
Functorial Concurrent Semantics

for Petri Nets with Read and Inhibitor Arcs⋆

P. Baldan1, N. Busi2, A. Corradini1 and G. M. Pinna3

1 Dipartimento di Informatica - Università di Pisa
2 Dipartimento di Scienze dell’Informazione - Università di Bologna

3 Dipartimento di Matematica - Università di Siena

Abstract. We propose a functorial concurrent semantics for Petri nets
extended with read and inhibitor arcs, that we call inhibitor nets. Along
the lines of the seminal work of Winskel on safe nets, the truly concurrent
semantics is given at a categorical level via a chain of functors leading
from the category SW-IN of semi-weighted inhibitor nets to the category
Dom of finitary prime algebraic domains. As an intermediate semantic
model, we introduce inhibitor event structures, an extension of prime
event structures able to faithfully capture the dependencies among events
which arise in the presence of read and inhibitor arcs.

Introduction

Several generalizations of Petri nets [15] have been proposed in the literature to
overcome the expressiveness limitations of the classical model. At a very basic
level Petri nets have been extended with two new kinds of arcs, namely read
arcs (also called test, read, activator or positive contextual arcs) [7, 11, 8, 16]
and inhibitor arcs (also called negative contextual arcs) [1, 11], which allow a
transition to check for the presence, resp. absence of tokens, without consuming
them. Read arcs have been shown to be useful to model in a natural way several
practical situations (see e.g. [3, 2] for more references). A study of the expressive-
ness of inhibitor arcs, along with a comparison with other extensions proposed in
the literature, namely priorities, exclusive-or transitions and switches, is carried
out in [13]. In particular, we recall that inhibitor arcs make the model Turing
complete, essentially because they allow to simulate the zero-testing operation
of RAM machines, not expressible only with flow and read arcs.

The purpose of this paper is to give a truly concurrent semantics to Petri
nets extended with read and inhibitor arcs, that we will call inhibitor nets. We
follow the seminal work on ordinary safe nets of [12, 18], where the semantics is
given at a categorical level via a chain of coreflections, leading from the category
S-N of safe (marked) P/T nets to the category Dom of finitary prime algebraic
domains, through the categoriesO-N of occurrence nets and PES of prime event
structures (pes’s), the last step being an equivalence of categories.

⋆ Research partly supported by the TMR Network GETGRATS, by the Esprit Work-
ing Groups APPLIGRAPH and by the MURST project TOSCA.

•

s0

t0 •

s

t1

•

• t′

t s

t0

•

• t′

t s

t0 . . . tn

N0 N1 N2

Fig. 1. Some basic contextual and inhibitor nets.

S-N
U

⊥ O-N
E

⊥ PES
L

∼

N

Dom
P

As shown in [10] essentially the same construction applies to the wider category
of semi-weighted nets, i.e. P/T nets in which the initial marking and the post-set
of each transition is a set, rather than a proper multiset.

The mentioned approach has been extended in [4] to nets with read arcs,
referred to as contextual nets (see also [17]). The key problem for the treatment
of contextual nets is illustrated by the net N0 of Fig. 1 where the same place
s is “read” by transition t0 and “consumed” by transition t1 (a read arc is
represented by an undirected, horizontal line). The firing of t1 prevents t0 to be
executed, so that t0 can never follow t1 in a computation, while the converse is
not true, since t1 can fire after t0. This situation can be interpreted naturally as
an asymmetric conflict between the two transitions and cannot be represented
faithfully in a pes. To model the behaviour of contextual nets, the paper [4]
introduces asymmetric event structures (aes’s), an extension of prime event
structures where the symmetric conflict is replaced by an asymmetric conflict
relation. Such a feature is still necessary to be able to model the dependencies
arising between events in a net with inhibitor arcs (also in the absence of read
arcs). However the nonmonotonic features introduced by inhibitor arcs (negative
conditions) make the situation far more complicated.

Consider the net N1 in Fig. 1 where the place s, which inhibits transition t, is
in the post-set of transition t′ and in the pre-set of t0 (an inhibitor arc is depicted
as a dotted line from s to t, ending with an empty circle). The execution of t′

inhibits the firing of t, which can be enabled again by the firing of t0. Thus t can
fire before or after the “sequence” t′; t0, but not in between the two transitions.
Roughly speaking there is a sort of atomicity of the sequence t′; t0 w.r.t. t. The
situation can be more involved since many transitions t0, . . . , tn may have the
place s in their pre-set (see the net N2 in Fig. 1). Therefore, after the firing of t′,
the transition t can be re-enabled by any of the conflicting transitions t0, . . . , tn.
This leads to a sort of or-causality, but only when t fires after t′. With a logical
terminology we can say that t causally depends on t′ ⇒ t0 ∨ t1 ∨ . . . ∨ tn.

To face these complications in this paper we introduce inhibitor event struc-
tures (ies’s), a generalization of aes’s equipped with a ternary relation (·, ·, ·),
called DE-relation (disabling-enabling relation), which allows one to model the
dependency between transitions in N2 as ({t′}, t, {t0, . . . , tn}). The configu-
rations of an ies, endowed with a computational order, form a prime algebraic
domain, and Winskel’s equivalence between PES and Dom generalizes to a
coreflection between the category IES of inhibitor event structures and Dom.

As for ordinary and contextual nets, the connection between nets and event
structures is established via an unfolding construction which maps each net into
an occurrence net. Then the unfolding can be naturally abstracted to an ies,
having the transitions of the net as events. The main difference with respect to
the case of ordinary and contextual nets is the absence of a functor performing
the backward step from ies’s to occurrence inhibitor nets. Hence the problem
of characterizing the passage from occurrence inhibitor nets to event structures
as a coreflection, and thus of fully extending Winskel’s approach to inhibitor
nets, remains open. We refer the reader to [3, 2] for a detailed treatment of the
material presented in this paper and for a discussion of some related issues.

