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In order to model the behaviour of open concurrent systems by means of Petri nets, we

introduce open Petri nets, a generalisation of the ordinary model where some places,

designated as open, represent an interface between the system and the environment. Besides

generalising the token game to reflect this extension, we define a truly concurrent semantics

for open nets by extending the Goltz–Reisig process semantics of Petri nets.

We introduce a composition operation over open nets, characterised as a pushout in the

corresponding category, suitable for modelling both interaction through open places and

synchronisation of transitions. The deterministic process semantics is shown to be

compositional with respect to such a composition operation. If a net Z3 results as the

composition of two nets Z1 and Z2, having a common subnet Z0, then any two deterministic

processes of Z1 and Z2 that ‘agree’ on the common part, can be ‘amalgamated’ to produce a

deterministic process of Z3. Conversely, any deterministic process of Z3 can be decomposed

into processes of the component nets. The amalgamation and decomposition operations are

shown to be inverse to each other, leading to a bijective correspondence between the

deterministic processes of Z3 and the pair of deterministic processes of Z1 and Z2 that agree

on the common subnet Z0. Technically, our result is similar to the amalgamation theorem

for data-types in the framework of algebraic specification. A possible application field of

the proposed constructions and results is the modelling of interorganisational workflows,

recently studied in the literature. This is illustrated by a running example.

1. Introduction

Petri nets (Reisig 1985) are a basic model of concurrent and distributed systems. Because

of their intuitive graphical representation, Petri nets are widely used both in theoretical

and applied research to specify and visualise the behaviour of systems. One important
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Graph Transformation Systems), by the ESPRIT Working Group APPLIGRAPH (Applications of Graph

Transformation), and by the MURST project TOSCA (Teoria della Concorrenza, Linguaggi di Ordine

Superiore e Strutture di Tipi).
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feature of Petri nets, especially when explaining the concurrent behaviour of a net to non-

experts, is the possibility of describing their execution within the same visual notation,

that is, in terms of processes (Golz and Reisig 1983).

However, when modelling reactive systems, that is, concurrent systems with interacting

subsystems, Petri nets force us to take a global perspective. In fact, ordinary Petri nets

are not adequate for modelling open systems, which can interact with their environment

or, taking a different viewpoint, which are only partially specified. This makes it difficult

to specify a large system as the composition of smaller components, which is a common

practice, for example, in software engineering.

We can explain this problem in more detail by means of a typical application of

Petri nets, the specification of workflows. A workflow describes a business process in

terms of tasks and shared resources. Such descriptions are needed, for example, when

interoperability of the workflows of different organisations is an issue, which is frequently

the case, for example, when applications of different enterprises are to be integrated

over the Internet. A workflow net (van der Aalst 1998) is a Petri net satisfying some

structural constraints, such as the existence of one initial and one final place, and a

corresponding soundness condition: from each marking reachable from the initial one

(one token on the initial place) we can reach the final marking (one token on the final

place). An interorganisational workflow (van der Aalst 1999) is modelled as a set of such

workflow nets connected through additional places for asynchronous communication and

synchronisation requirements on transitions.

For instance, Figure 1 shows an interorganisational workflow consisting of two local

workflow nets Traveller and Agency related through communication places can, ack,

bill, payment and ticket and a synchronisation requirement between the two reserve

transitions, modelled by a dashed line. The example describes the booking of a flight by

a traveller in cooperation with a travel agency. After some initial negotiations (which are

not modelled), both sides synchronise in the reservation of a flight. Then, the traveller may

either acknowledge or cancel and re-enter the initial state. In both cases an asynchronous

notification (for example, a fax), modelled by the places ack and can, respectively, is sent

to the travel agency. Next the local workflow of the traveller forks into two concurrent

threads, the booking of a hotel and the payment of the bill. The trip can start when both

tasks are completed and the ticket has been provided by the travel agency.

The overall net in Figure 1 describes the system from a global perspective. Hence, the

classical notion of behaviour (described, for example, in terms of processes) is completely

adequate. However, for a local subnet in isolation (like Traveller), which will only

exhibit a meaningful behaviour when interacting with other subnets, this semantics is not

appropriate because it does not take into account the possible interactions.

In order to overcome these limitations of ordinary Petri nets, we extend the basic model

by introducing open nets. An open net is a P/T Petri net with a distinguished set of places,

called open, which are intended to represent the interface of the net towards the external

world. Some similarities exist with other approaches to net composition, like the Petri

box calculus (Best et al. 1992; Koutny et al. 1994; Koutny and Best 1999), Petri nets with

interface (Nielsen et al. 1995; Priese and Wimmel 1998) and Petri net components (Kindler

1997), which will be discussed later. As a consequence of the (hidden, implicit) interaction
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Fig. 1. Sample net modelling an interorganisational workflow.

between the net and the environment, some tokens can ‘freely’ appear in or disappear

from the open places: this will be formalised by generalising the token game. Then we

will provide a truly concurrent semantics that extends the ordinary (deterministic) process

semantics (Golz and Reisig 1983) to open nets.

The embedding of an open net in a context is formally described by an injective

morphism in a suitable category of open nets. Intuitively, in the target net new transitions

can be attached to open places and, moreover, the interface towards the environment can

be reduced by ‘closing’ open places. Therefore, open net morphisms do not preserve but

reflect the behaviour, that is, any computation of the target (larger) net can be projected

back to a computation of the source (smaller) net.

A composition operation is introduced over open nets. Two open nets Z1 and Z2 can

be composed by specifying a common subnet Z0 that embeds both in Z1 and in Z2.

Then the two nets can be glued along the common part. This is permitted only if

the prescribed composition is consistent with the interfaces, that is, only if the places

of Z1 and Z2 that are used when connecting the two nets are actually open. The

composition operation is characterised as a pushout in the category of open nets, where

the conditions for the existence of the pushout fit nicely with the mentioned condition over

interfaces.

Based on these concepts, the representation of the system of Figure 1 in terms of

two interacting open nets is given by the top part of Figure 2, which comprises the

two component nets Traveller and Agency, and the net Common that embeds into
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Fig. 2. Interorganisational workflow as the composition of open nets Traveller and Agency.



Compositional semantics for open Petri nets based on deterministic processes 5

both components by means of open net morphisms. Places with incoming/outgoing

dangling arcs are open. Observe that the common subnet Common of the components

Traveller and Agency closely corresponds to the dashed items of Figure 1, which represent

the ‘glue’ between the two components. The net resulting from the composition of

Traveller and Agency over the shared subnet Common is shown in the bottom part of

Figure 2.

Obviously, one would like to be able to establish a clear relationship between the

behaviours of the component nets (in the example, the nets Traveller and Agency)

and the behaviour of the composition (in the example, the net Global). We will show

that indeed, the behaviour of the latter can be constructed ‘compositionally’ out of the

behaviours of the former, in the sense that two deterministic processes of the component

nets that ‘agree’ on the shared part, can be synchronised to produce a deterministic

process of the composed net. Conversely, any deterministic process of the global net can

be decomposed into deterministic processes of the component nets, which, in turn, can

be synchronised to give the original process again. The top part of Figure 3 shows two

processes of the nets Traveller and Agency, the corresponding common projections over

net Common and the process of Global arising from their synchronisation.

The synchronisation of processes, based on the composition of their underlying nets,

resembles the amalgamation of data-types in the framework of algebraic specifications,

and therefore we will speak of the amalgamation of processes. By analogy with the

amalgamation theorem for algebraic specifications (Ehrig and Mahr 1985), the main result

of this paper shows that the amalgamation and decomposition constructions mentioned

above are inverse to each other, establishing a bijective correspondence between the pairs

of processes of two nets that agree on a common subnet and the processes of the net

resulting from their composition.

The rest of the paper is organised as follows. Section 2 introduces the open Petri

net model and the corresponding category. Section 3 extends the notion of process

from ordinary to open nets and defines the operation of behaviour projection. Section 4

introduces the composition operation for open nets, based on a pushout in the category of

open nets. Section 5 presents the compositionality result of the process semantics of open

nets. Finally, Section 6 discusses some related work in the literature and Section 7 draws

some conclusions and outlines possible directions for future investigation. An extended

abstract of this paper has been published as Baldan et al. (2001).

2. Open nets

An open net is an ordinary P/T Petri net with a distinguished set of ‘open’ places that are

intended to represent the interface of the net towards the external world (environment). As

a consequence of the (hidden, implicit) interaction between the net and the environment,

some tokens can freely appear in and disappear from the open places. Concretely, an open

place can be either an input or an output place (or both), meaning that the environment

can put or remove tokens from that place.

Given a set X we use X⊕ to denote the free commutative monoid generated by X, and

2X to denote its powerset. Given A ∈ X⊕ and x ∈ X, we will write x ∈ A to mean that
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A = A′ ⊕ x for some A′ ∈ X⊕. Furthermore, given a function h : X → Y we will use

h⊕ : X⊕ → Y ⊕ to denote its monoidal extension, while the same symbol h : 2X → 2Y

denotes the extension of h to sets.

Definition 1 (P/T Petri net). A P/T Petri net is a tuple N = (S, T , σ, τ) where S is the

set of places, T is the set of transitions (with S ∩ T = �) and σ, τ : T → S⊕ are the

functions assigning to each transition its pre- and post-set.

In the following we will use • : T⊕ → S⊕ to denote the monoidal extension of the

function σ : T → S⊕. Similarly, • denotes the monoidal extension of τ. Furthermore,

given a place s ∈ S , the pre- and post-set of s are defined by •s = {t ∈ T | s ∈ t•} and

s• = {t ∈ T | s ∈ •t}.

Definition 2 (Petri net category). Let N0 and N1 be Petri nets. A Petri net morphism

f : N0 → N1 is a pair of total functions f = 〈fT , fS 〉 with fT : T0 → T1 and fS : S0 → S1,

such that for all t0 ∈ T0,
•fT (t0) = fS

⊕( •t0) and fT (t0)
• = fS

⊕(t0
•) (see the diagram

below).

T0

fT

σ0

τ0
S0
⊕

fS
⊕

T1

σ1

τ1
S1
⊕

The category of P/T Petri nets and Petri net morphisms is denoted by Net.

