
JID:JLAMP AID:81 /FLA [m3G; v1.162; Prn:2/11/2015; 16:33] P.1 (1-21)

Journal of Logical and Algebraic Methods in Programming ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in 

Programming
www.elsevier.com/locate/jlamp

Reduction of event structures under history preserving 

bisimulation ✩

Abel Armas-Cervantes a,∗, Paolo Baldan b,∗, Luciano García-Bañuelos a

a Institute of Computer Science, University of Tartu, Estonia
b Department of Mathematics, University of Padua, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 May 2014
Received in revised form 12 October 2015
Accepted 12 October 2015
Available online xxxx

Keywords:
Prime event structures
Flow event structures
Asymmetric event structures
Reduction of event structures
History preserving bisimilarity

Event structures represent concurrent processes in terms of events and dependency 
relations between events like causality and conflict. Since the introduction of prime 
event structures, many variants of event structures have been proposed with different 
dependency relations and, hence, with differences in their expressive power. One of the 
possible benefits of using a more expressive event structure model is that of obtaining 
a more compact representation for the same behaviour using a smaller number of 
events. This article addresses the problem of reducing the size of an event structure 
while preserving its behaviour under a classical notion of behavioural equivalence in 
the true concurrency spectrum, namely history preserving bisimulation. In particular, we 
investigate this problem on two generalisations of prime event structures: asymmetric 
event structures, which rely on an asymmetric form of conflict, and flow event structures, 
which support a form of disjunctive causality. We single out conditions under which 
distinct events in an event structure can be seen as occurrences of the same activity in 
different contexts and thus can be folded into a single event without altering the original 
behaviour. By iterating the folding operation, any finite event structure can be reduced to 
a minimal form, behaviourally equivalent to the original one. This is not unique in general, 
as it depends on the order on which the folding operations are applied.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The concept of concurrent process is pervasive in computer science, with applications in a multitude of distinct fields. 
A wide range of formalisms and techniques have been developed for the modelling and analysis of such processes. When 
one is interested in providing an explicit representation of the dependencies between activities, like causal dependencies, 
choices, possibility of parallel execution, a well established abstract model is given by event structures [1], where concurrent 
computations are represented by means of events and dependency relations between events. Events represent occurrences 
of atomic actions and dependency relations explain how events relate each other.

The seminal work of [1,2] introduces prime event structures (PESs), where dependencies between events are reduced to 
causality and conflict. An event e is a cause for e′ whenever, in any computation, the occurrence of e′ requires that e
occurred beforehand. Events e and e′ are in conflict if they never occur in the same computation.

✩ This article is a full version of the extended abstract presented at the 25th Nordic Workshop on Programming Theory, NWPT 2013, Tallinn, Estonia.
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Fig. 1. Three history preserving bisimilar event structures.

Since then, many different kinds of event structures have been proposed, relying on more expressive dependency rela-
tions. In this work, we focus on two basic extensions of prime event structures, namely asymmetric event structures (AESs) [3], 
where conflict is allowed to be non-symmetric, and flow event structures (FESs) [4], which provide a form of disjunctive 
causality (the causes of an event can be chosen from a set of conflicting events).

In order to give an idea of the kind of structures the paper deals with and of the results we aim at, consider the 
event structures depicted in Fig. 1 in the form of graphs where nodes represent events and edges represent dependency 
relations. Events are labelled to represent the fact that they are instances of some abstract activities. Throughout the paper 
we will adopt the convention that event labels are denoted by latin letters a, b, c, . . . and, unless specified otherwise, an 
event is named by its label with a subscript. E.g., c0, c1, c2 are distinct events, all labelled by c. Fig. 1a represents a PES. 
The straight directed arrows represent causality. Since causality in PESs is a transitive relation, in pictures we only depict 
direct causal dependencies. The annotated dotted edges represent conflict. They are undirected since conflict in PES is 
symmetric. For instance, the presence of a straight directed arrow from a to b indicates that a is a cause of b, written a ≤ b, 
which means that “in any computation where b occurs, event a must have occurred before”. Instead, events d and b, connected 
by a dotted arrow labelled by #, are in conflict, written b#d, which means that “in any computation, either d or b does not 
occur”.

Fig. 1b depicts an AES. Causal dependencies are still represented using straight directed arrows, e.g., we have that a ≤ b. 
Instead, asymmetric conflict is represented by a dotted directed arrow and the corresponding relation is denoted by ↗. For 
instance, we have that b ↗ c01 which means that “the occurrence of event c01 prevents b to occur afterwards”. Hence b and c01

can occur in the same computation, but b has to precede c01 in such computations. Whenever two events, like d and b are 
related by asymmetric conflict in both directions, namely d ↗ b and b ↗ d, then none can occur after the other, and thus 
they can never occur in the same computation as it happens for events in symmetric conflict in PESs.

Finally, Fig. 1c provides an example of a FES. Causality is replaced by the flow relation, which is represented with a 
double-headed straight arrow and denoted by ≺. The flow relation is not transitive. Intuitively, the flow relation expresses 
the set of potential direct causes for a given event. Then, in order for an event to occur, a maximal, conflict free set of 
potential direct causes has to occur beforehand. For instance, in the example, we have e ≺ c0, d ≺ c0 and b ≺ c0. Hence, 
{e, d, b} is the set of potential direct causes for c0, whose execution must be preceded by either {e, d} or {b}.

Interestingly, it can be seen that the three event structures depicted in Figs. 1a–c represent the same set of computa-
tions, but with different numbers of events. This happens because AESs and FESs can take advantage from their greater 
expressiveness in order to avoid some duplication of events representing activity c. Also, it should be noted that PESs can 
be seen as special AESs, where asymmetric conflict is actually symmetric, and as special FESs, where the flow relation is 
transitive and potential causes do not contain conflicts.

The purpose of this article is to identify suitable transformations which reduce the size of AESs and FESs, without altering 
the original behaviour. The method is based on the identification of sets of events that intuitively represent occurrences of 
the same activity in different contexts and can be safely folded into a single event.

As a reference notion of behavioural equivalence we consider history preserving bisimilarity [5–7], one of the classical 
equivalences in true concurrency spectrum. For instance, the three event structures in Fig. 1 can be shown to be history 
preserving bisimilar. The AES in Fig. 1b can be obtained from the PES in Fig. 1a by folding the events c0 and c1 into a single 
event c01. Similarly, the FES in Fig. 1c, can be obtained from the PES by folding events c1 and c2 into c12.

Iterating the folding operation over a finite event structure will eventually lead to an event structure that is not further 
reducible, behaviourally equivalent to the original one. Unfortunately, this “minimal” event structure is not always unique 
and, therefore, cannot be used as a canonical representative. We will argue that the absence of a canonical minimal repre-
sentative is something intrinsic, not related to limitations of our approach.

The rest of the paper is organised as follows. In Section 2 we introduce the basics of prime event structures. Furthermore, 
we define history preserving bisimilarity and an abstract notion of (behaviour-preserving) folding for event structures. The 
folding technique for AESs is presented in Section 3, while that for FESs is presented in Section 4. Finally, Section 5 draws 
some conclusions and proposes possible avenues for future work.
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2. Event structures, history preserving bisimilarity and foldings

In this section, we start by recalling the basics of prime event structures. Afterwards, we define history preserving bisimilar-
ity, the reference behavioural equivalence in the paper, and introduce an abstract notion of folding, i.e., of quotient of event 
structures which preserves the behaviour.

First, we fix some basic notations on sets, relations and functions. Let r ⊆ X × X be a binary relation and let Y ⊆ X , then 
r|Y denotes the restriction of r to Y , i.e., r|Y = r ∩ (Y × Y ). We say that r is well-founded if it has no infinite descending chain, 
i.e., if there is no sequence 〈ei〉i∈N such that ei+1 r ei, ei �= ei+1, for all i ∈ N. The relation r is acyclic if it has no “cycles” 
e0 r e1 r . . . r en r e0 with ei ∈ X . In particular, if r is well-founded, then it has no (non-trivial) cycles. Relation r is a partial 
order if it is reflexive, antisymmetric and transitive. Given a function f : X → Y we will denote by f [x �→ y] : X ∪ {x} →
Y ∪ {y} the function defined by f [x �→ y](x) = y and f [x �→ y](z) = f (z) for z ∈ X \ {x}. Note that the same notation can 
represent an update of f , when x ∈ X , or an extension of its domain, otherwise.

2.1. Prime event structures

We recall the formal definition of prime event structures [1] that complements the informal description provided in the 
introduction. Hereafter � denotes a fixed set of labels.

Definition 1 (prime event structure). A (labelled) prime event structure (PES) is a tuple P = 〈E, ≤, #, λ〉, where E is a set of 
events, ≤ and # are binary relations on E called causality and conflict, respectively, and λ : E → � is a labelling function, 
such that

• ≤ is a partial order and �e� = {e′ ∈ E | e′ ≤ e} is finite for all e ∈ E;
• # is irreflexive, symmetric and hereditary with respect to causality, i.e., for all e, e′, e′′ ∈ E , if e#e′ ≤ e′′ then e#e′′ .

Henceforth, we will write e < e′ for e ≤ e′ and e �= e′ . In order to lighten the notation, as mentioned in the introduction, 
events will be often named by the corresponding labels, possibly with subscripts.

The computations of a PES are described in terms of configurations, i.e., sets of events that are closed with respect to 
causality and conflict free. Formally, a configuration of a PES P = 〈E, ≤, #, λ〉 is a finite set of events C ⊆ E such that

• for all e ∈ C , �e� ⊆ C , and
• for all e, e′ ∈ C , ¬(e#e′).

The set of configurations of a PES P is denoted by Conf (P).

2.2. History preserving bisimilarity

History preserving bisimilarity [5–7] is a classical equivalence in the true concurrency spectrum. As it happens in the 
interleaving approach, a bisimulation between two event structures requires any event of an event structure to be simulated 
by an event of the other, with the same label. Additionally, the two events are required to have the same “causal history”, 
namely to have the same dependencies with events in their past.

In order to define history preserving bisimilarity in a way that applies uniformly to PESs, AESs and FESs, we assume to 
work on an abstract class of event structures, in the line of [8–10].

Definition 2 ((abstract) event structure). An (abstract) event structure is a triple E = 〈E, Conf (E), λ〉 where E is a set of events, 
Conf (E) is a set of configurations and λ : E → � is a labelling function. Each configuration consists of a set of events C ⊆ E , 
endowed with a partial order ≤C called the local order of C .

The relation ≤C associated with a configuration C intuitively represents the order in which the events in C can occur. 
A configuration will be often denoted simply by C , leaving the partial order ≤C implicit. An isomorphism of configurations
f : C1 → C2 is an isomorphism f : C1 → C2 between the underlying sets of events that respects the order and the labelling, 
namely for all e1, e′

1 ∈ C1, we have λ(e) = λ( f (e)) and e1 ≤C1 e′
1 iff f (e1) ≤C2 f (e′

1).

Definition 3 (extension order). Let E be an abstract event structure. The set of configurations Conf (E) is endowed with the 
extension order defined as C1 � C2 whenever C1 ⊆ C2, ≤C1=≤C2 ∩(C1 × C1) and for all e1 ∈ C1, e2 ∈ C2, if e2 ≤C2 e1 then 
e2 ∈ C1.

