof. We only need
to prove that Eh is preserved by extension. Recall that
given a configuration CAConf ðUnf ðN ÞÞ, a finite set of events
V is called a suffix of C if C \ V ¼∅ and C [VAUnf ðN Þ.

Proposition 3 (Eh is preserved by extension). Let
N ¼ 〈N;m0〉 be a net system, where N¼ ðP; T ; F; λÞ and let
Unf ðN Þ ¼ ðB; E;G; ρÞ be its unfolding. Let C;C0AConf ðβÞ be
configurations such that C 	 hC

0. For every suffix V of C, there
exists a suffix V 0 of C0 such that

C0 [V 0 	 hC [V :

Proof. Let C;C0 be configurations such that C 	 hC
0 and let V

be a suffix of C. We can assume that V consists of a single
event, namely V ¼ feg. The general case easily follows by an
inductive argument. This means that there is a transition t
in N such that ρðeÞ ¼ t and MarkðCÞ½t〉.
According to Definition 17, hMarkðCÞ ¼ hMarkðC0Þ, which

in turn implies that MarkðCÞ ¼MarkðC0Þ. Hence MarkðC 0Þ½t〉,
which implies the existence of an extension V 0 ¼ fe0g of C0,
where ρðe0Þ ¼ t.
Clearly MarkðC [fegÞ ¼MarkðC0 [fe0gÞ. Moreover, also the

fact that hMarkðC [fegÞ ¼ hMarkðC0 [fe0gÞ is quite immedi-
ate. In fact, take any condition s0ACutðC0 [fe0gÞ. There are
two possibilities:

� s0Ae0�

We have that ⌊s0c ¼ feg [⋃s″A �e0⌊s″c. Consider the only
condition sAe� such that ρðs0Þ ¼ ρðsÞ. We have that

ρð⌊s0cΛÞ ¼ fρðeÞ∣ρðeÞaτg [⋃
s″A �e0

ρð⌊s″cΛÞ ¼

fρðeÞ∣eaτg [⋃
s″A �e

ρð⌊s″cΛÞ ¼ ρð⌊scΛÞ

where the second equality is motivated by the fact that
ρðeÞ ¼ t ¼ ρðe0Þ and C 	 hC

0. Therefore 〈ρðsÞ; ρð⌊scÞ〉¼
〈ρðs0Þ; ρð⌊s0cÞ〉.

� s0ACutðC0Þ⧹�e0

In this case, if we take the only condition sACutðCÞ⧹�e
such that ρðs0Þ ¼ ρðsÞ, since C 	 hC

0, we immediately get
that 〈ρðsÞ; ρð⌊scΛÞ〉¼ 〈ρðs0Þ; ρð⌊s0cΛÞ〉.

Therefore we conclude that hMarkðC0ÞDhMarkðCÞ. Since the
argument is perfectly symmetric, we can also deduce the
converse inclusion, and thus equality.□

We next prove that an h-complete prefix contains wit-
nesses for all the causal dependencies that would arise in
the (possibly infinite) unfolding of a business process with
cycles.

Proposition 4 (Completeness for causal dependencies). Let
N be a net system, let Unf ðN Þ ¼ ðB; E;G; ρÞ be its unfolding and
let βΘ ¼ ðB0; E0;G0; ρ0Þ be an h-complete prefix. For any pair of
events e1; e2AEΛ, if e1oe2 then there are e01; e
0
2AE0 such that

ρðe1Þ ¼ ρ0ðe01Þ, ρðe2Þ ¼ ρ0ðe02Þ and e01oe02.

Proof. Let e1; e2AEΛ be events of the unfolding such that
e1oe2. This means e1A⌊e2c. Consider the configuration
C ¼ ⌊e2c⧹fe2g. By completeness there is a configuration C0 in
the prefix such that hMarkðCÞ ¼ hMarkðC0Þ. Certainly
MarkðC0Þ ¼MarkðCÞ enables ρðe2Þ hence C0 admits an
extension with event e02 such that ρðe02Þ ¼ ρðe2Þ. Moreover,
since e1oe2 there is a condition sA�e2 \ CutðCÞ such that
e1os and thus ρðe1ÞAρð⌊scΛÞ. If we take the only condition
s0ACutðC0Þ such that ρðsÞ ¼ ρðs0Þ, we have that s0A�e02 and,
since hMarkðCÞ ¼ hMarkðC0Þ, it holds that
〈ρðs0Þ; ρð⌊s0cΛÞ〉¼ 〈ρðsÞ; ρð⌊scΛÞ〉. This means that there is
e01A⌊s0c such that ρðe01Þ ¼ ρðe1Þ. Note that e01A⌊s0c means
e01os0, whence e01oe02, as desired.□

6.2. Multiplicity of transitions

We now show how a h-complete unfolding prefix can be
used in order to deduce information about the multiplicity
of each transition in the original net, namely for under-
standing whether a transition can be executed at most once
or possibly more than once. This, in turn, gives information
about multiplicity of activities that correspond to transition
labels.

