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Abstract. Fixpoints are ubiquitous in computer science as they play a central role in
providing a meaning to recursive and cyclic definitions. Bisimilarity, behavioural metrics,
termination probabilities for Markov chains and stochastic games are defined in terms of
least or greatest fixpoints. Here we show that our recent work which proposes a technique
for checking whether the fixpoint of a function is the least (or the largest) admits a
natural categorical interpretation in terms of gs-monoidal categories. The technique is
based on a construction that maps a function to a suitable approximation. We study the
compositionality properties of this mapping and show that under some restrictions it can
naturally be interpreted as a (lax) gs-monoidal functor. This guides the development of
a tool, called UDEfix that allows us to build functions (and their approximations) like a
circuit out of basic building blocks and subsequently perform the fixpoints checks. We
also show that a slight generalisation of the theory allows one to treat a new relevant case
study: coalgebraic behavioural metrics based on Wasserstein liftings.

1. Introduction

Fixpoints are fundamental in computer science: extremal (least or greatest) fixpoints are
commonly used to interpret recursive and cyclic definitions. In a recent work [BEKP21,
BEKP23a] we proposed a technique for checking whether the fixpoint of a function is the
least (or the largest). In this paper we show that such technique admits a natural categorical
interpretation in terms of gs-monoidal categories. This allows us to provide a compositional
flavour to our technique and enables the realisation of a corresponding tool UDEfix.
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The theory in [BEKP21, BEKP23a] can be used in a variety of fairly diverse ap-
plication scenarios, such as bisimilarity [San11], behavioural metrics [DGJP04, vB17,
CvBW12, BBKK18], termination probabilities for Markov chains [BK08] and simple sto-
chastic games [Con90]. It applies to non-expansive functions of the kind f : MY → MY ,
where M is a set of values and Y is a finite set. More precisely, the set of values M is an
MV-chain, i.e., a totally ordered complete lattice endowed with suitable operations of sum
and complement, which allow for the definition of a natural notion of non-expansiveness for
M-valued functions. A prototypical example of MV-algebra, largely used in the examples, is
the interval [0, 1] with truncated sum. Roughly, the idea consists in mapping the semantic
functions of interest f : MY →MY to corresponding approximations f# over (a subset of)
P(Y ), the powerset of Y . While M is in general infinite (or very large), the set Y is typically
finite in a way that the fixpoints of f# can be computed effectively and provide information
on the fixpoints of the original function. In particular they allow us to decide, whether a
given fixpoint is indeed the least one (or dually greatest one).

In this paper, we show that the approximation framework and its compositionality
properties can be naturally interpreted in categorical terms using gs-monoidal categories.
In essence gs-monoidal categories describe graph-like structures with dedicated input and
output interfaces, operators for disjoint union (tensor), duplication and termination of wires,
quotiented by appropriate axioms. Particularly useful are gs-monoidal functors that preserve
such operators and hence naturally describe compositional operations.

More concretely, we introduce two gs-monoidal categories, that we refer to as the
concrete category and the category of approximations, where the concrete functions and
their approximations, respectively, live as arrows. We then define a mapping # from
the concrete category to the category of approximations and show that, whenever, as
in [BEKP23a], we assume finiteness of the underlying set Y , the mapping # turns out to be
a gs-monoidal functor.

In the general case, for functions f : MY →MY , where Y is not necessarily finite, the
mapping # is only known to be the union of lax functors. However, we observe that we
can characterise it again as a gs-monoidal functor if we restrict it to the subcategory of
the concrete category where arrows are reindexings. While this might seem to be a severe
restriction, we will see that it is sufficient to cover the intended applications.

We prove a number of properties of # that enable us to give a recipe for finding
approximations for a special type of functions: predicate liftings as those introduced for
coalgebraic modal logic [Pat03, Sch08]. This allows us to include a new case study in the
machinery for fixpoint checking: coalgebraic behavioural metrics, based on Wasserstein
liftings.

Besides shedding further light on the theoretical approximation framework of [BEKP23a],
the results in the paper guide the realisation of a tool, called UDEfix which realises a number
of fixpoints checks (given a post- resp. pre-fixpoint, is below the least resp. above the
greatest fixpoint? If it is a fixpoint, is it the least or the greatest?). Leveraging the visual
string diagrammatic language of gs-monoidal categories, UDEfix models system functions
as (hyper)graphs whose edges represent suitable basic building blocks. This also extends
to approximations, thanks to the fact that the mapping # can be seen as a gs-monoidal
functor, enabling a compositional construction of the approximation function.

The paper is organised as follows. In Section 2 we provide some high-level motivation.
In Section 3 we introduce some preliminaries and, in particular, we review the theory if
fixpoint checks from [BEKP23a]. In Section 4 we introduce two (gs-monoidal) categories,
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yes: a = µf

no: a ̸= µfa ∈ MY

f (a) = a

f : MY → MY
Function

Builder

fa
# : P(Y )→ P(Y )

and its greatest fixpoint νfa
#

Check if νfa
# ̸= ∅

Compositionally determine approximation

Figure 1: A graphical overview over the fixpoint checking method

C and A, the so-called concrete category and category of approximations, and investigate
the properties of the approximation map # : C→ A. In Section 5 we show how to handle
predicate liftings and then, in Section 6, we exploit such results to treat behavioural metrics.
In Section 7, we show that, in the finitary case, the categories C, A are indeed gs-monoidal
and # is gs-monoidal functor. The tool UDEfix is discussed in Section 8. Finally, in Section 9
we draw some conclusions.

This article is an extended version of the paper [BEK+23] presented at ICGT 2023.
With respect to the conference version, the present paper contains additional explanations
and examples and full proofs of the results.

2. Motivation

We start by giving a high-level overview over the approach, followed by a small worked-out
example. The general idea follows the upside-down theory of fixpoint checks from [BEKP21].
We are given a monotone function1 f : [0, 1]Y → [0, 1]Y (later [0, 1] will be replaced by a
general MV-algebra) and we also assume that f is non-expansive with respect to a suitable
norm. By Knaster-Tarski [Tar55] we have a guarantee that f has fixpoints – among them
a least fixpoint µf and a greatest fixpoint νf – but there is no guarantee that there is a
unique fixpoint, indeed there might be several of them.

Now, given a fixpoint a ∈ [0, 1]Y of f , our aim is to check whether a is the least fixpoint,
i.e., a = µf . (Or dually, whether it is the greatest fixpoint, i.e., a = νf .)

The check proceeds by determining from f and a a so-called approximation fa
# : P(Y )→

P(Y ). Intuitively, the approximation describes how function f propagates decreases of its
argument a: for Y ′ ⊆ Y , the set fa

#(Y
′) contains those elements y ∈ Y where the value of

f(a) decreases by some fixed amount δ whenever we decrease a on Y ′ ⊆ Y by δ. Then one
determines the greatest fixpoint of this approximation (νfa

#) and observes that a coincides
with µf if and only if νfa

# is the empty set. Otherwise a is too large and intuitively there is
still “wiggle room” and potential for decrease. This procedure works under conditions that
will be made precise later in Section 3.2.

The technique is schematised in Figure 1. A feature of this approach is the fact that
the function f can be assembled compositionally from basic functions via composition and
disjoint union. Such a decomposition can be represented via a string diagram. Furthermore,
approximations can be determined compositionally, leading to a string diagram of the same
type, but with approximations instead of concrete functions.

1The set of functions from X to Y is denoted by Y X .
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Function ck g∗ minu maxu avD = D̃
k : Z →M g : Z → Y u : Y → Z u : Y → Z M = [0, 1], Z = D(Y )

Name constant reindexing minimum maximum expectation

a 7→ . . . k a ◦ g λz. min
u(y)=z

a(y) λz. max
u(y)=z

a(y) λz.
∑
y∈Y

z(y) · a(y)

Table 1: Basic functions of type MY →MZ , a : Y →M.

ck

D̃ η∗

[0, 1]T

[0, 1]∅

[0, 1]S [0, 1]D(S) [0, 1]S\T

Figure 2: Decomposition of the fixpoint function T for computing termination probabilities.

We conclude with an example which illustrates the notions and tools discussed above
for fixpoint checks. We consider (unlabelled) Markov chains (S, T, η), where S is a finite set
of states, T ⊆ S is a set of terminal states and η : S\T → D(S) assigns to each non-terminal
state a probability distribution over its successors. We denote by ps = η(s) the probability
distribution associated with state s.

We are interested in the termination probability of a given state of the Markov chain,
which can be computed by taking the least fixpoint of a function T : [0, 1]S → [0, 1]S :

T : [0, 1]S → [0, 1]S

T (t)(s) =

{
1 if s ∈ T∑
s′∈S

η(s)(s′) · t(s′) otherwise

We observe that the function T can be decomposed as

T = (η∗ ◦ D̃)⊗ ck

where ⊗ stands for disjoint union (over functions) and we use some of the basic functions
given in Table 1. We depict this decomposition diagrammatically in Figure 2. For the
Markov chain in Figure 3 the parameters instantiate as follows (cf. Table 1):

• ck : [0, 1]
∅ → [0, 1]T , k : T → [0, 1] with T = {u} and k(u) = 1

• D̃ : [0, 1]S → [0, 1]D(S)

• η∗ : [0, 1]D(S) → [0, 1]S\T where η : S\T → D(S) with η(s) = ps, where px(y) = px(u) = 1/2,
py(z) = pz(y) = 1 and all other values are 0.

Since S is finite we could alternatively restrict to a finite subset D of D(S).
The function T is a monotone function on a complete lattice, hence it has a least fixpoint

by Knaster-Tarski’s fixpoint theorem [Tar55]. Furthermore, it is non-expansive, allowing us
to use the fixpoint checking techniques from [BEKP23a].

We will illustrate this on the concrete instance (Markov chain in Figure 3). The state
set is S = {x, y, u, z} and u is the only terminal state. The least fixpoint µT of T is given
in Figure 3 in green (left) and the greatest fixpoint νT in red (right). These are two of the
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Figure 3: A Markov chain with two fixpoints of T (right)

infinitely many fixpoints of T . The cycle on the left (including y, z) can be seen as some
kind of vicious cycle, where y, z convince each other erroneously that they terminate with
a probability that might be too high. Such cycles have a coinductive flavour, hence the
computation of the greatest fixpoint of the approximation.

Now let a = νT be the greatest fixpoint of T , i.e., the function S → [0, 1] that maps
every state to 1. In this case we can associate T with an approximation T a

# on subsets of S

that records the propagation of decrease. Given S′ ⊆ S, the approximation T a
# is as follows:

T a
#(S

′) = {s ∈ S | a(s) > 0, s /∈ T, supp(η(s)) ⊆ S′}.

where supp(p) denotes the support of a probability distribution p : S → [0, 1], i.e., the set of
states v for which p(v) > 0. Intuitively, if we decide to decrease the a-values of all states in
S′ by some small amount δ, the states in T a

#(S
′) will also decrease their values by δ after

applying T . This is true for all states that have non-zero value, are not terminal and whose
successors are all included in S′.

In the example T a
#({y, z}) = {y, z} and {y, z} is indeed the greatest fixpoint of the

approximation. Since it is non-empty, we deduce that a is not the least fixpoint. Furthermore
we could now subtract a small value (for details on how to obtain this value see [BEKP23a,
Proposition 4.5]) from a(y), a(z) to obtain a smaller pre-fixpoint, from where one can
continue to iterate to the least fixpoint (see also [BEKP23b]).

We anticipate that in our tool UDEfix we can draw a diagram as in Figure 2, from which
the approximation and its greatest fixpoint are automatically computed in a compositional
way, allowing us to perform such fixpoint checks. A more complex case study in the domain
of behavioural metrics will be provided in Section 6.3.

3. Preliminaries

This section reviews some background used throughout the paper. We first introduce some
basics of lattices and MV-algebras, the domain where the functions of interest take values.
Then we recap some results from [BEKP23a] useful for detecting if a fixpoint of a given
function is the least (or greatest).

3.1. Lattices and MV-algebras. A partially ordered set (P,⊑) is often denoted simply as
P , omitting the order relation. For x, y ∈ P , we write x ⊏ y when x ⊑ y and x ̸= y. For a
function f : X → P , we will write argminx∈X′ f(x) to denote the (possibly empty) set of
elements where f reaches the minimum on domain X ′, i.e.,

argminx∈X′ f(x) = {x ∈ X ′ | ∀y ∈ X. f(x) ⊑ f(y)}.
Abusing the notation, we will write z = argminx∈X f(x) instead of z ∈ argminx∈X f(x).
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Definition 3.1 (complete lattice). A complete lattice is a partially ordered set (L,⊑) such
that each subset X ⊆ L admits a join

⊔
X and a meet

d
X. A complete lattice (L,⊑)

always has a least element ⊥ =
d
L and a greatest element ⊤ =

⊔
L.

A prototypical example for a complete lattice is the powerset P(Y ) of a given set Y ,
where the partial order is subset inclusion (⊆) and join and meet are given by union and
intersection. The set of finite subsets of X is written Pf (X).

A function f : L → L is monotone if for all l, l′ ∈ L, if l ⊑ l′ then f(l) ⊑ f(l′).
By Knaster-Tarski’s theorem [Tar55, Theorem 1], any monotone function on a complete
lattice has a least fixpoint µf and a greatest fixpoint νf , characterised as the meet of all
pre-fixpoints µf =

d
{l | f(l) ⊑ l} and, dually, a greatest fixpoint νf =

⊔
{l | l ⊑ f(l)},

characterised as the join of all post-fixpoints. We denote by Fix (f) the set of all fixpoints of
f .

For a set Y and a complete lattice L, the set of functions LY = {f | f : Y → L} with
pointwise order (for a, b ∈ LY , a ⊑ b if a(y) ⊑ b(y) for all y ∈ Y ), is a complete lattice.

The semantic functions of interest in the paper will take values on special lattices,
induced by a suitable class of commutative monoids with a complement operation.

Definition 3.2 (MV-algebra [Mun]). An MV-algebra is a tuple M = (M,⊕, 0, (·)) where
(M,⊕, 0) is a commutative monoid and (·) : M →M maps each element to its complement,
such that, if we let 1 = 0 and subtraction x⊖ y = x⊕ y, then for all x, y ∈M it holds that

(1) x = x;
(2) x⊕ 1 = 1;
(3) (x⊖ y)⊕ y = (y ⊖ x)⊕ x.

MV-algebras can be endowed with a partial order, the so-called natural order, defined
for x, y ∈ M , by x ⊑ y if x ⊕ z = y for some z ∈ M . When ⊑ is total, M is called an
MV-chain. We will often write M instead of M .

The natural order gives an MV-algebra a lattice structure where ⊥ = 0, ⊤ = 1,
x ⊔ y = (x⊖ y)⊕ y and x ⊓ y = x ⊔ y = x⊖ (x⊖ y). We call the MV-algebra complete if it
is a complete lattice, which is not true in general, e.g., ([0, 1] ∩Q,≤).

