
Asynchronous Traces and Open Petri Nets

Paolo Baldan1, Filippo Bonchi2, Fabio Gadducci3(B),
and Giacoma V. Monreale3

1 Dipartimento di Matematica, Università di Padova, Padova, Italy
2 ENS Lyon, Université de Lyon, LIP (UMR 5668 CNRS ENS Lyon

UCBL INRIA), Lyon, France
3 Dipartimento di Informatica, Università di Pisa, Pisa, Italy

gadducci@di.unipi.its

Abstract. The relation between process calculi and Petri nets, two fun-
damental models of concurrency, has been widely investigated. Many pro-
posals exist for encoding process calculi into Petri nets while preserving
some behavioural features of interest. We recently introduced a frame-
work where a net encoding can be defined uniformly for calculi with dif-
ferent communication patterns, including synchronous two-party, multi-
party, and asynchronous communication. The encoding preserves and
reflects several behavioural semantics, notably bisimulation equivalence.
The situation is less immediate for asynchronous calculi and trace seman-
tics: considering traces that arise when viewing asynchronous calculi as
a fragment of the synchronous ones, trace equivalence is not reflected
by the encoding. Focusing on CCS, we argue that this phenomenon is
related to the imperfect match between trace inclusion and may testing
preorder. We consider an alternative labelled transition systems where
the latter issue is solved, and we show that, indeed, the corresponding
trace semantics is preserved and reflected by the net encoding.

Keywords: Asynchronous CCS · (Open) Petri nets · Modular
encoding · May testing · Trace semantics

“Ci sono più reti di Petri in terra di quanti baci abbia dato Catullo.”
“There are more Petri nets in earth than kisses given by Catullo”

PD, circa 1989

1 Introduction

The theory of concurrency and distribution contains several studies on the rela-
tion between two fundamental models, process calculi and Petri nets. In partic-
ular, Petri nets have been used as the target for the encoding of many process

Research partly supported by the MIUR PRIN 2010LHT4KM CINA, the ANR
121S02001 PACE and the University of Padua ANCORE.

c⃝ Springer International Publishing Switzerland 2015
C. Bodei et al. (Eds.): Degano Festschrift, LNCS 9465, pp. 86–102, 2015.
DOI: 10.1007/978-3-319-25527-9 8



Asynchronous Traces and Open Petri Nets 87

calculi (and other textual formalisms). On the one hand, thanks to the simple
and immediate visual presentation of nets, a suitable encoding can clarify the
nature of concurrency and distribution in the formalism at hand. At the same
time, it can highlight if and how the different synchronisation mechanisms can
be represented in the net setting. On the other hand, the availability of many
tools and techniques for the analysis of net behavioural properties, like reachabil-
ity, boundedness, and deadlock-freedom, suggests that suitable encodings might
offer the possibility of a fruitful technology transfer. Indeed, there has been since
a long time an interest for the net encoding of calculi. Special attention has been
devoted to CCS. There are several papers which show how the handshaking com-
munication pattern of CCS (and π-calculus) can be implemented in the Petri
net setting in such a way that the operational behaviour of a process is (at
least) preserved by the encoding [15–17,26]. Pierpaolo was one of the initiators
of this line of research [12,13], also devoting some attention [14] to a less explored
paradigm, the multi-party communication pattern of e.g. CSP [18].

Most of those works exploit C/E systems, and are wired towards synchro-
nous communication patterns. In recent works [2,3] we showed how resorting
to the P/T paradigm, these ideas can be generalised in order to include asyn-
chronous communication. This has been exemplified in the asynchronous CCS
(ACCS) [7]. The encodings rely on open nets [4,8,22,24], a reactive extensions
of the ordinary net model equipped with open places and visible transitions, i.e.,
distinguished sets of places and transitions which are accessible to the environ-
ment: a net may then interact with its environment either asynchronously, by
exchanging tokens on open places, or by synchronising on visible transitions. We
identified fragments of CSP and ACCS, hereafter referred to as bound, which
can be mapped in a modular way into Petri nets via encodings that preserve
as well as reflect the standard operational semantics of the two calculi. Mod-
ularity here means that we identify suitable operators on nets which exactly
correspond to operators on processes, such that the encoding is built inductively
from a set of basic net constants, and at the same time it preserves structural
congruence. The term bound refers to limitations that are imposed to the use
of recursion/replication which will be made precise later. The fragments are
not Turing powerful (e.g., reachability is decidable), but expressive enough to
model infinite state systems where standard behavioural equivalences (barbed
bisimilarity for ACCS and trace equivalence for CSP) are undecidable.

Since most behavioural semantics for process calculi are based on their tran-
sition system, this correspondence at the operational level translates to a corre-
spondence between virtually any observational equivalence.

The situation is less clearly cut with trace semantics for ACCS, which is
in fact paradigmatic of a general problem of labelled operational semantics for
asynchronous calculi. This is witnessed by the relationship of may testing with
trace semantics, as explored in [7,11]: differently from the synchronous case, trace
inclusion does not correspond directly to the may preorder, but some adjustment
(working modulo some preorder on traces) is needed in order to take into account
the unobservability of message reception. This fact also causes a mismatch with



88 P. Baldan et al.

the notion of trace for open Petri nets, which instead directly describes all the
possible interactions of a system with its environment. Indeed, it can be easily
observed that labelled transitions, and thus trace inclusion, are only preserved
but not reflected by our net encoding of ACCS processes. The problem can
be solved by resorting to a different LTS, that we call saturated LTS, proposed
in [11] (in turn inspired by [19]). The saturated LTS induces a notion of trace that
directly captures all the possible interactions with the environment and has an
immediate correspondence with the may preorder, namely the may preorder and
trace inclusion coincide. For these reasons it fits nicely with the aforementioned
encoding into open nets: the operational semantics via the saturated LTS is now
preserved and reflected, and thus also trace semantics.

Among other technology transfers, our work opens the way to the study of
testing semantics for Petri nets, so far scarcely investigated in the literature [20].

Synopsis. The paper is structured as follows. In Sect. 2 we recall the syntax,
operational semantics and may testing theory of ACCS. In Sect. 3 we present
the saturated LTS for ACCS, and we show that the corresponding notion of
trace semantics exactly corresponds to may preorder. In Sect. 4 we describe open
Petri nets with interfaces, and we define the modular encoding of (bound) ACCS
processes into open nets. Finally, in Sect. 5 we prove that the net encoding of
ACCS preserves and reflects saturated trace semantics. In Sect. 6 we then draw
some conclusions and provide pointers to future works.

2 Asynchronous CCS

Asynchronous process calculi are characterised by the fact that message sending
and reception are not synchronised. Rather, messages are sent and travel through
some media until they reach destination. Thus sending is non-blocking (i.e., a
process may send even if the receiver is not ready to receive), while receiving
is (processes must wait until a message becomes available). One can think that
output messages are buffered [25] or stored in some shared workspace [9].