Petri net morphisms are closed under composition. This immediately follows by

observing that given f0 : N0 → N1 and f1 : N1 → N2, we have (fS1
◦ fS0

)⊕ = fS1

⊕ ◦ fS0

⊕.

Category Net is a subcategory of the category Petri of Meseguer and Montanari (1990).

The latter has the same objects, but more general morphisms, which can map a place into

a multiset of places.

We are now ready to introduce the notion of open net.

Definition 3 (Open net). An open net is a pair Z = (NZ,OZ ), where:

— NZ = (SZ , TZ , σZ , τZ ) is an ordinary P/T Petri net, and

— OZ = (O+
Z , O

−
Z ) ∈ 2SZ × 2SZ are the input and output open places of the net.

The places in S − (O+
Z ∪ O−Z ) will be referred to as internal places of Z .

Observe that the sets O+
Z and O−Z are not necessarily disjoint, hence a place can be both

an input and an output open place at the same time.

The notion of enabledness for a transition (or multiset of transitions) of an open net is

the usual one, but, besides the changes produced to the state by the firing of the ‘internal’

transitions of the net, the interaction with the environment is also explicitly modelled.

This is done by considering a kind of invisible action producing/consuming tokens in the

input/output places of the net. The actions of the environment that produce and consume

tokens in an open place s are denoted by +s and −s, respectively.
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Definition 4 (Token game). Let Z be an open net. A sequential move can be:

(i) the firing of a transition, that is, m⊕ •t [t〉 m⊕ t•, with m ∈ SZ⊕, t ∈ TZ ;

(ii) the creation of a token by the environment, that is, m [+s〉 m ⊕ s, with s ∈ O+
Z ,

m ∈ SZ⊕;

(iii) the deletion of a token by the environment, that is, m ⊕ s [−s〉 m, with m ∈ SZ⊕,

s ∈ O−Z .

A parallel move is of the form

m⊕ •A⊕ m− [A⊕ E− ⊕ E+〉 m⊕ A• ⊕ m+,

where m ∈ SZ⊕, m+ ∈ (O+
Z )
⊕
, m− ∈ (O−Z )⊕, A ∈ TZ⊕, and E− =

⊕
s∈m− −s, E+ =

⊕
s∈m+

+s.

Alternatively, the token game of an open net can be described as the behaviour of

an ordinary net, called the closure of Z and denoted by Z̄ . The net Z̄ is obtained by

adding transitions connected to open places that can freely produce/remove tokens from

input/output places, that is, Z̄ = (T ′, SZ , σ
′, τ′) where:

— T ′ = TZ ∪ {+s | s ∈ O+
Z } ∪ {−s | s ∈ O−Z };

— σ′(+s) = 0 and τ′(+s) = s for any s ∈ O+
Z ;

— σ′(−s) = s and τ′(−s) = 0 for any s ∈ O−Z ;

and σ′, τ′ coincide with σZ , τZ on the other transitions.

Example. The open nets for the local workflows Traveller and Agency of Figure 1 are

shown in the middle part of Figure 2. Ingoing and outgoing arcs without source or target

designate the input and output places, respectively. Observe that the synchronisation

transition reserve is common to both nets. Furthermore, the communication places, like

can, become open places.

Definition 5 (Open net morphism). An open net morphism f : Z1 → Z2 is a Petri net

morphism f : NZ1
→ NZ2

such that, if we define

in(f) = {s ∈ S1 | •fS (s)− fT ( •s) �= �}
and

out(f) = {s ∈ S1 | fS (s)• − fT (s•) �= �} ,
then

(i) f−1
S (O+

2 ) ∪ in(f) ⊆ O+
1

(ii) f−1
S (O−2 ) ∪ out(f) ⊆ O−1 .

The morphism f is called an open net embedding if both components fT and fS are

injective.

To simplify the notation in the rest of the paper, given an open net morphism f =

〈fS , fT 〉 : Z1 → Z2, we will omit the subscripts ‘S ’ and ‘T ’ in its place and transition

components, writing f(s) for fS (s) and f(t) for fT (t).
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Fig. 4. The open net embedding of net Traveller into net Global.

A morphism f : Z1 → Z2 can be thought of as an ‘insertion’ of the open net Z1 into

a larger net Z2, which extends Z1. In other words, Z2 can be seen as an instantiation of

Z1, where part of the unknown environment gets more specified. Conditions (i) and (ii)

first require that open places are reflected, and hence that internal places in Z1 cannot

be promoted to open places in Z2. Furthermore, the context in which Z1 is inserted can

interact with Z1 only through the open places. To understand how this is formalised,

observe that for each place s in in(f), its image f(s) is in the post-set of a transition

outside the image of •s. Hence we can consider that in Z2 new transitions are attached to

s and can produce tokens in such place. This is the reason why condition (i) also requires

any place in in(f) to be an input open place of Z1. Condition (ii) is analogous for output

places.

The above intuition fits better with open net embeddings, and indeed most of the

constructions in the paper will be defined for this subclass of open net morphisms.

Example. As an example of open net morphism, consider the embedding of net Traveller

into net Global of Figure 4 (extracted from Figure 2). Observe that the constraints

characterising open nets morphisms have an intuitive graphical interpretation:

— The connections of transitions to their pre-set and post-set have to be preserved – new

connections cannot be added.

— In the larger net, a new arc may be attached to a place only if the corresponding

place of the subnet has a dangling arc in the same direction. Dangling arcs may

be removed, but cannot be added in the larger net. For instance, without the

outgoing dangling arc from place can in net Traveller, that is, if place can were

not output open, the mapping in Figure 4 would not have been a legal open net

morphism.

Next we show that open net morphisms are closed under composition.
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Proposition 6. Open net morphisms are closed under composition.

Proof. Let f1 : Z1 → Z2 and f2 : Z2 → Z3 be open net morphisms. Then f2 ◦ f1 is a

morphism in Net. As for condition (i) of Definition 5, first observe that

in(f2 ◦ f1) ⊆ in(f1) ∪ f−1
1 (in(f2)) . (1)

In fact,

in(f2 ◦ f1) = {s ∈ S1 | •f2(f1(s))− f2(f1(
•s)) �= �}

= {s ∈ S1 | •f2(f1(s))− f2(
•f1(s)) �= �}

∪ {s ∈ S1 | f2(
•f1(s))− f2(f1(

•s)) �= �}
⊆ {s ∈ S1 | f1(s) ∈ in(f2)} ∪ {s ∈ S1 | f2(

•f1(s)− f1(
•s)) �= �}

= f−1
1 (in(f2)) ∪ {s ∈ S1 | •f1(s)− f1(

•s) �= �}
= f−1

1 (in(f2)) ∪ in(f1) .

Therefore,

in(f2 ◦ f1) ⊆ in(f1) ∪ f−1
1 (in(f2)) [using (1)]

⊆ O+
1 ∪ f−1

1 (O+
2 ) [since, by definition of morphism,

in(f1) ⊆ O+
1 and in(f2) ⊆ O+

2 ]

⊆ O+
1 [since, by definition of morphism, f−1

1 (O+
2 ) ⊆ O+

1 ].

Furthermore, (f2 ◦ f1)
−1(O+

3 ) = f−1
1 (f−1

2 (O+
3 )) ⊆ f−1

1 (O+
2 ) ⊆ O+

1 , since f1 and f2 are

morphisms. Thus, summing up,

(f2 ◦ f1)
−1(O+

3 ) ∪ in(f2 ◦ f1) ⊆ O+
1 .

Condition (ii), over output open places, can be proved in a totally analogous way.

By the previous proposition, we can consider a category of open nets.

Definition 7 (Open nets category). We will use ONet to denote the category of open nets

and open net morphisms.

We said earlier that open net morphisms are designed to capture the idea of ‘insertion’

of a net into a larger one. Hence it is natural to expect that they ‘reflect’ the behaviour

in the sense that given f : Z0 → Z1, the behaviour of Z1 can be projected along the

morphism to the behaviour of Z0 (this fact will be formalised later, in Construction 13).

Instead, unlike most of the morphisms considered over Petri nets, open net morphisms

cannot be thought of as simulations since they do not preserve the behaviour. For instance,

consider the open nets Z0 and Z1 in Figure 5 and the obvious open net morphism between

them. Then the firing sequence 0 [+s〉 s [t〉 0 in Z0 is not mapped to a firing sequence

in Z1.

There is an obvious forgetful functor from the category of open nets to the category of

ordinary nets.
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Fig. 6. A (non-deterministic) open occurrence net.

Definition 8. We use F : ONet → Net to denote the forgetful functor defined by

F(Z) = NZ for any open net Z and F(f : Z0 → Z1) = f : NZ0
→ NZ1

for any

open net morphism f.

Since functor F acts on arrows as identity, with abuse of notation, given an open net

morphism f : Z0 → Z1, we will often write f : F(Z0)→ F(Z1) instead of F(f) : F(Z0)→
F(Z1).

3. Deterministic processes of open nets

In a similar way to what happens for ordinary nets, a process of an open net, providing

a truly concurrent description of a (possibly non-deterministic) computation of the net, is

an open net itself, satisfying suitable acyclicity and conflict freeness requirements, together

with a mapping to the original net.

The open net underlying a process is an open occurrence net, namely an open net K such

that NK is an ordinary occurrence net and satisfying some additional conditions over open

places. The open places in K are intended to represent tokens that are produced/consumed

by the environment in the computation under consideration. Consequently, every input

open place is required to have an empty pre-set, that is, to be minimal with respect to

the causal order. In fact, an input open place in the post-set of some transition would

correspond to a kind of generalised backward conflict: a token on this place could be

generated in two different ways, that is, by the firing of an ‘internal’ transition or by

the environment, and this would prevent one from interpreting the place as a token

occurrence.

Observe that, instead, an output open place can be in the pre-set of a transition, as

happens for place s in the open occurrence net of Figure 6. The idea is that the token

occurrence represented by place s can be consumed either by the environment or by

transition t.
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Recall that for an ordinary net N = (S, T , σ, τ) the causal relation <N is defined as

the least transitive relation over S ∪ T such that x <N y if y ∈ x•, for x, y ∈ S ∪ T .

