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Abstract

We propose a functorial concurrent semantics for Petri egtsnded withread and
inhibitor arcs, that we calinhibitor nets Along the lines of the seminal work by Winskel
on safe (ordinary) nets, the truly concurrent semanticsvisngat a categorical level via a
chain of coreflections leading from the categ&W-IN of semi-weighted inhibitor nets to
the categorypom of finitary prime algebraic domains (equivalent to the catgd?ES of
prime event structures). As an intermediate semantic megeintroduceinhibitor event
structures an event based model able to faithfully capture the deperiele among events
which arise in the presence of read and inhibitor arcs. Itdilevent structures generalise
several event structure models in the literature, like prissymmetric and bundle event
structures.

Keywords: Petri nets, read and inhibitor arcs, true concurrency, Idirfg, categorical se-
mantics, event structures, domains.

Introduction

Several generalisations of Petri nets [33, 36] have beepmosed in the literature to overcome
the expressiveness limitations arising from the simplioftthe classical model. At a very basic
level Petri nets have been extended with two new kinds of armelyread arcs(also called
test, activator or positive contextual arcs) [13, 30, 2],8®linhibitor arcs(also called nega-
tive contextual arcs) [2, 30, 21] which allow a transitiorcteck for the presence, resp. absence
of resources (tokens), which are not affected by the firintheftransition. Read arcs are able
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to faithfully represent the situations where a resourceaslbut not consumed (read-only ac-
cesses). They have been used to model concurrent accesbasdd data (e.g., read operations
in a database) [37, 14], to study temporal efficiency in aBymrwous systems [39] and to give a
truly concurrent semantics to concurrent constraint @ogr[29, 8]. Inhibitor arcs have been
introduced in [2] to solve a synchronisation problem notrespible in classical Petri nets. A
study of the expressiveness of inhibitor arcs, along witlomgarison with other extensions
proposed in the literature, namely priorities, exclusiveransitions and switches, is carried
outin [19, 32]. In particular it is worth stressing that iblor arcs make the model Turing com-
plete, essentially because they allow to simulate the t&sting operation of RAM machines
which cannot be expressed neither by flow nor by read arctitaharcs have been employed,
for example, for performance evaluation of distributedayss [3], to providetcalculus with

a net-based semantics [10] and to show the existence of apssieness gap between two
different semantics of a process algebra based on Lindairation primitives [11].

The purpose of this paper is to provide a truly concurrentss#ios forinhibitor nets i.e.,
Petri nets extended with read and inhibitor arcs.

Generally speaking, a truly concurrent semantics prowaddsscription of the behaviour of
a system, where the events in computations and their mwlatlanships, notably causality,
conflict and concurrency, are made explicit. This informatcan be useful for several pur-
poses, e.g., to distribute independent branches of a catiputover distinct processors, or,
when causality is interpreted as “information flow”, to Werthe functional dependencies or
non-interference properties between components ([14, W&jreover, a concurrent semantics
can represent a good basis for the development of effeatisiBoation techniques. In fact, an
explicit representation of concurrency, which does nosaber all the possible interleavings of
concurrent events, may help to attack the state explosiirigm [26, 15].

As discussed in detail below, the greater expressivenésiagfrom the introduction of
inhibitor arcs is paid in terms of an increase of the comjead the causal structure of com-
putations, where the dependencies among events cannotibeetesimply to causality and
conflict. To capture these dependencies the theory musttbeded in a quite non-trivial way.
The resulting semantic model turns out to have an applitalihich goes beyond inhibitor
nets, being suited to model, in general, formalisms wheeasvcan be disabled/enabled sev-
eral times by other events. In particular it has been usefitgioty to model the concurrent
semantics for graph transformation systems (see [4]).

We remark that, whenever one is interested only in readhapiloperties, read arcs can be
safely replaced by self-loops, and, restricting to safe,redso inhibitor arcs can be encoded
by means of flow arcs, using a complementation technique.aderythese encodings do not
preserve the concurrency properties of a system. For iostaonsider the safe inhibitor net
N in Fig. 1, where placa inhibits transitiong; andt, (an inhibitor arc from a placs to a
transitiont is depicted as a dotted line frosto t, ending with an empty circle). This net can
be transformed into the safe rg¢tin Fig. 1 with only read arcs by introducing a complement
placesTor s (a read arc is represented by an undirected, horizontgl IRlacesis marked if
and only ifswas not marked and each transition hawng its pre-set hasin its post-set, and
vice versa. Then read arcs can be replaced by self-loopEinaiyg the netN” in Fig. 1.

The marking graph of the nel¢ andN”, when restricted to the places originallyh) is
the same as that . However it is easy to see that the operations of complertientand in-
troduction of self-loops radically change the dependertgtions between transitions and thus
the concurrency of the system. For instance, the complertientoperation introduces a cycle



Figure 1: Encoding read and inhibitor arcs via flow arcs dopmeserve concurrency.

of flow arcs involvingt andt’. Observe also that while in the original iétransitions; andt,
could fire in parallel in the initial marking, in the transfoed netN”, after the introduction of
self-loops, they are forced to fire sequentially.

In the development of the concurrent semantics for inhibitets we follow the seminal
work on ordinary safe nets of [31, 41], where the semantiggvisn at a categorical level via
a chain of coreflections (special kinds of adjunctions)diea from the categor$-N of safe
(marked) P/T nets to the categddypm of finitary prime algebraic domains, through the cate-
goriesO-N of occurrence nets arRES of prime event structure®£ss), the last step being an
equivalence of categories. The diagram below represeatsiimtioned chain of coreflections.
Given functord= andG, we writeF - G whenF is right adjoint toG. The same symbol is used,
possibly rotated, in diagrams. The symbelindicates inclusion functors.

5 N >
SN L _O-N_ L PES ~ _ Dom
u & iz

As shown in [27, 28] essentially the same construction apylh the wider category @emi-
weightednets, i.e., (possibly non-safe) P/T nets where the initedkimg is a set and transitions
can generate at most one token in each post-condition. Argksation to the whole category of
P/T nets is also possible, as shown in [28], but it requiresesadditional technical machinery
and it allows one to obtain a proper adjunction rather thaoraftection.

A categorical semantics defined via an adjunction can beideresl satisfactory under
many respects. First, the semantic mapping is a functoyt.@espects” the notion of mor-
phism between systems, which formalises the idea of “sitimuia Moreover, given a functor,
its adjoint (if it exists) is unique up to natural isomorghisHence, when there is an obvi-
ous functor mapping semantic models back into the categsystems (e.g., occurrence nets
are special nets, and thus the functor is simply the inch)sibe semantics can be defined
canonically as the functor in the opposite direction, fargndn adjunction. Finally, several op-
erations on nets (systems) may be expressed at categesiedbk limit/colimit constructions
(see [41, 27]). Since left/right adjoint functors presereémits/limits, a semantics defined via
an adjunction turns out to be compositional with respectith®perations.

The categorical unfolding approach has been extended to f&ts with read arcs, referred
to ascontextual net¢see also [40]). There, the key observation is that primetesteuctures



Figure 2: Some basic contextual and inhibitor nets.

are not adequate to model in a direct way the dependencieséetransition occurrences in a
contextual net. The problemis illustrated by theNgof Fig. 2 where the same plasés “read”

by transitionty and “consumed” by transitiors. The firing oft; preventgy to be executed, so
thatty can never followt; in a computation, while the converse is not true, siicean fire
aftertp. This situation can be interpreted naturally asaagmmetric conflichetween the two
transitions and cannot be represented faithfully ilEa To model the behaviour of contextual
nets, the paper [6] introducasymmetric event structur€ses’s), an extension of prime event
structures where the symmetric conflict is replaced by amasstric conflict relation. Such
a feature is obviously still necessary to be able to modeldggendencies arising between
events in inhibitor nets, but the nonmonotonic featureasteel to the presence of inhibitor arcs
(negative conditions) make the situation far more compdida

Consider the safe n&; in Fig. 2 where the placs which inhibits transitiort, is in the
post-set of transitioti and in the pre-set d§. The execution of’ inhibits the firing oft, which
can be enabled again by the firingtef Thust can fire before or after the “sequend&ty, but
not in between the two transitions. Roughly speaking theaesiort of atomicity of the sequence
t’;to with respect td. The situation can be more involved since many transitigns . , t, may
have the placs in their pre-set (see the nib in Fig. 2). Therefore, after the firing ¢f, the
transitiont can be re-enabled by any of the conflicting transitigns. ., t,. This leads to a
sort of or-causality, but only whenfires aftert’. With a logical terminology we can say thiat
causally depends on the implicatitn=to Vi1 V... V.

To face these additional complications in this paper weihiceinhibitor event structures
(IES'S), a generalisation afESs andAES's equipped with a ternary relation, callBdE-relation
(disabling-enabling relationaind denoted by (-, -,-), which allows one to model the depen-
dencies between transitions My simply as ~ ({t'},t, {to,...,ta}). As we will see, the DE-
relation is sufficient to represent both causality and asgtrimconflict and thus concretely
it is the only relation of anes. Using inhibitor event structures and the DE-relation asda
tools we will extend Winskel's approach to (semi-weightediibitor nets, providing this class
of nets with a coreflective concurrent semantics. The prega@®nstructions are informally
summarised by the diagram below.



(@) (b) (©) (d)

Semi-weighteds—— Occurrence
Inhibitor Nets —— Inhibitor Nets

——IES L _Dom_~ _PES
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As in the case of ordinary and contextual nets, the connebtdween nets and event struc-
tures is established via an unfolding construction whiclpsneach net into an occurrence net
(step (a) in the diagram). The complex structure of inhititet computations makes it hard to
find an appropriate notion afccurrence inhibitor netWe identify two distinct, in our opin-
ion both reasonable, notions of occurrence inhibitor ned, @rrespondingly we provide two
different unfolding constructions which associate to esemi-weighted inhibitor net an oc-
currence inhibitor net. In both cases the unfolding comsima gives rise to a functor which is
right adjoint to the inclusion. The unfolding can be natlyrabstracted to ares, having the
transitions of the net as events (step (b) in the diagram).

Finally, we establish a close relationship betweesis and prime algebraic domains (step
(c) inthe diagram), generalising the equivalence betvirEeBandDom. As already pointed out
in [12], when dealing with inhibitor nets a deterministicgputation is not uniquely determined
by the events which occur in it. More concretely, in a deteistic process the absence of a
token in an inhibitor place which enables a transition, mageain two different situations:
because the transition producing the token has not firedybgcause the transition removing
the token has already fired. For instance, theMeof Fig. 2 admits two possible executions
involving all its transitions, nameli;t’;to andt’;tg;t, which should not be identified from the
point of view of causality. To deal with this problem a detéristic process, as defined in [12],
includes also a partition of the inhibitor arcs irfdteforeandafter arcs. Intuitively, the fact that
an inhibitor arc fromsto t is classified as “before” means thamust be executed before the
places is filled, while if it is an “after” arc thert must be executed after the token has been
removed frons.

In a similar way, aconfigurationof anIEs is not uniquely identified as a set of events, but
some additional information has to be added which plays i& bale also in the definition of the
order on configurations. More concretely, a configuratioarifes is a set of events endowed
with a choice relationwhich chooses one among the possible different orders aiudxa of
events constrained by the DE-relation. The configuratidresoes, endowed with a suitable
computational order, form a prime algebraic domain, andsiétis equivalence betwedtES
andDom generalises to a coreflection between the catetfe®yof inhibitor event structures
and Dom. By exploiting such coreflection one can recover a domaindquivalently, prime
event structure) semantics for inhibitor nets.

Answering a question which was left open in the conferencsior of the paper [5], also
the construction leading from occurrence i-netg s and domains is given a universal char-
acterisation as a coreflection (step (e) in the diagram). iBjagy with contextual nets one
could expect that the coreflection between occurrencesi-arad prime algebraic domains fac-
torizes througHES, namely, that the functor frordom to the category of occurrence i-nets
could be “decomposed” in two functors, frobom to IES's and fromIES's to occurrence i-
nets, respectively, establishing coreflections betweercthresponding categories. We show



that this is not possible, discussing how this fact is relatethe complex kinds of dependen-
cies among events expressiblais's.

The rest of the paper is organised as follows. Section 1 pteske category of inhibitor
nets and focuses on the subcategory of semi-weighted tohitets which we shall work with.
Section 2 introduces the categories of occurrence infribéts and the corresponding unfolding
constructions. Section 3 presents some background matgerding prime and asymmetric
event structures, and their relationship with prime algatdomains. Then Section 4 introduces
inhibitor event structures, and presents the coreflectwéen the corresponding category and
the category of domains. Section 5 shows how the unfoldiagsde abstracted to aas and
a PESsemantics. The construction which maps the unfoldingsmmss is characterised as a
coreflection. Finally Section 6 draws some conclusions arettions of future research. An
Appendix collects the full proofs of the results in the paper

Some of the results in this paper appeared in CONCUR 200@pudiegs [5]. See also the
PhD theses [4, 9] for a wider treatment of the semantics ai Rets with read and inhibitor
arcs, with applications to process calculi.

1 The category of inhibitor nets

Inhibitor netsare an extension of ordinary Petri nets where, by means dfaedinhibitor arcs,
transitions can check both for the presence and for the absafrtokens in places of the net.
This section, after giving the basics @harked) inhibitor P/T netgurns the class of inhibitor
nets into a categomN by introducing a suitable notion of morphism.

To give the formal definition we need some notation for setbranltisets. LefA be a set.
The powerset of\ is denoted by2”. A multisetof A is a functionM : A — N, whereN is
the set of natural numbers. The set of multiset®\a$ denoted byuA The usual operations
and relations on multisets, like multiset unignor multiset difference-, are used. We write
M <M’ if M(a) < M'(a) for all ac A. If M € pA we denote byM] the multiset defined
as[M](a) =1 if M(a) > 0 and[[M]}(a) = O otherwise, obtained by changing all non-zero
coefficients oM to 1; sometimegM]| will be confused with the corresponding subSat A |
[M](a) = 1} of A. A multirelation f: A — Bis a multiset ofA x B. We will limit our attention
to finitary multirelations, namely multirelatiorfssuch that the seb € B | f(a,b) > 0} is finite.
Multirelation f induces in an obvious way a (possibly partial) functioin: uA— uB, defined
aspf(TacaNa @) = Spep Yaca(Na- f(a,b))-b.LIf f satisfiesf (a,b) < 1forallac Aandb € B,
i.e. f =[f]], then we sometimes confuse it with the corresponding satiza and writef (a, b)
for f(a,b) = 1.

DEFINITION 1 (INHIBITOR NET) A (marked) inhibitor Petri net (i-net)s a tuple N=
(ST,F,C,1,m), where

e Sis asetoplaces
e T is a set oftransitions

o F = (Fpre, Fposy) is @ pair of multirelations from T to S;

1The functionp f can be partial since infinite coefficients are disallowed irtisets. For instance, given the mul-
tirelation f : N — {0} with f(n,0) =1 for alln € N, thenpuf is undefined on the multisgt,cy 1-n.



Figure 3: A safe inhibitor nells.

e C and | are relations between T and S, called tioetextandinhibitor relation respec-
tively;

e mis a multiset of S, called theitial marking

If the inhibitor relation | is empty then N is calledantextual net (c-net)

We assume, as usual, tt&n T = 0. Moreover, we require that for each transitioa T, there
exists a placs € Ssuch thatpre(t,s) > 0. In the following when considering an i-nist we
will assume thalN = (S T,F,C,|,m). Moreover superscripts and subscripts on the net names
carry over the names of the net components. For instinee(S, Ti, K, G, I, my).

Let N be an i-net. As usual, the functions frqri to uSinduced by the multirelationBpre
andFpost are denoted by’ () and( )®, respectively. IfA € uT is a multiset of transitions}A
is called itspre-sef while A° is called itspost-set Moreover, byA we denote theontextof
A, defined asA = C([[A]]), and by ®A = I([[A]) the inhibitor setof A. The same notation is
used to denote the functions frofto 2" defined as, fos€ S, *s= {t € T | Fpos((t,s) > 0},
s ={teT|Fpelt,s) >0},s={teT|C(t,s)} and ®s= {t € T | I(t,s)}. For instance, for
transitionts in the i-netNs of Fig. 3, we have'ts = s3, t3* = 0 and ©t3 = {sp,4}. Considering
places; we obtain®sy = {tz}, &4* = {t4} and ©s4 = {t3,t3}.

A finite multiset of transition®\ is enabled at a markinil, if M contains the pre-set &
and an additional multiset of tokens which covers the cdraéA. Furthermore the places of
the inhibitor set ofA must be empty both before and after the firing of the transitio A.

DEFINITION 2 (TOKEN GAME) Let N be ani-net and let M beraarkingof N, i.e., a multiset
M € uS. A finite multiset & uT isenabledat M if (i) *A+A <M and (i) [M + A°] N CA=0.
Thetransition relatiorbetween markings is defined as

M [A) M/ iff Ais enabled at M and M= M — *A+ A°.