As a first step, we observe that, since we deal with safe
nets, if a transition occurs occur twice in a configuration,
then the corresponding events must be causally related.

Proposition 5 (Repetition). Let N be a net system and let
CAConf ðUnf ðN ÞÞ be a configuration such that there exist
e; e0AC, eae0 and ρðeÞ ¼ ρðe0Þ ¼ t. Then either eoe0 or e0oe.

Proof. Observe that e#e0 cannot hold, otherwise C would
not be a configuration. If we had neither eoe0 nor e0oe,
then e and e0 would be concurrent. As a consequence also
�e[�e0 would be concurrent. Therefore, the corresponding
marking in N would be coverable and it would have two
tokens in all places of �t, contradicting the assumption that
N is safe.□

The above result motivates the interest for the following
notion in the study of repetitive behaviors.

Definition 18 (Self-preceding transitions). Let N be a net
system and let Unf ðN Þ be its unfolding. We define the set of
self-preceding transitions of N as RN ¼ fρðe1Þ∣(
CAConf ðUnf ðN ÞÞ: e1; e2AC4ρðe1Þ ¼ ρðe2Þ4e1oe2g.

According to Proposition 5, if some transition t of a safe
net occurs twice in some computation, then it is necessarily
classified as a self-preceding transition in the sense above.
Note that this does not mean that it will be repeated in all
computations, but just that there is at least a computation
where the transition occurs two (or more) times.

In the unfolding we can also single out the transitions
that necessarily occur at least once. These are the transitions
that occur in the intersection of all maximal configurations.

Definition 19 (Necessary transitions). Let N be a net sys-
tem. The set of necessary transitions of N is defined as
KN ¼⋂ϱðMaxConf ðUnf ðN ÞÞÞ.

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325 319
The possibility of reducing the repetition to a causal
dependency ensures that an h-complete prefix will be also
sufficient to identify possibly repeated and necessary
events.

Proposition 6 (Necessary and self-preceding transitions in
the prefix). Let N be a net system and let β¼ ðB; E;G; ρÞ be a h-
complete prefix of its unfolding. Then

� RN ¼ fρðe1Þ∣(CAConf ðβÞ:e1; e2AC4ρðe1Þ ¼ ρðe2Þ4e1oe2g
� KN ¼⋂ϱðMaxConf ðUnf ðβÞÞÞ

For instance, consider the h-complete unfolding prefix β2
in Fig. 15(c). Activity b can be repeated in a computation and
indeed we can find a configuration C ¼ fe0; e1; e3; e7; e13g
that includes two (causal dependent) occurrences of b. Note
also that b does not repeat in all computations. E.g., the
maximal configurations C0 ¼ fe0; e2; e6g include a single
occurrence of b, and in C″¼ fe0; e1; e5g we have that b does
not occur at all.

We can thus classify transitions in a net system into
three disjoint categories, according to their repetitive
behavior.

Definition 20 (Multiplicity of a transition). Let N be a net
system. The multiplicity of a transition t in N is defined as:

� 0‥1 (fires at most once) if t=2RN ;
� þ (fires one or more times) if t=2RN \ KN ;
� n (fires 0 or more times) if t=2RN⧹KN .

When a transition is classified as “fires one or more
times” or “fires zero or more times” (“þ” or “n”), it just
means that there are computations where the transition
fires at least twice, but we are not sure that the transition
can be repeated an unbounded or a bounded number of
times. E.g., consider the net system and its unfolding in
Fig. 16. The multiplicity of a is “þ”, but a can occur at most
twice in a computation.

Observe that if we are interested in the multiplicity of
activities, namely transition labels, rather than of transition
themselves (this makes a difference if the labeling is not
injective), we need to adapt the definitions above. More
precisely, the sets of labels corresponding to RN and KN
above are

� ΛRN ¼ faAΛ∣(CAMaxConf ðβÞ:jðλ○ρÞ�1ðaÞ \ CjZ2g,
namely labels that can occur more than once in a com-
putation are those that occur more than once in a max-
imal configuration of a h-complete prefix (this is, in
general, a superset of λðRN Þ);

� ΛKN ¼⋂λðϱðMaxConf ðβÞÞÞ,
namely labels that necessary appear in a computation are
those that occur in any maximal configuration of a
h-complete prefix.

6.3. Multiplicity of transitions: the case of free-choice work-
flow nets

In this section we show that if we restrict to the class of
free-choice sound workflow nets, that have been observed
to be sufficiently expressive in most situations [31], we can
give more precise indications on the repetitive behavior of
transitions.

