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Abstract

We propose a functorial concurrent semantics for Petri netsextended withread and
inhibitor arcs, that we callinhibitor nets. Along the lines of the seminal work by Winskel
on safe (ordinary) nets, the truly concurrent semantics is given at a categorical level via a
chain of coreflections leading from the categorySW-IN of semi-weighted inhibitor nets to
the categoryDom of finitary prime algebraic domains (equivalent to the category PES of
prime event structures). As an intermediate semantic model, we introduceinhibitor event
structures, an event based model able to faithfully capture the dependencies among events
which arise in the presence of read and inhibitor arcs. Inhibitor event structures generalise
several event structure models in the literature, like prime, asymmetric and bundle event
structures.

Keywords: Petri nets, read and inhibitor arcs, true concurrency, unfolding, categorical se-
mantics, event structures, domains.

Introduction

Several generalisations of Petri nets [33, 36] have been proposed in the literature to overcome
the expressiveness limitations arising from the simplicity of the classical model. At a very basic
level Petri nets have been extended with two new kinds of arcs, namelyread arcs(also called
test, activator or positive contextual arcs) [13, 30, 21, 39] and inhibitor arcs(also called nega-
tive contextual arcs) [2, 30, 21] which allow a transition tocheck for the presence, resp. absence
of resources (tokens), which are not affected by the firing ofthe transition. Read arcs are able
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30172 Mestre - Venezia (Italy)
‡E-mail addresses:baldan@dsi.unive.it (P. Baldan),busi@cs.unibo.it (N. Busi), andrea@di.unipi.it

(A. Corradini),pinna@unisi.it (G. M. Pinna)

1



to faithfully represent the situations where a resource is read but not consumed (read-only ac-
cesses). They have been used to model concurrent accesses toshared data (e.g., read operations
in a database) [37, 14], to study temporal efficiency in asynchronous systems [39] and to give a
truly concurrent semantics to concurrent constraint programs [29, 8]. Inhibitor arcs have been
introduced in [2] to solve a synchronisation problem not expressible in classical Petri nets. A
study of the expressiveness of inhibitor arcs, along with a comparison with other extensions
proposed in the literature, namely priorities, exclusive-or transitions and switches, is carried
out in [19, 32]. In particular it is worth stressing that inhibitor arcs make the model Turing com-
plete, essentially because they allow to simulate the zero-testing operation of RAM machines
which cannot be expressed neither by flow nor by read arcs. Inhibitor arcs have been employed,
for example, for performance evaluation of distributed systems [3], to provideπ-calculus with
a net-based semantics [10] and to show the existence of an expressiveness gap between two
different semantics of a process algebra based on Linda coordination primitives [11].

The purpose of this paper is to provide a truly concurrent semantics forinhibitor nets, i.e.,
Petri nets extended with read and inhibitor arcs.

Generally speaking, a truly concurrent semantics providesa description of the behaviour of
a system, where the events in computations and their mutual relationships, notably causality,
conflict and concurrency, are made explicit. This information can be useful for several pur-
poses, e.g., to distribute independent branches of a computation over distinct processors, or,
when causality is interpreted as “information flow”, to verify the functional dependencies or
non-interference properties between components ([14, 16]). Moreover, a concurrent semantics
can represent a good basis for the development of effective verification techniques. In fact, an
explicit representation of concurrency, which does not consider all the possible interleavings of
concurrent events, may help to attack the state explosion problem [26, 15].

As discussed in detail below, the greater expressiveness arising from the introduction of
inhibitor arcs is paid in terms of an increase of the complexity of the causal structure of com-
putations, where the dependencies among events cannot be reduced simply to causality and
conflict. To capture these dependencies the theory must be extended in a quite non-trivial way.
The resulting semantic model turns out to have an applicability which goes beyond inhibitor
nets, being suited to model, in general, formalisms where events can be disabled/enabled sev-
eral times by other events. In particular it has been used profitably to model the concurrent
semantics for graph transformation systems (see [4]).

We remark that, whenever one is interested only in reachability properties, read arcs can be
safely replaced by self-loops, and, restricting to safe nets, also inhibitor arcs can be encoded
by means of flow arcs, using a complementation technique. However, these encodings do not
preserve the concurrency properties of a system. For instance, consider the safe inhibitor net
N in Fig. 1, where places inhibits transitionst1 and t2 (an inhibitor arc from a places to a
transitiont is depicted as a dotted line froms to t, ending with an empty circle). This net can
be transformed into the safe netN′ in Fig. 1 with only read arcs by introducing a complement
places̄ for s (a read arc is represented by an undirected, horizontal line). Place ¯s is marked if
and only ifswas not marked and each transition havings in its pre-set has ¯s in its post-set, and
vice versa. Then read arcs can be replaced by self-loops, obtaining the netN′′ in Fig. 1.

The marking graph of the netsN′ andN′′, when restricted to the places originally inN, is
the same as that ofN. However it is easy to see that the operations of complementation and in-
troduction of self-loops radically change the dependency relations between transitions and thus
the concurrency of the system. For instance, the complementation operation introduces a cycle
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Figure 1: Encoding read and inhibitor arcs via flow arcs do notpreserve concurrency.

of flow arcs involvingt andt ′. Observe also that while in the original netN transitionst1 andt2
could fire in parallel in the initial marking, in the transformed netN′′, after the introduction of
self-loops, they are forced to fire sequentially.

In the development of the concurrent semantics for inhibitor nets we follow the seminal
work on ordinary safe nets of [31, 41], where the semantics isgiven at a categorical level via
a chain of coreflections (special kinds of adjunctions), leading from the categoryS-N of safe
(marked) P/T nets to the categoryDom of finitary prime algebraic domains, through the cate-
goriesO-N of occurrence nets andPESof prime event structures (PES’s), the last step being an
equivalence of categories. The diagram below represents the mentioned chain of coreflections.
Given functorsF andG, we writeF ⊢ G whenF is right adjoint toG. The same symbol is used,
possibly rotated, in diagrams. The symbol→֒ indicates inclusion functors.

S-N
U

⊥ O-N
E

⊥ PES
L

∼

N

Dom
P

As shown in [27, 28] essentially the same construction applies to the wider category ofsemi-
weightednets, i.e., (possibly non-safe) P/T nets where the initial marking is a set and transitions
can generate at most one token in each post-condition. A generalisation to the whole category of
P/T nets is also possible, as shown in [28], but it requires some additional technical machinery
and it allows one to obtain a proper adjunction rather than a coreflection.

A categorical semantics defined via an adjunction can be considered satisfactory under
many respects. First, the semantic mapping is a functor, i.e., it “respects” the notion of mor-
phism between systems, which formalises the idea of “simulation”. Moreover, given a functor,
its adjoint (if it exists) is unique up to natural isomorphism. Hence, when there is an obvi-
ous functor mapping semantic models back into the category of systems (e.g., occurrence nets
are special nets, and thus the functor is simply the inclusion) the semantics can be defined
canonically as the functor in the opposite direction, forming an adjunction. Finally, several op-
erations on nets (systems) may be expressed at categorical level as limit/colimit constructions
(see [41, 27]). Since left/right adjoint functors preservecolimits/limits, a semantics defined via
an adjunction turns out to be compositional with respect to such operations.

The categorical unfolding approach has been extended in [6]to nets with read arcs, referred
to ascontextual nets(see also [40]). There, the key observation is that prime event structures
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Figure 2: Some basic contextual and inhibitor nets.

are not adequate to model in a direct way the dependencies between transition occurrences in a
contextual net. The problem is illustrated by the netN0 of Fig. 2 where the same places is “read”
by transitiont0 and “consumed” by transitiont1. The firing oft1 preventst0 to be executed, so
that t0 can never followt1 in a computation, while the converse is not true, sincet1 can fire
after t0. This situation can be interpreted naturally as anasymmetric conflictbetween the two
transitions and cannot be represented faithfully in aPES. To model the behaviour of contextual
nets, the paper [6] introducesasymmetric event structures(AES’s), an extension of prime event
structures where the symmetric conflict is replaced by an asymmetric conflict relation. Such
a feature is obviously still necessary to be able to model thedependencies arising between
events in inhibitor nets, but the nonmonotonic features related to the presence of inhibitor arcs
(negative conditions) make the situation far more complicated.

Consider the safe netN1 in Fig. 2 where the places, which inhibits transitiont, is in the
post-set of transitiont ′ and in the pre-set oft0. The execution oft ′ inhibits the firing oft, which
can be enabled again by the firing oft0. Thust can fire before or after the “sequence”t ′; t0, but
not in between the two transitions. Roughly speaking there is a sort of atomicity of the sequence
t ′; t0 with respect tot. The situation can be more involved since many transitionst0, . . . , tn may
have the places in their pre-set (see the netN2 in Fig. 2). Therefore, after the firing oft ′, the
transitiont can be re-enabled by any of the conflicting transitionst0, . . . , tn. This leads to a
sort ofor-causality, but only whent fires aftert ′. With a logical terminology we can say thatt
causally depends on the implicationt ′ ⇒ t0∨ t1∨ . . .∨ tn.

To face these additional complications in this paper we introduceinhibitor event structures
(IES’s), a generalisation ofPES’s andAES’s equipped with a ternary relation, calledDE-relation
(disabling-enabling relation)and denoted by (·, ·, ·), which allows one to model the depen-
dencies between transitions inN2 simply as ({t ′},t,{t0, . . . ,tn}). As we will see, the DE-
relation is sufficient to represent both causality and asymmetric conflict and thus concretely
it is the only relation of anIES. Using inhibitor event structures and the DE-relation as basic
tools we will extend Winskel’s approach to (semi-weighted)inhibitor nets, providing this class
of nets with a coreflective concurrent semantics. The proposed constructions are informally
summarised by the diagram below.
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Semi-weighted
Inhibitor Nets

(a)

⊥ Occurrence
Inhibitor Nets

(b)

IES

(c)

(e)

⊥ Dom

(d)

∼ PES

⊤

As in the case of ordinary and contextual nets, the connection between nets and event struc-
tures is established via an unfolding construction which maps each net into an occurrence net
(step (a) in the diagram). The complex structure of inhibitor net computations makes it hard to
find an appropriate notion ofoccurrence inhibitor net. We identify two distinct, in our opin-
ion both reasonable, notions of occurrence inhibitor net, and correspondingly we provide two
different unfolding constructions which associate to eachsemi-weighted inhibitor net an oc-
currence inhibitor net. In both cases the unfolding construction gives rise to a functor which is
right adjoint to the inclusion. The unfolding can be naturally abstracted to anIES, having the
transitions of the net as events (step (b) in the diagram).

Finally, we establish a close relationship betweenIES’s and prime algebraic domains (step
(c) in the diagram), generalising the equivalence betweenPESandDom. As already pointed out
in [12], when dealing with inhibitor nets a deterministic computation is not uniquely determined
by the events which occur in it. More concretely, in a deterministic process the absence of a
token in an inhibitor place which enables a transition, may arise in two different situations:
because the transition producing the token has not fired yet,or because the transition removing
the token has already fired. For instance, the netN1 of Fig. 2 admits two possible executions
involving all its transitions, namelyt; t ′; t0 andt ′; t0; t, which should not be identified from the
point of view of causality. To deal with this problem a deterministic process, as defined in [12],
includes also a partition of the inhibitor arcs intobeforeandafter arcs. Intuitively, the fact that
an inhibitor arc froms to t is classified as “before” means thatt must be executed before the
places is filled, while if it is an “after” arc thent must be executed after the token has been
removed froms.

In a similar way, aconfigurationof an IES is not uniquely identified as a set of events, but
some additional information has to be added which plays a basic role also in the definition of the
order on configurations. More concretely, a configuration ofan IES is a set of events endowed
with a choice relationwhich chooses one among the possible different orders of execution of
events constrained by the DE-relation. The configurations of an IES, endowed with a suitable
computational order, form a prime algebraic domain, and Winskel’s equivalence betweenPES
andDom generalises to a coreflection between the categoryIES of inhibitor event structures
andDom. By exploiting such coreflection one can recover a domain (or, equivalently, prime
event structure) semantics for inhibitor nets.

Answering a question which was left open in the conference version of the paper [5], also
the construction leading from occurrence i-nets toPES’s and domains is given a universal char-
acterisation as a coreflection (step (e) in the diagram). By analogy with contextual nets one
could expect that the coreflection between occurrence i-nets and prime algebraic domains fac-
torizes throughIES, namely, that the functor fromDom to the category of occurrence i-nets
could be “decomposed” in two functors, fromDom to IES’s and fromIES’s to occurrence i-
nets, respectively, establishing coreflections between the corresponding categories. We show
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that this is not possible, discussing how this fact is related to the complex kinds of dependen-
cies among events expressible inIES’s.

The rest of the paper is organised as follows. Section 1 presents the category of inhibitor
nets and focuses on the subcategory of semi-weighted inhibitor nets which we shall work with.
Section 2 introduces the categories of occurrence inhibitor nets and the corresponding unfolding
constructions. Section 3 presents some background material regarding prime and asymmetric
event structures, and their relationship with prime algebraic domains. Then Section 4 introduces
inhibitor event structures, and presents the coreflection between the corresponding category and
the category of domains. Section 5 shows how the unfoldings can be abstracted to anIES and
a PESsemantics. The construction which maps the unfoldings intoPES’s is characterised as a
coreflection. Finally Section 6 draws some conclusions and directions of future research. An
Appendix collects the full proofs of the results in the paper.

Some of the results in this paper appeared in CONCUR 2000 proceedings [5]. See also the
PhD theses [4, 9] for a wider treatment of the semantics of Petri nets with read and inhibitor
arcs, with applications to process calculi.

1 The category of inhibitor nets

Inhibitor netsare an extension of ordinary Petri nets where, by means of read and inhibitor arcs,
transitions can check both for the presence and for the absence of tokens in places of the net.
This section, after giving the basics of(marked) inhibitor P/T nets, turns the class of inhibitor
nets into a categoryIN by introducing a suitable notion of morphism.

To give the formal definition we need some notation for sets and multisets. LetA be a set.
The powerset ofA is denoted by2A. A multisetof A is a functionM : A → N, whereN is
the set of natural numbers. The set of multisets ofA is denoted byµA. The usual operations
and relations on multisets, like multiset union+ or multiset difference−, are used. We write
M ≤ M′ if M(a) ≤ M′(a) for all a ∈ A. If M ∈ µA, we denote by[[M]] the multiset defined
as [[M]](a) = 1 if M(a) > 0 and [[M]](a) = 0 otherwise, obtained by changing all non-zero
coefficients ofM to 1; sometimes[[M]] will be confused with the corresponding subset{a∈ A |
[[M]](a) = 1} of A. A multirelation f : A→ B is a multiset ofA×B. We will limit our attention
to finitary multirelations, namely multirelationsf such that the set{b∈B | f (a,b) > 0} is finite.
Multirelation f induces in an obvious way a (possibly partial) functionµ f : µA→ µB, defined
asµ f(∑a∈Ana ·a)= ∑b∈B∑a∈A(na · f (a,b)) ·b.1 If f satisfiesf (a,b)≤ 1 for all a∈A andb∈B,
i.e. f = [[ f ]], then we sometimes confuse it with the corresponding set-relation and writef (a,b)
for f (a,b) = 1.

DEFINITION 1 (INHIBITOR NET) A (marked) inhibitor Petri net (i-net)is a tuple N =
〈S,T,F,C, I ,m〉, where

• S is a set ofplaces;

• T is a set oftransitions;

• F = 〈Fpre,Fpost〉 is a pair of multirelations from T to S;

1The functionµ f can be partial since infinite coefficients are disallowed in multisets. For instance, given the mul-
tirelation f : N →{0} with f (n,0) = 1 for all n∈ N, thenµ f is undefined on the multiset∑n∈N 1·n.
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Figure 3: A safe inhibitor netN3.

• C and I are relations between T and S, called thecontextand inhibitor relation, respec-
tively;

• m is a multiset of S, called theinitial marking.

If the inhibitor relation I is empty then N is called acontextual net (c-net).

We assume, as usual, thatS∩T = /0. Moreover, we require that for each transitiont ∈ T, there
exists a places∈ S such thatFpre(t,s) > 0. In the following when considering an i-netN, we
will assume thatN = 〈S,T,F,C, I ,m〉. Moreover superscripts and subscripts on the net names
carry over the names of the net components. For instanceNi = 〈Si ,Ti ,Fi ,Ci , Ii ,mi〉.

Let N be an i-net. As usual, the functions fromµT to µSinduced by the multirelationsFpre

andFpost are denoted by•( ) and( )•, respectively. IfA ∈ µT is a multiset of transitions,•A
is called itspre-set, while A• is called itspost-set. Moreover, byA we denote thecontextof
A, defined asA = C([[A]]), and by �A = I([[A]]) the inhibitor setof A. The same notation is
used to denote the functions fromS to 2T defined as, fors∈ S, •s= {t ∈ T | Fpost(t,s) > 0},
s• = {t ∈ T | Fpre(t,s) > 0}, s= {t ∈ T |C(t,s)} and �s= {t ∈ T | I(t,s)}. For instance, for
transitiont3 in the i-netN3 of Fig. 3, we have•t3 = s3, t3• = 0 and�t3 = {s2,s4}. Considering
places4 we obtain•s4 = {t2}, s4

• = {t4} and �s4 = {t1,t3}.
A finite multiset of transitionsA is enabled at a markingM, if M contains the pre-set ofA

and an additional multiset of tokens which covers the context of A. Furthermore the places of
the inhibitor set ofA must be empty both before and after the firing of the transitions inA.

DEFINITION 2 (TOKEN GAME) Let N be an i-net and let M be amarkingof N, i.e., a multiset
M ∈ µS. A finite multiset A∈ µT isenabledat M if (i) •A+A≤ M and (ii) [[M +A•]]∩ �A = /0.
Thetransition relationbetween markings is defined as

M [A〉M′ iff A is enabled at M and M′ = M− •A+A•.

Step and firing sequences, as well as reachable markings, aredefined in the usual way. For
instance, in the netN3 of Fig. 3 a possible firing sequence starting from the initialmarking is
s1 +s2 +s3 [t2〉s1 +s4+s3 [t4〉s1 +s2 +s3 [t1〉s2 +s3.
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DEFINITION 3 (I-NET MORPHISM) Let N0 and N1 be i-nets. Ani-net morphismh : N0 → N1 is
a pair h= 〈hT ,hS〉, where hT : T0 → T1 is a partial function and hS : S0 → S1 is a multirelation
such that (1) µhS(m0) = m1 and (2) for each t0 ∈ T0,

(a) µhS(
•t0) = •hT(t0) (c) µhS(t0) = hT(t0)

(b) µhS(t0•) = hT(t0)• (d) [[hS]]
−1(�hT(t0)) ⊆ �t0.

where we recall that[[hS]] is the set relation underlying the multirelation hS. We denote byIN the
category having i-nets as objects and i-net morphisms as arrows, and byCN its full subcategory
having contextual nets as objects.

Conditions (1), (2.a) and (2.b) are the defining conditions of Winskel’s morphisms on ordinary
nets. Condition (2.c) takes into account read arcs.2 Note that the left-hand side of the equality
is a multiset, while the right-hand side is a set. Hence this condition imposesµhS(t0) to be a
set (each element must occur with multiplicity 1) and to coincide withhT(t0). Condition (2.d)
regarding the inhibitor arcs can be better explained by recalling that morphisms are intended to
represent simulations: in order to map computations ofN0 into computations ofN1 morphisms
are required to preserve preconditions and contexts, while, dually, inhibitor conditions must be
reflected, since they are negative conditions. In fact observe that condition (2.d) on inhibiting
places can be rewritten as

s1 ∈ [[µhS(s0)]] ∧ I1(hT(t0),s1) ⇒ I0(t0,s0),

which shows more explicitly that inhibitor arcs are reflected. In particular, ifhS is a total func-
tion then

I1(hT(t0),hS(s0)) ⇒ I0(t0,s0).