Example 3.3. A prototypical MV-algebra is ([0, 1],⊕, 0, (·)) where x⊕ y = min{x+ y, 1},
x = 1− x and x⊖ y = max{0, x− y} for x, y ∈ [0, 1]. The natural order is ≤ (less or equal)

on the reals. Another example is K = ({0, . . . , k},⊕, 0, (·)) where n⊕m = min{n+m, k},
n = k−n and n⊖m = max{n−m, 0} for n,m ∈ {0, . . . , k}. Both MV-algebras are complete
and MV-chains.

3.2. A Theory of Fixpoint Checks. We briefly recap the theory from [BEKP23a]. Given
a function f : MY → MY , where M is an MV-algebra, the theory provides results useful
for checking whether a fixpoint of f is the least or the greatest fixpoint. For gaining some
intuition, one can think that, as in Section 2, Y is the set of states of a Markov Chain,
M = [0, 1] and functions MY = [0, 1]Y provide the probability of termination of each state.
Alternatively, Y could be the set of pairs of states of a system, M = [0, 1] and functions
MY = [0, 1]Y provide the behavioural distance between states. The technique is for instance
useful in a situation where one can obtain a fixpoint for the function of interest, e.g., via
strategy iteration, but it is unclear whether the fixpoint is the least (or the largest).
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While the theory in [BEKP23a] was restricted to functions over MY where Y is finite,
for the purposes of the present paper we actually need a generalisation working for functions
with an infinite domain. Hence, hereafter Y and Z denote possibly infinite sets.

Definition 3.4 (norm and non-expansive functions). Given a ∈MY we define its norm as
||a|| =

⊔
{a(y) | y ∈ Y }. A function f : MY → MZ is non-expansive if for all a, b ∈ MY it

holds ||f(b)⊖ f(a)|| ⊑ ||b⊖ a||.
It can be seen that non-expansive functions are monotone. A number of standard

operators are non-expansive (e.g., constants, reindexing, max and min over a relation,
average in Table 1), and non-expansiveness is preserved by composition and disjoint union
(see [BEKP23a, Theorem 5.2]).

Let f : MY → MY , a ∈ MY . For a non-expansive endo-function f : MY → MY and
a ∈ MY , the theory in [BEKP23a] provides a so-called a-approximation fa

# of f , which is

an endo-function over a suitable subset of P(Y ). Intuitively, given some Y ′, the set fa
#(Y

′)

contains the points where a decrease of the values of a on the points in Y ′ “propagates”
through the function f . Understanding that no decrease can be propagated allows one to
establish when a fixpoint of a non-expansive function f is actually the least one, and, more
generally, when a (post-)fixpoint of f is above the least fixpoint.

The above intuition is formalised using tools from abstract interpretation [CC77, CC00].
In particular, we define a pair of functions, which, under suitable conditions, form a Galois
connection. For a, b ∈MY , let [a, b] = {c ∈MY | a ⊑ c ⊑ b} and let

[Y ]a = {y ∈ Y | a(y) ̸= 0}.
Intuitively [Y ]a contains those elements where we have “wiggle room”, i.e., a decrease
is in principle feasible. Then for 0 ⊏ δ ∈ M define αa,δ : P([Y ]a) → [a⊖ δ, a] and
γa,δ : [a⊖ δ, a]→ P([Y ]a), as follows: for Y ′ ∈ P([Y ]a) and b ∈ [a⊖ δ, a], we have

αa,δ(Y ′) = a⊖ δY ′ γa,δ(b) = {y ∈ [Y ]a | a(y)⊖ b(y) ⊒ δ}.
where we write δY ′ for the function defined by δY ′(y) = δ if y ∈ Y ′ and δY ′(y) = 0, otherwise.

P([Y ]a) [a, a+ δ]

αa,δ

γa,δ

One can see that for sufficiently small δ the pair above is indeed a Galois connection.
Now, in order to allow for a compositional approach, the approximation is defined for

non-expansive functions, where domain and codomain are possibly distinct.

Definition 3.5 (approximation). Given f : MY →MZ and δ ∈M, define fa,δ
# : P([Y ]a)→

P([Z]f(a)) as fa,δ
# = γf(a),δ ◦ f ◦ αa,δ. We then define the a-approximation of f as

fa
# =

⋃
δ⊐0

fa,δ
# .

Intuitively, for Y ′ ⊆ [Y ]a, we have that fa,δ
# (Y ′) is the set of points to which f propagates

a decrease of the function a with value δ on the subset Y ′.
For finite sets Y and Z all functions fa,δ

# , for δ below some bound, are equal. Here, the

a-approximation is given by fa
# = fa,δ

# for such a δ.
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As stated above, the set fa
#(Y

′) contains the points where a decrease of the values of a

on the points in Y ′ is propagated by applying the function f . The greatest fixpoint of fa
#

gives us the subset of Y where such a decrease is propagated in a cycle (a so-called “vicious
cycle”). Whenever νfa

# is non-empty, one can argue that a cannot be the least fixpoint of f
since we can decrease the value of a at all elements of νfa

#, obtaining a smaller pre-fixpoint.
Interestingly, for non-expansive functions, also the converse holds, i.e., emptiness of the
greatest fixpoint of fa

# implies that a is the least fixpoint. This is summarised by the

following result from [BEKP23a].

Theorem 3.6 (soundness and completeness for fixpoints). Let M be a complete MV-chain,
Y a finite set and f : MY →MY be a non-expansive function. Let a ∈MY be a fixpoint of
f . Then νfa

# = ∅ if and only if a = µf .

If a is not the least fixpoint and thus νfa
# ̸= ∅ then there is 0 ⊏ δ ∈M such that a⊖ δνfa

#

is a pre-fixpoint of f .

Using the above theorem we can check whether some fixpoint a of f is the least fixpoint.
Whenever a is a fixpoint, but not yet the least fixpoint of f , it can be decreased by a fixed
value in M (see [BEKP23a, Proposition 4.5] for the details) on the points in νfa

# to obtain

a smaller pre-fixpoint. In this way we obtain a′ ⊏ a such that f(a′) ⊑ a′ and can continue
fixpoint iteration from there.

This results in the following biconditional proof rule (where “biconditional” means that
it can be used in both directions).

a = f(a) νfa
# = ∅

a = µf

When a ∈MY is not a fixpoint, but a post-fixpoint of f (i.e., a ⊑ f(a)), a restriction of
the a-approximation of f leading to a sound (but not biconditional) rule.

Lemma 3.7 (soundness for post-fixpoints). Let M be a complete MV-chain, Y a finite set
and f : MY →MY a non-expansive function, a ∈MY such that a ⊑ f(a). Define

[Y ]a=f(a) = {y ∈ [Y ]a | a(y) = f(a)(y)}

and restrict the approximation fa
# : P([Y ]a)→ P([Y ]f(a)) to an endo-function

fa
∗ : [Y ]a=f(a) → [Y ]a=f(a)

fa
∗ (Y

′) = fa
#(Y

′) ∩ [Y ]a=f(a)

If νfa
∗ = ∅ then a ⊑ µf .

Written more compactly, we obtain the following proof rule:

a ⊑ f(a) νfa
∗ = ∅

a ⊑ µf

The above theory can be easily be dualised to checking greatest fixpoints.
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3.3. Approximations for Basic Functions. We next provide the approximation for a
number of non-expansive functions which can be used as basic building blocks for constructing
the semantics functions of interest (Some of them have already been considered in Table 1.)

In Table 2 these basic non-expansive functions are listed together with their approx-
imations. In particular, D(Y ) ⊆ [0, 1]Y denotes the set of finitely supported probability
distributions, i.e., functions β : Y → [0, 1] with finite support such that

∑
y∈Y β(y) = 1.

Note that functions min and max are slightly generalised with respect to Table 1 as
they can be parameterised by relations instead of functions. We stress, in particular, that
the approximation of reindexing is given by the inverse image, a fact that will be extensively
used in the paper.

function f definition of f fa
#(Y

′)

ck f(a) = k ∅
(k ∈MZ)

u∗ f(a) = a ◦ u u−1(Y ′)

(u : Z → Y )

minR f(a)(z) = min
yRz

a(y) {z ∈ [Z]f(a) | arg min
y∈R−1(z)

a(y) ∩ Y ′ ̸= ∅}

(R ⊆ Y × Z)

maxR f(a)(z) = max
yRz

a(y) {z ∈ [Z]f(a) | arg max
y∈R−1(z)

a(y) ⊆ Y ′}

(R ⊆ Y × Z)

D̃ (M = [0, 1], f(a)(p) =
∑
y∈Y

p(y) · a(y) {p ∈ [D]f(a) | supp(p) ⊆ Y ′}

Z = D ⊆ D(Y ))

Table 2: Basic functions f : MY →MZ (constant, reindexing, minimum, maximum, average)

and their approximations fa
# : P([Y ]a)→ P([Z]f(a)).

4. A Categorical View of the Approximation Framework

In this section we argue that the framework from [BEKP23a], summarised in the previous
section, can be naturally reformulated in a categorical setting. In particular, here we study
the compositionality properties of the operation mapping a function f to its approximation
fa
# (for a given fixpoint a of f). We show that, under some constraints, it can be characterised

as a functor and, in general, as a union of (lax) functors.
We will use some standard notions from category theory, in particular categories, functors

and natural transformations. The definition of (strict) gs-monoidal categories will be spelled
out in detail later in Definition 7.1.

We first define a concrete category C whose arrows are the non-expansive functions
for which we seek the least (or greatest) fixpoint and a category A whose arrows are the
corresponding approximations. Recall that, as discussed in the previous section, given a
non-expansive function f : MY → MZ , the approximation of f is relative to a fixed map
a ∈ MY . Hence objects in C are intuitively pairs ⟨MY , a ∈ MY ⟩ or ⟨Y, a ∈ MY ⟩. Since
a ∈ MY determines MY as its domain, for simplifying the notation, we leave the first
component implicit and let objects in C be elements a ∈ MY and an arrow from a ∈ MY
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to b ∈ MZ is a non-expansive function f : MY → MZ required to map a into b (f(a) = b).
The approximations instead live in a different category A. Recall that the approximation
fa
# is of type P([Y ]a)→ P([Z]b). Since the domain and codomain are again dependent on

maps a and b, we still employ elements of MY as objects, but arrows are functions between
powersets.

Definition 4.1 (concrete category and category of approximations). We define two categories,
the concrete category C and the category of approximations A and a mapping #: C→ A.
• The concrete category C has as objects maps a ∈MY where Y is a (possibly infinite) set.
Given a ∈ MY , b ∈ MZ an arrow f : a 99K b is a non-expansive function f : MY → MZ ,
such that f(a) = b.
• The category of approximations A has again maps a ∈ MY as objects. Given a ∈
MY , b ∈ MZ an arrow g : a 99K b is a monotone (with respect to inclusion) function
g : P([Y ]a)→ P([Z]b). Arrow composition and identities are the obvious ones.
• The approximation maps #δ : C → A (for δ ⊐ 0) and #: C → A are defined as follows:
for an object a ∈ MY , we let #(a) = #δ(a) = a and, given an arrow f : a 99K b, we let

#δ(f) = fa,δ
# and #(f) =

⋃
δ⊐0#

δ(f) = fa
#.

Note that categorical arrows are represented as dashed (99K). By definition each such
categorical arrow consists of an underlying function whose domain and codomain are sets.
The underlying functions, being set-valued, are represented as usual (using the notation →).

Lemma 4.2 (well-definedness). The categories C and A are well-defined and the #δ are lax
functors, i.e., identities are preserved and #δ(f) ◦#δ(g) ⊆ #δ(f ◦ g) for composable arrows
f, g in C.

Note that while # clearly also preserves identities, the question whether it is a lax
functor (or even a proper functor) is currently open. It is however the union of lax functors.

We next observe that # is a functor if we restrict to suitable subcategories of C, i.e.,
the subcategory where arrows are reindexings and the one where objects are maps on finite
sets. This allows to recover compositionality in those cases in which it is required by the
intended applications (see Sections 5-7).

Definition 4.3 (reindexing subcategory). We denote by C∗ the sub-category of C that
contains all objects and where arrows are restricted to reindexings, i.e., given objects a ∈MY ,
b ∈MZ we consider only arrows f : a 99K b such that f = g∗ for some g : Z → Y (hence, in
particular, b = g∗(a) = a ◦ g).

We prove the following auxiliary lemma that basically shows that reindexings are
preserved by α, γ:

Lemma 4.4. Given a ∈MY , g : Z → Y and 0 ⊏ δ ∈M, then we have

(1) αa◦g,δ ◦ g−1 = g∗ ◦ αa,δ

(2) γa◦g,δ ◦ g∗ = g−1 ◦ γa,δ

This implies that for two C-arrows f : a 99K b, h : b 99K c, it holds that #(h◦f) = #(h)◦#(f)
whenever f or h is a reindexing, i.e., is contained in C∗.

Then, as an immediate corollary, we obtain the functoriality of # in the corresponding
subcategory.
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Corollary 4.5 (approximation functor for reindexing categories). The approximation map
#: C→ A restricts to #: C∗ → A, which is a (proper) functor.

We next focus on the subcategory of C where we consider as objects only maps a : Y →M
over a finite set Y .

Definition 4.6 (finitary subcategories). We denote by Cf , Af the full sub-categories of

C,A where objects are of the kind a ∈MY for a finite set Y .

Lemma 4.7 (approximation functor for finitary categories). The approximation map #: C→
A restricts to #: Cf → Af , which is a (proper) functor.

We will later show in Theorem 7.4 that # also respects the monoidal operation ⊗
(disjoint union of functions). Using this, we can now apply the framework to an example.

Example 4.8. We revisit the example from Section 2. Remember that the function T ,
whose least fixpoint is termination probability, can be written as follows:

T = (η∗ ◦ D̃)⊗ ck

Let a = νT be the greatest fixpoint of T , i.e., T (a) = a. Hence we can view T : a 99K a
as a concrete arrow in C in the sense of Definition 4. Furthermore #T = T a

# : a 99K a is the
corresponding approximation, living in the category of approximations A.

We can compute T a
# compositionally. The subfunctions of T given above are also arrows

in Cf for appropriate finite domains and codomains, which we refrain from spelling out
explicitly. Now:

T a
# = #T = #((η∗ ◦ D̃)⊗ ck) = #(η∗) ◦#(D̃)⊗#(ck)

This view enables us to obtain an approximation T a
# compositionally out of the approxi-

mations of the subfunctions.

5. Predicate Liftings

In this section we show how predicate liftings [Pat03, Sch08] can be integrated into our
theory. We will characterise predicate liftings which are non-expansive and derive their
approximations. This will then be used in Section 6 for treating coalgebraic behavioural
metrics.

5.1. Predicate Liftings and their Properties. Roughly speaking, predicates are seen as
maps from a set Y to a suitable set of truth values V . Then, given a functor F , a predicate
lifting is an operation which transforms predicates over Y to predicates over FY .