The conflict relation #N is defined as the least symmetric relation over S ∪ T such

that:

(i) for any t, t′ ∈ T , if •t ∩ •t′ �= 0 and t �= t′ then t#Nt
′ (immediate conflict), and

(ii) if x#y and y <N z then x#Nz (inheritance with respect to causality).

Definition 9 (Open occurrence net). An open occurrence net is an open net K such

that:

1. NK is an ordinary occurrence net, in other words in NK there are no backward conflicts

(that is, for any t, t′ ∈ TK , if t �= t′, then t• ∩ t′• = �), the causal relation <K is a

finitary strict partial order and the conflict relation #K is irreflexive.

2. Each input open place is minimal with respect to <K , that is, ∀s ∈ O+
K.
•s = �.

We are now ready to introduce the notion of process for open nets.

Definition 10 (Open net process). A process of an open net Z is a mapping π : K → Z

where K is an open occurrence net and π : NK → NZ is a Petri net morphism, such that

πS (O
+
K ) ⊆ O+

Z and πS (O
−
K) ⊆ O−Z .

Observe that the mapping from the occurrence net K to the the original net Z is not, in

general, an open net morphism. In fact, the process mapping, unlike open net morphisms,

must be a simulation, that is, it must preserve the behaviour. Furthermore, the image of

an open place in K must be an open place in Z , since tokens can be produced (consumed)

by the environment only in input (output) open places of Z . Notice that in the case of

nets with an empty set of open places, which can be seen as ordinary Petri nets, the notion

of process coincides with the classical one.

In the following, when the meaning is clear from the context, we will sometimes identify

a process π : K → Z with the corresponding morphism π : NK → NZ in the category

Net.

As usual, a process will be called deterministic if it represents a uniquely determined

concurrent computation. First, an open occurrence net is deterministic if the underlying

ordinary occurrence net is deterministic, that is, each place is in the pre-set of at most

one transition. Furthermore, the output open places must be maximal with respect to the

causal order, that is, an output open place cannot be in the pre-set of any transition. In

fact, as already observed, an output open place s that is in the pre-set of a transition

t represents a token occurrence that can be consumed either by the environment or by

transition t. A process will be called deterministic if the underlying open occurrence net

is deterministic.

Definition 11 (Deterministic occurrence net and process). An open occurrence net K is

called deterministic if:

1. The underlying ordinary occurrence net NK is deterministic, that is, ∀s ∈ SK. |s•| � 1.

2. Each output open place is maximal, that is, ∀s ∈ O−K. s• = �.

A process π : K → Z of an open net Z is deterministic if K is deterministic.
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Fig. 7. A process of the open net Global and its projection to the subnet Traveller.

Example. A deterministic process for the open net Traveller is shown in Figure 7 on

the left. The morphism back to the original net Traveller is implicitly represented by the

labelling. Observe that the requirement that each input place is minimal and each output

place is maximal with respect to the causal order of the process has a natural graphical

interpretation: the absence of backward and forward conflicts extends to dangling arcs,

that is, in total, each place may have at most one ingoing and one outgoing arc.

Next we introduce a category of processes, where the objects are processes and the

arrows are pairs of open net morphisms.

Definition 12 (Category of processes). We use Proc to denote the category where objects

are processes and, given two processes π0 : K0 → Z0 and π1 : K1 → Z1, an arrow

ψ : π0 → π1 is a pair of open net morphisms ψ = 〈ψZ : Z0 → Z1, ψK : K0 → K1〉 such

that the following diagram (indeed the underlying diagram in Net) commutes

K0

π0

ψK
K1

π1

ψ

Z0 ψZ
Z1

3.1. Projecting processes along embeddings

Let f : Z0 → Z1 be an open net morphism. As mentioned earlier, it is natural to expect

that each computation in Z1 can be ‘projected’ to Z0, by considering only the part of

the computation of the larger net that is visible in the smaller net. The above intuition is

formalised, in the case of an open net embedding f : Z0 → Z1, by showing how a process

of Z1 can be projected along f giving a process of Z0.
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Construction 13 (Projection of a process). Let f : Z0 → Z1 be an open net embedding

and let π1 : K1 → Z1 be a process of Z1. A projection of π1 along f is a pair 〈π0, ψ〉 where

π0 : K0 → Z0 is a process of Z0 and ψ : π0 → π1 is an arrow in Proc, constructed as

follows. Consider the pullback of π1 and f in Net, thus obtaining the net morphisms π0

and ψK .

NK0

π0

ψK
NK1

π1

NZ0 f
NZ1

Then K0 is obtained by taking NK0
with the smallest sets of open places that make

ψK : NK0
→ NK1

an open net morphism, namely

O+
K0

= ψK
−1

(
O+
K1

)
∪ in(ψK ) and O−K0

= ψK
−1

(
O−K1

)
∪ out(ψK)

and ψ = 〈ψK, f〉.

The next proposition shows that the notion of projection is well-defined, and restricts to

deterministic processes.

Proposition 14. The process π0 : K0 → Z0, as introduced in Construction 13, is well

defined. Furthermore, the projection of a deterministic process is still a deterministic

process.

Proof. First observe that K0 is an open occurrence net. In fact, since f is injective, ψK
is injective also, and thus NK0

is isomorphic to the subnet of NK1
in the codomain of ψK ,

which is clearly an ordinary occurrence net. Furthermore, we must show that each open

input place is minimal. Let s ∈ O+
K0

. Then we have two possibilities:

(i) ψK (s) ∈ O+
K1

.

Observe that •s ⊆ ψ−1
K ( •ψK(s)). Since K1 is an open occurrence net, •ψK (s) = � and

thus •s = �.

(ii) s ∈ in(ψK ).

In this case •ψK (s) − ψK ( •s) �= �. Recalling that K1 is an occurrence net and thus

| •ψK (s)| � 1, we conclude that ψK ( •s) = �. Hence, as desired, •s = �.

Now, observe that π0 is clearly a morphism in Net. Hence, to conclude that π0 is a

well-defined process, it only remains to show that it also satisfies

π0

(
O+
K0

)
⊆ O+

Z0
and π0

(
O−K0

)
⊆ O−Z0

.

Let us show, for instance, the first inclusion. Consider s ∈ O+
K0

. Since, by construction,

O+
K0

= ψ−1
K (O+

K1
) ∪ in(ψK ), we distinguish two possibilities:

1. s ∈ ψ−1
K (O+

K1
)

We have f(π0(s)) = π1(ψK (s)) ∈ π1(O
+
K1

) and, by definition of a process, π1(O
+
K1

) ⊆ O+
Z1

.

Hence π0(s) ∈ f−1(O+
Z1

) ⊆ O+
Z0

, since f is an open net morphism.
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2. s ∈ in(ψK )

In this case, •ψK (s) − ψK ( •s) �= �. Since K1 is an occurrence net, this means that

there exists t ∈ •ψK (s) and ψK ( •s) = �, that is, •s = �. Now observe that

π1(t) ∈ •π1(ψK (s)) = •f(π0(s)). Moreover, since the square in Construction 13 is a

pullback, π1(t) �∈ f( •π0(s)). In fact, if π1(t) ∈ f( •π0(s)), there would be t′ in NK0
such

that f(π0(t
′)) = π1(t), hence t′ ∈ •s and thus ψK (t′) ∈ •ψK (s), which should be empty.

Summing up, π1(t) belongs to •f(π0(s))− f( •π0(s)), which thereby is non-empty. Hence

π0(s) ∈ in(f).

Let us prove now that the projection of a deterministic process is still a deterministic

process. Assume that π1 : K1 → Z1 is a deterministic process of Z1. As in the general

case, the net NK0
is isomorphic to the subnet of NK1

in the codomain of ψK , and thus it

is an ordinary deterministic occurrence net. We already know that ∀s ∈ O+
K0
. •s = �, and

π0(O
+
K0

) ⊆ O+
Z0

, π0(O
−
K0

) ⊆ O−Z0
. Thus we only need to show that ∀s ∈ O−K0

. s• = �. Let

s ∈ O−K0
. To prove that s• = �, just distinguish the cases:

1. s ∈ ψ−1
K (O−K1

), and

2. s ∈ out(ψK).

Then proceed exactly as in points (i) and (ii) above but substituting ‘−’ and out(·) for +

and in(·), respectively.

The process π0 of Z0 is uniquely determined up to isomorphism. Observe that after

fixing a representative in the isomorphism class of π0, we can still have different choices

for ψK (obtained one from the other by composition with an automorphism over NK0
).

Example. The embedding of Traveller into Global in Figure 4 induces a projection of

open net processes in the opposite direction. For instance, the right-hand part of Figure 7

shows a process of Global. Its projection along the embedding of Traveller into Global

is shown on the left-hand part of the same figure. Notice how transition acknowledged,

which consumes a token in place ack, is replaced in the projection by a dangling output

arc: an internal action in the larger net becomes an interaction with the environment in

the smaller one.

Remark 15. The construction of category Proc strictly resembles the construction of an

arrow category. We use N : Proc → ONet to denote the projection functor that maps

each process π : K → Z to Z and each process arrow 〈ψZ, ψK〉 to ψZ . Then, given an

embedding f : Z0 → Z1 and a process π1 : K1 → Z1, a projection of π1 along f, as defined

above, is a cartesian arrow for π1 and f.

If we restrict our attention to open net embeddings, thus obtaining the subcategor-

ies ONet∗ and Proc∗, the corresponding functor N∗ is a fibration (see, for example,

Jacobs (1999)) with total category Proc∗ and base category ONet∗. Furthermore, the

fibration N∗ is split. In fact, the injectivity of the arrows in ONet∗ provides a choice of the

pullbacks that are used for projections. Look at the diagram in Construction 13. When f

is injective, ψK is injective also, and thus we have a canonical choice 〈K ′0, ψ′K, π′0〉 for the
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construction, that is:

— occurrence net K ′0:

NK ′0
is the subnet of NK1

identified as the image of ψK ; the open places of K ′0 are the

open places in K1 that belong to K ′0 and the ‘interface places’, namely the places in

K ′0 whose precondition is outside K ′0, that is:

O+
K ′0

=
(
O+
K1
∩ SK ′0

)
∪

{
s ∈ SK ′0 : •s ∩

(
TK0
− TK ′0

)
�= �

}
,

and O−K ′0
is defined in similar way.