It is easy to show that i-net morphisms are closed under composition.

PROPOSITION4 (COMPOSITION OF I-NET MORPHISMS) The class of i-net morphisms is
closed under composition.

Proof .See the Appendix.

Observe that i-net morphisms can be seen as a generalisationof the process mappings of [9,
12]. More precisely, processes of inhibitor nets in the style of Goltz-Reisig for a netN can be
defined as special morphisms from a (deterministic) occurrence i-net to the netN (see [4]).

By the next proposition i-net morphisms preserve the token game, and thus marking reach-
ability.

PROPOSITION5 (MORPHISMS PRESERVE THE TOKEN GAME) Let N0 and N1 be i-nets, and
let h= 〈hT ,hS〉 : N0 → N1 be an i-net morphism. Then for each M,M′ ∈ µS0 and A∈ µT0

M [A〉M′ ⇒ µhS(M) [µhT(A)〉µhS(M′).

Therefore i-net morphisms preserve reachable markings, i.e., if M0 is a reachable marking in
N0 then µhS(M0) is reachable in N1.

2The category of contextual nets considered in [6] is isomorphic to CN, although there the inhibitor relation is
absent rather than empty.
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Proof .Suppose thatM [A〉M′. Thus •A+A≤ M and[[M +A•]]∩ �A = /0.
First notice thatµhT(A) is enabled atµhS(M). The proof of Condition (i) in the definition

of enabling (see Definition 2), i.e.,•µhT(A) + µhT(A) ≤ µhS(M), is essentially the same as
for ordinary nets, adapted to take into account also the readarcs (see [6] for details). As for
Condition (ii), which involves the inhibiting places, notice that

[[µhS(M)+µhT(A)•]]∩ �µhT(A) = [by (2.b) in the definition of morphism]

= [[µhS(M)+µhS(A•)]]∩ �µhT(A)

= [[µhS(M +A•)]]∩ �µhT(A)

= /0

The last passage is justified by observing that ifs1 ∈ [[µhS(M +A•)]]∩ �µhT(A), then there is
s0 ∈ [[M +A•]] such thats1 ∈ [[µhS(s0)]] ands1 ∈

�hT(A). By condition (2.d) in the definition of
i-net morphism, this impliess0 ∈

�A and therefores0 ∈ [[M +A•]]∩ �A, which instead is empty
by hypothesis.

It is now immediate to conclude thatµhS(M) [µhT(A)〉µhS(M′). 2

As in [41, 28, 6] we will restrict our attention to a subclass of nets where each token pro-
duced in a computation has a uniquely determined history. The next definition introduces the
corresponding subcategory ofIN .

DEFINITION 6 (SEMI-WEIGHTED AND SAFE I-NETS) A semi-weightedi-net is an i-net N
such that the initial marking m is a set and Fpost is a relation (i.e., t• is a set for all t∈ T).
We denote bySW-IN the full subcategory ofIN having semi-weighted i-nets as objects; the
corresponding subcategory of c-nets is denoted bySW-CN.

A semi-weighted i-net is calledsafeif also Fpre is a relation and each reachable marking is
a set.

An example of semi-weighted net which is not safe is given in Fig. 4.(a). As mentioned
above, the basic property of semi-weighted nets, which willbe essential in the unfolding con-
struction, is that any token produced in a computation of thenet has a uniquely determined
history. More precisely, the tokens in the initial marking are uniquely identified by the place
where they are and, inductively, any other token produced along the computation can be iden-
tified with the set of tokens consumed to produce it, the transition fired and the name of the
place where the token is. For instance, referring to netN4 in Fig. 4.(a), the token ins′ in the
initial marking is identified ass′. The token produced ins after the firing oft ′ corresponds to
〈〈{s′}, t〉,s〉. The property of uniqueness of causal history ceases to holdfor general i-nets, as
one can immediately verify by considering the simple netN5 in Fig. 4.(b), where even the two
tokens in the initial marking are indistinguishable. For a detailed discussion about the role of
semi-weightedness see, e.g., [27].

2 Occurrence i-nets and the unfolding constructions

Generally speaking, an occurrence net provides a static representation of some computations of
a net, in which the events (firing of transitions) and the relationships between events are made
explicit. In [40, 6] the notion of (nondeterministic) occurrence net has been generalised to the
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Figure 4: (a) A semi-weighted i-net which is not safe and (b) anon semi-weighted i-net.

case of nets with read arcs. Here, the presence of the inhibitor arcs and the complex kind of
dependencies they induce on transitions, makes it hard to fixa unique notion of occurrence
i-net.

In this section we present two different, in our opinion bothreasonable, notions of occur-
rence i-net and, correspondingly, we develop two unfoldingconstructions.

In the first construction, given an i-netN, we consider the underlying contextual netNc, ob-
tained fromN by forgetting the inhibitor arcs. Then, disregarding the inhibitor arcs, we apply to
Nc the unfolding construction for contextual nets defined in [6], which produces an occurrence
contextual netUa(Nc). Finally, if a places and a transitiont were originally connected by an
inhibitor arc in the netN, then we insert an inhibitor arc between each occurrence ofsand each
occurrence oft in Ua(Nc), thus obtaining the unfoldingUi(N) of the netN. Then the charac-
terisation of the unfolding as a universal construction canbe lifted from contextual to inhibitor
nets.

It is worth observing that in this way the unfolding of an inhibitor net is decidable, in the
sense that the problem of establishing if a possible transition occurrence actually appears in the
unfolding is decidable. This fact may be helpful if one wantsto use the unfolding in practice to
prove properties of the modelled system. The price to pay is that, differently from what happens
for ordinary and contextual nets, some of the transitions inthe unfolding may not be firable,
since they are generated without taking care of inhibitor places. Therefore not all the transitions
of the unfolding correspond to a concrete firing of a transition of the original net, but only those
which are executable.

In the second approach, the dependency relations (of causality and asymmetric conflict)
for a net are defined only with respect to a fixed assignment forthe net which specifies, for
any inhibitor arc(t,s), if the inhibited transitiont is executed before or after the places is
filled, and in the second case which one of the transitions in the post-sets• of the inhibitor
place consumes the token. Then the firability of a transitiont amounts to the existence of an
assignment which is acyclic on the transitions which must beexecuted beforet. Relying on
this idea we can define a notion of occurrence net where each transition is really executable.
The corresponding unfolding construction produces a net where the mentioned problem of the
existence of non-firable transitions disappears. However,in this way, as a consequence of the

10



Turing completeness of inhibitor nets (see, e.g., [1]) the produced unfolding is not decidable.

2.1 Lifting the unfolding from contextual to inhibitor nets

In the first approach, the unfolding construction disregards the inhibitor arcs. Consequently the
notion of occurrence i-net is defined considering only the dependencies induced by flow and
read arcs. As mentioned in the introduction, these dependencies can be fully captured by using
two relations that we call read causality and read asymmetric conflict (the qualification “read”
is due to the fact that they consider read arcs only, disregarding inhibitor arcs).

DEFINITION 7 (READ CAUSALITY) Let N be a safe i-net. Theread causality relationis defined
as the least transitive relation<r on S∪T such that, for all s∈ S and t,t ′ ∈ T,

1. s<r t if s∈ •t,

2. t <r s if s∈ t•,

3. t <r t ′ if t •∩ t ′ 6= /0.

Clauses (1) and (2) above are standard (see Fig. 5.(a)). The only novelty with respect to ordinary
nets is the last clause stating that a transition causally depends on transitions generating tokens
in its context (see Fig. 5.(b)).

DEFINITION 8 (READ ASYMMETRIC CONFLICT) Let N be a safe i-net. Theread asymmetric
conflictրr is defined by taking, for all t,t ′ ∈ T, tրr t ′ if one of the following conditions holds:

1. t∩ •t ′ 6= /0

2. t 6= t ′ ∧ •t ∩ •t ′ 6= /0

3. t <r t ′.

To understand the above definition consider an i-netN where each transition is intended to
represent a single event and thus can fire at most once. Clause(1) considers the basic case of
asymmetric conflict: if a transitiont ′ consumes a token in the context oft (see Fig. 5.(d)), then,
as already discussed, the firing oft ′ prevents the firing oft. Notice that asymmetric conflict
determines an order of execution locally to each computation: if t րr t ′ andt,t ′ fire in the same
computation thent must precedet ′. Therefore a set of transitions in a cycle of asymmetric
conflict cannot occur in the same computation, a fact that canbe naturally interpreted as a
kind of conflict. This explains clause (2) which capture the usual symmetric conflict as an
asymmetric conflict in both directions (see Fig. 5.(c)). Asymmetric conflict can be also seen as a
weakform of causal dependency, in the sense that ift ր t ′ thent precedest ′ in all computations
containing both transitions. Hence in clause (3) we also lett րr t ′ whenevert <r t ′.

DEFINITION 9 (READ CONCURRENCY) Let N be a safe i-net. A set of places X⊆ S is called
read concurrent, written concr(X), if for all x,y∈ X,¬(x <r y), the set of read causes of X, i.e.,
{y : ∃x∈ X. y <r x} is finite andրr is acyclic on such a set.

Intuitively, the last requirement in the definition above corresponds to the absence of conflicts
in the causes ofX.

11
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Figure 5: Read causality and asymmetric conflict: (a), (b)t <r t ′ and (c), (d)t րr t ′.

•

t •

•

t •

N6 Ric(N6)

Figure 6: Not all events of an occurrence i-net are executable.

DEFINITION 10 (OCCURRENCE I-NETS) An occurrence i-netN is a safe i-net N where read
causality<r is a finitary partial order, read asymmetric conflictրr is acyclic on the causes of
each transition, there are no backward conflicts (for all s∈ S,| •s| ≤ 1) and the initial marking
is m= {s∈ S| •s= /0}.

The full subcategory ofSW-IN having occurrence i-nets as objects is denoted byO-IN ,
while O-CN denotes the category of occurrence c-nets, namely the full subcategory ofO-IN
having only c-nets as objects.

We remark that, since the above definition does not take into account the inhibitor arcs of
the net, we are not guaranteed that each transition in an occurrence i-net is firable. For instance,
N6 in Fig. 6 is an occurrence i-net, but the only transitiont can never fire.

It is worth introducing now some functors relating the categories of nets defined so far (see
Fig. 7).

DEFINITION 11 We denote byRic : SW-IN → SW-CN the functor which maps each i-net
into the underlying c-net with an empty inhibitor relation,defined asRic(〈S,T,F,C, I ,m〉) =
〈S,T,F,C, /0,m〉, and byIci : SW-CN→ SW-IN the obvious inclusion.

The relations≤r andրr associated to an i-netN are exactly the relations of causality and
asymmetric conflict of the underlying c-net. Therefore the category of occurrence c-netsO-CN
is the same as in [6] or [40], and occurrence i-nets are semi-weighted i-netsN such thatRic(N)
is an occurrence c-net.
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SW-IN

Ric

O-IN
IO

SW-CN

Ici

Ua

⊥ O-CN

Figure 7: Functors relating semi-weighted (occurrence) c-nets and i-nets.

The paper [6] defines an unfolding functorUa : SW-CN → O-CN, mapping each semi-
weighted c-net to an occurrence c-net.

DEFINITION 12 (UNFOLDING OF CONTEXTUAL NETS) Let N be a semi-weighted contextual
net. TheunfoldingUa(N) = 〈S′,T ′,F ′,C′, /0,m′〉 of the net N and thefolding morphismfN =
〈 fT , fS〉 : Ua(N) → N are the unique occurrence contextual net and morphism satisfying the
following equations:

m′ = {〈 /0,s〉 | s∈ m}
S′ = m′∪{〈t ′,s〉 | t ′ ∈ T ′ ∧ s∈ fT(t ′)•}
T ′ = {t ′ | t ′ = 〈Mp,Mc, t〉 ∧ t ∈ T ∧ Mp∪Mc ⊆ S′ ∧ Mp∩Mc = /0

∧ concr(Mp∪Mc)∧ µ fS(Mp) = •t ∧ µ fS(Mc) = t}

F ′
pre(t

′,s′) iff t ′ = 〈Mp,Mc,t〉 ∧ s′ ∈ Mp (t ∈ T)
F ′

post(t
′,s′) iff s′ = 〈t ′,s〉 (s∈ S)

C′(t ′,s′) iff t ′ = 〈Mp,Mc,t〉 ∧ s′ ∈ Mc (t ∈ T)
fT(t ′) = t iff t ′ = 〈Mp,Mc,t〉
fS(s′,s) iff s′ = 〈x,s〉 (x∈ T ′∪{ /0})

As usual, places and transitions in the unfolding representrespectively tokens and firing of
transitions in the original net. Each item of the unfolding is a copy of an item in the original
net, enriched with the corresponding “history”. The folding morphismf maps each item of the
unfolding to the corresponding item in the original net. In the mentioned paper, the functorUa

is shown to be right adjoint to the inclusion functor ofO-CN into SW-CN.

THEOREM 13 The unfolding construction over contextual nets extends toa functor Ua :
SW-CN→ O-CN which is right adjoint to the inclusion functor.

By suitably using the functorsRic andIci we can lift both the construction and the result
from contextual nets to inhibitor nets.

DEFINITION 14 (UNFOLDING) Let N be a semi-weighted i-net. Consider the occurrence c-
netUa(Ric(N)) = 〈S′,T ′,F ′,C′, /0,m′〉 and the folding morphism fN : Ua(Ric(N)) → Ric(N).
Define an inhibiting relation on the netUa(Ric(N)) by taking for s′ ∈ S′ and t′ ∈ T ′

I ′(s′, t ′) iff I ( fN(s′), fN(t ′)).

Then the unfoldingUi(N) of the net N is the occurrence i-net〈S′,T ′,F ′,C′, I ′,m′〉 and the
folding morphismis given by fN seen as a function fromUi(N) into N.
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Figure 8: Part of the unfoldingUi(N3) of i-netN3 of Fig. 3.

The fact thatUi(N) is an occurrence i-net immediately follows from its construction. Further-
more, since the place component offN is a total function, according to condition (2.d) in the
definition of i-net morphism, the unfoldingUi(N) can be characterised as theleasti-net which
extendsUa(Ric(N)) with the addition of inhibitor arcs in a way thatfN : Ui(N) → N is a well
defined i-net morphism.

Fig. 8 presents (part of) the unfoldingUi(N3) of the i-netN3 of Fig. 3. Occurrences of an
item x are denoted byx′,x′′, . . .. Observe the unfolding includes an instance of transitiont3,
although it is not executable.

The unfolding construction is functorial, namely we can define a functorUi : SW-IN →
O-IN , which acts on arrows asUa ◦Ric. In other words, givenh : N0 → N1, the arrowUi(h) :
Ui(N0)→Ui(N1) is obtained by interpretingh as a morphism between the c-nets underlyingN0

andN1, taking its image viaUa, and then considering the mapUa(h) as an arrow fromUi(N0)
to Ui(N1).
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PROPOSITION15 The unfolding construction extends to a functorUi : SW-IN →O-IN , which
acts on arrows asUa ◦Ric.

Proof . The only thing to verify is that given an i-net morphismh : N0 → N1, the morphism
h′ = Ua ◦Ric(h) : Ua(Ric(N0)) → Ua(Ric(N1)), seen as a mappingh′ : Ui(N0) → Ui(N1) is
still an i-net morphism.

First notice that the following diagram, wheref0 and f1 are the folding morphisms, com-
mutes by construction (althoughh′, in principle, may not be an i-net morphism).

N0
h

N1

Ui(N0)

f0

h′=Ua(h)
Ui(N1)

f1

Conditions (1) and (2.a)-(2.c), not involving inhibitor arcs, are automatically verified since
h′ is a morphism between the underlying c-nets. Let us prove thevalidity of condition (2.d), as
expressed by the remark which follows Definition 3, namely

s′1 ∈ [[µh′S(s
′
0)]] ∧ I ′1(h

′
T(t ′0),s

′
1) ⇒ I ′0(t

′
0,s

′
0).

Assumes′1 ∈ [[µh′S(s
′
0)]] ∧ I ′1(h

′
T(t ′0),s

′
1). Hence,f1S(s′1) ∈ [[µ( f1S◦h′S)(s

′
0)]] and, by definition

of the unfolding,I1( f1T(h′T(t ′0)), f1S(s′1)). Therefore, by commutativity of the diagram

f1S(s′1) ∈ [[µhS( f0S(s′0))]] and I1(hT( f0T(t ′0)), f1S(s′1))

Beingh an i-net morphism, by condition (2.d) in Definition 3, we havethat

I0( f0T(t ′0), f0S(s
′
0))

and therefore, by definition of the unfolding,I ′0(t
′
0,s

′
0), which is the desired conclusion. 2

We can now state the main result of this section, establishing a coreflection between semi-
weighted i-nets and occurrence i-nets. It essentially relies on Theorem 13 which characterises
the unfolding for c-nets as an universal construction.

THEOREM 16 (COREFLECTION BETWEENSW-IN AND O-IN ) The unfolding functorUi :
SW-IN → O-IN is right adjoint to the obvious inclusion functorIO : O-IN → SW-IN and
thus establishes a coreflection betweenSW-IN andO-IN .

The component at an object N inSW-IN of the counit of the adjunction, f: IO ◦Ui
·
→ 1,

is the folding morphism fN : Ui(N) → N.

Proof . Let N be a semi-weighted i-net, letUi(N) = 〈S′,T ′,F ′,C′, I ′,m′〉 be its unfolding and
let fN : Ui(N) → N be the folding morphism as in Definition 14. We have to show that for
any occurrence i-netN1 and for any morphismg : N1 → N there exists a unique morphism
h : N1 → Ui(N) such that the following diagram commutes:

Ui(N)
fN

N

N1

h g
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Theexistenceis readily proved by observing that an appropriate choice ish = Ui(g). The
commutativity of the diagram simply follows by the commutativity of the diagram involving
the underlying c-nets and morphisms, namely

Ua(Ric(N))
fN

Ric(N)

Ric(N1)

h g

With a little abuse of notation, we have denoted with the samesymbol the morphism between
the underlying c-nets and the same mapping seen as a morphismbetween the i-nets.

Also uniquenessfollows easily by the universal property of the construction for c-nets given
by Theorem 13. In fact leth′ : N1 → Ui(N) be another i-net morphism such thatfN ◦ h′ = g.
This means thath′ is another c-net morphism which makes commute the diagram involving the
underlying c-nets. This implies that, as desired,h andh′ coincide. 2

2.2 Executable occurrence i-nets

The second approach is inspired by the notion of deterministic process of an i-net in [9]. As
mentioned in the introduction, the inhibitor arcs of the netunderlying a process are partitioned
into two subsets: thebeforeinhibitor arcs andafter inhibitor arcs. Then the dependencies in-
duced by such a partition are required to be acyclic in order to guarantee the firability of all the
transitions of the net in a single computation. Following this idea, to ensure that each transition
of a nondeterministic occurrence net is firable in some computation, we require, for each transi-
tion t, the existence of a so-calledassignmentwhich partitions the inhibitor arcs into before and
after arcs, without introducing cyclic dependencies on thetransitions which must be executed
beforet.

DEFINITION 17 (ASSIGNMENT) Let N be a safe i-net. Anassignmentfor N is a functionρ :
I → T such that, for all(t,s) ∈ I, ρ(t,s) ∈ •s∪s•.