More specifically, we have just seen that transitions
which, according to Definition 18, are marked as repetitive,
namely either “þ” or “n” can surely occur more than once
in a computation, but still they could occur a bounded
number of times. Here we show that for sound free-choice
workflow nets, a transition which is marked as “þ” or “n”,
might fire any number of times, namely it is part of a cyclic
behavior.

Workflow nets [31] are a class of nets with one single
source and sink place such that every transition is on a path
from the source to the sink.

Definition 21 (WF-net, WF-system). A Petri net
N¼ ðP; T ; F; λÞ is a workflow net (WF-net) if it includes a
distinguished source place iAP, with �i¼∅, a distinguished
sink place oAP, with o� ¼∅, and the short-circuit net
N� ¼ ðP; T [ft�g; F [fðo; t�Þ; ðt�; iÞgÞ, where t� =2T , is strongly
connected. A net system N ¼ ðN;M0Þ, where N is a WF-net
and M0 ¼ fig, is a WF-net system.

Soundness [32] is a commonly adopted criterion of cor-
rectness for WF-nets. A sound WF-net system guarantees
that any of its executions always ends with a token in the
sink place and no other token is left in the net. Recall that a
net systemN ¼ ðN;M0Þ is live, if for every reachable marking
MA ½N;M0〉 and tAT , there exists a marking M0A ½N;M〉,
such that M0½t〉.

Definition 22 (Soundness). A WF-net system N ¼ ðN;M0Þ is
sound when the net system ðN�;M0Þ, where Nn is the short-
circuit net of N, is live and bounded.

Free-choice Petri nets [33,34] are a well-behaved family
of nets, where several properties, which are hard to check
for general Petri nets, admit efficient verification
techniques.

Definition 23 (Free-choice Petri net). A Petri net N is free-
choice if for any pair of places p1; p2AP then either p�1 \
p�2 ¼∅ or p�1 ¼ p�2.

In words, in a free-choice net whenever two places share
a transition it their postsets, they have the same postset. As
mentioned before, free-choice WF-nets represent a good
compromise between expressiveness and analyzability. In
particular, parallelism, sequential routing, conditional
routing and iteration can be modeled without violating the
free-choice property.

We next show that for the class of (safe) free-choice
soundWF-nets, the self-preceding transitions, namely those
transitions marked as “n” or “þ” according to Definition 18
represent unbounded repetitive behavior.

We first need a preliminary technical result.

Lemma 7 (Sequences of firings). Let N be a free-choice sound
WF-net system. Let t0;…; tn be transitions such that
t�i \�tiþ1a∅ for iAf0;…;n�1g and let M be a marking such
that M½t0〉. Then there are sequences of transitions σiAT�,
iAf0;…;n�1g, such that M½t0σ0t1σ1…σn�1tn〉.

Fig. 17. Partial synchronized product for the optimal matching of a pair of
configurations in the AESs in Fig. 10.

Table 1
BIT process library.

Library Number of models Number of elements

Min Max Avg

A 152 3 33 12.3
B3 184 3 37 9.1
C 16 8 36 17.3

Table 2
Sizes of PESs and AESs for the BIT process library.

Library Events PES Events AES

Min Max Avg Min Max Avg

A 3 203 18.27 3 203 16.77
B3 3 72 9.08 3 72 8.53
C 6 420 57.93 4 259 36.27

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325320
Proof. The proof is by induction on n. The base case n¼0 is
trivial. Let us assume the result for n and prove it for nþ1.
By inductive hypothesis there are σ0;…; σn such that
M½t0σ0t1σ1…σn�1tn〉Mn. Moreover, by hypothesis, there is at
least one place pAt�n\�tnþ1 and we know that pAMn. Since
N is a sound WF-net, from marking Mn there is a firing
sequence which leads to a marking consisting of one token
only in the sink place
Mn½σ〉fog.
Since pA�tnþ1, surely pao. Hence the token in p is

consumed by some transition in σ, namely σ ¼ σ0tσ″ with
pA�t.
Since N is free-choice, and �t\�tnþ1+fpga∅ we deduce

�t ¼ �tnþ1. Therefore, since Mn½σ0t〉 we also have Mn½σ0tnþ1〉.
Therefore

M½t0σ0t1σ1…σn�1tnσ0tnþ1〉

as desired.□

We can now easily conclude with the desired result.

Proposition 8 (Repetitive behavior). Let N be a free-choice
sound WF-net and let t be a transition marked as repetitive
(“n” or “þ”). Then there are firings sequences in which tran-
sition t fires any number of times.