One of the simplest examples of a predicate lifting is given by the diamond (♢) operator
from modal logic. In this case F = P (powerset functor) and V = {0, 1}. Given a predicate
q : Y → {0, 1}, this is mapped to ♢(q) : P(Y )→ {0, 1} where ♢(q)(Y ′) = 1 iff there exists
y ∈ Y ′ with q(y) = 1. Another typical example is expectation where F = D (distribution
functor) and V = [0, 1] (see also Example 5.3 below). In this case a random variable
r : Y → [0, 1] is mapped to a function of type D(Y )→ [0, 1] where p 7→ Ep[r].

Predicate liftings have been studied for predicates valued over arbitrary quantales V
(see, e.g., [BKP18]), i.e., complete lattices with an associative operator that distributes over
arbitrary joins. It can be shown that every complete MV-algebra is a quantale with respect
to ⊕ and the inverse of the natural order. This result can be easily derived from [DNG05].
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(See Lemma B.1 in the appendix for an explicit proof.) Hence here we can work with
predicates of the kind Y →M where M is a complete MV-algebra.

Definition 5.1 (predicate lifting). Given a functor F : Set → Set, a predicate lifting is

a family of functions F̃Y : MY → MFY (where Y is a set), such that for all g : Z → Y ,

a : Y →M it holds that (Fg)∗(F̃Y (a)) = F̃Z(g
∗(a)).

In words, predicate liftings must commute with reindexings. The index Y will be
omitted if clear from the context. It can be seen that such predicate liftings are in one-to-
one correspondence to so called evaluation maps ev : FM → M. Given ev , we define the
corresponding lifting to be F̃ (a) = ev ◦ Fa : FY →M, where a : Y →M. Conversely, given

a lifting F̃ , we obtain ev = F̃ (idM).

A lifting F̃ is well-behaved if (i) F̃ is monotone; (ii) F̃ (0Y ) = 0FY where 0 is the constant

0-function; (iii) F̃ (a⊕ b) ⊑ F̃ (a)⊕ F̃ (b) for a, b : Y →M; (iv) F preserves weak pullbacks.
We need well-behavedness in order to prove the next result and in Section 6.

In order to use the theory of fixpoint checks from [BEKP23a] we need to have not only
monotone, but non-expansive liftings. We next provide a characterisation of such liftings,
following [WS22].

Lemma 5.2 (non-expansive predicate lifting). Let ev : FM → M be an evaluation map

and assume that its corresponding lifting F̃ : MY → MFY is well-behaved. Then F̃ is
non-expansive iff for all δ ∈M it holds that F̃ δY ⊑ δFY .

Example 5.3 (Finitely supported distributions). Consider the (finitely supported) distribu-
tion functor D that maps a set X to all maps p : X → [0, 1] that have finite support and
satisfy

∑
x∈X p(x) = 1. (Here M = [0, 1].) A possible evaluation map is ev : D[0, 1]→ [0, 1]

defined by ev(p) =
∑

r∈[0,1] r · p(r), where p is a distribution on [0, 1]. This results in the

predicate lifting D̃Y : [0, 1]Y → [0, 1]D(Y ) with D̃Y (r)(p) = Ep[r] discussed at the beginning
of the section (expectation).

It is easy to see that D̃ is well-behaved and non-expansive. The latter follows from
D̃(δY ) = δDY .

Example 5.4 (Finite powerset). Consider the finite powerset functor Pf with the evaluation
map ev : PfM → M, defined for finite S ⊆ M as ev(S) = maxS, where max ∅ = 0. This

results in the predicate lifting P̃Y : [0, 1]Y → [0, 1]P(Y ), PY (p)(Y ′) =
⊔

y∈Y ′ p(y).

The lifting P̃f is well-behaved (see [BBKK18]) and non-expansive. To show the latter,

observe that P̃f (δY ) = δPf (Y )\{∅} ⊑ δPf (Y ).

Non-expansive predicate liftings can be seen as functors F̃ : C∗ → C∗. To be more
precise, F̃ maps an object a ∈ MY to F̃ (a) ∈ MFY and an arrow g∗ : a 99K a ◦ g, , where
g : Z → Y , to (Fg)∗ : F̃ a 99K F̃ (a ◦ g).

5.2. Approximations of Predicate Liftings. We now study approximations of predicate
liftings. It involves the approximation functor #: C∗ → A (restricted to C∗) and the

predicate lifting F̃ : C∗ → C∗ introduced before. We start with a result about an auxiliary
natural transformation.
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Proposition 5.5. Let F̃ be a (non-expansive) predicate lifting. There is a natural transfor-

mation β : #⇒ #F̃ between functors #,#F̃ : C∗ → A, whose components, for a ∈MY , are
βa : a 99K F̃ (a) in A, defined by βa(U) = F̃ a

#(U) for U ⊆ [Y ]a.

That is, the following diagrams commute for every g : Z → Y (the diagram on the left
indicates the formal arrows, while the one on the right reports the underlying functions).

#(a) #(a ◦ g)

#(F̃ a) #(F̃ (a ◦ g))

#(g∗)

βa βa◦g
#(F̃ (g∗))

P([Y ]a) P([Z]a◦g)

P([FY ]F̃ (a)) P([FZ]F̃ (a◦g))

g−1

F̃ a
# F̃ a◦g

#
(Fg)−1

We next characterise F̃ d
#(Y

′). We rely on the fact that d can be decomposed into

d = π1 ◦ d̄, where the projection π1 is independent of d and d̄ is dependent on Y ′, and exploit
the natural transformation in Proposition 5.5.

Proposition 5.6 (Approximations for predicate liftings). Let F̃ be a predicate lifting. We
fix Y ′ ⊆ Y and let χY ′ : Y → {0, 1} be its characteristic function. Furthermore let a : Y →M
be a predicate. Let π1 : M × {0, 1} → M, π2 : M × {0, 1} → {0, 1} be the projections and
define ā : Y → M × {0, 1} via ā(y) = (a(y), χY ′(y)) as the mediating morphism into the
product (see diagram below).

Y {0, 1}M

M× {0, 1}

a χY ′

āπ1 π2

Then
F̃ a
#(Y

′) = (F ā)−1(F̃ π1
# ((M\{0})× {1})).

Here F̃ π1
# ((M\{0})×{1}) ⊆ F (M×{0, 1}) is independent of a and has to be determined

only once for every predicate lifting F̃ . We will show how this set looks like for our example
functors. We first consider the distribution functor.

Lemma 5.7. Consider the lifting of the distribution functor presented in Example 5.3 and
let M = [0, 1]. Then we have

D̃π1
# ((0, 1]× {1}) = {p ∈ DZ | supp(p) ∈ (0, 1]× {1}}.

This means intuitively that a decrease or “slack” can exactly be propagated for elements
whose probabilities are strictly larger than 0.

We now turn to the powerset functor.

Lemma 5.8. Consider the lifting of the finite powerset functor from Example 5.4 with
arbitrary M. Then we have

(P̃f )π1
# ((M\{0})× {1}) = {S ∈ [PfZ]P̃fπ1 | ∃(s, 1) ∈ S ∀(s′, 0) ∈ S : s ⊐ s′}.

The idea is that the maximum of a set S decreases if we decrease at least one its values
and all values which are not decreased are strictly smaller.
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Remark 5.9. Note that # is a functor on the subcategory Cf (see Lemma 4.7), while
some liftings (e.g., the one for the distribution functor) involve infinite sets, for which we
would lose compositionality. In this case, given a finite set Y , we will actually focus on
a finite subset D ⊆ FY . (This is possible since we work with coalgebras with finite state

space that map only into finitely many elements of Y .) Then we consider F̃Y : MY →MFY

and e : D ↪→ FY (the embedding of D into FY ). We set f = e∗ ◦ F̃Y : MY → MD. Given

a : Y →M, we view f as an arrow a 99K F̃Y (a) ◦ e in C. The approximation adapts to the
“reduced” lifting, which can be seen as follows (cf. Lemma 4.4, which shows that # preserves
composition if one of the arrows is a reindexing):

fa
# = #(f) = #(e∗ ◦ F̃Y ) = #(e∗) ◦#(F̃Y ) = e−1 ◦#(F̃Y ) = #(F̃Y ) ∩D.

6. Wasserstein Lifting and Behavioural Metrics

In this section we use the results about predicate liftings from the previous section to show
how the framework for fixpoint checking can be used to deal with coalgebraic behavioural
metrics.

We build on [BBKK18], where an approach is proposed for canonically defining a
behavioural pseudo-metric for coalgebras of a functor F : Set→ Set, that is, for functions
of the form ξ : X → FX where X is a set. Intuitively ξ specifies a transition system whose
branching type is given by F . Our aim is to determine the behavioural distance of two
states. Given a coalgebra ξ, the idea is to endow X with a distance function dξ : X×X →M
defined as the least fixpoint of the map d 7→ dF ◦ (ξ × ξ) where F lifts a distance function
d : X×X →M to dF : FX×FX →M. Here we focus on a generalisation of the Wasserstein
or Kantorovich distances [Vil09] to the categorical setting and then explain how they integrate
into the fixpoint checking framework. Such distances are parametric on a suitable notion of
predicate lifting, hence we will need the results from the previous section.

We remark that we will use some functors F , for which FY is infinite, even if Y is finite.
This is in fact the reason why the categories C and A also include infinite sets. However
note that the resulting fixpoint function will be always defined for finite sets, although
intermediate functions might not conform to this. Hence the restricted compositionality
results of Section 4 are sufficient (cf. Remark 5.9 and Definition 6.3).

6.1. Wasserstein Lifting. We first recap the definition of the generalised Wasserstein
lifting from [BBKK18]. Hereafter, F denotes a fixed endo-functor on Set and ξ : X → FX
is a coalgebra over a finite set X. We also fix a well-behaved non-expansive predicate
lifting F̃ . Recall that pseudo-metrics are distance functions satisfying: (i) reflexivity:
∀x ∈ X . d(x, x) = 0; (ii) symmetry: ∀x, y ∈ X . d(x, y) = d(y, x); (iii) triangle inequality:
∀x, y, z ∈ X . d(x, z) ⊑ d(x, y)⊕ d(y, z). Here we allow arbitrary distance functions d : X ×
X →M and do not restrict to pseudo-metrics.

In order to define a Wasserstein lifting for this functor, a first ingredient is that of a
coupling. Given t1, t2 ∈ FX a coupling of t1 and t2 is an element t ∈ F (X ×X), such that
Fπi(t) = ti for i = 1, 2, where πi : X ×X → X are the projections. We write Γ(t1, t2) for
the set of all such couplings.
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Definition 6.1 (Wasserstein lifting). The Wasserstein lifting F : MX×X → MFX×FX is
defined for d : X ×X →M and t1, t2 ∈ FX as

dF (t1, t2) = inf
t∈Γ(t1,t2)

F̃ d(t)

Example 6.2. We consider the Wasserstein lifting in the concrete case where F equals
the distribution functor D. The function D̃ is obtained as the predicate lifting of D (see
Section 5 and Table 1).

For this instance, the lifting corresponds to the well-known Kantorovich or Wasserstein
lifting [Vil09]. In fact, it gives the solution of a transport problem, where we interpret p1, p2
as the supply respectively demand at each point x ∈ X. Transporting a unit from x1 to x2
costs d(x1, x2) and t is a transport plan (= coupling) whose marginals are p1, p2. In other
words dD(p1, p2) can be seen as the cost of the optimal transport plan, moving the supply
p1 to the demand p2.

In more detail: given d, we obtain dD : D(X)×D(X)→ [0, 1] as

dD(p1, p2) = inf{D̃d(t) | t ∈ Γ(p1, p2)}
= inf{

∑
x1,x2∈X

d(x1, x2) · t(x1, x2) | t ∈ Γ(p1, p2)}

where Γ(p1, p2) is the set of couplings of p1, p2 (i.e., distributions t : X ×X → [0, 1] such
that

∑
x2∈X t(x1, x2) = p1(x1) and

∑
x1∈X t(x1, x2) = p2(x2)).

It can be seen that for well-behaved F̃ , the lifting preserves pseudo-metrics (see [BBKK18,
BKP18]).

In order to make the theory for fixpoint checks effective we will need to restrict to a
subclass of liftings.

Definition 6.3 (finitely coupled lifting). We call a lifting F̃ finitely coupled if for all X and
t1, t2 ∈ FX there exists a finite Γ′(t1, t2) ⊆ Γ(t1, t2), which can be computed given t1, t2,

such that inft∈Γ(t1,t2) F̃ d(t) = mint∈Γ′(t1,t2) F̃ d(t) for all d.

We hence ask that the infimum in Definition 6.1 is actually a minimum. Observe that
whenever the infimum above is a minimum, there is trivially such a finite Γ′(t1, t2). We
however ask that Γ′(t1, t2) is independent of d and there is an effective way to determine it.

The lifting in Example 5.4 (for the finite powerset functor) is obviously finitely cou-

pled. For the lifting D̃ from Example 5.3 we note that the set of couplings t ∈ Γ(t1, t2)
forms a polytope with a finite number of vertices, which can be effectively computed and
Γ′(t1, t2) consists of these vertices. The infimum (minimum) is obtained at one of these
vertices [BBLM17, Remark 4.5]. This allows us to always reduce to a finite set of couplings
for finite-state systems.

6.2. Decomposing the Behavioural Metrics Function. As mentioned above, for a
coalgebra ξ : X → FX the behavioural pseudo-metric d : X ×X →M is the least fixpoint
of the behavioural metrics function W = ( F ) ◦ (ξ × ξ) where ( F ) is the Wasserstein lifting.

The Wasserstein lifting can be decomposed as F = minu ◦F̃ where F̃ : MX×X →
MF (X×X) is a predicate lifting – which we require to be non-expansive (cf. Lemma 5.2) –
and minu is the minimum over the coupling function u : F (X ×X)→ FX × FX defined as

u(t) = (Fπ1(t), Fπ2(t)), which means that minu : MF (X×X) →MFX×FX (see Table 1).
Therefore the behavioural metrics function can be expressed as
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Figure 4: Two probabilistic transition systems.

W = (ξ × ξ)∗ ◦minu ◦F̃
Explicitly, for d ∈ [0, 1]X×X and x, y ∈ X,

W(d)(x, y) = minu ◦F̃ (d)(ξ(x), ξ(y)) = min
u(t)=(ξ(x),ξ(y))

F̃ (d)(t)

= min
t∈Γ(ξ(x),ξ(y))

F̃ d(t) = dF (ξ(x), ξ(y))

Note that the fixpoint equation for behavioural metrics is sometimes equipped with a
discount factor that reduces the effect of deviations in the (far) future and ensures that the
fixpoint is unique by contractivity of the function. Here we focus on the undiscounted case
where the fixpoint equation may have several solutions.

6.3. A Worked-out Case Study on Behavioural Metrics. As a case study we consider
probabilistic transition systems (Markov chains) with labelled states. These are given by a
finite set of states X, a function η : X → DX mapping each state x ∈ X to a probability
distribution on X and a labelling function ℓ : X → Λ, where Λ is a fixed set of labels (for
examples see Figure 4). Two such systems are depicted in Figure 4.