Intuitively, C1 � C2 means that the configuration C1 can evolve into C2 by executing the events in C2 \ C1. In fact, C1 is 
required to be a subset of C2, with events ordered exactly as in C2 and the new events in C2 \ C1 cannot precede events 
already in C1. This corresponds to the prefix order in [8].
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History preserving bisimilarity can be defined on the transition systems of configurations. Given a pair of configurations 
C, C ′ ∈ Conf (E) and an event e ∈ E , we write C

e−→ C ′ if C ′ = C ∪ {e} and C � C ′ .

Definition 4 (history preserving bisimilarity). Let E1, E2 be two abstract event structures. A history preserving (hp-)bisimulation
is a set R of triples (C1, f , C2), where C1 ∈ Conf (E1), C2 ∈ Conf (E2) and f : C1 → C2 is an isomorphism of configurations, 
such that (∅, ∅, ∅) ∈ R and for all (C1, f , C2) ∈ R

a) if C1
e1−→ C1 ∪ {e1}, for an event e1 ∈ E1, then there exists e2 ∈ E2 such that C2

e2−→ C2 ∪ {e2} and (C1 ∪ {e1}, f [e1 �→ e2],
C2 ∪ {e2}) ∈ R;

b) if C2
e2−→ C2 ∪ {e2}, for an event e2 ∈ E2, then there exists e1 ∈ E1 such that C1

e1−→ C1 ∪ {e1} and (C1 ∪ {e1}, f [e1 �→ e2],
C2 ∪ {e2}) ∈ R .

When a history preserving bisimulation exists, E1, E2 are called history preserving bisimilar, written E1 ∼hp E2.

Observe that the definition above ensures that an event is simulated by an event with the same label. In fact, in the 
triple (C1 ∪{e1}, f [e1 �→ e2], C2 ∪{e2}) ∈ R the second component f [e1 �→ e2] is an isomorphism of configurations (and thus 
it preserves labels).

As an example, PESs can be seen as instances of abstract event structures. Given a PES P = 〈E, ≤, #, λ〉 and its set of 
configurations Conf (P), the local order of a configuration C ∈ Conf (P) is ≤C =≤|C , i.e., the restriction of the causality relation 
to C . The extension order turns out to be simply subset inclusion. In fact, given C1 ⊆ C2 clearly ≤C1=≤ ∩(C1 × C1) is the 
restriction to C1 of ≤C2=≤ ∩(C2 × C2). Moreover, if e1 ∈ C1 and e2 ∈ C2, with e2 ≤C1 e1, then necessarily e2 ∈ C1 since 
configurations are causally closed. The resulting notion of history preserving bisimilarity is the standard one in [5–7].

2.3. Foldings, abstractly

We next introduce the notion of folding, which is intended to formalise the intuition of a behaviour preserving quotient 
for an abstract event structure. In the next sections we will provide some concrete folding techniques for AESs and FESs.

Definition 5 (folding). Let E1 and E2 be event structures. A folding morphism is a surjective function f : E1 → E2 such that 
the relation R f = {(C1, f |C1 , f (C1)) | C1 ∈ Conf (E1)} is a hp-bisimulation. A folding is called elementary if there is a set 
X1 ⊆ E1 such that for all e1, e′

1 ∈ E1, e1 �= e′
1 and f (e1) = f (e′

1) implies e1, e′
1 ∈ X1.

In words, a folding is a mapping that “merges” sets of events of an event structure into single events, one per set, 
keeping the behaviour unaltered. It is elementary if it merges only a single set of events.

Sometimes, with abuse of terminology, we will refer to E2 as the folding of E1. It can be seen that under mild conditions, 
the target event structure is completely determined by the folding map, hence it can be seen as a sort of quotient along the 
map. The general theory of foldings is outside the scope of this paper, which focuses instead of the identification of some 
operational folding techniques.

3. Behaviour preserving reduction of AES

In this section we introduce a folding technique for asymmetric event structures. More concretely, we will describe how 
to identify a set of events that can be collapsed into a single event, inducing an elementary folding. This procedure can then 
be iterated to produce an event structure, behaviourally equivalent to the original one, that is not further reducible.

3.1. Basics of asymmetric event structures

We start by briefly reviewing the basics of asymmetric event structures, which, as mentioned before, generalise PESs by 
allowing a conflict relation that is not required to be symmetric.

Definition 6 (asymmetric event structure). A (labelled) asymmetric event structure (AES) is a tuple A = 〈E, ≤, ↗, λ〉, where E is 
a set of events, ≤ and ↗ are binary relations on E called causality and asymmetric conflict, respectively, and λ : E → � is a 
labelling function, such that

• ≤ is a partial order and �e� = {e′ ∈ E | e′ ≤ e} is finite for all e ∈ E;
• ↗ satisfies, for all e, e′, e′′ ∈ E

1. if e < e′ then e ↗ e′;
2. if e ↗ e′ and e′ < e′′ then e ↗ e′′;
3. ↗|�e� is acyclic;
4. if ↗|�e�∪�e′� is cyclic then e ↗ e′ .
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Fig. 2. Inheritance of conflict along causality in AESs.

The asymmetric conflict relation has a double interpretation, that is e ↗ e′ can be understood as (i) the occurrence of 
e′ prevents e to occur afterwards or (ii) the occurrence of e precedes the occurrence of e′ in all computations where both 
appear. In the first view, ↗ can be seen as an asymmetric form of conflict, whence the name. Indeed, note that if e and e′
are related by asymmetric conflict in both directions, i.e., e ↗ e′ and e′ ↗ e, then none can occur after the other, and thus e
and e′ can never occur in the same computation as it happens for symmetric conflict in PESs. In the second view, ↗ can be 
seen as a weak form of causality since e ↗ e′ imposes an order on the occurrences of e and e′ , but only when they appear 
in the same computation. Instead, causality e < e′ imposes a stricter requirement: in any computation in which e′ occurs 
then e also occurs, and the latter must occur before.

Condition (1) of Definition 6 is motivated by the fact that, as observed in (ii) above, ↗ imposes weaker requirements 
than <, hence it is natural to ask that ↗ includes <. In the graphical representation of an AES, the asymmetric conflicts 
e ↗ e′ between events that are also causally dependent e < e′ are not represented explicitly. Condition (2) expresses in-
heritance of asymmetric conflict along causality: if e ↗ e′ and e′ < e′′ then e is necessarily executed before e′′ when both 
appear in the same computation, hence e ↗ e′′ (see Fig. 3a). Conditions (3) and (4) can be understood by observing that 
events forming a cycle of asymmetric conflict cannot appear in the same computation, since each event in the cycle should 
occur before itself. This leads to a notion of conflict over sets of events #X , defined by the following rules

e0 ↗ e1 ↗ . . . ↗ en ↗ e0

#{e0, . . . , en}
#(X ∪ {e}) e ≤ e′

#(X ∪ {e′})
The first rule captures the fact that events in a cycle of asymmetric conflict cannot occur in the same computation. The 
second rule expresses inheritance of conflict with respect to causality: if events in the set X ∪ {e} cannot occur in the 
same computation and e ≤ e′ , then also events in X ∪ {e′} cannot occur in the same computation. The reason is that the 
presence of e′ requires the prior occurrence of e. Fig. 2 shows an example where #{e1, e2, e3} by the first rule of conflict 
over sets and, by the second rule, applied three times, we deduce #{e′

1, e′
2, e

′
3}. Note that the second rule is essential: in 

fact, by Definition 6(2) we have that e3 ↗ e′
1, e1 ↗ e′

2 and e2 ↗ e′
3 (as clarified later, inherited asymmetric conflicts are 

often not represented in pictures), but events e′
1, e′

2, e′
3 are not in a cycle of asymmetric conflict, hence the first rule would 

be insufficient to prove #{e′
1, e

′
2, e

′
3}.

By using the notion of conflict introduced above, condition (3) can be expressed as ¬#{e}, for any e ∈ E . Hence it corre-
sponds to irreflexiveness of conflict in PESs, and it ensures that any event is executable, i.e., it appears in some computation. 
Concerning condition (4), notice that whenever the union of the causes of e and e′ includes a cycle of asymmetric conflict, 
according to the rules for conflict above, we have that #{e, e′}, i.e., e and e′ are in binary symmetric conflict. This will be 
often written e#e′ . In this situation, condition (4) imposes that e ↗ e′ and also e′ ↗ e, since union is symmetric and thus 
the role of e and e′ is interchangeable. Hence condition (4) requires that symmetric conflict is represented by asymmetric 
conflict in both directions.

Conditions (2) and (4) impose a form of saturation for the asymmetric conflict relation. In fact, whenever e ↗ e′′ < e′ or 
↗|�e�∪�e′� is cyclic, then it holds that e′ cannot precede e in a computation. These conditions ask that this is also represented 
syntactically with an explicit asymmetric conflict. Apart from aesthetic motivations, the validity of these conditions will 
simplify the formulation of the folding technique.

As usual, a set of events X is called consistent if its causal closure does not include a subset of events in conflict, i.e., 
there is no Y ⊆ �X� such that #Y , or, equivalently, if asymmetric conflict is acyclic on �x�.

We recall that PESs can be seen as special AESs where asymmetric conflict is a symmetric relation. Namely, the following 
holds (see [3]).

Lemma 1 (PESs are AESs). If P = 〈E, ≤, #, λ〉 is a PES then A = 〈E, ≤, ↗, λ〉, with # =↗ is an AESs. If A = 〈E, ≤, ↗, λ〉 is an AESs 
with symmetric ↗, then P = 〈E, ≤, #, λ〉 with # =↗ is a PES.

In the following, direct relations, namely causality, asymmetric conflict and conflicts that are not inherited, will play a 
special role.

Definition 7 (direct relations). Let A = 〈E, ≤, ↗, λ〉 be an AES and let e, e′ ∈ E . We say that e is an direct cause of e′ , denoted 
e <δ e′ , when e < e′ and there is no e′′ such that e < e′′ < e′ . An asymmetric conflict e ↗ e′′ is called direct, written e ↗δ e′
when there is no e′′ such that e ↗ e′′ < e′ . A binary conflict e#e′ is called direct, written e #δ e′ , when e ↗δ e′ and e′ ↗δ e.
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Fig. 3. Inheritance of ↗.

Fig. 4. An AES A and a folding A′ .

For instance, in Fig. 3a e ↗δ e′ while it is not the case that e ↗δ e′′ , since e ↗ e′ < e′′ . In Fig. 3b we have that e′′ ↗δ e and 
e ↗δ e′′ , hence e #δ e′′ .

For the sake of readability and consistency with what we did for PESs, in pictures, often only direct relations will be 
represented.

Configurations in AESs are defined, as in PESs, as causally closed and conflict free sets of events.

Definition 8 (configurations). A configuration of an AES A = 〈E, ≤, ↗, λ〉 is a finite set of events C ⊆ E such that i) for any 
e ∈ C , �e� ⊆ C (causal closedness) and ii) ↗|C is acyclic (conflict freeness). The set of all configurations of A is denoted by 
Conf (A).