1 Inhibitor event structures

This section introduces the class of event structures that we consider adequate for
modelling the complex phenomena which arise in the dynamics of inhibitor nets.
Let us fix some notational conventions. The powerset of a set X is denoted by
2X , while 2Xfin denotes the set of finite subsets of X and 2X1 the set of subsets of
X of cardinality at most one. Hereafter generic subsets of events will be denoted
by upper case letters A,B, . . ., and singletons or empty subsets by a, b, . . .

Definition 1 (pre-inhibitor event structure). A pre-inhibitor event struc-
ture (pre-ies) is a pair I = 〈E, 〉, where E is a set of events and ⊆
2E1 ×E×2E is a ternary relation called disabling-enabling relation (DE-relation).

Informally, if ({e′}, e, A) then the event e′ inhibits the event e, which can be
enabled again by one of the events in A. The first argument of the relation can
be also the empty set ∅, (∅, e, A) meaning that the event e is inhibited in the
initial state of the system. Also the third argument A can be empty, ({e′}, e, ∅)
meaning that no events can re-enable e′ after it has been disabled by e.

The DE-relation allows to represent both causality and asymmetric conflict
and thus, concretely, it is the only relation of a (pre-)ies. In fact, if (∅, e, {e′})
then the event e can be executed only after e′ has been fired. This is exactly what
happens in a pes when e′ causes e, or in symbols when e′ < e. More generally,
if (∅, e, A) then we can imagine A as a set of disjunctive causes for e, since
at least one of the events in A will appear in every history of the event e. This
generalization of causality, restricted to the case in which the set A is pairwise
conflictive (namely all distinct events in A are in conflict), will be represented in
symbols as A < e. Similar notions of or-causality have been studied in general
event structures [18], flow event structures [5] and in bundle event structures [9].

Furthermore, if ({e′}, e, ∅) then e can never follow e′ in a computation since
there are no events which can re-enable e after the execution of e′. Instead the
converse order of execution is admitted, namely e can fire before e′. This situation
is naturally interpreted as an asymmetric conflict between the two events and
it is written eր e′. It can be seen also as a weak form of causal dependency, in
the sense that if e ր e′ then e precedes e′ in all computations containing both
events. This explains why a rule below imposes asymmetric conflict to include
(also generalized) causality, by asking that A < e implies e′ ր e for all e′ ∈ A.

Finally, cycles of asymmetric conflict are used to define a notion of conflict
on sets of events. If e0 ր e1 . . . en ր e0 then all such events cannot appear
together in the same computation, since each one should precede the others.
This fact is formalized via a conflict relation on sets of events #{e0, e1 . . . , en}.
In particular, binary (symmetric) conflict is represented by asymmetric conflict
in both directions.

Definition 2 (dependency relations). Let I = 〈E, 〉 be a pre-ies. The
relations of (generalized) causality <⊆ 2E ×E, asymmetric conflict ր⊆ E ×E

and conflict # ⊆ 2Efin are defined by the following set of rules:

(∅, e, A) #pA

A < e
(< 1)

A < e ∀e′ ∈ A. Ae′ < e′ #p(∪{Ae′ | e
′ ∈ A})

(∪{Ae′ | e
′ ∈ A}) < e

(< 2)

({e′}, e, ∅)

e ր e′
(ր 1)

e ∈ A < e′

e ր e′
(ր 2)

#{e, e′}

e ր e′
(ր 3)

e0 ր . . . ր en ր e0

#{e0, . . . , en}
(#1)

A′ < e ∀e′ ∈ A′. #(A ∪ {e′})

#(A ∪ {e})
(#2)

where #pA means that A is pairwise conflictive, namely #{e, e′} for all e, e′ ∈ A

with e 6= e′. We will write e#e′ for #{e, e′} and e < e′ for {e} < e′.

The basic rules (< 1), (ր 1) and (#1), as well as (ր 2) and (ր 3) are justified
by the discussion above. Rule (< 2) generalizes the transitivity of the causality
relation, while rule (#2) expresses a kind of hereditarity of the conflict with
respect to causality.

An inhibitor event structure is a pre-ies where the DE-relation satisfies some
further requirements suggested by its intended meaning, and causality and asym-
metric conflict are induced “directly” by the DE-relation.

Definition 3 (inhibitor event structure). An inhibitor event structure (ies)
is a pre-ies I = 〈E, 〉 satisfying, for all e ∈ E, a ∈ 2E1 and A ⊆ E,

1. if (a, e, A) then #pA and ∀e′ ∈ a. ∀e′′ ∈ A. e′ < e′′;
2. if A < e then (∅, e, A);
3. if eր e′ then ({e′}, e, ∅).

Given a pre-ies I satisfying only (1) it is always possible to “saturate” the re-
lation in order to obtain an ies, where the relations of causality and (asym-
metric) conflict are exactly the same as in I. The “saturated” ies is defined as
I = 〈E, ′〉, where ′ = ∪ {(∅, e, A) | A < e} ∪ {({e}, e′, ∅) | eր e′}.

Definition 4 (category IES). Let I0 = 〈E0, 0〉 and I1 = 〈E1, 1〉 be two
ies’s. An ies-morphism f : I0 → I1 is a partial function f : E0 → E1 such that
for all e0, e

′
0 ∈ E0, A1 ⊆ E1, if f(e0) and f(e

′
0) are defined then

1. (f(e0) = f(e′0)) ∧ (e0 6= e′0) ⇒ e0#0e
′
0;

2. A1 < f(e0) ⇒ ∃A0 ⊆ f−1(A1). A0 < e0;
3. 1({f(e

′
0)}, f(e0), A1) ⇒ ∃A0 ⊆ f−1(A1). ∃a0 ⊆ {e′0}. 0(a0, e0, A0).