Step and firing sequences, as well as reachable markingdeéined in the usual way. For
instance, in the nell; of Fig. 3 a possible firing sequence starting from the initiarking is
S1+S+S3(t2) S1+S4+S3[ta) S1 + 2+ 3 [ta) 2 + S3.



DEFINITION 3 (I-NET MORPHISM) Let Ny and N be i-nets. An-net morphismh: Ng — Nj is
a pair h= (hr,hs), where i : To — Ty is a partial function and b: S — S is a multirelation
such that (1) p(mp) = my and (2) for eachd € To,

(a) uhs(*to) = *hr (to) (€) uhs(to) = hr (to)

(b) phs(to®) = hr(to)* (d) [hs] ~*(®hr(to)) C ©to.
where we recall thafhg] is the set relation underlying the multirelatiog.iWe denote biN the
category having i-nets as objects and i-net morphisms asxrand bCN its full subcategory

having contextual nets as objects.

Conditions (1), (2.a) and (2.b) are the defining conditiond/mskel’s morphisms on ordinary
nets. Condition (2.c) takes into account read &rbaite that the left-hand side of the equality
is a multiset, while the right-hand side is a set. Hence thisddion imposesihs(tp) to be a
set (each element must occur with multiplicity 1) and to cie withhy (tg). Condition (2.d)
regarding the inhibitor arcs can be better explained bylliegahat morphisms are intended to
represent simulations: in order to map computationsgahto computations oy morphisms
are required to preserve preconditions and contexts, wdilly, inhibitor conditions must be
reflected, since they are negative conditions. In fact ofestirat condition (2.d) on inhibiting
places can be rewritten as

s1 € [uhs(s0)]] A li(hr(to),s1) = lo(to, o),

which shows more explicitly that inhibitor arcs are reflectm particular, iths is atotal func-
tion then

l1(hr (o), hs(s0)) = lo(to,%0).
Itis easy to show that i-net morphisms are closed under csitipi.

PROPOSITION4 (COMPOSITION OF +tNET MORPHISMSY The class of i-net morphisms is
closed under composition.

Proof . See the Appendix.

Observe that i-net morphisms can be seen as a generalishtitmprocess mappings of [9,
12]. More precisely, processes of inhibitor nets in theestfl Goltz-Reisig for a nelil can be
defined as special morphisms from a (deterministic) ocoggé-net to the neXl (see [4]).

By the next proposition i-net morphisms preserve the tokeaney and thus marking reach-
ability.

PROPOSITIONS (MORPHISMS PRESERVE THE TOKEN GAME Let Ny and N be i-nets, and
let h= (hr,hs) : No — Nj be an i-net morphism. Then for eachM € pS and Ac pTo

MIAM = uhs(M) [uhr (A)) phs(M").

Therefore i-net morphisms preserve reachable markings,if.My is a reachable marking in
No then pks(Mo) is reachable in M.

2The category of contextual nets considered in [6] is isorhiorpo CN, although there the inhibitor relation is
absent rather than empty.



Proof . Suppose tha¥l [A) M’. Thus*A+ A<M and[[M + A*] N ®A=0.

First notice thatihr (A) is enabled atihs(M). The proof of Condition (i) in the definition
of enabling (see Definition 2), i.eSuhr(A) + phr(A) < phg(M), is essentially the same as
for ordinary nets, adapted to take into account also the agesl (see [6] for details). As for
Condition (ii), which involves the inhibiting places, nodithat

[Hhs(M) + phr (A)*] N Cuhy (A) = [by (2.b) in the definition of morphism]
= [uhs(M) + phs(A*)| N Cphr (A)
= [uhs(M + A*)[| N ©ubr (A)
=0

The last passage is justified by observing tha i€ [puhs(M + A®)] N Cphr (A), then there is
S € [M + A*] such thas; € [[puhs(so)] ands; € ©hr (A). By condition (2.d) in the definition of
i-net morphism, this implies) € ©A and thereforeg € [M + A*]| N @A, which instead is empty
by hypothesis.

It is now immediate to conclude thphs(M) [phr (A)) phs(M’). O

As in [41, 28, 6] we will restrict our attention to a subclagsqets where each token pro-
duced in a computation has a uniquely determined historg.riéxt definition introduces the
corresponding subcategory If .

DEFINITION 6 (SEMI-WEIGHTED AND SAFE FNETS) A semi-weightedi-net is an i-net N
such that the initial marking m is a set anglJs is a relation (i.e., t is a set for all te T).
We denote bysW-IN the full subcategory ofN having semi-weighted i-nets as objects; the
corresponding subcategory of c-nets is denote&WCN.

A semi-weighted i-net is calleshfeif also Fyre is a relation and each reachable marking is
a set.

An example of semi-weighted net which is not safe is givenim B.(a). As mentioned
above, the basic property of semi-weighted nets, whichheilessential in the unfolding con-
struction, is that any token produced in a computation ofrtbehas a uniquely determined
history. More precisely, the tokens in the initial marking ainiquely identified by the place
where they are and, inductively, any other token producexgthe computation can be iden-
tified with the set of tokens consumed to produce it, the ttamsfired and the name of the
place where the token is. For instance, referring toNyein Fig. 4.(a), the token ig' in the
initial marking is identified as'. The token produced is after the firing oft’ corresponds to
({{s'},t),9). The property of uniqueness of causal history ceases tofbplgeneral i-nets, as
one can immediately verify by considering the simpleNetn Fig. 4.(b), where even the two
tokens in the initial marking are indistinguishable. Foredaded discussion about the role of
semi-weightedness see, e.g., [27].

2 Occurrence i-nets and the unfolding constructions

Generally speaking, an occurrence net provides a statieseptation of some computations of
a net, in which the events (firing of transitions) and thetreteships between events are made
explicit. In [40, 6] the notion of (nondeterministic) occance net has been generalised to the



(a) (b)
Figure 4: (a) A semi-weighted i-net which is not safe and (bpa semi-weighted i-net.

case of nets with read arcs. Here, the presence of the iohdnits and the complex kind of
dependencies they induce on transitions, makes it hard ta firique notion of occurrence
i-net.

In this section we present two different, in our opinion baghsonable, notions of occur-
rence i-net and, correspondingly, we develop two unfoldimgstructions.

In the first construction, given an i-nkt we consider the underlying contextual iNgt ob-
tained fromN by forgetting the inhibitor arcs. Then, disregarding thliitor arcs, we apply to
N the unfolding construction for contextual nets defined i \@ich produces an occurrence
contextual net4(Nc). Finally, if a places and a transitiont were originally connected by an
inhibitor arc in the neN, then we insert an inhibitor arc between each occurrensewnfl each
occurrence of in % (Nc), thus obtaining the unfoldings (N) of the netN. Then the charac-
terisation of the unfolding as a universal construction loatifted from contextual to inhibitor
nets.

It is worth observing that in this way the unfolding of an ibior net is decidable, in the
sense that the problem of establishing if a possible triansitccurrence actually appears in the
unfolding is decidable. This fact may be helpful if one watsise the unfolding in practice to
prove properties of the modelled system. The price to payais tifferently from what happens
for ordinary and contextual nets, some of the transitionthéunfolding may not be firable,
since they are generated without taking care of inhibitace$. Therefore not all the transitions
of the unfolding correspond to a concrete firing of a traasitf the original net, but only those
which are executable.

In the second approach, the dependency relations (of dguaatl asymmetric conflict)
for a net are defined only with respect to a fixed assignmenthi®met which specifies, for
any inhibitor arc(t,s), if the inhibited transitiort is executed before or after the plasés
filled, and in the second case which one of the transitionfiénpost-ses® of the inhibitor
place consumes the token. Then the firability of a transitiamounts to the existence of an
assignment which is acyclic on the transitions which muséxecuted beforé. Relying on
this idea we can define a notion of occurrence net where eanhition is really executable.
The corresponding unfolding construction produces a netrgithe mentioned problem of the
existence of non-firable transitions disappears. Howéwehis way, as a consequence of the
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Turing completeness of inhibitor nets (see, e.g., [1]) tteelpced unfolding is not decidable.

2.1 Lifting the unfolding from contextual to inhibitor nets

In the first approach, the unfolding construction disregain@ inhibitor arcs. Consequently the
notion of occurrence i-net is defined considering only thpeshelencies induced by flow and
read arcs. As mentioned in the introduction, these depeaielenan be fully captured by using
two relations that we call read causality and read asymmedmflict (the qualification “read”
is due to the fact that they consider read arcs only, disdagainhibitor arcs).

DEFINITION 7 (READ CAUSALITY) LetN be a safe i-net. Thread causality relatiois defined
as the least transitive relatior, on SUT such that, forallss Sandtt’ € T,

1. s< tifse *t,
2. t<, sifset®,
3.t tift Nt/ £0.

Clauses (1) and (2) above are standard (see Fig. 5.(a)).nyhaavelty with respect to ordinary
nets is the last clause stating that a transition causapigitids on transitions generating tokens
in its context (see Fig. 5.(b)).

DEFINITION 8 (READ ASYMMETRIC CONFLICT) Let N be a safe i-net. Thead asymmetric
conflict /7, is defined by taking, forallt’ € T,t 7, t’ if one of the following conditions holds:

1.tn°*t'#0
2. t#£U A tNU #£0
3.t 1.

To understand the above definition consider an iMethere each transition is intended to
represent a single event and thus can fire at most once. QlAusensiders the basic case of
asymmetric conflict: if a transitioti consumes a token in the contextdfee Fig. 5.(d)), then,
as already discussed, the firingtofprevents the firing of. Notice that asymmetric conflict
determines an order of execution locally to each computaifid ', t’ andt,t’ fire in the same
computation then must precede’. Therefore a set of transitions in a cycle of asymmetric
conflict cannot occur in the same computation, a fact thatbemnaturally interpreted as a
kind of conflict. This explains clause (2) which capture trseial symmetric conflict as an
asymmetric conflict in both directions (see Fig. 5.(c)). Asgetric conflict can be also seen as a
weakform of causal dependencin the sense thatif ”t’ thent precedes’ in all computations
containing both transitions. Hence in clause (3) we alsb Jét t’ whenevet <, t'.

DEFINITION 9 (READ CONCURRENCY Let N be a safe i-net. A set of placesO<S is called
read concurrentvritten cong(X), if for all X,y € X, =(x < y), the set of read causes of X, i.e.,
{y:3x e X.y<; x} is finite and 7, is acyclic on such a set.

Intuitively, the last requirement in the definition aboveresponds to the absence of conflicts
in the causes oX.

11



Figure 5: Read causality and asymmetric conflict: (a)t ¢o) t’ and (c), (d} 7 t'.

:
RESNO ©
Ng %iC(NS)

Figure 6: Not all events of an occurrence i-net are execetabl

DEFINITION 10 (OCCURRENCE +NETS) Anoccurrence i-neN is a safe i-net N where read
causality<, is a finitary partial order, read asymmetric confligt, is acyclic on the causes of
each transition, there are no backward conflicts (for adl §,|*s| < 1) and the initial marking
ism= {se S| *s=0}.

The full subcategory cBW-IN having occurrence i-nets as objects is denotedDbiN,
while O-CN denotes the category of occurrence c-nets, namely theuhtiategory ofO-IN
having only c-nets as objects.

We remark that, since the above definition does not take ietount the inhibitor arcs of
the net, we are not guaranteed that each transition in anrecme i-net is firable. For instance,
Ns in Fig. 6 is an occurrence i-net, but the only transitiaran never fire.

It is worth introducing now some functors relating the catées of nets defined so far (see
Fig. 7).

DEFINITION 11 We denote byZ. : SW-IN — SW-CN the functor which maps each i-net
into the underlying c-net with an empty inhibitor relatiatefined asZic((S, T,F,C,I,m)) =
(S T,F,C,0,m), and by.#; : SW-CN — SW-IN the obvious inclusion.

The relations<; and ', associated to an i-né&t are exactly the relations of causality and
asymmetric conflict of the underlying c-net. Therefore tategory of occurrence c-neBsCN
is the same as in [6] or [40], and occurrence i-nets are sezigied i-netdN such thatZic(N)
is an occurrence c-net.
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D ]
SW-CN L O-CN
Ua

Figure 7: Functors relating semi-weighted (occurrencegis-and i-nets.

The paper [6] defines an unfolding functég, : SW-CN — O-CN, mapping each semi-
weighted c-net to an occurrence c-net.

DEFINITION 12 (UNFOLDING OF CONTEXTUAL NETS Let N be a semi-weighted contextual
net. Theunfolding%,(N) = (S, T',F/,C’,0,m) of the net N and théolding morphismfy =
(fr, fs) : Z(N) — N are the unique occurrence contextual net and morphisnsfgatg the
following equations:

m= {(0,s)|sem}
S= mu{{t,s)|t'eT Asefr(t)}

Fgre(t’ g) iff t'=(Mp,Mc,t) ASeMp (teT)
Foostt':S) iff s=(s) (s€9

c'(t',9) iff t'=(Mp,Mc,t) ASeM: (teT)
fT(tl) =t |ﬁ <,v|p,|\/|c7 >

fs(s,s) iff s’ (x,5) (xeT'u{o})

As usual, places and transitions in the unfolding represespectively tokens and firing of
transitions in the original net. Each item of the unfoldisgai copy of an item in the original
net, enriched with the corresponding “history”. The folglimorphismf maps each item of the
unfolding to the corresponding item in the original net.He tmentioned paper, the functaég

is shown to be right adjoint to the inclusion functor@fCN into SW-CN.

THEOREM 13 The unfolding construction over contextual nets extends tfonctor %; :
SW-CN — O-CN which is right adjoint to the inclusion functor.

By suitably using the functorc and.#; we can lift both the construction and the result
from contextual nets to inhibitor nets.

DEFINITION 14 (UNFOLDING) Let N be a semi-weighted i-net. Consider the occurrence c-
net % (%ic(N)) = (S,T’,F’.C",0,m) and the folding morphismf: Za(%ic(N)) — Zic(N).
Define an inhibiting relation on the néka(Zic(N)) by taking for s S andt € T’

(S,t) iff 1(fa(S), fn ().

Then the unfoldingZ (N) of the net N is the occurrence i-né8, T',F',C’,lI’,m) and the
folding morphismis given by f seen as a function fror; (N) into N.

13



Figure 8: Part of the unfolding/ (N3) of i-netNs of Fig. 3.

The fact thatZ (N) is an occurrence i-net immediately follows from its constion. Further-
more, since the place componentfgfis a total function, according to condition (2.d) in the
definition of i-net marphism, the unfolding;(N) can be characterised as tkasti-net which
extendsZ(%ic(N)) with the addition of inhibitor arcs in a way th&{ : Z(N) — N is a well
defined i-net morphism.

Fig. 8 presents (part of) the unfoldirig (N3) of the i-netNs of Fig. 3. Occurrences of an
item x are denoted by/,x”,.... Observe the unfolding includes an instance of transition
although it is not executable.

The unfolding construction is functorial, namely we can nlefa functorZ; : SW-IN —
O-IN, which acts on arrows a&; o Zic. In other words, givem : No — Ny, the arrow?; (h) :
% (No) — 7% (Ny) is obtained by interpretinigas a morphism between the c-nets underljNpg
andN;, taking its image vi&z, and then considering the mé& (h) as an arrow fron%4(No)
to % (Ny).
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PrRoOPOSITION15 The unfolding construction extends to a funcigr. SW-IN — O-IN, which
acts on arrows a¥/; o Zic.

Proof . The only thing to verify is that given an i-net morphigm Ny — Nz, the morphism
W = a0 Fic(h) : Ua(%ic(No)) — Ua(%ic(N1)), seen as a mappintg : %(No) — % (N1) is
still an i-net morphism.

First notice that the following diagram, whefg and f; are the folding morphisms, com-
mutes by construction (althoudiy in principle, may not be an i-net morphism).

No ]
T
% (No) % (N)

N =2a(h)

Conditions (1) and (2.a)-(2.c), not involving inhibitorcar are automatically verified since
h' is a morphism between the underlying c-nets. Let us provedhdity of condition (2.d), as
expressed by the remark which follows Definition 3, namely

s € [Whs(s)] A (e (o)1) = lolto, So)-

Assumes] € [phg(s))] A 11(h5(tg),s)). Hence,fis(s)) € [U(fiso hg)(sp)] and, by definition
of the unfolding 1 (f11 (W} (tg)), f1s(s;)). Therefore, by commutativity of the diagram

fis(sy) € [uhs(fos(sp))]  and li(hr(for(tp)), fis(sy))

Beingh an i-net morphism, by condition (2.d) in Definition 3, we hakat

lo(for (to), fos(s0))
and therefore, by definition of the unfolding(ty, ), which is the desired conclusion. O

We can now state the main result of this section, establishicoreflection between semi-
weighted i-nets and occurrence i-nets. It essentiallgsedin Theorem 13 which characterises
the unfolding for c-nets as an universal construction.