Asynchronous π-calculus was originally introduced in [1,19]. Here we consider
a restriction – not featuring name passing – called asynchronous CCS (ACCS) [7,
11]. Besides the absence of name passing, the main difference with respect to the
syntax of the calculus in [1] is the presence of a guarded input replication !a.P ,
instead of the pure replication of a summation. Indeed, unguarded replication can
have (unrealistic) infinitely branching behaviour, especially when considering a
concurrent semantics. Just think of process !τ.ā, which can concurrently generate
an unbounded number of messages on channel a.

Definition 1 (ACCS processes). Let N be a set of names, ranged over by
a, b, c, . . . and let τ ̸∈ N be the silent action. We let γ, γ1, . . . range over the set
of guards N ∪ {τ}, υ, υ1, . . . over the set of visible actions V = N ∪ N , and
µ, µ1, . . . over the set of all actions A = V ∪ {τ}. A process is a term generated
by the syntax in Fig. 1. We let P,Q,R, . . . range over the set of processes P.



Asynchronous Traces and Open Petri Nets 89

P ::= 0 inactive process
⊕n

i=1γi.Pi summation
ā output
P | Q parallel
(νa)P restriction
!a.P replication

Fig. 1. ACCS processes.

The main difference with standard CCS is the absence of output prefixes.
The occurrence of an unguarded ā indicates a message that is available on some
communication media named a. It will disappear whenever it is received.

We assume the standard definition for the set of free names of a process P ,
which is denoted by fn(P ). Similarly, we assume that α-convertibility holds with
respect to the restriction operators (νa)P : the name a is restricted in P , and
thus it can be freely α-converted.

(Alt) ρ permutation
⊕n

i=1γi.Pi = ⊕n
i=1γρ(i).Pρ(i)

(Par1)P | Q = Q | P (Par2)P | (Q | R) = (P | Q) | R

(Res1)
X ∩ fn(P ) = ∅
(νX)P = P

(Res2)
X ∩ fn(C[0]) = ∅

C[(νX)P ] = (νX)C[P ]

Fig. 2. ACCS structural axioms: C[−] is a process context with no occurrence of !a.−.

Structural equivalence (≡) is the smallest congruence induced by the axioms
in Fig. 2, where C[−] denotes a process context such that the “hole” − does
not occur inside the scope of a replication !a. With respect to [1] we added an
axiom schema for distributing the restriction under each operator different from
replication, thus also under the sum and the prefix.

The operational rules in Fig. 3, taken from [7], arise as a direct rephrasing of
the rules of synchronous CCS restricted to the asynchronous fragment (whence
the subscript “s”). The behaviour of a process P is then described as a relation
over processes up to ≡, obtained by closing the rules under structural congruence.

Definition 2 (Labeled semantics). The labelled transition system for ACCS
processes is the relation S ⊆ P × A × P inductively defined by the set of rules
in Fig. 3, where P

µ−→s Q means that ⟨P, µ,Q⟩ ∈ S. Weak transitions P w⇒sQ are
defined by the following rules, where w ∈ V∗ and ϵ denotes the empty trace.

P ( τ−→s)⋆Q
P

ϵ⇒sQ

P
v−→s Q

P
v⇒sQ

P
w1⇒sQ

w2⇒sR

P
w1w2⇒ sR



90 P. Baldan et al.

We write P
w⇒s if there exists some Q such that P w⇒sQ and we define the set

of traces of a process P as tracess(P ) = {w | P w⇒s}.

(Act)
j ∈ {1, . . . , n}

⊕n
i=1γi.Pi

γj−→s Pj

(Repl)
!a.P

a−→s !a.P | P

(Par) P
µ−→s P ′

P | Q µ−→s P ′ | Q
(Syn) P

a−→s P ′, Q
a−→s Q′

P | Q τ−→s P ′ | Q′

(Res)
P

µ−→s P ′ µ {∉ a, a}
(νa)P

µ−→s (νa)P ′ (Out)
a | P a−→s P

(Con)P ≡ P ′, P ′ µ−→s Q′, Q′ ≡ Q

P
µ−→s Q

Fig. 3. ACCS labelled semantics.

Testing semantics equates processes that cannot be taken apart by the inter-
action with external observers. This is formalised via a notion of test.

Definition 3 (May testing preorder). An observer is an ACCS process that
can perform a distinguished output action ! (the success action), with ! ̸∈ N .
For process P and observer O, P may O if there exists a successful computation

of P | O, namely P | O !⇒s. For processes P and Q, we write P ⊑m Q (P ≡m Q)
if P may O implies Q may O (and vice versa) for all observers O.

The above definition can be (and usually is) hard to verify, since it requires
to take into account all possible observers. For synchronous languages like CCS
and π-calculus, this problem can be easily avoided by observing that ⊑m coin-
cides with the standard trace inclusion. Unfortunately, this is no longer true for
asynchronous calculi. For instance, it is easy to see that a.b.P ⊑m b.a.P and
a.a ⊑m 0, but clearly neither in the former nor in the latter case the traces of
the first process are included in those of the second one.

A solution is devised in [7], by relying on the following order on traces.

Definition 4 (Trace order). The trace order for processes is the reflexive
and transitive relation ≤A⊆ V⋆ × V⋆ inductively defined by the set of rules in
Fig. 4 and closed under pre- and post-composition.

For processes P and Q, we write P ≤m Q if whenever w ∈ tracess(P ) then
w′ ∈ tracess(Q) for some w′ ≤A w.

The trace order takes into account the asynchronous nature of communica-
tions. The intuition is that, given a process P and a trace s, if P may offer s (for
a trace s, its dual s is defined in the obvious way), then it may also offer t for all



Asynchronous Traces and Open Petri Nets 91

t ≤A s. The inequality ϵ ≤A a is motivated by the fact that whenever a process
can exhibit a trace including an output message ā, it can offer the same trace
where ā has been removed, since output is non-blocking, hence any transition
that follows can be performed independently of the output. For a quite similar
reason, an output can be deferred as much as desired, whence the inequality
va ≤A av. Finally, if a process can emit an output on a and later input on the
same channel, then it can input its own message, leading to an internal move.
This motivates the last inequality ϵ ≤A aa.

ϵ ≤A a va ≤A av ϵ ≤A aa

Fig. 4. Trace ordering laws.

As shown in [7], the relevant fact concerning the relation ≤m is that t coin-
cides with the may preorder.

Theorem 1 (Alternative may testing). Let P , Q be ACCS processes. Then
P ⊑m Q iff P ≤m Q.

Example 1. Consider the processes P = (νd)(!d.ē | (a.(ā | d̄ | d.c̄) ⊕ τ.(d̄ | d.c̄)))
and Q = (νd)(τ.(d.c̄ | d.ē | d̄)). It is not difficult to see that P ≡m Q. For
instance, consider the trace ē, which can be obtained in P via the sequence
P

τ−→s (νd)(!d.ē | d̄ | d.c̄) τ−→s (νd)(!d.ē | ē | d.c̄) ē−→s (νd)(!d.ē | d.c̄), and the
trace is terminated as the replication is stuck. For Q we have the same trace via
Q

τ−→ (νd)(d.c̄ | d.ē | d̄) τ−→s (νd)(d.c̄ | ē)
ē−→s (νd)(d.c̄).