Proof. Let t be a transition marked as repetitive (“n” or
“þ”). This means that there are events e; e0 in Unf ðN Þ, such
that ρðeÞ ¼ ρðe0Þ ¼ t4eoe0. We show that for any marking
M, such thatM½t〉, there is a sequence σAT� such thatM½tσt〉.
From this the result immediately follows.
Since eoe0, there must be a causal chain of

e¼ e0oe1o⋯oen ¼ e0 such that e�i \�eiþ1a∅ for any
iAf0;…;n�1g. Therefore, if we consider the image through
ρ in N , we get corresponding sequence of transitions
ρðe0Þ ¼ t0 ¼ t, ρðe1Þ ¼ t1, …, ρðenÞ ¼ tn ¼ t, with t�i \�tiþ1a∅
for iAf0;…;n�1g.
Now, given any marking M such that M½t〉, we can simply
apply Lemma 7, to deduce that there are σiAT�,
iAf0;…;n�1g, such that

M½t0σ0t1σ1…σn�1tn〉:

recalling that t ¼ t0 ¼ tn and denoting σ ¼ σ0t1σ1…σn�1, we
get that as desired.□

Again, the theory can be adapted if labeling is not
injective and we are interested in the repetition of labels
(tasks) rather than transitions. In this case we can distin-
guish between labels that can occur more than one time in a
computation (the class “n” defined as before) and the sub-
class which can occur an unbounded number of times in a
computation, defined as λðRN Þ.
7. Verbalizing differences

On the basis of the theory developed in the previous two
sections, we outline an approach for producing intuitive
diagnostics describing the differences found in the com-
parison of AESs models.

We propose to verbalize each discrepancy by means of a
statement consisting of two parts: a description of the
context where the discrepancy occurs and a description of
the difference itself.

Recall that we call context, the state in the execution of
the process models where a given discrepancy occurs. A full
representation of the context consists of a partially ordered
set of events (activity executions) leading to the point
where the discrepancy is observed. In the case of visual
feedback, this can be represented by animating the process
model in order to show to the user an execution path
leading to the context under consideration. On the other
hand, when verbalizing a context in textual form, listing all
the events in an execution path leading to a given context is
arguably less readable. It might be convenient to report only
a partial description of the context, consisting of the last
event (i.e., last activity) executed before the state of interest
is reached. In the examples given below we opt for this
latter (highly abbreviated) verbalization approach for the
context. The problem of accurate abbreviation of execution
paths leading to a given state in a process model is further
studied in [35].

The difference itself is described by referring to either a
behavioral relation between events that holds in one model
and not in the other, or by stating that the multiplicity of an
activity in one model differs from the multiplicity of the
same activity in the other model. To this end, a behavioral
relation between activity a and b is verbalized as follows:

Table 3
Execution times for computing the minimal canonical AESs of the BIT process library.

Library Computation time (s)

PES Canonical labeling Minimal canonical quotient AES

Min Max Avg Min Max Avg Min Max Avg

A 0 2.39 0.06 0.01 0.56 0.02 0 5.93 0.07
B3 0 0.32 0.02 0.01 0.10 0.01 0 1.19 0
C 0.01 52.61 3.67 0.01 2.92 0.36 0 535.61 36.76

Table 4
Land development application process.

Model Number of BPMN elements

SA 1 37
SA 2 47
SA 3 36
WA 1 28
WA 2 50
WA 3 31

Table 5
Size of event structures of the land development application dataset.

Model Events

PES AES

SA 1 13 13
SA 2 80 80
SA 3 52 30
WA 1 14 14
WA 2 80 80
WA 3 46 23

Table 6
Size of event structures, PESs and AESs, for the land development
application process.

Model Computation time (sec)

PES Canonical
numbering

Minimal canonical folded AES

SA 1 0.25 0.05 0.01
SA 2 1.34 0.14 0.44
SA 3 1.19 0.12 0.22
WA 1 0.09 0.03 0
WA 2 0.95 0.08 1.33
WA 3 0.32 0.05 0.54

Table 7
Comparison results. Average time and number of differences.

Model 1 Model 2 Avg. time (s) Differences

PES AES PES AES

SA 1 WA 1 0.16 0.29 23 23
SA 2 WA 2 2.79 5.17 6 6
SA 3 WA 3 98.56 145.52 104 80

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325 321
� Causality (o): “a always occurs before b”.
� Asymmetric conflict (↗): “a can occur before b or a can be

skipped”.
� Conflict (#): “a and b are mutually exclusive”.
� Concurrency (J): “a and b are parallel”.

The multiplicity of an activity is verbalized as follows:

� 0‥1: “occurs at most once”,
� þ : “occurs at least once”, and
� n: “occurs 0,1 or more times”.
Whereas, for safe and sound free-choice workflow nets,
the multiplicity of an activity is verbalized as follows:

� þ: “occurs any number of times, but at least once”, and
� n: “occurs any number of times”.