THEOREM 16 (COREFLECTION BETWEENSW-IN AND O-IN) The unfolding functor?; :
SW-IN — O-IN is right adjoint to the obvious inclusion functofp : O-IN — SW-IN and
thus establishes a coreflection betw&-IN andO-IN.

The component at an object N 8W-IN of the counit of the adjunction, :f.950 % — 1,
is the folding morphismnf: %5 (N) — N.

Proof . Let N be a semi-weighted i-net, €% (N) = (S, T/,F’,C",I’,m) be its unfolding and
let fn @ % (N) — N be the folding morphism as in Definition 14. We have to show tba
any occurrence i-ndtl; and for any morphisng : N; — N there exists a unique morphism
h: Ny — Z(N) such that the following diagram commutes:

N

Z(N) ——N
A
h /
N1
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Theexistenceas readily proved by observing that an appropriate choide=s%;(g). The
commutativity of the diagram simply follows by the commiutay of the diagram involving
the underlying c-nets and morphisms, namely

fn

Ua(Z#ic(N)) —— Zic(N)

A
" /

e@ic(Nl)

With a little abuse of notation, we have denoted with the saymebol the morphism between
the underlying c-nets and the same mapping seen as a morpéigreen the i-nets.

Also uniguenes#ollows easily by the universal property of the construefior c-nets given
by Theorem 13. In fact le' : Ny — % (N) be another i-net morphism such thigto h' = g.
This means thdt’ is another c-net morphism which makes commute the diagraotvimg the
underlying c-nets. This implies that, as desifedndh’ coincide. O

2.2 Executable occurrence i-nets

The second approach is inspired by the notion of deterngrsocess of an i-net in [9]. As
mentioned in the introduction, the inhibitor arcs of the mederlying a process are partitioned
into two subsets: thbeforeinhibitor arcs andafter inhibitor arcs. Then the dependencies in-
duced by such a patrtition are required to be acyclic in omlgugarantee the firability of all the
transitions of the net in a single computation. Following ilea, to ensure that each transition
of a nondeterministic occurrence net is firable in some cdatjmn, we require, for each transi-
tiont, the existence of a so-calladsignmenivhich partitions the inhibitor arcs into before and
after arcs, without introducing cyclic dependencies ontthasitions which must be executed
beforet.

DEFINITION 17 (ASSIGNMENT) Let N be a safe i-net. Aassignmenfor N is a functionp :
| — T such that, for allt,s) € I, p(t,s) € *sUS".

Intuitively, an assignmen specifies for each inhibitor art,s), if the transitiornt firesbefore
or afterthe placesreceives a token. [i(t,s) € *sthen(t,s) is a before arc, while ip(t,s) € s*
then(t,s) is an after arc. In the last case, since the plaoeay be in the pre-set of several
transitions, the assignment specifies also which of thesitians ins® consumes the token.
Given a safe nell, once an assignmeptfor N is fixed, new dependencies arise between
the transitions of the net, formalised by means of the wtati? and f. We definet <f t/
iff 3s€ °'n *t. p(t',s) =t andt /P t'iff Is€ @ Nt’®. p(t,s) =t'. Observe that, as suggested
by the adopted symbols, the additional dependencies cardreas a kind of causality and
asymmetric conflict, respectively. In facttif<{) t’, thent’ can happen only afteérhas removed
the token frons, and thug acts as a kind of cause fot If t ./ t’ then if botht andt’ happen
in the same computation then necessdrdgcurs befor¢/, sincet’ generates a token in a place
swhich inhibitst, while according to the interpretation pft must occur before the placas
filled.
Under a fixed assignmept we can introduce a kind of generalised causality and asyimme
ric conflict by joining the “read” relations’; and , defined in the previous subsection with
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[t ] [ta] [ ]

Figure 9: An executable occurrence i-net for which therstexio assignmeptmaking relation
x"p acyclic on the causes of each transition in the net.

the additional dependencies induced by the inhibitor ats.define<,= (<; U <f)* and
o =<pU rU /P ie.x, records both kinds of dependency. FurthermorextoiSUT we
denote by x|, the set{t € T |t <, X}, and similarly, forX C SUT, we define| X |, = U{|X]p |
x e X}.

Now we are ready to introduce executable occurrence i-whitish refine occurrence i-nets
by constraining all the transitions of the net to be firable.

DEFINITION 18 (EXECUTABLE OCCURRENCE NET) An executable occurrence i-nét a
safe i-net N such that

e forallt € T there exists an assignmemsuch that(x’) 1|, is acyclic and[t],, is finite,
e forallse S|*s| <1, and
e m={se S| *s=0}.

It is not difficult to see that each executable occurrencetiisian occurrence i-net. We denote
by O-IN€ the full subcategory oD-IN having executable occurrence i-nets as objects.

We remark that it is not possible to require the existencesihgle assignmenmnt such that
¥'p Is acyclic on|t |, for each transitio of the net. For instance, such an assignment does not
exist for the net in Fig. 9, although each of its transitioas €ire in some computation (thus
for each transition there exists an assignmemfor which <, is acyclic on its causeit|,). In
fact, for the assignmet(to, s) = t1 the relation is cyclic on|ts],, while for p(tz,s) =tz the
relationx’,, is cyclic on|ts]p.

Now, a notion of concurrent set of places of an executablaroence i-net can be naturally
defined.

DEFINITION 19 (CONCURRENCY) A set of places MC S is called concurrent written
condM), if there is an assignmeptsuch that

i. foralls,s eM ~(s<p9),

ii. |[M]pis finite and
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iii. x'pis acyclicon|M |o.

Itis possible to show that, as for ordinary and contextutd,reeset of placeld is concurrent
if and only if there is a reachable marking in which all thegala ofM contain a token.

PrROPOSITION20 Let N be an executable occurrence i-net and leENs. Then con@V) iff
there exists a reachable marking Buch that MC M.

Proof . See the Appendix.

The above immediately implies a basic property of execetabturrence i-nets, namely
the fact that each transition of such a net can fire in some atatipn (and thus each place
contains a token at some reachable marking).

ProrPoOsITION21 Let N be an executable occurrence i-net. Then for each tiiangic T there
exists a reachable marking such thatt is enabled at M.

Proof . Immediate from the previous proposition and the definitibex@cutable occurrence
i-net. O

We introduce now an unfolding construction, that, when iggplo a semi-weighted i-net
N, produces an executable occurrence i-net.

DEFINITION 22 ((EXECUTABLE) UNFOLDING) Let N be a semi-weighted i-net. Tliexe-

cutable) unfoldingZ¢(N) = (S,T',F’,C’,I’,m) of the net N and thdolding morphism

fn = (fr, fs) : %°(N) — N are the unique executable occurrence i-net and i-net nisnph
satisfying the equations given in Definition 12, with théofiming changes:

A 3p. ([t']p finite A X acyclic on|t’|,)}

(t,s)  iff  fs(g,9) A I(fr(t),9)

The main difference with respect to the unfolding of contekinets is the fact that we refer
here to a notion of concurrency which takes into accountthis@ffect of inhibitor arcs.

Figure 10 presents (part of) the executable unfolding of-thet N3 of Fig. 3. Occurrences
of an itemx are denoted by, X", .... Observe that the non-executable occurrence of transition
tz is not included in this unfolding.

As one would expect, the two proposed unfolding construstiare tightly related, in
the sense tha#;®(N) can be obtained fror#4(N) simply by removing the non-executable
transitions (e.g., compare Fig. 8 and Fig. 10). This fact loarexploited elegantly to prove
the universality of the executable unfolding as followsisEiof all, letl : O-IN — O-IN®
be thepruning functorwhich maps each occurrence i-ngt= (S T,F,C,I,m) to the net
N = (S, T’,F’.C",I’,m), whereT' is the subset of executable transitioSsjs the subset of
reachable places and the relatidgrisC’ andl’ are the obvious restrictions of the original re-
lations. The construction extends in an obvious way to athmaenapping each morphism
f :N;1 — Np into the restriction‘n(Nl) :M(N1) — M(N2) which is well-defined since morphisms
preserve the token game and thus the executability of tiansi
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Figure 10: Part of the unfolding;®(Ns) of i-netNs of Fig. 3.
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Next one can show that, given an executable occurrenceN-aatl any occurrence i-nbi,
a morphismf : N — N’ is also a morphism fror to I (N’), and thus that the pruning functor
M: O-IN — O-IN€ is right adjoint to the inclusion functoy € : O-IN® — O-IN, andO-IN®
is a coreflective subcategory @f-IN. At this point, one can formally state the relationship
betweenZ4¢(N) and % (N), which provides also an indirect proof of the universalifyttee
new unfolding construction.

PROPOSITION23 For any semi-weighted i-net N (N) = (% (N)). ThereforeZ;€ is right
adjoint to the inclusion functoy§ : O-IN® — SW-IN and they establish a coreflection between
SW-IN andO-IN®.

3 Prime and asymmetric event structures, and their relation

with domains
In this background section we recall some basic notions asals on prime event structures
and domains, as developed in [31, 41]. Furthermore we gi@sotuition on how such results

have been extended in [6] to structures with asymmetric impnflhese notions and results will
be useful later in the treatment of inhibitor event struesur

3.1 Prime event structures and domains.

Prime event structures. Prime event structure@E9 [31] are a simple event-based model

of concurrent computations in which events are consideseat@mic and instantaneous steps,
which can appear only once in a computation. The relatigsshétween events are expressed
by two binary relationscausalityandconflict

DEFINITION 24 (PRIME EVENT STRUCTURE$ A prime event structurePg9 is a tuple P=
(E,<,#), where E is a set ofventsand <, # are binary relations on E calledausality relation
andconflict relationrespectively, such that:

1. the relation< is a partial order and|e| = {€ € E : € < e} is finite for all ec E;

2. the relation# is irreflexive, symmetric and hereditary with respecttpi.e., e#¢ and
€ <€ imply ete’ for all e,€,€’ € E;

Let Py = (Eo, <o0,%#0) and P, = (E3, <1,#1) be twoPESs. A PEsSmorphismf : Po — Py is
a partial function f: Eo — E; such that for all @, €} € Eg, assuming that (feg) and f(e;) are
defined:

1. [f(eo)] € f(|en));

2. (a) f(eo)="f(gp) New#€ = eotoel;
(b) f(eo)taf(ey) =  eotoey;

The category of prime event structures arelsmorphisms is denoted BES.
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An event can occur only after some other events (its causas taken place, and the
execution of an event can prevent the execution of othertsvaiis is formalised via the
notion ofconfigurationof aPESP = (E, <,#), which is a subset of even®C E such that for
all e,€ € C —(ette) (conflict-freenegsand | e| C C (left-closednegsGiven two configurations
C1 CCyif e,...,enis any linearisation of the events@ — C;, compatible with causality, then

CiCCU{e} CCiU{en,e1} C...CCo

is a sequence of well-defined configurations. Thereforeetubslusion can be safely thought
of as a computational ordering on configurations. The sebafigurations of a prime event
structureP, ordered by subset inclusion, is denoteddpnf(P).

Prime algebraic domains. A preordered or partially ordered @&, C) will be often denoted
simply asD, by omitting the (pre)order relation. Given an elemeatD, we write | X to denote
the set{y € D | yC x}. Given a subseX C D, theleast upper boundndgreatest lower bound
of X, when they exist, are denoted pjX and[ ] X, respectively. A subsét C D is compatible
written 7 X, if there exists an upper boumide D for X (i.e.,x C d for all x € X). It is pairwise
compatibleif 7 {x,y} (often writtenx 7 y) for all x,y € X. A subsetX C D is directedif any
finite subset oK has an upper bound K. The partial ordeb is completgcro) if any directed
subset oiX has a least upper boundin

Let D be acpo. Recall that an elememtc D is compactif for any directed seX C D,
e | |[X implieseC x for somex € X. The set otompactlements oD is denoted byK(D).

DEFINITION 25 (PRIME ALGEBRAIC FINITARY COHERENT POSEY A partial order D is
called coheren{pairwise completgif for all pairwise compatible XC D, there exists the least
upper bound | X of X in D.

A complete primef D is an element g D such that, for any compatible X D, if pC | | X
then pC x for some »x X. The set of complete primes of D is denoted byDPr The partial
order D is calledprime algebraidf for any element &= D we have d= (|| | dNPr(D)). The
set| dNPr(D) of complete primes of D below d will be denoteddr We say that D ifinitary
if for each compact elementeK(D) the set| e is finite.

Coherent, prime algebraic, finitary partial orders will beferred to as(Winskel’s) do-
mains

Being not expressible as the least upper bound of other elismine complete primes &
can be seen as elementary indivisible pieces of informd8wants). Thus prime algebraicity
expresses the fact that any element can be obtained by corgpibsse elementary blocks of
information.

The definition of morphism between domains is based on thiemof immediate prece-
dence. Given a domaib and two distinct elements# d’ € D we say that is animmediate
predecessoof d’, writtend < d’ if

dCd AVd"eD.(dCd’'Cd = d’'=dvd=d)

Moreover we writed < d’ if d < d’ or d = d’. According to the informal interpretation of
domain elements sketched abottes d’ intuitively means thadl’ is obtained frond by adding
a quantum of information. Domain morphisms are requiredésgrve such relation.
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DEFINITION 26 (CATEGORY Dom) Let Dy and D; be domains. Alomain morphisnf : Dg —
D, is a function, such that:

e WX,y € Do, if x Xy then f{x) < f(y). (=-preserving)
e VX C Do, X pairwise compatible, (f |X) = | f(X); (Additive)
e VX C Dg, X # 0 and compatible, @[ ]X) =[]f(X); (Stable)

We denote bipom the category having domains as objects and domain morptasrasrows.

Relating prime event structures and domains. Both event structures and domains can be
seen as models of systems where computations are builta@atdtomic pieces. Formalising
this intuition, in [41] the categor{pom is shown to be equivalent to the categdS, the
equivalence being established by two functéfs PES— Dom and<” : Dom — PES

-z
PES ~ _Dom
iz

The functor.Z associates to eadesthe poseConf(P) of its configurations which can
be shown to be a domain. The image 4 of a PEsmorphismf : Py — P is the obvious
extension off to sets of events.

The definition of the functog?, mapping domains back ®ess requires the introduction
of the notion of prime interval.

DEFINITION 27 (PRIME INTERVAL) Let(D,C) be a domain. Arime intervalis a pair [d,d’]
of elements of D such that-d d’. Let us define

6] <[d,d] if (c=cnd) A (Cud=d),

and let~ be the equivalence obtained as the transitive and symnwtiseire of (the preorder)
<.

The intuition that a prime interval represents a pair of eata differing only for a “quantum”
of information is confirmed by the fact that there exists @dfiye correspondence between
~-classes of prime intervals and complete primes of a dolDdgee [31]). More precisely, the
map

[d,d']. — p,

wherep is the only element iPr(d’) — Pr(d), is an isomorphism between the-classes of
prime intervals oD and the complete primé% (D) of D, whose inverse is the function:

p— [L{ceD|cC p},p|~.

The above machinery allows us to give the definition of thecfons” “extracting” an event
structure from a domain.

DEFINITION 28 (FROM DOMAINS TO PESS) The functor#? : Dom — PESis defined as fol-
lows:
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e given adomain DZ (D) = (Pr(D), <,#) where
p<p iff pCp and  pHp’ iff —(pTP);

e given a domain morphism:fDg — D1, the morphism??(f) : #(Dg) — #(D1) is the
function:

p1 if por— [do,dp]~, f(do) < f(dp)
Z(f)(po) = and[f(do), f(dg)]~ — pa;

1 otherwisei.e, if f(dg) = f(dyp).

3.2 Asymmetric event structures and domains

Asymmetric event structurdgve been introduced in [6] as a generalisation of primeteven
structures where the conflict relation is allowed to be ngmigetric. Formally, amsymmetric
event structureAEs) is a tripleG = (E, <, /), whereE is a set of events{ is the causality
relation and,” is a binary relation oft calledasymmetric conflict

The notion of configuration extends smoothlyaes's, the main difference being the fact
that the computational order between configurations is inqily set-inclusion. In fact, a con-
figurationC can be extended with an evegitonly if for any evente € C, it does not hold that
€ /" e(since, in this casewould disable?).

The set of configurations of ames with such a computational order is a domain. The
corresponding functor from the categ@¥S of asymmetric event structures to categbigm
has a left adjoint which maps each domain to the correspgrmime event structure (eaelgs
can be seen as a speaias). Hence Winskel's equivalence betwgeBSandDom generalises
to a coreflection betweehES andDom.

4 |nhibitor event structures

This section introduces the class of event structures thapmsider adequate for modelling the
complex phenomena which arise in the dynamics of inhibigis nFurthermore we establish
a connection betweeigs's and domains, by showing that the equivalence betvwried and
Domgeneralises to the existence of a categorical coreflecetwdenES andDom. We finally
study the problem of removing the non-executable events 0 IES, by characterising the
full subcategoryES€, consisting of thees's where all events are executable, as a coreflective
subcategory ofES.