AESs can be seen as instances of abstract event structures by considering each configuration C ∈ Conf (A) with local 
order (↗|C )∗ , i.e., the transitive closure of asymmetric conflict restricted to C . Differently from what happens for PESs, the 
extension order is not simply set-inclusion. It is easy to see that according to the definition in Section 2, for C1, C2 ∈ Conf (A), 
we have C1 � C2, iff C1 ⊆ C2 and for all e ∈ C1, e′ ∈ C2 \ C1, ¬(e′ ↗ e). In words, configuration C1 cannot be extended with 
events which should precede some of the events already present in C1.

A fundamental notion is that of history of an event in a configuration.

Definition 9 (possible histories). Let A = 〈E, ≤, ↗, λ〉 be an AES and let e ∈ E be an event. Given a configuration C ∈ Conf (A)

such that e ∈ C , the history of e ∈ C is defined as C �e� = {e′ ∈ C | e′(↗|C )∗e}. The set of possible histories of e, denoted by 
hist(e), is then defined as

hist(e) = {C �e� | C ∈ Conf (A) ∧ e ∈ C}

The history C �e� consists of the events which necessarily must occur before e in the configuration C or, in other words, 
it is the minimal subconfiguration of C , with respect to the extension order, which contains event e. For PESs, each event 
e has a uniquely determined history, which is the set �e�, independently of the configuration it occurs in. Instead, in the 
case of AESs, an event e may have several histories. For example, the event c02 in the AES A2 (Fig. 5c) has four different 
histories, hist(c02) = {{c02}, {d, c02}, {e, c02}, {d, e, c02}}.

3.2. Quotient of AESs

The technique for behaviour preserving reduction of AESs consists in iteratively identifying a set of events carrying 
the same label, i.e., intuitively referring to the same activity, and replacing all the events in the set with a single event. 
This quotient operation is shown to induce an elementary folding, i.e., it leaves the behaviour unchanged with respect to 
hp-bisimilarity.

The prototypical example of folding in AESs, which exploits the expressiveness of asymmetric conflict, is provided in 
Fig. 4. The right AES is obtained by merging the two conflicting b-labelled events b0 and b1 (the conflict b0#b1 is inherited 
from a#b1). Event a is in asymmetric conflict with the event b01 resulting from the merge, so that hist(b01) in A′ includes 
{a, b01} and {b01}, which in the AES A corresponds exactly to the histories of b0 and b1, respectively. The function mapping 
a identically and b0, b1 to b01 can be easily shown to be a folding.

More generally, the rough idea is that a folding will merge events in conflict, with the same label and different sets of 
causes, into a single event having such sets of causes as possible histories. However, events to be merged have to be chosen 
carefully. Consider, for instance, the AESs in Fig. 5. The AES A1 can be thought of as a quotient of A0 obtained by folding 
the two c-labelled events c0 and c1, the first in conflict with d and the second caused by d, into a single event c01. The 
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Fig. 5. AESs such that A0 ∼hp A1 but A0 �hp A2.

Fig. 6. The sets of configurations of the AESs in Fig. 5, ordered by extension.

dependencies d # c0 and d < c1 in A0 give rise to the asymmetric conflict d ↗ c01 in A1. Analogously, A2 is obtained from 
A0 by merging c0 and c2 into a single event c02.

Fig. 6 shows the sets of configurations of the AESs in Fig. 5, endowed with the extension order. Observe that the AESs A0
and A1 have isomorphic partially ordered sets of configurations. Instead, the poset corresponding to A2 has an additional 
configuration {e, c02} that does not correspond to any configuration in Conf (A0). Hence, even though A1 and A2 are obtained 
from A0 via an apparently similar procedure, the mapping into A1 is a folding, while the one into A2 is not.

Events that can be merged, intuitively, should represent occurrences of the same activity in different contexts (leading 
to different causal histories for the events). Hence they surely need to have the same label and be in conflict. Additionally 
they should relate to the remaining events, via asymmetric conflict, essentially in the same way. This is formalised by the 
notion of similar events.

Definition 10 (similar events). Let A = 〈E, ≤, ↗, λ〉 be an AES. We say that X ⊆ E is a set of similar events if for all x, x′ ∈ X , 
e ∈ E \ X :

1. λ(x) = λ(x′) and x# x′;
2. if x ↗ e then x′ ↗ e ∨ e ↗ x;
3. e ↗δ x ⇒ e ↗ x′ .

Condition (1) requires that, as mentioned above, the events in X have the same label and are conflict. By condition (2), 
given two events x, x′ ∈ X , if for an event e ∈ E \ X we have x ↗ e then necessarily be also x′ ↗ e, unless e ↗ x, and 
thus x and e are in conflict. This last clause captures the situation in which e is in the history of x′ but not in that of x, 
and thus x and e are in conflict. Finally, condition (3) requires that any direct ↗-predecessors of an event in X remains a 
↗-predecessor for all other events in X .

We next define the AES which results from the merge of a set of similar events. For a relation r on events, we will 
denote by r∀ and r∃ the relations between events and sets of events defined in the expected way. For instance, given an 
event e and a set of events X , by e r∀ X we mean that e r x holds for all x ∈ X , and by X r∃ e we mean that x r e holds for 
some x ∈ X .

Definition 11 (quotient of an AES). Let A = 〈E, ≤, ↗, λ〉 be an AES and X be a set of similar events. The quotient of A with 
respect to X , denoted A/X , is the AES A/X = 〈E/X , </X , ↗/X , λ/X 〉 defined as follows

E/X = (E \ X) ∪ {e X }
≤/X = ≤|(E\X) ∪{(e, e X ) | e <∀ X} ∪ {(e X , e) | X <∃ e}
↗X = ↗|(E\X) ∪{(e, e X ) | e ↗∀ X} ∪ {(e X , e) | X ↗∀ e}
λ/X = λ[e X �→ λ(x)] for an event x ∈ X .

The quotient map f X : A → A/X is defined by f X (x) = e X for x ∈ X and f X (e) = e for e ∈ E \ X .

In words, the quotient of A is obtained by replacing the set X of events with a single event e X , with the same label as 
those in X . The causes of e X are the common causes of the events in X . Any event originally caused by at least an event 



JID:JLAMP AID:81 /FLA [m3G; v1.162; Prn:2/11/2015; 16:33] P.8 (1-21)

8 A. Armas-Cervantes et al. / Journal of Logical and Algebraic Methods in Programming ••• (••••) •••–•••
in X is now caused by e X . This can be understood by recalling that the quotient map, in order to be a folding, must be 
in particular a simulation. Hence, on the one hand, in any computation, a common cause of all the events in X will surely 
occur before e X and, on the other hand, e X will occur before any causal consequence of an event in X . The asymmetric 
conflicts for e X are exactly the common asymmetric conflicts of the events in X . This is explained by the fact that, in order 
to be a folding, the quotient map must preserve and reflect the local order of configurations which is given by (the transitive 
closure of) asymmetric conflict.

We can prove that, according to the intuition above, the quotient map is a simulation, in the sense that it preserves 
configurations and the extension relation on configurations. We start with a technical lemma, identifying some relevant 
properties of the quotient map. This will be used also to prove that A/X is a well-defined AESs, a fact which has not been 
showed formally yet. It could be proved that the quotient map is an AES morphism in the sense of [3], but this has no 
relevant use in this paper.

Lemma 2 (properties of the quotient map). Let A = 〈E, ≤, ↗, λ〉 be an AES and let X ⊆ E be a set of similar events. Then for all e ∈ E, 
z ∈ E/X

1. if z </X f X (e) then there exists e′ ∈ E such that e′ < e and f X (e′) = z;
2. if f X (e) ↗/X f X (e′) then e ↗ e′;
3. if e ↗δ e′ then f X (e) ↗/X f X (e′) or e#e′;
4. if e < e′ then f X (e) ↗/X f X (e′).

Proof. 1. Let z ∈ E/X and e ∈ E be such that z </X f X (e). We distinguish various cases:

• If z = e X then, by Definition 11, there exists x ∈ X such that x < e. Since f X (x) = e X and f X (e) = e, this is the desired 
conclusion.

• If e ∈ X (and thus f X (e) = e X ) then by Definition 11, z = e′ <∀ X , i.e., e′ < x for all x ∈ X . Therefore, in particular, e′ < e, 
as desired.

• If none of the above apply, then z = e′ ∈ E and f X (e) = e, hence the result trivially holds.

2. Let e, e′ ∈ E and assume f X (e) ↗/X f X (e′). If e ∈ X and thus f X (e) = e X then, by Definition 11, X ↗∀ e′ and thus, 
again, e ↗ e′ . If instead, e′ ∈ X and thus f X (e′) = e X then, by Definition 11, e ↗∀ X . Thus in particular, e ↗ e′ as desired. 
Finally, if e, e′ /∈ X then f X is the identity on e, e′ , and thus the result trivially holds.

3. Let e, e′ ∈ E and assume e ↗δ e′ . We distinguish three cases:

• If e ∈ X then, by Definition 10(2), either e′ ↗ e and thus e#e′ and we are done, or for all x ∈ X we have x ↗ e′ , namely 
X ↗∀ e′ . In the last case, according to Definition 11, we thus have f X (e) = e X ↗/X e′ = f X (e′), as desired.

• If e′ ∈ X then, by Definition 10(3), for all x ∈ X we have e ↗ x, namely e ↗∀ X . Thus, by Definition 11, f X (e) =
e ↗/X e X = f X (e′), as desired.

• Otherwise, neither e nor e′ are in X and thus the thesis trivially follows.

4. Let e, e′ ∈ E and assume that e < e′ . If e, e′ /∈ X then the relations between the two events are left unchanged. Since 
e < e′ and thus e ↗ e′ we have that f X (e) ↗/X f X (e′). If e ∈ X then by Definition 10(2) either x′ ↗ e′ for all x′ ∈ X or e′ ↗ e. 
The second possibility would lead to a contradiction, since we would have e#e′ and e < e′ . Hence the first possibility must 
hold and thus X ↗∀ e′ , thus f X (e) = e X ↗/X f X (e′). Finally, if e′ ∈ X , from e < e′ we know that e < e′′ <δ e′ , for some e′′ . By 
Definition 10(3), since e′′ <δ e′ and thus e′′ ↗δ e′ we have that e′′ ↗ x, for all x ∈ X . Recalling that e < e′′ , we have e ↗ x, for 
all x ∈ X , namely e ↗∀ X . Therefore f X (e) ↗X e X = f X (e′), as desired. �

Note that the converse of (2) above, i.e., if e ↗ e′ then f X (e) ↗/X f X (e′), does not hold. For instance, consider the AES in 
Fig. 7. If we merge c0 and c1, we get that a ↗ c0 but it is not true that f X (a) ↗/X f X (c0) = c01. Moreover, note from (4) and 
the definition of ≤ in the quotient (Definition 11), it follows that the causes of some event in X , which are not common to 
all events, are turned into (proper) asymmetric conflicts.

Lemma 3 (A/X is well-defined). Let A = 〈E, ≤, ↗, λ〉 be an AES and let X ⊆ E a set of similar events. Then A/X = 〈E/X , ≤/X ,

↗/X , λ/X 〉 is an AES.