Intuitively, an assignmentρ specifies for each inhibitor arc(t,s), if the transitiont firesbefore
or after the places receives a token. Ifρ(t,s) ∈ •s then(t,s) is a before arc, while ifρ(t,s) ∈ s•

then (t,s) is an after arc. In the last case, since the places may be in the pre-set of several
transitions, the assignment specifies also which of the transitions ins• consumes the token.

Given a safe netN, once an assignmentρ for N is fixed, new dependencies arise between
the transitions of the net, formalised by means of the relations≺ρ

i andրρ
i . We definet ≺ρ

i t ′

iff ∃s∈ �t ′∩ •t. ρ(t ′,s) = t andt րρ
i t ′ iff ∃s∈ �t∩ t ′•. ρ(t,s) = t ′. Observe that, as suggested

by the adopted symbols, the additional dependencies can be seen as a kind of causality and
asymmetric conflict, respectively. In fact ift ≺ρ

i t ′, thent ′ can happen only aftert has removed
the token froms, and thust acts as a kind of cause fort ′. If t րρ

i t ′ then if botht andt ′ happen
in the same computation then necessarilyt occurs beforet ′, sincet ′ generates a token in a place
s which inhibitst, while according to the interpretation ofρ, t must occur before the places is
filled.

Under a fixed assignmentρ, we can introduce a kind of generalised causality and asymmet-
ric conflict by joining the “read” relations≤r andրr defined in the previous subsection with
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Figure 9: An executable occurrence i-net for which there exists no assignmentρ making relation
cρ acyclic on the causes of each transition in the net.

the additional dependencies induced by the inhibitor arcs.We define<ρ= (<r ∪ ≺
ρ
i )

+ and
cρ =<ρ ∪րr ∪ր

ρ
i , i.e.,cρ records both kinds of dependency. Furthermore, forx∈ S∪T we

denote by⌊x⌋ρ the set{t ∈ T | t ≤ρ x}, and similarly, forX ⊆ S∪T, we define⌊X⌋ρ =
S

{⌊x⌋ρ |
x∈ X}.

Now we are ready to introduce executable occurrence i-nets,which refine occurrence i-nets
by constraining all the transitions of the net to be firable.

DEFINITION 18 (EXECUTABLE OCCURRENCE I-NET) An executable occurrence i-netis a
safe i-net N such that

• for all t ∈ T there exists an assignmentρ such that(cρ)⌊t⌋ρ is acyclic and⌊t⌋ρ is finite,

• for all s∈ S | •s| ≤ 1, and

• m= {s∈ S| •s= /0}.

It is not difficult to see that each executable occurrence i-net is an occurrence i-net. We denote
by O-INe the full subcategory ofO-IN having executable occurrence i-nets as objects.

We remark that it is not possible to require the existence of asingle assignmentρ such that
cρ is acyclic on⌊t⌋ρ for each transitiont of the net. For instance, such an assignment does not
exist for the net in Fig. 9, although each of its transitions can fire in some computation (thus
for each transitiont there exists an assignmentρ for whichcρ is acyclic on its causes⌊t⌋ρ). In
fact, for the assignmentρ(t2,s) = t1 the relationcρ is cyclic on⌊t4⌋ρ, while for ρ(t2,s) = t3 the
relationcρ is cyclic on⌊t5⌋ρ.

Now, a notion of concurrent set of places of an executable occurrence i-net can be naturally
defined.

DEFINITION 19 (CONCURRENCY) A set of places M⊆ S is called concurrent, written
conc(M), if there is an assignmentρ such that

i. for all s,s′ ∈ M ¬(s<ρ s′),

ii. ⌊M⌋ρ is finite and
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iii. cρ is acyclic on⌊M⌋ρ.

It is possible to show that, as for ordinary and contextual nets, a set of placesM is concurrent
if and only if there is a reachable marking in which all the places ofM contain a token.

PROPOSITION20 Let N be an executable occurrence i-net and let M⊆ S. Then conc(M) iff
there exists a reachable marking M′ such that M⊆ M′.

Proof .See the Appendix.

The above immediately implies a basic property of executable occurrence i-nets, namely
the fact that each transition of such a net can fire in some computation (and thus each place
contains a token at some reachable marking).

PROPOSITION21 Let N be an executable occurrence i-net. Then for each transition t ∈T there
exists a reachable marking such that t is enabled at M.

Proof . Immediate from the previous proposition and the definition of executable occurrence
i-net. 2

We introduce now an unfolding construction, that, when applied to a semi-weighted i-net
N, produces an executable occurrence i-net.

DEFINITION 22 ((EXECUTABLE) UNFOLDING) Let N be a semi-weighted i-net. The(exe-
cutable) unfoldingU e

i (N) = 〈S′,T ′,F ′,C′, I ′,m′〉 of the net N and thefolding morphism
fN = 〈 fT , fS〉 : U e

i (N) → N are the unique executable occurrence i-net and i-net morphism
satisfying the equations given in Definition 12, with the following changes:

T ′ = {t ′ | t ′ = 〈Mp,Mc, t〉 ∧ t ∈ T ∧ Mp∪Mc ⊆ S′ ∧ Mp∩Mc = /0
∧ conc(Mp∪Mc)∧ µ fS(Mp) = •t ∧ µ fS(Mc) = t
∧ ∃ρ. (⌊t ′⌋ρ finite ∧ cρ acyclic on⌊t ′⌋ρ)}

I ′(t ′,s′) iff fS(s′,s) ∧ I( fT(t ′),s)

The main difference with respect to the unfolding of contextual nets is the fact that we refer
here to a notion of concurrency which takes into account alsothe effect of inhibitor arcs.

Figure 10 presents (part of) the executable unfolding of thei-net N3 of Fig. 3. Occurrences
of an itemx are denoted byx′,x′′, . . .. Observe that the non-executable occurrence of transition
t3 is not included in this unfolding.

As one would expect, the two proposed unfolding constructions are tightly related, in
the sense thatU e

i (N) can be obtained fromUi(N) simply by removing the non-executable
transitions (e.g., compare Fig. 8 and Fig. 10). This fact canbe exploited elegantly to prove
the universality of the executable unfolding as follows. First of all, let Π : O-IN → O-INe

be thepruning functorwhich maps each occurrence i-netN = 〈S,T,F,C, I ,m〉 to the net
N′ = 〈S′,T ′,F ′,C′, I ′,m〉, whereT ′ is the subset of executable transitions,S′ is the subset of
reachable places and the relationsF ′, C′ andI ′ are the obvious restrictions of the original re-
lations. The construction extends in an obvious way to a functor, mapping each morphism
f : N1 →N2 into the restrictionfΠ(N1) : Π(N1)→ Π(N2) which is well-defined since morphisms
preserve the token game and thus the executability of transitions.
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Figure 10: Part of the unfoldingU e
i (N3) of i-netN3 of Fig. 3.
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Next one can show that, given an executable occurrence i-netN and any occurrence i-netN′,
a morphismf : N → N′ is also a morphism fromN to Π(N′), and thus that the pruning functor
Π : O-IN → O-INe is right adjoint to the inclusion functorJ e : O-INe →֒ O-IN , andO-INe

is a coreflective subcategory ofO-IN . At this point, one can formally state the relationship
betweenU e

i (N) andUi(N), which provides also an indirect proof of the universality of the
new unfolding construction.

PROPOSITION23 For any semi-weighted i-net N,U e
i (N) = Π(Ui(N)). ThereforeU e

i is right
adjoint to the inclusion functorI e

O : O-INe→SW-IN and they establish a coreflection between
SW-IN andO-INe.

3 Prime and asymmetric event structures, and their relation
with domains

In this background section we recall some basic notions and results on prime event structures
and domains, as developed in [31, 41]. Furthermore we give some intuition on how such results
have been extended in [6] to structures with asymmetric conflict. These notions and results will
be useful later in the treatment of inhibitor event structures.

3.1 Prime event structures and domains.

Prime event structures. Prime event structures(PES) [31] are a simple event-based model
of concurrent computations in which events are considered as atomic and instantaneous steps,
which can appear only once in a computation. The relationships between events are expressed
by two binary relations:causalityandconflict.

DEFINITION 24 (PRIME EVENT STRUCTURES) A prime event structure (PES) is a tuple P=
〈E,≤,#〉, where E is a set ofeventsand≤, # are binary relations on E calledcausality relation
andconflict relationrespectively, such that:

1. the relation≤ is a partial order and⌊e⌋ = {e′ ∈ E : e′ ≤ e} is finite for all e∈ E;

2. the relation# is irreflexive, symmetric and hereditary with respect to≤, i.e., e#e′ and
e′ ≤ e′′ imply e#e′′ for all e,e′,e′′ ∈ E;

Let P0 = 〈E0,≤0,#0〉 and P1 = 〈E1,≤1,#1〉 be twoPES’s. A PES-morphismf : P0 → P1 is
a partial function f : E0 → E1 such that for all e0,e′0 ∈ E0, assuming that f(e0) and f(e′0) are
defined:

1. ⌊ f (e0)⌋ ⊆ f (⌊e0⌋);

2. (a) f(e0) = f (e′0) ∧ e0 6= e′0 ⇒ e0#0e′0;

(b) f(e0)#1 f (e′0) ⇒ e0#0e′0;

The category of prime event structures andPES-morphisms is denoted byPES.
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An event can occur only after some other events (its causes) have taken place, and the
execution of an event can prevent the execution of other events. This is formalised via the
notion ofconfigurationof a PESP = 〈E,≤,#〉, which is a subset of eventsC⊆ E such that for
all e,e′ ∈C ¬(e#e′) (conflict-freeness) and⌊e⌋ ⊆C (left-closedness). Given two configurations
C1 ⊆C2 if e0, . . . ,en is any linearisation of the events inC2−C1, compatible with causality, then

C1 ⊆C1∪{e0} ⊆C1∪{e0,e1} ⊆ . . . ⊆C2

is a sequence of well-defined configurations. Therefore subset inclusion can be safely thought
of as a computational ordering on configurations. The set of configurations of a prime event
structureP, ordered by subset inclusion, is denoted byConf(P).

Prime algebraic domains. A preordered or partially ordered set〈D,⊑〉 will be often denoted
simply asD, by omitting the (pre)order relation. Given an elementx∈ D, we write↓ x to denote
the set{y∈ D | y⊑ x}. Given a subsetX ⊆ D, theleast upper boundandgreatest lower bound
of X, when they exist, are denoted by

F

X and
d

X, respectively. A subsetX ⊆ D is compatible,
written↑ X, if there exists an upper boundd ∈ D for X (i.e.,x⊑ d for all x∈ X). It is pairwise
compatibleif ↑ {x,y} (often writtenx ↑ y) for all x,y ∈ X. A subsetX ⊆ D is directedif any
finite subset ofX has an upper bound inX. The partial orderD is complete(CPO) if any directed
subset ofX has a least upper bound inD.

Let D be aCPO. Recall that an elemente∈ D is compactif for any directed setX ⊆ D,
e⊑

F

X impliese⊑ x for somex∈ X. The set ofcompactelements ofD is denoted byK(D).

DEFINITION 25 (PRIME ALGEBRAIC FINITARY COHERENT POSET) A partial order D is
calledcoherent(pairwise complete) if for all pairwise compatible X⊆ D, there exists the least
upper bound

F

X of X in D.
A complete primeof D is an element p∈ D such that, for any compatible X⊆ D, if p⊑

F

X
then p⊑ x for some x∈ X. The set of complete primes of D is denoted by Pr(D). The partial
order D is calledprime algebraicif for any element d∈ D we have d= (

F

↓ d∩Pr(D)). The
set↓ d∩Pr(D) of complete primes of D below d will be denoted Pr(d). We say that D isfinitary
if for each compact element e∈ K(D) the set↓ e is finite.

Coherent, prime algebraic, finitary partial orders will be referred to as(Winskel’s) do-
mains.

Being not expressible as the least upper bound of other elements, the complete primes ofD
can be seen as elementary indivisible pieces of information(events). Thus prime algebraicity
expresses the fact that any element can be obtained by composing these elementary blocks of
information.

The definition of morphism between domains is based on the notion of immediate prece-
dence. Given a domainD and two distinct elementsd 6= d′ ∈ D we say thatd is animmediate
predecessorof d′, writtend ≺ d′ if

d ⊑ d′ ∧∀d′′ ∈ D. (d ⊑ d′′ ⊑ d′ ⇒ d′′ = d ∨ d′′ = d′)

Moreover we writed � d′ if d ≺ d′ or d = d′. According to the informal interpretation of
domain elements sketched above,d ≺ d′ intuitively means thatd′ is obtained fromd by adding
a quantum of information. Domain morphisms are required to preserve such relation.
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DEFINITION 26 (CATEGORY Dom) Let D0 and D1 be domains. Adomain morphismf : D0 →
D1 is a function, such that:

• ∀x,y∈ D0, if x � y then f(x) � f (y). (�-preserving)

• ∀X ⊆ D0, X pairwise compatible, f(
F

X) =
F

f (X); (Additive)

• ∀X ⊆ D0, X 6= /0 and compatible, f(
d

X) =
d

f (X); (Stable)

We denote byDom the category having domains as objects and domain morphismsas arrows.

Relating prime event structures and domains. Both event structures and domains can be
seen as models of systems where computations are built out from atomic pieces. Formalising
this intuition, in [41] the categoryDom is shown to be equivalent to the categoryPES, the
equivalence being established by two functorsL : PES→ Dom andP : Dom→ PES

PES
L

∼ Dom
P

The functorL associates to eachPES the posetConf(P) of its configurations which can
be shown to be a domain. The image viaL of a PES-morphism f : P0 → P1 is the obvious
extension off to sets of events.

The definition of the functorP, mapping domains back toPES’s requires the introduction
of the notion of prime interval.

DEFINITION 27 (PRIME INTERVAL) Let 〈D,⊑〉 be a domain. Aprime intervalis a pair [d,d′]
of elements of D such that d≺ d′. Let us define

[c,c′] ≤ [d,d′] if (c = c′⊓d) ∧ (c′⊔d = d′),

and let∼ be the equivalence obtained as the transitive and symmetricclosure of (the preorder)
≤.

The intuition that a prime interval represents a pair of elements differing only for a “quantum”
of information is confirmed by the fact that there exists a bijective correspondence between
∼-classes of prime intervals and complete primes of a domainD (see [31]). More precisely, the
map

[d,d′]∼ 7→ p,

wherep is the only element inPr(d′)−Pr(d), is an isomorphism between the∼-classes of
prime intervals ofD and the complete primesPr(D) of D, whose inverse is the function:

p 7→ [
F

{c∈ D | c < p}, p]∼.

The above machinery allows us to give the definition of the functor P “extracting” an event
structure from a domain.

DEFINITION 28 (FROM DOMAINS TO PES’ S) The functorP : Dom→ PES is defined as fol-
lows:
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• given a domain D,P(D) = 〈Pr(D),≤,#〉 where

p≤ p′ iff p ⊑ p′ and p#p′ iff ¬(p ↑ p′);

• given a domain morphism f: D0 → D1, the morphismP( f ) : P(D0) → P(D1) is the
function:

P( f )(p0) =











p1 if p0 7→ [d0,d′
0]∼, f (d0) ≺ f (d′

0)
and[ f (d0), f (d′

0)]∼ 7→ p1;

⊥ otherwise, i.e., if f (d0) = f (d′
0).

3.2 Asymmetric event structures and domains

Asymmetric event structureshave been introduced in [6] as a generalisation of prime event
structures where the conflict relation is allowed to be non-symmetric. Formally, anasymmetric
event structure (AES) is a tripleG = 〈E,≤,ր〉, whereE is a set of events,≤ is the causality
relation andր is a binary relation onE calledasymmetric conflict.

The notion of configuration extends smoothly toAES’s, the main difference being the fact
that the computational order between configurations is not simply set-inclusion. In fact, a con-
figurationC can be extended with an evente′ only if for any evente∈C, it does not hold that
e′ ր e (since, in this case,e would disablee′).

The set of configurations of anAES with such a computational order is a domain. The
corresponding functor from the categoryAES of asymmetric event structures to categoryDom
has a left adjoint which maps each domain to the corresponding prime event structure (eachPES

can be seen as a specialAES). Hence Winskel’s equivalence betweenPESandDom generalises
to a coreflection betweenAES andDom.

4 Inhibitor event structures

This section introduces the class of event structures that we consider adequate for modelling the
complex phenomena which arise in the dynamics of inhibitor nets. Furthermore we establish
a connection betweenIES’s and domains, by showing that the equivalence betweenPES and
Domgeneralises to the existence of a categorical coreflection betweenIES andDom. We finally
study the problem of removing the non-executable events from an IES, by characterising the
full subcategoryIESe, consisting of theIES’s where all events are executable, as a coreflective
subcategory ofIES.

4.1 The category of inhibitor events structures

Let us fix some notational conventions. Given a setX, by 2X
fin we denote the set of finite subsets

of X and by2X
1 the set of subsets ofX of cardinality at most one (singletons or the empty

set). In the sequel generic subsets of events will be denotedby upper case lettersA,B, . . ., and
singletons or empty subsets bya,b, . . .

DEFINITION 29 (PRE-INHIBITOR EVENT STRUCTURE) A pre-inhibitor event structure(pre-
IES) is a pair I = 〈E, 〉, where E is a set ofeventsand ⊆ 2E

1 ×E × 2E is a ternary
relation calleddisabling-enabling relation (DE-relationfor short).
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Informally, if ({e′},e,A) then the evente′ inhibits the evente, which can be enabled again by
one of the events inA. The first argument of the relation can be also the empty set/0, ( /0,e,A)
meaning that the evente is inhibited in the initial state of the system. Moreover thethird argu-
ment (the set of eventsA) can be empty, ({e′},e, /0) meaning that there are no events that
can re-enablee after it has been disabled bye′.

The DE-relation is sufficient to represent both causality and asymmetric conflict and thus,
concretely, it is the only relation of a (pre-)IES. This is formalised in the definition below, which
introduces generalised (or-) causality, asymmetric conflict and conflict (over sets of events) as
relations derived from the DE-relation.

DEFINITION 30 (DEPENDENCY RELATIONS) Let I = 〈E, 〉 be a pre-IES. The relations of
(generalised) causality<⊆ 2E ×E, asymmetric conflictր⊆ E×E andconflict #⊆ 2E

fin are
defined by the following set of rules:

( /0,e,A) #pA

A < e
(< 1)

A < e ∀e′ ∈ A. Ae′ < e′ #p(∪{Ae′ | e′ ∈ A})

(∪{Ae′ | e′ ∈ A}) < e
(< 2)

({e′},e, /0)

eր e′
(ր 1)

e∈ A < e′

eր e′
(ր 2)

#{e,e′}

eր e′
(ր 3)

e0 ր . . . ր en ր e0

#{e0, . . . ,en}
(#1)

A′ < e ∀e′ ∈ A′. #(A∪{e′})

#(A∪{e})
(#2)

where#pA means that the events in A are pairwise conflicting, namely#{e,e′} for all e,e′ ∈ A
with e 6= e′. We will use the infix notation for the binary conflicts, writing e#e′ instead of#{e,e′}.
Moreover we will write e< e′ to indicate{e} < e′.