4.1 The category of inhibitor events structures

Let us fix some notational conventions. Given aX%gby 2%, we denote the set of finite subsets
of X and by2>l< the set of subsets of of cardinality at most one (singletons or the empty
set). In the sequel generic subsets of events will be dermteghper case lette’s B, ..., and
singletons or empty subsets ayb, ...

DEFINITION 29 (PREINHIBITOR EVENT STRUCTURE A pre-inhibitor event structurépre-
IES) is a pair | = (E, ), where E is a set oéventsand + C 25 x E x 2F is a ternary
relation calleddisabling-enabling relation (DE-relatidar shorf.
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Informally, if ~ ({€},e,A) then the everd' inhibits the eveng, which can be enabled again by
one of the events iA. The first argument of the relation can be also the empt,set (0,e, A)
meaning that the eveastis inhibited in the initial state of the system. Moreover thied argu-
ment (the set of even®) can be empty,~ ({€'},e 0) meaning that there are no events that
can re-enable after it has been disabled gy

The DE-relation is sufficient to represent both causality asymmetric conflict and thus,
concretely, it is the only relation of a (preek. This is formalised in the definition below, which
introduces generalised (or-) causality, asymmetric octrdind conflict (over sets of events) as
relations derived from the DE-relation.

DEFINITION 30 (DEPENDENCY RELATIONS Let | = (E, ) be a pretgs. The relations of
(generalised) causality C 25 x E, asymmetric conflict”'C E x E and conflict #C Zﬁn are
defined by the following set of rules:

o (0,6,A)  #pA A<e Ve€ecA As<€ #(U{As|€cA})
ace (< (AT cA) <e (<2
o ({e(}vevo) ecA<é #{eve(}
6/76’(/1) W(/z) Y ("3)
&,/ .../ &/ & 1) A<e VeeA #AU{€}) )

#{eo,....en} #AU{e})

where#pA means that the events in A are pairwise conflicting, namgdye' } for all e,€ € A
with e+ €. We will use the infix notation for the binary conflicts, wigig#e’ instead of#{e €'}.
Moreover we will write e< € to indicate{e} < €.

To understand the basic rule 1) notice that if - (0,e,{€'}) then the evene can be
executed only afte¢’ has fired. This is exactly what happens ireswhen€ causes, or
in symbols wherg < e. Here, more generally, it~ (0,e,A) then we can imaginé as a set
of disjunctive causes fog, since at least one of the eventsArwill appear in every history
of the event; intuitively we can think thae causally depends oyf A. This generalisation of
causality, restricted to the case in which the Aé$ pairwise conflicting (namely all distinct
events inA are in conflict), is represented @s< e. Notice that under the assumption that
A is pairwise conflicting, whemA < e exactly oneevent inA appears in each history af
Therefore, in particular, for any evedte A, if e and€ are executed in the same computation
then surely@ must precede. Similar notions of or-causality have been studied in garmrent
structures [41], flow event structures [7] and in bundle ¢gémictures [24, 25].

As for rule (" 1), note that, if - ({€'},e 0) thene can never followe' in a computation
since there are no events which can re-enalafter the execution of . Instead the converse
order of execution is admitted, namedycanfire before€. This situation is naturally inter-
preted as aasymmetric conflidbetween the two events and it is written” €. According to
the “weak causality” interpretation of asymmetric conflite ~ € thene precede# in all
computations containing both events) rgJé 2) imposes asymmetric conflict to include (also
generalised) causality, by asking titet. eimpliese¢’ " eforall € € A.
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In rule (#1) cycles of asymmetric conflict are used to define a notion oflimbion sets of
events. Ifeg " €1...ey /" e then all such events cannot appear together in the same ¢ampu
tion, since each one should precede the others. This famtrigalised via a conflict relation on
sets of events{p,e;...,en}. In particular, binary (symmetric) conflict correspondsatym-
metric conflict in both directions as expressed by yté3).

Rule (< 2) generalises the transitivity of the causality relatiorA K e and for every event
€ € Awe can find a set of eventg, such thatdy < €, then the union of all such sets, namely
U{Ay | € € A}, can be seen as (generalised) cause pfovided that it is pairwise conflicting.
Observe that in particular, ff¢'} < eand{€’} < € then{€’} < e. Rule (#2) expresses a kind
of hereditarity of the conflict with respect to causalitypposeA’ < eand that any everf € A’
is in conflict withA, namely #AU {€'}) for any€ € A'. Since by definition ok the execution
of e must be preceded by an eventAhwe can conclude that alsis in conflict with A,
i.e., #AU{e}). In particular by taking\' = {€} andA = {€’} we obtain that if{€¢'} < eand
#{e €'} then #e €'}

The intended meaning of the relations  and # is summarised below.

A<e means that in every computation wheres executed, there is exactly one event
€ € Awhich is executed and it precedes

€ e means that in every computation where betinde’ are executed precedes;

#A means that there are no computations where all everitsine executed.

Notice that, due to the greater generalityed's, the rules defining the dependency relations
are more involved than iRESs andAES's, and it is not possible to give a separate definition
of the various relations. In fact, according to rulesl) and(< 2) one can derivé\ < e only
provided that the events i are pairwise conflicting. Asymmetric conflict is in turn irchd
both by generalised causality (rule” 2)) and by conflict (rule( ” 3)). Finally, the conflict
relation is defined by using the asymmetric conflict (i#&)) and it is inherited along causality
(rule (#2)). From a technical point of view, the set of rules in Definiti®0 can be interpreted

as a monotone operator over the latt%6*E x 2E¥E x 2%in, s0 that the relations defined by
mutual recursion are, formally, the least fixed point of sapkrator.

Inhibitor event structures properly generalise prime ayhranetric event structures; more-
over, when applied to (the encoding int&s'’s of) prime and asymmetric event structures the
above rules induce the usual relations of causality andv{asstric) conflict. For what regards
the treatment of disjunctive or-causality (relatier) the presented rules resembles also the
equivalence rules for bundle event structures in [25].

An inhibitor event structure is defined as a pes-where events related by the DE-relation
satisfy a few further requirements suggested by the in@maeaning of such relation. Fur-
thermore the causality and asymmetric conflict relationstnine induced “directly” by the
DE-relation.

DEFINITION 31 (INHIBITOR EVENT STRUCTURE Aninhibitor event structurel€s) is a pre-
IES| = (E, ) satisfying, for all ec E, ac 2f and ACE,

1. if - (a,eA) then#,Aandve ca. V&' c A € < €’
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2. ifA<ethenr (0,eA);
3. ife 7€ then - ({€},e0).

Note that we can have- (0,e,0), meaning that evertcan never be executed. In this case,
by rule (< 1), we deducé) < e and thus, by rulé#2), we have #e}, i.e., the eveneis in
conflict with itself. Similarly if - (e,&,A), with e € A, by condition (2) above, necessarily
e < eand thus the evemtis not executable. In an analogous wayf (e, e, A) thene " eand
thuseis not executable.

We next define the category e&s's by introducing a notion ofEs-morphism which, as
discussed later, generalises betsand AES-morphisms.

DEFINITION 32 (CATEGORY IES) Letly= (Eg, <o) andly = (Ez, + 1) be twolES's. AnIES-
morphismf : Ig — |1 is a partial function f: Eo — E; such that for all @,€, € Eo, A C Eq,
assuming that (fep) and f(e}) are defined:

1. f(eo) =f(ep) Neo# €& = eothoeh;

2. A< f(e) = 3AC T (A Ao<ep;

3. ka({f(&h)}, f(e), A1) = FAGC f1(A1). Ja0 C {€}}. = o(a0,n,Ao).
We denote bIES the category of inhibitor event structures arms-morphisms.

Condition (1) is the usual condition of event structure nigms which allows one to confuse
only conflicting branches of computations. As formally pedater in Proposition 35 condi-
tion (2) can be seen as a generalisation of the requiremeamieservation of causes, namely
of the property| f(e)] C f(|e|), of PEs (and AES) morphisms. Finally, condition (3), as it
commonly happens for event structures morphisms, just s@pthe preservation of computa-
tions by asking, whenever some events in the image are eimstiin some way, that stronger
constraints are present in the pre-image. More precisglgase that— 1({f(e})}, f(en),Ar).
Thus we can have a computation whé(e})) is executed first andl(ep) can be executed only
after one of the events iA;. Alternatively the computation can start with the executod
f(ep). According to condition (3)ep and€f, are subject irlp to the same constraint of their
images or, whenap = 0 or Ag = 0, to stronger constraints selecting one of the possiblersiafe
execution. It is worth stressing that, sine< g can be equivalently expressed as(0,a,A),
condition (2) is essentially a variation of (3), which is ded to cover the case in which the
first argument of the DE-relation is the empty set.

The next proposition gives some useful propertiesesfmorphisms, which are basically
generalisations of analogous properties holding in the adprime and asymmetric event
structures.

PROPOSITION33 Let Ip and |, be IES's and let f: g — |1 be aniEs-morphism. For any
€o, & € Eo,

1. if f(en) < f(&}) thenIAg. eg € Ag < €, Or epttel;
2. if f(eg) / f(€)) theng &,
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Proof . See the Appendix. In particular the above results are usefshowing thaties-

morphisms are closed under composition and thus that agtég® is well-defined.

PrROPOSITION34 Theles-morphisms are closed under composition.

Proof . See the Appendix.

The categorPES of prime event structures can be viewed as a full subcategfolfyS.
This result substantiates the claim thas$'s (and constructions on them) are a “conservative
extension oPESs.

PROPOSITION35 (PRIME AND INHIBITOR EVENT STRUCTURES Let _# : PES — IES be
the functor defined as follows. To argsP = (E, <,#) the functor_# associates theEs
(E, + ) where the DE-relation is defined by (0,e,{€'}) if &’ < e and - ({€'},e 0) if ette,
and for anypEsmorphism f: P, — P, its image_#i(f) is f itself. Then the functoy?; is a full
embedding oPESinto IES.

More generally, it is possible to show that the category ghasetric event structures intro-
duced in [6] fully embeds int¢ES (see [4]). Also (extended) bundle event structures [25] and
prime event structures with possible events [35] can be asapecial classes afs's. As we

will discuss later, the categorical treatment®$'s and the results relatings's and domains
specialises to such event structure models.

4.2 Saturation of pre4ES’'s

Given a pretes| satisfying only condition (1) of Definition 31, it is alway®gsible to “satu-
rate” the relation in order to obtain ames where the relations of causality and (asymmet-
ric) conflict are exactly the same aslinntuitively, in aPeEslike structure where only “direct”
causality and conflict between events are given, the sannabuld amount to taking the tran-
sitive closure of causality and to inherit conflict along ality. The DE-relation derived from
the unfolding of an i-net will be not saturated, hence tharsdipbn operation will play a central
role in defining thees semantics of an i-net (see Definition 55).

PROPOSITION36 Let | = (E, - ) be a pretes satisfying condition (1) of Definition 31. Then
I'=(E, +5),where 5= - U{(0,e,A) |A<elU{({€¢},e0)|e ~€}isalEs, called the
saturatiorof |. Moreover the relations of causality, asymmetric canflind conflict inl are the
same asin I.

The next technical lemma will be quite useful later to prdvattsome mappings between
IES's are well-definedes-morphisms (see Propositions 52 and 56 and Lemma 61). lesiogt
some sufficient conditions for a function between @e's to be a well-definedes-morphism
between thees's obtained by saturating them.

LEmMA 37 Letli = (E, i) (i € {0,1}) be pre+eS's satisfying condition (1) of Definition 31,

letl; = (Ej, +o 7y, and let<;, /i and# be the relations of causality, asymmetric conflict and
conflictin k. Let f: Eg — E; be a partial function such that for each,e/, € Eo and A C E:

1. f(eo) =f(gp) Neo#€) = ety

27



2. +1(0,f(e0), A1) = 3AC F1(A1). Ao <oep;

3. =1(f(g), f(0).0) = e To&;

4. o1 ({f(e)}, f(en),A)AAL# 0 = FAGC f1(A1).Jag C {€)}. (a0, €0,A0).
Then f:1g — 11 is anlES-morphism.

Proof . See the Appendix.

4.3 The domain of configurations of inhibitor event structures

The domain associated to &5 is obtained by considering the family of its configuratiortw
a suitable order. Since here computations involving theesawents may be different from the
point of view of causality, a configuration is not uniquelgidified as a set of events, but some
additional information has to be added which plays a ba$écaiso in the definition of the order
on configurations. More concretely, a configuration ofiagis a set of events endowed with
a choice relation(playing a role similar to assignments for occurrence shethich chooses
among the possible different orders of execution of evemtsirained by the DE-relation.
Consider a set of even of an inhibitor event structurg and suppos€,e €’ € C and

to ({€},eA) for someA, with € € A. We already noticed that in this case there are two
possible orders of execution of the three events (eighere’ or €;€’;€), which cannot be
identified from the point of view of causality. A choice retat for C must choose one of them
by specifying thak precede«’ or thate’ precede®. To ease the definition of the notion of
choice relation, we first introduce, for a given set of evéhitshe setchoice$C), a relation
onC which “collects”all the possible precedences between events induced by thel&tin.
A choice relation forC is then defined as suitable subsetchbice$C). To ensure that all
the events in the configuration are executable in the spéafiger, the choice relation is also
required to satisfy suitable properties of acyclicity amitéiriness.

DEFINITION 38 (CHOICE) Letl= (E, ) be anies and let CC E. We denote by choicg)
the set

{(e,€)|FA. c({€¢},e,A}U{(e",e) | Fa. JA. roc(a,e AN € €A} CCxC,

where the restriction ofi- (,,) to C is defined by~ c(a,e A) if and only if ~ (a,e A’) for
some A with ec C,aC C and A=A'NC.
A choicefor C is a relation—c C choice$C) such that

1. if oc(a,eA) thend€ € a e—c€ or 3&’ € A. €'—ce;
2. —¢ isacyclic
3. VeeC. {€ € C| €—¢e} isfinite.

Condition (1) intuitively requires that whenever the DHat®n permits two possible orders of
execution, the relatior~c chooses one of them. The fact thatc C choice$C) ensures that
—¢ imposes precedences only between events involved in theeldEen. Conditions (2) and
(3) guarantee that the precedences specified-gydo not give rise to cyclic situations and
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that each event must be preceded only by finitely many otiNotce that the acyclicity of

—¢ ensures that exactly one of the two possible choices in tiondil), namely eitheBe'

a. e—c€ or 3¢’ € A. €'—ceis taken. Otherwise, E&—c€ ande’<—ce, since necessarilgf <

€’ and thus/—c¢€’, the relation—c would be cyclic. It is worth observing that conditions (2)

and (3) can be equivalently rephrased by saying-thgtis a finitary partial order.
Configurations oPESs (andAES's, see [6]) are required to be conflict free and downward

closed with respect to causality. The following proposititows that the property of admitting

a choice implies a generalisation of causal closedness amftlat freeness. Furthermore any

choice certainly agrees with the asymmetric conflict (sipoth relations impose an order of

execution on events).

PROPOSITION39 Let| = (E, ) be aniesand let CC E be a subset of events such that there
exists a choice—c for C. Then

1. forany ec C, if A< e then ANC #£ 0;
2. /cC —q;
3. for any AC C itis not the case thatA.

Proof . 1. Observe that iA < e, by definition ofiEs, r (0,e A). Therefore, ifANC = 0 then
we would haver- ¢(0, e, 0). Therefore no relation ov& could be a choice, since condition (1)
of Definition 38 could not be satisfied.

2. ConsidelC C E ande, € € C. If e / € then, by definition ofes, + ({€¢},e 0) and
thus o c({€},e 0). Therefore, if-—c is a choice forC, by condition (1) in Definition 38,
necessarilyg—ce.

3. LetA C C and suppose that¥ Then it is easy to show th& contains a cycle of asym-
metric conflict, and thus by point (2), any choice @mwould be cyclic as well, contradicting
the definition.

The proof of the fact that if & for someA C C thenC contains a cycle of asymmetric
conflict proceeds by induction on the height of the derivatb#A. The base case in which the
last rule in the derivation i&#1), namely

&/ .../ e /€
#{eo,...,en}

(#1)

is trivial. Suppose instead that the last rule in the deigveis (#2), namely

Al<e VeeAN #ANU{€})
#A U{e}) (#2)

In this case, by point (1), there exigse A" NC. Since #A' U {€"}) by the second premise of
the rule, and' U {€’} C C we conclude by inductive hypothesis. O

A configuration of aniEs is now introduced as a set of events endowed with a choice
relation. Proposition 39 above shows how this definitionegalises the notion afEsandAges
configuration.
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DEFINITION 40 (CONFIGURATION) Let|= (E, ) be anies. A configurationof | is a pair
(C,—c), where CC E is a set of events ane:c C C x C is achoicefor C.

In the sequel, with abuse of notation, we will often denoteuafiguration and the underlying
set of events with the same symifylreferring to the corresponding choice relation-as.

As the reader probably noticed, the notions of choice antildhassignment are strictly
related. Formally, as we will see later, each occurrencet Nncan be mapped to aes and,
for any subseK C T, an assignmerm for N such thaiX = | X], andxy is acyclic and finitary
on X, uniquely determines a choice turniKgn a configuration of thees corresponding tiN.