Proof. Let A/X = 〈E/X , ≤/X , ↗/X , λ/X 〉 be defined as in Definition 11 and Let f X : A → A/X be the quotient map. We first 
note that ≤ is a partial order. Antisymmetry is obvious. Transitivity of ≤/X follows immediately by transitivity of ≤ in A. 
Moreover, for any event z ∈ E/X , we have that �z� is finite. In fact, let e be any f X -counterimage of z, i.e., e ∈ E such 
that f X (e) = z. For any z′ ∈ E/X , if z′ </X z, by Lemma 2(1), there exists e′ < e such that f X (e′) = z′ . This means that 
�z� ⊆ f X (�e�). Since �e� is finite, we deduce that also �z� is finite.
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Fig. 7. An AES and its quotient.

Concerning asymmetric conflict ↗/X , conditions (1)–(4) in Definition 6 are easily inherited from those of ↗ in A. More 
explicitly, let z, z′, z′′ ∈ E/X . Then we have

1. If z </X z′ then z ↗/X z′ .
We distinguish various cases:

• If z = e X and z′ = f X (e′), for an event e′ ∈ E \ X then X <∃ e′ , namely, there exists x ∈ X such that x < e′ . This implies 
that x ↗ e′ and thus, by the notion of similar events (Definition 10) either x′ ↗ e′ for all x′ ∈ X or e′ ↗ x. The latter 
possibility would lead to x#e′ , contradicting the fact that x < e′ . Hence it must be x′ ↗ e′ for all x′ ∈ X , namely X <∀ e′ , 
and thus e X ↗/X f X (e′) = z′ .

• If z = f X (e), for an event e ∈ E \ X , and z′ = e X then e <∀ X . This implies that e ↗∀ X and thus e ↗/X e X .
• If both e, e′ ∈ E \ X , the desired consequence is trivial since the relations between e and e′ are not modified by the 

quotient operation.

2. if z ↗/X z′ </X z′′ then z ↗/X z′′ .
We distinguish various cases.

• If z = e X and thus z′ = f X (e′), z′′ = f X (e′′), for events e′, e′′ ∈ E \ X , then by Definition 11, we have X ↗∀ e′ in A, and 
thus x ↗ e′ < e′′ for all x ∈ X . Therefore, x ↗ e′′ for all x ∈ X , namely X ↗∀ e′′ and thus z = e X ↗ z′′ = f X (e′′).

• If z′′ = e X and thus z = f X (e), z′ = f X (e′), for events e, e′ ∈ E \ X , then by Definition 11, we have e <∀ X . Thus for all 
x ∈ X it holds e ↗ e′ < x, hence e ↗ x. This means that e ↗∀ X and thus z = f X (e) ↗/X z′′ = f X (e X ), as desired.

• If z′ = e X and thus z = f X (e), z′′ = f X (e′′), for events e, e′ ∈ E \ X , then by Definition 11 there exists e′ ∈ X such that 
e′ < e′′ . Moreover, e ↗ e′ and thus e ↗ e′′ in A. Since e, e′′ are left unchanged by the quotient, z = f X (e) ↗ f X (e′′) = z′′
in A/X .

• If none of z, z′, z′′ ∈ X then the thesis trivially holds since the relations between such events are not modified by the 
quotient operation.

3. ↗�x�A/X
is acyclic for all x ∈ E/X .

Let z ∈ E/X be an event and suppose that �z� contains a cycle z1 ↗/X z2 ↗/X . . . ↗/X z1. By surjectivity of f X we can 
find e ∈ E such that z = f X (e). By Lemma 2(1), there are events e1, . . . , en ∈ �e� such that f X (ei) = zi for any i ∈ {1, . . . , n}. 
By point (2) of the same lemma, e1 ↗ e2 ↗ . . . ↗ e1. This contradicts the property of ↗�e�∈ A being acyclic for any event 
e ∈ A.

4. if ↗/X |�z�∪�z′� is cyclic then z ↗/X z′ .
Let e, e′ ∈ E such that f X (e) = z and f X (e′) = z′ . As observed in the proof of point (1), we have that �z� = � f X (e)� ⊆ f X (�e�)
and �z′� = � f X (e′)� ⊆ f X (�e′�). Therefore if ↗/X is cyclic over �z� ∪ �z′�, it is cyclic also over f X (�e�) ∪ f X (�e′�) = f X (�e� ∪
�e′�). Since, by Lemma 2(2), f X reflects asymmetric conflict, this implies that ↗ is cyclic on �e� ∪ �e′�. Therefore e ↗ e′ . 
Since this holds for any e, e′ such that f X (e) = z and f X (e′) = z′ , a case distinction similar to that in the previous points, 
allows us to conclude z ↗ z′ . �

We can now show that the quotient map preserves configurations and the extension order.

Lemma 4 (quotient preserves configurations). Let A = 〈E, ≤, ↗, λ〉 be an AES, X ⊆ E a set of similar events and let f X : A → A/X be 
the quotient map. Then for any configuration C ∈ Conf (A) it holds that f X (C) ∈ Conf (A/X ) and f X |C : (C, ↗∗

C ) → ( f X (C), ↗∗
f X (C)

)

is an isomorphism of configurations.

Proof. Let C ∈ Conf (A) be a configuration. We first observe that f X (C) is a configuration in Conf (A/X ). For proving causal 
closedness, take e ∈ C and consider the event f X (e) ∈ f X (C). If z </X f X (e) by Lemma 2(1) there exists e′ ∈ E such that 
e′ < e and f X (e′) = z. Since C is a configuration, necessarily e′ ∈ C and thus z = f X (e′) ∈ f X (C).



JID:JLAMP AID:81 /FLA [m3G; v1.162; Prn:2/11/2015; 16:33] P.10 (1-21)

10 A. Armas-Cervantes et al. / Journal of Logical and Algebraic Methods in Programming ••• (••••) •••–•••
Fig. 8. Quotients with respect to the set X = {a0,a1} of non-similar events.

Moreover, ↗/X is acyclic on f X (C). In fact, if there were a cycle in f X (C) it would be of the kind f X (e1) ↗/X f X (e2) ↗/X

. . . ↗/X f X (en) ↗/X f X (e1), for e1 . . . , en ∈ C . Then by Lemma 2(2), we would have e1 ↗ e2 ↗ . . . ↗ en ↗ e1, contradicting 
the fact that C is a configuration.

In order to prove that f X |C : (C, ↗∗
C ) → ( f X (C), ↗∗

f X (C)
) is an isomorphism of configurations, it suffices to observe that 

for all e, e′ ∈ C we have that

1. if f X (e) ↗δ f X (e′) then e ↗ e′;
2. if e ↗δ e′ then f X (e) ↗ f X (e′).

Point (1) is a special case of Lemma 2(2). For point (2), let e ↗δ e′ . Then by Lemma 2(3), either f X (e) ↗ f X (e′) or e#e′ . 
Since the latter cannot hold, because e, e′ ∈ C which is a configuration, necessarily f X (e) ↗ f X (e′), as desired. �

As an immediate consequence of the above result, we can prove that the extension order is preserved and reflected by 
the quotient map.

Corollary 5. Let A = 〈E, ≤, ↗, λ〉 be an AES, X ⊆ E a set of similar events and let f X : A → A/X be the quotient map. Then for all 
configuration C, C ′ ∈ Conf (A) it holds that C � C ′ iff f X (C) � f X (C ′).

Observe that conditions (2) and (3) in Definition 10 are necessary for the simulation result. For instance consider the 
AESs in Figs. 8a and 8b, and their quotients A4/X and A′

4/X with respect to the set X = {a0, a1}, in Figs. 8c and 8d. In both 
cases, the quotients do not simulate the original AES.

More in detail, for the AES A4, we have a0 ↗ b while neither a1 ↗ b nor b ↗ a0, thus violating condition (2). Indeed A4
has the configuration {a1, b} with a1 and b concurrent, which is not in the quotient. In the AES A′

4 of Fig. 8b, b ↗δ a0 while 
it is not the case that b ↗ a1, thus violating condition (3). In this case A′

4 has the configuration {b, a0} with b < a0, which 
is not in the quotient.

However, quotienting an AES on a set of similar events X still can alter the behaviour. Consider for instance the AESs 
A0 and A2 in Fig. 5. We have that A2 = A0/{c0,c2} and {c0, c2} set of similar events. We already noted that A0 and A2 are 
not hp-bisimilar since A2 admits a configuration {e, c02}, which has no counterpart in A0: it represents a new history for a 
c-labelled event. The problem resides in the fact that the causes of some event x ∈ X , which are not causes for all events 
in X , will become asymmetric conflicts in the quotient, hence they can either appear or not in the histories of e X . The 
same applies to ↗-predecessors of such causes. The (consistent) combinations of these events will lead to different possible 
histories for the merged event e X . Such histories must be already histories of some event in X in the original AES, otherwise 
they will represent newly generated behaviours.

In order to formalise this fact, given an AES A and a set of similar events X , we introduce the set of possible events for 
X which intuitively are those events that, in the quotient, can either occur or be omitted in the histories of e X .

Definition 12 (possible events). Let A = 〈E, ≤, ↗, λ〉 be an AES and let X ⊆ E a set of similar events. The set of possible events
for X is

p(X) = {e ∈ E | ¬(X ↗∀ e) ∧ ¬(e <∀ X) ∧ e ↗∃ X}.

According to the way in which ↗/X and </X are introduced in Definition 11 the requirement ¬(X ↗∀ e) implies 
¬(e X ↗/X e) (and thus e X and e are not in conflict) and the requirement ¬(e <∀ X) implies ¬(e </X e X ). Finally, concerning 
the requirement e ↗∃ X , namely e ↗ x for some x ∈ X , there are two possibilities. If e ↗δ x then by Definition 10(3), e ↗∀ X
and thus e ↗/X e X in the quotient. Otherwise, e ↗ e′ < x for some event e′ , and thus e ↗/X e′ ↗/X e X in the quotient (since 
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Fig. 9. The set p({c0, c1}) = {a,b}, includes a which is neither in the history of c0 nor of c1.

as observed above, causalities either remain unchanged or become asymmetric conflicts). In both cases, according to the 
informal explanation above, they can be either included or not in the history of e X .

Marginally, we observe that the set p(X) can include events that are not in the history of any event in X . This happens 
for the AES in Fig. 9, taking X = {c0, c1}.

As mentioned above, in order not to modify the overall behaviour, all consistent subsets of p(X) should match some 
possible history of an event in X in the original AES. For instance, in Fig. 5, in A0 we have that p({c0, c1}) = {d}
while p({c1, c2}) = {d, e}. While in the first case for any (consistent) subset of p({c0, c1}) (namely ∅ and {d}) there are 
c-labelled events (namely c0 and c1) having these subsets as histories; in the second case the possible consistent subsets 
of p({c1, c2}) = {d, e} include {e} which is not in the history of any c-labelled event. Hence the first quotient A1 = A0/{c0,c1}
preserves the behaviour, while the second A2 = A0/{c0,c2} does not.

The above considerations lead to the notion of combinable set of events.