A different execution is P
a−→s (νd)(!d.ē | ā | d̄ | d.c̄) ā−→s (νd)(!d.ē | d̄ |

d.c̄) τ−→s (νd)(!d.ē | ē | d.c̄) ē−→s (νd)(!d.ē | d.c̄). The corresponding traces a, aā
and aāē, can be matched in Q by ϵ ≤m a, ϵ ≤m aā and ē ≤m aāē.

Similar considerations lead to show that process a.ā ≡m 0, one of the idio-
syncratic features of asynchronous communication.

3 May Testing via Saturated Traces

In this section we show that the may preorder can be characterised in terms
of trace inclusion by resorting to traces defined on a different LTS for ACCS
processes, which originates from [11], in turn similar to [19]. We will see later,
in Sect. 4, that with this notion of trace there is a perfect match between trace
semantics for ACCS processes and for their net encodings.

Definition 5 (Saturated LTS). The saturated LTS for ACCS processes is the
relation R ⊆ P × A × P inductively defined by the set of rules in Fig. 5, where
P

µ−→ Q means that ⟨P, µ,Q⟩ ∈ R. For a process P , weak transitions (denoted by
P

w⇒) and the set of traces (denoted traces(P )) are defined as before.



92 P. Baldan et al.

(Syn) γ1 = a
⊕n

i=1γi.Pi | a τ−→ P1

(Tau) γ1 = τ
⊕n

i=1γi.Pi
τ−→ P1

(Repl)
!a.P | a τ−→ !a.P | P

(Par) P
µ−→ P ′

P | Q µ−→ P ′ | Q

(Res)
P

µ−→ P ′ µ {∉ a, a}
(νa)P

µ−→ (νa)P ′ (Con)P ≡ P ′ P ′ µ−→ Q′ Q′ ≡ Q

P
µ−→ Q

(Out)
a | P a−→ P

(In)
P

a−→ a | P

Fig. 5. Saturated labelled semantics.

The main novelty with respect to the previous set of rules is the presence
of rule (In), stating that the environment can freely provide output messages.
Dually, rule (Out) can be interpreted as the environment receiving (and thus
consuming) a message. Rules (Syn) and (Repl) now model internal reductions.
It is easy to see (indeed, this is the definition proposed in [11]) that −→ can be
alternatively defined as the least relation on P × A × P such that

– µ−→s⊆
µ−→ and

– for all a ∈ N , P a−→ P | a.

The relation between the two LTSs is summarized by the following lemma.

Lemma 1 (Non-saturated vs saturated). Let P, Q be ACCS processes.
Then

1. P
τ−→s Q iff P

τ−→ Q;
2. P

a−→s Q iff P
a−→ Q;

3. if P a−→s Q then P
a−→ τ−→ Q.

Proof. It is easy to show that for any name a ∈ N , process P performs an
input P

a−→s Q iff P ≡ (νa1) . . . (νam)(⊕n
i=1γi.Pi | P ′), with γ1 = a ̸= ak for

k ∈ {1, . . . ,m} and Q ≡ (νa1) . . . (νam)(P1 | P ′). Dually, process P performs an
output P ā−→s Q iff P ≡ P ′ | ā. From these facts items (1)-(3) follow. ⊓0

Example 2. Consider again the processes P = (νd)(!d.ē | (a.(ā | d̄ | d.c̄) ⊕ τ.(d̄ |
d.c̄))) and Q = (νd)(τ.(d.c̄ | d.ē | d̄)) from Example 1. It can be seen that
P ≈T Q. For instance, consider the execution P

a−→ (νd)(!d.ē | (a.(ā | d̄ | d.c̄) ⊕
τ.(d̄ | d.c̄))) | ā τ−→ (νd)(!d.ē | ā | d̄ | d.c̄) τ−→ ā(νd)(!d.ē | d̄ | d.c̄) τ−→ τ(νd)(!d.ē | ē |
d.c̄) τ−→ ē(νd)(!d.ē | ē | d.c̄) that generates the trace aāē, which in the previous
LTS could only be simulated up to ≤m.

In the saturated LTS we have that Q
a−→ (νd)(τ.(d.c̄ | d.ē | d̄)) | ā

ā−→
(νd)(τ.(d.c̄ | d.ē | d̄)) τ−→ (νd)(d.c̄ | d.ē | d̄) τ−→ (νd)(d.c̄ | ē) ē−→ (νd)(d.c̄ | ē),
which gives exactly the same trace.



Asynchronous Traces and Open Petri Nets 93

We can now prove that trace inclusion in the saturated LTS is a further
characterisation of the may preorder. In order to show this fact, we prove that
trace inclusion in the saturated LTS coincide with ≤m in the LTS of Definition 2.

Proposition 1 (Soundness). Let P be an ACCS process and w ∈ traces(P ).
If w′ ≥A w then w′ ∈ traces(P ).

Proof. The proof proceeds by induction on ≤A, but we need to strengthen the
inductive hypothesis. For a set of ACCS processes S, we define its closure C(S)
as the least set of processes such that

C(S) = S ∪ {P | a : P ∈ C(S) ∧ a ∈ N}.

Observe that (†) C(C(S)) = C(S) and (‡) if P w⇒Q and P ′ ∈ C({P}), then
P ′ w⇒Q′ with Q′ ∈ C({Q}). Now, the proof that

if P w⇒Q and w ≤A w′, then P
w′
⇒Q′ and Q′ ∈ C({Q})

is easily carried out and it immediately implies our statement. ⊓0

Proposition 2 (Completeness). Let P be an ACCS process and w ∈
traces(P ). Then there exists w′ ≤A w such that w′ ∈ tracess(P ).

Proof. The statement is proved by induction on w. For the base case, if w = ϵ,
then by Lemma 1(1) P ϵ⇒Q iff P

ϵ⇒sQ. For the inductive case, we distinguish two
sub-cases according to the first action in the trace.

– If w = aw′, then P
a⇒Q and w′ ∈ traces(Q). By Lemma 1(1–2), P a⇒sQ. By

induction hypothesis, there exists w′′ ≤A w′ such that Qw′′
⇒s. Therefore P

aw′′
⇒ s

and aw′′ ≤A w.
– If w = aw′, then P

ϵ⇒P ′ a−→ Q and w′ ∈ traces(Q). By definition of a−→ we have
that Q = P ′ | a. Relying on the fact that the set of traces of P | a can be
characterised as

traces(P ) ∪ {w1w2 | w1aw2 ∈ traces(P )} ∪ {w1aw2 | w1w2 ∈ traces(P )}

from w′ ∈ traces(P ′ | a) we have that
• If w′ ∈ traces(P ′), w = aw′ ≥A w′. By induction hypothesis, there exists
w′′ ≤A w′ such that P ′w

′′
⇒s. Therefore P

w′′
⇒s and w′′ ≤A w.