We already know that the existence of a choice implies thealazlosedness and conflict
freeness of a configuration. Moreoverdfis a configuration, given ange C andA < e, not
only ANC # 0, but since by definition o& necessarily #A, we have thaANC contains exactly
one event. More generally, for the same reasd@,i#f a configuration and- (a,e,A) for some
e € C, thenANC contains at most one element, and if it is non-empty thenC. The last
assertion is obvious # = 0, while if a= {€'} it follows from Proposition 39.(1), recalling that
¢ <€ foralle €A

The next technical proposition shows a kind of maximalitgperty of the choice relation
for a configuration. It states that if a choice forelates two events, then any other choice for
C must establish an order between such events. Consequentisompatible choices on the
same set of events must coincide.

PROPOSITION4L Let(Ci,—c) fori € {1,2} be configurations of ares .
1. Ife € € C1NC;y and e—c, € then e—c,€ or eff—%ze.
2. IfC;=Cyand f—>(*;l C ;}éz then—c, = —c,, namely the two configurations coincide.

Proof . See the Appendix.

The next definition introduces a computational order on gt@&configurations of ares.

DEFINITION 42 (EXTENSION) Let | = (E, - ) be anies and let C and Cbe configurations
of . We say that Cextend<C and we write G C/, if

1. CCC
2.VeecC.Ve¢ eC.d—pge = €eC;
3. —¢ C —¢.
The poset of all configurations of |, ordered by extensiodgisoted by Corit).

The extension relation defined oBS's configurations is a generalisation of that introduced
in [6] for AES's. The basic idea is that a configuratiGrtan be extended only by adding events
which are not supposed to happen before other events aliedtlyas expressed by condi-
tion (2). Moreover the extension relation takes into act¢dha choice relations of the two
configurations. Intuitively, condition (3) serves to eresuogether with (2), that the past history
of events inC remains the same @.

The history of an event in a configurati@ns formally defined as a suitable subconfigura-
tion of C.
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DEFINITION 43 (HISTORY) Let | be anies and let Ce Conf(l) be a configuration. For any
e € C we define thaistory of e in C as the configuratiofC[e]], —c[e)), Where (el = {€ €
C | e/;»(*:e} and —Cleg] = —C n (C[[e]] X C[[e]])

It is not difficult to see thatC[e]], —cjg) is a well-defined configuration. The only fact that
is not obvious is the validity of condition (1) in the defiwiti of choice (Definition 38). Now,
if roce (@ €,A) then oc(a,€,A’) with a C C[e], € € C[le] andA = A'NC]e]. BeingC

a configuration, it must b&'—cep for ey € a or e1—c€ for somee; € A'. In the first case,
e € a C C[le] and thus?/— ¢ €0, While in the second case, sin€ec C[le], by definition of
history we must have; € C[[e], thuse;—c[g €.

Recall that, by definition, the reflexive and transitive di@sof a choice is a finitary partial
order, and thus each histo6f[€] is afinite configuration. Furthermore, it is easy to see that
Cle]CC.

The next lemma shows that, given a pairwise compatible satrfigurations< C Conf(l)
of aniEs |, its greatest lower bound and least upper bound can be cechpamponentwise.
Furthermore, for ang; andC; in X, if they contain a common eveatthen the history oéin
the two configurations is the same, nam@lyje]] = C;[[€].

LEMMA 44 Let X C Conf(l) be a pairwise compatible set of configurations ofieal and let
C1,Co € X. Then

1. if e—»éle/ and é € C, then e C, and e—%ze/;
2. ifee C1NCythen G = Co[€]);

3. G.NCy; =C1 NGy, with NG, = ¢, NC,,
4

. the least upper bound of X exists, and it is given by

Lx=Uc U —o.

CeX CeX

Proof . See the Appendix.

By exploiting such properties, we can prove that the posebafigurations of anes has
the desired algebraic structure.

THEOREM45 (CONFIGURATIONS FORM A DOMAIN) Let | be anies. Then{Conf(l),C) is a
domain. The complete primes of Céhfare the possible histories of eventsin |, i.e.

Pr(Conf(l)) = {C[€] | C € Conf(l),e e C}.

Proof . Let us start by showing that for eaGhe Conf(l) ande € C, the configuratioiC[e] is a
complete prime element. Suppd3ie]] C | | X for X C Conf(l) pairwise compatible. Therefore
there exist€; € X such thae € C;. SinceC; andCJe]] are bounded bly|X, by Lemma 44.(2),
C[€e] = C1[€]. Observing tha€1 €] C Cy, it follows that, as desire@[e]] C C;.

Now, by a set-theoretical calculation exploiting the deiimi of history (Definition 43) and
the characterisation of the least upper bound in Lemma 44btan

C=||Clel=| |Pr(C).
ecC
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This shows tha€onf(l) is prime algebraic and th&r(Conf(l)) = {C[[€]] | C € Conf(l),ec C}.
The fact thaConf(l) is coherent has been proved in Lemma 44.(4). Finally, th&finess

of Conf(l) follows from prime algebraicity and the fact tH2ff€] is finite for eachC € Conf(l)

andecC. O

We remark that i is apeEsandl = _#(P) is its encoding intaEs'’s, then for each con-
figuration ofl the choice relation is uniquely determined as the resbrictif causality to the
configuration. Therefore the domain of configurati@unf(l ) defined in this section coincides
with the domairConf(P) as defined by Winskel. A similar situation arises for the encoding
of asymmetric event structures [#leswith possible events [34] and (extended) bundle event
structures [25].

4.4 A coreflection between IES and Dom

To prove that the construction which associates the donfaiardigurations to anes lifts to a
functor fromIES to Dom, a basic result is the fact thats-morphisms preserve configurations.
Observe that since configurations are not simply sets oftsveis not completely obvious, a
priori, what should be the image of a configuration throughcaphism. Letf : 1o — |1 be an
IES-morphism and le€Cy be a configuration ofy. According to the intuition underlyinges
(and general event structure) morphisms, we expect thapassible execution of the events
in Co can be simulated irf (Cp). But the converse implication is not required to hold, namel
the level of concurrency i (Cy) may be higher. For instance we can map two causally related
eventsy < e to a pair of concurrent events. Hence we cannot pretenditbatihole image of
the choice relation ofy is a choice forf (Cp), but just that there is a choice f6(Cp) included
in such image. By the properties of choices, there is onlyahroéce onf (Cp) included in the
image of—c,, which is obtained as the intersection of the image-af, with choice¢f(Co)).
Given a functionf : X — Y and a relatiom C X x X, we will denote byf (r) the relation in
Y defined asf (r) = {(y,y) | Ix,X) er. f(x) =y A T(X) =y}

LEMMA 46 Let f: g — |1 be aniEs-morphism and letCy,—¢) € Conf(lp). Then the pair
(C1,—1) with G = f(Cp) and—1 = f(—g) Nchoicesf(Cp)), namely the unique choice rela-
tion on G included in f—c,), is a configuration in4. Moreover the function*f: Conf(lg) —
Conf(l1) which associates to each configurationtBe configuration € defined as above, is a
domain morphism.

Proof . See the Appendix.

The previous lemma implies that the construction takingearinto its domain of configu-
rations can be viewed as a functor.

PROPOSITION47 There exists a functo# : IES — Dom defined asZ(l) = Conf(l) for each
IES| and %(f) = f* for eachies-morphism f: lg — I1.

A functor going back from domains t&s's, namely %7 : Dom — IES can be obtained
simply as the composition of the functef : Dom — PES defined by Winskel, with the full
embedding # of PESinto IES discussed in Proposition 35. The funct@ is left adjoint to
% and thus they establish a coreflection betwiEesandDom.
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THEOREM48 (COREFLECTION BETWEENES AND Dom) The functor%?; : Dom — IES is
left adjoint to.% : IES — Dom. The counit of the adjunction at ags | is the functiong; :
Zio0 . 4(1) — |, mapping each history of an event e into the event e itselfgj(C[e]]) = e, for
allC € Conf(l) and ec C.

Proof (Sketch)Let| be anesand letg, : 7 (Z (1)) — | be the function defined as(C[[€]) =
e forallC € Conf(l) ande € C. Itis not difficult to prove that, is a well-definedes-morphism
(see the full proof in the Appendix).

We have to show that given any domdin, C) andiEs-morphismh: & (D) — |, there is
a unigue domain morphisg: D — % (1) such that the following diagram commutes:

The morphismg : D — 4(l) can be defined as follows. Givehe D, observe thaCy =
(Pr(d),Cpr(g)) is a configuration of%(D), whereCp;g)=C N(Pr(d) x Pr(d)). Therefore
we can define

g(d) = h*(Cq).

The fact thath*(Cq) is a configuration inl and thus an element of(l), follows from
Lemma 46. Moreoveg is a domain morphism. In fact it i-preserving Additive and Sta-
ble (see the full proof in the Appendix).

The rest of the proof essentially relies on a general reshiktwholds of any domain mor-
phismf : D — %(l) having as target the domain of configurations ofes for all p € Pr(D),

| f(p)—Uf(Pr(p)—{p})[<land

| (1 if f(p)—UTf(Pr(p)—{p})=0
Zi(1)(p) = { t(p)[el it f(p) —Uf(Pr(p)—{p}) = {e}

Exploiting such result, the fact that morphigndefined as above makes the diagram commute
and its unigueness follow as easy consequences. O

It is worth stressing that the above result, together witmak@l's equivalence between
the categoryfpom of domains and the categoBES of prime event structures, allows one to
translate anes | into aPESZ2(4(1)).

COROLLARY 49 The functor #; : PES— IES is left adjoint of%? 0 % : IES — PES The unit
will be denoted by : 1 — P o0 Lo g

The universal characterisation of the construction iielly ensures that the obtaineds
is the “best approximation” df in the categoryPES. By the characterisation of the complete
prime elements in the domain of configurations (see Theor&mvé have that the events
in Z(4(l)) are the possible histories of the eventd iiThe picture below depicts thees
corresponding to a basies containing the eventse €, ey, ..., e} related by the DE-relation
as - ({€},e{ep,...,en}). We explicitly represent a history of an evenas a set of events,
wheree appears in boldface style.
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{e} #

| 2N

{e €} {¢,e0} - {€,en}
S\ ! l
{ed, e} - {eéden} {€ e} - {€ene}

As observed before, asymmetric event structures [6], feldd) bundle event struc-
tures [25], prime event structures with possible event$ 2% be seen as subcategories of
IES. Let ES be any of such subcategories. Sif€®includes all the prime event structures, it
is easy to prove that the coreflection betw#es andDom restricts to a coreflection between
ESandDom [4].

4.5 Removing non-executable events

The non-executability of events in aBs is not completely captured by the proof system of
Definition 30, in the sense that we cannot deriye}#for every non-executable event. Here we
propose a semantic approach to rule out unused events froesamamely we simply remove
from a givenies all events which do not appear in any configuration. Nicdlis tan be done
functorially and the subcategolfS® of IES's where all events are executable turns out to be a
coreflective subcategory tES. Moreover, the coreflection betweHaS andDom restricts to
a coreflection betweeliES® andDom.

We start defining the subcategoryiaf's where all events are executable.

DEFINITION 50 We denote byES*® the full subcategory ofES consisting of thaes's | =
(E, ) such that for any & E there exists &G Conf(l) with ec C.

Any IES is turned into anES® object by forgetting the events which do not appear in
any configuration. The next definition introduces the funifo IES — IES® performing such
construction.

DEFINITION 51 We denote by : IES — IES® the functor mapping eacies | into the IES®

objectW(l) = (W(E), r y()), Where(.) denotes saturation (see Proposition 36) ap(E) is
the set of executable events in I, namely

Y(E) = {ec E|3C € Conf(l). ec C}.

Moreover if f: o — I1 is anies-morphism thetW(f) = fjyg,). With _Zies: IES® — IES we
denote the inclusion.

The fact that¥(1) is anlES® object follows easily from its definition. The well-definezhs
of W(f) for anylEs-morphismf is basically a consequence of the fact that, by Lemma 46, an
IES-morphism preserves configurations and thus also exeeuwtabhts.

34



PROPOSITIONS2 Let lp and |y beles’'s and let f: Io — 11 be aniEs-morphism. The®(f) :
W(lp) — W(l1), defined as above, is aBs-morphism. Henc# is a well-defined functor.

Proof . See the Appendix.

It is easy to verify that, if is alES® object and’ an arbitraryiEs, then anyEs-morphism
f:1 — W(l') is also a morphisni : | — I’. This implies that the inclusion dES€ into IES is
left adjoint toW, i.e., W _Zies, and thus thaES® is a coreflective subcategory (HS.

PROPOSITION53 (RELATING IES AND IES®) WE Fies

Finally observe that the functa?; : Dom — IES maps each domain into the encoding of
a PES which is clearly an object itES®. Therefore it is easy to prove that the coreflection
betweerlES andDom restricts to a coreflection betweHfS® andDom.

COROLLARY 54 Let ¢ : Dom — IES® and.%® : IES® — Dom denote the restrictions of the
functors; and 4. ThenZf 4 Z°.

5 Event structure semantics for i-nets

To provide an event structure and a domain semantics fotsiame investigate the relation-
ship between occurrence i-nets and inhibitor event strastl he kind of dependencies arising
among transitions in an occurrence i-net can be represeatedally by the DE-relation, and
therefore thees corresponding to an occurrence i-net is obtained by farggethe places and
taking the transitions of the net as events. Furthermor@hmsms between occurrence i-nets re-
strict to morphisms between the correspondings, and therefore the semantics can be given
via a functoré; : O-IN — IES. The construction, when applied to an executable occuerenc
i-net, restricts to a functof;® : O-IN® — IES®.

When combined with the coreflection betwel&s and Dom and with Winskel's equiv-
alence betweeom and PES this result allows us to obtain a functor froBIN to PES.
Answering a question left open in [5], we show that such fanatimits a left adjoint providing
a coreflection betweed-IN andPES.

The analogy with contextual nets breaks for the fact thatleanh [6] the coreflection be-
tweenO-CN andPESis expressed as the composition of two coreflections, bet®@e€N and
the categonAES of asymmetric event structures and betw@&s andPES here, in the case
inhibitor nets, the functor frofPESto O-IN does not factorize through the categtiEs. An
object level construction can be easily performed, astingito eaches a corresponding i-net.
However such a construction does not give rise to a functiy actually, we show that there is
no functor fromES to O-IN forming a coreflection witl#;. The last part of this section briefly
discusses the origin of this problem, showing that it imiratiely connected to or-causality.

5.1 From occurrence i-nets taes's and PESS
Let us show first how ares can be extracted from an occurrence i-net.
DEFINITION 55 Let N be an occurrence i-net. The pies associated to N is defined g%+

(T, o ), with = § C 2T x T x 2T, given by: fortt’ € T,t #t’ and s€ S
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1. ift*n(*t’'Ut’) # 0then - {(O,t', {t})
2. if (*tut)n °t’ £ 0 then - {({t'},t,0);
3. ifs€ ®tthen r- R(*st,s*).

Theles associated to N, denoted hy+ (T, ), is obtained by saturatindjl i.e., N = m

The first two clauses of the definition encode, by using ther8l&tion, the causal dependen-
cies and the asymmetric conflicts induced by the flow and reesl (@e could have written
“if t <, t’ then  R(O,t',{t})” and “if t / t’ then r({t'},t,0)”). The last clause fully ex-
ploits the expressiveness of the DE-relation to representdépendencies induced by inhibitor
places. Notice thaﬁ is a pretEs satisfying also condition (1) of the definition wfs. Thus, by
Proposition 36, it can be saturated to obtainith&ly.

The next proposition shows that the transition componehatnet morphism is ares-
morphism between the correspondigg's.

PROPOSITIONS6 Let Ny and N be occurrence i-nets and let Ng — N3 be an i-net morphism.
Then it : In, — Iy, is @alEs-morphism.

Proof . See the Appendix.

By the above proposition we get the existence of a functoctviaps each i-net to the
correspondinges defined as in Definition 55 and each i-net morphism to its ftemscompo-
nent.

DEFINITION 57 We denote by : O-IN — IES the functor defined a&;(N) = Iy for each
occurrence i-net N andi (h: Nop — Ni) = hy for each morphism hNg — Nj.

By exploiting the relation between choices and assignmemstioned before, one can
verify that if N is an executable occurrence i-net th&(N) is anIES® object. Therefore the
functoré; restricts to a functo#;© : O-IN® — IES®.

The coreflection betwed&S (IES®) andDom can be finally used to obtain a domain se-
mantics, and, by exploiting Winskel's equivalence, a prawent structure semantics for semi-
weighted i-nets. As explained in Section 4.4, thes semantics is obtained from thes se-
mantics by introducing an event for each possible diffehéstbry of events in thees.

Figure 11 presents part of the domain associated to theéNpeif Fig. 3, namely of
L(E(U(N3))) = L8(&5(%°(N3))). The choice relation for each configuration is implicitly
represented by the order in which events are mentioned indiresponding set. Observe that
several distinct configurations contains exactly the sameats.