Definition 13 (combinable set of events). Let A = 〈E, ≤, ↗, λ〉 be an AES. A set of events X ⊆ E of similar events is combinable
if for all Y ⊆ p(X), consistent and causally closed (namely if e ∈ Y and e′ ∈ p(X), e′ < e then e′ ∈ Y ) there exists e ∈ X and 
H ∈ hist(e) such that H ∩ p(X) = Y .

We finally now show that the quotient with respect to a combinable set of events is a folding, i.e., the corresponding 
quotient map can be seen as a hp-bisimilarity between A and A/X .

Theorem 6 (quotient map is a folding). Let A = 〈E, ≤, ↗, λ〉 be an AES and let X be a combinable set of events. Then the quotient map 
f X : A → A/X is a folding.

Proof. Let A be an AES, let X be a combinable set of events and let f X : A → A/X be the quotient map, where A/X =
〈E/X , ≤/X , ↗/X , λ/X 〉

We prove that

R = {(C1, f |C1 , f X (C1)) | C1 ∈ Conf (A)}
is a hp-bisimulation.

First of all notice that for any C1 ∈ Conf (A), if we let C2 = f X (C1), then by Lemma 2, f |C1 : (C1, ↗∗) → (C2, ↗∗), is an 
isomorphism of pomsets.

In order to conclude, we next prove that

1. if there is e ∈ E such that C1 � C1 ∪ {e} ∈ Conf (A) then C2 � C2 ∪ { f X (e)} ∈ Conf (A/X );
2. if there is z ∈ E/X such that C2 � C2 ∪ {z} ∈ Conf (A/X ) then there is e ∈ E such that f X (e) = z and C1 � C1 ∪ {e} ∈

Conf (A/X ),

which corresponds to conditions (a) and (b) in Definition 4.

1. Note that C2 ∪ { f X (e)} = f X (C1 ∪ {e}) is a configuration by Lemma 4. Moreover C2 � C2 ∪ { f X (e)}, namely there is no 
e′ ∈ C1 such that f X (e) ↗/X f X (e′), otherwise by Lemma 2(2) we would have e ↗ e′ , contradicting C1 � C1 ∪ {e}.

2. Assume that C2 � C2 ∪ {z} ∈ Conf (A/X ) for some z ∈ E/X . We distinguish two cases.

2.a) z ∈ E \ X
Take the (unique) f X -counterimage of e of z, namely f X (e) = z. A key observation is that

there is no e′ ∈ C1 such that e ↗ e′. (†)

In fact, we can show that given e′ ∈ C1 such that e ↗ e′ then there exists e′′ ∈ C1 such that z = f X (e) ↗/X f X (e′′), contra-
dicting the fact that C2 � C2 ∪ {z}. In order to prove this, we distinguish two cases:

• First assume that e ↗δ e′ . If e′ /∈ X then clearly f X (e) ↗/X f X (e′). If e′ ∈ X then by Definition 10(3) e ↗ x for all x ∈ X , 
namely e ↗∀ X . Thus also in this case, by Definition 11, f X (e) = e ↗ e X = f X (e′). Hence the desired result holds taking 
e′′ = e′ .
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Fig. 10. Foldings for the AES in Fig. 5.

• If instead the asymmetric conflict is not direct, then there exists e′′′ such that e ↗δ e′′′ < e′ . Since e′ ∈ C1 by causal 
closure also e′′′ ∈ C , and thus the same argument of the previous case allows to conclude.

Now we can easily prove that C1 ∪ {e} ∈ Conf (A). For this, we need to show that �e� ⊆ C1. Take any e′ < e. Since e /∈ X , 
by Definition 11, we have f X (e′) </X f X (e) and thus f X (e′) ∈ f X (C1). Take e′′ ∈ C1 such that f X (e′′) = f X (e′). We observe 
that it must necessarily be e′ = e′′ . In fact, if e′ �= e′′ it should be e′, e′′ ∈ X and thus e′#e′′ . By inheritance of conflict, this 
would lead to e#e′′ and hence e ↗ e′′ violating (†) above. Hence it must be e′ = e′′ ∈ C1, as desired. The absence of cycles 
of asymmetric conflict in C1 ∪ {e} follows immediately by the same property in C1 and property (†) above.

Also the fact that C1 � C1 ∪ {e} is an immediate consequence of (†) above.

2.b) z = e X

Consider the set

Y = C1 ∩ p(X)

Clearly Y ⊆ p(X). Moreover, it is consistent and causally closed, since Y is a subset of C1. In fact, if e ∈ Y and e′ ∈ p(X), 
e′ < e, since e ∈ Y ⊆ C1 and configurations are causally closed, we deduce e′ ∈ C1 and thus e′ ∈ Y .

Hence, by Definition 13, there exists x ∈ X and H ∈ hist(x) such that H ∩ p(X) = Y .
As in the previous case we observe that

there is no e ∈ C1 such that x ↗ e. (†)

In fact, given e ∈ C1 such that x ↗ e then, according to Definition 10(2), we have that either x′ ↗ e for all x′ ∈ X or there 
exists x′ ∈ X such that ¬(x′ ↗ e) and x#e. In the first case, we would have X ↗∀ e and thus z = e X ↗/X f X (e) ∈ C2, 
contradicting the fact that C2 � C2 ∪ {z}. In the second case, from x#e we have e ↗ x and, additionally, there is x′ ∈ X
such that ¬(x′ ↗ e). Hence e ↗∃ X and ¬(X ↗∀ e). Moreover it cannot be e < x, since e#x, thus ¬(e <∀ X). This means 
that e ∈ p(X). Recalling e ∈ C1, we deduce that e ∈ Y . Since by construction Y ⊆ H , in turn, we get e ∈ H which leads to a 
contradiction since H is a history of x, and thus it cannot include events in conflict with x.

Now observe that �x� ⊆ C1. In fact for any e < x either f X (e) < f X (x) = e X or, by Lemma 2(4), f X (e) ↗ f X (x) = e X . In the 
first case, since f X (e) < e X necessarily f X (e) ∈ C2 and thus, since f X is the identity on e, we deduce e ∈ C1. In the second 
case, by Definition 11, it must be ¬(e <∀ X). Additionally, since e < x he have that e ↗∃ X and ¬(X ↗∀ e) (in particular, 
¬(x ↗ e)). Hence e ∈ p(X) and, since e < x, necessarily e ∈ H . Thus e ∈ Y = H ∩ p(X) and therefore e ∈ C1.

By above and (†) C1 ∪ {x} is a configuration and C1 � C1 ∪ {x}. By Lemma 4, since f X (C1 ∪ {x}) = C2 ∪ {e X }, they are 
isomorphic. �

By iteratively applying the quotient to a given finite AES we can thus obtain an AES which is hp-bisimilar to the original 
one and not further reducible. Unfortunately, this does not provide a canonical minimal representative of the behaviour. 
For instance, consider the AES in Fig. 5a. There exist two possible quotiented AESs, presented side-by-side in Fig. 10, which 
cannot be further reduced using the quotient operation.

Observe that this is not due to a limitation of our quotient technique, but rather it is intrinsic in the nature of AESs 
and their foldings. In fact, one can see that for these two AESs there are no non-trivial foldings (i.e., the only foldings 
are isomorphisms). This fact can be shown just by inspecting all the possible label preserving surjective mappings. Still, 
the question remains as to whether our quotient technique is in some sense complete, i.e., if it generates all the possible 
foldings. We will come back to this question in the conclusions.

4. Behaviour preserving reduction of FES

In this section we focus on flow event structures and, as for AESs, we propose a technique for identifying sets of events 
that can be collapsed into a single event, inducing an elementary folding. The basic ideas are conceptually similar to those 
for AESs but technically there are relevant differences.

4.1. Basics of flow event structures

We start by recalling the formal definition of (labelled) flow event structures [4].
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Fig. 11. A FES which is neither faithful nor full.

Definition 14 (flow event structure). A (labelled) flow event structure (FES) is a tuple F = 〈E, #, ≺, λ〉 where E is a set of 
events, λ : E → � is a labelling function, and

• ≺ ⊆ E × E , the flow relation, is irreflexive.
• # ⊆ E × E , the conflict relation, is a symmetric relation.

The ≺-predecessors of an event e ∈ E , are defined as •e = {e′ | e′ ≺ e}. Similarly, for a set of events X we write •X = ⋃
x∈X •x.

Note that the flow relation is not required to be transitive. The flow predecessors •e of an event e can be seen as a 
set of possible immediate causes for e. Conflicts can exist in •e and, in order to be executed, e needs to be preceded by a 
maximal and conflict free subset of •e. This intuition is formalised by the notion of configuration.

Definition 15 (configuration). Let F = 〈E, #, ≺, λ〉 be a FES. A configuration of F is a finite subset C ⊆ E such that

1. ¬(e#e′) for all e, e′ ∈ C ;
2. ≺∗|C is a partial order;
3. for all e ∈ C and e′ /∈ C s.t. e′ ≺ e, there exists an e′′ ∈ C such that e′#e′′ ≺ e.

We denote by Conf (F) the set of configurations of F.

In words, a configuration is a conflict free subset of events, where ≺ is acyclic. In addition, the third condition requires 
that, given an event e ∈ C , for any ≺-predecessor e′ ≺ e either e′ ∈ C or it is excluded by the presence of e′′ ∈ C , where e′′ is 
in conflict with e′ and e′′ ≺ e. This means that for any e ∈ C , the configuration C must include a maximal consistent subset 
of ≺-predecessors of e.

FESs can be seen as instances of abstract event structures by considering each configuration C ∈ Conf (F), of a FES 
F, ordered by (≺|C )∗ . As for PESs, the extension order is simply subset-inclusion, namely according to the definition in 
Section 2, for C1, C2 ∈ Conf (F), we have C1 � C2 iff C1 ⊆ C2. In particular, observe that if e1 ∈ C1, e2 ∈ C2 and e2 ≤C2 e1
then e2 ∈ C1. In fact, assume by contradiction that e2 /∈ C1. Since ≤C2=≺∗|C2

, the proof can proceed on induction on the 
length of the ≺-chain connecting e2 to e1. If the length is 0, namely e2 ≺ e1, since e2 /∈ C1, by definition of configuration, 
there must be e′

1 ∈ C1 such that e′
1 ≺ e1 and e′

1#e2. Since e′
1 ∈ C1 ⊆ C2 this means that C1 includes the conflicting events 

e2, e′
1, contradicting the assumption that it is a configuration. This concludes the base case. The inductive step is routine.

In FESs, the flow relation is not transitive and the conflict relation is not inherited along causal chains as in PESs. 
Therefore, even if two events are not in conflict syntactically, they might not appear together in any configuration. For 
similar reasons, an event could be not executable at all. Formally, let us define the semantic conflict relation #s as e#se′
when for all configurations C ∈ Conf (F), it does not hold that {e, e′} ⊆ C . Then clearly # ⊆ #s , but in general the inclusion 
is strict. Moreover, it could be that e#se for an event e (which means that e is never executable).

In line with the authors of [4], hereafter we restrict to the subclass of FESs, where:

1. semantic conflict #s coincides with conflict # (faithfulness);
2. conflict is irreflexive (fullness), hence all events are executable;
3. ≺ and # are disjoint (disjointness).

Condition 3 is not in [4]. We assume it here since it is in line with conditions 1 and 2 and it allows us to simplify the 
presentation.