We denote by IES the category of inhibitor event structures and ies-morphisms.

Condition (1) is standard. Condition (2) generalizes the requirement of preserva-
tion of causes ⌊f(e)⌋ ⊆ f(⌊e⌋) of pes (and aes) morphisms. Condition (3), as it
commonly happens for event structures morphisms, just imposes the preservation
of computations by asking, whenever some events in the image are constrained in
some way, that stronger constraints are present in the pre-image. More precisely
suppose that ({f(e′0)}, f(e0), A1). Thus we can have a computation where
f(e′0) is executed first and f(e0) can occur only after one of the events in A1.
Otherwise the computation can start with f(e0). According to condition (3), e0
and e′0 are subject in I0 to the same constraint of their images or, when a0 = ∅ or
A0 = ∅, to stronger constraints selecting one of the possible orders of execution.

The category PES of prime event structures can be viewed as a full subcate-
gory of IES. The full embedding functor Ji : PES →֒ IES maps each pes P =
〈E,≤,#〉 to the ies 〈E, 〉 where the DE-relation is defined by (∅, e, {e′′}) if
e′′ < e and ({e′}, e, ∅) if e#e′. For any pes morphism f : P1 → P2 its image
is Ji(f) = f . More generally, the category of asymmetric event structures [4]
fully embeds into IES (see [2]), and also (extended) bundle event structures [9]
and prime event structures with possible events [14] can be seen as special ies’s.

2 Inhibitor event structures and domains

The paper [18] shows that the categories PES of prime event structures and
Dom of finitary prime algebraic domains are equivalent, via the functors P :
Dom → PES and L : PES → Dom. This section establishes a connection be-
tween ies’s and finitary prime algebraic domains, by showing that the mentioned
result generalizes to the existence of a categorical coreflection between IES and
Dom. Then we study the problem of removing the non-executable events from
an ies, by characterizing the full subcategory IESe consisting of the ies’s where
all events are executable, as a coreflective subcategory of IES.

The domain of configurations

The domain associated to an ies is obtained by considering the family of its
configurations with a suitable order. To understand the notion of ies configura-
tion, consider a set of events C of an inhibitor event structure I, and suppose
e′, e, e′′ ∈ C and ({e′}, e, A) for some A, with e′′ ∈ A. Note that two distinct
orders of execution of the three events are possible (either e; e′; e′′ or e′; e′′; e),

which should not be confused from the point of view of causality. Hence, a con-
figuration is not simply a set of events C, but some additional information must
be added, in the form of a choice relation, to choose among the possible different
orders of execution of events in C constrained by the DE-relation (e.g., in the
above example a choice relation specifies wether e precedes e′ or e′′ precedes e).

We first introduce, for a given set of events C, the set choices(C), a relation
on C which “collects” all the possible precedences between events induced by
the DE-relation. A choice relation for C is then a suitable subset of choices(C).

Definition 5 (choice). Let I = 〈E, 〉 be an ies and let C ⊆ E. We denote
by choices(C) the set

{(e, e′) | ∃A. C({e
′}, e, A)} ∪ {(e′′, e) | ∃A. C(a, e, A) ∧ e′′ ∈ A} ⊆ C × C,

where the restriction of (, ,) to C is defined by C(a, e, A) iff (a, e, A′) for
some A′, with e ∈ C, a ⊆ C and A = A′ ∩ C.
A choice for C is an irreflexive relation →֒C ⊆ choices(C) such that

1. if C(a, e, A) then ∃e′ ∈ a. e→֒Ce
′ or ∃e′′ ∈ A. e′′ →֒Ce;

2. (→֒C)
∗ is a finitary partial order.

Condition (1) intuitively requires that whenever the DE-relation permits two
possible orders of execution, the relation →֒C chooses one of them. The fact that
→֒C ⊆ choices(C) ensures that →֒C does not impose more precedences than
necessary. Condition (2) guarantees that the precedences specified by →֒C are
not cyclic and that each event must be preceded only by finitely many others.

Definition 6 (configuration). Let I = 〈E, 〉 be an ies. A configuration of
I is a pair 〈C, →֒C〉, where C ⊆ E and →֒C ⊆ C × C is a choice for C.

It can be shown that the above definition generalizes the notion of pes and aes

configuration since the property of admitting a choice implies causal closedness
and conflict freeness. In the sequel, with abuse of notation, we will often denote a
configuration and the underlying set of events with the same symbol C, referring
to the corresponding choice relation as →֒C .

The computational order on configurations is a generalization of that intro-
duced in [4] for aes’s.

Definition 7 (extension). Let I = 〈E, 〉 be an ies and let C and C ′ be
configurations of I. We say that C ′ extends C, written C ⊑ C ′, if C ⊆ C ′ and

1. ∀e ∈ C. ∀e′ ∈ C ′. e′ →֒C′e ⇒ e′ ∈ C;
2. →֒C ⊆ →֒C′ .

The poset of all configurations of I , ordered by extension, is denoted by Conf (I).

As expressed by condition (1), a configuration C can be extended only by adding
events which are not supposed to happen before other events already in C.
Moreover, condition (2) ensures, together with (1), that the past history of events
in C remains the same in C ′. Indeed if C ⊑ C ′ then →֒C = →֒C′ ∩ (C ×C), and
thus, roughly speaking, C coincides with a “truncation” of C ′.