5.2 From prime event structures to occurrence i-nets

In [41] Winskel maps each prime event structure into a carariccurrence net, via a free
construction which generates for each set of events reiateaertain way by the dependency
relations a unique place that induces that kind of relatiothe events. We next show how this
construction can be generalised to inhibitor nets.
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Figure 11: Part of the domaif; (& (% (Ns))) = -Z8(&°(%,°(N3))) associated to the ndk in
Fig. 3.

DEFINITION 58 (FROM PESS TO OCCURRENCE4NETS) Let P= (E,<,#) be aPesand let
/" denote the corresponding asymmetric conflict relation, j©&= <U#. Then#(P) is the
i-net N= (S T,F,C,1,m) defined as follows, where B range oveF and ec E,

e m={(0,AB)|VacA VYbcB.a b A #B},

S=muU{({e},A/B) |V€ c AUB.e<€ A VYacAVYbeB.a, b A #B};

e T=E;

F = (Fpre, Fpost), With
pre: {(e,s) | S= <X7Aa B> € 87 ec B},
Fpost= {(&,5) | s= ({e},A,B) € S};

e C={(e9)|s=(X,AB)eS ecA}.

e l={(es)[s=(xAB) N (F€ex e "€)V (I€cB.€<e)}

The definition ofm, S, T andC is similar to the construction in [6], which associates acracal
contextual net to an asymmetric event structure. The tiansiof net#{(P) are the events of

P and the places are triples of the fofmA, B), with x, A B C E, and|x| < 1, added to induce
the same dependencies between events as those exidting glace(x, A, B) is a precondition
for all the events iB and a context for all the events /& Moreover, ifx = {e}, such a place is

a postcondition foe, otherwise ifx = 0 the place belongs to the initial marking. Therefore each

37



place gives rise to a conflict between each pair of (distieegnts inB and to an asymmetric
conflict between each pair of eversts A andb € B.

With the same spirit, the net is saturated with all the irtbibarcs inducing the correct
dependencies among events. Consider a placéx, A, B) and two events, €. To understand
the second branch of the disjunction in the definitioh above, assume thete B ande < e.
Then places is in the pre-set o and thus it must be emptied by the firing &fbefore the
execution of. Hence we forceto inhibitein .4{(P), i.e., we insert the paife,s) in |. The first
branch of the disjunction is motivated by analogous comatitmns.

Two technical lemmata follow which will play a crucial role ithe proof of the main result
of this section. The first one can be proved as Lemma 7.2 ilh§8ice its proof is omitted. In the
sequel, given an i-né{ and a transitiom € T, we will denote by{{t}] its set of consequences,
namely[{t}] = {t' € T |t <, t'}. For notational convenience the consequences are defsed al
for the empty set by0] =T.

LEMMA 59 Let Ny, Ny be occurrence i-nets and let:iNg — Ny be a morphism. Forse S
and g € S, if hg(s,s1) then

1. hr(*s0) = *sy;

2. 9 =hi(s1*)N[*s0];
3. 9=hl(s)N[*ol;
4. h'(®s)) C Osp.

LEMMA 60 Let P be aPES let Ny be an occurrence i-net and legkh _#;(P) — & (Np) be an
IEs-morphisms (recall that#; is the full embedding d?ESinto IES defined in Proposition 35).
Then there exists a unique buch that h= (hr, hs) : 4{(P) — Np is an i-net morphism.

Proof . See the Appendix.

The next lemma shows that constructing the occurrencefenatgivenPEsand then taking
the correspondintgs, one recovers (ares isomorphic to) the originabes

LEMMA 61 For any PESP, the identity over the events : _#(P) — & (A4 (P)) is anIEs-
isomorphism.

Proof . See the Appendix.

We can thus present the main result of this section, whiclvslttbat the functor4{ is left
adjoint to the functor? %4, &;, mapping each occurrence i-net into the corresponelizgy

THEOREM 62 The construction4{ extends to a functar}{ : PES— O-IN and A4 4 24 &;.

Proof . Let us prove that# 4 2% with unitnp : P — Z.£&(A{(P)) defined ag)p =
Kp; L (ppP)

P 24 7(P) T2 p.g&(4(P))
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wherekp is the unit of the coreflection betwedaS andPES (see Corollary 49) andp is the
identity on events (see Lemma 61).

We must show that for anges P, occurrence i-nelN and morphismf : P — &2 %4 & (N)
there is a unique arrog: .#(P) — N such that the outer triangle commutes

P2 2.4 7(P) L2 44K (P))

L 2Z(h)

BN Y
P LAEN)

Since, by Corollary 497 4 2.4, there is a uniqué: _#(P) — & (N) such that the left
triangle above commutes.

Furthermore, by Lemma 60, uniquely extends to a morphisg: .4(P) — N such that
& (g) = gr = h, thus making the right triangle in the diagram above comn(gteall thatpp
is the identity on events). This proves the existence of tbhepmsmg we were looking for.
Uniqueness follows from the observation that the existeri¢eo distinct choices fog would
violate the uniqueness bf O

Observe that the image of the functai is entirely included inO-IN¥, i.e., for anyPES
P the net#{(P) is an executable occurrence i-net. Hen¢gnaturally restricts to a functor
¢ : PES— O-IN®, which, by general arguments, is left adjoint4d o .%o &€. Also note
that since the functorg’o o 4, #§o .4 € : PES— SW-IN clearly coincide, as a byproduct we
immediately have that also their right-adjoints are theesdra., the two proposed constructions
(with or without non-executable events) lead to the sam&(and domain).

5.3 FromIES's to i-nets: a negative result

We finally show that, differently from what happens for cotital nets and asymmetric event
structures, the coreflection betwe®AN andPESdescribed above does not factorize through
the categoryES, i.e., that there is no left adjoint functo#; : IES — O-IN which forms a
coreflection withs;.

More generally we can show that there is no funcir: IES — O-IN such thats; o .#;
is naturally isomorphic to the identity. Assume by contction that there is such a functor.
Consider twolES's lg and |, obtained by saturating the pres's ({ep, €}, {(0,e0.{€)})})
(Whereelo < eo) and<{elve(lve(l/}v {({ell}ve(llv {el})}>

Sinced; (A (11)) ~ 11 and the only way to generate a triple where all components@ne
empty is to have an inhibiting place, iv#(I1) there must be a place € %€/ Ne;* N *e; (see
Fig. 12.(b)). Since the mappirig lo — |1 such thah(ep) = e; andh(e}) = € is a well-defined
IES-morphism, there must exist an i-net morphis#(h) : .# (lo) — -#;(11). This implies that
there are places, € €,* andsy € *eg such that#; (h)(s,,s1) and.#;(h)(so,s1). Since.#;(h)
is an occurrence i-net morphism, necessasily- 5,, otherwise we would haveyts,, hence
eotte}, in #i(lo) and thus in&(.#(lo)), contradicting the assumptiofi(.#(lo)) ~ lo (see
Fig. 12.(a)).

Consider now theles I, which is obtained by saturation of the pies

({e2,6,€5},{(0,€,{&,€}), ({€,},,0),({&},&,0)}) (wheree,#e; and{e), €} < &) and
theles-morphismf : 1> — lo, defined byf (e;) = ey and f(€},) = f(€)) = €. Since there is an
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Figure 13: (a) Part of#(l2) and (b) Part of i (lo)

i-net morphism#; (f) : . (12) — #(lo), there must be place$ € €,° ands, € *e, such that
Ai(1)(s2,%) and.#(1)(s,,%0). Therefore#;()(€,) < .#(f)(e2) and thus, since;(f) is
an occurrence i-net morphism, necessagjly< e, or ex#€, in .#(12) and thus in& (Z(12)).
Hence in both cases we would reach a contradiction with theragtion that; (i (12)) ~ I».

At a more intuitive level, imagine to construct an i-net for iahibitor event structure by
following Winskel's idea of saturating thes with places in order to induce the same relations
among events as in thes. Fig. 13 represents fragments of the net§12) and.#(lg) which
we would obtain for event structurésandlg. Observe that the causal depende€gy. ey is
induced both by placs) € €° N *ey and by means of an inhibitor arc, i.e., through the marked
places, € *e;N ®ep. Correspondingly, the functoriality of would require the netZ;(12)
to include the places, ands, (since theaes-morphismf : 12 — lg, defined byf (e2) = ep and
f(€,) = f(&)) = €, must be “extendable” to a i-net morphiswi(f) : #(12) — #(lo)).
However.#(l2) cannot be defined in this way since backward conflicts (sétrarssitions in
the pre-set of a place, lik@ in .#;(l2)) are not allowed in occurrence i-nets.

Observe also that the naive solution of widening the categiooccurrence i-net to include
also nets with backward conflicts (which, by analogy withfloes nets of [7], could be called
flow i-net3 does not work, as one can easily check.
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6 Conclusions

We have provided a coreflective concurrent semantics fai Rets with read and inhibitor
arcs. The proposed constructions, which generalise Wisskerk on safe ordinary nets and
the work in [6] on contextual nets, are summarised in the rdimgbelow (where unnamed
functors are inclusions).

The paper singles out two distinct notions of occurrenceti-ardinary occurrence i-nets,
where some events might be non-executable, and executetilerence i-nets, where some
additional conditions ensure the firability of any trarmiti Correspondingly two different un-
folding constructions are provided which associate to eschi-weighted inhibitor net an oc-
currence inhibitor net. The unfoldings can be naturallytizsed to anes, having the tran-
sitions of the net as events, and thus, by exploiting a catésle betweerlES and Dom, to
a domain (or, equivalently, to a prime event structure).hBatnstructions (with or without
non-executable events) lead to the same domain.

The coreflection between occurrence nets and prime everttgtes does not factorize
throughlIES, namely, the functor fronPES to the category of occurrence i-nets cannot be
expressed as the composition of functors one fRIES to IES'S, and the other fromes's to
occurrence i-nets.

In the paper we hinted at the relationship betweesis and other event structure mod-
els proposed in the literature. It can be easily seenitt&s$ properly generalise prime [41],
asymmetric [6], (extended) bundle event structures [28]@me event structures with possi-
ble events [35]. InsteaEs's and flow event structures [7] (with possible flow [35]) halugh
strictly related, are, in a sense, not comparable since trereS's whose sets of configurations
cannot be described by a flow event structure and vice versa.

Inhibitor event structures are also relate@t@nt automatf5], a class of automata where
states are sets of events and the transition relation speuwifiich events can occur in a certain
state. Although not explicitly worked out in this paper,dtéasy to see that given ams we
can obtain a corresponding event automaton via a funcioiatruction which takes the par-
tial order of configurations, forgetting about the histofyweents, namely identifying different
configurations which involve the same set of events.

This connection betweelks's and event automata suggests also the possibility of com-
paring our model with other event based models proposeckeititdrature as generalisations
of the family of configurations of event structures, like figaration structures [38] and Chu
spaces [18]. In particular it could be interesting to try teega logical view ofiES’s, in the
style of the presentation of event structures as proposititheories in [38]. To this end, also
the logical approach to causality of [17] could provide sdonteresting hints. Some similarities
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can be found also with local event structures [20], wher@ #e case ofeS’s, the enabling of
events is not required to be monotonic. However a direct @ispn appears difficult to carry
out since local event structures explicitly represent gumfitions and concurrent enabling of
sets of events, whilees's give an intensional description of such notions by medriseDE-
relation. Probably also in this case one could try a comparé the level of corresponding
event automata.

A semantics for inhibitor nets, based on a generalisatidlafurkiewicz traces, has been
developedin [21]. Such paper assumes a notion of enablifegetit from ours, allowing for the
concurrent firing of steps where a token is generated in thibitor set. Consequently concur-
rent steps may not be serializable and this is the reason léhgitultaneity (independence)
relation of Mazurkiewicz traces is not sufficiently expieesand one must consider also a
serializability relation which explicitly says if two sintaneous events are serializable and in
which order. Along the same line, more recently a processatos for inhibitor nets (possibly
unbounded and with weighted arcs) has been developed [R2)28erstanding if, despite the
different notions of enabling, a relationship can be e&thbd with our work is left as a matter
of future investigation. We also conjecture that, keepingrmtion of enabling, Mazurkiewicz
trace theory could be successfully applied to extraetafrom an inhibitor net and that the
domain of configurations of suchrEswould be isomorphic to the prime algebraic domain
obtained through our unfolding construction.

Acknowledgements. We are grateful to the anonymous referees for their usetutanstruc-
tive comments on the submitted version of this paper.

A Full proofs of results in the paper.

A.1 Categories of i-nets

Proposition 4. [(composition of i-net morphisms)] The class of i-net maspts is closed under
composition.

Proof .Let hg : Np — N; andh; : Ny — Np be two i-net morphisms. Their compositibipo hg
obviously satisfies conditions (1) and (2.a)-(2.c) of D¢ifom 3, since these are exactly the
defining conditions of c-net morphisms which are known tolosed under composition.

Finally, hy o hg satisfies also condition (2.d). In fact, for any transition No:

[hiso hos] ~*(©har o hor (t)) =
= [hos] ~*([Ihas] ~*(®har (hor (1))))
C [hos] ~*(®hor (1)) [sinceh; is a morphism]

©t [sincehg is @ morphism]

N

Proposition 20. Let N be an executable occurrence i-net and leti8. Then con@M) iff there
exists a reachable marking’Nuch that MC M'.
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Proof . (=) By definition of concurrency (Definition 19), there is anigasnentp such that
M|, is finite andx’p is acyclic on|M|,. Therefore there is an enumeration of transitions

t@®, ... t®in M|, compatible with2} . Let us show by induction okthat
M= MO O MD 2y MED 0y MK 5

(k= 0) Obvious.

(k> 0) By constructiort® is «o-maximal [M|,. TakeM” =M —t®* 4 *t® |t is easy to
show thatcondM”) (with the same assignmep) and [M" |, = {t(M),... .t*=D1. Hence by
inductive hypothesis

m=MO Oy MO ;@) Mk Dy kD) 5 g

Now, showing that® is enabled aM~1 we can conclude. To this aim, observe that
clearly *t® ¢ M&1_ Moreovert® c Mk-1) and kK nM&-1 = 9, as otherwise®) would
not bex"p-maximal in|[M | .

Therefora® is enabled aM*~1) and we can extend the firing sequence above to

m=MO tOyMD @) MED kL)y =D 0y MK

with MK = M(K-D) o0 4 t0Ke 5 M7 — o) 1 tKe = .
(<) The thesis follows from an inductive reasoning on the nunatbdrings leading from
the initial markingmto M’. O

A.2 Basicresults on IES'’s

Proposition 33 Let Iy and l beles's and let f: Io — |1 be aniEs-morphism. For any g €, €
Eo,

1. if f(ep) < f(&}) thenIAg. ey € A < €, Or eptel;
2. if f(eg) / f(€)) theng €.

Proof .

1. Let f(eg) < f(€), namely{f(eg)} < f(ep). By condition (2) in the definition ofes-
morphisms, there existy C f~1({f(ep)}) such thatyy < €. Now, if g € Ag the desired
property is proved. Otherwise for eael € Ao, €] # e and, by constructior (€f) =
f(ep). Hence by condition (1) in the definition efs-morphism, it must bex#e] for
eache] € Ag. Hence, by rulg#2), we concludep#e,.

2. Letf(eg) / f(€]). Then, by definition ofes, r ({f(e})}, f(en),0). By condition (3)
in the definition ofiEs-morphism there must exish C {e)} andAg C f~1(0) = 0 such

that — (ap, e, Ao). Therefore, ifag = {€} then r ({&,},0,0) and thus, by rul¢ " 1),
we concludexy " &,. If insteadap = 0 then + (0, ep,0) and thus, by rulé¢< 1), 0 < ep.

Hence, by rulé#2), we deduce fep, €} and thusey " € by (, 3). O
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Proposition 34 Theles-morphisms are closed under composition.
Proof .Let fp: lg — |1 andfy : 11 — |2 belEsS-morphisms. We want to show that their compo-
sition f; o fg still satisfies conditions (1)-(3) of Definition 32.

1. Letey, €, € Eg be events such thag # €, andf1(fo(ep)) = f1(fo(€p)). If fo(en) = fo(ep)
then, beingfp a morphismep#e),. Otherwise, since alsf is a morphismfo(ep)#fo(€))
and thus, by rul¢ ” 3), fo(en) ,/ fo(€) / fo(eo). Hence, by Proposition 33.(2), it must
hold thatey ,” €, " €, which in turn, by rulg#1) allows us to deduceyte,.

2. ConsiderA; C E; andey € Ep such thatAy < f1(fo(ep)). Sincef; is anies-morphism
there exist#\; C f{l(Az) such tha#\; < fo(ep). By using again condition (2) in the defi-
nition of IES-morphism, applied tdg, we obtain the existence 8f C fgl(Al) satisfying
Ao < . We conclude observing thay C fo (A1) C o 1 (f;1(A2)) = (fro o) H(An).