• If w′ ∈ {w1w2 | w1aw2 ∈ traces(P )}, w = aw′ = aw1w2 ≥ w1aw2 ∈
traces(P ′). By induction hypothesis, there exists w′′ ≤A w1aw2 such that
P ′w

′′
⇒s. Therefore P

w′′
⇒s and w′′ ≤A w.

• If w′ ∈ {w1aw2 | w1w2 ∈ traces(P )}, w = aw′ = aw1aw2 ≥A w1aaw2 ≥A

w1w2 ∈ traces(P ′). By induction hypothesis, there exists w′′ ≤A w1w2

such that P ′w
′′

⇒s. Therefore P
w′′
⇒s and w′′ ≤A w. ⊓0

Now, the desired result immediately follows.



94 P. Baldan et al.

Theorem 2 (May testing via traces inclusion). Let P , Q be ACCS
processes. Then traces(P ) ⊆ traces(Q) iff P ≤m Q.

The result above is similar to [11, Theorem 1], which states that tracess(P ) ⊆
traces(Q) iff P ⊑m Q. However, it is worth remarking that the latter theorem
does not imply ours.

Indeed, we believe that our work provides some interesting, despite prelimi-
nary, insights: soundness and completeness (Propositions 1 and 2) state exactly
that traces(P ) is the upward closure of tracess(P ) with respect to the order-
ing ≤A. The preorder ≤m is one of the standard ways to lift an ordering to its
powerset, and it is well-known that such a lifting coincides with the inclusion of
upward closure.

4 Open Petri Nets

Let X⊕ be the free commutative monoid over a set X and let 2X be the powerset
of X. An element m ∈ X⊕ is referred to as a multisets over X, since it can be
viewed as a function m : X → N (the set of natural numbers) associating a
multiplicity with each x ∈ X. A subset Y ⊆ X is often confused with the
multiset

⊕
y∈Y y. We write m1 ⊆ m2 if ∀x ∈ X, m1(x) ≤ m2(x). If m1 ⊆ m2,

the multiset m2 ⊖ m1 is defined as ∀x ∈ X m2 ⊖ m1(x) = m2(x) − m1(x). The
symbol 0 denotes the empty multiset. Given f : X → Y we denote its extension
to multisets by f⊕ : X⊕ → Y ⊕.

Definition 6 (Petri nets). A Petri net is a tuple N = (S, T, •(.), (.)•) where
S is the set of places, T is the set of transitions, •(.), (.)• : T → 2S are functions
mapping each transition to its pre- and post-set.

α

β

γ

δ

η

σ

a

α

1

β

2

γ

δ

η

−1

σ

−2

a

Fig. 6. Graphical representation of open Petri nets, on the right with interfaces.

In order to encode a process calculus into Petri nets we consider a reac-
tive generalisation of Petri nets, in the line of [4,8,22,24]. More precisely, nets
are endowed with distinguished sets of open places. They represent the places
through which the environment interacts with the net, by putting and removing
tokens visible from the environment. Open places carry a label, and hereafter



Asynchronous Traces and Open Petri Nets 95

we let N be the corresponding set of labels. The choice is driven by our need of
encoding ACCS channels: messages on channels would correspond to tokens in
places.

Definition 7 (Open Petri net). An open net is a triple ON = ⟨N,O,λ⟩,
where N is a net, O ⊆ S is a set of open places, and λ : O → N is an injective
labelling function.

A marked open net N is a pair ⟨ON,m0⟩, where ON is an open net and
m0 ∈ S⊕ is the initial marking.

The operational semantics of open nets is presented in Fig. 7. Rule (Step)
is the standard rule of P/T nets (seen as multiset rewriting), represented as a
silent action τ . The remaining rules model interaction with the environment.
They state that in an open place at any moment the environment can generate
(In) or remove a token (Out). Note that interactions based on exchanging tokens
is naturally asynchronous. For a word w ∈ V⋆, weak transitions m

w⇒m′ are
defined as in ACCS. Similarly, for the traces traces(N) of a marked open net N.

(Step) m = •t ⊕ m′ t ∈ T
m

τ−→ t• ⊕ m′ (In) s ∈ O

m
λ(s)−−−→ m ⊕ s

(Out) s ∈ O

m
λ(s)−−−→ m ⊖ s

Fig. 7. Operational semantics of open nets.

Example 3. A marked open net is shown in Fig. 6 (left). As usual, circles rep-
resent places and rectangles transitions. Arrows represent pre- and post-sets of
transitions. Bullets in places, referred to as tokens, represent the initial marking
m0 of the net. For the sake of readability, places are often provided with an
identifier, yet positioned outside of the corresponding item.

Any open place has a name which is placed inside the corresponding circle.
In particular, there is one open place, the green one, which is labelled by a.
Finally, in the initial marking m0 of the net, the places α and β are marked.
For example, by applying the (Step) rule in Fig. 7, we obtain the firing m0

τ−→
m1 = {γ, δ}. By applying again the same rule m1

τ−→ m2 = {γ,σ}, while by
the (In) rule m1

a−→ m3 = {γ, δ, a}. Moreover, by applying twice the (Step) rule,
m3

τ−→ m4 = {η, δ} and m4
τ−→ m5 = {η,σ}.

It is easy to see that the set of traces of this net consists of all and only the
traces w ∈ V⋆ such that (1) only a and a occur in w; and (2) in every prefix of
w, the number of occurrences of a is larger than the number of occurrences of a.

4.1 Open Petri Nets with Interfaces

In order to allow for an inductive construction of open Petri nets from a set of
basic components, we enrich open nets with interfaces and suitable operators for
net composition along the interfaces.



96 P. Baldan et al.

In the following, for each n ∈ N we denote by n+ the set {1, . . . , n}, by
n− the set {−1, . . . ,−n} and by 0 the empty set ∅. Also, for f : n+ → S and
g : m+ → S, we denote f + g : (n+m)+ → S the function (f + g)(x) = f(x) if
x ≤ n and g(x − n) otherwise (and similarly for n− and m−).

Definition 8 (Open nets with interfaces). Let l, r ∈ N. An open net with
left interface l and right interface r is a triple IN = ⟨li, ON, ri⟩, where ON is an
open net, li : l+ → S and ri : r− → S are the left and right interface functions,
respectively.

We denote by l+
li−→ ON

ri←− r− a net with left interface l+ and right interface
r−. With an abuse of notation, in the following we refer to the places belonging
to the image of the left interface function as left places, and similarly for the
places in the image of the right one. From now on we will denote the components
of an open net with interfaces by l+, li, ON, ri, and r−, possibly with subscript.

Graphically, a net with interfaces is represented as an open net, with the left
interface on the left and the right interface on the right, marked with incoming
and outgoing dotted arrows, respectively. Arrows of the left places are blue while
those of right places are red (grey when in b&w).