The history of an event in a configuration C is formally defined as a subconfig-
uration of C. More precisely, for a configuration C and an event e ∈ C the history
of e in C is the configuration 〈C[[e]], →֒C[[e]]〉, where C[[e]] = {e′ ∈ C | e′ →֒∗

Ce}
and →֒C[[e]] = →֒C ∩ (C[[e]]×C[[e]]). Then it is possible to show that the poset of
configurations of an ies has the desired algebraic structure.

Theorem 1 (domain of configurations). For any ies I the poset Conf (I) is
a (finitary prime algebraic) domain. Its complete primes are the possible histories
of events in I, i.e. Pr(Conf (I)) = {C[[e]] | C ∈ Conf (I), e ∈ C}.

The construction which associates the domain of configurations to an ies lifts
to a functor from IES to Dom. Observe that since configurations are not simply
sets of events it is not completely obvious, a priori, what should be the image of
a configuration through a morphism. Let f : I0 → I1 be an ies-morphism and
let 〈C0, →֒0〉 be a configuration of I0. It is possible to show that →֒1 = f(→֒0)∩
choices(f(C0)) is the the unique choice relation on f(C0) included in f(→֒C0

).
Furthermore the function f∗ : Conf (I0) → Conf (I1) which associates to each
configuration 〈C0, →֒0〉 the configuration 〈f(C0), →֒1〉 is a domain morphism.

This means that the construction taking an ies into its domain of configura-
tions can be viewed as a functor Li : IES → Dom defined as Li(I) = Conf (I)
for each ies I and Li(f) = f∗ for each ies-morphism f : I0 → I1.

A functor Pi : Dom → IES going back from domains to ies’s can be
obtained as the composition of Winskel’s functor P : Dom → PES with the
full embedding Ji : PES → IES defined at the end of Section 1.

Theorem 2 (coreflection IES →֒ Dom). The functor Pi : Dom → IES is
left adjoint to Li : IES → Dom. The counit of the adjunction at an ies I is the
function ǫI : Pi ◦Li(I) → I, mapping each history of an event e into the event
e itself, i.e., ǫI(C[[e]]) = e, for all C ∈ Conf (I) and e ∈ C.

The above result, together with Winskel’s equivalence between the categories
Dom of domains and PES of prime event structures, allows to translate an ies I

into a pes P(Li(I)). The pes is obtained from the ies essentially by introducing
an event for each possible different history of events in the ies.

Removing non-executable events

The non-executability of events in an ies is not completely captured by the
proof system of Definition 2, in the sense that we cannot derive #{e} for every
non-executable event. Here we propose a semantic approach to rule out unused
events from an ies, namely we simply remove from a given ies all events which
do not appear in any configuration.

Definition 8. We denote by IESe the full subcategory of IES consisting of the
ies’s I = 〈E, 〉 such that for any e ∈ E there exists C ∈ Conf (I) with e ∈ C.

Any ies is turned into an IESe object by forgetting the events which do not
appear in any configuration.

Definition 9. We denote by Ψ : IES → IESe the functor mapping each ies I

into the IESe object Ψ(I) = 〈ψ(E), ψ(E)〉, where ψ(E) is the set of executable
events in I, namely ψ(E) = {e ∈ E | ∃C ∈ Conf (I). e ∈ C}. Moreover if
f : I0 → I1 is an ies-morphism then Ψ(f) = f|ψ(E0). With Jies : IESe → IES
we denote the inclusion.

The inclusion of IESe into IES is left adjoint to Ψ , i.e., Ψ ⊢ Jies, and
thus IESe is a coreflective subcategory of IES. Furthermore the coreflection
between IES and Dom restricts to a coreflection between IESe and Dom, i.e.,
if Pe

i : Dom → IESe and L e

i : IESe → Dom denote the restrictions of the
functors Pi and Li then Pe

i ⊣ L e

i .

3 A category of inhibitor nets

Inhibitor nets are an extension of ordinary Petri nets where, by means of read and
inhibitor arcs, transitions can check both for the presence and for the absence of
tokens in places of the net. To give the formal definition we need some notation
for multisets. Let A be a set; a multiset of A is a functionM : A→ N. The set of
multisets of A is denoted by µA. The usual operations and relations on multisets,
like multiset union + or multiset difference −, are used. We write M ≤ M ′ if
M(a) ≤ M ′(a) for all a ∈ A. If M ∈ µA, we denote by [[M]] the multiset
defined as [[M]](a) = 1 if M(a) > 0 and [[M]](a) = 0 otherwise; sometimes
[[M]] will be confused with the corresponding subset {a ∈ A | [[M]](a) = 1}
of A. A multirelation f : A → B is a multiset of A × B. We will limit our
attention to finitary multirelations, namely multirelations f such that the set
{b ∈ B | f(a, b) > 0} is finite. Multirelation f induces in an obvious way a
function µf : µA→ µB, defined as µf(

∑
a∈A na ·a) =

∑
b∈B

∑
a∈A(na ·f(a, b))·b

(possibly partial, since infinite coefficients are disallowed). If f satisfies f(a, b) ≤
1 for all a ∈ A and b ∈ B, i.e. f = [[f]], then we sometimes confuse it with the
corresponding set-relation and write f(a, b) for f(a, b) = 1.

Definition 10 (inhibitor net). A (marked) inhibitor Petri net (i-net) is a
tuple N = 〈S, T, F,C, I,m〉, where S is a set of places, T is a set of transitions
(with S ∩ T = ∅), F = 〈Fpre, Fpost〉 is a pair of multirelations from T to S, C
and I are relations between T and S, called the context and inhibitor relation,
respectively, and m is a multiset of S, called the initial marking. If the inhibitor
relation I is empty then N is called a contextual net (c-net).