This is represented by a coalgebra ξ : X → Λ×DX for the functor FX = Λ×D(X),
where Λ is a fixed set of labels.

In particular, we are interested in computing behavioural metrics for such systems. We
let M = [0, 1] and consider the Wasserstein lifting for D explained earlier in Example 6.2
that lifts a distance function d : X ×X → [0, 1] to dD : D(X)×D(X)→ [0, 1].

For instance, the best transport plan for the system on the left-hand side of Figure 4 and
the distributions η(1), η(2) (where η(1)(3) = 1/2, η(1)(4) = 1/2, η(2)(3) = 1/3, η(2)(4) = 2/3)
is t with t(3, 3) = 1/3, t(3, 4) = 1/6, t(4, 4) = 1/2 and 0 otherwise.

For the functor FX = Λ× D(X) we observe that couplings of (a1, p1), (a2, p2) ∈ FX
only exist if a1 = a2 and – if they do not exist – the distance is the infimum of an empty set,
hence 1. If a1 = a2, couplings correspond to the usual Wasserstein couplings of probability
distributions p1, p2.

Hence, the behavioural metric is defined as the least fixpoint of the function

B : [0, 1]X×X → [0, 1]X×X

B(d)(x1, x2) =

{
1 if ℓ(x1) ̸= ℓ(x2)

dD(η(x1), η(x2)) otherwise

Based on the decomposition of W explained in Section 6.2, the function B can be
written as

B = maxρ ◦(ck ⊗W) = maxρ ◦(ck ⊗ (η × η)∗ ◦minu ◦D̃),
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ck

D̃ minu (η × η)∗

maxρ

[0, 1]Y

[0, 1]Y [0, 1]D(Y ) [0, 1]D(X)×D(X) [0, 1]Y

[0, 1]Y

Figure 5: Decomposition of the fixpoint function B for computing behavioural metrics.

where we use the functions given in Table 2 (Section 3). More concretely, the types of the
components and the parameters k, u, ρ are given as follows, where Y = X ×X:

• ck : [0, 1]
∅ → [0, 1]Y where k(x, x′) = 1 if ℓ(x) ̸= ℓ(x′) and 0 otherwise.

• D̃ : [0, 1]Y → [0, 1]D(Y ).

• minu : [0, 1]
D(Y ) → [0, 1]D(X)×D(X) where u : D(Y ) → D(X) × D(X), u(t) = (p, q) with

p(x) =
∑

x′∈X t(x, x′), q(x) =
∑

x′∈X t(x′, x).

• (η × η)∗ : [0, 1]D(X)×D(X) → [0, 1]Y .
• maxρ : [0, 1]

Y+Y → [0, 1]Y where ρ : Y + Y → Y is the obvious map from the coproduct
(disjoint union of sets) Y + Y to Y .

This decomposition is depicted diagrammatically in Figure 5.
If we consider only finite state spaces, we can, as explained in Remark 5.9 and after

Definition 6.3, restrict ourselves to finite subsets of D(X) and D(Y ).
By giving a transport plan as above, it is possible to provide an upper bound for the

Wasserstein lifting and hence there are strategy iteration algorithms that can approach a
fixpoint from above. The problem with these algorithms is that they might get stuck at a
fixpoint that is not the least. Hence, it is essential to be able to determine whether a given
fixpoint is indeed the smallest one (see, e.g., [BBL+21]).

Consider, for instance, the transition system in Figure 4 on the right. It contains two
states 1, 2 on a cycle. In fact these two states should be indistinguishable and hence, if
d = µB is the least fixpoint of B, then d(1, 2) = d(2, 1) = 0. However, the metric a with
a(1, 2) = a(2, 1) = 1 (0 otherwise) is also a fixpoint and the question is how to determine
that it is not the least.

For this, we use the techniques outlined in Section 3.2. We associate B with an
approximation Ba# on subsets of X × X such that, given Y ′ ⊆ X × X, the set Ba#(Y ′)

intuitively contains all pairs (x1, x2) such that, decreasing function a by some value δ
over Y ′, resulting in a function b (defined as b(x1, x2) = a(x1, x2) ⊖ δ if (x1, x2) ∈ Y ′ and
b(x1, x2) = a(x1, x2) otherwise) and applying B, we obtain a function B(b), where the same
decrease takes place at (x1, x2) (i.e., B(b)(x1, x2) = B(a)(x1, x2)⊖ δ). We will later discuss
in detail how to compute Ba#. Here, it can be seen that Ba#({(1, 2)}) = {(2, 1)}, since a

decrease at (1, 2) will cause a decrease at (2, 1) in the next iteration. In fact the greatest
fixpoint of Ba#, which here is {(1, 2), (2, 1)}, gives us those elements that have a potential for

decrease (intuitively there is “slack” or “wiggle room”) and form a “vicious cycle”.
By the results outlined in Section 3.2 it holds that a is the least fixpoint of B iff the the

greatest fixpoint of Ba# is the empty set.
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As discussed earlier, we can here indeed exploit the fact that the approximation is
compositional, i.e., Ba# can be built out of the approximations of maxρ, ck, (δ × δ)∗, minu,

D̃ (see Table 2).

6.4. Approximation of the Behavioural Metrics Function. While we previously did
not spell out how to compute the approximation of the Wasserstein lifting W, we explain
this here in detail. We rely on the decomposition of W as given in Section 6.2, which can be
used to derive its d-approximation (for a given distance function d).

Proposition 6.4. Let F : Set→ Set be a functor and let F̃ be a corresponding predicate
lifting (for M-valued predicates). Assume that F̃ is non-expansive and finitely coupled and
fix a coalgebra ξ : X → FX, where X is finite. Let Y = X ×X. For d ∈MY and Y ′ ⊆ [Y ]d

we have

Wd
#(Y

′) = {(x, y) ∈ [Y ]d | ∃t ∈ F̃ d
#(Y

′), u(t) = (ξ(x), ξ(y)), F̃ d(t) =W(d)(x, y)}.

Intuitively, the definition of Wd
#(Y

′) in Proposition 6.4 says that (x, y) is contained in

this set, whenever an optimal coupling for the successors of x, y (i.e., a coupling reaching

the minimum in the Wasserstein lifting) is contained in F̃ d
#(Y

′). Note that F̃ d
# has already

been characterised earlier in Section 5.2.
We now illustrate this result by two simple and concrete examples involving coalgebras

over the distribution and powerset functor.

Example 6.5. We continue with the case study from Section 6.3 on probabilistic transition
systems. We omit labels, i.e. Λ is a singleton, which implied B =W.

Let X = {x, y, z}. We define a coalgebra ξ : X → Λ×DX via ξ(x)(x) = 1, ξ(y)(y) =
ξ(y)(z) = 1/2 and ξ(z)(z) = 1. All other distances are 0.

yx z
1/2 1/2

1 1

Since all states have the same label, they are in fact probabilistically bisimilar and
hence have behavioural distance 0, given by the least fixpoint of W. Now consider the
pseudo-metric d : X ×X → [0, 1] with d(x, y) = d(x, z) = d(y, z) = 1 and 0 for the reflexive
pairs. This is a also a fixpoint of W (d = W(d)), but it clearly over-estimates the true
behavioural metric.

We can detect this by computing the greatest fixpoint of Wd
#, which is

Y ′ = {(x, y), (y, x), (x, z), (z, x), (y, z), (z, y)} ≠ ∅,

containing the pairs that still have slack in d and whose distances can be reduced. We explain
why Y ′ =Wd

#(Y
′) by focusing on the example pair (x, y) and check that (x, y) ∈ Wd

#(Y
′).

For this we use the definition of Wd
# given in Proposition 6.4.

A valid coupling t ∈ D(X×X) of ξ(x), ξ(y) is given by t(x, y) = t(x, z) = 1/2. It satisfies
u(t) = (ξ(x), ξ(y)) and is optimal since it is the only one. We obtain the Wasserstein lifting

W(d)(x, y) = dD(ξ(x), ξ(y)) = min
t′∈Γ(ξ(x),ξ(y))

D̃d(t′) = D̃d(t) = 1/2 · 1 + 1/2 · 1 = 1.
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It is left to show that t ∈ D̃d
#(Y

′), for which we use the characterisation in Proposition 5.6.

We have d̄(x, y) = d̄(x, z) = (1, 1) where

Dd̄(t) = p ∈ DZ with p(1, 1) = 1/2 + 1/2 = 1.

From Lemma 5.7 we obtain p ∈ D̃π1
# ((0, 1] × {1}) and by definition t ∈ (Dd̄)−1(p), i.e.

t ∈ D̃d
#(Y

′). So we can conclude that (x, y) ∈ Wd
#(Y

′).

Example 6.6. We now consider an example in the non-deterministic setting. Let X = {x, y}
and a coalgebra ξ : X → PX be given by ξ(x) = {x, y}, ξ(y) = {x}.

yx

Since all states have successors, they are in fact bisimilar and hence have behavioural
distance 0, given by the least fixpoint ofW . Now consider the pseudo-metric d : X×X → [0, 1]
with d(x, y) = d(y, x) = 1/2 and 0 for the reflexive pairs. This is a also a fixpoint of W
(d =W(d)), but it clearly over-estimates the true behavioural metric.

We can detect this by computing the greatest fixpoint of Wd
#, which is

Y ′ = {(x, y), (y, x)} ≠ ∅,
containing the pairs that still have slack in d and whose distances can be reduced. We explain
why Y ′ =Wd

#(Y
′) by focusing on the example pair (x, y) and check that (x, y) ∈ Wd

#(Y
′).

For this we use the definition of Wd
# given in Proposition 6.4.

A valid (and optimal) coupling t ∈ P(X×X) of ξ(x), ξ(y) is given by t = {(x, x), (y, x)}.
It satisfies u(t) = (ξ(x), ξ(y)). We obtain the Wasserstein lifting

W(d)(x, y) = dP(ξ(x), ξ(y)) = min
t∈Γ(ξ(x),ξ(y))

P̃d(t) = P̃d(t) = max{0, 1/2} = 1/2.

It is left to show that t ∈ P̃d
#(Y

′), for which we use the characterisation in Proposition 5.6.

We have d̄(x, x) = d̄(y, y) = (0, 0), d̄(x, y) = d̄(y, x) = (1/2, 1) and

P d̄(t) = S = {(0, 0), (1/2, 1)}

From Lemma 5.8 we obtain S ∈ P̃π1
# ((M\{0}) × {1}) and t ∈ (P d̄)−1(S), i.e. t ∈ P̃d

#(Y
′).

So we can conclude that (x, y) ∈ Wd
#(Y

′).

7. GS-Monoidality

We will now show that the categories Cf and Af can be turned into gs-monoidal categories,
making # a gs-monoidal functor. This will give us a method to assemble functions and their
approximations compositionally and this will form the basis for the tool. We first define
gs-monoidal categories in detail (cf. [GH97, Definition 7] and [FGTC23]).

Definition 7.1 (gs-monoidal categories). A strict gs-monoidal category is a strict symmetric
monoidal category, where ⊗ denotes the tensor and e its unit and symmetries are given by
ρa,b : a⊗ b→ b⊗ a. For every object a there exist morphisms ∇a : a→ a× a (duplicator)
and !a : a→ e (discharger) satisfying the axioms given below. (See also their visualisations
as string diagrams in Figure 6.)
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functoriality of tensor

(g ⊗ g′) ◦ (f ⊗ f ′) = (g ◦ f)⊗ (g′ ◦ f ′)
ida⊗b = ida ⊗ idb

monoidality

(f ⊗ g)⊗ h = f ⊗ (g ⊗ h)
f ⊗ ide = f = ide ⊗ f

naturality

(f ′ ⊗ f) ◦ ρa,a′ = ρb,b′ ◦ (f ⊗ f ′)

symmetry

ρe,e = ide ρb,a ◦ ρa,b = ida⊗b

ρa⊗b,c = (ρa,c ⊗ idb ◦ (ida ⊗ ρb,c)

gs-monoidality

!e = ∇e = ide

coherence axioms

(ida ⊗∇a) ◦ ∇a = (∇a ⊗ ida) ◦ ∇a

ida = (ida⊗!a) ◦ ∇a

ρa,a ◦ ∇a = ∇a

monoidality axioms

!a⊗b =!a⊗!b
(ida ⊗ ρa,b ⊗ idb) ◦ (∇a ⊗∇b) = ∇a⊗b

(or, equiv. ∇a ⊗∇b = (ida ⊗ ρb,a ⊗ idb) ◦ ∇a⊗b

A functor F : C→ D, where C and D are gs-monoidal categories, is gs-monoidal if the
following holds:

monoidality

F (e) = e′

F (a⊗ b) = F (a)⊗′ F (b)

symmetry

F (ρa,b) = ρ′F (a),F (b)

gs-monoidality

F (!a) =!′F (a)

F (∇a) = ∇′
F (a)

where the primed operators are from category D, the others from C.
Note that the visualisations of the axioms in Figure 6 match the images in Figure 2 and

Figure 5. However, instead of labelling the wires with the types of objects as in the previous
figures, we here label the wires with a fixed object.

=
a⊗ b

b

a

f
= f =

fe
e f ′

f
=

f

f ′

e

e
=

e

b

a
=

a⊗ b

c

a⊗ b
=

a

b

c

e = e =
e

a⊗ b =
a

b a

b

= a⊗ b

= = a
a

=

Figure 6: String diagrams for the axioms of gs-monoidal categories.

In fact, in order to obtain strict gs-monoidal categories with disjoint union as tensor,
we will work with the skeleton categories where every finite set Y is represented by an
isomorphic copy {1, . . . , |Y |}. This enables us to make disjoint union strict, i.e., associativity
holds on the nose and not just up to isomorphism. In particular for finite sets Y,Z, we
define disjoint union as Y + Z = {1, . . . , |Y |, |Y |+ 1, . . . , |Y |+ |Z|}.
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Theorem 7.2 (Cf is gs-monoidal). The category Cf with the following operators is gs-
monoidal:

(1) The tensor ⊗ on objects a ∈MY and b ∈MZ is defined as

a⊗ b = a+ b ∈MY+Z

where for k ∈ Y +Z we have (a+ b)(k) = a(k) if k ≤ |Y | and (a+ b)(k) = b(k − |Y |) if
|Y | < k ≤ |Y |+ |Z|.
On arrows f : a 99K b and g : a′ 99K b′ (with a′ ∈MY ′

, b′ ∈MZ′
) tensor is given by

f ⊗ g : MY+Y ′ →MZ+Z′
, (f ⊗ g)(u) = f( ⃗uY ) + g(u⃗Y )

for u ∈MY+Y ′
where ⃗uY ∈MY and u⃗Y ∈MY ′

are defined as

⃗uY (k) = u(k) for 1 ≤ k ≤ |Y | and u⃗Y (k) = u(|Y |+ k) for 1 ≤ k ≤ |Y ′|.
(2) The symmetry ρa,b : a⊗ b 99K b⊗ a for a ∈MY , b ∈MZ is defined for u ∈MY+Z as

ρa,b(u) = u⃗Y + ⃗uY .