3. Letus assume- ({f1(fo(ep))}, f1(fo(€n)),A2). Sincef; is aniEs-morphism there exist
A C ffl(Az) andai C {fo(€})} such that (as, fo(ep),A1). We can distinguish two
cases according to the form af.

e If a1 = 0 and thusA; < fo(ep), since fp is aniEs-morphism, there will bedg C
fal(Al) such tha®y < . By definition ofiEs this implies + (0, ey, Ag). Moreover
Ao C o t(A1) C o 1(f 1 (A2)) and thus condition (3) is satisfied.

e If a1 = {fo(€})} and thust+ ({fo(€})}, fo(en), A1) reasoning as above, but using
point (3) in the definition of morphism, we deduce the existeofAq C fgl(Al) -
fo (1 1(A2)) andag C {€,} such thatr (a0, €, Ao), thus satisfying condition (3).
O

Lemma 37. Letl = (E;, ) (i € {0,1}) be pre+eS's satisfying condition (1) of Definition 31,
letl; = (Ei, ), and let<;, /i and# be the relations of causality, asymmetric conflict and
conflictin k. Let f: Eg — E; be a partial function such that for eacl,€/, € Eo and A C E:

fleo) = f(ep) Nw#€ = eothoey;
—1(0,f(e0), A1) = FAoC f (A1) Ao <oev;
—1(f(€p),f(e0),0) = e Jo&;
4. 1({f(e)}, fen),Ar) AAL#D = 3Ag C f1(A1).3a0 C {€)}. F (a0, &0, A0).

Then f:1g — 11 is anlES-morphism.
Proof . We first show thaf satisfies the following properties:

a A <if(en) = FAC T LA Ag<oen;
f(eo) /1f(ef) = e 08
c. #hf(Ay) = #Hoho.
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The three points are proved simultaneously by inductiontenheight of the derivation of
the judgement, involving the relatiors;, "1 and #, which appears in the premise of each
implication and by cases on the form of the judgement.

a. Judgement A< f(ep).
We distinguish various subcases according to the last sdd in the derivation:

(< 1) Letthe last rule be
o 1(07 f(eo)vAl) #pAl
A1 <1 f(eo)

In this case, since— 1(0, f(ep), A1), we immediately conclude by using point (2)
in the hypotheses.

(< 2) Let the last rule be
A <iflen) VereAlAe <ie #p(U{Aq |e€AL})
(U{Ae, [ &1 € Ar}) <1 f(eo)
By inductive hypothesis from} <1 f(ep) we deduce that
JA C FL(A)). Ag <o & ()

Now, for all & € Ag, by (1), f(€)) € A}. Therefore, by the second premise of the
rule aboveAf(%> <1 f(€}), and thus, by inductive hypothesis, there exls;/osg

f*l(Af(e,O)) such thathy <o €. Finally, U{Ag | €, € Ao} is pairwise conflicting.

In fact if €5, 65 € U{Ay | & € Ao} with &5 # €5, we havef (&), f(€§) € Ug,ca; Ae.
which is pairwise conflicting. Thereforé(e}) = f(€3) or f(e})#1f(€}) and, by
using point (1) in the hypotheses in the first case, and bydtikihypothesis in the
second case, we conclue#oes.

By using the facts proved so far we can apply ri#e2) as follows:
Ao <o VejEA Ay <o€ #p(U{Ay | € € Ad})
(1A | o € o)) <o &0 (<2
This concludes the proof of this case since
U{Aq | & € Ao} C

CU{fY(At)) | €& € Ao}

C{fY(Aq) e e A}

= 71 U{Ae |er € AL})

b. Judgement (o) 1 f(€f).

We distinguish various subcases according to the last sdd in the derivation:

(<1

(<2)

(1) Let the last rule be

~1({f(€h)}, f(e0),0)
f(eo) 1 f(€))

(1)
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From r 1({f(€)}, f(en),0), by point (3) in the hypotheses, we immediately have
thatey "o €.
(" 2) Let the last rule be

f(eo) € A1 <1 f(€))
f(eo) 1 f(€))

By inductive hypothesis there exisig C f~1(A;) such thatyy <o €.

For all € € Ag, we havef(e]) € A;. Thus recalling that, sincd; <1 f(€), the
setA; is pairwise conflicting, it follows thaf (€j) = f(ep) or f(€fj)#1f(en). By
using point (1) of the hypotheses in the first case and thecindiihypothesis in the
second case, we can conclude that foegak Ag, ey = € or epthpe].

Consequently there are two possibilities. One is éhat €] € Ag for someefj € Ao,
which allows us to conclude sind® <q €. The other one is tha#pe] for all
€ € Ao. Thus, by rule(#2), we can derive thatd¢fep, €}, and thereforey o €

by rule (" 3).
(" 3) Let the last rule be
#1{f (o). f(€h))
f(eo) /1 f(€h)
In this case by inductive hypothesig{#, €, } and therefore, by rule,” 3), ey "o
€.

c. Judgemenr#; f (Ao).
We distinguish various subcases according to the last sdd in the derivation:

(/2)

(3)

(#1) Let the last rule be

1) /1. 1 fED) 21 HED)
s #{tE).....tEe")

whereA; = {&),...,el"}. By inductive hypothesis’ /o ... /o€l /o€,
and therefore &.
(#2) Let the last rule be
AL <1 f(ep) Ve eAr #(F(AG)U{er})
#1(f(Ag) U{f(e0)})

(#1)

(#2)

whereAg = AU {ep}.
By inductive hypothesis, fromA; <1 f(ep) it follows that
3AG C F1(A1). Ay <o€o @)
Now, for all € € Ay, by (1), f (&) € A1. Therefore, by the second premise of the rule
above, #(f(Ay) U{f(ey)}), namely # f (A U{€&,}). Thus, by inductive hypothesis,

to(ApU{ep}) for all & € Aj. Recalling thai\j <o ep, by using rule(#2), we obtain
Ag <o Vey € Ag #o(AgU{eo})
#o(AgU{eo})

(#2)
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which is the desired result.

This completes the proof of the properties (a), (b) and (c).

Itis now easy to conclude that Io — I1 is ales-morphism. Let; = (E;, +?) fori € {1,2}.
Conditions (1) and (2) of the definition afs-morphism (Definition 32) are clearly satisfied. In
fact, by Proposition 36 the relations of causality and coniti I; andl; coincide, and thus the
mentioned conditions coincide with point (1) in the hypate&and point (a) proved above.

Hence it remains to verify condition (3) of Definition 32, ths

~5({f(ep)}, f(eo),A1) = Ao C fH(A1). 3a0 C {&h}. r5(@o,€0,A0).

Suppose that—- 3({f(€,)}, f(en),A1). If A1 # 0, by definition ofl;, it must be the case that
H1({f(ey)}, f(en), A1) and thus the thesis trivially holds by point (4) in the hypestés. If

insteadA; = Othen, by rule(,” 1), f(ep) "1 f(€}). Hence, by point (b) proved abow®, "o €,

and therefore— §({€}}, e, 0), which satisfies the desired condition. O

A.3 Algebraic properties of the domain of configurations of a IES

Proposition 41 Let (C;,—c) fori € {1,2} be configurations of ares .

1. Ife € € C1NCy and e—c, € then e—c,€ or e/f—%ze.

2. IfC=C and;{g1 - ;»32 then—c, = —c,, namely the two configurations coincide.

Proof.

1. Lete € € C;NC, with e—c, €. By definition of choice, it follows that—c, ({€},e A)
or oc(a,€,A), with ec A. Assume thatroc, ({€},eA) and thus - ({€},e A”)
with A = A" NC; (the other case can be treated in a similar way). Simete C,,

Fc,({€},6,A"NCy), and thus, by definition of choice, al§€®» must choose among
the two possible orders of executions, naneelyc,€ ore’—c,efor € € A’NC,. In the
second case, since by definitioniak € < €’, by Proposition 39.(2), we hawg&—c,€’
and thue/—¢ e.

2. If e—c, €, by point (1).e—c,€ or €<, e. But the second possibility cannot arise, since
e—c, € impliese—¢ € and thuse—¢ €. Vice versa, ife—c,€, by point (1),e—c,€
or d;»éle. Again the second possibility cannot arise, otherwise WBIWbavee/ggze,
contradicting the acyclicity of-c,.

Lemma 44 Let X C Conf(l) be a pairwise compatible set of configurations ofieal and let
C1,Co € X. Then

1. if ef—%le’ and é € C, then ec C, and e—>éze’;

2. ifec CyNCy then G €] = Co[€];
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3. G NC, =C1NCy, with —CNC, = ¢, N ¢,

4. the least upper bound of X exists, and it is given by

Lx=Ue U=c)

CeX CeX
Proof.

1. Let us first suppose that-c,€ and€ € C,. LetC € X be an upper bound fa; and
Co, which exists sinc& is pairwise compatible. Fro®y C C, by definition of extension,
we have thae, € € C ande—c€. Recalling thaC, C C and€' € C, we deduces € Cy.
Sincee, € € C; =C,NC ande—c¢€, by Proposition 41.(1), it must le—c,€ ore’f—%ze.
The second possibility cannot arise, otherwise we should a-¢e, contradicting the
acyclicity of —c. Hence we can conclude—c,€.

Inthe general case in Whi(Eh—»éle/ the desired property is easily derived via an inductive
reasoning using the above argument.

2. Immediate consequence of point (1).

3. To show that—c,nc, = —c, N—c, is a choice foIC; N Cy, the only non trivial point
is the proof of condition (1) of Definition 38. Suppose thatc,c,(a,e A), namely
o (a,e,A') witha C C;NCy andA=A'N(A1NA2). Hence ¢, (a,e,A'NCy) and thus
eithere—c, € for € € a or €'<c,e with & € A'NC;. BeingC; andC, compatible, by
Lemma 44.(1) it must be—c,€, or &’ € A'NC, ande’—c,e, respectively. Therefore,
as desirede—c,nc,€ or €’ € Awith & —¢,rc,e

HenceCy NC; is a configuration. Moreover, it is the greatest lower bouh@,0andC;
as one can check via a routine verification using Lemma 44.(1)

4. Let us verify that—| x = Ucex —c is a choice for JX. First, it is easy to see that

—1jx C choiceg{JX).

As for condition (1) of the definition of choice, suppose that x(a,e A), namely

o (a,e,A') with a C (X andA = A'n{JX. Sincea,{e} C JX we can findC,C’ € X

such thad C C ande € C'. Moreover, being pairwise compatible, there @’ € X, up-
per bound ofc andC/, containing botha ande. Therefore ¢ (a,e, A’ NC"), and thus
by definition of choicee—c€ for € € aore’—crefore’ € ANC’. It follows that, as
desirede— x€ or (¢’ € UX and)e’— xe.

The relation— % is acyclic since Lemma 44.(1) implies that a cycle-ef |x in UX
should be entirely inside a single configuratidr X. Furthermore it is easily seen that
given an evene € UX, (UX)[e]] = C[€], for anyC € X such thate € C. Therefore
(UX)[[€] is surely finite.

Hence—| |x is a choice and thulg|X is a configuration. A routine verification, using
Lemma 44.(1) allows one to conclude th3X is the least upper bound &f. O

Lemma 46. Let f: 1o — |1 be anies-morphism and letCy, <) € Conf(lg). Then the pair
(C1,—1) with G = f(Cp) and—1 = f(—g) Nchoicesf(Cp)), namely the unique choice rela-
tion on G included in f—c,), is a configuration in4. Moreover the function*f: Conf(lg) —
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Conf(l1) which associates to each configurationt@e configuration € defined as above, is a
domain morphism.
Proof . To prove that— is a choice forf (Cp) and thus(f(Cp),—1) is a configuration, first
observe that—; C choice$C;) by definition.
Let us verify the validity of condition (1) in the definitiorf ohoice (Definition 38). Assume
that r (¢, (a1, f(en),A1). This means that- 1 (ay, f(ep), A7) with a; C f(Co) andA; = A1 N
f(Co). We distinguish two cases according to the shapm of

e If a; = 0, and thusA] < f(ep), by condition (2) in the definition ofes-morphism it
follows that there exist®y C f*l(A’l) such thatAg < ep. Sinceey € Cy, by Proposi-
tion 39.(1),A0NCo is non-empty (precisely, it is a singleton). Tadec AoNCo. By rule
("2), € / e and thus, by Proposition 39.(2), we hasfe—oep. Hence, by construc-
tion, f(€fj)—1f(ep). Notice thatf () € A} N f(Co) = A1

e If &y = {f(€))}, then by condition (3) in the definition aEs-morphism we can find
ao C {€)} andAg C f~1(A]) such thati o(ag, €9, Ag).
If ag = 0 we proceed as in the previous case. If instage- {€;} then, by definition of
choiceey— €, or €<—oep for € € Ag. Thereforef (ep)—1f(€}) or f(€f)—1f(ep) (and
observe thaf (€ff) € A1).

As for condition (2), to show that>; is acyclic, first observe thati@s-morphism is injec-
tive on a configuration. In fact, , &, € Co and f (ey) = f(€}) theney = €, or egte}). But, by
Proposition 39.(3), the second possibility cannot arisawNf there were a cycle of-1 then,
by the above observation and by definitiorref;, a cycle should have been already present in
<, contradicting the hypothesis thaj is a configuration.

Finally, observe that also condition (3) holds, since by mal@gous reasoning, the finitari-
ness of the choice iGp implies the finitariness of the choice f{Cy).

Let us show thaf* : Conf(lg) — Conf(l1) is a morphism irDom.

e If C and C are compatible then*(CNC') = f*(C)n f*(C').
Recalling how the greatest lower bound of configurations @mputed (see
Lemma 44.(3)), we have that

f*(CncC’) = (f(CNC'), f(—cN<—¢c)Nchoicesf(CNC'))),
while

f*cynf(C)=
(f(C), f(—c)Nchoice$f(C)))n(f(C'), f(—c)Nchoicesf(C)))
=(f(C)nf(C), f(—c) N f(—c)Nchoice$f(C)) Nchoicesf(C')))

Observe thaf is injective onCUC’ sinceC andC’ have an upper bound”’, and, as
already observed, is injective on configurations. By using this fact, we canut=sgithat
f(C)Nf(C) = f(CNC), f(—c)Nf(—c) = f(—cN<—c). Moreover itis easy to see
thatchoicegCNC’) = choice$C) Nnchoice$C’) holds in general. Therefore we conclude
that f*(CncC’) = f*(C)n f*(C').
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f*(UX) =1 f*(X), for X C Conf(lg) pairwise compatible
Keeping in mind the characterisation of the least upper dgiven in Lemma 44.(4), we
obtain

U (X) =

= (U{F(©) [ C e X}, U{f(—c) Nchoicesf (C)) | C e X})
(f(UX), {(U{—c | C € X}) Nchoice¢f (UX)))
F{UX,U{—c [CeX}))

F(Ux)

To understand the second passage observe that

U{f(<—c)nchoice¢f(C)) |Ce X} C [by set-theoretical properties]
CU{f(=c) |C e X}nJ{choicegf(C)) |C e X} [by definition ofchoice$
C f(U{—c | C € X}) Nchoicesf (UX))

Therefore Proposition 41.(2) and the equalifyf(C) | C € X} = f(|JX) allow us to
conclude.

e C<C'implies f*(C) < f*(C').
This property immediately follows from the observationtthes in the case OfES's,
C<Ciff CCC and|C'-C|=1.

d

Theorem 48 The functor??; : Dom — IES is left adjoint t0.% : IES — Dom. The counit of
the adjunction at anes | is the functiorg, : & o %(1) — |, mapping each history of an event
e into the event e itself, i.e,(C[[e]]) = e, for all C< Conf(l) and ec C.

Proof .Let| be anies and letg) : Z(%4(1)) — | be the function defined a&s(Cle])) = e, for
all C € Conf(l) ande € C. Let us prove that, is a well-definedes-morphism by showing that
g satisfies conditions (1)-(3) of Definition 32.

1. & (C[e]) =& (C[€]) A Cle] #C'[€] = Cle[#C'[€].
Assume thag, (C[e]) = & (C'[[€])), namelye= €, andC|e] # C'[€¢]. By Lemma 44.(2)
it follows that there is no upper bound f¢€,C'}. In fact, if there were an upper bound
C” then necessarilg[[e] = C"[[e] = C'[[€]]. Henceette .

2. Ai<g(Cle]) = 3ACgt(A). Ay <Cle].
Let us assuméy < € (C[[e]]) = e. Sincee € C, by Proposition 39.(1)A; NC = {€}
for some€. Moreover, sincee € A; < e, by rule(,"2), € /" e and thus, by Proposi-
tion 39.(2) and the definition of historg, € C[€].

By point (1) of Lemma 44, one easily derives tRdg] = C[€]. Therefore according to
the definition of%;, C[[€] < C[[€]] and sincee € A, {C[€]} C & 1(Ar).
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3. k= ({a (€]}, (Clel),A) = Ao C et (A). 3a0 € {C'[€]}. + (20,C[e],Ao).
Assume - ({& (C'[€])},& (C[€]), A1), namely

o ({€},6,A1).