Example 4. A net with interfaces is shown in Fig. 6 (right). The left interface
consists of the places α, and β, while the right one contains η and σ. The places
labelled γ and δ are internal, i.e., they do not belong to the interfaces.

Relying on the notion of interface, we can define two suitable composition
operators on nets. Here we just provide an informal description: The reader is
referred to [2,3] for a detailed definition.

Definition 9 (Composition operations). Let IN1 = l+1
li1−−→ ON1

ri1←−− r−
1

and IN2 = l+2
li2−−→ ON2

ri2←−− r−
2 be (point-wise disjoint) nets with interfaces.

– When r1 = l2, their sequential composition IN1◦IN2 is the net with interfaces
l+1 and r−

2 obtained by taking the disjoint union of the nets N1 and N2 and
merging the open (right) places of N1 with the corresponding open (left) places
of N2.

– Their parallel composition IN1 ⊗IN2 is the net with interfaces (l1+ l2)+ and
(r1 + r2)− obtained by taking the disjoint union of the nets N1 and N2, and
merging the open places of N1 with the corresponding open places of N2.

– The restriction (νa)IN1 of IN1 with respect to a ∈ N is the net with interfaces
l+1 and r−

1 obtained by closing the open places labelled by a. We often generalise
the operator to any X ⊆ N .

After building the encoding of a process, we also need to fix its initial state.
This is accomplished by marking the the left places of the resulting open net.
To this end, the following operation will then be used.

Definition 10 (Marking). Let IN be a net with interfaces. The marking of
IN is the marked open net init(IN) = ⟨ON,m0⟩, where m0 =

⊎l+

n=1 li(n).



Asynchronous Traces and Open Petri Nets 97

4.2 From ACCS Processes to Nets

Exploiting the algebra of open nets outlined in the previous section, we introduce
an encoding for ACCS processes into open nets that preserves and reflects the
behaviour. The encoding will be restricted to bound processes, i.e., processes
where restrictions never occurs under replications.

Definition 11 (Bound ACCS processes). An ACCS process is called bound
if no restriction (νa)− occurs under replication.

Intuitively, by restricting to bound processes we avoid the generation of an
unbounded number of restricted (and thus conceptually different) names. This
will be essential to guarantee the finiteness of the Petri net encoding.

The encoding of a process is defined inductively starting from a set of constant
nets, those depicted in Fig. 8, which are then combined using the composition
operators on nets in Sect. 4.1. The net nil in Fig. 8(a), which is later used to
represent the inactive process, consists of a single unmarked place. The net outa
in Fig. 8(b) models the output action on a channel name a and it consists of a
single left place, which is also open. The net a in Fig. 8(c), where a ∈ N , is very
similar to the previous but it has an empty left interface. It is going to be used
to model additional free names in the encoding of a process. The net dupl i in
Fig. 8(d) is a combinator for the summation of prefixes (input and τ actions)
where i, the cardinality of the right interface, matches the number of prefixes
involved in the sum. The net replai in Fig. 8(e), where a ∈ N , is going to be
used as a combinator for replication. It allows for a new “parallel activation” of
the net which follows, each time a token is inserted in the open place a. Once
more, i is the cardinality of the right interface which will match that of the left
interface of the encoding of the process under the replication operator. The net
actai in Fig. 8(f), where a ∈ N , provides a combinator for the input action on a
channel a. It consists of a transition with two places in the pre-set, a left place
for the flow of control and the open place a modelling the channel on which the
input is required. Again, i is the cardinality of the right interface matching the
left interface of the encoding of the continuation of a. Finally, the net actτ

i in
Fig. 8(g) models a τ prefix: the only difference with respect to actai is the absence
of an open place modelling the channel.

The definition below introduces the net encoding of bound ACCS processes.

Definition 12 (Encoding for processes). Let P be an ACCS bound process.
The encoding of P , denoted by !P ", is defined as !P " = init(|P |), where |.| is
given by the inductive rules in Fig. 9, where l|P | and l|Pj | denote the left interfaces
of the corresponding encodings.

The encoding of an ACCS process P is built inductively by composing those
of its sub-processes, and by marking the places in the left interface of the resulting
net. The encoding contains one place for each operator !a, ⊕ and process 0 of P
and a place for each name of P , which are open just for free names. Transitions
mimic the control flow of a process, passing the token between its sequential



98 P. Baldan et al.

1 a1 a

1

−1

−i

(a) nil (b) outa (c) a (d) dupl i

1

a −1

−i

1

a −1

−i

1

−1

−i

(e) replai (f) actai (g) actτ
i

Fig. 8. The constant nets stop, replai , outa, act
a
i , dupl i and actτ

i .

|0| = nil
|ā| = outa∣∣⊕n

j=1γj .Pj

∣∣ = dupln ◦ {⊗n
j=1(act

γj

l|Pj |
◦ |Pj |)}

|!a.P | = replal|P |
◦ |P |

|(νa)P | = (νa) |P |
|P | Q| = |P | ⊗ |Q|

Fig. 9. Encoding for ACCS processes.

components. It can be shown that the encoding respects structural congruence:
structurally equivalent processes are mapped into isomorphic nets and vice versa.

Example 5. ([Restricted and parallel processes]) Consider again the process Q =
(νd)Q1, with Q1 = τ.(d.c̄ | d.ē | d̄), which was introduced in Example 1. The
encoding |Q| is shown in Fig. 10. It is obtained by applying the init(·) operation
to the net (νd) |Q1|. In particular, |Q|1 is the result of the sequential composition
between dupl1 and actτ

1 ◦ |Q2|, where Q2 = d.c̄ | d.ē | d̄. In turn, the net |Q2| is
obtained by the parallel composition between d.c̄ | d.ē and d̄, where the former
is obtained via the parallel and sequential compositions of constant nets. The
places labelled by c, d, and e correspond to the output actions c̄, d̄, and ē of
Q2. They are all open in |Q2|, meaning that they represent free names of Q2.
The sub-net rooted at α is the encoding of the sub-process d.c̄, while the one
rooted at β encodes the sub-process d.ē. The place d is open in |Q1|, but since d
is restricted in Q, it is removed from the set of open places of |Q1| by applying
the restriction operation of nets.



Asynchronous Traces and Open Petri Nets 99

α

d

α′

β

c

e

Fig. 10. Net encoding the process (νd)(τ.(d.c̄ | d.ē | d̄)).

We denote by !P "Γ , the encoding of a bound process P with respect to a set
of names Γ , that is, !P "Γ = init(|P | ⊗ (⊗a∈Γa)). The addition of the component
⊗a∈Γa determines the presence in the encoding of a place for each channel in Γ
(which could possibly not occur free in P ). One can establish a correspondence
between the ACCS processes reachable from P , hereafter denoted by the set
reach(P ) = {Q : ∃w ∈ V⋆, P

w⇒sQ}, and the markings of !P "Γ , through which
we can relate internal reductions in ACCS processes and their encodings.