Based on the above verbalizations of context, behavioral
relations and multiplicity, we use the following templates to
verbalize a given discrepancy between two models M1 and
M2:

1. Case of unmatched event: “In M1, there is a state after
o_context _4 where o_activity _4 can occur, whereas
it cannot occur in the matching state in M2”;

2. Case of mismatching relations. “In M1, there is a state after
o_context _4 where o_verbalization of relation 1 _4 ,
whereas in the matching state in M2, o_verbalization for
relation 2 _4”;

3. Case of mismatching multiplicity: “In M1, o_activity _4
o_verbalization of multiplicity in M1 _4 , whereas in M2,
it o_verbalization of activity multiplicity in M2 _4 .

For illustration, Fig. 17 shows a fragment of the partial
synchronized product including an optimal partial match
for the configurations fa1;d1g and fa2; c2; d2g of the AESs of
the running example (models and corresponding AESs dis-
played in Figs. 1 and 10, respectively). The following are the
resulting verbalizations of the differences captured by the
extended partial match ζ ¼ ξ½c1↦c2�: fa1; d1g-fa2; c2; d2g of
Fig. 17:

� c; d¼ ð↗; oÞ: In M1, there is a state after a where c can
occur before d or c can be skipped, whereas in the matching
state in M2, c always occurs before d

� bð�;0‥1Þ: In M1, b occurs any number of times; whereas in
M2, it occurs at most once

� cð�;0‥1Þ: In M1, c occurs any number of times; whereas in
M2, it occurs at most once

Fig. 18. Snippet of the process models (a) SA 3 and (b) WA 3.

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325322
In the case of tasks with repetitive behavior, one event is
randomly chosen and the feedback is generated with
respect to this event (note that the feedback from other
instances would be the same).

There are some cases where differences cannot be
expressed as mismatching behavioral relations. For
instance, consider the optimal partial match ξ½a1↦a2;
b1↦b2; c″1↦c02; d

″
1↦d02� for the pair of configurations

fa1; b1; c″1;b01; d″1g and fa2; b2; c02;d02g of A5 and A6 (Fig. 10),
respectively. In this case the event b01 had to be hidden,
nevertheless there is no other event with label b in A6 that
can be used for extending the partial match ξ, thus we say
that b01 is an unmatched event. In this case, we produce the
following feedback and include the set of direct causally
preceding events to give a context to the feedback. For the
running example, the feedback would be:

� b; ¼ ðo ; Þ: In M1, there is a state after b, where b can occur,
whereas it cannot in the matching state in M2

This latter verbalization illustrates one type of confusion
that can arise due to the abbreviation of the context: it is
unclear after which occurrence of b is it the case that b
always occurs again in M1.

7.1. Evaluation

We implemented the ideas presented in the previous
sections in a research prototype, called BP-Diff [36]. The tool
takes as input pairs of process models expressed in the
standard BPMN notation and produces diagnostics of the
differences found, both in visual and textual form. The tool
is publicly available as a Software-as-a-Service at http://
diffbp-bpdiff.rhcloud.com/ and its source code can be found
at https://code.google.com/p/fdes/.

7.1.1. Performance
In order to assess the scalability of our method, we

measured the performance of BPDiff with respect to one of
its more critical steps, namely the computation of canonical
reduced AESs. To this end, we used the BIT process library
(release 2009), which is a collection of real-life process
models from financial services, telecommunications and
other domains [37]. From this collection of models we
selected the subset of sound models (not all of the models
in the repository exhibit this property). The final dataset
consists of 352 models, with an average size of 12.4 ele-
ments (where events, tasks and gateways counts as ele-
ments). More details are given in Table 1.

We computed the canonical reduced AES for each model
in the collection five times and averaged the execution time.
The tests were run on a laptop computer running Mac OS X
with a 2 GHz Intel Core i7 with 4 GB of main memory. The
tool is implemented in Java and we used an Oracle Java
Virtual Machine 1.7 with 1 GB of maximum heap size.

Three models (two from Library A and one from Library
C) were discarded because the computation of the canonical
labeling required too much time (more than 8 min). This
was due to the large size of the corresponding PESs, which
consisted of 566, 779 and 1630 events. Table 2 summarizes
the sizes of the resulting PESs and AESs for the remaining
process models (150 in Library A, 184 in Library B3 and 15 in
Library C). The greatest reduction of the AESs was observed
in the process models from the library C, where the average
size of the event structures was reduced from 57.93 to 36.27
from the PESs to AESs, accounting for a reduction of 37%.

The minimum, maximum and average execution times
for this experiment are reported in Table 3. To better
understand the source of overhead, the execution times are
split for each of the major phases in the method, namely the
computation of the PES (including the computation of the
unfolding prefix of the net system), the computation of the
canonical labeling of events in the PES, and the computation
of the corresponding minimal canonical quotient AES.