— arrows ψ′K and π′0:

ψ′K is the the inclusion of K ′0 into K1, and π′0 is uniquely determined by the requirement

of commutativity.

The cleavage c(f, π1) = 〈π′0, 〈f, ψ′K〉〉 defined in this way is splitting.

4. Composing open nets

In this section we introduce a basic mechanism for composing open nets, which will be

characterised as a pushout construction in the category of open nets. Intuitively, two open

nets Z1 and Z2 are composed by specifying a common subnet Z0, and then by joining the

two nets along Z0. Consider, for instance, the open nets for the local workflows Traveller

and Agency in the middle of Figure 2. The two nets share the subnet Common depicted

in the top of the same figure, which represents the ‘glue’ between the two components.

The net Global resulting from the composition of Traveller and Agency over the shared

subnet Common is shown in the bottom part of Figure 2. This composition is only defined

if the embeddings of the components into the resulting net satisfy the constraints of open

net morphisms. For example, if we remove the ingoing dangling arc of the place ticket in

the net Traveller, the embedding of Common into Traveller would still represent a legal

open net morphism. However, in this case the embedding of Traveller into Global would

become illegal because of the new arc from issueTicket (see condition (i) of Definition 5).

Formally, given two nets Z1 and Z2 and a span of open net embeddings f1 : Z0 → Z1

and f2 : Z0 → Z2, the composition operation constructs the corresponding pushout in

ONet. Category ONet does not have all pushouts, while category Net does. We will see

that this corresponds to the intuition that the composition operation can be performed

in Net and then lifted to ONet, but only when it respects the interfaces specified by the

various components, for example, a new transition can be attached to a place only if

the place is open. For instance, it is possible to verify that there is no pushout for the

arrows in Figure 8, since, intuitively, the construction should merge all the places named

s, attaching transition t to a place in Z2 that is not (output) open.

We start by recalling a characterisation of pushouts in category Net.

Proposition 16 (Pushout in Net). Let N1

f1← N0

f2→ N2 be a span in Net. Then its pushout

always exists, and can be defined as N1
α1→ N3

α2← N2, where the sets of places and

transitions of N3 are computed as the pushout in Set of the corresponding components:

S3 = S1 +S0
S2 and T3 = T1 +T0

T2,
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f1 f2

Z2

Z1

Z0

Fig. 8. Category ONet does not have all pushouts.

Z0 f2f1

Z1

α1

Z2

α2
Z3

Fig. 9. Pushout in ONet.

with source and target functions defined by: for all t ∈ T3, if t = αi(ti) with ti ∈ Ti and

i ∈ {1, 2}, then •t = αi
⊕( •ti) and t• = αi

⊕(ti
•).

Next we formalise the condition that ensures the composability of a span in ONet.

Definition 17 (Composable span). Let Z1

f1← Z0

f2→ Z2 be a span of open net embeddings.

We say that f1 and f2 are composable if

1. f2(in(f1)) ⊆ O+
Z2

and f2(out(f1)) ⊆ O−Z2
;

2. f1(in(f2)) ⊆ O+
Z1

and f1(out(f2)) ⊆ O−Z1
.

In words, f1 and f2 are composable if the places that are used as interfaces by f1,

namely the places in(f1) and out(f1), are mapped by f2 to input and output open

places in Z2, and also the symmetric condition holds. If, and only if, this condition

is satisfied, the pushout of f1 and f2 can be computed in Net and then lifted to

ONet.

Proposition 18 (Pushouts in ONet). Let Z1

f1← Z0

f2→ Z2 be a span of embeddings in ONet

(see the diagram in Figure 9). Compute the pushout of the corresponding diagram in the

category Net obtaining the net NZ3
and the morphisms α1 and α2, and then take as open

places, for x ∈ {+,−},

OxZ3
=

{
s3 ∈ S3

∣
∣α−1

1 (s3) ⊆ OxZ1
∧ α−1

2 (s3) ⊆ OxZ2

}
.

Then (α1, Z3, α2) is the pushout in ONet of f1 and f2 if and only if f1 and f2 are

composable.

Proof. (If part) Let us show that, when f1 and f2 are composable, Z1
α1→ Z3

α2← Z2 is a

pushout in ONet.
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We first prove that α1 and α2 are open net morphisms. The proof is given explicitly

only for α1, since the case of α2 is completely analogous. First notice that

in(α1) = f1(in(f2)).

In fact, let s1 ∈ in(α1). Hence there exists a transition t3 ∈ •α1(s1) − α1(
•s1). Since the

square in Figure 9 is a pushout in Net, there exists s2 ∈ S2 such that α1(s1) = α2(s2) and,

also, t2 ∈ •s2 such that α2(t2) = t3 and t2 �∈ f2(T0). By using the properties of pushouts

again, we deduce the existence of s0 ∈ S0 such that f1(s0) = s1 and f2(s0) = s2. Now,

t2 ∈ •f2(s0)−f2(T0) ⊆ •f2(s0)−f2(
•s0). Hence s0 ∈ in(f2) and thus f1(s0) = s1 ∈ f1(in(f2)).

This proves that in(α1) ⊆ f1(in(f2)). The converse inclusion can be proved by reversing

the proof steps.

Now, α1 is clearly a morphism in Net by construction. Furthermore, it satisfies the

condition α−1
1 (O+

Z3
)∪in(α1) ⊆ O+

Z1
and α−1

1 (O−Z3
)∪out(α1) ⊆ O−Z1

. For instance, the condition

over input places is proved by noticing that α−1
1 (O+

Z3
) ⊆ O+

Z1
by construction, and,

in(α1) = f1(in(f2)) ⊆ O+
Z1

by condition (2) of composability (Definition 17). Thus α1 is an

open net morphism.

Moreover, for any pair of open net morphisms β1 : Z1 → Z4 and β2 : Z2 → Z4 such

that β1 ◦ f1 = β2 ◦ f2, since NZ1

α1→ NZ3

α2← NZ2
is a pushout in Net, there exists a unique

arrow h : Z3 → Z4 in Net such that the diagram below commutes.

Z0

f2f1

Z1

α1

β1

Z2

α2

β2

Z3

h

Z4

We only need to prove that h is an open net morphism by showing that it satisfies the con-

dition over open places of Definition 5. Let us prove, for instance, that h−1(O+
4 )∪ in(h)⊆

O+
3 . We divide the proof into two parts:

— h−1(O+
4 ) ⊆ O+

3

Let s3 ∈ h−1(O+
4 ), that is, s3 ∈ S3 and h(s3) ∈ O+

4 . Let si ∈ α−1
i (s3) for some i ∈ {1, 2}.

By h ◦ αi = βi, we have βi(si) = h(s3) ∈ O+
4 . Thus, since βi is an open net morphism,

si ∈ O+
i . In other words, α−1

1 (s3) ⊆ O+
1 and α−1

2 (s3) ⊆ O+
2 . Hence, by definition of O+

3 ,

we have s3 ∈ O+
3 .

— in(h) ⊆ O+
3

Let s3 ∈ in(h), namely •h(s3) − h( •s3) �= �. Observe that if s3 = αi(si) for some

i ∈ {1, 2}, we have

� �= •h(s3)− h( •s3)
= •h(αi(si))− h( •αi(si))
= •βi(si)− h( •αi(si))
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Fig. 10. (a) A pushout in ONet of two non-composable arrows. (b) The pushout of the same

arrows in Net.

= ⊆ •βi(si)− h(αi( •si)) [since •αi(si) ⊇ αi( •si)]
= •βi(si)− βi( •si) .

Therefore, si ∈ in(βi), and thus, since βi is an open net morphism, si ∈ O+
i . Summing

up, we deduce that α−1
1 (s3) ⊆ O+

1 and α−1
2 (s3) ⊆ O+

2 . Hence, by definition of O+
3 ,

s3 ∈ O+
3 .

(Only if part) To prove that the composability of f1 and f2 is also necessary for ensuring

that the pushout computed in Net is lifted to a pushout in ONet, suppose, for instance,

that there exists s2 ∈ f2(in(f1)) and s2 �∈ O+
2 . Hence, there is s0 ∈ in(f1) such that

s2 = f2(s0).

Suppose, to give a contradiction, that the described construction gives a pushout

Z1
α1→ Z3

α2← Z2 in ONet. Hence, the places s1 = f1(s0) and s2 = f2(s0) have a com-

mon image s3 = α1(s1) = α2(s2). Since s0 ∈ in(f1), there exists t1 ∈ •f1(s0)− f1(
•s0). Thus

s3 = α1(s1)∈ α1(t1)
•. Moreover, from the fact that s2 �∈ O+

2 , by definition of open net

morphism, we have s2 �∈ in(α2). Hence there exists t2 ∈ •s2 such that α2(t2) = α1(t1).

Therefore there is t0 ∈ T0 such that f1(t0) = t1 and f2(t0) = t2. But this contradicts

the fact that t1 ∈ •f1(s0)− f1(
•s0).

It is worth stressing that the pushout in ONet might also exist when two embeddings

f1 and f2 are not composable. This is the case for the diagram in Figure 10 (a), which is

a pushout in ONet, although the underlying diagram in Net is not a pushout. Indeed, f1

and f2 are not composable since, for instance, f2(out(f1)) = f2({s0}) = {s2} �⊆ O−2 . In this

case the construction described in Proposition 18 does not work: it leads to the diagram

in Figure 10 (b), where the mappings αi : Zi → Z3 are not open net morphisms, since, for

instance, s1 ∈ out(α1), but s1 �∈ O−1 .
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One could be tempted to assume a different notion of composable span, that is, to

define f1 and f2 composable whenever their pushout exists in ONet. However, according

to our intuition, morphisms f1 and f2 define a kind of ‘composition plan’, which specifies

that the images of Z0 in Z1 and Z2 must be fused. The effect of the composition operation

should be local, in the sense that nothing more than the images of Z0 should be affected

by the fusion. This fact is formalised by requiring that the pushout in ONet is obtained by

lifting the pushout in Net. Observe that, instead, in the pushout depicted in Figure 10 (a),

transitions t1 and t2, which are not in the common subnet Z0, also get fused.