To understand the basic rule(< 1) notice that if ( /0,e,{e′}) then the evente can be
executed only aftere′ has fired. This is exactly what happens in aPES whene′ causese, or
in symbols whene′ < e. Here, more generally, if ( /0,e,A) then we can imagineA as a set
of disjunctive causes fore, since at least one of the events inA will appear in every history
of the evente; intuitively we can think thate causally depends on

W

A. This generalisation of
causality, restricted to the case in which the setA is pairwise conflicting (namely all distinct
events inA are in conflict), is represented asA < e. Notice that under the assumption that
A is pairwise conflicting, whenA < e exactly oneevent inA appears in each history ofe.
Therefore, in particular, for any evente′ ∈ A, if e ande′ are executed in the same computation
then surelye′ must precedee. Similar notions of or-causality have been studied in general event
structures [41], flow event structures [7] and in bundle event structures [24, 25].

As for rule (ր 1), note that, if ({e′},e, /0) thene can never followe′ in a computation
since there are no events which can re-enablee after the execution ofe′. Instead the converse
order of execution is admitted, namelye canfire beforee′. This situation is naturally inter-
preted as anasymmetric conflictbetween the two events and it is writteneր e′. According to
the “weak causality” interpretation of asymmetric conflict(if eր e′ thene precedese′ in all
computations containing both events) rule(ր 2) imposes asymmetric conflict to include (also
generalised) causality, by asking thatA < e impliese′ ր e for all e′ ∈ A.
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In rule (#1) cycles of asymmetric conflict are used to define a notion of conflict on sets of
events. Ife0 ր e1 . . .en ր e0 then all such events cannot appear together in the same computa-
tion, since each one should precede the others. This fact is formalised via a conflict relation on
sets of events #{e0,e1 . . . ,en}. In particular, binary (symmetric) conflict corresponds toasym-
metric conflict in both directions as expressed by rule(ր 3).

Rule(< 2) generalises the transitivity of the causality relation. IfA < eand for every event
e′ ∈ A we can find a set of eventsAe′ such thatAe′ < e′, then the union of all such sets, namely
∪{Ae′ | e′ ∈ A}, can be seen as (generalised) cause ofe, provided that it is pairwise conflicting.
Observe that in particular, if{e′} < e and{e′′} < e′ then{e′′} < e. Rule(#2) expresses a kind
of hereditarity of the conflict with respect to causality. SupposeA′ < eand that any evente′ ∈A′

is in conflict withA, namely #(A∪{e′}) for anye′ ∈ A′. Since by definition of< the execution
of e must be preceded by an event inA′ we can conclude that alsoe is in conflict with A,
i.e., #(A∪{e}). In particular by takingA′ = {e′} andA = {e′′} we obtain that if{e′} < e and
#{e′,e′′} then #{e,e′′}.

The intended meaning of the relations<, ր and # is summarised below.

A < e means that in every computation wheree is executed, there is exactly one event
e′ ∈ A which is executed and it precedese;

e′ ր e means that in every computation where botheande′ are executed,e′ precedese;

#A means that there are no computations where all events inA are executed.

Notice that, due to the greater generality ofIES’s, the rules defining the dependency relations
are more involved than inPES’s andAES’s, and it is not possible to give a separate definition
of the various relations. In fact, according to rules(< 1) and(< 2) one can deriveA′ < e only
provided that the events inA′ are pairwise conflicting. Asymmetric conflict is in turn induced
both by generalised causality (rule(ր 2)) and by conflict (rule(ր 3)). Finally, the conflict
relation is defined by using the asymmetric conflict (rule(#1)) and it is inherited along causality
(rule (#2)). From a technical point of view, the set of rules in Definition 30 can be interpreted

as a monotone operator over the lattice22E×E × 2E×E × 22E
fin, so that the relations defined by

mutual recursion are, formally, the least fixed point of suchoperator.
Inhibitor event structures properly generalise prime and asymmetric event structures; more-

over, when applied to (the encoding intoIES’s of) prime and asymmetric event structures the
above rules induce the usual relations of causality and (asymmetric) conflict. For what regards
the treatment of disjunctive or-causality (relation<) the presented rules resembles also the
equivalence rules for bundle event structures in [25].

An inhibitor event structure is defined as a pre-IES where events related by the DE-relation
satisfy a few further requirements suggested by the intended meaning of such relation. Fur-
thermore the causality and asymmetric conflict relations must be induced “directly” by the
DE-relation.

DEFINITION 31 (INHIBITOR EVENT STRUCTURE) An inhibitor event structure (IES) is a pre-
IES I = 〈E, 〉 satisfying, for all e∈ E, a∈ 2E

1 and A⊆ E,

1. if (a,e,A) then#pA and∀e′ ∈ a. ∀e′′ ∈ A. e′ < e′′;
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2. if A< e then ( /0,e,A);

3. if eր e′ then ({e′},e, /0).

Note that we can have ( /0,e, /0), meaning that eventecan never be executed. In this case,
by rule (< 1), we deduce/0 < e and thus, by rule(#2), we have #{e}, i.e., the evente is in
conflict with itself. Similarly if (e,e′,A), with e∈ A, by condition (2) above, necessarily
e< eand thus the evente is not executable. In an analogous way, if(e,e,A) theneր e and
thuse is not executable.

We next define the category ofIES’s by introducing a notion ofIES-morphism which, as
discussed later, generalises bothPESandAES-morphisms.

DEFINITION 32 (CATEGORY IES) Let I0 = 〈E0, 0〉 and I1 = 〈E1, 1〉 be twoIES’s. An IES-
morphismf : I0 → I1 is a partial function f: E0 → E1 such that for all e0,e′0 ∈ E0, A1 ⊆ E1,
assuming that f(e0) and f(e′0) are defined:

1. f(e0) = f (e′0) ∧ e0 6= e′0 ⇒ e0#0e′0;

2. A1 < f (e0) ⇒ ∃A0 ⊆ f−1(A1). A0 < e0;

3. 1({ f (e′0)}, f (e0),A1) ⇒ ∃A0 ⊆ f−1(A1). ∃a0 ⊆ {e′0}. 0(a0,e0,A0).

We denote byIES the category of inhibitor event structures andIES-morphisms.

Condition (1) is the usual condition of event structure morphisms which allows one to confuse
only conflicting branches of computations. As formally proved later in Proposition 35 condi-
tion (2) can be seen as a generalisation of the requirement ofpreservation of causes, namely
of the property⌊ f (e)⌋ ⊆ f (⌊e⌋), of PES (and AES) morphisms. Finally, condition (3), as it
commonly happens for event structures morphisms, just imposes the preservation of computa-
tions by asking, whenever some events in the image are constrained in some way, that stronger
constraints are present in the pre-image. More precisely suppose that 1({ f (e′0)}, f (e0),A1).
Thus we can have a computation wheref (e′0) is executed first andf (e0) can be executed only
after one of the events inA1. Alternatively the computation can start with the execution of
f (e0). According to condition (3),e0 ande′0 are subject inI0 to the same constraint of their
images or, whena0 = /0 or A0 = /0, to stronger constraints selecting one of the possible orders of
execution. It is worth stressing that, sinceAi < ei can be equivalently expressed as( /0,ei ,Ai),
condition (2) is essentially a variation of (3), which is needed to cover the case in which the
first argument of the DE-relation is the empty set.

The next proposition gives some useful properties ofIES-morphisms, which are basically
generalisations of analogous properties holding in the case of prime and asymmetric event
structures.

PROPOSITION33 Let I0 and I1 be IES’s and let f : I0 → I1 be an IES-morphism. For any
e0,e′0 ∈ E0,

1. if f(e0) < f (e′0) then∃A0. e0 ∈ A0 < e′0 or e0#e′0;

2. if f(e0) ր f (e′0) then e0 ր e′0.
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Proof . See the Appendix. In particular the above results are usefulin showing thatIES-

morphisms are closed under composition and thus that category IES is well-defined.

PROPOSITION34 TheIES-morphisms are closed under composition.

Proof .See the Appendix.

The categoryPES of prime event structures can be viewed as a full subcategoryof IES.
This result substantiates the claim thatIES’s (and constructions on them) are a “conservative”
extension ofPES’s.

PROPOSITION35 (PRIME AND INHIBITOR EVENT STRUCTURES) Let Ji : PES→ IES be
the functor defined as follows. To anyPES P = 〈E,≤,#〉 the functorJi associates theIES

〈E, 〉 where the DE-relation is defined by ( /0,e,{e′′}) if e′′ < e and ({e′},e, /0) if e#e′,
and for anyPESmorphism f: P1 → P2 its imageJi( f ) is f itself. Then the functorJi is a full
embedding ofPES into IES.

More generally, it is possible to show that the category of asymmetric event structures intro-
duced in [6] fully embeds intoIES (see [4]). Also (extended) bundle event structures [25] and
prime event structures with possible events [35] can be seenas special classes ofIES’s. As we
will discuss later, the categorical treatment ofIES’s and the results relatingIES’s and domains
specialises to such event structure models.

4.2 Saturation of pre-IES’s

Given a pre-IES I satisfying only condition (1) of Definition 31, it is always possible to “satu-
rate” the relation in order to obtain anIES where the relations of causality and (asymmet-
ric) conflict are exactly the same as inI . Intuitively, in aPES-like structure where only “direct”
causality and conflict between events are given, the saturation would amount to taking the tran-
sitive closure of causality and to inherit conflict along causality. The DE-relation derived from
the unfolding of an i-net will be not saturated, hence the saturation operation will play a central
role in defining theIES semantics of an i-net (see Definition 55).

PROPOSITION36 Let I = 〈E, 〉 be a pre-IES satisfying condition (1) of Definition 31. Then
I = 〈E, s〉, where s = ∪{( /0,e,A) | A < e}∪{({e′},e, /0) | eր e′} is a IES, called the
saturationof I. Moreover the relations of causality, asymmetric conflict and conflict inI are the
same as in I.

The next technical lemma will be quite useful later to prove that some mappings between
IES’s are well-definedIES-morphisms (see Propositions 52 and 56 and Lemma 61). It singles out
some sufficient conditions for a function between pre-IES’s to be a well-definedIES-morphism
between theIES’s obtained by saturating them.

LEMMA 37 Let Ii = 〈Ei , i〉 (i ∈ {0,1}) be pre-IES’s satisfying condition (1) of Definition 31,
let Ii = 〈Ei ,

s
i 〉, and let<i, րi and#i be the relations of causality, asymmetric conflict and

conflict in Ii . Let f : E0 → E1 be a partial function such that for each e0,e′0 ∈ E0 and A1 ⊆ E1:

1. f(e0) = f (e′0) ∧ e0 6= e′0 ⇒ e0#0e′0;
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2. 1( /0, f (e0),A1) ⇒ ∃A0 ⊆ f−1(A1). A0 <0 e0;

3. 1( f (e′0), f (e0), /0) ⇒ e0 ր0 e′0;

4. 1({ f (e′0)}, f (e0),A1)∧A1 6= /0 ⇒ ∃A0 ⊆ f−1(A1).∃a0 ⊆ {e′0}.
s
0(a0,e0,A0).

Then f : I0 → I1 is an IES-morphism.

Proof .See the Appendix.

4.3 The domain of configurations of inhibitor event structures

The domain associated to anIES is obtained by considering the family of its configurations with
a suitable order. Since here computations involving the same events may be different from the
point of view of causality, a configuration is not uniquely identified as a set of events, but some
additional information has to be added which plays a basic role also in the definition of the order
on configurations. More concretely, a configuration of anIES is a set of events endowed with
a choice relation(playing a role similar to assignments for occurrence i-nets) which chooses
among the possible different orders of execution of events constrained by the DE-relation.

Consider a set of eventsC of an inhibitor event structureI , and supposee′,e,e′′ ∈ C and
({e′},e,A) for someA, with e′′ ∈ A. We already noticed that in this case there are two

possible orders of execution of the three events (eithere;e′;e′′ or e′;e′′;e), which cannot be
identified from the point of view of causality. A choice relation for C must choose one of them
by specifying thate precedese′ or thate′′ precedese. To ease the definition of the notion of
choice relation, we first introduce, for a given set of eventsC, the setchoices(C), a relation
onC which “collects”all the possible precedences between events induced by the DE-relation.
A choice relation forC is then defined as suitable subset ofchoices(C). To ensure that all
the events in the configuration are executable in the specified order, the choice relation is also
required to satisfy suitable properties of acyclicity and finitariness.

DEFINITION 38 (CHOICE) Let I = 〈E, 〉 be anIES and let C⊆ E. We denote by choices(C)
the set

{(e,e′) | ∃A. C({e′},e,A)}∪{(e′′,e) | ∃a. ∃A. C(a,e,A)∧ e′′ ∈ A} ⊆C×C,

where the restriction of (, ,) to C is defined by C(a,e,A) if and only if (a,e,A′) for
some A′, with e∈C, a⊆C and A= A′∩C.
A choicefor C is a relation→֒C ⊆ choices(C) such that

1. if C(a,e,A) then∃e′ ∈ a. e֒→Ce′ or ∃e′′ ∈ A. e′′ →֒Ce;

2. →֒C is acyclic;

3. ∀e∈C. {e′ ∈C | e′ →֒∗
Ce} is finite.

Condition (1) intuitively requires that whenever the DE-relation permits two possible orders of
execution, the relation֒→C chooses one of them. The fact that→֒C ⊆ choices(C) ensures that
→֒C imposes precedences only between events involved in the DE-relation. Conditions (2) and
(3) guarantee that the precedences specified by→֒C do not give rise to cyclic situations and
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that each event must be preceded only by finitely many others.Notice that the acyclicity of
→֒C ensures that exactly one of the two possible choices in condition (1), namely either∃e′ ∈
a. e֒→Ce′ or ∃e′′ ∈ A. e′′ →֒Ce is taken. Otherwise, ife֒→Ce′ ande′′ →֒Ce, since necessarilye′ <
e′′ and thuse′ →֒Ce′′, the relation֒→C would be cyclic. It is worth observing that conditions (2)
and (3) can be equivalently rephrased by saying that→֒∗

C is a finitary partial order.
Configurations ofPES’s (andAES’s, see [6]) are required to be conflict free and downward

closed with respect to causality. The following proposition shows that the property of admitting
a choice implies a generalisation of causal closedness and conflict freeness. Furthermore any
choice certainly agrees with the asymmetric conflict (sinceboth relations impose an order of
execution on events).

PROPOSITION39 Let I = 〈E, 〉 be anIES and let C⊆ E be a subset of events such that there
exists a choice֒→C for C. Then

1. for any e∈C, if A< e then A∩C 6= /0;

2. րC⊆ →֒C;

3. for any A⊆C it is not the case that#A.

Proof .1. Observe that ifA < e, by definition ofIES, ( /0,e,A). Therefore, ifA∩C = /0 then
we would have C( /0,e, /0). Therefore no relation overC could be a choice, since condition (1)
of Definition 38 could not be satisfied.

2. ConsiderC ⊆ E ande,e′ ∈ C. If eր e′ then, by definition ofIES, ({e′},e, /0) and
thus C({e′},e, /0). Therefore, if→֒C is a choice forC, by condition (1) in Definition 38,
necessarilye֒→Ce′.

3. LetA⊆C and suppose that #A. Then it is easy to show thatC contains a cycle of asym-
metric conflict, and thus by point (2), any choice forC would be cyclic as well, contradicting
the definition.

The proof of the fact that if #A for someA ⊆ C thenC contains a cycle of asymmetric
conflict proceeds by induction on the height of the derivation of #A. The base case in which the
last rule in the derivation is(#1), namely

e0 ր . . . ր en ր e0

#{e0, . . . ,en}
(#1)

is trivial. Suppose instead that the last rule in the derivation is (#2), namely

A′′ < e ∀e′ ∈ A′′. #(A′∪{e′})

#(A′∪{e})
(#2)

In this case, by point (1), there existse′′ ∈ A′′∩C. Since #(A′∪{e′′}) by the second premise of
the rule, andA′∪{e′′} ⊆C we conclude by inductive hypothesis. 2

A configuration of anIES is now introduced as a set of events endowed with a choice
relation. Proposition 39 above shows how this definition generalises the notion ofPESandAES

configuration.
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DEFINITION 40 (CONFIGURATION) Let I = 〈E, 〉 be anIES. A configurationof I is a pair
〈C, →֒C〉, where C⊆ E is a set of events and→֒C ⊆C×C is achoicefor C.

In the sequel, with abuse of notation, we will often denote a configuration and the underlying
set of events with the same symbolC, referring to the corresponding choice relation as→֒C.

As the reader probably noticed, the notions of choice and that of assignment are strictly
related. Formally, as we will see later, each occurrence i-net N can be mapped to anIES and,
for any subsetX ⊆ T, an assignmentρ for N such thatX = ⌊X⌋ρ andcρ is acyclic and finitary
onX, uniquely determines a choice turningX in a configuration of theIES corresponding toN.

We already know that the existence of a choice implies the causal closedness and conflict
freeness of a configuration. Moreover, ifC is a configuration, given anye∈ C andA < e, not
only A∩C 6= /0, but since by definition of< necessarily #pA, we have thatA∩C contains exactly
one event. More generally, for the same reason, ifC is a configuration and (a,e,A) for some
e∈ C, thenA∩C contains at most one element, and if it is non-empty thena ⊆ C. The last
assertion is obvious ifa = /0, while if a = {e′} it follows from Proposition 39.(1), recalling that
e′ < e′′ for all e′′ ∈ A.

The next technical proposition shows a kind of maximality property of the choice relation
for a configuration. It states that if a choice forC relates two events, then any other choice for
C must establish an order between such events. Consequently two compatible choices on the
same set of events must coincide.

PROPOSITION41 Let 〈Ci , →֒Ci 〉 for i ∈ {1,2} be configurations of anIES I.

1. If e,e′ ∈C1∩C2 and e֒→C1e′ then e֒→C2e′ or e′ →֒∗
C2

e.

2. If C1 = C2 and →֒∗
C1

⊆ →֒∗
C2

then→֒C1 = →֒C2, namely the two configurations coincide.

Proof .See the Appendix.

The next definition introduces a computational order on the set of configurations of anIES.

DEFINITION 42 (EXTENSION) Let I = 〈E, 〉 be anIES and let C and C′ be configurations
of I. We say that C′ extendsC and we write C⊑C′, if

1. C⊆C′;

2. ∀e∈C. ∀e′ ∈C′. e′ →֒C′e ⇒ e′ ∈C;

3. →֒C ⊆ →֒C′ .

The poset of all configurations of I, ordered by extension, isdenoted by Conf(I).

The extension relation defined onIES’s configurations is a generalisation of that introduced
in [6] for AES’s. The basic idea is that a configurationC can be extended only by adding events
which are not supposed to happen before other events alreadyin C, as expressed by condi-
tion (2). Moreover the extension relation takes into account the choice relations of the two
configurations. Intuitively, condition (3) serves to ensure, together with (2), that the past history
of events inC remains the same inC′.

The history of an event in a configurationC is formally defined as a suitable subconfigura-
tion of C.
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DEFINITION 43 (HISTORY) Let I be anIES and let C∈ Conf(I) be a configuration. For any
e∈ C we define thehistoryof e in C as the configuration〈C[[e]], →֒C[[e]]〉, where C[[e]] = {e′ ∈
C | e′ →֒∗

Ce} and →֒C[[e]] = →֒C∩ (C[[e]]×C[[e]]).

It is not difficult to see that〈C[[e]], →֒C[[e]]〉 is a well-defined configuration. The only fact that
is not obvious is the validity of condition (1) in the definition of choice (Definition 38). Now,
if C[[e]](a,e′,A) then C(a,e′,A′) with a ⊆ C[[e]], e′ ∈ C[[e]] andA = A′ ∩C[[e]]. BeingC
a configuration, it must bee′ →֒Ce0 for e0 ∈ a or e1→֒Ce′ for somee1 ∈ A′. In the first case,
e0 ∈ a⊆ C[[e]] and thuse′ →֒C[[e]]e0, while in the second case, sincee′ ∈C[[e]], by definition of
history we must havee1 ∈C[[e]], thuse1→֒C[[e]]e

′.
Recall that, by definition, the reflexive and transitive closure of a choice is a finitary partial

order, and thus each historyC[[e]] is a finite configuration. Furthermore, it is easy to see that
C[[e]] ⊑C.