The largest execution times were observed on the com-
putation of AESs for Library C. The overhead can be associated
with a pair of process models that have a particularly complex
topology and that resulted in large PESs (420 events). This in
turn induced also a high overhead in the computation of the
canonical labeling and in the quotient of the AESs. In spite of
the above, the average execution time remains reasonable, of
the order of seconds for most of the cases.

7.1.2. Comparison: performance and size of the diagnostics
We conducted a second set of experiments to assess the

size of the diagnostics reported to users. To this end, we
selected a collection of process models for handling land
development applications used by two Australian states,

http://diffbp-bpdiff.rhcloud.com/
http://diffbp-bpdiff.rhcloud.com/
https://code.google.com/p/fdes/

Fig. 19. (a) SA1
3 and (b) WA2

3.

Fig. 20. (a) SA1
3 and (b) WA3

3.

Fig. 21. (a) SA1
3 and (b) WA4

3.

Fig. 22. (a) SA2
3 and (b) WA2

3.

Fig. 23. (a) SA1
3 and (b) WA1

3.

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325 323
namely South Australia (SA) and Western Australia (WA).
The collection consists of 3 pairs process models in BPMN
notation, each pair corresponding to subprocesses of the
whole land development application process from each
state. The models use uniform naming conventions, in a
way that we can consider that nodes with the same label as
referring to the same concrete task. Table 4 presents the size
of models in the final dataset.

Table 5 presents the size of the event structures asso-
ciated to the models in the land development dataset. In
this case, the size of the AES remained the same for the first
two pairs of models. However, we observe a reduction for
the AESs associated to the third case. The execution times
for computing the canonical quotient AESs are shown in
Table 6.
The execution times for comparison are reported in
Table 7. This includes the computation of the partial syn-
chronized product for every pair of models.

The diagnostic of differences found when comparing the
third pair of models comprised 104 statements when using
PES, which was reduced to 80 statements when using AES.
A more detailed analysis of the diagnostics showed that 14
statements generated when comparing the PESs where
summarized by 4 statements generated using AESs. More-
over, 10 statements generated from the comparison of PESs
were not longer required because the corresponding events
were merged in the AESs. All the remaining diagnostic
statements were the same for both types of event
structures.

To exemplify the kind of visual and textual diagnostic
produced by our technique, consider the excerpts of the

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325324
process models SA 3 and WA 3, which are presented in
Fig. 18. Concretely, we consider the differences involving
tasks J2 and P2, which have red dotted borders in the
picture. The tool generates a total of 4 statements for
explaining this difference, when using PESs. Such differ-
ences, both in textual and visual form, are presented below.

1. “In model 1, there is a state after the execution of I2 where
J2 precedes P2; whereas in model 2, there is a state after
the execution of O2 where P2 precedes J2” (Fig. 19),

2. “In model 1, there is a state after the execution of I2 where
J2 precedes P2; whereas in model 2, there is a state after
the execution of O2 where J2 and P2 are mutually exclu-
sive” (Fig. 20),

3. “In model 1, there is a state after the execution of I2 where
J2 precedes P2; whereas in model 2, there is a state after
the execution of M2 where J2 and P2 are mutually exclu-
sive” (Fig. 21), and

4. “In model 1, there is a state after the execution of C2 where J2

and P2 are mutually exclusive; whereas in model 2, there is a
state after the execution of O2where P2 precedes J2” (Fig. 22).

Conversely, only one statement is produced when using
AESs, which would replace the four statements presented
above. The statement is:

� “In model 1, there is a state after the execution of I2 where
J2 precedes P2; whereas in model 2, there is a state after
the execution of O2 where P2 can occur before J2, or P2

can be skipped” (Fig. 23).

This gain in compactness clearly stems from the
expressive power introduced by the presence of asymmetric
conflict in AESs, which allows the technique to merge some
duplicated tasks.
8. Conclusion

This paper presented a method for comparing business
process models. The behavior of process models is abstracted
to asymmetric event structures, which are then compared
highlighting differences in the corresponding behavioral
relations. The proposed method involves four sub-methods
that constitute distinct contributions of the paper:

1. A method for obtaining a canonically reduced AES from
an acyclic Petri net.

2. A method for constructing a partial “error-correcting”
synchronized product of two finite AESs.

3. A method to compute a finite representation of the
behavior of a possibly cyclic Petri net that preserves all
causal dependencies and the information on the repeti-
tion of activities.

4. A method that, given the AESs extracted from two pro-
cess models, verbalizes their behavioral differences in
terms of activity repetition and binary behavioral rela-
tions that hold in one process model but not in the other.
This verbalization can be complemented with a
visualization of the partial configurations (states) of the
input process models where the differences occur.