To conclude this section, let us comment on the expressiveness of the composition

operation based on pushouts. Observe that any ordinary Petri net N in Net without self-

loops can be obtained from basic transitions and single places by iterating our composition

operation. More precisely, given a net N = (S, T , σ, τ), for any t ∈ T , let Bt be the open

net consisting of the single transition t with its pre- and post-set, where all places are

both input and output open, and let B1 be the net consisting of a single place, which is

both input and output open. Then it is not difficult to see that iterating our construction

on the Bt’s and on a finite number of copies of the B1’s, one can obtain an open net Z

such that F(Z) � N.

5. Amalgamating deterministic processes

Let f1 : Z0 → Z1 and f2 : Z0 → Z2 be a composable span of open net embeddings
and consider the corresponding composition, that is, the pushout in ONet, as depicted

in Figure 9. We would like to establish a clear relationship among the behaviours of the

involved nets. Roughly speaking, we would like the behaviour of Z3 to be constructed

‘compositionally’ out of the behaviours of Z1 and Z2.

In this section we show how this can be done for deterministic processes. Given two

deterministic processes π1 of Z1 and π2 of Z2 that ‘agree’ on Z0, we construct a deterministic

process π3 of Z3 by ‘amalgamating’ π1 and π2. Conversely, each deterministic process π3 of

Z3 can be projected over two deterministic processes π1 and π2 of Z1 and Z2, respectively,

which can be amalgamated to produce π3 again. Hence, all and only the deterministic

processes of Z3 can be obtained by amalgamating the deterministic processes of the

components Z1 and Z2. This is formalised by showing that, working up to isomorphism,

the amalgamation and decomposition operations are inverse to each other. This leads to

a bijective correspondence between the processes of Z3 and the pair of processes of the

components Z1 and Z2 that agree on the common subnet Z0.

5.1. Pushout of deterministic occurrence open nets

As a first step towards the amalgamation of processes, we identify a suitable condition

that ensures that the pushout of deterministic occurrence open nets exists and produces

a net in the same class. This condition will be used later to formalise the intuitive idea of

processes of different nets that ‘agree’ on a common part.

First, given a span K1

f1← K0

f2→ K2, we introduce the notion of causality relation

induced by K1 and K2 over K0. When the two nets are composed the corresponding
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causality relations get ‘fused’. Hence, to avoid the creation of cyclic causal dependencies

in the resulting net, the induced causality will be required to be a strict partial order.

Definition 19 (Induced causality and consistent span). Let K1

f1← K0

f2→ K2 be a span of

embeddings in ONet, where Ki (i ∈ {0, 1, 2}) are occurrence open nets. The relation of

causality <1,2 induced over K0 by K1 and K2, through f1 and f2, is the least transitive

relation such that for any x0, y0 in K0, if f1(x0) <1 f1(y0) or f2(x0) <2 f2(y0), then

x0 <1,2 y0.

We say that the span is consistent, written f1 ↑ f2, if f1 and f2 are composable and the

induced causality <1,2 is a finitary strict partial order.

We next show that the composition operation in ONet, when applied to a consistent

span of deterministic occurrence nets, produces a deterministic occurrence net. We first

need a preliminary result.

Lemma 20. Let K1

f1← K0

f2→ K2 be a composable span of embeddings in ONet,

where Ki (i ∈ {0, 1, 2}) are deterministic occurrence open nets. Let K1
α1→ K3

α2← K2 be

the following pushout:

K0
f2f1

K1

α1

K2

α2

K3

For any x0, y0 in K0, if we let x3 = α1(f1(x0)) = α2(f2(x0)) and y3 = α1(f1(y0)) = α2(f2(y0)),

then

x0 <1,2 y0 iff x3 <3 y3.

Proof. Below we will freely use the fact that open net morphisms, and thus, in particular

α1 and α2, preserve the causality relation, in the sense that if xi <i yi in Ki (i ∈ {1, 2}),
then αi(xi) <3 αi(yi).

(⇒) Suppose that x0 <1,2 y0. There are two possible cases:

— The causal dependence is directly induced by a causal dependence in K1 or K2, namely

fi(x0) <i fi(y0) for some i ∈ {1, 2}. Since αi preserves causality, αi(fi(x0)) <3 αi(fi(y0)),

namely x3 <3 y3.

— Otherwise, the causal dependence is generated by the transitive closure, in other words,

there is z0 such that x0 <1,2 z0 <1,2 y0. Hence, an inductive reasoning allows us to

conclude that x3 <3 αi(fi(z0)) <3 y3 and thus x3 <3 y3.

(⇐) Let ≺i denote the immediate causality in Ki, that is, x ≺i y if x <i y and there is no

z such that x <i z <i y. It is easy to see that for any x3, y3 in K3,

x3 ≺3 y3 iff ∃ i ∈ {1, 2}, ∃ xi, yi in Ki such that x3 = αi(xi), y3 = αi(yi), xi ≺i yi.
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Assume that x3 <3 y3. Then there is a ≺3-chain x3 = x1
3 ≺3 x

2
3 ≺3 . . . ≺3 x

n
3 = y3. Let

C = {x1
3, . . . , x

n
3}. By the remark above, if C is included in αi(Si∪Ti) for some i ∈ {1, 2}, then

fi(x0) <i fi(y0), and thus x0 <1,2 y0. More generally, since K3 is obtained as the pushout of

K1 and K2, the chain C can be divided into h+ 1 segments x3, . . . , x
k1

3 , . . . , x
k2

3 , . . . , x
kh
3 , . . . y3

such that each segment is included in αi(Si ∪ Ti) for some i ∈ {1, 2} and any ‘border’

element x
kj
3 is in α1(S1 ∪T1)∩ α2(S2 ∪T2). By general properties of pushouts, for any j we

can find xj0 ∈ S0 ∪ T0, such that αi(fi(x
j
0)) = x

kj
3 for i ∈ {1, 2}.

Therefore, by the remark about immediate precedence in K3, surely, for any j there is

some i ∈ {1, 2}, such that

fi
(
x
j
0

)
<i fi

(
x
j+1
0

)
(2)

and, similarly, fi(x0) <ix fi(x
1
0) and fi(x

h
0) <iy fi(y0) for suitable ix, iy ∈ {1, 2}. But recalling

the definition of induced causality, we deduce that x0 <1,2 x
1
0 <1,2 x

2
0 <1,2 . . . x

k
0 <1,2 y0,

and thus x0 <1,2 y0.

Proposition 21. Let K1

f1← K0

f2→ K2 be a composable span of embeddings in ONet, where

Ki (i ∈ {0, 1, 2}) are deterministic occurrence open nets, and let K1
α1→ K3

α2← K2 be the

following pushout in ONet:

K0 f2f1

K1

α1

K2

α2
K3

Then f1 ↑ f2 if and only if the pushout object K3 is a deterministic occurrence open net.

Proof. (⇒) We know that K3 is a well-defined open net. To prove that K3 is a

deterministic open occurrence net, we start by showing that the underlying net NK3
is a

deterministic occurrence net.

(1.a) causality <3 is a strict partial order.

We prove this by contradiction. Assume that<3 is not irreflexive. Hence, we can find a cycle

of immediate causality in K3, that is, x1
3 ≺3 x

2
3 ≺3 . . . ≺3 x

n
3 ≺3 x

1
3, and let C = {x1

3, . . . , x
n
3}.

The cycle C cannot be included in αi(Si ∪ Ti) for some i ∈ {1, 2}, otherwise ≺i would be

cyclic in Ki. Hence there exists an item x3 ∈ C∩α1(S1∪T1)∩α2(S2∪T2). Consider x0 in K0

such that αi(fi(x0)) = x3. Since x3 <3 x3, by Lemma 20, we have x0 <1,2 x0, contradicting

the hypothesis that the span is consistent.

(1.b) causality <3 is finitary.

The proof can be carried out as in (1.a) above by exploiting the finitariness of causality

in K1 and K2, and Lemma 20. Assuming the existence of an infinite descending chain of

<3 in K3, we deduce that <1,2 has an infinite descending chain in K0, contradicting the

assumption that the span is consistent, and thus that <1,2 is finitary.

(1.c) K3 does not have forward conflicts.

We prove this by contradiction. Suppose that there exists a place s3 ∈ S3 such that

|s3•| > 1. Let t3, t
′
3 ∈ s3

• such that t3 �= t′3. Then, without loss of generality, we may
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assume that t3 ∈ α1(T1) − α2(T2) and t′3 ∈ α2(T2) − α1(T1), otherwise we would have a

forward conflict in one of K1 or K2. Therefore, s3 ∈ α1(S1) ∩ α2(S2). Let s1 ∈ S1 such that

α1(s1) = s3. Then s1 ∈ out(α1). But, since s1
• �= �, this contradicts the assumption that K1

is a deterministic open net.

(1.d) K3 does not have backward conflicts.

This case is analogous to (1.c).

To conclude, it remains to show the validity of the conditions over open places.

(2.a) ∀s ∈ O−3 . s• = �.

The proof is the same as for point (1.c).

(2.b) ∀s ∈ O+
3 .
•s = �.

The proof is the same as for point (1.d).

(⇐) Let K1

f1← K0

f2→ K2 be a composable span of embeddings in ONet, where Ki

(i ∈ {0, 1, 2}) are deterministic occurrence open nets, and assume that the pushout K3

is an open deterministic net. We must show that induced causality <1,2 is a finitary

strict partial order. Let f3 = α1 ◦ f1 = α2 ◦ f2. To conclude, just recall that <3 is a

finitary strict partial order and then use the fact that, by Lemma 20, x0 <1,2 y0 iff

f3(x0) <3 f3(y0).

5.2. Amalgamating deterministic processes

As mentioned earlier, two deterministic processes π1 of Z1 and π2 of Z2 can be

amalgamated only when they agree on the common subnet Z0, an idea that is formalised

by resorting to the notion of a consistent span of deterministic occurrence open nets. In

the rest of this section we will refer to a fixed pushout diagram in ONet, as represented

in Figure 9, where f1 and f2 are a composable span of open net embeddings.