Theorem 3 (Process reductions as net firings). Let P be an ACCS bound
process and Γ a set of names. Then there is a function mP

Γ : reach(P ) → S⊕
!P "Γ

,
mapping any process Q ∈ reach(P ) into a marking of !P "Γ , such that

1. if Q τ−→s R then mP
Γ (Q) τ−→ mP

Γ (R) in !P "Γ ;
2. if mP

Γ (Q) τ−→ m in !P "Γ then Q
τ−→s R with m = mP

Γ (R).

Proof. Since by Lemma 1(1) silent transitions in −→ and −→s are exactly the
same, the result follows from a straightforward adaption of [2, Theorem1]. ⊓0

5 Traces in ACCS and in Open Nets

The correspondence between the reduction-based operational semantics of ACCS
processes and their net encodings immediately lifts to a preservation and reflec-
tion of various behavioural equivalence, notably weak and strong barbed bisim-
ilarity (see [2,3]). In this section we show that the correspondence holds also for
trace equivalence, as it is easily proved if the saturated LTS is considered.

We first observe a mismatch between the notion of trace for ACCS processes
in Sect. 2, which captures the interactive behaviour of a process only up to the
≤m preorder on traces, and that for Petri nets, which instead fully describe
all the possible interactions of a system with its environment. Indeed, for such
notion of trace, trace inclusion is not reflected by the net encoding of processes.

Example 6. Consider again the processes P = (νd)(!d.ē | (a.(ā | d̄ | d.c̄) ⊕ τ.(d̄ |
d.c̄))) and Q = (νd)(τ.(d.c̄ | d.ē | d̄)) as introduced in Example 1. We already
observed there that aāē ∈ tracess(P ), while aāē ̸∈ tracess(Q). On the contrary,
the encodings of P and Q have exactly the same traces: indeed, this also happens
in the saturated LTS, as shown in Example 2.



100 P. Baldan et al.

We next prove that by considering traces for ACCS processes on the satu-
rated LTS of Sect. 3 there is a perfect match between trace semantics for ACCS
processes and for their encodings. More precisely, it is possible to prove that in
the saturated LTS the correspondence between transitions of an ACCS process
and those of its encoding, is not limited to internal reductions (as expressed by
Theorem 3) but extends to labelled transitions.

Theorem 4 (Labelled transitions as net firings). Let P be a bound ACCS
process, Γ a set of names and Q ∈ reach(P ). Then

1. if Q v−→ R and v ∈ Γ ∪ Γ then mP
Γ (Q) v−→ mP

Γ (R) in !P "Γ ;
2. if mP

Γ (Q) v−→ m in !P "Γ then Q
v−→ R with m = mP

Γ (R).

Proof. 1. Assume that Q
v−→ R and v ∈ Γ ∪ Γ . We distinguish two cases. If

v = a ∈ Γ then by definition of the saturated semantics R = Q | ā. By
definition of the encoding a is an open place in !P "Γ , hence mP

Γ (Q) a−→
mP

Γ (Q) ⊕ a = mP
Γ (R).

If instead, v = ā ∈ Γ , then by definition of the saturated semantics it must
be Q ≡ R | ā. By definition of the encoding a is an open place in !P "Γ ,
hence mP

Γ (Q) ā−→ mP
Γ (Q) ⊖ a = mP

Γ (R).
2. Analogous. ⊓0

Finally, by using the above result and by recalling that, by Lemma 1(1),
silent transitions in −→ and −→s coincide, we can conclude the following.

Corollary 1 (Preservation and reflection of trace semantics). Let P , Q
be ACCS bound processes and Γ a set of names such that fn((P ))∪fn((Q)) ⊆ Γ .
Then traces(P ) ⊆ traces(Q) iff traces(mP

Γ (P )) ⊆ traces(mQ
Γ (Q)).

6 Conclusions and Further Works

In this paper we investigated trace semantics and its may testing characterisation
for asynchronous calculi, focusing on asynchronous CCS, and their encodings
based on open Petri nets. By considering the LTS of [11,19], we proved that the
trace semantics is preserved and reflected by the encoding.

It has to be noted that Theorems 3 and 4 are reminiscent of the similar results
in [2,3], and they are actually made easier by the simpler net encoding for ACCS,
with respect to CSP, which is presented here. Also noteworthy is the possible
connection between the testing semantics and the minimal context semantics, as
originally proposed in [21]. We already explored the connection with weak and
strong barbed bisimilarities for ACCS in [6], and we do hope that the present
work will help cast further lights on other observational equivalences.

Indeed, observe that the results in the paper naturally suggests also a
notion of (may) testing semantics for Petri nets, where an observer is any other
net including some success transition. Few studies exist in the literature (see,



Asynchronous Traces and Open Petri Nets 101

e.g., [20]) and it seems non-trivial to understand whether may testing for nets
would coincide with trace equivalence. Differently from processes, the notion of
context for nets, intended as a expression built out of constants and sequential
and parallel composition, seems too powerful, since it allows for reusing the same
transition several times and to merge open places.

In [12], Pierpaolo and coauthors pointed out that a good encoding of a
(synchronous) calculus into nets should also preserve the intended degree of
concurrency. Our proposal seems to move away from this requirement in the
encoding of the replication !a.P (see Fig. 8(e)). Each unfolding step causes not
only its continuation P but also the following occurrences of a.P while, intu-
itively, these should be considered independent as !a.P is a finite shorthand for
a.P | a.P | . . . A solution to this problem – as suggested in a different context
in [10, Section 7.2] – could be found by using contextual nets [23] and replacing
the feedback edges in Fig. 8(e) with a single read arc. We did not adopt this solu-
tion in order to keep our model as simple as possible, and because we decided to
leave out of the scope of this paper any analysis of concurrency. The validity of
our choice is motivated by a general analysis concerning the concurrent features
of systems communicating by means of asynchronous interactions: as we showed
in [5], concurrency cannot be observed in such systems, and they include those
specified by ACCS and open Petri nets.

Acknowledgements. We are indebted in many ways to Pierpaolo Degano. Indeed,
the earliest exposure of the third author to Petri nets was in a remote cycle of seminars,
whose initial lesson was introduced by the quotation in the first page. A scary moment,
if there ever was one. Along the years, we all –either as Ph.D. students or later on as
co-authors/colleagues/partners in projects– benefited from the insights and availabil-
ity of Pierpaolo. More technically, we already mentioned his early contributions on
net encoding for calculi. In general terms, the insistence on the proof structure of a
computation in order to distill a suitable (concurrent) semantics for a calculus, which
is typical of the work of Pierpaolo since the early Eighties, has been a fixed star: the
modularity of our net encoding spills out of this “commandment”.

We are most grateful to the anonymous reviewers whose suggestions and remarks
helped us to improve the paper.