A direction for future research is the optimization of the
proposed method in order to address scalability concerns.
For cyclic models, the method involves an unfolding step to
calculate an AES, followed by a quotient step to reduce the
AES, a calculation of a synchronized product of two event
structures, and a traversal of the synchronized product in
order to identify behavioral differences and to recast them
in terms of behavioral relations. In order to enhance scal-
ability, it might be possible to partially merge some of these
steps or to perform some steps incrementally, only inas-
much as needed in order to detect representative differ-
ences between process models. Another direction for future
work is an extensive empirical usability evaluation of the
proposed method, which would provide input to fine-tune
the visualizations and templates used to provide the dif-
ference diagnostic.
Acknowledgments

This research was supported by the European Social
Fund via the Doctoral Studies and Internationalisation Pro-
gramme (DoRa) and by an institutional grant of the Estonian
Research Council and by the project static ANalysis of COn-
current and REactive software systems (ANCORE) funded by
the University of Padova.
References

[1] R. Dijkman, M. Dumas, B. van Dongen, R. Käärik, J. Mendling, Simi-
larity of business process models: metrics and evaluation, Inf. Syst. 36
(2) (2011) 498–516.

[2] W. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, A.P. Barros,
Workflow patterns, in: Distributed and Parallel Databases, 2003,
pp. 5–51.

[3] M.L. Rosa, S. Clemens, A.H.M. ter Hofstede, N. Russell, Appendix A, The
order fulfillment process model, in: Modern Business Process Auto-
mation, Springer-Verlag, Berlin, Heidelberg, 2010.

[4] R. Dijkman, M. Dumas, C. Ouyang, Semantics and analysis of business
process models in BPMN, Inf. Softw. Technol. 50 (12) (2008)
1281–1294.

[5] C. Favre, D. Fahland, H. Völzer, The relationship between workflow
graphs and free-choice workflow nets, Inf. Syst. 47 (2015) 197–219.

[6] J. Engelfriet, Branching processes of Petri Nets, Acta Inf. 28 (1991)
575–591.

[7] M. Nielsen, G.D. Plotkin, G. Winskel, Petri nets, event structures and
domains, Part I, Theoret. Comput. Sci. 13 (1981) 85–108.

[8] P. Baldan, A. Corradini, U. Montanari, Contextual petri nets, asym-
metric event structures, and processes, Inf. Comput. 171 (2001) 1–49.

[9] A. Armas-Cervantes, P. Baldan, L. García-Bañuelos, Reduction of Event
Structures Under History Preserving Bisimulation, CoRR abs/
1403.7181, arxiv.org/abs/1403.7181.

[10] A. Armas-Cervantes, P. Baldan, M. Dumas, L. García-Bañuelos, Beha-
vioral comparison of process models based on canonically reduced
event structures, in: BPM, Lecture Notes in Computer Science, vol.
8659, Springer International Publishing, Switzerland, 2014, pp. 267–
282.

[11] R. van Glabbeek, U. Goltz, Refinement of actions and equivalence
notions for concurrent systems, Acta Inf. 37 (2001) 229–327.

[12] R. Cleaveland, On automatically explaining bisimulation inequi-
valence, in: CAV, Lecture Notes in Computer Science, vol. 531, Berlin,
Heidelberg, 1991, pp. 364–372.

http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref1
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref1
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref1
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref1
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref4
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref4
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref4
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref4
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref5
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref5
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref5
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref6
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref6
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref6
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref7
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref7
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref7
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref8
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref8
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref8
http://arxiv.org/abs/1403.7181
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref11
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref11
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref11

A. Armas-Cervantes et al. / Information Systems 56 (2016) 304–325 325
[13] O. Sokolsky, S. Kannan, I. Lee, Simulation-based graph similarity, in:
TACAS, Lecture Notes in Computer Science, vol. 3920, Springer-Verlag,
Berlin, Heidelberg, 2006, pp. 426–440.

[14] R. Dijkman, Diagnosing differences between business process models,
in: BPM, Lecture Notes in Computer Science, vol. 5240, Springer,
Berlin, Heidelberg, 2008, pp. 261–277.

[15] M. Weidlich, J. Mendling, M. Weske, Efficient consistency measure-
ment based on behavioral profiles of process models, IEEE TSE 37 (3)
(2011) 410–429.

[16] M. Weidlich, A. Polyvyanyy, J. Mendling, M. Weske, Causal behavioural
profiles, Fund. Inf. 113 (3–4) (2011) 399–435.

[17] W.M.P. van der Aalst, T. Weijters, L. Maruster, Workflow mining: dis-
covering process models from event logs, IEEE TKDE 16 (9) (2004)
1128–1142.

[18] E. Badouel, On the α-reconstructibility of workflow nets, in: ATPN,
Lecture Notes in Computer Science, vol. 7347, Springer, Berlin, Hei-
delberg, 2012.

[19] M. Weidlich, J. van der Werf, On profiles and footprints-relational
semantics for petri nets, in: ATPN, Lecture Notes in Computer Science,
vol. 7347, Springer, Berlin, Heidelberg 2012, pp. 148–167.