The next lemma shows that, given a pairwise compatible set ofconfigurationsX ⊆ Conf(I)
of an IES I , its greatest lower bound and least upper bound can be computed componentwise.
Furthermore, for anyC1 andC2 in X, if they contain a common evente, then the history ofe in
the two configurations is the same, namelyC1[[e]] = C2[[e]].

LEMMA 44 Let X⊆ Conf(I) be a pairwise compatible set of configurations of anIES I and let
C1,C2 ∈ X. Then

1. if e֒→∗
C1

e′ and e′ ∈C2 then e∈C2 and e֒→∗
C2

e′;

2. if e∈C1∩C2 then C1[[e]] = C2[[e]];

3. C1⊓C2 = C1∩C2, with →֒C1∩C2 = →֒C1 ∩ →֒C2;

4. the least upper bound of X exists, and it is given by
G

X = 〈
[

C∈X

C,
[

C∈X

→֒C〉.

Proof .See the Appendix.

By exploiting such properties, we can prove that the poset ofconfigurations of anIES has
the desired algebraic structure.

THEOREM 45 (CONFIGURATIONS FORM A DOMAIN) Let I be anIES. Then〈Conf(I),⊑〉 is a
domain. The complete primes of Conf(I) are the possible histories of events in I, i.e.

Pr(Conf(I)) = {C[[e]] |C∈ Conf(I),e∈C}.

Proof .Let us start by showing that for eachC∈Conf(I) ande∈C, the configurationC[[e]] is a
complete prime element. SupposeC[[e]]⊑

F

X for X ⊆ Conf(I) pairwise compatible. Therefore
there existsC1 ∈ X such thate∈C1. SinceC1 andC[[e]] are bounded by

F

X, by Lemma 44.(2),
C[[e]] = C1[[e]]. Observing thatC1[[e]] ⊑C1, it follows that, as desired,C[[e]] ⊑C1.

Now, by a set-theoretical calculation exploiting the definition of history (Definition 43) and
the characterisation of the least upper bound in Lemma 44, weobtain

C =
G

e∈C

C[[e]] =
G

Pr(C).
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This shows thatConf(I) is prime algebraic and thatPr(Conf(I)) = {C[[e]] |C∈Conf(I),e∈C}.
The fact thatConf(I) is coherent has been proved in Lemma 44.(4). Finally, the finitariness

of Conf(I) follows from prime algebraicity and the fact thatC[[e]] is finite for eachC∈ Conf(I)
ande∈C. 2

We remark that ifP is a PESandI = Ji(P) is its encoding intoIES’s, then for each con-
figuration ofI the choice relation is uniquely determined as the restriction of causality to the
configuration. Therefore the domain of configurationsConf(I) defined in this section coincides
with the domainConf(P) as defined by Winskel. A similar situation arises for theIES encoding
of asymmetric event structures [6],PESwith possible events [34] and (extended) bundle event
structures [25].

4.4 A coreflection between IES and Dom

To prove that the construction which associates the domain of configurations to anIES lifts to a
functor fromIES to Dom, a basic result is the fact thatIES-morphisms preserve configurations.
Observe that since configurations are not simply sets of events it is not completely obvious, a
priori, what should be the image of a configuration through a morphism. Letf : I0 → I1 be an
IES-morphism and letC0 be a configuration ofI0. According to the intuition underlyingIES

(and general event structure) morphisms, we expect that anypossible execution of the events
in C0 can be simulated inf (C0). But the converse implication is not required to hold, namely
the level of concurrency inf (C0) may be higher. For instance we can map two causally related
eventse0 ≤ e1 to a pair of concurrent events. Hence we cannot pretend that the whole image of
the choice relation ofC0 is a choice forf (C0), but just that there is a choice forf (C0) included
in such image. By the properties of choices, there is only onechoice onf (C0) included in the
image of֒→C0, which is obtained as the intersection of the image of→֒C0 with choices( f (C0)).

Given a functionf : X →Y and a relationr ⊆ X×X, we will denote byf (r) the relation in
Y defined asf (r) = {(y,y′) | ∃(x,x′) ∈ r. f (x) = y ∧ f (x′) = y′}.

LEMMA 46 Let f : I0 → I1 be anIES-morphism and let〈C0, →֒0〉 ∈ Conf(I0). Then the pair
〈C1, →֒1〉 with C1 = f (C0) and →֒1 = f (→֒0)∩choices( f (C0)), namely the unique choice rela-
tion on C1 included in f(→֒C0), is a configuration in I1. Moreover the function f∗ : Conf(I0)→
Conf(I1) which associates to each configuration C0 the configuration C1 defined as above, is a
domain morphism.

Proof .See the Appendix.

The previous lemma implies that the construction taking anIES into its domain of configu-
rations can be viewed as a functor.

PROPOSITION47 There exists a functorLi : IES →Dom defined asLi(I) = Conf(I) for each
IES I andLi( f ) = f ∗ for eachIES-morphism f: I0 → I1.

A functor going back from domains toIES’s, namelyPi : Dom → IES can be obtained
simply as the composition of the functorP : Dom→ PES, defined by Winskel, with the full
embeddingJi of PES into IES discussed in Proposition 35. The functorPi is left adjoint to
Li and thus they establish a coreflection betweenIES andDom.
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THEOREM 48 (COREFLECTION BETWEENIES AND Dom) The functorPi : Dom → IES is
left adjoint toLi : IES → Dom. The counit of the adjunction at anIES I is the functionεI :
Pi ◦Li(I)→ I, mapping each history of an event e into the event e itself, i.e.,εI (C[[e]]) = e, for
all C ∈ Conf(I) and e∈C.

Proof (Sketch).Let I be anIES and letεI : Pi(Li(I))→ I be the function defined asεI (C[[e]])=
e, for allC∈Conf(I) ande∈C. It is not difficult to prove thatεI is a well-definedIES-morphism
(see the full proof in the Appendix).

We have to show that given any domain(D,⊑) and IES-morphismh : Pi(D) → I , there is
a unique domain morphismg : D → Li(I) such that the following diagram commutes:

Pi(Li(I))
εI

I

Pi(D)

Pi (g)
h

The morphismg : D → Li(I) can be defined as follows. Givend ∈ D, observe thatCd =
〈Pr(d),<Pr(d)〉 is a configuration ofPi(D), where<Pr(d)=< ∩(Pr(d)×Pr(d)). Therefore
we can define

g(d) = h∗(Cd).

The fact thath∗(Cd) is a configuration inI and thus an element ofLi(I), follows from
Lemma 46. Moreoverg is a domain morphism. In fact it is�-preserving, AdditiveandSta-
ble (see the full proof in the Appendix).

The rest of the proof essentially relies on a general result which holds of any domain mor-
phism f : D→Li(I) having as target the domain of configurations of anIES: for all p∈ Pr(D),
| f (p)−

S

f (Pr(p)−{p}) |≤ 1 and

Pi( f )(p) =

{

⊥ if f (p)−
S

f (Pr(p)−{p}) = /0
f (p)[[e]] if f (p)−

S

f (Pr(p)−{p}) = {e}

Exploiting such result, the fact that morphismg defined as above makes the diagram commute
and its uniqueness follow as easy consequences. 2

It is worth stressing that the above result, together with Winskel’s equivalence between
the categoryDom of domains and the categoryPES of prime event structures, allows one to
translate anIES I into aPESP(Li(I)).

COROLLARY 49 The functorJi : PES→ IES is left adjoint ofP ◦Li : IES → PES. The unit
will be denoted byκ : 1→ P ◦Li ◦Ji.

The universal characterisation of the construction intuitively ensures that the obtainedPES

is the “best approximation” ofI in the categoryPES. By the characterisation of the complete
prime elements in the domain of configurations (see Theorem 45) we have that the events
in P(Li(I)) are the possible histories of the events inI . The picture below depicts thePES

corresponding to a basicIES containing the events{e,e′,e0, . . . ,en} related by the DE-relation
as ({e′},e,{e0, . . . ,en}). We explicitly represent a history of an evente as a set of events,
wheree appears in boldface style.
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{e} # {e′}

{e,e′} {e′,e0} · · · {e′,en}

{e,e′,e0} · · · {e,e′,en} {e′,e0,e} · · · {e′,en,e}

As observed before, asymmetric event structures [6], (extended) bundle event struc-
tures [25], prime event structures with possible events [35] can be seen as subcategories of
IES. Let ES be any of such subcategories. SinceES includes all the prime event structures, it
is easy to prove that the coreflection betweenIES andDom restricts to a coreflection between
ES andDom [4].

4.5 Removing non-executable events

The non-executability of events in anIES is not completely captured by the proof system of
Definition 30, in the sense that we cannot derive #{e} for every non-executable event. Here we
propose a semantic approach to rule out unused events from anIES, namely we simply remove
from a givenIES all events which do not appear in any configuration. Nicely, this can be done
functorially and the subcategoryIESe of IES’s where all events are executable turns out to be a
coreflective subcategory ofIES. Moreover, the coreflection betweenIES andDom restricts to
a coreflection betweenIESe andDom.

We start defining the subcategory ofIES’s where all events are executable.

DEFINITION 50 We denote byIESe the full subcategory ofIES consisting of theIES’s I =
〈E, 〉 such that for any e∈ E there exists C∈ Conf(I) with e∈C.

Any IES is turned into anIESe object by forgetting the events which do not appear in
any configuration. The next definition introduces the functor Ψ : IES → IESe performing such
construction.

DEFINITION 51 We denote byΨ : IES → IESe the functor mapping eachIES I into the IESe

objectΨ(I) = 〈ψ(E), ψ(E)〉, where(.) denotes saturation (see Proposition 36) andψ(E) is
the set of executable events in I, namely

ψ(E) = {e∈ E | ∃C∈ Conf(I). e∈C}.

Moreover if f : I0 → I1 is an IES-morphism thenΨ( f ) = f|ψ(E0). With Jies : IESe → IES we
denote the inclusion.

The fact thatΨ(I) is anIESe object follows easily from its definition. The well-definedness
of Ψ( f ) for any IES-morphismf is basically a consequence of the fact that, by Lemma 46, an
IES-morphism preserves configurations and thus also executable events.
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PROPOSITION52 Let I0 and I1 be IES’s and let f : I0 → I1 be anIES-morphism. ThenΨ( f ) :
Ψ(I0) → Ψ(I1), defined as above, is anIES-morphism. HenceΨ is a well-defined functor.

Proof .See the Appendix.

It is easy to verify that, ifI is a IESe object andI ′ an arbitraryIES, then anyIES-morphism
f : I → Ψ(I ′) is also a morphismf : I → I ′. This implies that the inclusion ofIESe into IES is
left adjoint toΨ, i.e.,Ψ ⊢ Jies, and thus thatIESe is a coreflective subcategory ofIES.

PROPOSITION53 (RELATING IES AND IESe) Ψ ⊢ Jies

Finally observe that the functorPi : Dom→ IES maps each domain into the encoding of
a PES, which is clearly an object inIESe. Therefore it is easy to prove that the coreflection
betweenIES andDom restricts to a coreflection betweenIESe andDom.

COROLLARY 54 LetPe
i : Dom→ IESe andL e

i : IESe → Dom denote the restrictions of the
functorsPi andLi . ThenPe

i ⊣ L e
i .

5 Event structure semantics for i-nets

To provide an event structure and a domain semantics for i-nets we investigate the relation-
ship between occurrence i-nets and inhibitor event structures. The kind of dependencies arising
among transitions in an occurrence i-net can be representednaturally by the DE-relation, and
therefore theIES corresponding to an occurrence i-net is obtained by forgetting the places and
taking the transitions of the net as events. Furthermore morphisms between occurrence i-nets re-
strict to morphisms between the correspondingIES’s, and therefore the semantics can be given
via a functorEi : O-IN → IES. The construction, when applied to an executable occurrence
i-net, restricts to a functorE e

i : O-INe → IESe.
When combined with the coreflection betweenIES andDom and with Winskel’s equiv-

alence betweenDom andPES, this result allows us to obtain a functor fromO-IN to PES.
Answering a question left open in [5], we show that such functor admits a left adjoint providing
a coreflection betweenO-IN andPES.

The analogy with contextual nets breaks for the fact that, while in [6] the coreflection be-
tweenO-CN andPESis expressed as the composition of two coreflections, between O-CN and
the categoryAES of asymmetric event structures and betweenAES andPES, here, in the case
inhibitor nets, the functor fromPES to O-IN does not factorize through the categoryIES. An
object level construction can be easily performed, associating to eachIES a corresponding i-net.
However such a construction does not give rise to a functor and, actually, we show that there is
no functor fromIES to O-IN forming a coreflection withEi . The last part of this section briefly
discusses the origin of this problem, showing that it is intimately connected to or-causality.

5.1 From occurrence i-nets toIES’s and PES’s

Let us show first how anIES can be extracted from an occurrence i-net.

DEFINITION 55 Let N be an occurrence i-net. The pre-IES associated to N is defined as Ip
N =

〈T,
p
N〉, with p

N ⊆ 2T
1 ×T ×2T, given by: for t,t ′ ∈ T, t 6= t ′ and s∈ S
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1. if t•∩ ( •t ′∪ t ′) 6= /0 then p
N( /0,t ′,{t})

2. if ( •t ∪ t)∩ •t ′ 6= /0 then p
N({t ′},t, /0);

3. if s∈ �t then p
N( •s, t,s•).

TheIES associated to N, denoted by IN = 〈T, N〉, is obtained by saturating Ip
N, i.e., IN = I p

N.

The first two clauses of the definition encode, by using the DE-relation, the causal dependen-
cies and the asymmetric conflicts induced by the flow and read arcs (we could have written
“if t <r t ′ then p

N( /0, t ′,{t})” and “if t րr t ′ then p
N({t ′},t, /0)”). The last clause fully ex-

ploits the expressiveness of the DE-relation to represent the dependencies induced by inhibitor
places. Notice thatI p

N is a pre-IES satisfying also condition (1) of the definition ofIES. Thus, by
Proposition 36, it can be saturated to obtain theIES IN.

The next proposition shows that the transition component ofan i-net morphism is anIES-
morphism between the correspondingIES’s.

PROPOSITION56 Let N0 and N1 be occurrence i-nets and let h: N0 →N1 be an i-net morphism.
Then hT : IN0 → IN1 is a IES-morphism.

Proof .See the Appendix.

By the above proposition we get the existence of a functor which maps each i-net to the
correspondingIES defined as in Definition 55 and each i-net morphism to its transition compo-
nent.

DEFINITION 57 We denote byEi : O-IN → IES the functor defined asEi(N) = IN for each
occurrence i-net N andEi(h : N0 → N1) = hT for each morphism h: N0 → N1.

By exploiting the relation between choices and assignmentsmentioned before, one can
verify that if N is an executable occurrence i-net thenEi(N) is an IESe object. Therefore the
functorEi restricts to a functorE e

i : O-INe → IESe.
The coreflection betweenIES (IESe) andDom can be finally used to obtain a domain se-

mantics, and, by exploiting Winskel’s equivalence, a primeevent structure semantics for semi-
weighted i-nets. As explained in Section 4.4, thePES semantics is obtained from theIES se-
mantics by introducing an event for each possible differenthistory of events in theIES.

Figure 11 presents part of the domain associated to the netN3 of Fig. 3, namely of
Li(Ei(Ui(N3))) = L e

i (E e
i (U e

i (N3))). The choice relation for each configuration is implicitly
represented by the order in which events are mentioned in thecorresponding set. Observe that
several distinct configurations contains exactly the same events.

5.2 From prime event structures to occurrence i-nets

In [41] Winskel maps each prime event structure into a canonical occurrence net, via a free
construction which generates for each set of events relatedin a certain way by the dependency
relations a unique place that induces that kind of relation on the events. We next show how this
construction can be generalised to inhibitor nets.
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Figure 11: Part of the domainLi(Ei(Ui(N3))) = L e
i (E e

i (U e
i (N3))) associated to the netN3 in

Fig. 3.

DEFINITION 58 (FROM PES’ S TO OCCURRENCE I-NETS) Let P= 〈E,≤,#〉 be aPESand let
ր denote the corresponding asymmetric conflict relation, i.e., ր= <∪#. ThenNi(P) is the
i-net N= 〈S,T,F,C, I ,m〉 defined as follows, where A,B range over2E and e∈ E,

• m= {〈 /0,A,B〉 | ∀a∈ A. ∀b∈ B. aր b ∧ #pB};

• S= m∪{〈{e},A,B〉 | ∀e′ ∈ A∪B. e< e′ ∧ ∀a∈ A. ∀b∈ B. aր b ∧ #pB};

• T = E;

• F = 〈Fpre,Fpost〉, with

Fpre = {(e,s) | s= 〈x,A,B〉 ∈ S, e∈ B},

Fpost = {(e,s) | s= 〈{e},A,B〉 ∈ S};

• C = {(e,s) | s= 〈x,A,B〉 ∈ S, e∈ A}.

• I = {(e,s) | s= 〈x,A,B〉 ∧ ((∃e′ ∈ x. eր e′) ∨ (∃e′ ∈ B. e′ < e))}

The definition ofm, S, T andC is similar to the construction in [6], which associates a canonical
contextual net to an asymmetric event structure. The transitions of netNi(P) are the events of
P and the places are triples of the form〈x,A,B〉, with x,A,B⊆ E, and|x| ≤ 1, added to induce
the same dependencies between events as those existing inP. A place〈x,A,B〉 is a precondition
for all the events inB and a context for all the events inA. Moreover, ifx = {e}, such a place is
a postcondition fore, otherwise ifx= /0 the place belongs to the initial marking. Therefore each
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place gives rise to a conflict between each pair of (distinct)events inB and to an asymmetric
conflict between each pair of eventsa∈ A andb∈ B.

With the same spirit, the net is saturated with all the inhibitor arcs inducing the correct
dependencies among events. Consider a places= 〈x,A,B〉 and two eventse, e′. To understand
the second branch of the disjunction in the definition ofI above, assume thate′ ∈ B ande′ < e.
Then places is in the pre-set ofe′ and thus it must be emptied by the firing ofe′ before the
execution ofe. Hence we forces to inhibit e in Ni(P), i.e., we insert the pair(e,s) in I . The first
branch of the disjunction is motivated by analogous considerations.

Two technical lemmata follow which will play a crucial role in the proof of the main result
of this section. The first one can be proved as Lemma 7.2 in [6],hence its proof is omitted. In the
sequel, given an i-netN and a transitiont ∈ T, we will denote by⌈{t}⌉ its set of consequences,
namely⌈{t}⌉= {t ′ ∈ T | t <r t ′}. For notational convenience the consequences are defined also
for the empty set by⌈ /0⌉= T.

LEMMA 59 Let N0, N1 be occurrence i-nets and let h: N0 → N1 be a morphism. For s0 ∈ S0

and s1 ∈ S1, if hS(s0,s1) then

1. hT( •s0) = •s1;

2. s0• = h−1
T (s1

•)∩⌈ •s0⌉;

3. s0 = h−1
T (s1)∩⌈ •s0⌉;

4. h−1
T (�s1) ⊆

�s0.