As an example, the FES in Fig. 11 is neither faithful nor full. For instance, despite the fact that there is no conflict b#c, 
it holds b#sc, namely b and c cannot appear in the same configuration. In fact, since a is the only ≺-predecessor of c, for 
any configuration C , if c ∈ C then also a ∈ C . Therefore, since a#b, necessarily b /∈ C . Similarly, a#sd and c#sd. Additionally, 
observe that any configuration containing e, according to Definition 15, should include both c and d (since they are not in 
conflict with any other ≺-predecessor of e). Therefore, there is no such configuration, i.e., e#se.

Note that FESs generalise PESs. Specifically, every PES can be seen as a special FES where the flow relation is transitive 
and the ≺-predecessors of any event are conflict free.
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Fig. 12. A FES and a corresponding folding.

Fig. 13. Two sample FESs.

4.2. Quotient of FESs

The technique for behaviour preserving reduction of FESs, as in the case of AESs, consists in iteratively identifying a set 
of conflicting events with the same label that, when replaced by a single event, induces an elementary folding. As observed 
in the introduction, the way in which FESs generalises PESs is somehow orthogonal to that of AESs: the latter allow a 
non-symmetric form of conflict, while the former introduce a form of disjunctive causality. As a consequence, at a technical 
level the conditions defining the sets of events that can be merged are quite different.

A prototypical example of folding in FESs, which exploits the possibility of modelling disjunctive causality, is provided 
in Fig. 12. The FES F′ is obtained from F by merging the two conflicting c-labelled events c0 and c1. The resulting merged 
event c01 has a and b as ≺-predecessors, and d and e as ≺-successors. Since a and b are in conflict, exactly one of them 
will be in a configuration including c01. The function mapping a, b, d, e identically, and c0, c1 to c01 can be easily shown to 
be a folding.

Now consider a more complex example in Fig. 13a. First, if we take events c0 and c1 and try to merge them into a single 
event c01, there would be no way of updating the dependency relations while keeping the behaviour unchanged (since 
b excludes c0 and precedes c1, the resulting dependency between b and the merged event c01 would be an asymmetric 
conflict that cannot be represented in FESs). Instead, we can merge events c1 and c2 in F1 into a single event c12, thus 
obtaining the FES in Fig. 13b. In this case, the merge is possible because the original events c1 and c2 are enabled by {b} and 
{d, e}, respectively, and since b#d, b#e, after the merge the same situation is properly represented as a disjunctive causality.

In order to define sets of events that can be safely merged we need some further notation. Given a set of events Z , we 
denote by mc(Z) the set of maximal and consistent (i.e., conflict free) subsets of Z . Additionally, as in the case of AESs, we 
need to single out conflicts that are direct.

Definition 16 (direct conflict). Let F = 〈E, #, ≺, λ〉 be a FES and let e, e′ ∈ E . We say that e is a direct conflict for e′ , denoted 
as e #δ e′ , if e#e′ and ∃Y ∈ mc(•e) such that Y ∪ {e′} is consistent.

Intuitively, a conflict e#e′ is direct when there is a way of reaching a configuration where e is enabled, without dis-
abling e′ . Note that direct conflict is not symmetric in FESs. For instance for F4 depicted in Fig. 14c, we have e #δ a1 while 
it is not the case that a1 #δ e.

We use the extensions of relations # and ≺ to relations between sets and events, as already done for AESs. For instance, 
given X ⊆ E and e ∈ E we write X#∀e whenever for all x ∈ X , we have x#e, or X ≺∃ e when there exists x ∈ X such that 
x ≺ e.

We can now define the notion of combinable set of events for FESs.

Definition 17 (combinable set of events). Let F = 〈E, #, ≺, λ〉 be a FES. A set of events X ⊆ E is called combinable if for all 
x, x′ ∈ X and e, e′ ∈ E \ X the following holds

1. λ(x) = λ(x′) and x#x′;
2. x #δ e ⇒ x′#e;
3. x ≺ e ⇒ x′ ≺ e ∨ x′#e;
4. e ≺ x ⇒ •x′ �= ∅ ∧ (e ≺ x′ ∨ (∀e′ ≺ x′ ∧ e′ /∈ •x. e#e′));



JID:JLAMP AID:81 /FLA [m3G; v1.162; Prn:2/11/2015; 16:33] P.15 (1-21)

A. Armas-Cervantes et al. / Journal of Logical and Algebraic Methods in Programming ••• (••••) •••–••• 15
Fig. 14. Example FESs to illustrate Condition 5 in Definition 17.

5. x, e′ ∈ •e ∧ x#e′ ∧ ¬(X#e′)
⇒ ∀Y ∈ mc(•e).

(x ∈ Y ⇒ ∃e′′ ∈ Y \ {x}. e′′#e′)∧
(X ∩ Y = ∅ ⇒ ∃e′′ ∈ Y . X#e′′) .

Roughly speaking, condition (1) requires that the events in X are occurrences of the same activity (they have the same 
label and they are in conflict). Condition (2) requires that events in X have essentially the same conflicts: for any x ∈ X , if x
is in direct conflict with an event e (hence this conflict is not derivable from the ≺-predecessors) then all events in X must 
be in conflict with e. Conditions (3) and (4) state that predecessors and successors are preserved among events in X or they 
can become conflicts. The rough intuition is that events whose causes are in conflict can be possibly merged thus getting 
a single event having the conflicting causes as ≺-predecessors and the conflicting consequences as ≺-successors. More in 
detail, by condition (4), if an event x ∈ X has a non-empty set of ≺-predecessors, then the same must be true for all events 
in X . Moreover, if e is a ≺-predecessors of some x ∈ X then for any other x′ ∈ X , either e is a ≺-predecessor of x′ or it is 
in conflict with all the ≺-predecessors of x′ not in common with x (namely with the events in •x′ \ •x). This ensures that, 
whenever we merge the events in X thus joining their ≺-predecessors, the maximal consistent subsets of ≺-predecessors 
will remain unchanged (see Lemma 7, where the role of condition (4) emerges formally).

Finally, condition (5) takes into account the situation in which events x ∈ X and e′ ∈ E \ X are conflicting ≺-predecessor 
of an event e, but not all events in X are in conflict with e′ . This is problematic because, after the merging, the conflict 
between x and e′ will be lost, thus possibly changing the maximal subsets of ≺-predecessors. The condition indeed says 
that merging is still allowed if the conflict x#e′ is not essential when forming the maximal consistent sets of ≺-predecessors 
for e. In detail, it is required that for any Y ∈ mc(•e)

• if x ∈ Y then x is not the only event in Y which is in conflict with e′ , so that losing the conflict x#e′ would not be 
problematic and Y would remain a maximal consistent set;

• if none of the events of X occur in Y then this is due to the presence in Y of an event e′′ in conflict with all events in 
X (which, in particular, is not e′ and thus this will remain a maximal set even if the conflict x#e′ is lost).

For example, consider the FES F2 in Fig. 14a. If we take X = {ax, ax′ } then condition (5) fails. Please note that events 
corresponding to those in condition (5) have a subscript which should suggest their role. We have •ce = {ax, ax′ , be′ } and 
thus mc(•ce) = {Y , Y ′} with Y = {ax} and Y ′ = {ax′ , be′ }. Observe that ax ∈ Y but clearly there is no e′′ ∈ Y \{ax} = ∅ satisfying 
e′′#be′ . The quotient of F2 with respect to X (formally defined later in Definition 18) would lead to the FES F3 in Fig. 14b, 
which is not behaviourally equivalent to F2. In particular, observe that ce is no longer executable since it would require the 
prior execution of axx′ and be′ , which instead cannot be in the same computation since be′ #e. This means that axx′ #sbe′ , 
i.e., the two events are in semantic conflict, although it is not the case that axx′ #be′ (hence the quotient FES is not faithful). 
Note that saturating the conflict would not solve the problem. In fact, if in the quotient FES F3 we enforced the conflict 
axx′ #be′ , then a configuration corresponding to {d, ax, be′ } ∈ Conf (F2) would be missing. A situation in which condition (5) is 
satisfied is instead illustrated by the FES F4 in Fig. 14c. Again we take X = {ax, ax′ }. We have •ce = { fe′′ , ax, ax′ , be′ } and thus 
mc(•ce) = {Y , Y ′} with Y = { fe′′ , ax} and Y ′ = {ax′ , be′ }. Note that ax ∈ Y and there is indeed fe′′ ∈ Y such that fe′′ #be′ . The 
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condition is satisfied also exchanging the roles of ax and ax′ . Indeed, in the resulting quotient FES F5, depicted in Fig. 14d, 
after the execution of e or d, there are still two maximal and consistent sets of ≺-predecessors for the event ce , namely 
{axx′ , fe′′ } and {axx′ , be′ }.

We prove a technical lemma which shows that for a combinable set of events X , the maximal consistent sets of the 
≺-predecessors of X and those of single events in X coincide. This clarifies the role of condition (4) in the definition of 
combinable set of events and will be useful later for proving that the quotient does not alter the behaviour.

Lemma 7 (preservation of consistent sets). Let F = 〈E, #, ≺, λ〉 be a FES and let X ⊆ E be a combinable set of events. Then for any 
consistent set Y ⊆ E it holds that Y ⊆ •X iff there exists x ∈ X such that Y ⊆ •x. Hence:

Y ∈ mc(•X) iff there exists x ∈ X such that Y ∈ mc(•x).

Proof. Let Y ⊆ E be consistent. Let us assume that Y ⊆ •X = ⋃
x∈X •x and prove that there exists x ∈ X such that Y ⊆ •x. 

If Y = ∅ the assert is trivial. Otherwise, take e′ ∈ Y . By the assumption Y ⊆ •X there must be x′ ∈ X such that e′ ∈ •x′ . We 
show that Y ⊆ •x′ . In fact, for any e ∈ Y there must exists x ∈ X such that e ∈ •x. Since e ≺ x, by Definition 17(4), either 
e ≺ x′ or we should have e#e′ . The latter possibility would contradict the consistency of Y . Hence it must be e ≺ x′ , namely 
e ∈ •x′ . Therefore Y ⊆ •x′ , as desired. The converse implication is trivial since •X = ⋃

x∈X •x.
Now, the second part of the lemma, namely the fact that Y ∈ mc(•X) iff there exists x ∈ X such that Y ∈ mc(•x) is an 

immediate consequence of the first. In fact, let Y ∈ mc(•X). Then, by the first part of the lemma we know that there is 
x ∈ X such that Y ⊆ •x. Again by the first part of the lemma Y is maximal among the consistent subsets of •x, since these 
are also consistent subsets of •X . Hence Y ∈ mc(•x). Vice versa, let Y ∈ mc(•x). Clearly Y ⊆ •X . Moreover, Y is maximal 
among the consistent subsets of •X . To see this, take any Y ′ ⊆ •X consistent and assume that Y ⊆ Y ′ . By the first part of 
the lemma, there is x′ ∈ X such that Y ⊆ •x′ . Then necessarily Y = Y ′ , otherwise, by Definition 17(4), given y′ ∈ Y ′ \ Y we 
would have y′#y for any y ∈ Y , which is absurd since Y ⊆ Y ′ and Y ′ consistent. �

We next formally define the quotient of a FESs with respect to a combinable set of events.