If =(C[e] 1 C'[[€]) then, by definition of;, C[[e]|#C'[ €] and thu<[[e]] ,~ C'[€]. Hence
o ({C'[€] },C[€]],0), which clearly satisfies the desired condition.

Suppose, instead, th@fe]] 1 C'[[€]. We distinguish two subcases:

o If € € C[g] thenA; NC[e] # 0. Indeed, beind[e] a configurationA; NCe]
must be a singletofie’}. As above, by Lemma 44.(2}[[€’] E C[e] and thus, by
definition of #;, C[[€'] < C[€]]. Therefore+ (0,C[e],{C[€"]}), which allows us
to conclude, since’ € A implies {C[€"]} C g (A1)

e Assume€ ¢ C[e]. Consider a configuratio@”, upper bound o€[e] andC'[€]],
which exists by assumption. Sinegg € C” it must bee—cr €. In fact, otherwise
there would be’ € C" N A; ande’—cre. But then, by Lemma 44.(1%’ € C[€],
an thus, being’ < €', we would have? € C[[e]], contradicting the hypothesis.
Therefore, by Lemma 44.(1¢,€ C'[€], and thuC[[e] C C'[€]], implying C[e]] <
C'[€]. HenceC[e] ,/ C'[€]], and therefore— ({C'[[€] },C[€],0).

We have to show that given any domad, C) andies-morphismh : &% (D) — I, there is
a unique domain morphisg: D — .%4(1) such that the following diagram commutes:
PAD) —— 1
A
2i(9)

Z(D)

h

The morphismg : D — 4(l) can be defined as follows. Givehe D, observe thaCy =
(Pr(d),Cpr(g)) is a configuration of%(D), whereCp;g)=C N(Pr(d) x Pr(d)). Therefore
we can define

g(d) = h*(Ca)-

The fact thath*(Cq) is a configuration inl and thus an element of(l), follows from
Lemma 46.
Moreoverg is a domain morphism. In fact it is

e =-preserving By prime algebraicityd,d’ € D, with d < d’ thenPr(d’) — Pr(d) = {p},
for somep € Pr(D). Thus

g(d’) —g(d) =
— h(Pr(d")) - "(Pr(d))
c {h(p}
Thereforelg(d’) — g(d)| < 1 and, since it is easy to see tht) C g(d’), we conclude
g(d) = g(d).
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e Additive Let X C D be a pairwise compatible set. Then
9(UX) =h"({Cx, —cx)) = (N(Cx), h(—cx) Nchoicegh(Cx)))
whereCx = Pr([UX) = Uyex Pr(x) and—c, =Cc,. On the other hand
Lixex 9(X) =
= Lkex h*({Pr(X), Cpr(x))))
= (Uxex h(Pr(x)),Uxex (h(Epr(x)) N choicesh(Pr(x)))))
= (h(Cx), Uxex (N(Cpr(x)) N choicesh(Pr(x)))))

Now, the choice relation of the configuration above is ineldich the choice of the con-
figurationg(] | X), namely

Uxex(h(cpr()o) Nchoicegh(Pr(x)))) C h(—c, ) Nchoice$Cx)

Thus by using Proposition 41.(2) we can conclude ¢fiatX) = [ lyex 9(X).
e StableLetd,d’ € D withd 1 d’, then:

g(dnd’) =h*((C,—c)) = (h(C), h(—c) Nchoicesh(C))),

whereC = Pr(drnd’) = Pr(d) nPr(d’) and<—¢c =Cc¢. Moreover
g(d)rg(d’) =
= (h(Pr(d)), h(Cpr(a)) Nchoicegh(Pr(d))))
M(h(Pr(d")),h(Cpyary) Nchoicegh(Pr(d’))))

Now, sinced 7 d’ it is easy to see thdtis injective onPr(d) U Pr(d") and therefore the
set of events ofj(d) M g(d’) is

h(Pr(d)) nh(Pr(d")) = h(Pr(d)nPr(d")) = h(C),

namely it coincides with the set of eventsgitird’).

By a similar argumenty(Cpy(q)) NN (Cpra)) = h(Cpr@ynpr(ar)) = h(Cc). Moreover,
reasoning as in the proof of Lemma 46, we have,

choicegh(Pr(d))) nchoicesh(Pr(d’)))
= choicegh(Pr(d)) nh(Pr(d'))) [sincechoice$X NY) = choice$X) N choicesY)]

= choicegh(Pr(d)nPr(d’))) [by injectivity of h onC]
= choicegh(C))

and we are able to conclude that also the choice relatigtdirg(d’) is the same as in
g(drd’). In fact
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h(Cpr(a)) Nh(Cprary) N choicesh(Pr(d))) Nchoicesh(Pr(d’)))
= h(Cc¢) Nchoicesh(Pr(d)NPr(d’))) [by injectivity of honC and remark above]
= h(—¢) Nchoicegh(C))
The rest of the proof essentially relies on a general reshiitlwholds of any domain mor-

phismf : D — %(l) having as target the domain of configurations ofes for all p € Pr(D),
| f(p)—Uf(Pr(p)—{p})|<land

1 if f(p)—UTf(Pr(p)—{p}) =0
Zi(f = :
OO = T 10O rPrip) (o]~ el
Exploiting such result, the fact that morphigndefined as above makes the diagram commute
and its unigueness follow as easy consequences. O

A.4 Removing non-executable events from ares

Proposition 52 Let |y and b beIes's and let f: I — |1 be anies-morphism. The®/(f) :
Y(lg) — W(l1), defined as in Definition 51, is aEs-morphism. HencéV is a well-defined
functor.

Proof . We start observing that for angs | and for anye, € € Y(E) andAC E
Fl.e 1€ = e/ yp¢,;
F2.A<ie = (ANY(E)) <y e
F3. 4ANACWY(E) = #HypA
Now, notice that
f(P(Eo)) C Y(Ea) ()

and thus the restrictiofyyg,) : W(Eo) — W(Es) is a well-defined function. In fact, & € W(Eo)
theney € Cy for some configuratioy € Conf(lp). Hence, if definedf (ep) € f(Cp) and, by
Lemma 46,f*(Cp) is a configuration of;. Thusf(ep) € Y(Ez).

Fori € {0,1}, let us denote by, <j, /i and # the relations in;, and by - y,, <y,
/"y, and #; the relations in(Y(E;),  y(g)), the pretes which, when saturated, gives the
IES W(lj). To show that¥(f) : W(lg) — W(l1) is an IEs-morphism we verify that/(f) :
(W(Eo), o y(gy)) — (W(E1), o y(k,)) satisfies conditions (1)-(4) of Lemma 37, namely

1. W(f)(eo) =W(f)(ep) N 0#€ = eotyy€h;

2. oy, (0,W(f)(0), A1) = TAgCW(f) H(A1). Ao <y €v;
3. oy, ({W(F)(ep)},W(f)(€0),0) = €y, &
4 (

)
{W() ()} W()(e).A) A AL £0 =
o CW(1)"H(Aw). Fa0 € {ep} - uo(@0, 0. A0).

. ey
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To lighten the notation let” denote(f), i.e., the restrictiorf yg,).

1. If f'(ep) = f'(&) andeg # €, sincef : 1o — |1 is aniEs-morphism, it must be the case
thatepte). Hence, by Fact (F3) aboveyty, €.

2. Assume that y, (0, f'(ep),A1). By definition of W(11), recalling thatf’(ep) = f(ep),
we have - 1(0, f(ep), A7), with Ay = A} NP(Ez). Since, by definition ofes, #,A], we
can apply rulg< 1), thus obtaining

F1(0, f(eo), A1) #pAy
A <1 f(ep)

(<1

By definition of morphism, there existy, C f*l(A’l) such thatA <o ep. If we define
Ao = AjNY(Ep) then, by Fact (F1) abovélg <y, € and, by the property (t) above,
Ag C flfl(Al).

3. Assume that— y, ({ (&)}, f'(en),0). By definition of + y, and recalling that’ is the
restriction of f, it must be the case that- 1({ f(€})}, f(en),A1) with Ay NY(E1) = 0.
Hence, by definition of morphism, there exat C {e)} andAg C f~1(A1) such that

o o(@0,€0,A0). Since A1 NW(E1) = 0, we deduce thatg N W(Eyg) = 0. Moreover,
recalling thateg € Y(Ep), namely it is executable, necessardy = {€,}. Therefore
- yo({€h}.€0,0), and thusey 'y, €.

4. Assume thatr , ({f'(€))}, f'(e0), A1) with Ay # 0. Then, by definition of -y, , we

must have
~1({f(€)}, f'(€0), A1)

whereA; = A NY(Ey). By definition of IEs-morphism, there must exigf, C f~1(A))
andag C {€&,} such thati— o(ag, €, Ay).

If we defineAq = AyNY(Ey), then by definition ofi— y,, we have - y,(aog, e, Ag) and,
by the property (1) proved abouly C f'~1(A1). O

A.5 Event structure semantics for i-nets

Proposition 56. Let Ny and N be occurrence i-nets and let iNg — N; be an i-net morphism.
Then i : Iy, — In; IS @IES-morphism.

Proof .Fori € {0,1}, let <j, /i and # be the relations of causality, asymmetric conflict and
conflict in the prerEs I = (Ei, - P). We show thati : 1§ — I satisfies conditions (1)-(4)
in the hypotheses of Lemma 37 and thusis anies-morphism between the corresponding
“saturated”ES's.

1. hr(tp) =hr (t(/)) A to # t(/) = to#ot(/).
This property can be proved exactly as for ordinary nets.
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2. = f@hr(to),A) = FAoChrl(Ar). Ao <oto.
Let us assume- 5(0, hr(to),A1). By the definition of -~ ) we can have

(@)A1 ={t1} andt;* N *hy (tg) # 0.

Considers; € t1°N *hy(tg). By Lemma 59 there must exisg € *to such thahs(sp,s1),
andt; € To such thahr (t;) =t; andsp € t*. By definition of g, if we defineAq = {t;},
it follows that +- g(w,to,Ao), and thus by rulé¢< 1), Ag < to. Recalling that} € h{l(tl)
and thus? C hy(A;) we conclude.

(b) Az = {t1} andt;* Nhr(to) # 0.
Analogous to case (a).

(€)Is1 € Ohr(tp). *s1 =0 A 51° = Ag.

Since *s; = 0, namelys; is in the initial markingmy of Np, by definition of i-net mor-
phism, there exists a unigege my such thahs(sp, s1). Again, by definition of i-net mor-
phism, froms; € ©hr(tp) andhg(sp,s1) it follows thatsy € ©tg. Hence - g('so,to,so'),
namely, recalling thadp € my,

e 8(07t07 &)')

Therefore, by ruld< 1), we havesy® <o to. Observe that, by the condition (2.a) in the
definition of i-net morphismdr (s%°) C s1* and, sincens(sp, s1), necessariy is defined
on eacht) € s°. Thussy® C h{l(si') concluding the proof for this case.

3. = {({hr(tg)},hr(0).0) = o oty
By definition of 1 £, we can have

(@) (*hr(to) Uhr (to)) N *hr (tg) # 0.

Lets; € (*hr(to) Uhr(to)) N *hr (tg). If 1 is in the initial marking then, by the definition
of i-net morphisms, one easily deduces that there existsquemlacesy € S such that
hs(s0,S1) and moreoves € (*toUto) N *t). Therefore, by definitioni- §({t}},to, 0) and
thus, by rule(,” 1), to o t§.

Suppose instead that& my. If (*toUto) N *ty # 0 then we conclude as above. Otherwise,
one easily deduces thiatity, and therefore, by rulg ” 3), we can concludg "o ;.

(b) 3 € hy (té)' N ©ht (to) A s1*°=0.

By condition (2.c) in the definition of i-net morphism (Defion 3), there must bs) € t}*
such thats(sp,s1). By condition (2.d) in the same definitiosy € ©tp. Observing that
necessarilyg® = 0, we concluder- 8({t6},to, 0) and thudg "o t;.

4, =Py}, hr(to), A)AAL£D = 3AyChri(A1). Fag C {td}. o (@0, to, Ao).
Assume i Y({hr (t))}, hr (to), A1) andAq # 0. Thus, by definition ofi-- ! there is a place
s1 € ©hr(to) Nhr(t))® such thaty = s°. Hence there isp € t(* such thahs(so,s1). By
condition (2.a) in the definition of i-net morphidm (5°*) C s1* = A1 and necessarillgr
is defined on eactf € so°*. Therefore

s0° C hei(Ag).
Sinces; € ©hr(tp) andhs(so, s1), by condition (2.d) in the definition of i-net morphism,
S € ©®p. Hence we conclude that, as desiredy, ({t;},t0,%°). m|

55



Lemma 60. Let P be aPES let Ny be an occurrence i-net and leth _#;(P) — &(No) be an
IES-morphisms. Then there exists a uniggeshch that h= (ht,hs) : A4 (P) — Np is an i-net
morphism.

Proof . Consider the contextual netic(.4(P)), obtained from.4{(P) by removing the in-
hibitor arcs. Then there existsumique ks such thath = (hr,hs) : Zic(A(P)) — Zic(No) is
a contextual net morphism. The relatibgis defined by taking the conditions of Lemma 59
specialised to the net{(P), that is, for alls= (x,A,B) € Sandsy € S:

hs(s, o) iff  (x=0Asem) VvV (x={t} A sehr(t)®))
AB=hrY(s*)N[X]
AA=hrl(s) N x|

This can be proved along the same lines of Theorem 7.3 in [6].

Therefore, to conclude the validity of the thesis we onlych&e prove that, seen as a
morphismh = (hr, hs) : A{(P) — Np, is a well-defined i-net morphism. To this aim, observe
thath : Zic(A(P)) — Zic(No) is a c-net morphism and thus it satisfies conditions (1)){2.a
(2.c) of Definition 3. Hence it remains only to verify the \dity of condition (2.d), i.e., that for
allec T, hs'(®hr(e)) C ©e Lets= (x,AB) € Sand assume € hg'(©hr(e)), namely that
there existsy € ©hr(e) such thahs(s s). We distinguish two cases

(x=0) In this case, in5i(Np) we have — (0,hr(e),%*) and thussy® < hr(e). Sincehy is
an IEs-morphism, there existX C h{l(so') such thatX < e. By definition of hs we have
h{l(so') = B and thus, by definition of4{, e € ©s, namelysc ®e

(x={€}) In this case’s = {€}. Hence, by Lemma 59,
*so=hr(*s) = {hr(e)}

(e),5°*) in &(No). Therefore, by definition ofes-morphism, there
1(*) such thati- (y,e,X) in _#(P). SinceP is aPESwe have two

and thust- ({hr(€)},ht
existy C {¢} andX C hy
possibilities:

i. X={€'},y=0,and thug’ < e.
Since€’ € hyl(s*), we havehr (€¢) < hr(€”) and thus, by Proposition 38, < €' or
g#€’. In the first cas&’ € B and thuse € ©s, while, in the second cas€#e, and thus
o ({€'},e,0), implying (sinced C B) thate € ©s.

i. X=0.
Since triviallyX C B, by definition of_4{ we havee € ©s. O

Lemma 61 For any PESP, the identity over the events : _7i(P) — & (A4(P)) is anIEs-
isomorphism.

Proof . We first observe thaip is a well-definedes-morphism. To this aim we prove that the
identity, seen as a mapping frop#; (P) to the pretes associated to#(P) (whose DE-relation
is denoted as— ) satisfies the conditions of Lemma 37. Condition (1) triyidolds, while
(2)-(4) are discussed below, where the subs®if used to refer to the dependency relations

of #(P).
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2. ton(0,6A) = FJANCAA<pe

Let - n(0,e A). We distinguish two possibilities. k= {€'} ande€* N (*eUe) #0in
A(P), then€ <p e. Otherwise, there is placein .4{(P) such that € ©®sandA = s".
Thus, by definition of 4/, there is¢ € A such tha¥ <p e.

3. }—ON({G(},G,@) = e/pe’.

Let ~n({€},e0). This triple is generated in two cases. The first one is that
(*eUe)N *€ # 0in the net#(P) and thuse "p €. Otherwise there must exist ©e,
with *s= {€} ands® = 0. Hence, by definition of (see Definition 58)e p €.

4. on({€},e AANAZ£D = A CAJacC {€}. ~p(aehA).
Let - n({€},e A) andA # 0. Therefore there exists a plase 4(P), with *s= {€},
ec 9sandA=s". Hence, by definition of (see Definition 58), there are two possibilities:
e 3¢’ ex.e /€' Sincex= {€} this impliese / € and thusr p({€'},e,0).
e J¢’ € A € < e Hencerp(0,e,{€'}).

Observe that in both cases we can conclude the existeéeaf® = A (possibly empty)
anda C {€} such thatr- p(a,e A').

A similar reasoning shows that the identity on events is gamiem also fromé; (.4(P)) to
P. Hencepp is an isomorphism. O
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