(3) The unit e is the unique mapping e : ∅ →M.
(4) The duplicator ∇a : a 99K a⊗ a for a ∈MY is defined for u ∈MY as

∇a(u) = u+ u.

(5) The discharger !a : a 99K e for a ∈MY is defined for u ∈MY as !a(u) = e.

We now turn to the category of approximations Af . Note that here functions have
as parameters sets of the form U ⊆ [Y ]a ⊆ Y . Hence, (the cardinality of) Y cannot be
determined directly from U and we need extra care with the tensor.

Theorem 7.3 (Af is gs-monoidal). The category Af with the following operators is gs-
monoidal:

(1) The tensor ⊗ on objects a ∈MY and b ∈MZ is again defined as a⊗ b = a+ b.

On arrows f : a 99K b and g : a′ 99K b′ (where a′ ∈ MY ′
, b′ ∈ MZ′

and f : P([Y ]a)→
P([Z]b

′
), g : P([Y ′]a

′
)→ P([Z ′]b

′
) are the underlying functions), the tensor is given by

f ⊗ g : P([Y + Y ′]a+a′)→ P([Z + Z ′]b+b′), (f ⊗ g)(U) = f( ⃗UY )∪Z g(U⃗Y )

where
⃗UY = U ∩ {1, . . . , |Y |} and U⃗Y = {k | |Y |+ k ∈ U}.

Furthermore:

U ∪Y V = U ∪ {|Y |+ k | k ∈ V } (where U ⊆ Y )

(2) The symmetry ρa,b : a⊗ b 99K b⊗a for a ∈MY , b ∈MZ is defined for U ⊆ [Y +Z]a+b as

ρa,b(U) = U⃗Y ∪Z ⃗UY ⊆ [Z + Y ]b+a

(3) The unit e is again the unique mapping e : ∅ →M.
(4) The duplicator ∇a : a 99K a⊗ a for a ∈MY is defined for U ⊆ [Y ]a as

∇a(U) = U ∪Y U ⊆ [Y + Y ]a+a.

(5) The discharger !a : a 99K e for a ∈MY is defined for U ⊆ [Y ]a as !a(U) = ∅.

Finally, the approximation # is indeed gs-monoidal, i.e., it preserves all the additional
structure (tensor, symmetry, unit, duplicator and discharger).
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Theorem 7.4 (# is gs-monoidal). #: Cf → Af is a gs-monoidal functor.

8. UDEfix: A Tool for Fixpoints Checks

8.1. Overview. We present a tool, called UDEfix, which exploits gs-monoidality as discussed
before and allows the user to construct functions f : MY → MY (with Y finite) as a
circuit. As basic components, UDEfix can handle all functions presented in Section 4
(Table 2) and addition/subtraction by a fixed constant w, denoted addw/subw (both are
non-expansive functions). Since the approximation functor # is gs-monoidal on the finitary
subcategories, this circuit can then be transformed automatically, in a compositional way,
into the corresponding approximation fa

#, for some given a ∈MY . By computing the greatest
fixpoint of fa

# and checking for emptiness, UDEfix can check whether a = µf . In addition, it

is possible to check whether a given post-fixpoint a is below the least fixpoint µf (recall that
in this case the check is sound but not complete). The dual checks (for greatest fixpoint and
pre-fixpoints) are implemented as well.

The tool is shipped with pre-defined functions implementing examples concerning case
studies on termination probability, bisimilarity, simple stochastic games, energy games,
behavioural metrics and Rabin automata.

UDEfix is a Windows-Tool created in Python, which can be obtained from https:

//github.com/TimoMatt/UDEfix.
Building the desired function f : MY →MY requires three steps:

• Choosing the MV-algebra M of interest.
• Creating the required basic functions by specifying their parameters.
• Assembling f from these basic functions.

8.2. Tool Areas. Concretely, the GUI of UDEfix is separated into three areas: the Content
area, Building area and Basic-Functions area. Under File-Settings the user can set the MV-
algebra. Currently the MV-chains [0, k] (algebra 1) and {0, . . . , k} (algebra 2) for arbitrary k
are supported (see Example 3.3)

Basic-Functions Area: The Basic-Functions area contains the basic functions, encompassing
those listed in Table 2 (Section 3), as well as addition and subtraction by a constant w. Via
drag-and-drop (or right-click) these basic functions can be added to the Building area to

create a Function box. Each such box requires three (in the case of D̃ two) Contents: The
Input set, the Output set and an additional required parameter (see Table 3). These Contents
can be created in the Content area.

Basic Function ck u∗ minR /maxR addw subw
Req. Parameter k ∈MZ u : Z → Y R ⊆ Y × Z w ∈MY w ∈MY

Table 3: Additional parameters for the basic functions from Table 2.

Additionally the Basic-Functions area offers functionalities for composing functions via
disjoint union (more concretely, this is handled by the auxiliary Higher-Order Function) and
the Testing functionality for fixpoint checks which we will discuss in the next paragraph.

https://github.com/TimoMatt/UDEfix
https://github.com/TimoMatt/UDEfix
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Figure 7: Assembling the function B from Section 6.3.

Building Area: The user can connect the created Function boxes to construct the function
f of interest. Composing functions is as simple as connecting two Function boxes in the
correct order by mouse-click. Disjoint union is achieved by connecting two boxes to the same
box. Note that Input and Output sets of connected Function boxes need to match. As an
example, in Figure 7 we show how the function B, discussed in Section 6.3, for computing the
behavioural distance of a labeled Markov chain can be assembled. The construction exactly
follows the structure of the diagram in Figure 5. Here, the parameters are instantiated for
the labeled Markov chain displayed in Figure 4 (left-hand side).

The special box Testing is always required to appear at the end. Here, the user can
enter some mapping a : Y →M, test if a is a fixpoint of the function f of interest and then
verify if a = µf . As explained before, this is realised by computing the greatest fixpoint of
the approximation νfa

# . In case this is not empty and thus a ̸= µf , the tool can produce a
suitable value which can be used for decreasing a, needed for iterating to the least fixpoint
from above (respectively increasing a for iterating to the greatest fixpoint from below).
There is also support for comparison with pre- and post-fixpoints.

Example 8.1. As an example, consider the left-hand system in Figure 4 and consider the
function B from Section 6.3 whose least fixpoint corresponds to the behavioural distance for
a labeled Markov chain.

We now define a fixpoint of B, which is not the least, namely d : Y → [0, 1] with
d(3, 3) = 0, d(1, 1) = 1/2, d(1, 2) = d(2, 1) = d(2, 2) = 2/3 and 1 for all other pairs. Note
that d is not a pseudo-metric, but it is a fixpoint of B. For understanding why d is a
fixpoint, consider, for instance, the pair (1, 2). Due to the labels, an optimal coupling for
the successors of 1, 2 assigns (3, 3) 7→ 1/3, (4, 4) 7→ 1/2, (3, 4) 7→ 1/6. Hence, by the fixpoint
equation, we have

d(1, 2) = 1/3 · d(3, 3) + 1/2 · d(4, 4) + 1/6 · d(3, 4) = 1/3 · 0 + 1/2 · 1 + 1/6 · 1 = 1/2 + 1/6 = 2/3.

A similar argument can be made for the remaining pairs.
By clicking Compute in the Testing-box, UDEfix displays that d is a fixpoint and tells us

that d is in fact not the least and not the greatest fixpoint. It also computes the greatest
fixpoints of the approximations step by step (via Kleene iteration) and displays the results to
the user. In this case νfa

# = {(4, 4)}, indicating that the distance d(4, 4) = 1 over-estimates
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Figure 8: Contents: Set Y , Mapping d, Relation ρ.

the true value and can be decreased. The fact that also other pairs over-estimate their value
(but to a lesser degree), will be detected in later steps in the iteration to the least fixpoint
from above.

Content Area: Here the user can create sets, mappings and relations which are used to
specify the basic functions. The user can create a variety of different types of sets, such as
X = {1, 2, 3, 4}, which is a basic set of numbers, and the set D = {p1, p2, p3, p4} which is a
set of mappings representing probability distributions. These objects are called Content.

Once Input and Output sets are created we can specify the required parameters (cf.
Table 3) for a function. Here, the created sets can be chosen as domain and co-domain.
Relations can be handled in a similar fashion: Given the two sets one wants to relate,
creating a relation can be easily achieved by checking some boxes. Some useful in-built
relations like “is-element-of”-relation and projections to the i-th component are pre-defined.

By clicking on the icon “+” in a Function box, a new function with the chosen Input
and Output sets is created. The additional parameters (cf. Table 3) have domains and
co-domains which need to be created by the user or are provided by the chosen MV-algebra.

The Testing function a (i.e., the candidate (pre/post-)fixpoint) is a mapping as well and
can be created as all other functions.

In Figure 8 we give examples of how contents can be created: we show the creation of a
set (Y = X ×X), a distance function (d) and a relation (ρ).

8.3. Tutorial. We now provide a small tutorial intended to clarify the use of the tool.
It deals with a simple example: a function whose least fixpoint provides the termination
probability of a Markov chain. Specifically, we continue the example from Section 2 and
Example 4.8, and we consider the Markov chain (S, T, η) in Figure 3.
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Figure 9: Creation of set S and probability distribution px for the example.

Remember that the function T , whose least fixpoint is the termination probability, can
be decomposed as follows:

T = (η∗ ◦ D̃)⊗ ck

In order to start, one first chooses the correct MV-algebra under Settings and creates
the sets S, T, S \ T (Input and Output sets). The creation of set S is exemplified in Figure 9
(left-hand side). The tool supports several types of sets and operators on sets (such as
complement, which makes it easy to create S\T . Next, we create the set D of probability
distributions, consisting of the mappings px, py, pz. In Figure 9 (right-hand side) we show
the creation of px.

Now we create the basic function boxes and connect them in the correct way (see
Figure 10). The additional parameters according to Table 3 – in this case the map ck and
the reindexing η∗ based on the successor map – can be created by clicking the icon “+” in
the corresponding box (see Figure 11) (left-hand side for k and middle for η).

We can also assemble several test functions (e.g., possible candidate fixpoints), among
them the greatest fixpoint a1 = νT (see Figure 11, right-hand side).

When testing a1 we obtain the results depicted in Figure 12. In fact νT a1
# = {y, z} ≠ ∅,

which tells us that a1 is not the least fixpoint.
Similarly, one can test a2 = µT , the least fixpoint, obtaining νT a2

# = ∅. This allows

the user to deduce that a2 is indeed the least fixpoint. As mentioned before, one can also
test whether a pre-fixpoint is below the greatest fixpoint or a post-fixpoint above the least
fixpoint, although such tests are sound but not complete.

9. Conclusion, Related and Future Work

We have shown that a framework originally introduced in [BEKP21, BEKP23a] for analysing
fixpoint of non-expansive functions over MV-algebras can be naturally cast into a gs-
monoidal setting. When considering the finitary categories, both the non-expansive functions
of interest and their approximations live in two gs-monoidal categories and are related by a
gs-monoidal functor #. We also developed a general theory for constructing approximations
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Figure 10: Assembling the function T .

Figure 11: Creation of the parameters k and η∗ and the greatest fixpoint a1 = µT .

of predicate liftings, which find natural application in the definition of behavioural metrics
over coalgebras.

Graph compositionality has been studied from several angles and has always been an
important part of the theory of graph rewriting. For instance, one way to explain the
double-pushout approach [EPS73] is to view the graph to be rewritten as a composition of a
left-hand side and a context, then compose the context with the right-hand side to obtain
the result of the rewriting step.
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Figure 12: Checking the candidate fixpoint a1.

Several algebras have been proposed for a compositional view on graphs, see for in-
stance [BC87, Kön02, BK04]. For the compositional modelling of graphs and graph-like
structures it has in particular proven useful to use the notion of monoidal categories [Mac71],
i.e., categories equipped with a tensor product. There are several variants of such categories,
such as gs-monoidal categories, that have been shown to be suitable for specifying term
graph rewriting (see e.g. [Gad96, GH97]).

In our work, the compositionality properties arising from the gs-monoidal view of the
theory are at the basis of the development of the prototypical tool UDEfix. The tool allows
one to build the concrete function of interest out of some basic components. Then the
approximation of the function can be obtained compositionally from the approximations of
the components and one can check whether some fixpoint is the least or greatest fixpoint of
the function of interest. Additionally, one can use the tool to show that some pre-fixpoint is
above the greatest fixpoint or some post-fixpoint is below the least fixpoint.

Related work: This paper is based on fixpoint theory, coalgebras, as well as on the theory of
monoidal categories. Monoidal categories [Mac71] are categories equipped with a tensor. It
has long been realised that monoidal categories can have additional structure such as braiding
or symmetries. Here we base our work on so called gs-monoidal categories [CG99, GH97],
called s-monoidal in [Gad96]. These are symmetric monoidal categories, equipped with a
discharger and a duplicator. Note that “gs” originally stood for “graph substitution” as
such categories were first used for modelling term graph rewriting.

We view gs-monoidal categories as a means to compositionally build monotone non-
expansive functions on complete lattices, for which we are interested in the (least or greatest)
fixpoint. Such fixpoints are ubiquitous in computer science, here we are in particular
interested in applications in concurrency theory and games, such as bisimilarity [San11], be-
havioural metrics [DGJP04, vB17, CvBW12, BBKK18] and simple stochastic games [Con90].
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In recent work we have considered strategy iteration procedures inspired by games for solving
fixpoint equations [BEKP23b].

Fixpoint equations also arise in the context of coalgebra [Rut00], a general framework
for investigating behavioural equivalences for systems that are parameterised – via a functor –
over their branching type (labelled, non-deterministic, probabilistic, etc.). Here in particular
we are concerned with coalgebraic behavioural metrics [BBKK18], based on a generalisa-
tion of the Wasserstein or Kantorovich lifting [Vil09]. Such liftings require the notion of
predicate liftings, well-known in coalgebraic modal logics [Sch08], lifted to a quantitative
setting [BKP18].

Future work: One important question is still open: we defined an approximation #, relating
the concrete category C of functions of type MY →MZ – where Y,Z might be infinite – to
their approximations, living in A. It is unclear whether # is a lax or even proper functor,
i.e., whether it (laxly) preserves composition. For finite sets functoriality derives from a
non-trivial result in [BEKP23a] and it is unclear whether it can be extended to the infinite
case. If so, this would be a valuable step to extend the theory to infinite sets.

In this paper we illustrated the approximation for predicate liftings via the powerset
and the distribution functor. It would be worthwhile to study more functors and hence
broaden the applicability to other types of transition systems.

Concerning UDEfix, we plan to extend the tool to compute fixpoints, either via Kleene
iteration or strategy iteration (strategy iteration from above and below), as detailed
in [BEKP23b]. Furthermore for convenience it would be useful to have support for generating
fixpoint functions directly from a given coalgebra respectively transition system.