References

1. Amadio, R., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous
π-calculus. Theoret. Comput. Sci. 195(2), 291–324 (1998)

2. Baldan, P., Bonchi, F., Gadducci, F., Monreale, G.: Modular encoding of synchro-
nous and asynchronous interactions using open Petri nets. Sci. Comput. Program.
109, 96–124 (2015)

3. Baldan, P., Bonchi, F., Gadducci, F., Monreale, G.V.: Encoding synchronous inter-
actions using labelled Petri nets. In: Kühn, E., Pugliese, R. (eds.) COORDINA-
TION 2014. LNCS, vol. 8459, pp. 1–16. Springer, Heidelberg (2014)

4. Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional semantics for open
Petri nets based on deterministic processes. Math. Struct. Comput. Sci. 15(1),
1–35 (2004)



102 P. Baldan et al.

5. Baldan, P., Bonchi, F., Gadducci, F., Monreale, G.V.: Concurrency cannot be
observed, asynchronously. Math. Struct. Comput. Sci. 25(4), 978–1004 (2015)

6. Bonchi, F., Gadducci, F., Monreale, G.V.: A general theory of barbs, contexts, and
labels. ACM Trans. Comput. Logic 15(4), 35:1–35:27 (2014)

7. Boreale, M., De Nicola, R., Pugliese, R.: Trace and testing equivalence on asyn-
chronous processes. Inf. Comput. 172(2), 139–164 (2002)

8. Bruni, R., Melgratti, H.C., Montanari, U., Sobocinski, P.: Connector algebras for
C/E and P/T nets’ interactions. Log. Methods Comput. Sci. 9(3), 1–65 (2013)

9. Busi, N., Gorrieri, R., Zavattaro, G.: Comparing three semantics for Linda-like
languages. Theoret. Comput. Sci. 240(1), 49–90 (2000)

10. Busi, N., Gorrieri, R.: Distributed semantics for the π-calculus based on Petri nets
with inhibitor arcs. Logic Algebraic Program. 78(3), 138–162 (2009)

11. Castellani, I., Hennessy, M.: Testing theories for asynchronous languages. In:
Sarukkai, S., Arvind, V. (eds.) FST TCS 1998. LNCS, vol. 1530, pp. 90–102.
Springer, Heidelberg (1998)

12. Degano, P., De Nicola, R., Montanari, U.: CCS is an (augmented) contact free C/E
system. In: Zilli, M.V. (ed.) Mathematical Models for the Semantics of Parallelism.
LNCS, vol. 280, pp. 144–165. Springer, Heidelberg (1986)

13. Degano, P., De Nicola, R., Montanari, U.: A distributed operational semantics for
CCS based on condition/event systems. Acta Informatica 26(1/2), 59–91 (1988)

14. Degano, P., Gorrieri, R., Marchetti, S.: An exercise in concurrency: a CSP process
as a condition/event system. In: Rozenberg, G. (ed.) APN 1998. LNCS, vol. 340,
pp. 85–105. Springer, Heidelberg (1987)

15. Devillers, R., Klaudel, H., Koutny, M.: A compositional Petri net translation of
general π-calculus terms. Formal Aspects Comput. 20(4–5), 429–450 (2008)

16. Goltz, U.: CCS and Petri nets. In: Guessarian, I. (ed.) Semantics of Systems of
Concurrent Processes. LNCS, vol. 469, pp. 334–357. Springer, Heidelberg (1990)

17. Gorrieri, G., Montanari, U.: SCONE: A simple calculus of nets. In: Baeten, J.C.M.,
Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 2–31. Springer, Heidelberg
(1990)

18. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Upper Saddle
River (1985)

19. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In:
Tokoro, M., Nierstrasz, O., Wegner, P. (eds.) ECOOP 1991. LNCS, vol. 612, pp.
21–51. Springer, Heidelberg (1991)

20. Jenner, L., Vogler, W.: Fast asynchronous systems in dense time. Theoret. Comput.
Sci. 254(1–2), 379–422 (2001)

21. Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems. In:
Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, p. 243. Springer, Heidelberg
(2000)

22. Milner, R.: Bigraphs for Petri nets. In: Reisig, W., Desel, J., Rozenberg, G. (eds.)
Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 686–701. Springer,
Heidelberg (2004)

23. Montanari, U., Rossi, F.: Contextual nets. Acta Informatica 32(6), 545–596 (1995)
24. Sassone, V., Sobociński, P.: A congruence for Petri nets. In: Mens, T., Schürr, A.,

Taentzer, G. (eds.) PNGT 2004. ENTCS, vol. 127, pp. 107–120. Elsevier (2005)
25. Selinger, P.: Categorical structure of asynchrony. In: Brookes, S., Jung, A., Mislove,

M., Scedrov, A. (eds.) MFPS 1999. ENTCS, vol. 20. Elsevier (1999)
26. Winskel, G.: A new definition of morphism on Petri nets. In: Fontet, M., Mehlhorn,

K. (eds.) STACS 1984. LNCS, vol. 166, pp. 140–150. Springer, Heidelberg (1984)


	Preface
	Organization
	Contents
	Pierpaolo Degano
	1 The Man
	2 His Research
	3 His Students
	References

	Pierpaolo, a Great Friend
	1 Close Encounters
	1.1 Encounter of the First Kind (when I Saw him)
	1.2 Encounter of the Second Kind (when I Heard him)
	1.3 Encounter of the Third Kind (when I Touched him)

	2 Lively Discussions
	3 A Great Friend

	Distributed Authorization with Distributed Grammars
	1 Introduction
	2 Basics: Blessings, Groups, and ACLs
	2.1 Ordinary Names and Group Names
	2.2 Blessings and Blessing Patterns
	2.3 Groups
	2.4 ACLs

	3 Semantics
	3.1 The Meaning of Blessing Patterns
	3.2 From Group Definitions to Grammars and Languages

	4 Specifying Authorization Checks
	5 An Implementation of Authorization Checks
	5.1 An Auxiliary Function: R
	5.2 Reducing IsAuthorized to R
	5.3 Implementing the Calls to R
	5.4 Distribution

	6 On Prefix Matching
	7 Conclusion
	References

	Causal Trees, Finally
	1 Introduction
	2 Background and Running Example
	2.1 Abstract Posets
	2.2 Darondeau-Degano Causal Semantics

	3 P-processes
	3.1 Operations on P-processes

	4 HD Causal Semantics
	4.1 Interleaved and Synchronised Product
	4.2 HDC-semantics and Bisimulation

	5 Causal History-Dependent Automata with Symmetries
	5.1 HDC-automata for P-processes

	6 Conclusion
	References

	Limited Disclosure and Locality in Graphs
	References

	Hoare Logic for Disjunctive Information Flow
	1 Introduction
	2 Motivating Example
	3 Syntax and Instrumented Semantics
	4 Security Policies
	5 Type System and Correctness
	6 Conclusion and Future Work
	References