We require that for each t ∈ T , Fpre(t, s) > 0 for some place s ∈ S. Here-
after, when considering an i-net N , we will assume that N = 〈S, T, F,C, I,m〉.
Subscripts on the net name carry over the names of the net components.

As usual, given a finite multiset of transitions A ∈ µT we write •A for its
pre-set µFpre(A) and A• for its post-set µFpost(A). Moreover, by A we denote
the context of A, defined as A = C([[A]]), and by �A = I([[A]]) the inhibitor set
of A. The same notation is used to denote the functions from S to 2T defined

as, for s ∈ S, •s = {t ∈ T | Fpost(t, s) > 0}, s• = {t ∈ T | Fpre(t, s) > 0},
s = {t ∈ T | C(t, s)} and �s = {t ∈ T | I(t, s)}.

Let N be an i-net. A finite multiset of transitions A is enabled at a marking
M , if M contains the pre-set of A and an additional multiset of tokens which
covers the context of A. Furthermore no token must be present nor produced
by the transitions in the places of the inhibitor set of A. Formally, a finite
multiset A ∈ µT is enabled at M if •A + A ≤ M and [[M +A•]] ∩ �A = ∅. In
this case, to indicate that the execution of A in M produces the new marking
M ′ = M − •A + A• we write M [A〉M ′. Step and firing sequences, as well as
reachable markings are defined in the usual way.

Definition 11 (i-net morphism). Let N0 and N1 be i-nets. An i-net mor-
phism h : N0 → N1 is a pair h = 〈hT , hS〉, where hT : T0 → T1 is a partial
function and hS : S0 → S1 is a multirelation such that (1) µhS(m0) = m1 and
(2) for each t ∈ T ,

(a) µhS(
•t) = •hT (t) (c) µhS(t) = hT (t)

(b) µhS(t
•) = hT (t)

• (d) [[hS]]
−1(�hT (t)) ⊆

�t.

where [[hS]] is the set relation underlying the multirelation hS. We denote by IN
the category having i-nets as objects and i-net morphisms as arrows, and by CN
its full subcategory of c-nets.

Conditions (1), (2.a) - (2.b) are the defining conditions of Winskel’s morphisms
on ordinary nets, while (2.c) is the obvious condition which takes into account
contexts. Condition (2.d) regarding the inhibitor arcs can be understood if we
think of morphisms as simulations. Like preconditions and contexts must be
preserved to ensure that the morphism maps computations of N0 into computa-
tions of N1, similarly, inhibitor conditions, which are negative conditions, must
be reflected. In fact, condition (2.d) on inhibiting places can be rewritten as

s1 ∈ [[µhS(s0)]] ∧ I1(hT (t0), s1) ⇒ I0(t0, s0),

which shows more explicitly that inhibitor arcs are reflected.

Proposition 1 (morphisms preserve the token game). Let N0 and N1 be
i-nets, and let h = 〈hT , hS〉 : N0 → N1 be an i-net morphism. For each M,M ′ ∈
µS and A ∈ µT , if M [A〉M ′ then µhS(M) [µhT (A)〉µhS(M

′). Therefore i-net
morphisms preserve reachable markings, i.e. if M0 is a reachable marking in N0

then µhS(M0) is reachable in N1.

As in [18, 10, 4] we will restrict our attention to a subclass of nets where each
token produced in a computation has a uniquely determined history.

Definition 12 (semi-weighted and safe i-nets). An i-net N is called semi-
weighted if the initial marking m is a set and Fpost is a relation (i.e., t• is a set
for all t ∈ T). We denote by SW-IN the full subcategory of IN having semi-
weighted i-nets as objects; the corresponding subcategory of c-nets is denoted by
SW-CN. A semi-weighted i-net is called safe if also Fpre is a relation and each
reachable marking is a set.

4 Occurrence i-nets and the unfolding constructions

Generally speaking, an occurrence net provides a static representation of some
computations of a net, in which the events (firing of transitions) and the relation-
ships between events are made explicit. In [4] the notion of (nondeterministic)
occurrence net has been generalized to the case of nets with read arcs. Here, the
presence of the inhibitor arcs and the complex kind of dependencies they induce
on transitions make it hard to find an appropriate notion of occurrence i-net.

We present two different, in our opinion both reasonable, notions of occur-
rence i-net and, correspondingly, we develop two unfolding constructions.

In the first construction, given an i-net N , we consider the underlying con-
textual net Nc obtained by forgetting the inhibitor arcs, and we apply to Nc the
unfolding construction for contextual nets of [4], which produces an occurrence
contextual net Ua(Nc). Then, if a place s and a transition t were originally con-
nected by an inhibitor arc in the net N , then we insert an inhibitor arc between
each copy of s and each copy of t in Ua(Nc), thus obtaining the unfolding Ui(N)
of the net N . Then the characterization of the unfolding as a universal construc-
tion can be lifted from contextual to inhibitor nets. Furthermore, in this way
the unfolding of an inhibitor net is decidable, in the sense that the problem of
establishing if a possible transition occurrence actually appears in the unfolding
is decidable. The price to pay is that some transitions in the unfolding may not
be firable, since they are generated without taking care of inhibitor places.

In the second approach, the dependency relations (of causality and asym-
metric conflict) for a net are defined only with respect to a fixed assignment
for the net (playing a role similar to choices) which specifies for any inhibitor
arc (t, s) if the inhibited transition t is executed before or after the place s is
filled and in the second case which one of the transitions in the post-set s•

of the inhibitor place consumes the token. Then the firability of a transition t

amounts to the existence of an assignment which is acyclic on the transitions
which must be executed before t. Relying on this idea we can define a notion
of occurrence net where each transition is really executable. The corresponding
unfolding construction produces a net where the mentioned problem of the exis-
tence of non-firable transitions disappears, but, as a consequence of the Turing
completeness of inhibitor nets, the produced unfolding is not decidable.