LEMMA 60 Let P be aPES, let N0 be an occurrence i-net and let hT : Ji(P) → Ei(N0) be an
IES-morphisms (recall thatJi is the full embedding ofPESinto IES defined in Proposition 35).
Then there exists a unique hS such that h= 〈hT ,hS〉 : Ni(P) → N0 is an i-net morphism.

Proof .See the Appendix.

The next lemma shows that constructing the occurrence i-netfor a givenPESand then taking
the correspondingIES, one recovers (anIES isomorphic to) the originalPES.

LEMMA 61 For any PES P, the identity over the eventsρP : Ji(P) → Ei(Ni(P)) is an IES-
isomorphism.

Proof .See the Appendix.

We can thus present the main result of this section, which shows that the functorNi is left
adjoint to the functorPLiEi , mapping each occurrence i-net into the correspondingPES.

THEOREM 62 The constructionNi extends to a functorNi : PES→ O-IN andNi ⊣ PLiEi.

Proof . Let us prove thatNi ⊣ PLiEi with unit ηP : P → PLiEi(Ni(P)) defined asηP =
κP;PLi(ρP)

P
κP−→ PLiJi(P)

PLi(ρP)
−→ PLiEi(Ni(P))
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whereκP is the unit of the coreflection betweenIES andPES (see Corollary 49) andρP is the
identity on events (see Lemma 61).

We must show that for anyPESP, occurrence i-netN and morphismf : P → PLiEi(N)
there is a unique arrowg : Ni(P) → N such that the outer triangle commutes

P

f

κP
PLiJi(P)

PLi(ρP)

PLi(h)

PLiEi(Ni(P))

P(Li(Ei(g)))

PLiEi(N)

Since, by Corollary 49Ji ⊣ PLi , there is a uniqueh : Ji(P) → Ei(N) such that the left
triangle above commutes.

Furthermore, by Lemma 60,h uniquely extends to a morphismg : Ni(P) → N such that
Ei(g) = gT = h, thus making the right triangle in the diagram above commute(recall thatρP

is the identity on events). This proves the existence of the morphismg we were looking for.
Uniqueness follows from the observation that the existenceof two distinct choices forg would
violate the uniqueness ofh. 2

Observe that the image of the functorNi is entirely included inO-INe, i.e., for anyPES

P the netNi(P) is an executable occurrence i-net. HenceNi naturally restricts to a functor
N e

i : PES→ O-INe, which, by general arguments, is left adjoint toP ◦L e
i ◦E e

i . Also note
that since the functorsIO◦Ni ,I e

O◦N e
i : PES→ SW-IN clearly coincide, as a byproduct we

immediately have that also their right-adjoints are the same, i.e., the two proposed constructions
(with or without non-executable events) lead to the samePES(and domain).

5.3 From IES’s to i-nets: a negative result

We finally show that, differently from what happens for contextual nets and asymmetric event
structures, the coreflection betweenO-IN andPESdescribed above does not factorize through
the categoryIES, i.e., that there is no left adjoint functorMi : IES → O-IN which forms a
coreflection withEi .

More generally we can show that there is no functorMi : IES → O-IN such that,Ei ◦Mi

is naturally isomorphic to the identity. Assume by contradiction that there is such a functor.
Consider twoIES’s I0 and I1, obtained by saturating the pre-IES’s 〈{e0,e′0},{( /0,e0,{e′0})}〉
(wheree′0 < e0) and〈{e1,e′1,e

′′
1},{({e′1},e

′′
1,{e1})}〉.

SinceEi(Mi(I1)) ≃ I1 and the only way to generate a triple where all components arenon-
empty is to have an inhibiting place, inMi(I1) there must be a places1 ∈

�e′′1 ∩e′1
•∩ •e1 (see

Fig. 12.(b)). Since the mappingh : I0 → I1 such thath(e0) = e1 andh(e′0) = e′1 is a well-defined
IES-morphism, there must exist an i-net morphismMi(h) : Mi(I0)→Mi(I1). This implies that
there are placess′0 ∈ e′0

• ands0 ∈
•e0 such thatMi(h)(s′0,s1) andMi(h)(s0,s1). SinceMi(h)

is an occurrence i-net morphism, necessarilys0 = s′0, otherwise we would haves0#s′0, hence
e0#e′0 in Mi(I0) and thus inEi(Mi(I0)), contradicting the assumptionEi(Mi(I0)) ≃ I0 (see
Fig. 12.(a)).

Consider now the IES I2 which is obtained by saturation of the pre-IES

〈{e2,e′2,e
′′
2},{( /0,e2,{e′2,e

′′
2}),({e′2},e

′′
2, /0),({e′′2},e

′
2, /0)}〉 (wheree′2#e′′2 and{e′2,e

′′
2} < e2) and

the IES-morphismf : I2 → I0, defined byf (e2) = e0 and f (e′2) = f (e′′2) = e′0. Since there is an
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e′0

s0

e0

e′1

s1 e′′1

e1
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Figure 12: (a) Part ofMi(I0) and (b) Part ofMi(I1).

•

s′2

e′2 e′′2

• s2

e2

•

s′0

e′0

• s0

e0

(a) (b)

Figure 13: (a) Part ofMi(I2) and (b) Part ofMi(I0)

i-net morphismMi( f ) : Mi(I2)→ Mi(I0), there must be placess′2 ∈ e′2
• ands2 ∈

•e2 such that
Mi( f )(s2,s0) andMi( f )(s′2,s0). ThereforeMi( f )(e′2) < Mi( f )(e2) and thus, sinceMi( f ) is
an occurrence i-net morphism, necessarilye′2 < e2 or e2#e′2 in Mi(I2) and thus inEi(Mi(I2)).
Hence in both cases we would reach a contradiction with the assumption thatEi(Mi(I2)) ≃ I2.

At a more intuitive level, imagine to construct an i-net for an inhibitor event structure by
following Winskel’s idea of saturating theIES with places in order to induce the same relations
among events as in theIES. Fig. 13 represents fragments of the netsMi(I2) andMi(I0) which
we would obtain for event structuresI2 andI0. Observe that the causal dependencye′0 < e0 is
induced both by places0 ∈ e′0

•∩ •e0 and by means of an inhibitor arc, i.e., through the marked
places′0 ∈ •e′0∩

�e0. Correspondingly, the functoriality ofMi would require the netMi(I2)
to include the placess2 ands′2 (since theIES-morphismf : I2 → I0, defined byf (e2) = e0 and
f (e′2) = f (e′′2) = e′0, must be “extendable” to a i-net morphismMi( f ) : Mi(I2) → Mi(I0)).
HoweverMi(I2) cannot be defined in this way since backward conflicts (several transitions in
the pre-set of a place, likes2 in Mi(I2)) are not allowed in occurrence i-nets.

Observe also that the naı̈ve solution of widening the category of occurrence i-net to include
also nets with backward conflicts (which, by analogy with theflow nets of [7], could be called
flow i-nets) does not work, as one can easily check.
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6 Conclusions

We have provided a coreflective concurrent semantics for Petri nets with read and inhibitor
arcs. The proposed constructions, which generalise Winskel’s work on safe ordinary nets and
the work in [6] on contextual nets, are summarised in the diagram below (where unnamed
functors are inclusions).

O-IN

Π ⊢

Ei
IES

Ψ ⊢

Li

⊥

SW-IN
Ui

⊥

U e
i

⊥

Dom

Pi

Pe
i P

∼ PES
L

Ni

N e
i

Ji

O-INe
E e

i
IESe

L e
i

⊥

The paper singles out two distinct notions of occurrence i-net: ordinary occurrence i-nets,
where some events might be non-executable, and executable occurrence i-nets, where some
additional conditions ensure the firability of any transition. Correspondingly two different un-
folding constructions are provided which associate to eachsemi-weighted inhibitor net an oc-
currence inhibitor net. The unfoldings can be naturally abstracted to anIES, having the tran-
sitions of the net as events, and thus, by exploiting a coreflection betweenIES andDom, to
a domain (or, equivalently, to a prime event structure). Both constructions (with or without
non-executable events) lead to the same domain.

The coreflection between occurrence nets and prime event structures does not factorize
throughIES, namely, the functor fromPES to the category of occurrence i-nets cannot be
expressed as the composition of functors one fromPES to IES’s, and the other fromIES’s to
occurrence i-nets.

In the paper we hinted at the relationship betweenIES’s and other event structure mod-
els proposed in the literature. It can be easily seen thatIES’s properly generalise prime [41],
asymmetric [6], (extended) bundle event structures [25] and prime event structures with possi-
ble events [35]. InsteadIES’s and flow event structures [7] (with possible flow [35]), although
strictly related, are, in a sense, not comparable since there areIES’s whose sets of configurations
cannot be described by a flow event structure and vice versa.

Inhibitor event structures are also related toevent automata[35], a class of automata where
states are sets of events and the transition relation specifies which events can occur in a certain
state. Although not explicitly worked out in this paper, it is easy to see that given anIES we
can obtain a corresponding event automaton via a functorialconstruction which takes the par-
tial order of configurations, forgetting about the history of events, namely identifying different
configurations which involve the same set of events.

This connection betweenIES’s and event automata suggests also the possibility of com-
paring our model with other event based models proposed in the literature as generalisations
of the family of configurations of event structures, like configuration structures [38] and Chu
spaces [18]. In particular it could be interesting to try to give a logical view ofIES’s, in the
style of the presentation of event structures as propositional theories in [38]. To this end, also
the logical approach to causality of [17] could provide someinteresting hints. Some similarities
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can be found also with local event structures [20], where, asin the case ofIES’s, the enabling of
events is not required to be monotonic. However a direct comparison appears difficult to carry
out since local event structures explicitly represent configurations and concurrent enabling of
sets of events, whileIES’s give an intensional description of such notions by means of the DE-
relation. Probably also in this case one could try a comparison at the level of corresponding
event automata.

A semantics for inhibitor nets, based on a generalisation ofMazurkiewicz traces, has been
developed in [21]. Such paper assumes a notion of enabling different from ours, allowing for the
concurrent firing of steps where a token is generated in the inhibitor set. Consequently concur-
rent steps may not be serializable and this is the reason why the simultaneity (independence)
relation of Mazurkiewicz traces is not sufficiently expressive, and one must consider also a
serializability relation which explicitly says if two simultaneous events are serializable and in
which order. Along the same line, more recently a process semantics for inhibitor nets (possibly
unbounded and with weighted arcs) has been developed [22, 23]. Understanding if, despite the
different notions of enabling, a relationship can be established with our work is left as a matter
of future investigation. We also conjecture that, keeping our notion of enabling, Mazurkiewicz
trace theory could be successfully applied to extract aPES from an inhibitor net and that the
domain of configurations of such aPES would be isomorphic to the prime algebraic domain
obtained through our unfolding construction.

Acknowledgements. We are grateful to the anonymous referees for their useful and construc-
tive comments on the submitted version of this paper.

A Full proofs of results in the paper.

A.1 Categories of i-nets

Proposition 4. [(composition of i-net morphisms)] The class of i-net morphisms is closed under
composition.
Proof .Let h0 : N0 → N1 andh1 : N1 → N2 be two i-net morphisms. Their compositionh1◦h0

obviously satisfies conditions (1) and (2.a)-(2.c) of Definition 3, since these are exactly the
defining conditions of c-net morphisms which are known to be closed under composition.

Finally, h1◦h0 satisfies also condition (2.d). In fact, for any transitiont in N0:

[[h1S◦h0S]]
−1(�h1T ◦h0T(t)) =

= [[h0S]]
−1([[h1S]]

−1(�h1T(h0T(t))))

⊆ [[h0S]]
−1(�h0T(t)) [sinceh1 is a morphism]

⊆ �t [sinceh0 is a morphism]

Proposition 20. Let N be an executable occurrence i-net and let M⊆ S. Then conc(M) iff there
exists a reachable marking M′ such that M⊆ M′.
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Proof . (⇒) By definition of concurrency (Definition 19), there is an assignmentρ such that
⌊M⌋ρ is finite andcρ is acyclic on⌊M⌋ρ. Therefore there is an enumeration of transitions
t(1), . . . ,t(k) in ⌊M⌋ρ compatible withc+

ρ . Let us show by induction onk that

m= M(0) [t(1)〉M(1) [t(2)〉 . . . M(k−1) [t(k)〉M(k) ⊇ M

(k = 0) Obvious.

(k > 0) By constructiont(k) is cρ-maximal⌊M⌋ρ. TakeM′′ = M − t(k)• + •t(k). It is easy to
show thatconc(M′′) (with the same assignmentρ) and⌊M′′⌋ρ = {t(1), . . . ,t(k−1)}. Hence by
inductive hypothesis

m= M(0) [t(1)〉M(1) [t(2)〉 . . . M(k−1) [t(k−1)〉M(k−1) ⊇ M′′

Now, showing thatt(k) is enabled atM(k−1) we can conclude. To this aim, observe that
clearly •t(k) ⊆ M(k−1). Moreovert(k) ⊆ M(k−1) and �t(k)∩M(k−1) = /0, as otherwiset(k) would
not becρ-maximal in⌊M⌋ρ.

Thereforet(k) is enabled atM(k−1) and we can extend the firing sequence above to

m= M(0) [t(1)〉M(1) [t(2)〉 . . . M(k−1) [t(k−1)〉M(k−1) [t(k)〉M(k)

with M(k) = M(k−1) − •t(k) + t(k)• ⊇ M′′− •t(k) + t(k)• = M.
(⇐) The thesis follows from an inductive reasoning on the number of firings leading from

the initial markingm to M′. 2

A.2 Basic results on IES’s

Proposition 33. Let I0 and I1 be IES’s and let f : I0 → I1 be anIES-morphism. For any e0,e′0 ∈
E0,

1. if f(e0) < f (e′0) then∃A0. e0 ∈ A0 < e′0 or e0#e′0;

2. if f(e0) ր f (e′0) then e0 ր e′0.

Proof .

1. Let f (e0) < f (e′0), namely{ f (e0)} < f (e′0). By condition (2) in the definition ofIES-
morphisms, there existsA0 ⊆ f−1({ f (e0)}) such thatA0 < e′0. Now, if e0 ∈A0 the desired
property is proved. Otherwise for eache′′0 ∈ A0, e′′0 6= e0 and, by constructionf (e′′0) =
f (e0). Hence by condition (1) in the definition ofIES-morphism, it must bee0#e′′0 for
eache′′0 ∈ A0. Hence, by rule(#2), we concludee0#e′0.

2. Let f (e0) ր f (e′0). Then, by definition ofIES, ({ f (e′0)}, f (e0), /0). By condition (3)
in the definition ofIES-morphism there must exista0 ⊆ {e′0} andA0 ⊆ f−1( /0) = /0 such
that (a0,e0,A0). Therefore, ifa0 = {e′0} then ({e′0},e0, /0) and thus, by rule(ր 1),
we concludee0 ր e′0. If insteada0 = /0 then ( /0,e0, /0) and thus, by rule(< 1), /0 < e0.
Hence, by rule(#2), we deduce #{e0,e′0} and thuse0 ր e′0 by (ր 3). 2
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Proposition 34. TheIES-morphisms are closed under composition.
Proof .Let f0 : I0 → I1 and f1 : I1 → I2 be IES-morphisms. We want to show that their compo-

sition f1 ◦ f0 still satisfies conditions (1)-(3) of Definition 32.

1. Lete0,e′0 ∈E0 be events such thate0 6= e′0 and f1( f0(e0)) = f1( f0(e′0)). If f0(e0) = f0(e′0)
then, beingf0 a morphism,e0#e′0. Otherwise, since alsof1 is a morphism,f0(e0)# f0(e′0)
and thus, by rule(ր 3), f0(e0)ր f0(e′0)ր f0(e0). Hence, by Proposition 33.(2), it must
hold thate0 ր e′0 ր e0, which in turn, by rule(#1) allows us to deducee0#e′0.

2. ConsiderA2 ⊆ E2 ande0 ∈ E0 such thatA2 < f1( f0(e0)). Since f1 is an IES-morphism
there existsA1 ⊆ f−1

1 (A2) such thatA1 < f0(e0). By using again condition (2) in the defi-
nition of IES-morphism, applied tof0, we obtain the existence ofA0 ⊆ f−1

0 (A1) satisfying
A0 < e0. We conclude observing thatA0 ⊆ f−1

0 (A1) ⊆ f−1
0 ( f−1

1 (A2)) = ( f1 ◦ f0)−1(A2).

3. Let us assume ({ f1( f0(e′0))}, f1( f0(e0)),A2). Sincef1 is anIES-morphism there exist
A1 ⊆ f−1

1 (A2) anda1 ⊆ { f0(e′0)} such that (a1, f0(e0),A1). We can distinguish two
cases according to the form ofa1.

• If a1 = /0 and thusA1 < f0(e0), since f0 is an IES-morphism, there will beA0 ⊆
f−1
0 (A1) such thatA0 < e0. By definition ofIES this implies ( /0,e0,A0). Moreover

A0 ⊆ f−1
0 (A1) ⊆ f−1

0 ( f−1
1 (A2)) and thus condition (3) is satisfied.

• If a1 = { f0(e′0)} and thus ({ f0(e′0)}, f0(e0),A1) reasoning as above, but using
point (3) in the definition of morphism, we deduce the existence ofA0 ⊆ f−1

0 (A1)⊆

f−1
0 ( f−1

1 (A2)) anda0 ⊆ {e′0} such that (a0,e0,A0), thus satisfying condition (3).
2

Lemma 37. Let Ii = 〈Ei , i〉 (i ∈ {0,1}) be pre-IES’s satisfying condition (1) of Definition 31,
let Ii = 〈Ei ,

s
i 〉, and let<i, րi and#i be the relations of causality, asymmetric conflict and

conflict in Ii . Let f : E0 → E1 be a partial function such that for each e0,e′0 ∈ E0 and A1 ⊆ E1:

1. f(e0) = f (e′0) ∧ e0 6= e′0 ⇒ e0#0e′0;

2. 1( /0, f (e0),A1) ⇒ ∃A0 ⊆ f−1(A1). A0 <0 e0;

3. 1( f (e′0), f (e0), /0) ⇒ e0 ր0 e′0;

4. 1({ f (e′0)}, f (e0),A1)∧A1 6= /0 ⇒ ∃A0 ⊆ f−1(A1).∃a0 ⊆ {e′0}.
s
0(a0,e0,A0).

Then f : I0 → I1 is an IES-morphism.
Proof .We first show thatf satisfies the following properties:

a. A1 <1 f (e0) ⇒ ∃A0 ⊆ f−1(A1). A0 <0 e0;

b. f(e0) ր1 f (e′0) ⇒ e0 ր0 e′0.

c. #1 f (A0) ⇒ #0A0.
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The three points are proved simultaneously by induction on the height of the derivation of
the judgement, involving the relations<1, ր1 and #1, which appears in the premise of each
implication and by cases on the form of the judgement.

a. Judgement A1 <1 f (e0).
We distinguish various subcases according to the last rule used in the derivation:

(< 1) Let the last rule be

1( /0, f (e0),A1) #pA1

A1 <1 f (e0)
(< 1)

In this case, since 1( /0, f (e0),A1), we immediately conclude by using point (2)
in the hypotheses.

(< 2) Let the last rule be

A′
1 <1 f (e0) ∀e1 ∈ A′

1. Ae1 <1 e1 #p(∪{Ae1 | e1 ∈ A′
1})

(∪{Ae1 | e1 ∈ A′
1}) <1 f (e0)

(< 2)

By inductive hypothesis fromA′
1 <1 f (e0) we deduce that

∃A0 ⊆ f−1(A′
1). A0 <0 e0 (†)

Now, for all e′0 ∈ A0, by (†), f (e′0) ∈ A′
1. Therefore, by the second premise of the

rule above,Af (e′0) <1 f (e′0), and thus, by inductive hypothesis, there existsAe′0
⊆

f−1(Af (e′0)) such thatAe′0
<0 e′0. Finally,∪{Ae′0

| e′0 ∈ A0} is pairwise conflicting.