	Alice and Bob: Reconciling Formal Models and Implementation
	1 Introduction
	2 SPS Syntax
	3 Operational Strands
	4 SPS Semantics
	4.1 Message Model
	4.2 Message Derivation and Checking
	4.3 High-Level Semantics
	4.4 Implementing the Semantics

	5 Translations from Operational Strands
	5.1 Experimental Results
	5.2 JavaScript Translation
	5.3 Applied  Translation

	6 Conclusions and Related Work
	References

	Asynchronous Traces and Open Petri Nets
	1 Introduction
	2 Asynchronous CCS
	3 May Testing via Saturated Traces
	4 Open Petri Nets
	4.1 Open Petri Nets with Interfaces
	4.2 From ACCS Processes to Nets

	5 Traces in ACCS and in Open Nets
	6 Conclusions and Further Works
	References

	Compliance in Behavioural Contracts: A Brief Survey
	1 Introduction
	2 Contracts
	2.1 Basics
	2.2 Interface Automata
	2.3 -less CCS
	2.4 Session Types
	2.5 Contract Automata
	2.6 Relations Between Classes of Contracts

	3 Compliance Relations
	4 Comparing Compliance Relations
	5 Related Work and Conclusions
	References

	Safe Adaptation Through Implicit Effect Coercion
	1 Introduction
	2 Motivating Example
	3 ContextML: A Context-Oriented ML Core
	3.1 Syntax
	3.2 Dynamic Semantics

	4 History Expressions
	5 ContextML Types
	6 Related Work
	7 Conclusions
	References

	Validation of Decentralised Smart Contracts Through Game Theory and Formal Methods
	1 Introduction
	2 Bitcoin-Based Smart Contracts
	2.1 BitCoin: A Protocol for Decentralised Applications
	2.2 BitHalo: Decentralised Smart Contracts
	2.3 dscp, a Decentralised Smart Contract Protocol

	3 Game Theoretic Analysis of dscp
	4 Formal Verification of dscp
	4.1 Protocols, Contracts and Formal Verification
	4.2 Markov Decision Processes
	4.3 A Probabilistic Model of dscp

	5 Validating dscp
	5.1 Model Validation
	5.2 Deposits, Prices and Players' Profiles
	5.3 Being Fraudulent Pays Off

	6 Conclusions
	References

	Static Evidences for Attack Reconstruction
	1 Introduction
	2 The LySa+ Calculus
	3 Control Flow Analysis
	4 Wide Mouthed Frog Variant 1: Study
	5 Conclusions 
	References

	A Declarative View of Signaling Pathways
	1 Introduction
	2 Concurrent Constraint Process Calculi
	3 Biochemical Interactions as Concurrent Processes
	3.1 The Model in ntcc
	3.2 A Simulation Tool: BioWayS

	4 In Silico Experimentation
	4.1 The Biological Data
	4.2 The Model
	4.3 Experiments and Results

	5 Related Work
	6 Concluding Remarks
	References

	Securing Android with Local Policies
	1 Introduction
	2 Background
	3 Case Study
	4 Programming Model
	5 Type and Effect
	5.1 History Expressions
	5.2 Type and Effect System

	6 Policy Language
	7 Discussion
	8 Conclusion
	References

	Global Protocol Implementations via Attribute-Based Communication
	1 Introduction
	2 Global Protocol Specifications
	3 AbC
	4 Synthesis of Global Protocols in AbC
	5 Operational Correspondence
	6 Conclusion and Related Work
	References

	Symbolic Protocol Analysis with Disequality Constraints Modulo Equational Theories
	1 Introduction
	2 Background on Term Rewriting
	3 Symbolic Reachability Analysis by Narrowing
	3.1 Reachability Analysis in Maude-NPA

	4 Distinguishing Disequalities Modulo an Equational Theory
	4.1 Symbolic Reachability Analysis with Disequality Constraints
	4.2 Constrained Reachability Analysis in Maude-NPA

	5 Symbolic Reachability with Disequalities Modulo FVP Theories
	5.1 Constrained Symbolic Reachability Analysis Modulo FVP Theories
	5.2 Contextual Constrained Reachability Analysis in Maude-NPA

	6 Experiments
	7 Conclusions
	References

	Language Representability of Finite P/T Nets
	1 Introduction
	2 Background
	2.1 Labeled Transition Systems and Bisimulation
	2.2 Place/Transition Petri Nets

	3 Finite-net Multi-CCS
	3.1 Syntax
	3.2 Operational Semantics with LTSs

	4 Operational Net Semantics
	4.1 Places and Markings
	4.2 Properties of Places and Markings
	4.3 Net Transitions
	4.4 Properties of Net Transitions
	4.5 The Reachable Subnet Net(p)
	4.6 Soundness

	5 A Process Term for Any Finite P/T Net
	6 Conclusion
	References

	Soulmate Algorithms
	1 Introduction
	2 Naive Approaches
	3 Undecidability
	4 Complexity and Approximation
	5 Randomized Algorithms
	6 Concluding Remarks
	References

	Active Knowledge, LuNA and Literacy for Oncoming Centuries
	1 Introduction
	2 Active and Passive Knowledge
	2.1 Passive Representation of the Knowledge
	2.2 Active Representation of the Knowledge
	2.3 Logic Program Synthesis
	2.4 Technological Requirements to Representation

	3 Technological Notion of Knowledge
	3.1 Structural Program Synthesis (SPS)
	3.2 The Notion of Knowledge

	4 Technological Model of Knowledge
	4.1 The General Definition of the Program Synthesis Problem
	4.2 Computational Model Definition
	4.3 An Example of Knowledge Base, i.e. Partially Defined AT
	4.4 Particle-In-Cell Method
	4.5 LuNA Project
	4.6 New Literacy

	5 Conclusion
	References

	There are Two Sides to Every Question
	1 Introduction
	2 Setting up the Scene
	2.1 Semiring
	2.2 Quantitative Controller Operator
	2.3 Related Work

	3 Quantitative Security Approach
	3.1 Binary C-Semiring Hennessy-Milner Logic (c-HM2)

	4 Quantitative Partial Model Checking for Controller Operator
	5 A Simple Example
	6 Conclusion
	References

	From Safety Critical Java Programs to Timed Process Models
	1 Introduction
	2 Related Work
	3 The SCJ Real-Time Programming Model
	4 Real-Time Execution Platforms
	5 Timed Automata
	6 TetaSARTS
	7 From Java Byte Code to Timed Automata
	8 Correctness of Translation
	9 Analyses and Optimisations
	10 Evaluation
	11 Conclusion
	References

	When to Move to Transfer Nets
	1 Introduction
	2 The DS Calculus
	3 The RenDS Calculus: Shared Data Space with Renaming
	4 Conclusion
	References

	 : An Imperative DSL to Stochastically Simulate Biological Systems
	1 Introduction
	2  Design and Intuition
	3  Syntax
	3.1 Rewriting Rules

	4 Performance Benchmark of 
	4.1 Implementation Choices
	4.2 Performance

	5 Conclusions
	A  Semantics
	References

	Author Index