Lifting the unfolding from contextual to inhibitor nets

In the first approach, the unfolding construction disregards the inhibitor arcs.
Consequently the notion of occurrence i-net is defined without taking into ac-
count the dependencies between transitions induced by such kind of arcs.

Given a safe i-net N let us define the read causality relation as the least
transitive relation <r on S ∪ T such that s <r t if s ∈

•t, t <r s if s ∈ t•, and
t <r t

′ if t• ∩ t′ 6= ∅, the only novelty with respect to ordinary nets being the
last clause stating that a transition causally depends on transitions generating
tokens in its context. The read asymmetric conflict րr is defined by taking
t րr t

′ if t′ consumes a token in the context of t, namely t ∩ •t′ 6= ∅, in such a

way that the firing of t′ inhibits t. Moreover tրr t
′ if (t 6= t′ ∧ •t∩ •t′ 6= ∅) to

capture the usual symmetric conflict, and finally, according to the weak causality
interpretation of the asymmetric conflict, tրr t

′ whenever t <r t
′.

Definition 13 (occurrence i-nets). An occurrence i-net N is a safe i-net N
where causality ≤r is a finitary partial order, asymmetric conflict րr is acyclic
on the causes of each transition, for all s ∈ S |•s| ≤ 1 and m = {s ∈ S | •s = ∅}.
O-IN denotes the full subcategory of SW-IN having occurrence i-nets as objects.

Let us consider a functor Ric : SW-IN → SW-CN which maps each i-net
into the underlying c-net, forgetting the inhibitor relation, and the inclusion
Ici : SW-CN → SW-IN (see the diagram below).

O-CN SW-CN

Ici

Ua

⊥ SW-IN
Ric

O-IN
IO

The relations ≤r and րr for an i-net N are exactly the relations of causality and
asymmetric conflict of the underlying c-net Ric(N), as defined in [4]. Thus the
notion of occurrence c-net in this paper (i.e., occurrence i-net without inhibitor
arcs) coincides with that of [4]. Moreover an occurrence i-net is a safe i-net N
such that Ric(N) is an occurrence c-net. Let O-CN be the category of occur-
rence c-nets, namely the full subcategory of O-IN having c-nets as objects. The
paper [4] defines an unfolding functor Ua : SW-CN → O-CN, mapping each
semi-weighted c-net to an occurrence c-net. The functor Ua is shown there to be
right adjoint to the inclusion functor of O-CN into SW-CN. Using the functors
Ric and Ici we can lift both the construction and the result to inhibitor nets.

Definition 14 (unfolding). Let N be a semi-weighted i-net. Consider the oc-
currence c-net Ua(Ric(N)) = 〈S′, T ′, F ′, C ′, ∅,m′〉 and the folding morphism
fN : Ua(Ric(N)) → Ric(N). Define an inhibitor relation on the net Ua(Ric(N))
by taking for s′ ∈ S′ and t′ ∈ T ′, I ′(s′, t′) iff I(fN (s′), fN (t′)). Then the unfold-
ing Ui(N) of the i-net N is the occurrence i-net 〈S′, T ′, F ′, C ′, I ′,m′〉 and the
folding morphism is given by fN seen as a morphism from Ui(N) to N .

The i-net Ui(N) can be shown to be the least occurrence i-net which extends
Ua(Ric(N)) with the addition of inhibitor arcs in a way that fN : Ui(N) → N

is a well defined i-net morphism.

Theorem 3. The unfolding extends to a functor Ui : SW-IN → O-IN which
is right adjoint to the obvious inclusion functor IO : O-IN → SW-IN, thus
establishing a coreflection between SW-IN and O-IN. The component at an
object N in SW-IN of the counit of the adjunction, f : IO ◦ Ui

·
→ 1, is the

folding morphism fN : Ui(N) → N .

Executable occurrence i-nets

The second approach is inspired by the notion of deterministic process of an

i-net introduced in [6], where the inhibitor arcs of the net underlying a process
are partitioned into two subsets: the before inhibitor arcs and the after inhibitor
arcs. Then the dependencies induced by such a partition are required to be
acyclic in order to guarantee the firability of all the transitions of the net in
a single computation. Following this idea, to ensure that each transition of a
nondeterministic occurrence net is firable in some computation, we require, for
each transition t, the existence of a so-called assignment which partitions the
inhibitor arcs into before and after arcs, without introducing cyclic dependencies
on the transitions which must be executed before t.

Definition 15 (assignment). Let N be a safe i-net. An assignment for N is
a function ρ : I → T such that, for all (t, s) ∈ I, ρ(t, s) ∈ •s ∪ s•.

Intuitively, an assignment ρ specifies for each inhibitor arc (t, s), if the transition
t fires before or after the place s receives a token. If ρ(t, s) ∈ •s then (t, s) is a
before arc, while if ρ(t, s) ∈ s• then (t, s) is an after arc. In the last case, since
we are considering possibly nondeterministic nets and thus the place s may be
in the pre-set of several transitions, the assignment specifies also which of the
transitions in s• consumes the token.

Given a safe net N , once an assignment ρ for N is fixed, new dependencies
arise between the transitions of the net, formalized by means of the relations
≺ρi and րρ

i . We define t ≺ρi t
′ iff ∃s ∈ �t′ ∩ •t. ρ(t′, s) = t and t րρ

i t
′ iff

∃s ∈ �t ∩ t′•. ρ(t, s) = t′. Observe that, as suggested by the adopted symbols,
the additional dependencies can be seen as a kind of causality and asymmetric
conflict, respectively. In fact if t ≺ρi t′, then t′ can happen only after t has
removed the token from s, and thus t acts as a cause for t′. If t րρ

i t
′ then if

both t and t′ happen in the same computation then necessarily t occurs before
t′, since t′ generates a token in a place s which inhibits t, while according to the
interpretation of ρ, t must occur before the place s is filled.