In fact if e1
0,e

2
0 ∈ ∪{Ae′0

| e′0 ∈ A0} with e1
0 6= e2

0, we havef (e1
0), f (e2

0) ∈
S

e1∈A′
1
Ae1,

which is pairwise conflicting. Thereforef (e1
0) = f (e2

0) or f (e1
0)#1 f (e2

0) and, by
using point (1) in the hypotheses in the first case, and by inductive hypothesis in the
second case, we concludee1

0#0e2
0.

By using the facts proved so far we can apply rule(< 2) as follows:

A0 <0 e0 ∀e′0 ∈ A0. Ae′0
<0 e′0 #p(∪{Ae′0

| e′0 ∈ A0})

(∪{Ae′0
| e′0 ∈ A0}) <0 e0

(< 2)

This concludes the proof of this case since

∪{Ae′0
| e′0 ∈ A0} ⊆

⊆ ∪{ f−1(Af (e′0)
) | e′0 ∈ A0}

⊆ { f−1(Ae1) | e1 ∈ A′
1}

= f−1(∪{Ae1 | e1 ∈ A′
1})

b. Judgement f(e0) ր1 f (e′0).
We distinguish various subcases according to the last rule used in the derivation:

(ր 1) Let the last rule be

1({ f (e′0)}, f (e0), /0)

f (e0) ր1 f (e′0)
(ր 1)
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From 1({ f (e′0)}, f (e0), /0), by point (3) in the hypotheses, we immediately have
thate0 ր0 e′0.

(ր 2) Let the last rule be

f (e0) ∈ A1 <1 f (e′0)

f (e0) ր1 f (e′0)
(ր 2)

By inductive hypothesis there existsA0 ⊆ f−1(A1) such thatA0 <0 e′0.

For all e′′0 ∈ A0, we havef (e′′0) ∈ A1. Thus recalling that, sinceA1 <1 f (e′0), the
setA1 is pairwise conflicting, it follows thatf (e′′0) = f (e0) or f (e′′0)#1 f (e0). By
using point (1) of the hypotheses in the first case and the inductive hypothesis in the
second case, we can conclude that for alle′′0 ∈ A0, e0 = e′′0 or e0#0e′′0.
Consequently there are two possibilities. One is thate0 = e′′0 ∈ A0 for somee′′0 ∈ A0,
which allows us to conclude sinceA0 <0 e′0. The other one is thate0#0e′′0 for all
e′′0 ∈ A0. Thus, by rule(#2), we can derive that #0{e0,e′0}, and thereforee0 ր0 e′0
by rule(ր 3).

(ր 3) Let the last rule be

#1{ f (e0), f (e′0)}

f (e0) ր1 f (e′0)
(ր 3)

In this case by inductive hypothesis #0{e0,e′0} and therefore, by rule(ր 3), e0 ր0

e′0.

c. Judgement#1 f (A0).
We distinguish various subcases according to the last rule used in the derivation:

(#1) Let the last rule be

s

f (e(0)
0 ) ր1 . . . ր1 f (e(n)

0 ) ր1 f (e(0)
0 )

#1{ f (e(0)
0 ), . . . , f (e(n)

0 )}
(#1)

whereA0 = {e(0)
0 , . . . ,e(n)

0 }. By inductive hypothesise(0)
0 ր0 . . . ր0 e(n)

0 ր0 e(0)
0 ,

and therefore #A0.

(#2) Let the last rule be

A1 <1 f (e0) ∀e1 ∈ A1. #1( f (A′
0)∪{e1})

#1( f (A′
0)∪{ f (e0)})

(#2)

whereA0 = A′
0∪{e0}.

By inductive hypothesis, fromA1 <1 f (e0) it follows that

∃A′′
0 ⊆ f−1(A1). A′′

0 <0 e0 (†)

Now, for alle′0 ∈A′′
0, by (†), f (e′0)∈A1. Therefore, by the second premise of the rule

above, #1( f (A′
0)∪{ f (e′0)}), namely #1 f (A′

0∪{e′0}). Thus, by inductive hypothesis,
#0(A′

0∪{e′0}) for all e′0 ∈ A′′
0. Recalling thatA′′

0 <0 e0, by using rule(#2), we obtain

A′′
0 <0 e0 ∀e′0 ∈ A′′

0. #0(A′
0∪{e′0})

#0(A′
0∪{e0})

(#2)
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which is the desired result.

This completes the proof of the properties (a), (b) and (c).

It is now easy to conclude thatf : I0 → I1 is aIES-morphism. LetIi = 〈Ei ,
s
i 〉 for i ∈{1,2}.

Conditions (1) and (2) of the definition ofIES-morphism (Definition 32) are clearly satisfied. In
fact, by Proposition 36 the relations of causality and conflict in Ii andIi coincide, and thus the
mentioned conditions coincide with point (1) in the hypotheses and point (a) proved above.

Hence it remains to verify condition (3) of Definition 32, that is

s
1({ f (e′0)}, f (e0),A1) ⇒ ∃A0 ⊆ f−1(A1). ∃a0 ⊆ {e′0}.

s
0(a0,e0,A0).

Suppose that s
1({ f (e′0)}, f (e0),A1). If A1 6= /0, by definition of Ii , it must be the case that

1({ f (e′0)}, f (e0),A1) and thus the thesis trivially holds by point (4) in the hypotheses. If
insteadA1 = /0 then, by rule(ր 1), f (e0)ր1 f (e′0). Hence, by point (b) proved above,e0 ր0 e′0
and therefore s

0({e′0},e0, /0), which satisfies the desired condition. 2

A.3 Algebraic properties of the domain of configurations of an IES

Proposition 41. Let 〈Ci , →֒Ci 〉 for i ∈ {1,2} be configurations of anIES I.

1. If e,e′ ∈C1∩C2 and e֒→C1e′ then e֒→C2e′ or e′ →֒∗
C2

e.

2. If C1 = C2 and →֒∗
C1

⊆ →֒∗
C2

then→֒C1 = →֒C2, namely the two configurations coincide.

Proof .

1. Lete,e′ ∈C1∩C2 with e֒→C1e′. By definition of choice, it follows that C1({e′},e,A)
or C1(a,e′,A′), with e∈ A′. Assume that C1({e′},e,A) and thus ({e′},e,A′′)
with A = A′′ ∩C1 (the other case can be treated in a similar way). Sincee,e′ ∈ C2,

C2({e′},e,A′′∩C2), and thus, by definition of choice, alsoC2 must choose among
the two possible orders of executions, namelye֒→C2e′ or e′′ →֒C2e for e′′ ∈ A′′∩C2. In the
second case, since by definition ofIES e′ < e′′, by Proposition 39.(2), we havee′ →֒C2e′′

and thuse′ →֒∗
C2

e.

2. If e֒→C1e′, by point (1),e֒→C2e′ or e′ →֒∗
C2

e. But the second possibility cannot arise, since
e֒→C1e′ implies e֒→∗

C1
e′ and thuse֒→∗

C2
e′. Vice versa, ife֒→C2e′, by point (1),e֒→C1e′

or e′ →֒∗
C1

e. Again the second possibility cannot arise, otherwise we would havee′ →֒∗
C2

e,
contradicting the acyclicity of֒→C2.

Lemma 44. Let X⊆ Conf(I) be a pairwise compatible set of configurations of anIES I and let
C1,C2 ∈ X. Then

1. if e֒→∗
C1

e′ and e′ ∈C2 then e∈C2 and e֒→∗
C2

e′;

2. if e∈C1∩C2 then C1[[e]] = C2[[e]];
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3. C1⊓C2 = C1∩C2, with →֒C1⊓C2 = →֒C1 ∩ →֒C2;

4. the least upper bound of X exists, and it is given by
G

X = 〈
[

C∈X

C,
[

C∈X

→֒C〉.

Proof .

1. Let us first suppose thate֒→C1e′ ande′ ∈ C2. Let C ∈ X be an upper bound forC1 and
C2, which exists sinceX is pairwise compatible. FromC1 ⊑C, by definition of extension,
we have thate,e′ ∈C ande֒→Ce′. Recalling thatC2 ⊑C ande′ ∈ C2 we deducee∈C2.
Sincee,e′ ∈C2 =C2∩C ande֒→Ce′, by Proposition 41.(1), it must bee֒→C2e′ or e′ →֒∗

C2
e.

The second possibility cannot arise, otherwise we should have e′ →֒∗
Ce, contradicting the

acyclicity of →֒C. Hence we can concludee֒→C2e′.

In the general case in whiche֒→∗
C1

e′ the desired property is easily derived via an inductive
reasoning using the above argument.

2. Immediate consequence of point (1).

3. To show that֒→C1⊓C2 = →֒C1 ∩ →֒C2 is a choice forC1∩C2, the only non trivial point
is the proof of condition (1) of Definition 38. Suppose thatC1∩C2(a,e,A), namely

(a,e,A′) with a⊆C1∩C2 andA= A′∩(A1∩A2). Hence C1(a,e,A′∩C1) and thus
eithere֒→C1e′ for e′ ∈ a or e′′ →֒C1e with e′′ ∈ A′ ∩C1. BeingC1 andC2 compatible, by
Lemma 44.(1) it must bee֒→C2e′, or e′′ ∈ A′ ∩C2 ande′′ →֒C2e, respectively. Therefore,
as desired,e֒→C1⊓C2e′ or e′′ ∈ A with e′′ →֒C1⊓C2e.

HenceC1∩C2 is a configuration. Moreover, it is the greatest lower bound of C1 andC2

as one can check via a routine verification using Lemma 44.(1).

4. Let us verify that֒→F

X =
S

C∈X →֒C is a choice for
S

X. First, it is easy to see that
→֒F

X ⊆ choices(
S

X).

As for condition (1) of the definition of choice, suppose thatS

X(a,e,A), namely
(a,e,A′) with a⊆

S

X andA = A′∩
S

X. Sincea,{e} ⊆
S

X we can findC,C′ ∈ X
such thata⊆C ande∈C′. Moreover, beingX pairwise compatible, there isC′′ ∈ X, up-
per bound ofC andC′, containing botha ande. Therefore C′′(a,e,A′∩C′′), and thus
by definition of choicee֒→C′′e′ for e′ ∈ a or e′′ →֒C′′e for e′′ ∈ A′∩C′′. It follows that, as
desired,e֒→F

Xe′ or (e′′ ∈
S

X and)e′′ →֒F

Xe.

The relation→֒F

X is acyclic since Lemma 44.(1) implies that a cycle of→֒F

X in
S

X
should be entirely inside a single configurationC ∈ X. Furthermore it is easily seen that
given an evente∈

S

X, (
S

X)[[e]] = C[[e]], for anyC ∈ X such thate∈ C. Therefore
(
S

X)[[e]] is surely finite.

Hence→֒F

X is a choice and thus
F

X is a configuration. A routine verification, using
Lemma 44.(1) allows one to conclude that

S

X is the least upper bound ofX. 2

Lemma 46. Let f : I0 → I1 be anIES-morphism and let〈C0, →֒0〉 ∈ Conf(I0). Then the pair
〈C1, →֒1〉 with C1 = f (C0) and →֒1 = f (→֒0)∩choices( f (C0)), namely the unique choice rela-
tion on C1 included in f(→֒C0), is a configuration in I1. Moreover the function f∗ : Conf(I0)→
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Conf(I1) which associates to each configuration C0 the configuration C1 defined as above, is a
domain morphism.

Proof . To prove that֒→1 is a choice forf (C0) and thus〈 f (C0), →֒1〉 is a configuration, first
observe that֒→1 ⊆ choices(C1) by definition.

Let us verify the validity of condition (1) in the definition of choice (Definition 38). Assume
that f (C0)(a1, f (e0),A1). This means that 1(a1, f (e0),A′

1) with a1 ⊆ f (C0) andA1 = A′
1∩

f (C0). We distinguish two cases according to the shape ofa1:

• If a1 = /0, and thusA′
1 < f (e0), by condition (2) in the definition ofIES-morphism it

follows that there existsA0 ⊆ f−1(A′
1) such thatA0 < e0. Sincee0 ∈ C0, by Proposi-

tion 39.(1),A0∩C0 is non-empty (precisely, it is a singleton). Takee′′0 ∈ A0∩C0. By rule
(ր 2), e′′0 ր e0 and thus, by Proposition 39.(2), we havee′′0→֒0e0. Hence, by construc-
tion, f (e′′0)→֒1 f (e0). Notice thatf (e′′0) ∈ A′

1∩ f (C0) = A1.

• If a1 = { f (e′0)}, then by condition (3) in the definition ofIES-morphism we can find
a0 ⊆ {e′0} andA0 ⊆ f−1(A′

1) such that 0(a0,e0,A0).

If a0 = /0 we proceed as in the previous case. If insteada0 = {e′0} then, by definition of
choicee0→֒0e′0 or e′′0 →֒0e0 for e′′0 ∈ A0. Thereforef (e0)→֒1 f (e′0) or f (e′′0)→֒1 f (e0) (and
observe thatf (e′′0) ∈ A1).

As for condition (2), to show that→֒1 is acyclic, first observe that aIES-morphism is injec-
tive on a configuration. In fact, ife0,e′0 ∈C0 and f (e0) = f (e′0) thene0 = e′0 or e0#e′0. But, by
Proposition 39.(3), the second possibility cannot arise. Now, if there were a cycle of֒→1 then,
by the above observation and by definition of→֒1, a cycle should have been already present in
→֒0, contradicting the hypothesis thatC0 is a configuration.

Finally, observe that also condition (3) holds, since by an analogous reasoning, the finitari-
ness of the choice inC0 implies the finitariness of the choice inf (C0).

Let us show thatf ∗ : Conf(I0) → Conf(I1) is a morphism inDom.

• If C and C′ are compatible then f∗(C⊓C′) = f ∗(C)⊓ f ∗(C′).
Recalling how the greatest lower bound of configurations is computed (see
Lemma 44.(3)), we have that

f ∗(C⊓C′) = 〈 f (C∩C′), f (→֒C∩ →֒C′)∩choices( f (C∩C′))〉,

while

f ∗(C)⊓ f ∗(C′) =

= 〈 f (C), f (→֒C)∩choices( f (C))〉⊓ 〈 f (C′), f (→֒C′)∩choices( f (C′))〉

= 〈 f (C)∩ f (C′), f (→֒C)∩ f (→֒C′)∩choices( f (C))∩choices( f (C′))〉

Observe thatf is injective onC∪C′ sinceC andC′ have an upper boundC′′, and, as
already observed,f is injective on configurations. By using this fact, we can deduce that
f (C)∩ f (C′) = f (C∩C′), f (→֒C)∩ f (→֒C′) = f (→֒C∩ →֒C′). Moreover it is easy to see
thatchoices(C∩C′) = choices(C)∩choices(C′) holds in general. Therefore we conclude
that f ∗(C⊓C′) = f ∗(C)⊓ f ∗(C′).
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• f ∗(
F

X) =
F

f ∗(X), for X ⊆ Conf(I0) pairwise compatible.
Keeping in mind the characterisation of the least upper bound given in Lemma 44.(4), we
obtain

F

f ∗(X) =

= 〈
S

{ f (C) |C∈ X},
S

{ f (→֒C)∩choices( f (C)) |C∈ X}〉

= 〈 f (
S

X), f (
S

{→֒C |C∈ X})∩choices( f (
S

X))〉

= f ∗(〈
S

X,
S

{→֒C |C∈ X}〉)

= f ∗(
F

X)

To understand the second passage observe that

S

{ f (→֒C)∩choices( f (C)) |C∈ X} ⊆ [by set-theoretical properties]

⊆
S

{ f (→֒C) |C∈ X}∩
S

{choices( f (C)) |C∈ X} [by definition ofchoices]

⊆ f (
S

{→֒C |C∈ X})∩choices( f (
S

X))

Therefore Proposition 41.(2) and the equality
S

{ f (C) | C ∈ X} = f (
S

X) allow us to
conclude.

• C≺C′ implies f∗(C) � f ∗(C′).
This property immediately follows from the observation that, as in the case ofAES’s,
C≺C′ iff C⊑C′ and|C′−C| = 1.

2

Theorem 48. The functorPi : Dom→ IES is left adjoint toLi : IES → Dom. The counit of
the adjunction at anIES I is the functionεI : Pi ◦Li(I) → I, mapping each history of an event
e into the event e itself, i.e.,εI (C[[e]]) = e, for all C∈ Conf(I) and e∈C.
Proof .Let I be anIES and letεI : Pi(Li(I)) → I be the function defined asεI (C[[e]]) = e, for

all C∈ Conf(I) ande∈C. Let us prove thatεI is a well-definedIES-morphism by showing that
εI satisfies conditions (1)-(3) of Definition 32.

1. εI (C[[e]]) = εI (C′[[e′]]) ∧ C[[e]] 6= C′[[e′]] ⇒ C[[e]]#C′[[e′]].
Assume thatεI (C[[e]]) = εI (C′[[e′]]), namelye= e′, andC[[e]] 6= C′[[e′]]. By Lemma 44.(2)
it follows that there is no upper bound for{C,C′}. In fact, if there were an upper bound
C′′ then necessarilyC[[e]] = C′′[[e]] = C′[[e]]. Hencee#e′.

2. A1 < εI (C[[e]]) ⇒ ∃A0 ⊆ ε−1
I (A1). A0 < C[[e]].

Let us assumeA1 < εI (C[[e]]) = e. Sincee∈ C, by Proposition 39.(1),A1 ∩C = {e′}
for somee′. Moreover, sincee′ ∈ A1 < e, by rule (ր 2), e′ ր e and thus, by Proposi-
tion 39.(2) and the definition of history,e′ ∈C[[e]].

By point (1) of Lemma 44, one easily derives thatC[[e′]]⊑C[[e]]. Therefore, according to
the definition ofPi , C[[e′]] < C[[e]] and sincee′ ∈ A1, {C[[e′]]} ⊆ ε−1

I (A1).
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3. ({εI (C′[[e′]])},εI (C[[e]]),A1) ⇒ ∃A0 ⊆ ε−1
I (A1). ∃a0 ⊆ {C′[[e′]]}. (a0,C[[e]],A0).

Assume ({εI (C′[[e′]])},εI (C[[e]]),A1), namely

({e′},e,A1).

If ¬(C[[e]] ↑C′[[e′]]) then, by definition ofPi ,C[[e]]#C′[[e′]] and thusC[[e]]րC′[[e′]]. Hence
({C′[[e′]]},C[[e]], /0), which clearly satisfies the desired condition.

Suppose, instead, thatC[[e]] ↑C′[[e′]]. We distinguish two subcases:

• If e′ ∈ C[[e]] then A1 ∩C[[e]] 6= /0. Indeed, beingC[[e]] a configuration,A1 ∩C[[e]]
must be a singleton{e′′}. As above, by Lemma 44.(2),C[[e′′]] ⊑C[[e]] and thus, by
definition ofPi , C[[e′′]] < C[[e]]. Therefore ( /0,C[[e]],{C[[e′′]]}), which allows us
to conclude, sincee′′ ∈ A1 implies{C[[e′′]]} ⊆ ε−1

I (A1).