Definition 22 (Agreement of deterministic processes). We say that two deterministic

processes π1 : K1 → Z1 and π2 : K2 → Z2 agree on Z0 if there are projections 〈π0, ψ
i〉

along fi of πi for i ∈ {1, 2} such that ψ1
K ↑ ψ2

K (that is, the span K1

ψ1
K← K0

ψ2
K→ K2

is consistent). In this case 〈π0, ψ
1〉 and 〈π0, ψ

2〉 are called agreement projections for π1

and π2.

Before introducing the notion of amalgamation, we need to recall a simple technical

result.

Lemma 23.

1. Consider the diagram in Set depicted in Figure 11 (a). If the diagram is a pushout and

f is injective, then the diagram is also a pullback.

2. Consider a commuting diagram in a category C, as depicted in Figure 11 (b). If the

internal square, marked by PB, and the external square are pullbacks, then the other

internal square is a pullback as well.
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A
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B

g

C
i

D
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(a) (b)

Fig. 11. Figures for Lemma 23.
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K
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Z3
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Fig. 12. Amalgamation of open net processes.

Definition 24 (Amalgamation of processes). Let πi : Ki → Zi (i ∈ {0, 1, 2, 3}) be determin-

istic processes and let 〈π0, ψ
1〉 and 〈π0, ψ

2〉 be agreement projections of π1 and π2 along

f1 and f2 (see Figure 12 (a)). We say that π3 is an amalgamation of π1 and π2, written

π3 = π1 +ψ1 ,ψ2 π2, if there exist projections 〈π1, φ
1〉 and 〈π2, φ

2〉 of π3 over Z1 and Z2,

respectively, such that the upper square is a pushout in ONet.

We next give a more constructive characterisation of process amalgamation, which also

proves that the result is unique up to isomorphism.

Theorem 25 (Amalgamation construction). Let π1 : K1 → Z1 and π2 : K2 → Z2 be

deterministic processes that agree on Z0, and let 〈π0, ψ
1〉 and 〈π0, ψ

2〉 be corresponding

agreement projections. Then the amalgamation π1 +ψ1 ,ψ2 π2 is a process π3 : K3 → Z3,

where the net K3 is obtained as the pushout in ONet of ψ1
K : K0 → K1 and ψ2

K : K0 → K2

and the process mapping π3 : K3 → Z3 is uniquely determined by the universal property

of the underlying pushout diagram in Net (see Figure 12 (a)). Hence π1 +ψ1 ,ψ2 π2 is unique

up to isomorphism.

Proof. We first show that π3, defined as above, is a well-defined process of Z3. Since,

by hypothesis, ψ1
K ↑ ψ2

K , we know by Proposition 21 that K3 is a deterministic occurrence

open net.

Furthermore, π3 is an arrow in Net. To conclude that π3 is a deterministic open net

process, we prove that π3(O
+
K3

) ⊆ O+
Z3

and π3(O
−
K3

) ⊆ O−Z3
.
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To this end, we first observe that in the diagram of Figure 12 (a), the square with

vertices K1, K3, Z3, Z1 is a pullback. Let us show, for instance, that the place component

of the morphisms form a pullback. Actually, it suffices to show that given s1 ∈ SZ1

and s′3 ∈ SK3
such that α1(s1) = π3(s

′
3), there exists s′1 ∈ SK1

such that φ1
K (s′1) = s′3.

In fact, by commutativity of the diagram, this implies that α1(π1(s
′
1)) = α1(s1), and

thus, by injectivity of α1, we have π1(s
′
1) = s1. Furthermore, uniqueness of s′1 follows

from the injectivity of φ1
K . Hence, let us consider s1 ∈ SZ1

and s′3 ∈ SK3
such that

α1(s1) = π3(s
′
3) = s3. Assume, to show a contradiction, that s′3 �= φ1

K(s′1) for all s′1 ∈ SK1
.

Since the upper square is a pushout, necessarily, s′3 = φ2
K (s′2) for some s′2 ∈ SK2

. Then

α2(π2(s
′
2)) = s3 = α1(s1). Since the square Z0, Z1, Z2, Z3 is a pushout, this implies that

there exists s0 in Z0 such that f1(s0) = s1 and f2(s0) = π2(s
′
2). But, since the square Z2, K2,

K0, Z0 is a pullback, there must be s′0 ∈ SK0
such that ψ2

K (s′0) = s′2. Hence, if we take s′1 =

ψ1
K (s′0), we have φ1

K (s′1) = φ1
K (ψ1

K (s′0)) = φ2
K(ψ2

K (s′0)) = φ2
K(s′2) = s′3 yielding the desired

contradiction.

Now, take s′3 ∈ O+
K3

and consider π3(s
′
3). We distinguish the following (non-exclusive)

cases:

— π3(s
′
3) = α1(s1) for some s1 ∈ SZ1

.

Since, as observed above, the square K1, K3, Z3, Z1 is a pullback, there is s′1 ∈ SK1

such that φ1
K (s′1) = s3 and π1(s

′
1) = s1. From the first equality, since φ1

K is an open net

morphism, we deduce that s′1 ∈ O+
K1

, and thus, by the second equality, since π1 is a

process, s1 ∈ O+
Z1

.

— π3(s
′
3) = α2(s2) for some s2 ∈ SZ2

.

As above, we can conclude s2 ∈ O+
Z2

.

Summing up the two cases, we have that α−1
1 (π3(s3)) ⊆ O+

Z1
and α−1

2 (π3(s3)) ⊆ O+
Z2

.

Therefore, by construction of the pushout in ONet (see Proposition 18), π3(s3) ∈ O+
Z3

.

Thus π3(O
+
K3

) ⊆ O+
Z3

. The other inclusion, that is, π3(O
−
K3

) ⊆ O−Z3
, can be shown in a

completely symmetric way.

The final thing to observe is that 〈πi, φi〉 is a projection of π3 along αi for i ∈ {1, 2}. But

this fact immediately follows from the above observations, since the squares Ki, K3, Z3, Zi
are pullbacks in Net. Furthermore, O+

i = φiK
−1

(O+
3 ) ∪ in(φiK ). In fact, φiK is an open net

morphism, and thus φiK
−1

(O+
3 ) ∪ in(φiK ) ⊆ O+

i . To prove the other inclusion, for instance,

when i = 1, let s1 ∈ O+
K1

. If φ1
K(s1) ∈ O+

K3
, we have that s1 ∈ φ1

K

−1
(O+

K3
). Otherwise, by

recalling how the open places of the pushout object are defined (see Proposition 18), we
deduce that there exists s2 ∈ SK2

such that φ2
K(s2) = φ1

K(s1) and s2 �∈ O+
K2

. Since the upper

square is a pushout, there must be s0 ∈ SK0
such that ψ1

K (s0) = s1 and ψ2
K (s0) = s2. Since

ψ1
K is an open net morphism, this implies that s0 ∈ O+

K0
. Since s2 �∈ O+

K2
and π0 is a

projection of π2, we have that s0 ∈ in(ψ2
K ). Therefore, since the upper square is a pushout

in Net, s1 ∈ in(φ1
K ), as desired.

The amalgamation construction can be given a more elegant (although less constructive)

characterisation, in terms of a pushout in Proc.
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Proposition 26. Let π1 : K1 → Z1 and π2 : K2 → Z2 be deterministic processes that agree

on Z0, and let 〈π0, ψ
1〉 and 〈π0, ψ

2〉 be corresponding agreement projections. Then the

amalgamation π1 +ψ1 ,ψ2 π2 and the corresponding process morphisms 〈φ1, α1〉 and 〈φ2, α2〉
can be obtained as the pushout in Proc of the arrows ψ1 : π0 → π1 and ψ2 : π0 → π2 (see

Figure 12 (a)).

The next result shows how each deterministic process of a composed net can be

constructed as the amalgamation of deterministic processes of the components.

Theorem 27 (Decomposition of processes). Let π3 : K3 → Z3 be a deterministic process

of Z3 and, for i ∈ {1, 2}, let 〈πi, φi〉 be projections of π3 along αi. Then process π3 can be

recovered as a suitable amalgamation of π1 and π2.

Proof. Let 〈πi, φi〉 be projections of π3 along αi for i ∈ {1, 2}. Take any projection

〈π0, ψ
1〉 of π1 along f1. The non-dotted part of the diagram in Figure 12 (b) summarises

the situation.

Then projection 〈π0, ψ
2〉 of π2 along f2 is obtained by defining ψ2

K as the arrow

determined by the universal property of the pullback with vertices K3, Z3, Z2 and K2. To

show that the projection is well-defined, first observe two facts:

1. The square with vertices K0, Z0, Z2, K2 is indeed a pullback in Net.

In fact, by construction, the diagram commutes. Furthermore, in category Net the

square with vertices K0, K3, Z3, Z0 is a pullback (since it can be viewed as the

composition of two pullbacks K0, K1, Z1, Z0 and K1, K3, Z1, Z3). However, the same

square is composed out of K0, K2, Z2, Z0 and K2, K3, Z3, Z2. Hence, by Lemma 23,

the square K0, Z0, Z2, K2 is also a pullback in Net.

2. The upper square with vertices K0, K1, K3, K2 is a pushout in Net.

In fact, the vertical faces of the cube are pullbacks and the lower face is a pushout,

hence, by the 3-cube lemma (Corradini et al. 1996), we can conclude that the upper

square is a pushout.

Let us prove that 〈π0, ψ
2〉 is a well-defined projection of π2 along f2 by showing that

O+
K0

= ψ2
K

−1(
O+
K2

)
∪ in

(
ψ2
K

)
and O−K0

= ψ2
K

−1(
O−K2

)
∪ out

(
ψ2
K

)
.

We restrict our attention to the first equality (the second one is proved by symmetric

reasoning), and we show the two inclusions separately.

(⊆) Let s0 ∈ O+
K0

. Since 〈π0, ψ
1〉 is a projection of π1, we have s0 ∈ ψ1

K

−1
(O+

K1
) ∪ in(ψ1

K ).