Acknowledgements: We want to thank Ciro Russo who helped us with a question on the
connection of MV-algebras and quantales.
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Appendix A. Proofs and Additional Material for §4 (A Categorical View of
the Approximation Framework)

Lemma 4.2 (well-definedness). The categories C and A are well-defined and the #δ are lax
functors, i.e., identities are preserved and #δ(f) ◦#δ(g) ⊆ #δ(f ◦ g) for composable arrows
f, g in C.

Proof.

(1) C is a well-defined category : Given arrows f : a 99K b and g : b 99K c then g ◦ f is non-
expansive (since non-expansiveness is preserved by composition) and (g◦f)(a) = g(b) = c,
thus g ◦ f : a 99K c. Associativity holds and the identities are the units of composition
as for standard function composition.

(2) A is a well-defined category : Given arrows f : a 99K b and g : b 99K c then g ◦ f is
monotone (since monotonicity is preserved by composition) and hence g ◦ f : a 99K c.

Again associativity and the fact that the identities are units is immediate.
(3) #δ : C→ A is a lax functor : we first check that identities are preserved. Let U ⊆ [Y ]a,

then

#δ(ida)(U) = (ida)
a,δ
# (U)

= {y ∈ [Y ]ida(a) | ida(a)(y)⊖ ida(a⊖ δU )(y) ⊒ δ}
= {y ∈ [Y ]a | a(y)⊖ (a⊖ δU )(y) ⊒ δ}
= U = ida(U) = id#δ(a)(U).

where in the second last line we use the fact that U ⊆ [Y ]a.
Let a ∈ MY , b ∈ MZ , c ∈ MV , f : a 99K b, g : b 99K c be arrows in C and Y ′ ⊆ [Y ]a.

Then

(#δ(g) ◦#δ(f))(Y ′) = gb,δ# (fa,δ
# (Y ′))

= (γc,δ ◦ g ◦ αb,δ ◦ γb,δ ◦ f ◦ αa,δ)(Y ′)

⊆ (γg(f(a)),δ ◦ g ◦ f ◦ αa,δ)(Y ′)

= (g ◦ f)a,δ# (Y ′)

= #δ(g ◦ f)(Y ′)

The inequality holds since for c ∈MZ :

αb,δ(γb,δ(c)) = αb,δ({y ∈ Y | b(y)⊖ c(y) ⊒ δ}) = b⊖ δ{y∈Y |b(y)⊖c(y)⊒δ} ⊒ c.

Then the inequality follows from the antitonicity of γc,δ. (Remember that we are working
with a contra-variant Galois connection.)

Lemma 4.4. Given a ∈MY , g : Z → Y and 0 ⊏ δ ∈M, then we have

(1) αa◦g,δ ◦ g−1 = g∗ ◦ αa,δ

(2) γa◦g,δ ◦ g∗ = g−1 ◦ γa,δ

This implies that for two C-arrows f : a 99K b, h : b 99K c, it holds that #(h◦f) = #(h)◦#(f)
whenever f or h is a reindexing, i.e., is contained in C∗.
Proof.

(1) Let Y ′ ⊆ [Y ]a. Then

g∗(αa,δ(Y ′)) = g∗(a⊖ δY ′) = (a⊖ δY ′) ◦ g = a ◦ g ⊖ δY ′ ◦ g
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= a ◦ g ⊖ δg−1(Y ′) = αa◦g,δ(g−1(Y ′))

where we use that (δY ′ ◦ g)(z) = δ if g(z) ∈ Y ′, equivalent to z ∈ g−1(Y ′), and 0
otherwise. Hence δY ′ ◦ g = δg−1(Y ′).

(2) Let b ∈MY with a⊖ δ ⊑ b ⊑ a. Then

γa◦g,δ ◦ g∗(b) = {z ∈ Z | a(g(z))⊖ b(g(z)) ⊒ δ} = {z ∈ Z | g(z) ∈ γa,δ(b)}

= g−1(γa,δ(b))

It is left to show that #(h ◦ f) = #(h) ◦#(f) whenever f or h is a reindexing. Recall that
on reindexings it holds that #(g∗) = g−1.

Let a ∈ MY , b ∈ MZ , c ∈ MW and assume first that f is a reindexing, i.e., f = g∗ for
some g : Z → Y . Let Y ′ ⊆ [Y ]a, then

#(h ◦ f) = (h ◦ f)a# =
⋃
δ⊐0

(γh(f(a)),δ ◦ h ◦ f ◦ αa,δ)(Y ′)

=
⋃
δ⊐0

(γh(f(a)),δ ◦ h ◦ g∗ ◦ αa,δ)(Y ′)

=
⋃
δ⊐0

(γh(f(a)),δ ◦ h ◦ αa◦g,δ)(g−1(Y ′)) (1)

=
⋃
δ⊐0

(γh(f(a)),δ ◦ h ◦ αf(a),δ)(#(g∗)(Y ′))

= (#(h) ◦#(f))(Y ′)

Now we assume that h is a reindexing, i.e., h = g∗ for some g : W → Z. Let again Y ′ ⊆ [Y ]a,
then:

#(h ◦ f) = (h ◦ f)a# =
⋃
δ⊐0

(γh(f(a)),δ ◦ h ◦ f ◦ αa,δ)(Y ′)

=
⋃
δ⊐0

(γf(a)◦g,δ ◦ g∗ ◦ f ◦ αa,δ)(Y ′)

=
⋃
δ⊐0

g−1((γf(a),δ ◦ f ◦ αa,δ)(Y ′)) (2)

= g−1(
⋃
δ⊐0

(γf(a),δ ◦ f ◦ αa,δ)(Y ′)) [preimage preserves union]

= #(g∗)(
⋃
δ⊐0

(γf(a),δ ◦ f ◦ αa,δ)(Y ′))

= (#(h) ◦#(f))(Y ′)

Lemma 4.7 (approximation functor for finitary categories). The approximation map #: C→
A restricts to #: Cf → Af , which is a (proper) functor.

Proof. Clearly the restriction to categories based on finite sets is well-defined.
We show that # is a (proper) functor. Let a ∈ MY , b ∈ MZ , c ∈ MV , f : a 99K b,

g : b 99K c and Y ′ ⊆ [Y ]a. Then

#(g ◦ f) = (g ◦ f)a# = g
f(a)
# ◦ fa

# = gb# ◦ fa
# = #(g) ◦#(f),
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The second inequality above is a consequence of the compositionality result in [BEKP23a,
Proposition D.3]. This requires finiteness of the sets Y, Z, V .

The rest follows from Lemma 4.2.

Appendix B. Proofs and Additional Material for §5 (Predicate Liftings)

Lemma B.1 (complete MV-algebras are quantales). Let M be a complete MV-algebra. Then
(M,⊕,⊒) is a unital commutative quantale, i.e., a quantale with neutral element for ⊕.

Proof. We know M is a complete lattice. Binary meets are given by

x ⊓ y = x⊕ y ⊕ y. (B.1)

Moreover ⊕ is associative and commutative, with 0 as neutral element.
It remains to show that ⊕ distributes with respect to ⊓ (note that ⊓ is the join for the

reverse order), i.e., that for all X ⊆M and a ∈M, it holds

a⊕
l

X =
l
{a⊕ x | x ∈ X}

Clearly, since
d
X ≤ x for all x ∈ X and ⊕ is monotone, we have a⊕

d
X ⊑

d
{a⊕x | x ∈ X}.

In order to show that a⊕
d
X is the greatest lower bound, let z be another lower bound for

{a⊕ x | x ∈ X}, i.e., z ⊑ a⊕ x for all x ∈ X. Then observe that for x ∈ X, using (B.1), we
get

x ⊒ x ⊓ a = (x⊕ a)⊕ a ⊒ z ⊕ a = z ⊖ a

Therefore
d
X ⊒ z ⊖ a and thus

a⊕
d
X ⊒ a⊕ (z ⊖ a) ⊒ z

as desired.

Lemma 5.2 (non-expansive predicate lifting). Let ev : FM → M be an evaluation map

and assume that its corresponding lifting F̃ : MY → MFY is well-behaved. Then F̃ is
non-expansive iff for all δ ∈M it holds that F̃ δY ⊑ δFY .

Proof. The proof is inspired by [WS22, Lemma 3.9] and uses the fact that a monotone
function f : MY →MZ is non-expansive iff f(a⊕ δ) ⊑ f(a)⊕ δ for all a, δ.

(⇒) Fix a set Y and assume that F̃ : MY →MFY is non-expansive. Then

F̃ (δ) = F̃ (0⊕ δ) ⊑ F̃ (0)⊕ δ ⊑ 0⊕ δ = δ

(⇐) Now assume that F̃ (δ) ⊑ δ. Then, using the lemma referenced above,

F̃ (a⊕ δ) ⊑ F̃ (a)⊕ F̃ (δ) ⊑ F̃ (a)⊕ δ

Above we write δ for both δY , δFY and both deductions rely on the fact that F̃ is
well-behaved.

Proposition 5.5. Let F̃ be a (non-expansive) predicate lifting. There is a natural transfor-

mation β : #⇒ #F̃ between functors #,#F̃ : C∗ → A, whose components, for a ∈MY , are
βa : a 99K F̃ (a) in A, defined by βa(U) = F̃ a

#(U) for U ⊆ [Y ]a.

That is, the following diagrams commute for every g : Z → Y (the diagram on the left
indicates the formal arrows, while the one on the right reports the underlying functions).
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#(a) #(a ◦ g)

#(F̃ a) #(F̃ (a ◦ g))

#(g∗)

βa βa◦g
#(F̃ (g∗))

P([Y ]a) P([Z]a◦g)

P([FY ]F̃ (a)) P([FZ]F̃ (a◦g))

g−1

F̃ a
# F̃ a◦g

#
(Fg)−1

Proof. We first define a natural transformation η : IdC∗ ⇒ F̃ (between the identity functor

and F̃ ) with components ηa : a 99K F̃ (a) (for a ∈MY ) by defining ηa(b) = F̃ (b) for b ∈MY .
The ηa are non-expansive by assumption. In addition, η is natural due to the definition of a
predicate lifting, i.e., (Fg)∗ ◦ F̃ = F̃ ◦ g∗ for g : Z → Y .

Now we apply # and use the fact that # is functorial, even for the full category C,
whenever one of the two arrows to which # is applied is a reindexing (see Lemma 4.4).
Furthermore we observe that β = #(η). This immediately gives commutativity of the
diagram on the left. (The diagram on the right just displays the underlying functions.)

Proposition 5.6 (Approximations for predicate liftings). Let F̃ be a predicate lifting. We fix
Y ′ ⊆ Y and let χY ′ : Y → {0, 1} be its characteristic function. Furthermore let a : Y →M be
a predicate. Let π1 : M× {0, 1} →M, π2 : M× {0, 1} → {0, 1} be the projections and define
ā : Y → M × {0, 1} via ā(y) = (a(y), χY ′(y)) as the mediating morphism into the product
(see diagram below).

Y {0, 1}M

M× {0, 1}

a χY ′

āπ1 π2

Then
F̃ a
#(Y

′) = (F ā)−1(F̃ π1
# ((M\{0})× {1})).

Proof. Let a ∈MY and Y ′ ⊆ [Y ]a. Note that ā−1((M\{0})×{1}) = Y ′ and a = π1 ◦ ā, thus
by Proposition 5.5:

F̃ a
#(Y

′) = F̃ π1◦ā
# (ā−1((M\{0})× {1}))

= (F ā)−1(F̃ π1
# ((M\{0})× {1}))

Lemma 5.7. Consider the lifting of the distribution functor presented in Example 5.3 and
let M = [0, 1]. Then we have

D̃π1
# ((0, 1]× {1}) = {p ∈ DZ | supp(p) ∈ (0, 1]× {1}}.

Proof. Let δ > 0. We define
π̃δ
1 := απ1,δ((0, 1]× {1})

where π̃δ
1(x, 0) = x, π̃δ

1(x, 1) = x⊖ δ for x ∈ [0, 1]. Note that [DZ]D̃π1 = {p ∈ DZ | ∃(x, b) ∈
supp(p) with x ≥ 0}. Now

D̃π1,δ
# ((0, 1]× {1}) = {p ∈ [DZ]D̃π1 | D̃π1(p)⊖ D̃(π̃δ

1)(p) ≥ δ}

= {p ∈ [DZ]D̃π1 |
( ∑
x∈[0,1]

x · p(x, 0)⊕
∑

x∈[0,1]

x · p(x, 1)
)
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⊖
( ∑
x∈[0,1]

x · p(x, 0)⊕
∑

x∈[0,1]

(x⊖ δ) · p(x, 1)
)
≥ δ}

= {p ∈ [DZ]D̃π1 |
∑

x∈[0,δ)

x · p(x, 1) +
∑

x∈[δ,1]

δ · p(x, 1) ≥ δ}

= {p ∈ [DZ]D̃π1 | supp(p) ∈ [δ, 1]× {1}}.
Where the second last equality uses the fact that x⊖ (x⊖ δ) = δ if x ≥ δ and x otherwise.

Now, we obtain

D̃π1
# ((0, 1]× {1}) =

⋃
δ⊐0

D̃π1,δ
# ((0, 1]× {1}) = {p ∈ DZ | supp(p) ∈ (0, 1]× {1}}.

Lemma 5.8. Consider the lifting of the finite powerset functor from Example 5.4 with
arbitrary M. Then we have

(P̃f )π1
# ((M\{0})× {1}) = {S ∈ [PfZ]P̃fπ1 | ∃(s, 1) ∈ S ∀(s′, 0) ∈ S : s ⊐ s′}.

Proof. Let δ ⊐ 0 and define π̃δ
1 as in the proof of Lemma 5.7. Then

(P̃f )π1,δ
# ((M\{0})× {1}) = {S ∈ [PfZ]P̃fπ1 | P̃fπ1(S)⊖ P̃f (π̃δ

1)(S) ⊒ δ}

= {S ∈ [PfZ]P̃fπ1 | max
(s,b)∈S

s⊖ ( max
(s,b)∈S

s⊖ b · δ) ⊒ δ}

= {S ∈ [PfZ]P̃fπ1 | ∃(s, 1) ∈ S ∀(s′, 0) ∈ S : s⊖ δ ⊒ s′}
For the last step we note that this condition ensures that the second maximum equates to
max(s,b)∈S s⊖ δ which is required for the inequality to hold. Now, we obtain

(P̃f )π1
# ((M\{0})× {1}) =

⋃
δ⊐0

F̃ π1,δ
# ((M\{0})× {1})

= {S ∈ [PfZ]P̃fπ1 | ∃(s, 1) ∈ S ∀(s′, 0) ∈ S : s ⊐ s′}.