• Assumee′ 6∈ C[[e]]. Consider a configurationC′′, upper bound ofC[[e]] andC′[[e′]],
which exists by assumption. Sincee,e′ ∈C′′ it must bee֒→C′′e′. In fact, otherwise
there would bee′′ ∈C′′ ∩A1 ande′′ →֒C′′e. But then, by Lemma 44.(1),e′′ ∈C[[e]],
an thus, beinge′ < e′′, we would havee′ ∈C[[e]], contradicting the hypothesis.
Therefore, by Lemma 44.(1),e∈C′[[e′]], and thusC[[e]] ⊑C′[[e′]], implyingC[[e]] <
C′[[e′]]. HenceC[[e]] րC′[[e′]], and therefore ({C′[[e′]]},C[[e]], /0).

We have to show that given any domain(D,⊑) and IES-morphismh : Pi(D) → I , there is
a unique domain morphismg : D → Li(I) such that the following diagram commutes:

Pi(Li(I))
εI

I

Pi(D)

Pi (g)
h

The morphismg : D → Li(I) can be defined as follows. Givend ∈ D, observe thatCd =
〈Pr(d),<Pr(d)〉 is a configuration ofPi(D), where<Pr(d)=< ∩(Pr(d)×Pr(d)). Therefore
we can define

g(d) = h∗(Cd).

The fact thath∗(Cd) is a configuration inI and thus an element ofLi(I), follows from
Lemma 46.

Moreoverg is a domain morphism. In fact it is

• �-preserving. By prime algebraicity,d,d′ ∈ D, with d ≺ d′ thenPr(d′)−Pr(d) = {p},
for somep∈ Pr(D). Thus

g(d′)−g(d) =
= h∗(Pr(d′))−h∗(Pr(d))
⊆ {h(p)}

Therefore|g(d′)−g(d)| ≤ 1 and, since it is easy to see thatg(d) ⊑ g(d′), we conclude
g(d) � g(d′).
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• Additive. Let X ⊆ D be a pairwise compatible set. Then

g(
F

X) = h∗(〈CX , →֒CX 〉) = 〈h(CX),h(→֒CX )∩choices(h(CX))〉

whereCX = Pr(
F

X) =
S

x∈X Pr(x) and→֒CX =<CX . On the other hand
F

x∈X g(x) =

=
F

x∈X h∗(〈Pr(x),<Pr(x))〉)

= 〈
S

x∈X h(Pr(x)),
S

x∈X(h(<Pr(x))∩choices(h(Pr(x))))〉

= 〈h(CX),
S

x∈X(h(<Pr(x))∩choices(h(Pr(x))))〉

Now, the choice relation of the configuration above is included in the choice of the con-
figurationg(

F

X), namely
S

x∈X(h(<Pr(x))∩choices(h(Pr(x)))) ⊆ h(→֒CX )∩choices(CX)

Thus by using Proposition 41.(2) we can conclude thatg(
F

X) =
F

x∈X g(x).

• Stable. Let d,d′ ∈ D with d ↑ d′, then:

g(d⊓d′) = h∗(〈C, →֒C〉) = 〈h(C),h(→֒C)∩choices(h(C))〉,

whereC = Pr(d⊓d′) = Pr(d)∩Pr(d′) and→֒C =<C. Moreover

g(d)⊓g(d′) =

= 〈h(Pr(d)),h(<Pr(d))∩choices(h(Pr(d)))〉

⊓〈h(Pr(d′)),h(<Pr(d′))∩choices(h(Pr(d′)))〉

Now, sinced ↑ d′ it is easy to see thath is injective onPr(d)∪Pr(d′) and therefore the
set of events ofg(d)⊓g(d′) is

h(Pr(d))∩h(Pr(d′)) = h(Pr(d)∩Pr(d′)) = h(C),

namely it coincides with the set of events ofg(d⊓d′).

By a similar argument,h(<Pr(d))∩ h(<Pr(d′)) = h(<Pr(d)∩Pr(d′)) = h(<C). Moreover,
reasoning as in the proof of Lemma 46, we have,

choices(h(Pr(d)))∩choices(h(Pr(d′)))

= choices(h(Pr(d))∩h(Pr(d′))) [sincechoices(X∩Y) = choices(X)∩choices(Y)]

= choices(h(Pr(d)∩Pr(d′))) [by injectivity of h onC]

= choices(h(C))

and we are able to conclude that also the choice relation ing(d)⊓g(d′) is the same as in
g(d⊓d′). In fact
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h(<Pr(d))∩h(<Pr(d′))∩choices(h(Pr(d)))∩choices(h(Pr(d′)))

= h(<C)∩choices(h(Pr(d)∩Pr(d′))) [by injectivity of h onC and remark above]

= h(→֒C)∩choices(h(C))

The rest of the proof essentially relies on a general result which holds of any domain mor-
phism f : D→Li(I) having as target the domain of configurations of anIES: for all p∈ Pr(D),
| f (p)−

S

f (Pr(p)−{p}) |≤ 1 and

Pi( f )(p) =

{

⊥ if f (p)−
S

f (Pr(p)−{p}) = /0
f (p)[[e]] if f (p)−

S

f (Pr(p)−{p}) = {e}

Exploiting such result, the fact that morphismg defined as above makes the diagram commute
and its uniqueness follow as easy consequences. 2

A.4 Removing non-executable events from anIES

Proposition 52. Let I0 and I1 be IES’s and let f : I0 → I1 be anIES-morphism. ThenΨ( f ) :
Ψ(I0) → Ψ(I1), defined as in Definition 51, is anIES-morphism. HenceΨ is a well-defined
functor.
Proof .We start observing that for anyIES I and for anye,e′ ∈ ψ(E) andA⊆ E

F1. eրI e′ ⇒ eրΨ(I) e′;

F2. A <I e ⇒ (A∩ψ(E)) <Ψ(I) e

F3. #I A ∧ A⊆ ψ(E) ⇒ #Ψ(I)A.

Now, notice that

f (ψ(E0)) ⊆ ψ(E1) (†)

and thus the restrictionf|ψ(E0) : ψ(E0)→ ψ(E1) is a well-defined function. In fact, ife0 ∈ ψ(E0)
thene0 ∈ C0 for some configurationC0 ∈ Conf(I0). Hence, if defined,f (e0) ∈ f (C0) and, by
Lemma 46,f ∗(C0) is a configuration ofI1. Thus f (e0) ∈ ψ(E1).

For i ∈ {0,1}, let us denote by i , <i, րi and #i the relations inIi , and by ψi , <ψi ,
րψi and #ψi the relations in〈ψ(Ei), ψ(Ei)〉, the pre-IES which, when saturated, gives the
IES Ψ(Ii). To show thatΨ( f ) : Ψ(I0) → Ψ(I1) is an IES-morphism we verify thatΨ( f ) :
〈ψ(E0), ψ(E0)〉 → 〈ψ(E1), ψ(E1)〉 satisfies conditions (1)-(4) of Lemma 37, namely

1. Ψ( f )(e0) = Ψ( f )(e′0) ∧ e0 6= e′0 ⇒ e0#ψ0e
′
0;

2. ψ1( /0,Ψ( f )(e0),A1) ⇒ ∃A0 ⊆ Ψ( f )−1(A1). A0 <ψ0 e0;

3. ψ1({Ψ( f )(e′0)},Ψ( f )(e0), /0) ⇒ e0 րψ0 e′0;

4. ψ1({Ψ( f )(e′0)},Ψ( f )(e0),A1) ∧ A1 6= /0 ⇒
∃A0 ⊆ Ψ( f )−1(A1). ∃a0 ⊆ {e′0}. ψ0(a0,e0,A0).
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To lighten the notation letf ′ denoteΨ( f ), i.e., the restrictionf|ψ(E0).

1. If f ′(e0) = f ′(e′0) ande0 6= e′0, since f : I0 → I1 is an IES-morphism, it must be the case
thate0#0e′0. Hence, by Fact (F3) above,e0#ψ0e′0.

2. Assume that ψ1( /0, f ′(e0),A1). By definition ofΨ(I1), recalling thatf ′(e0) = f (e0),
we have 1( /0, f (e0),A′

1), with A1 = A′
1∩ψ(E1). Since, by definition ofIES, #pA′

1, we
can apply rule(< 1), thus obtaining

1( /0, f (e0),A′
1) #pA′

1

A′
1 <1 f (e0)

(< 1)

By definition of morphism, there existsA′
0 ⊆ f−1(A′

1) such thatA′
0 <0 e0. If we define

A0 = A′
0 ∩ψ(E0) then, by Fact (F1) above,A0 <ψ0 e0 and, by the property (†) above,

A0 ⊆ f ′−1(A1).

3. Assume that ψ1({ f ′(e′0)}, f ′(e0), /0). By definition of ψ1 and recalling thatf ′ is the
restriction of f , it must be the case that 1({ f (e′0)}, f (e0),A1) with A1∩ψ(E1) = /0.
Hence, by definition of morphism, there exista0 ⊆ {e′0} andA0 ⊆ f−1(A1) such that

0(a0,e0,A0). Since A1 ∩ ψ(E1) = /0, we deduce thatA0 ∩ ψ(E0) = /0. Moreover,
recalling thate0 ∈ ψ(E0), namely it is executable, necessarilya0 = {e′0}. Therefore

ψ0({e′0},e0, /0), and thuse0 րψ0 e′0.

4. Assume that ψ1({ f ′(e′0)}, f ′(e0),A1) with A1 6= /0. Then, by definition of ψ1, we
must have

1({ f (e′0)}, f ′(e0),A
′
1)

whereA1 = A′
1∩ψ(E1). By definition of IES-morphism, there must existA′

0 ⊆ f−1(A′
1)

anda0 ⊆ {e′0} such that 0(a0,e0,A′
0).

If we defineA0 = A′
0∩ψ(E0), then by definition of ψ0, we have ψ0(a0,e0,A0) and,

by the property (†) proved above,A0 ⊆ f ′−1(A1). 2

A.5 Event structure semantics for i-nets

Proposition 56. Let N0 and N1 be occurrence i-nets and let h: N0 → N1 be an i-net morphism.
Then hT : IN0 → IN1 is a IES-morphism.
Proof .For i ∈ {0,1}, let <i, րi and #i be the relations of causality, asymmetric conflict and

conflict in the pre-IES I p
Ni

= 〈Ei ,
p〉. We show thathT : I p

0 → I p
1 satisfies conditions (1)-(4)

in the hypotheses of Lemma 37 and thushT is an IES-morphism between the corresponding
“saturated”IES’s.

1. hT(t0) = hT(t ′0) ∧ t0 6= t ′0 ⇒ t0#0t ′0.
This property can be proved exactly as for ordinary nets.
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2. p
1( /0,hT(t0),A1) ⇒ ∃A0 ⊆ h−1

T (A1). A0 <0 t0.
Let us assume p

1( /0,hT(t0),A1). By the definition of p
1 we can have

(a)A1 = {t1} andt1•∩ •hT(t0) 6= /0.
Considers1 ∈ t1•∩ •hT(t0). By Lemma 59 there must exists0 ∈

•t0 such thathS(s0,s1),
andt ′0 ∈T0 such thathT(t ′0) = t1 ands0 ∈ t ′0

•. By definition of p
0, if we defineA0 = {t ′0},

it follows that p
0( /0, t0,A0), and thus by rule(< 1), A0 < t0. Recalling thatt ′0 ∈ h−1

T (t1)
and thusA0 ⊆ h−1

T (A1) we conclude.

(b) A1 = {t1} andt1•∩hT(t0) 6= /0.
Analogous to case (a).

(c) ∃s1 ∈
�hT(t0). •s1 = /0 ∧ s1

• = A1.
Since •s1 = /0, namelys1 is in the initial markingm1 of N1, by definition of i-net mor-
phism, there exists a uniques0 ∈m0 such thathS(s0,s1). Again, by definition of i-net mor-
phism, froms1 ∈

�hT(t0) andhS(s0,s1) it follows thats0 ∈
�t0. Hence p

0(
•s0,t0,s0

•),
namely, recalling thats0 ∈ m0,

p
0( /0,t0,s0

•).

Therefore, by rule(< 1), we haves0
• <0 t0. Observe that, by the condition (2.a) in the

definition of i-net morphisms,hT(s0
•)⊆ s1

• and, sincehS(s0,s1), necessarilyh is defined
on eacht ′0 ∈ s0

•. Thuss0
• ⊆ h−1

T (s1
•) concluding the proof for this case.

3. p
1({hT(t ′0)},hT(t0), /0) ⇒ t0 ր0 t ′0.

By definition of p
1, we can have

(a) ( •hT(t0)∪hT(t0))∩ •hT(t ′0) 6= /0.
Let s1 ∈ ( •hT(t0)∪hT(t0))∩ •hT(t ′0). If s1 is in the initial marking then, by the definition
of i-net morphisms, one easily deduces that there exists a unique places0 ∈ S0 such that
hS(s0,s1) and moreovers0 ∈ (•t0∪ t0)∩ •t ′0. Therefore, by definition, p

0({t ′0},t0, /0) and
thus, by rule(ր 1), t0 ր0 t ′0.

Suppose instead thats1 6∈m1. If (•t0∪t0)∩ •t ′0 6= /0 then we conclude as above. Otherwise,
one easily deduces thatt0#0t ′0, and therefore, by rule(ր 3), we can concludet0 ր0 t ′0.

(b) ∃s1 ∈ hT(t ′0)
•∩ �hT(t0) ∧ s1

• = /0.
By condition (2.c) in the definition of i-net morphism (Definition 3), there must bes0 ∈ t ′0

•

such thathS(s0,s1). By condition (2.d) in the same definition,s0 ∈
�t0. Observing that

necessarilys0
• = /0, we conclude p

0({t ′0},t0, /0) and thust0 ր0 t ′0.

4. p
1({hT(t ′0)},hT(t0),A1)∧A1 6= /0 ⇒ ∃A0 ⊆ h−1

T (A1). ∃a0 ⊆ {t ′0}.
p
0(a0,t0,A0).

Assume p
1({hT(t ′0)},hT(t0),A1) andA1 6= /0. Thus, by definition of p

1 there is a place
s1 ∈

�hT(t0)∩hT(t ′0)
• such thatA1 = s1

•. Hence there iss0 ∈ t ′0
• such thathS(s0,s1). By

condition (2.a) in the definition of i-net morphismhT(s0
•)⊆ s1

• = A1 and necessarilyhT

is defined on eacht ′′0 ∈ s0
•. Therefore

s0
• ⊆ h−1

T (A1).

Sinces1 ∈
�hT(t0) andhS(s0,s1), by condition (2.d) in the definition of i-net morphism,

s0 ∈
�t0. Hence we conclude that, as desired,N0({t ′0},t0,s0

•). 2
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Lemma 60. Let P be aPES, let N0 be an occurrence i-net and let hT : Ji(P) → Ei(N0) be an
IES-morphisms. Then there exists a unique hS such that h= 〈hT ,hS〉 : Ni(P) → N0 is an i-net
morphism.

Proof . Consider the contextual netRic(Ni(P)), obtained fromNi(P) by removing the in-
hibitor arcs. Then there exists aunique hS such thath = 〈hT ,hS〉 : Ric(Ni(P)) → Ric(N0) is
a contextual net morphism. The relationhS is defined by taking the conditions of Lemma 59
specialised to the netNi(P), that is, for alls= 〈x,A,B〉 ∈ Sands0 ∈ S0:

hS(s,s0) iff ((x = /0 ∧ s0 ∈ m0) ∨ (x = {t} ∧ s0 ∈ hT(t)•))
∧ B = h−1

T (s0
•)∩⌈x⌉

∧ A = h−1
T (s0)∩⌈x⌉

This can be proved along the same lines of Theorem 7.3 in [6].
Therefore, to conclude the validity of the thesis we only need to prove thath, seen as a

morphismh = 〈hT ,hS〉 : Ni(P) → N0, is a well-defined i-net morphism. To this aim, observe
thath : Ric(Ni(P)) → Ric(N0) is a c-net morphism and thus it satisfies conditions (1), (2.a)-
(2.c) of Definition 3. Hence it remains only to verify the validity of condition (2.d), i.e., that for
all e∈ T, h−1

S (�hT(e)) ⊆ �e. Let s= 〈x,A,B〉 ∈ Sand assumes∈ h−1
S (�hT(e)), namely that

there existss0 ∈
�hT(e) such thathS(s,s0). We distinguish two cases

(x = /0) In this case, inEi(N0) we have ( /0,hT(e),s0
•) and thuss0

•
< hT(e). SincehT is

an IES-morphism, there existsX ⊆ h−1
T (s0

•) such thatX < e. By definition of hS we have
h−1

T (s0
•) = B and thus, by definition ofNi , e∈ �s, namelys∈ �e

(x = {e′}) In this case•s= {e′}. Hence, by Lemma 59,

•s0 = hT( •s) = {hT(e′)}

and thus ({hT(e′)},hT(e),s0
•) in Ei(N0). Therefore, by definition ofIES-morphism, there

existy⊆ {e′} andX ⊆ h−1
T (s0

•) such that (y,e,X) in Ji(P). SinceP is aPESwe have two
possibilities:

i. X = {e′′}, y = /0, and thuse′′ < e.
Sincee′′ ∈ h−1

T (s0
•), we havehT(e′) < hT(e′′) and thus, by Proposition 33,e′ < e′′ or

e′#e′′. In the first casee′′ ∈ B and thuse∈ �s, while, in the second case,e′#e, and thus
({e′},e, /0), implying (since/0 ⊆ B) thate∈ �s.

ii. X = /0.
Since triviallyX ⊆ B, by definition ofNi we havee∈ �s. 2

Lemma 61. For any PES P, the identity over the eventsρP : Ji(P) → Ei(Ni(P)) is an IES-
isomorphism.
Proof .We first observe thatηP is a well-definedIES-morphism. To this aim we prove that the

identity, seen as a mapping fromJi(P) to the pre-IES associated toNi(P) (whose DE-relation
is denoted as N) satisfies the conditions of Lemma 37. Condition (1) trivially holds, while
(2)-(4) are discussed below, where the subscriptP is used to refer to the dependency relations
of Ji(P).
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2. N( /0,e,A) ⇒ ∃A′ ⊆ A. A′ <P e.

Let N( /0,e,A). We distinguish two possibilities. IfA = {e′} ande′• ∩ ( •e∪e) 6= /0 in
Ni(P), thene′ <P e. Otherwise, there is places in Ni(P) such thate∈ �s andA = s•.
Thus, by definition ofNi , there ise′ ∈ A such thate′ <P e.

3. N({e′},e, /0) ⇒ eրP e′.

Let N({e′},e, /0). This triple is generated in two cases. The first one is that
( •e∪e)∩ •e′ 6= /0 in the netNi(P) and thuseրP e′. Otherwise there must exists∈ �e,
with •s= {e′} ands• = /0. Hence, by definition ofI (see Definition 58),eրP e′.

4. N({e′},e,A)∧A 6= /0 ⇒ ∃A′ ⊆ A.∃a⊆ {e′}. P(a,e,A′).

Let N({e′},e,A) andA 6= /0. Therefore there exists a places in Ni(P), with •s= {e′},
e∈ �sandA= s•. Hence, by definition ofI (see Definition 58), there are two possibilities:

• ∃e′′ ∈ x. eր e′′. Sincex = {e′} this implieseր e′ and thus P({e′},e, /0).

• ∃e′′ ∈ A. e′′ < e. Hence P( /0,e,{e′′}).

Observe that in both cases we can conclude the existence ofA′ ⊆ s• = A (possibly empty)
anda⊆ {e′} such that P(a,e,A′).

A similar reasoning shows that the identity on events is a morphism also fromEi(Ni(P)) to
P. HenceρP is an isomorphism. 2
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