Definition 18 (quotient of FESs). Let F = 〈E, #, ≺, λ〉 be a FES, X be a combinable set of events. The quotient of F with respect 
to X , denoted by F/X , is the FES F/X = 〈E/X , #/X , ≺/X , λ/X 〉 where

E/X = (E \ X) ∪ {e X }
#/X = #|(E\X) ∪ {(e, e X ) | e#∀ X}
≺/X = ≺|(E\X) ∪{(e, e X ) | e ≺∃ X} ∪ {(e X , e′) | X ≺∃ e′}
λ/X = λ/X [e X �→ λ(x)] for an event x ∈ X .

The quotient map f X : F → F/X is defined by f X (x) = e X for x ∈ X and f X (e) = e for e ∈ E \ X .

The rest of the section is dedicated to showing that the quotient operation on FESs induces a (elementary) folding, 
namely it preserves hp-bisimilarity.

The idea underlying the proof for AESs was that merged events are occurrences of the same activity with different histo-
ries. They could be merged if their histories were compatible and, after merging, the possible histories remained the same. 
For FESs the intuition of the proof is similar, but now events can occur after a maximal consistent set of ≺-predecessors 
which roughly play the role of histories in AESs. By Lemma 7, after merging a set of combinable events this maximal sub-
sets of consistent events remains unchanged. This will be a core ingredient in the proof that the quotient does not alter the 
behaviour.

We start by showing some properties of the quotient map which will be used later for showing that it transforms 
configurations of the original FES into isomorphic configurations of the quotient FES. We do not rely on the notion of FES 
morphism from [11], which would be too strong for our needs (in particular, condition (iii) of [11, Definition 4] is not 
satisfied by our quotient map).

Lemma 8 (properties of the quotient map). Let F = 〈E, #, ≺, λ〉 be a FES, X ⊆ E be a combinable set of events let f X : F → F/X be 
the quotient map. Then for all e, e′ ∈ E:

1. if f X (e)#/X f X (e′) then e#e′;
2. if e ≺ e′ then f X (e) ≺/X f X (e′);
3. if f X (e) ≺/X f X (e′) then e ≺ e′ ∨ e#e′;
4. if f X (e) = f X (e′) then e = e′ ∨ e#e′ .

Proof. 1. Let e, e′ ∈ E and assume f X (e)#/X f X (e′). Notice that at least one between e and e′ is not in X , otherwise we 
would have f X (e) = f X (e′) that is a contradiction since, by construction, #/X is irreflexive. We distinguish various cases. If 
e ∈ X and thus f X (e) = e X , then by definition of conflict in the quotient FES (Definition 18), since f X (e) = e X #/X f X (e′), it 
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must be X#∀e′ , and thus in particular e#e′ , as desired. The case in which e′ ∈ X is analogous, since conflict is symmetric. 
Otherwise, if e, e′ /∈ X the property trivially holds, since f X is the identity on e, e′ and their mutual relations are not changed 
by the quotient operation.

2. Let e, e′ ∈ E be such that e ≺ e′ . Note that it cannot be e, e′ ∈ X , otherwise, we would have e ≺ e′ and, by Defini-
tion 17(1), e#e′ , violating the disjointness of ≺ and #. Hence we distinguish the following cases:

• If e ∈ X and e′ /∈ X , by Definition 18, e X = f X (e) ≺/X f X (e′) = e′ as desired.
• If e′ ∈ X and e /∈ X , by construction, e = f X (e) ≺/X f X (e′) = e X .
• If e, e′ /∈ X then f X is the identity on e, e′ and the result trivially holds.

3. Let e, e′ ∈ E be such that f X (e) ≺/X f X (e′). Note that it cannot be e, e′ ∈ X , otherwise, we would have f X (e) = e X ≺/X

e X = f X (e′), while by construction ≺/X is irreflexive. Hence we distinguish the following cases:

• If e ∈ X and e′ /∈ X , by construction, there exists x′ ∈ X such that x′ ≺ e′ . Then, either x′ = e and thus e ≺ e′ , or, by 
Definition 17(3), e′#e as desired.

• If e′ ∈ X and e /∈ X , by construction, there exists x ∈ X such that e ≺ x. Then, either x = e′ and thus e ≺ e′ , or, by 
Definition 17(4), e′#e as desired.

• Otherwise, if e, e′ /∈ X then f X is the identity on e, e′ and hence e ≺ e′ .

4. Let e, e′ ∈ E such that f X (e) = f X (e′), with e �= e′ . This means that e, e′ ∈ X and thus, since the events in X are 
pairwise conflicting, we have that e#e′ . �

We can now show that the quotient map transforms any configuration of the original FES into an isomorphic configura-
tion of the quotient.

Lemma 9 (quotient preserves configurations). Let F = 〈E, #, ≺, λ〉 be a FES, X ⊆ E be a combinable set of events and let f X : F → F/X

be the quotient map. For any configuration C ∈ Conf (F) then f X (C) ∈ Conf (F/X ) and, additionally, f X |C : (C, ≺∗
C ) → ( f X (C), ≺∗

f X (C)
)

is an isomorphism of configurations.

Proof. We first prove that f X (C) is a configuration.

1. f X (C) is conflict free.
This follows directly from Lemma 8(1). In fact, for e, e′ ∈ C , if it were f X (e)#/X f X (e′) then we would deduce e#e′ , 
contradicting the fact that C is a configuration.

2. f X (C) has no ≺-cycles.
Observe that, by Lemma 8(3), f X reflects the flow relation over events of a configuration, namely for e, e′ ∈ C , if 
f X (e) ≺/X f X (e′) then e ≺ e′ (since the case e#e′ would contradict the fact that C is a configuration). As a consequence, 
a ≺-cycle in f X (C) would be reflected in C .

3. For all z ∈ f X (C) and z′ /∈ f X (C) s.t. z′ ≺ z, there exists z′′ ∈ f X (C) such that z′#z′′ ≺ z.
Let z ∈ f X (C), z′ /∈ f X (C), such that z′ ≺ z. Therefore, there are e ∈ C such that z = f X (e) and, by surjectivity of f X , 
e′ /∈ C such that z′ = f X (e′).
By Lemma 8(3) either (i) e′#e or (ii) e′ ≺ e. Below we treat the two cases separately.
(i) If e′#e, the fact that ¬(e′ ≺ e) while f X (e′) ≺/X f X (e), the construction in Definition 18, implies that one of the 
following holds:
• e ∈ X and there exists x ∈ X such that e′ ≺ x.

Note that the conflict e#e′ cannot be direct, otherwise, by Definition 17(2), one should have also x#e′ . Hence, since 
by definition of configuration, the set •e ∩ C ∈ mc(•e), there must be e′′ ∈ •e ∩ C such that e′#e′′ . Hence e′′ ∈ C and 
e′′ ≺ e. Therefore by Lemma 8(2), f X (e′′) ≺/X f X (e) = z. Moreover, since e′, e′′ /∈ X , we have f X (e′′)#/X f X (e′) = z′ , as 
desired.

• e′ ∈ X and there exists x′ ∈ X such that x′ ≺ e.
In this case note that f X (x′) = f X (e′) = e X and thus we can take x′ instead of e′ , and proceed as in case (ii).

(ii) Let us focus on the other case, in which e′ ≺ e. Since C is a configuration, there exists e′′ ∈ C such that e′′ ≺ e and 
e′′#e′ . By Lemma 8(2), f X (e′′) ≺ f X (e) = z. We distinguish various subcases:
(a) {e′, e′′} ⊆ X . This simply cannot happen as it would imply f X (e′) = f X (e′′) ∈ f X (C), while we are assuming f X (e′) /∈

f X (C).
(b) e′ ∈ X, e′′ /∈ X . Let Y ∈ mc(•e) be the set of maximal and consistent set of predecessors of e in C . Obviously, 

e′′ ∈ Y and, by Lemma 8(2), for all e1 ∈ Y we have f X (e1) ≺ f X (e) = z and f X (e1) ∈ f X (C). Clearly, there is no 
e2 ∈ Y ∩ X such that e2 ∈ C , otherwise f X (e2) = f X (e′) = z′ ∈ f X (C) and this would contradict the assumptions. 
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Therefore, Y ∩ X = ∅ and, by Definition 17(5), there exists e′′
1 ∈ Y such that e′′

1#∀ X . In this case, by construction, 
f X (e′′

1)#/X f X (e′) = z′ = e X and, since f X (e′′
1) ∈ f X (C), this gives the desired result.

(c) e′ /∈ X, e′′ ∈ X . By Definition 17(5), for all Y ∈ mc(•e), with e′′ ∈ Y there is e1 ∈ Y \{e′′} such that e1#e′ . Since neither 
e′ nor e1 are in X , this conflict is preserved by the quotient map and thus f X (e1)# f X (e′) = z′ . Since, f X (e1) ∈ f X (C)

and, by Lemma 8(2), f X (e1) ≺ f X (e) = z, we get the desired results.
(d) {e′, e′′} � X . Since {e′, e′′} � X and e′#e′′ then, by Lemma 8(1), f X (e′′)# f X (e′), as desired.

Concerning the last assertion, note that the fact that f X |C : (C, ≺∗
C ) → ( f X (C), ≺∗

f X (C)
) is an isomorphism follows imme-

diately by items (2) and (3) of Lemma 8. �
Recall that FESs are assumed to be faithful, full and disjoint. We next prove that the quotient preserves these properties.

Lemma 10 (quotient is full and faithful). Let F = 〈E, #, ≺, λ〉 be a FES, X a combinable set of events and let f X : F → F/X be the 
quotient map. The FES F/X is 1) faithful, 2) full and 3) disjoint.

Proof. 1. Let z, z′ ∈ E/X be events in F/X such that ¬(z#z′). We need to prove that there exists a configuration C1 ∈
Conf (F/X ) such that {z, z′} ⊆ C1.

Take e, e′ ∈ E such that f X (e) = z and f X (e′) = z′ (they exist since f X is surjective). If ¬(e#e′) then, by faithfulness 
of F, there exists C0 ∈ Conf (F) such that {e, e′} ⊆ C0. By Lemma 9, f X (C0) ∈ Conf (F/X ) is the desired configuration, since 
{z, z′} = { f X (e), f X (e′)} ⊆ f X (C0).

If instead e#e′ , it means that one of the two events is in X (otherwise their dependencies would not be changed by 
the quotient). Assume without loss of generality that e ∈ X , hence z = e X , and e′ /∈ X . The fact that ¬( f X (e)# f X (e′)) means 
that there is e′′ ∈ X such that ¬(e′′#e′). Therefore, again by fullness there exists C0 ∈ Conf (F) such that {e′′, e′} ⊆ C0 and 
we conclude as above. In fact, f X (e′′) = f X (e) = z, hence {z, z′} = { f X (e), f X (e′)} ⊆ f X (C0), which is a configuration by 
Lemma 9.

2. By Lemma 8(1) and surjectivity of f X , a self-conflicting (inconsistent) event in F/X would be reflected in F. More 
precisely, let z ∈ F/X such that z#z. Then take e ∈ F such that f X (e) = z. We have f X (e)# f X (e) and thus, by Lemma 8(1), 
e#e, contradicting the fullness of F.