[20] R. van Glabbeek, U. Goltz, Equivalence notions for concurrent systems
and refinement of actions, Acta Inf. 379 (1989) 237–248.

[21] U. Goltz, A. Rensink, Finite Petri nets as models for recursive causal
behaviour, Theoret. Comput. Sci. 124 (1994) 169–179.

[22] B.D. McKay, Practical Graph Isomorphism, Department of Computer
Science, Vanderbilt University, 1981.

[23] B.D. McKay, A. Piperno, Practical graph isomorphism, {II}, J. Symb.
Comput. 60 (2014) 94–112.

[24] G. Kant, Using Canonical Forms for Isomorphism Reduction in Graph-
Based Model Checking, Technical Report, CTIT University of Twente,
Enschede, July 2010.

[25] P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic
determination of minimum cost paths, IEEE Trans. Syst. Sci. Cybern.
SSC-4 (2) (1968) 100–107.
[26] R. Dechter, J. Pearl, Generalized Best-first Search Strategies and the
Optimality of An, J. ACM 32 (1985) 505–536.

[27] K.L. McMillan, D.K. Probst, A technique of state space search based on
unfolding, Formal Methods Syst.Des. 6 (1) (1995) 45–65.

[28] J. Esparza, K. Heljanko, Unfoldings—A Partial order Approach to Model
Checking, EACTS Monographs in Theoretical Computer Science,
Springer-Verlag Berlin, Heidelberg, 2008.

[29] V. Khomenko, M. Koutny, W. Vogler, Canonical prefixes of Petri Net
unfoldings, Acta Inf. 40 (2) (2003) 95–118.

[30] J. Esparza, S. Römer, W. Vogler, An improvement of McMillan's
unfolding algorithm, Formal Methods Syst. Des. 30 (2) (2002)
285–310.

[31] W.M.P. van der Aalst, Verification of workflow nets, in: ICATPN,
Springer, Berlin, Heidelberg, 1997, pp. 407–426.

[32] W. van der Aalst, Workflow verification: finding control-flow errors
using petri-net-based techniques, in: BPM, Lecture Notes in Computer
Science, vol. 1806, Springer-Verlag, London, UK, 2000, pp. 161–183.

[33] E. Best, Structure theory of Petri Nets: the free choice hiatus, in: Petri
Nets: Central Models and Their Properties, Lecture Notes in Computer
Science, vol. 254, Springer, Berlin, Heidelberg, 1987, pp. 168–205.

[34] J. Desel, J. Esparza, Free Choice Petri Nets, Cambridge University Press,
New York, NY, USA, 1995.

[35] N. Lohmann, D. Fahland, did I go wrong?—Explaining errors in busi-
ness process models, in: BPM, Lecture Notes in Computer Science, vol.
8659, Springer International Publishing, Switzerland, 2014, pp. 283–
300.

[36] A. Armas-Cervantes, P. Baldan, M. Dumas, L. García-Bañuelos, BP-Diff:
A Tool for Behavioral Comparison of Business Process Models, in:
Proceedings of the BPM Demo Session 2014, 2014.

[37] D. Fahland, C. Favre, B. Jobstmann, J. Koehler, N. Lohmann, H. Völzer, K.
Wolf, Instantaneous soundness checking of industrial business pro-
cess models, in: BPM, Lecture Notes in Computer Science, vol. 5709,
Springer, Berlin, Heidelberg, 2009, pp. 278–293.

http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref15
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref15
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref15
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref15
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref16
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref16
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref16
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref17
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref17
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref17
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref17
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref20
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref20
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref20
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref21
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref21
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref21
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref22
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref22
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref23
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref23
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref23
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref25
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref25
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref25
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref25
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref26
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref26
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref26
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref26
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref26
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref27
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref27
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref27
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref28
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref28
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref28
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref29
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref29
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref29
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref30
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref30
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref30
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref30
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref34
http://refhub.elsevier.com/S0306-4379(15)00181-7/sbref34

	Diagnosing behavioral differences between business process models: An approach based on event structures
	Introduction
	Related work
	Preliminaries
	Petri nets
	Deterministic and branching processes
	Event structures
	Prime event structures
	Asymmetric event structures

	Canonical representation of acyclic process models
	Comparison of acyclic process models
	Matching behavior
	Identifying differences

	Finite representation of cyclic process models
	Causal dependencies between activities
	Multiplicity of transitions
	Multiplicity of transitions: the case of free-choice workflow nets

	Verbalizing differences
	Evaluation
	Performance
	Comparison: performance and size of the diagnostics

	Conclusion
	Acknowledgments
	References