We distinguish two cases:

— Let s0 ∈ ψ1
K

−1
(O+

K1
), that is, ψ1

K(s0) ∈ O+
K1

. Then, since 〈π1, φ
1〉 is a projection, again,

ψ1
K (s0) ∈ φ1

K

−1
(O+

K3
) ∪ in(φ1

K ). If φ1
K (ψ1

K (s0)) ∈ O+
K3

, then, observing that φ2
K (ψ2

K (s0)) =

φ1
K (ψ1

K (s0)) and recalling that φ2
K is an open net morphism, we conclude that

ψ2
K (s0) ∈ O+

K2
, and thus s0 ∈ψ2

K

−1
(O+

K2
). If, instead, ψ1

K (s0)∈ in(φ1
K ), then •φ1

K (ψ1
K (s0))−

φ1
K ( •ψ1

K (s0)) �= �. Since K1 is an occurrence open net and ψ1
K(s0) is input open, we

have that •ψ1
K (s0) = �. Thus, since the upper square is a pushout,

•ψ2
K (s0)− ψ2

K ( •s0) �= �.
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Hence s0 ∈ in(ψ2
K ).

— Let s0 ∈ in(ψ1
K ). Thus there exists t1 ∈ •ψ1

K (s0)− ψ1
K ( •s0). Since the upper square is a

pushout, φ1
K (t1) ∈ •φ2

K (ψ2
K(s0))−φ2

K ( •ψ2
K (s0)), hence ψ2

K(s0) ∈ in(φ2
K ) ⊆ O+

K2
, since φ2

K

is an open net morphism. Hence s0 ∈ ψ2
K

−1
(O+

K2
). Observe that, in particular, we have

shown that ψ2
K (in(ψ1

K )) ⊆ O+
K2

.

(⊇) Let s0 ∈ ψ2
K

−1
(O+

K2
) ∪ in(ψ2

K ). We distinguish two cases:

— Let s0 ∈ ψ2
K

−1
(O+

K2
), that is, ψ2

K(s0) ∈ O+
K2

. Since 〈π2, φ
2〉 is a projection of π3, we have

that ψ2
K(s0) ∈ φ2

K

−1
(O+

K3
) ∪ in(φ2

K ). If φ2
K (ψ2

K (s0)) ∈ O+
K3

, then, since φ1
K is an open

net morphism, ψ1
K (s0) ∈ O+

K1
, and thus s0 ∈ O+

K0
. If, instead, ψ2

K (s0) ∈ in(φ2
K ), then

•φ2
K(ψ2

K (s0))−φ2
K ( •ψ2

K(s0)) �= �. Since the upper square is a pushout, this implies that
•ψ1

K(s0)− ψ1
K( •s0) �= �, and thus s0 ∈ in(ψ1

K ) ⊆ O+
K0

.

— Let s0 ∈ in(ψ2
K ). Then •ψ2

K (s0) − ψ2
K ( •s0) �= �. Since the upper square is a pushout,

we have that •φ1
K (ψ1

K (s0)) − φ1
K ( •ψ1

K (s0)) �= �. Since φ1
K is an open net morphism,

ψ1
K (s0) ∈ O+

K1
, and thus s0 ∈ O+

K0
.

To conclude the proof, we need only show that ψ1
K ↑ ψ2

K . We observe that the upper

square, which is known to be a pushout in Net, is also a pushout in ONet. To this end,

we prove that, for x ∈ {+,−},

OxK3
=

{
s3 ∈ SK3

∣
∣φ1

K

−1
(s3) ⊆ OxK1

∧ φ2
K

−1
(s3) ⊆ OxK2

}
.

Let us consider the condition on input places (x = +). Let s3 ∈ O+
K3

. Then, φ−1
i (s3) ⊆ O+

Ki

for i ∈ {1, 2}, since φi is an open net morphism. For the converse inclusion, assume that

φ1
K

−1
(s3) ⊆ O+

K1
and φ2

K

−1
(s3) ⊆ O+

K2
. (3)

Since the upper square is a pushout in Net, there is si ∈ Si (for some i ∈ {1, 2}) such that

φi(si) = s3. Assume, without loss of generality, that there exists s1 ∈ S1 such that φ1
K (s1) =

s3. Hence, by (3), s1 ∈ O+
K1

. Since π1 is a projection of π3, O
+
K1

= φ1
K

−1
(O+

K3
) ∪ in(φ1

K). If

s1 ∈ φ1
K

−1
(O+

K3
), we conclude. Otherwise, if s1 ∈ in(φ1

K ), there exists t3 ∈ •φ1
K (s1)− φ1

K ( •s1).

Since the upper square is a pushout in Net, there are s2 in K2 and t2 ∈ •s2 such that

φ2
K (s2) = φ1

K (s1) = s3 and φ2
K (t2) = t3. Since s2 ∈ φ2

K

−1
(s3), by (3) we have that s2 ∈ O+

K2
,

which contradicts the assumption that K2 is an occurrence net since •s2 �= �.

The condition over output places (x=−) is dealt with in a symmetric way by exploiting

the fact that the occurrence net K3 is deterministic. This allows us to conclude that

ψ1
K ↑ ψ2

K . In fact, this is a necessary condition to ensure that the pushout, computed in Net

and lifted to ONet, gives a deterministic occurrence open net (see Proposition 21).

The amalgamation and decomposition results for open net processes are summarised

in a theorem that establishes a bijective correspondence between the processes of Z1 and

Z2 that agree on Z0 and the processes of Z3. To formulate this result we need some

preliminary observations.

Notice that an isomorphism f : Z0 → Z1 in ONet is an isomorphism f : F(Z1)→ F(Z2)

in Net such that f(O+
0 ) = O+

1 and f(O−0 ) = O−1 . Let Z be an open net. We say that two
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deterministic processes of Z , π : K → Z and π′ : K ′ → Z are isomorphic, and we write

π � π′, if there exists an isomorphism ρ : K → K ′ in ONet such that π ◦ ρ = π′ (in Net).

In this case we will say that ρ : π → π′ is a process isomorphism. Observe that this notion

of isomorphism is stricter than isomorphism in Proc. In fact, ρ : π → π′ is a process

isomorphism iff 〈ρ, idZ 〉 is an isomorphism in Proc.

Let π : K → Z be a process. We use [π] to denote the set of processes of Z isomorphic

to π, that is, [π] = {π′ : K ′ → Z | π′ � π}. Then the set of (isomorphism classes of)

processes of Z is denoted by DProc(Z), that is,

DProc(Z) = {[π] | π : K → Z is a deterministic process}.

Given a span Z1

f1← Z0

f2→ Z2 in ONet, the isomorphism classes of deterministic processes

of Z1 and Z2 that agree on Z0, denoted by DProc(Z1

f1← Z0

f2→ Z2), are the set

{[π1

ψ1

← π0

ψ2

→ π2] | ψ1, ψ2 agreement projections for π1, π2 along f1, f2},
where isomorphism of process spans is defined by (π1

ψ1

← π0

ψ2

→ π2) � (π′1
φ1

← π′0
φ2

→ π′2) if

there are process isomorphisms ρi : πi → π′i such that the following diagram commutes:

K ′1

π′1

ρ1

K ′0
ρ0

ψ1
Kψ2

K

π′0

K ′2
ρ2

π′2

K1

π1

K0

φ1
Kφ2

K

π0

K2

π2

Z1 Z0
f2f1

Z2

Observe that this implies that π′0 ∈ [π0] and that π′1 and π′2 agree on Z0.

Theorem 28 (Amalgamation theorem). Let Z0, Z1, Z2, Z3 be as in Figure 9 and assume

that the square is a pushout of two composable open net embeddings f1 and f2. Then

there are composition and decomposition functions:

Comp : DProc(Z1

f1← Z0

f2→ Z2)→ DProc(Z3)

and

Dec : DProc(Z3)→ DProc(Z1

f1← Z0

f2→ Z2)

establishing a bijective correspondence between

DProc(Z3) and DProc(Z1

f1← Z0

f2→ Z2).

Proof (Sketch). Let us define Comp : DProc(Z1

f1← Z0

f2→ Z2)→ DProc(Z3) by

Comp([π1

ψ1

← π0

ψ2

→ π2]) = [π3],

where π3 = π1 +ψ1 ,ψ2 π2 is the amalgamation of π1 and π2 (see Definition 24). Furthermore,

Dec : DProc(Z3)→ DProc(Z1

f1← Z0

f2→ Z2) is defined by

Dec([π3]) = [π1

ψ1

← π0

ψ2

→ π2],



Compositional semantics for open Petri nets based on deterministic processes 29

where π1

ψ1

← π0

ψ2

→ π2 is the decomposition of π3 as defined in Theorem 27. Then it is

possible to prove that Comp and Dec are well-defined and inverse to each other.

Example. The amalgamation theorem is exemplified in Figure 3. Two processes for the

component nets Traveller and Agency that agree on the shared subnet Common, that

is, such that their projections over Common coincide, can be amalgamated to produce a

process for the composed net Global. Conversely, each process of the net Global can be

reconstructed as the amalgamation of compatible processes of the component nets.

Remark. (Amalgamation for ordinary Petri nets). A natural question concerns the

possibility of interpreting constructions and results developed for open nets in the setting

of ordinary Petri nets. To this end, first consider the full subcategory A of ONet having

as objects open nets where each place is both input and output open, that is, open nets

of the kind

Z = (NZ = (SZ , TZ , σZ , τZ ), OZ = (SZ , SZ )).

It can be seen immediately that if Z1 and Z2 are open nets in A, then any Net-morphism

f : N1 → N2 is also an open net morphism f : Z1 → Z2. Therefore Net is isomorphic

to A and, with a little abuse of notation, from now on it will be identified with A itself.

From this point of view, observe that:

— Let ProcNet be the full subcategory of Proc where objects are of the kind π : K → Z

with Z in Net and K an open occurrence net where all minimal places are input open

and all maximal places are output open. Then it can be shown that ProcNet consists

exactly of the ordinary Petri net processes (Golz and Reisig 1983).

— Any span Z1

f1← Z0

f2→ Z2 in Net is composable.

— Take a span f1 : Z0 → Z1 and f2 : Z0 → Z2 in Net and consider the corresponding

composition that, by Proposition 18, is given by the pushout of f1 and f2 in Net (see

Figure 9).