3. In order to show that #/X and ≺/X are disjoint we proceed by contradiction. Assume that z ≺/X z′ and z#/X z′ . By 
Definition 18 there are e, e′ ∈ E such that f X (e) = z, f X (e′) = z′ and e ≺ e′ . However, by Lemma 8(1), we have also e#e′ , 
contradicting the disjointness of F. �

Building on the previous technical results, we can finally prove that the quotient map f X is a folding, i.e., that it can be 
seen as a hp-bisimulation.

Theorem 11 (quotient map is a folding). Let F = 〈E, #, ≺, λ〉 be a FES and let X ⊆ E be a combinable set of events. Then the quotient 
map f X : F → F/X is a folding.

Proof. Let F be a FES, X be a combinable set of events and f X : F → F/X be the quotient map, where F/X = 〈E/X , #/X ,

≺/X , λ/X 〉. We prove that

R = {(C1, f X |C1
, f X (C1)) | C1 ∈ Conf (F)}

is a hp-bisimulation.
Given a configuration C1 ∈ Conf (F), define C2 = f X (C1). Recall from Lemma 9 that f X |C1

: (C1, ≺∗) → (C2, ≺∗) is an 
isomorphism of pomsets.

In order to show that R is a hp-bisimilarity it remains to prove that

1. if there is e ∈ E such that C1 ∪ {e} ∈ Conf (F) then C2 ∪ { f X (e)} ∈ Conf (F/X );
2. if there is z ∈ E/X such that C2 ∪ {z} ∈ Conf (F) then there is e ∈ E such that f X (e) = z and C1 ∪ {e} ∈ Conf (F).

In fact, since the extension order for FESs is subset inclusion, (1) and (2) above correspond to conditions (a) and (b) in 
Definition 4.

We prove the two points separately:

1. The fact that if C1 ∪ {e} ∈ Conf (F) then C2 ∪ { f X (e)} ∈ Conf (F/X ) follows immediately by Lemma 9, since C2 ∪ { f X (e)} =
f X (C1 ∪ {e}).
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Fig. 15. A FES and two minimal non-isomorphic quotients.

2. Let z ∈ E/X be such that C2 ∪ {z} ∈ Conf (F/X ) and let us show that there is an event e ∈ E such that f X (e) = z, 
C1 ∪ {e} ∈ Conf (F).
Let Y2 = •z ∩ C2 be the set of ≺-predecessors of z in C2. By definition of configuration in FESs we know that Y2 ∈
mc(•z).
We distinguish two cases:
(a) z = e X .

In this case events in •z are left unchanged by the quotient and hence if we let Y1 = Y2 we have that Y1 ⊆ C1, 
f X (Y1) = Y2 and Y1 is consistent. By definition of the quotient (Definition 18) we have that e ≺/X e X iff e ≺∃ X
and hence Y1 ⊆ •X and, by Lemma 7, there is an event e′ ∈ X , s.t. Y1 ∈ mc(•e′). Since Y1 ⊆ C1, we deduce that 
C1 ∪ {e′} ∈ Conf (F), with f X (e′) = e X , as desired.

(b) z �= e X .
In this case the event z = e ∈ E \ X is mapped identically by the quotient map f X . In order to conclude, we just 
need to show that C1 ∪ {e} is a configuration. Let Y1 = {e′ ∈ C1 | f X (e′) ∈ Y2}.
We have that Y1 ⊆ •e. In order to prove this fact, note that for any e′ ∈ Y1, since f X (e′) ≺/X f X (e) = z, by 
Lemma 8(3) we know that e′ ≺ e or e′#e. We show that the second case cannot happen. If e′ /∈ X this is ob-
vious. Otherwise, if e′ ∈ X , from ¬( f X (e)#/X f X (e′)), by Definition 18, there is x ∈ X such that ¬e#x. Then by 
Definition 17(2), the conflict e′#e is not direct. Therefore, since •e′ ∩ C1 ∈ mc(•e′), by definition of direct conflict, 
there is e′′ ∈ •e′ ∩ C1 such that e′′#e. Since e′′ /∈ X , this conflict is preserved by the quotient map and we get that 
f X (e′′)#/X f X (e), which is absurd since f X (e), f X (e′′) ∈ f X (C1) ∪ {z}, and the latter is a configuration by hypothesis.
The set Y1 is clearly consistent, since it is included in C1. It is also maximal, i.e., Y1 ∈ mc(•e). In fact if it were not 
maximal, there would be e′′ ∈ •e \ Y1 such that Y1 ∪ {e′′} is consistent. But then, since the quotient map preserves 
configurations and thus consistent sets, f X (Y1 ∪ {e′′}) would be consistent and strictly larger than Y2.
Since Y1 ∈ mc(•e), we conclude that Y1 ∪ {e} is a configuration, as desired. �

As in the case of AESs the iterative application of the quotient operation to a finite FES leads to a “minimal” FES hp-
bisimilar to the original one. Different sequences of quotient operations can lead to non-isomorphic FESs, which are not 
further reducible. An example is provided in Fig. 15. In the FES F6 there are two combinable sets of events, namely {a0, a1}
and {b0, b1}. In the quotient F6/{a0,a1} , depicted in Fig. 15b, the set {b0, b1} is no longer combinable. In fact, condition (4) in 
Definition 17 is violated since a ≺ b0, but it does not hold that a ≺ b1 and there is event e such that e ≺ b1, ¬(e ≺ a) and 
¬(a#e). Similarly, in the quotient F6/{b0,b1} , depicted in Fig. 15c, the set {a0, a1} is no longer combinable. Hence we get two 
non-isomorphic FESs which are not further reducible. Also in this case, one can see that this is intrinsic in the nature of 
FESs and their foldings. In fact, by inspecting all the possible label preserving surjective mappings one realises that the two 
quotients do not admit any non-trivial folding.

5. Conclusion and future work

This paper presents reduction techniques for AESs and FESs, which are aimed at reducing the size of an event structure 
without altering its behaviour. The techniques are based on suitably defined quotient operations. Each quotient merges a 
set of events that represent instances of the same activity in different contexts. The equivalence notion adopted is history 
preserving bisimulation, a standard equivalence in the true concurrency spectrum. Due to the different expressive power of 
AESs and FESs, tailored quotient techniques have been proposed for the two brands of event structures.

In the paper, we first provide an abstract notion of behaviour preserving quotient, referred to as folding. Then we study 
suitable conditions which identify sets of events that can be safely merged, in a way that induces (elementary) foldings. 
A natural question arises in this context, concerning the “completeness” of the quotient techniques we identified. More 
precisely, is any folding induced by a sequence of quotient operations? The answer is negative. In fact, consider the PES in 
Fig. 16a, which can either be seen as an AES or a FES. It admits the folding in Fig. 16b, where a0, a1 are merged into a01
and similarly b0, b1 are merged into b01. It is not difficult to see that P′ cannot be obtained by our quotient operations, 
neither seeing P as an AES nor as a FES.
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Fig. 16. A PES P and a possible folding P′ that cannot be obtained by composing elementary foldings.

Fig. 17. Non-completeness of the quotient technique for FESs.

The limitation seems to reside in the fact that a quotient operation realises only elementary foldings (only a single set of 
events is merged each time). Indeed, the folding P′ cannot be expressed as the composition of elementary foldings. For in-
stance, notice that the quotient P/{a0,a1} in Fig. 16c is not a folding. In fact event a0 should be simulated by f{a0,a1}(a0) = a01. 
However, in P/{a0,a1} after a01 we can execute b0; whereas in P once a0 occurs then event b0 is ruled out.

Some preliminary results lead us to conjecture that indeed the quotient technique for AESs is complete for elementary 
foldings and a complete technique for general foldings can be defined at the price of reducing the efficiency (all sets to be 
merged have to be searched for at the same time). For FESs, instead, the intensional nature of the dependency relations 
seems to be an obstacle toward a completeness result already for elementary foldings.

In Fig. 17 two FESs F7 and F8 are depicted along with corresponding quotients with respect to the set X = {d0, d1}. It 
is not difficult to see that the two FESs have exactly the same posets of configurations. Indeed, the only difference between 
F7 and F8 is the absence, in the former, of the flow a ≺ d1. Since a is the only ≺-predecessor of c, which in turn is the only 
≺-predecessor of d1, this flow is semantically enforced. Hence, its explicit presence does not alter, in any way, the behaviour. 
However, this subtle syntactic difference is very important for the quotient operation. It is immediate to see that {d0, d1} is 
combinable in F8; whereas, {d0, d1} is not combinable in F7, because condition (4) of Definition 17 is violated. In fact, in F7, 
we have a ≺ d0, but ¬(a ≺ d1) and there is c ≺ d1 such that ¬(c ≺ d0) and ¬(c#a). Still, the quotient operation applied to F7
and F8 produces the same result F7/{d0,d1} = F8/{d0,d1} . Thus, in both cases, the quotient preserves the behaviour, namely 
it induces an elementary folding, but only the second is allowed by our technique. This means that, in the case of FESs, 
completeness fails also for elementary foldings. We conjecture that this problem can be faced by restricting to classes of 
FESs where the dependency relations are saturated (in the spirit of the faithfulness and fullness requirements).

An interesting line of future research is the development of a general theory of foldings, addressing elementary and 
non-elementary folding techniques, answering in a systematic way to these completeness questions.

It turned out that neither AESs nor FESs offer a canonical representation of the behaviour of a process. More specifically, 
the same process can have non-isomorphic minimal foldings both in the case of AESs and FESs. Therefore, a natural venue 
for future work is to investigate how to characterise an ordering on foldings, leading to a notion of minimal canonical AESs 
or FESs. This issue is investigated in [12].

We noted that the conditions defining sets of combinable events are essentially orthogonal for AESs and FESs. In this 
respect, we envision a transformation from AESs to FESs which would allow further folding at the price of inserting un-
observable events to simulate asymmetric conflict on a FES. Such a transformation could open the possibility of taking 
advantage of the combined expressiveness of AES and FES, possibly leading to more compact representations. This is there-
fore another venue for future research.
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Concerning the related literature, the minimisation of the behaviour of a process can be translated into some kind 
of minimisation problem for automata or labelled transition system. Most available techniques focus on interleaving be-
havioural equivalences (like language or trace equivalence or various forms of bisimilarity). We are not aware of approaches 
for the minimisation of event structures or partially ordered models of computation. In some cases, given a Petri net or an 
event structure a special transition system can be extracted, on which minimisation is performed. For instance in [13] the 
authors propose an encoding of safe Petri nets into a causal automata, in a way which preserves hp-bisimilarity. The causal 
automata can be transformed into a standard labelled transition system (LTS). In this way, the LTS representation can be 
used to check the equivalence between a pair of processes or to find a minimal representation of the behaviour. However, 
once a Petri net has been transformed into a causal automaton, then it is not possible to obtain the Petri net representation 
back, which can be of interest in some specific applications. In [9], the author uses a state transition diagram referred to as 
process graph, for the representation of the behaviour of a Petri net. Again, the transition diagram could be minimised with 
some technique for LTSs with structured states, but no direct approach is proposed.
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