Under a fixed assignment ρ, we can introduce a kind of generalized causality
and asymmetric conflict by joining the relations ≤r and րr defined before with
the additional dependencies induced by the inhibitor arcs. We define <ρ= (<r
∪ ≺ρi)

+ and �ρ =<ρ ∪ րr ∪ րρ
i , i.e., �ρ records both kinds of dependency.

Furthermore, for x ∈ S ∪ T we denote by ⌊x⌋ρ the set {t ∈ T | t ≤ρ x}, and
similarly, for X ⊆ S ∪ T , we define ⌊X⌋ρ =

⋃
{⌊x⌋ρ | x ∈ X}.

Definition 16 (executable occurrence i-net). An executable occurrence
i-net is a safe i-net N such that (i) for all t ∈ T there exists an assignment
ρ such that (�ρ)⌊t⌋ρ is acyclic and ⌊t⌋ρ is finite, (ii) for all s ∈ S, | •s| ≤ 1, and
(iii) m = {s ∈ S | •s = ∅}.

Hence executable occurrence i-nets refine occurrence i-nets by considering also
the dependencies induced by inhibitor arcs. We denote by O-INe the full sub-
category of O-IN having executable occurrence i-nets as objects.

Definition 17 (concurrency). A set of places M ⊆ S is called concurrent,
written conc(M), if there exists an assignment ρ such that (i) for all s, s′ ∈ M

¬(s <ρ s
′), (ii) ⌊M⌋ρ is finite and (iii) �ρ acyclic on ⌊M⌋ρ.

As for ordinary and contextual nets, a set of places M is concurrent if and
only if there is a reachable marking in which all the places ofM contain a token.
Consequently each transition of an executable occurrence i-net can fire in some
computation (and thus each place contains a token at some reachable marking),
a property which justifies the name “executable”.

Proposition 2. Let N be an executable occurrence i-net. Then for each transi-
tion t ∈ T there exists a reachable marking M such that t is enabled at M .

We can now introduce a different unfolding construction, that, when applied
to a semi-weighted i-net N , produces an executable occurrence i-net.

Definition 18 ((executable) unfolding). Let N be a semi-weighted i-net.
The (executable) unfolding U e

i (N) = 〈S′, T ′, F ′, C ′, I ′,m′〉 of the net N and
the folding morphism fN = 〈fT , fS〉 : U e

i (N) → N are the unique executable
occurrence i-net and i-net morphism satisfying the following equations:

m′ = {〈∅, s〉 | s ∈ m}
S′ = m′ ∪ {〈t′, s〉 | t′ ∈ T ′ ∧ s ∈ fT (t

′)•}
T ′ = {t′ | t′ = 〈Mp,Mc, t〉 ∧ t ∈ T ∧ Mp ∪Mc ⊆ S′ ∧ Mp ∩Mc = ∅

∧ conc(Mp ∪Mc) ∧ µfS(Mp) =
•t ∧ µfS(Mc) = t

∧ ∃ρ. (⌊t′⌋ρ finite ∧ �ρ acyclic on ⌊t′⌋ρ)}

F ′
pre(t

′, s′) iff t′ = 〈Mp,Mc, t〉 ∧ s′ ∈Mp (t ∈ T)
F ′
post(t

′, s′) iff s′ = 〈t′, s〉 (s ∈ S)
C ′(t′, s′) iff t′ = 〈Mp,Mc, t〉 ∧ s′ ∈Mc (t ∈ T)
I ′(t′, s′) iff fS(s

′, s) ∧ I(fT (t
′), s)

fT (t
′) = t iff t′ = 〈Mp,Mc, t〉

fS(s
′, s) iff s′ = 〈x, s〉 (x ∈ T ′ ∪ {∅})

As usual, places and transitions in the unfolding represent tokens and firing
of transitions in the original net. Each item of the unfolding is a copy of an
item in the original net, enriched with the corresponding “history”. The folding
morphism f maps each item of the unfolding to the corresponding item in the
original net. The unfolding can be given also an inductive definition, from which
uniqueness easily follows.

The two proposed unfolding constructions are tightly related, in the sense
that U e

i (N) can be obtained from Ui(N) simply by removing the non executable
transitions. This fact is formalized by defining a “pruning” functor Π : O-IN →
O-INe which removes the non executable transitions from a general occurrence
i-net thus producing an executable occurrence i-net. The functor Π : O-IN →
O-INe is right adjoint to the inclusion functor J e : O-INe → O-IN, and thus
O-INe is a coreflective subcategory of O-IN. Then one can formally state the
relationship between U e

i (N) and Ui(N), providing also an indirect proof of the
universality of the new unfolding construction.

Proposition 3. For any semi-weighted i-net N , U e

i (N) = Π(Ui(N)). There-
fore U e

i is right adjoint to the inclusion functor and they establish a coreflection
between SW-IN and O-INe.

5 Inhibitor event structure semantics for i-nets

In this section we define an event structure and a domain semantics for i-nets
by relating occurrence i-nets and inhibitor event structures. The dependencies
arising among transitions in an occurrence i-net can be naturally represented by
the DE-relation, and therefore the ies corresponding to an occurrence i-net is
obtained by forgetting the places and taking the transitions of the net as events.

Definition 19. Let N be an occurrence i-net. The pre-ies associated to N is
defined as IpN = 〈T, p

N 〉, with N ⊆ 2T1 ×T ×2T , given by: for t, t′ ∈ T , t 6= t′

and s ∈ S

1. if t• ∩ (•t′ ∪ t′) 6= ∅ then p
N(∅, t

′, {t})
2. if (•t ∪ t) ∩ •t′ 6= ∅ then p

N({t
′}, t, ∅);

3. if s ∈ �t then p
N(

•s, t, s•).