Appendix C. Proofs and Additional Material for §6 (Wasserstein Lifting and
Behavioural Metrics)

Proposition 6.4. Let F : Set→ Set be a functor and let F̃ be a corresponding predicate
lifting (for M-valued predicates). Assume that F̃ is non-expansive and finitely coupled and
fix a coalgebra ξ : X → FX, where X is finite. Let Y = X ×X. For d ∈MY and Y ′ ⊆ [Y ]d

we have

Wd
#(Y

′) = {(x, y) ∈ [Y ]d | ∃t ∈ F̃ d
#(Y

′), u(t) = (ξ(x), ξ(y)), F̃ d(t) =W(d)(x, y)}.

Proof. We first remark that since X is finite and F̃ is finitely coupled it is sufficient to
restrict to finite subsets of F (X ×X) and FX × FX (cf. Remark 5.9). In other words W
can be obtained as composition of functions living in Cf , hence # is a proper functor and
approximations can obtained compositionally. We exploit this fact in the following.

More concretely, we restrict u to u : V → W , where V ⊆ F (X ×X), W ⊆ FX × FX.
We require that W contains all pairs (ξ(x), ξ(y)) for x, y ∈ X and V =

⋃
(t1,t2)∈W Γ′(t1, t2).

Hence both V,W are finite.
The function F̃ is restricted accordingly to a map MY →MV as explained in Remark 5.9.
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For d ∈ MY and Y ′ ⊆ [Y ]d we have, using the fact that W = (ξ × ξ)∗ ◦ minu ◦F̃ ,
compositionality and the approximations listed in Table 2:

Wd
#(Y

′) = {(x, y) ∈ [Y ]d | (ξ(x), ξ(y)) ∈ (minu)
F̃ (d)
# (F̃ d

#(Y
′) ∩ V )}

= {(x, y) ∈ [Y ]d | arg min
t∈u−1(ξ(x),ξ(y))

F̃ (d)(t) ∩ F̃ d
#(Y

′) ∩ V ̸= ∅}

= {(x, y) ∈ [Y ]d | ∃t ∈ F̃ d
#(Y

′) ∩ V, u(t) = (ξ(x), ξ(y)),

F̃ d(t) = mint′∈V F̃ d(t′)}

= {(x, y) ∈ [Y ]d | ∃t ∈ F̃ d
#(Y

′) ∩ V, u(t) = (ξ(x), ξ(y)),

F̃ d(t) = mint′∈Γ′(ξ(x),ξ(y)) F̃ d(t′)}

= {(x, y) ∈ [Y ]d | ∃t ∈ F̃ d
#(Y

′), u(t) = (ξ(x), ξ(y)), F̃ d(t) = mint′∈Γ′(ξ(x),ξ(y)) F̃ d(t′)}

= {(x, y) ∈ [Y ]d | ∃t ∈ F̃ d
#(Y

′), u(t) = (ξ(x), ξ(y)), F̃ d(t) =W(d)(x, y)}
The first equality is based on Remark 5.9 and uses the fact that the approximation for the
restricted F̃ maps Y ′ to F̃ d

#(Y
′) ∩ V .

The second-last inequality also needs explanation, in particular, we have to show that
the set on the second-last line is included in the one on the previous line, although we
omitted the intersection with V .

Hence let (x, y) ∈ [Y ]d such that there exists s ∈ F̃ d
#(Y

′), u(s) = (ξ(x), ξ(y)) and

F̃ d(s) = mint′∈Γ′(ξ(x),ξ(y)) F̃ d(t′). We have to show that there exists a t with the same
properties that is also included in V .

The fact that s ∈ F̃ d
#(Y

′) implies that F̃ (d)(s)⊖ F̃ (d⊖ δY ′)(s) ⊒ δ for small enough δ,

using the fact that F̃ d
# = γF̃ (d),δ ◦ F̃ ◦ αd,δ (for an appropriate value δ).

Since the minimum of the Wasserstein lifting is always reached in Γ′(ξ(x), ξ(y)), inde-
pendently of the argument, there exists t ∈ Γ′(ξ(x), ξ(y)) ⊆ V (hence u(t) = (ξ(x), ξ(y))),
such that

F̃ (d⊖ δY ′)(t) = mint′∈Γ(ξ(x),ξ(y)) F̃ (d⊖ δY ′)(t′).

This implies that F̃ (d⊖δY ′)(t) ⊑ F̃ (d⊖δY ′)(s) (since s ∈ Γ(ξ(x), ξ(y))). From the assumption

F̃ d(s) = mint′∈Γ′(ξ(x),ξ(y)) F̃ d(t′) we obtain F̃ d(s) ⊑ F̃ d(t). Hence, using the fact that ⊖ is
monotone in the first and antitone in the second argument, we have:

δ ⊑ F̃ (d)(s)⊖ F̃ (d⊖ δY ′)(s) ⊑ F̃ (d)(t)⊖ F̃ (d⊖ δY ′)(t) ⊑ δ.

The last inequality follows from non-expansiveness. Hence

F̃ (d)(s)⊖ F̃ (d⊖ δY ′)(s) = F̃ (d)(t)⊖ F̃ (d⊖ δY ′)(t) = δ,

which in particular implies that t ∈ F̃ d
#(Y

′).

In order to conclude we have to show that F̃ d(t) = mint′∈Γ′(ξ(x),ξ(y)) F̃ d(t′). We first
observe that in an MV-chainM, whenever x ⊑ y (for x, y ∈M) we can infer that (y⊖x)⊕x = y
(this follows for instance from Lemma 2.4(6) in [BEKP23a] and duality). The inequality

F̃ (d⊖ δY ′) ⊑ F̃ (d) holds by monotonicity and we can conclude that

F̃ d(t) = (F̃ (d)(t)⊖ F̃ (d⊖ δY ′)(t))⊕ F̃ (d⊖ δY ′)(t))

= (F̃ (d)(s)⊖ F̃ (d⊖ δY ′)(s))⊕ F̃ (d⊖ δY ′)(t))

⊑ (F̃ (d)(s)⊖ F̃ (d⊖ δY ′)(s))⊕ F̃ (d⊖ δY ′)(s)) = F̃ (d)(s).
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The other inequality F̃ d(s) ⊑ F̃ d(t) holds anyway and hence F̃ d(t) = F̃ d(s). This finally
implies, as desired, that

F̃ d(t) = F̃ d(s) = mint′∈Γ′(ξ(x),ξ(y)) F̃ d(t′).

Appendix D. Proofs and Additional Material for §7 (GS-Monoidality)

Theorem 7.2 (Cf is gs-monoidal). The category Cf with the following operators is gs-
monoidal:

(1) The tensor ⊗ on objects a ∈MY and b ∈MZ is defined as

a⊗ b = a+ b ∈MY+Z

where for k ∈ Y +Z we have (a+ b)(k) = a(k) if k ≤ |Y | and (a+ b)(k) = b(k − |Y |) if
|Y | < k ≤ |Y |+ |Z|.
On arrows f : a 99K b and g : a′ 99K b′ (with a′ ∈MY ′

, b′ ∈MZ′
) tensor is given by

f ⊗ g : MY+Y ′ →MZ+Z′
, (f ⊗ g)(u) = f( ⃗uY ) + g(u⃗Y )

for u ∈MY+Y ′
where ⃗uY ∈MY and u⃗Y ∈MY ′

are defined as

⃗uY (k) = u(k) for 1 ≤ k ≤ |Y | and u⃗Y (k) = u(|Y |+ k) for 1 ≤ k ≤ |Y ′|.

(2) The symmetry ρa,b : a⊗ b 99K b⊗ a for a ∈MY , b ∈MZ is defined for u ∈MY+Z as

ρa,b(u) = u⃗Y + ⃗uY .

(3) The unit e is the unique mapping e : ∅ →M.
(4) The duplicator ∇a : a 99K a⊗ a for a ∈MY is defined for u ∈MY as

∇a(u) = u+ u.

(5) The discharger !a : a 99K e for a ∈MY is defined for u ∈MY as !a(u) = e.

Proof. In the following let a ∈ MY , a′ ∈ MY ′
, b ∈ MZ , b′ ∈ MZ′

, c ∈ MW , c′ ∈ MW ′
be

objects in Cf .
We know that Cf is a well-defined category from Lemma 4.2. We also note that disjoint

unions of non-expansive functions are non-expansive. Moreover, given f : a 99K b and
g : a′ 99K b′, that

(f ⊗ g)(a⊗ a′) = (f ⊗ g)(a+ a′)

= f(
←−−−−−
(a+ a′)Y ) + g(

−−−−−→
(a+ a′)Y ) = f(a) + g(a′)

= b+ b′ = b⊗ b′.

Thus f ⊗ g is a well-defined arrow a⊗ a′ 99K b⊗ b′.
We next verify all the axioms of gs-monoidal categories given in Definition 7.1. In

general the calculations are straightforward, but they are provided here for completeness.
In the sequel we will often use the fact that ⃗uY + u⃗Y = u whenever Y is a subset of the

domain of u.

(1) functoriality of tensor:
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• ida⊗b = ida ⊗ id b

Let u ∈MY+Z . Then

(ida ⊗ id b)(u) = ida( ⃗uY ) + id b(u⃗Y ) = ⃗uY + u⃗Y = u = ida⊗b(u)

• (g ⊗ g′) ◦ (f ⊗ f ′) = (g ◦ f)⊗ (g′ ◦ f ′)

This is required to hold when both sides are defined. Hence let f : a 99K b, g : b 99K c,
f ′ : a′ 99K b′, g′ : b′ 99K c′ and u ∈MY+Y ′

. We obtain:

(g ⊗ g′) ◦ (f ⊗ f ′)(u) = (g ⊗ g′)(f( ⃗uY ) + f ′(u⃗Y ))

= g(f( ⃗uY )) + g′(f ′(u⃗Y )) = ((g ◦ f)⊗ (g′ ◦ f ′))( ⃗uY + u⃗Y )

= ((g ◦ f)⊗ (g′ ◦ f ′))(u)

(2) monoidality:
• f ⊗ ide = f = ide ⊗ f

Let f : a 99K b and u ∈MY . It holds that:

(f ⊗ ide)(u) = (f ⊗ ide)(u+ e) = f(u) + ide(e)

= f(u) + e = f(u) = e+ f(u)

= ide(e) + f(u) = (ide ⊗ f)(e+ u) = (ide ⊗ f)(u)

• (f ⊗ g)⊗ h = f ⊗ (g ⊗ h)

Let f : a 99K a′, g : b 99K b′ and h : c 99K c′ and u ∈MY+Z+W , then

((f ⊗ g)⊗ h)(u) = (f ⊗ g)( ⃗uY+Z) + h(u⃗Y+Z)

= (f(
←−−−−
( ⃗uY+Z)Y ) + g(

−−−−→
( ⃗uY+Z)Y )) + h(u⃗Y+Z)

= f( ⃗uY ) + (g(
←−−
(u⃗Y )Z) + h(

−−→
(u⃗Y )Z))

= f( ⃗uY ) + (g ⊗ h)(u⃗Y ) = (f ⊗ (g ⊗ h))(u)

where we use the fact that
−−−−→
( ⃗uY+Z)Y =

←−−
(u⃗Y )Z .

(3) naturality:
• (f ′ ⊗ f) ◦ ρa,a′ = ρb,b′ ◦ (f ⊗ f ′)

Let f : a 99K b and f ′ : a′ 99K b′. Then for u ∈MY+Y ′

(ρb,b′ ◦ (f ⊗ f ′))(u) = ρb,b′(f( ⃗uY ) + f ′(u⃗Y ))

= f ′(u⃗Y ) + f( ⃗uY ) = (f ′ ⊗ f)(u⃗Y + ⃗uY ) = ((f ′ ⊗ f) ◦ ρa,a′)(u)

(4) symmetry:
• ρe,e = ide

We note that e is the unique function from ∅ to M and furthermore e⊗ e = e+ e = e.
Then

ρe,e(e) = ρe,e(e+ e) = e+ e = e = ide(e)

• ρb,a ◦ ρa,b = ida⊗b

Let u ∈MY+Z , then:

(ρb,a ◦ ρa,b)(u) = ρb,a(u⃗Y + ⃗uY ) = ⃗uY + u⃗Y = u = ida⊗b(u)
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• ρa⊗b,c = (ρa,c ⊗ id b) ◦ (ida ⊗ ρb,c)

Let u ∈MY+Z+W , then:

((ρa,c ⊗ id b) ◦ (ida ⊗ ρb,c))(u)

= (ρa,c ⊗ id b)(ida( ⃗uY ) + ρb,c(u⃗Y ))

= (ρa,c ⊗ id b)( ⃗uY +
−−→
(u⃗Y )Z +

←−−
(u⃗Y )Z)

= ρa,c( ⃗uY + u⃗Y+Z) + id b(
←−−
(u⃗Y )Z) = u⃗Y+Z + ⃗uY +

−−−−→
( ⃗uY+Z)Y

= u⃗Y+Z + ⃗uY+Z = ρa⊗b,c(u)

where we use the fact that
−−→
(u⃗Y )Z = u⃗Y+Z and

←−−
(u⃗Y )Z =

−−−−→
( ⃗uY+Z)Y .

(5) gs-monoidality:
• !e = ∇e = ide

Since e is the unique function of type ∅ →M and e+ e = e, we obtain:

!e(e) = e = ide(e) = e = e+ e = ∇e(e)

• coherence axioms:

For u ∈MY , we note that
←−−−−
(u+ u)Y =

−−−−→
(u+ u)Y = u.

– (ida ⊗∇a) ◦ ∇a = (∇a ⊗ ida) ◦ ∇a

Let u ∈MY , then:

((ida ⊗∇a) ◦ ∇a)(u) = (ida ⊗∇a)(u+ u)

= ida(u) +∇a(u) = u+ u+ u = ∇a(u) + ida(u)

= (∇a ⊗ ida)(u+ u) = (∇a ⊗ ida)(∇a(u))

– ida = (ida⊗!a) ◦ ∇a

Let u ∈MY , then:

((ida⊗!a) ◦ ∇a)(u) = (ida⊗!a)(u+ u)

= ida(u)+!a(u) = ida(u) + e = ida(u)

– ρa,a ◦ ∇a = ∇a

Let u ∈MY , then:

(ρa,a ◦ ∇a)(u) = ρa,a(u+ u) = u+ u = ∇a(u)

• monoidality axioms:
– !a⊗b =!a⊗!b

Let u ∈MY+Z , then:

!a⊗b(u) = e = e+ e =!a( ⃗uY )+!b(u⃗Y ) = (!a⊗!b)(u)

– ∇a ⊗∇b = (ida ⊗ ρb,a ⊗ id b) ◦ ∇a⊗b

Let u ∈MY+Z , then:

(ida ⊗ ρb,a ⊗ id b)(∇a⊗b(u)) = (ida ⊗ ρb,a ⊗ id b)(u+ u)

= (ida ⊗ ρb,a ⊗ id b)( ⃗uY + u⃗Y + ⃗uY + u⃗Y )

= ⃗uY + ⃗uY + u⃗Y + u⃗Y = ∇a( ⃗uY ) +∇b(u⃗Y )

= (∇a ⊗∇b)( ⃗uY + u⃗Y ) = (∇a ⊗∇b)(u)
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Theorem 7.3 (Af is gs-monoidal). The category Af with the following operators is gs-
monoidal:

(1) The tensor ⊗ on objects a ∈MY and b ∈MZ is again defined as a⊗ b = a+ b.