Given two processes π1 : K1 → Z1 and π2 : K2 → Z2, the notion of agreement over

Z0 reduces to the existence of projections 〈π0, ψ
i〉 along fi of πi, i ∈ {1, 2}, such that

– in(ψ1
K ) ∩ in(ψ2

K ) = � and out(ψ1
K ) ∩ out(ψ2

K ) = �;

– the relation <1,2 induced over Z0 is acyclic.

Then, as in the general case, two processes π1 and π2 that agree on Z0 can be composed

to produce a process π3 of Z3, and, conversely, any process of Z3 can be obtained as

the composition of processes of Z1 and Z2.

6. Related work

In the field of Petri nets, several other approaches to net composition have been proposed

in the literature. Most of them can be classified as algebraic approaches. One family,

which dates back to the papers Nielsen et al. (1981) and Winskel (1987a), considers a

category of Petri nets where morphisms arise by viewing a Petri net as the signature

of a multisorted algebra, the sorts being the places. Then an unfolding semantics is

defined, which is characterised categorically as a right adjoint. This fact ensures its
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compositionality with respect to operations on nets defined in terms of categorical limits

(for example, net synchronisation (Winskel 1987b)). The algebraic view is pushed forward

in another seminal paper, Meseguer and Montanari (1990), where a Petri net is still seen

as a signature, and its computational model (the category of deterministic processes in

the sense of Best and Devillers (1987)) is characterised as the free algebra (up to suitable

axioms) over such a signature. Being obtained as a free construction, which in categorical

terms provides a left adjoint, in this case the semantics is compositional with respect to

operations defined in terms of colimits. However, in both cases, unlike what happens in

our approach, there is no distinction between open and internal places. Basically, every

place of a net N can be seen implicitly as open because it can be used for connecting N

to other nets. On the other hand, the semantics (for example, the notions of process in

Golz and Reisig (1983) or Meseguer and Montanari (1990)) does not explicitly take into

account the interaction with the environment.

A second, more recent class of approaches to Petri net composition aims at defining

a ‘calculus of nets’, where a set of process algebra-like operators allows one to build

complex nets starting from a suitable set of basic net components.

For instance, in the Petri Box calculus (Best et al. 1992; Koutny et al. 1994; Koutny

and Best 1999) a special class of nets, called plain boxes (safe and clean nets), provides

the basic components. Plain boxes are then combined by means of operations that can all

be seen as instances of refinements over suitable nets. More precisely, the authors identify

a special family of nets, called operator boxes. An operator box with n transitions induces

an n-ary composition operation over plain boxes. Its effect is to simultaneously refine the

n transitions of the operator box with the plain boxes given as argument, thus producing

a net that is again a plain box. The calculus is then given a compositional semantics

(both interleaving and concurrent). A very interesting aspect of this approach is the fact

that it does not concentrate on a specific algebra of Petri nets, but it develops a general

theory, which is, in a sense, parametric with respect to the operators and constants of the

algebra. These constants and operators, in fact, are not fixed once and for all, but they

can be designed according to specific needs, by appropriately choosing the sets of plain

and operator boxes.

Another relevant approach in the second family is presented in the papers Nielsen

et al. (1995) and Priese and Wimmel (1998), which introduce an algebra of (labelled) Petri

nets with interfaces. An interface consists of a set of public places and transitions, where

a net can be extended and combined with other nets by means of composition operators.

For example, it is possible to add new transitions and places to connect existing public

transitions and places by new arcs to hide items in the net, and so on. These operators

can be used as basic constructors to build terms corresponding to nets with an interface.

The representation of a Petri net via a term of the algebra of combinators resembles the

encoding of Petri nets into Milner action calculi (Milner 1996). The pomset semantics of

nets with interfaces, defined by using a notion of universal context for a net, is shown to

be compositional with respect to the net combinators (Priese and Wimmel 1998).

The two approaches mentioned certainly share several ideas and technical features with

ours, such as the use of interface places (called entry and exit places, in Best et al. (1992))

or the use of a universal context in Nielsen et al. (1995) and Priese and Wimmel (1998),
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which is similar to the closure of an open net, which underlies our open net semantics.

However, some basic differences prevent us from making the comparison on a formal level.

In our case the basic building blocks of an open system are the transitions, with a fixed pre-

and post-set. Some places, designated as ‘open’, represent the system interface towards the

environment. Then two systems can be combined by means of a construction that glues

them along a common part consistently with open places in a way that does not change

the shape of the original transitions. Intuitively, one can also think of the composition

operation as a way of making explicit (part of) the unspecified environment of each of

the component nets. The composition operation in Best et al. (1992) mainly relies on net

refinement. Concentrating on a subclass of net components with suitable properties (plain

boxes), it offers a powerful way of defining a kind of process algebra over such nets, with

operators like sequential and parallel composition, non-deterministic choice, relabelling

and synchronisation. The composition is, in a sense, realised at a more semantical level,

in that the internal structure of the components (for example, the transitions and their

connections) can be changed by the operation that combines their functionalities. As for

the approach in Nielsen et al. (1995) and Priese and Wimmel (1998), the main difference,

besides the focus, which in these papers is more on the Petri net algebra, lies in the fact

that net composition is tackled at a finer level of granularity. The basic components of

a net are assumed to be transitions with empty pre- and post-set and single places. Such

components are then combined by means of constructors that allow one to connect places

and transitions.

Finally, we should mention two approaches to Petri net components, that is, Petri

nets with distinguished interface places. Kindler (1997) introduced Petri net components

with input and output places, which can be combined by means of an operation that

connects the input places of a component to the output places of the other, and vice-

versa. A partial order semantics is introduced for components and it is proved to be

compositional. Components can be viewed as particular open nets and, similarly, the

composition operation for components can be seen as an instance of the composition

operation for open nets. A very interesting idea in Kindler (1997), which could also

be worth exploring for open nets, is the introduction of a temporal logic, interpreted

over processes, which can be used for reasoning in a modular way over distributed

systems.

Basten (1998) considers components of Petri nets with interface places, called pins, of

unspecified orientation, where nets can be fused together. A compositional operational se-

mantics of Petri net components is described within a process algebra specifically designed

for this purpose. This allows the verification of net components against requirements by

means of equational reasoning. Moreover, the algebraic presentation of the operational

semantics is used to formalise a notion of behaviour inheritance between components.

7. Conclusions and future work

In this paper we have introduced open nets as an extension of ordinary Petri nets that

allows one to specify open concurrent systems interacting with an external environment.

Open nets are endowed with a composition operation, which is suitable for modelling both
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interaction through open places and the synchronisation of transitions. The generalisation

to open nets of the Goltz–Reisig process semantics has been shown to be compositional

with respect to the composition operation over open nets: if two nets Z1 and Z2 are

composed, producing a net Z3, then the processes of Z3 can be obtained as amalgamations

of processes of Z1 and Z2, and, conversely, any process of Z3 can be decomposed into

processes of the component nets. The amalgamation and decomposition operations are

shown to be inverse to each other, leading to a bijective correspondence between the

processes of Z3 and the pair of processes of Z1 and Z2 that agree on the common

subnet Z0.

As mentioned in the introduction, the last result appears to be related to the am-

algamation theorem for data-types in the framework of algebraic specifications (Ehrig

and Mahr 1985). There, an amalgamation construction allows one to ‘combine’ any two

algebras A1 and A2 of algebraic specifications SPEC 1 and SPEC 2 having a common

subspecification SPEC 0 if and only if the restrictions of A1 and A2 to SPEC 0 coincide.

The amalgamation construction produces a unique algebra A3 of specification SPEC 3,

which is the union of SPEC 1 and SPEC 2. The fact that the amalgamation of algebras

is a pushout construction in the Grothendick’s category of generalised algebras suggests

the possibility of having a similar characterisation for process amalgamation using fibred

categories (see also Remark 15).

Open nets have been partly inspired by the notion of open graph transformation

system (Heckel 1998), which is an extension of graph transformation for specifying reactive

systems. In fact, P/T Petri nets can be seen as a special case of graph transformation

systems (Corradini 1996), and this correspondence extends to open nets and open graph

transformation systems. However, a compositionality result corresponding to Theorem 28

is still lacking in this more general setting.

The notions of projection, agreement, amalgamation and decomposition of processes

can be extended in a natural way to general (possibly non-deterministic) processes.

However, unlike what happens in the deterministic case, not every non-deterministic

process of a composed net can be obtained as the amalgamation of processes of the

component nets. For instance, consider net Z3 in Figure 13, which arises as the composition

of Z1 and Z2 along Z0. The process π3 of net Z3, depicted in the middle of the picture,

cannot be obtained as the amalgamation of processes of the component nets Z1 and Z2.

In fact, let π1 and π2 be processes of Z1 and Z2, respectively, such that for i ∈ {1, 2},
πi consists only of a transition ti. To be able to amalgamate π1 and π2 by fusing the

pre-sets of t1 and t2, both processes must necessarily consider an interaction with the

environment, that is, in both processes the pre-set of transition ti must be an output

open place (graphically, π1 and π2 would be represented exactly as nets Z1 and Z2).

Hence, in the process π′3 resulting from their composition, place s3 in the pre-set of the

ti’s will also be output open (see the right-hand part of Figure 13). Roughly, since both

π1 and π2 are open to interactions with the environment, the result of their composition

is still open. This example suggests that in the non-deterministic case one should expect

a weaker compositionality result, stating that for any processes π3 of a composed net,

a suitable amalgamation of the projections of π3 results in a new process π′3, which

coincides with π3 except for the fact that π′3 can exhibit a more general interaction with
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Fig. 13. Composition of non-deterministic processes.

the environment. The generalisation of the amalgamation theorem to non-deterministic

processes could represent a first step towards an unfolding semantics for open nets, in

the style of Winskel (Nielsen et al. 1981; Winskel 1987a), that is still compositional with

respect to our composition operation.

It would also be interesting to extend the constructions and results in this paper to open

high level nets, which have already been studied on a conceptual level in Padberg et al.

(1998). Part of the technical background is already available – for instance, Padberg et al.

(1995) shows how to construct pushouts of algebraic high level nets – but a suitable

formalisation of high level processes is still missing.
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