The ies associated to N , denoted by Ei(N) = 〈T, N 〉, is obtained by saturating

I
p
N , i.e., Ei(N) = I

p
N .

Clauses (1) and (2) encode, by using the DE-relation, the causal dependencies
and the asymmetric conflicts induced by the flow and read arcs (we could have
written if t <r t

′ then p
N(∅, t

′, {t}) and if t րr t
′ then p

N({t
′}, t, ∅)). The

last clause fully exploits the expressiveness of the DE-relation to represent the
dependencies induced by inhibitor places.

Since the transition component of an i-net morphism is an ies-morphism
between the corresponding ies’s we have the following result.

Proposition 4. The construction which maps each i-net N to the corresponding
ies Ei(N) can be extended to a functor Ei : O-IN → IES by defining Ei(h) = hT
for each morphism h : N0 → N1.

One can verify that if N is an executable occurrence i-net then Ei(N) is an IESe

object, and thus the functor Ei restricts to a functor E e

i : O-INe → IESe.
The converse step, from ies’s to occurrence i-nets, instead, turns out to be

very problematic. An object level constructions can be defined, associating to
any ies a corresponding i-net. However the problem of finding a functorial con-
struction (if any) is still unsolved. See [2, 3] for a wider discussion suggesting
how the difficulties are intimately connected to or-causality.

6 Conclusions

We have defined a functorial concurrent semantics for semi-weighted Petri
nets with read and inhibitor arcs. The proposed constructions, which generalize
Winskel’s work on safe ordinary nets and the work in [4] on contextual nets, are
summarized in Fig. 2. Unfortunately, the objective of providing a coreflective
semantics for inhibitor nets is partially missed, since the construction mapping
each occurrence i-net to an ies is not expressed as a coreflection. Hence the prob-
lem of fully extending to i-nets Winskel’s chain of coreflections remains open.

Acknowledgements. We are grateful to the anonymous referees for their useful
comments on the submitted version of this paper.

O-IN

Π ⊢

Ei

IES

Ψ ⊢

Li

⊥

SW-IN
Ui

⊥

U
e

i

⊥

Dom

Pi

P
e

i
P

∼ PES

L

O-INe

E
e

i

IESe

L
e

i

⊥

Fig. 2. A summary of the constructions in the paper (unnamed functors are inclusions).

References

1. T. Agerwala and M. Flynn. Comments on capabilities, limitations and “correct-
ness” of Petri nets. Computer Architecture News, 4(2):81–86, 1973.

2. P. Baldan. Modelling concurrent computations: from contextual Petri nets to graph

grammars. PhD thesis, Department of Computer Science, University of Pisa, 2000.
Available as technical report n. TD-1/00.

3. P. Baldan, N. Busi, A. Corradini, and G.M. Pinna. Domain and event structure
semantics for Petri nets with read and inhibitor arcs. Technical report, Department
of Computer Science, University of Pisa, 2000.

4. P. Baldan, A. Corradini, and U. Montanari. An event structure semantics for P/T
contextual nets: Asymmetric event structures. In M. Nivat, editor, Proceedings of

FoSSaCS ’98, volume 1378 of LNCS, pages 63–80. Springer Verlag, 1998.
5. G. Boudol. Flow Event Structures and Flow Nets. In Semantics of System of

Concurrent Processes, volume 469 of LNCS, pages 62–95. Springer Verlag, 1990.
6. N. Busi and G. M. Pinna. Process semantics for Place/Transition nets with in-

hibitor and read arcs. Fundamenta Informaticæ, 40(2-3):165–197, 1999.
7. S. Christensen and N. D. Hansen. Coloured Petri nets extended with place capac-

ities, test arcs and inhibitor arcs. In M. Ajmone-Marsan, editor, Applications and

Theory of Petri Nets, volume 691 of LNCS, pages 186–205. Springer Verlag, 1993.
8. R. Janicki and M. Koutny. Semantics of inhibitor nets. Information and Compu-

tation, 123:1–16, 1995.
9. R. Langerak. Transformation and Semantics for LOTOS. PhD thesis, Department

of Computer Science, University of Twente, 1992.
10. J. Meseguer, U. Montanari, and V. Sassone. Process versus unfolding semantics

for Place/Transition Petri nets. Theoretical Computer Science, 153(1-2):171–210,
1996.

11. U. Montanari and F. Rossi. Contextual nets. Acta Informatica, 32(6), 1995.
12. M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains,

Part 1. Theoretical Computer Science, 13:85–108, 1981.
13. J.L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice-Hall, 1981.
14. G. M. Pinna and A. Poigné. On the nature of events: another perspective in

concurrency. Theoretical Computer Science, 138(2):425–454, 1995.
15. W. Reisig. Petri Nets: An Introduction. EACTS Monographs on Theoretical

Computer Science. Springer Verlag, 1985.
16. W. Vogler. Efficiency of asynchronous systems and read arcs in Petri nets. In

Proceedings of ICALP’97, volume 1256 of LNCS, pages 538–548. Springer Verlag,
1997.

17. W. Vogler, A. Semenov, and A. Yakovlev. Unfolding and finite prefix for nets with
read arcs. In Proceedings of CONCUR’98, volume 1466 of LNCS, pages 501–516.
Springer-Verlag, 1998.

18. G. Winskel. Event Structures. In Petri Nets: Applications and Relationships to

Other Models of Concurrency, volume 255 of LNCS, pages 325–392. Springer Ver-
lag, 1987.