On arrows f : a 99K b and g : a′ 99K b′ (where a′ ∈ MY ′
, b′ ∈ MZ′

and f : P([Y ]a)→
P([Z]b

′
), g : P([Y ′]a

′
)→ P([Z ′]b

′
) are the underlying functions), the tensor is given by

f ⊗ g : P([Y + Y ′]a+a′)→ P([Z + Z ′]b+b′), (f ⊗ g)(U) = f( ⃗UY )∪Z g(U⃗Y )

where
⃗UY = U ∩ {1, . . . , |Y |} and U⃗Y = {k | |Y |+ k ∈ U}.

Furthermore:

U ∪Y V = U ∪ {|Y |+ k | k ∈ V } (where U ⊆ Y )

(2) The symmetry ρa,b : a⊗ b 99K b⊗a for a ∈MY , b ∈MZ is defined for U ⊆ [Y +Z]a+b as

ρa,b(U) = U⃗Y ∪Z ⃗UY ⊆ [Z + Y ]b+a

(3) The unit e is again the unique mapping e : ∅ →M.
(4) The duplicator ∇a : a 99K a⊗ a for a ∈MY is defined for U ⊆ [Y ]a as

∇a(U) = U ∪Y U ⊆ [Y + Y ]a+a.

(5) The discharger !a : a 99K e for a ∈MY is defined for U ⊆ [Y ]a as !a(U) = ∅.

Proof. Let a ∈MY , a′ ∈MY ′
, b ∈MZ , b′ ∈MZ′

, c ∈MW , c′ ∈MW ′
be objects in Af .

We know that Af is a well-defined category from Lemma 4.2. We note that, disjoint
unions of monotone functions are monotone, making the tensor well-defined.

We now verify the axioms of gs-monoidal categories (see Definition 7.1). The calculations
are mostly straightforward.

In the following we will often use the fact that ⃗UY ∪Y U⃗Y = U whenever U ∈ P([Z]b)
and Y ⊆ Z.

(1) functoriality of tensor:
• ida⊗b = ida ⊗ id b

Let U ⊆ [Y + Z]a+b, then:

(ida ⊗ id b)(U) = (ida ⊗ id b)( ⃗UY ∪Y U⃗Y )

= ida( ⃗UY )∪Y id b(U⃗Y ) = ⃗UY ∪Y U⃗Y = U = ida⊗b(U)

• (g ⊗ g′) ◦ (f ⊗ f ′) = (g ◦ f)⊗ (g′ ◦ f ′)

Let f : a 99K b, g : b 99K c, f ′ : a′ 99K b′, g′ : b′ 99K c′ and u ∈MY+Y ′
. We obtain:

((g ⊗ g′) ◦ (f ⊗ f ′))(U) = (g ⊗ g′)(f( ⃗UY )∪Z f ′(U⃗Y ))

= g(f( ⃗UY ))∪W g′(f ′(U⃗Y )) = ((g ◦ f)⊗ (g′ ◦ f ′))( ⃗UY ∪Y U⃗Y )

= ((g ◦ f)⊗ (g′ ◦ f ′))(U)

(2) monoidality:
• f ⊗ ide = f = ide ⊗ f

Let f : a 99K b and U ⊆ [Y ]a. It holds that:

(f ⊗ ide)(U) = f( ⃗UY )∪Z ide(U⃗Y ) = f(U)∪Z ide(∅) = f(U)∪Z ∅
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= f(U) = ∅∪∅ f(U) = ide(∅)∪∅ f(U) = ide( ⃗U∅)∪∅ f(U⃗∅)

= (ide ⊗ f)(U)

where we use ⃗UY = U and U⃗Y = ∅, since U ⊆ Y , as well as ⃗U∅ = ∅ and U⃗∅ = U .

• (f ⊗ g)⊗ h = f ⊗ (g ⊗ h)

Let f : a 99K a′, g ∈ : b 99K b′ and h : c 99K c′ and U ⊆ [Y + Z +W ]a+b+c. Then:

((f ⊗ g)⊗ h)(U) = (f ⊗ g)( ⃗UY+Z)∪Y ′+Z′ h(U⃗Y+Z)

=
(
f(
←−−−−−
( ⃗UY+Z)Y )∪Y ′ g(

−−−−−→
( ⃗UY+Z)Y )

)
∪Y ′+Z′ h(U⃗Y+Z)

=
(
f( ⃗UY )∪Y ′ g(

←−−−
(U⃗Y )Z)

)
∪Y ′+Z′ h(U⃗Y+Z)

= f( ⃗UY )∪Y ′
(
g(
←−−−
(U⃗Y )Z)∪Z′ h(

−−−→
(U⃗Y )Z)

)
= f( ⃗UY )∪Y ′(g ⊗ h)(U⃗Y ) = (f ⊗ (g ⊗ h))(U)

where we use
←−−−−−
( ⃗UY+Z)Y = ⃗UY ,

−−−−−→
( ⃗UY+Z)Y =

←−−−
(U⃗Y )Z and U⃗Y+Z =

−−−→
(U⃗Y )Z .

(3) naturality:
• (f ′ ⊗ f) ◦ ρa,a′ = ρb,b′ ◦ (f ⊗ f ′)

Let f : a 99K b and f ′ : a′ 99K b′. Then for U ⊆ [Y + Y ′]a+a′ it holds that:

(ρb,b′ ◦ (f ⊗ f ′))(U)

= ρb,b′(f( ⃗UY )∪Z f ′(U⃗Y ))

=
−−−−−−−−−−−−−→
(f( ⃗UY )∪Z f ′(U⃗Y ))Z ∪Z′

←−−−−−−−−−−−−−
(f( ⃗UY )∪Z f ′(U⃗Y ))Z

= f ′(U⃗Y )∪Z′ f( ⃗UY )

= f ′(
←−−−−−−−−−
(U⃗Y ∪Y ′ ⃗UY )Y ′)∪Z′ f(

−−−−−−−−−→
(U⃗Y ∪Y ′ ⃗UY )Y ′)

= (f ′ ⊗ f)(U⃗Y ∪Y ′ ⃗UY ) = (f ′ ⊗ f)(ρa,a′(U))

where we use
←−−−−−−
(U ∪Y V )Y = U and

−−−−−−→
(U ∪Y V )Y = V .

(4) symmetry:
• ρe,e = ide

Note that the only possibly argument is ∅ and hence:

ρe,e(∅) = ∅⃗∅ ∪∅ ⃗∅∅ = ∅∪∅ ∅ = ∅ = ide(∅)
• ρb,a ◦ ρa,b = ida⊗b

Let U ⊆ [Y + Z]a+b, then:

(ρb,a ◦ ρa,b)(U) = ρb,a(U⃗Y ∪Z ⃗UY )

=
−−−−−−−−→
(U⃗Y ∪Z ⃗UY )Z ∪Y

←−−−−−−−−
(U⃗Y ∪Z ⃗UY )Z = ⃗UY ∪Y U⃗Y = U

= ida⊗b(U)

• ρa⊗b,c = (ρa,c ⊗ id b) ◦ (ida ⊗ ρb,c)

Let U ⊆ [Y + Z +W ]a+b+c, then:

((ρa,c ⊗ id b) ◦ (ida ⊗ ρb,c))(U)
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= (ρa,c ⊗ id b)(ida( ⃗UY )∪Y ρb,c(U⃗Y ))

= (ρa,c ⊗ id b)( ⃗UY ∪Y (
−−−→
(U⃗Y )Z ∪W

←−−−
(U⃗Y )Z))

= (ρa,c ⊗ id b)( ⃗UY ∪Y (U⃗Y+Z ∪W
←−−−
(U⃗Y )Z))

= (ρa,c ⊗ id b)(( ⃗UY ∪Y U⃗Y+Z)∪Y+W

←−−−
(U⃗Y )Z))

= ρa,c( ⃗UY ∪Y U⃗Y+Z)∪W+Y id b(
←−−−
(U⃗Y )Z)

= (U⃗Y+Z ∪W ⃗UY )∪W+Y

←−−−
(U⃗Y )Z

= U⃗Y+Z ∪W ( ⃗UY ∪Y
←−−−
(U⃗Y )Z)

= U⃗Y+Z ∪W (
←−−−−−
( ⃗UY+Z)Y ∪Y

−−−−−→
( ⃗UY+Z)Y )

= U⃗Y+Z ∪W ⃗UY+Z = ρa⊗b,c(U)

where we use
−−−→
(U⃗Y )Z = U⃗Y+Z , ⃗UY =

←−−−−−
( ⃗UY+Z)Y and

←−−−
(U⃗Y )Z =

−−−−−→
( ⃗UY+Z)Y .

(5) gs-monoidality:
• !e = ∇e = ide

In this case ∅ is the only possible argument and we have:

!e(∅) = ∅ = ide(∅) = ∅ = ∅∪∅ ∅ = ∇e(∅)
• coherence axioms:

For U ⊆ [Y ]a, we note that
←−−−−−−
(U ∪Y U)Y =

−−−−−−→
(U ∪Y U)Y = U .

– (ida ⊗∇a) ◦ ∇a = (∇a ⊗ ida) ◦ ∇a

Let U ⊆ [Y ]a, then:

((ida ⊗∇a) ◦ ∇a)(U) = (ida ⊗∇a)(U ∪Y U)

= ida(U)∪Y ∇a(U) = U ∪Y (U ∪Y U)

= (U ∪Y U)∪Y+Y U = ∇a(U)∪Y+Y ida(U)

= (∇a ⊗ ida)(U ∪Y U) = (∇a ⊗ ida)(∇a(U))

– ida = (ida⊗!a) ◦ ∇a

Let U ⊆ [Y ]a, then:

((ida⊗!a) ◦ ∇a)(U) = (ida⊗!a)(U ∪Y U)

= ida(U)∪Y !a(U) = ida(U)∪Y ∅
= ida(U)

– ρa,a ◦ ∇a = ∇a

Let U ⊆ [Y ]a, then:

(ρa,a ◦ ∇a)(U) = ρa,a(U ∪Y U) = U ∪Y U = ∇a(U)

• monoidality axioms:
– !a⊗b =!a⊗!b

Let U ⊆ [Y + Z]a+b, then:

!a⊗b(U) = ∅ = ∅∪∅ ∅ =!a( ⃗UY )∪∅!b(U⃗Y )
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= (!a⊗!b)( ⃗UY ∪Y U⃗Y ) = (!a⊗!b)(U)

– ∇a ⊗∇b = (ida ⊗ ρb,a ⊗ id b) ◦ ∇a⊗b

Let U ⊆ [Y + Z]a+b, then:

(ida ⊗ ρb,a ⊗ id b)(∇a⊗b(U))

= (ida ⊗ (ρb,a ⊗ id b))(U ∪Y+Z U)

= ida(
←−−−−−−−−
(U ∪Y+Z U)Y )∪Y (ρb,a ⊗ id b)(

−−−−−−−−→
(U ∪Y+Z U)Y )

= ida( ⃗UY )∪Y (ρb,a ⊗ id b)(
−−−−−−−−→
(U ∪Y+Z U)Y )

= ⃗UY ∪Y (ρb,a ⊗ id b)(
−−−−−−−−→
(U ∪Y+Z U)Y )

= ⃗UY ∪Y (ρb,a ⊗ id b)((U⃗Y ∪Z ⃗UY )∪Z+Y U⃗Y )

= ⃗UY ∪Y (( ⃗UY ∪Y U⃗Y )∪Y+Z U⃗Y )

= ( ⃗UY ∪Y ⃗UY )∪Y+Y (U⃗Y ∪Z U⃗Y )

= ∇a( ⃗UY )∪Y+Y ∇b(U⃗Y )

= (∇a ⊗∇b)( ⃗UY ∪Y U⃗Y ) = (∇a ⊗∇b)(U)

where we use the fact that
←−−−−−−−−
(U ∪Y+Z U)Y = ⃗UY and

−−−−−−−−→
(U ∪Y+Z U)Y = (U⃗Y ∪Z ⃗UY )∪Z+Y U⃗Y .

Theorem 7.4 (# is gs-monoidal). #: Cf → Af is a gs-monoidal functor.

Proof. We write e′,⊗′, !′,∇′, ρ′ for the corresponding operators in category Af . Note that
by definition e = e′ and ⊗, ⊗′ agree on objects.

First, categories Cf and Af are gs-monoidal by Theorem 7.2 and 7.3.
Furthermore we verify that:

(1) monoidality:

• #(e) = e′

We have #(e) = e = e′

• #(a⊗ b) = #(a)⊗′ #(b)

We have:

#(a⊗ b) = a⊗ b = #(a)⊗′ #(b)

(2) symmetry:

• #(ρa,b) = ρ′#(a),#(b)

Let U ⊆ [Y + Z]a+b, then for sufficiently small δ ⊐ 0 (note that such δ exists due to
finiteness):

#(ρa,b)(U)

= (ρa,b)
a+b,δ
# (U)

= {w ∈ [Z + Y ]b+a | ρa,b(a+ b)(w)⊖ ρa,b((a+ b)⊖ δU )(w) ⊒ δ}

= {w ∈ [Z + Y ]b+a | (b+ a)(w)⊖ ((b+ a)⊖ δρ′a,b(U))(w) ⊒ δ}

= ρ′a,b(U) = ρ′#(a),#(b)(U)
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since ρa,b distributes over componentwise subtraction and ρa,b(δU ) = δρ′a,b(U). The

second-last equality holds since for all w in the set we have (b+ a)(w) ⊐ 0.
(3) gs-monoidality:

• #(!a) =!′#(a)

Let U ⊆ [Y ]a, then for some δ:

#(!a)(U) = (!a)
a,δ
# (U) = ∅ =!′a(U) =!′#(a)(U)

since the codomain of (!a)
a,δ
# (U) is P(∅) and hence the only possible value for (!a)

a,δ
# (U)

is ∅.
• #(∇a) = ∇′

#(a)

Let U ⊆ [Y ]a, then for sufficiently small δ ⊐ 0:

#(∇a)(U)

= (∇a)
a,δ
# (U)

= {w ∈ [Y + Y ]a+a | ∇a(a)(w)⊖∇a(a⊖ δU )(w) ⊒ δ}
= {w ∈ [Y + Y ]a+a | (a+ a)(w)⊖ ((a+ a)⊖ δ∇′

a(U))(w) ⊒ δ}
= ∇′

a(U) = ∇′
#(a)(U)

since ∇a distributes over componentwise subtraction and ∇a(δU ) = δ∇′
a(U). The

second-last equality holds since for all w in the set we have (a+ a)(w) ⊐ 0.
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