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The paper investigates the relationships between two well-known approaches to the 
modelling of concurrent and distributed systems, process calculi and Petri nets. A frame-
work for the modular encoding of process calculi into Petri nets is proposed, which 
is based on a reactive variant of Petri nets. In particular, two exemplary calculi are 
considered: (asynchronous) CCS and CSP, representing alternative interaction paradigms, 
namely asynchronous and (broadcast) synchronous communication. The encoding is proved 
to preserve as well as to reflect the operational semantics. As a consequence, it is well-
behaved with respect to the standard behavioural equivalences, a fact that is exploited to 
perform a “technology transfer” between the two formalisms, in terms of un/decidability 
results for classical properties such as reachability and deadlock-freedom.
The encoding highlights the expressiveness of the proposed reactive variant of nets, as 
well as paving the way for a fruitful integration of tools and techniques between the visual 
formalism of nets and the algebraic framework of processes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Synchronisation mechanisms, which allow for a proper interaction between parallel system components, obviously play 
a central role in concurrency theory.

A synchronisation paradigm is the heart of the design of any process calculus, around which the formalism is built. The 
interaction paradigm in Hoare’s Communicating Sequential Processes (CSP) [1] is broadcast synchronisation, while processes 
of Milner’s Calculus of Communicating Systems (CCS) [2] interact via synchronous two-party communication. Since the 
spread of massively distributed systems, much more attention has been devoted to asynchronous communication, where the 
operation of sending messages is non-blocking: a process may send a message without any agreement with the receiver, and 
continue its execution while the message travels to destination. After the introduction of the asynchronous π -calculus [3,4], 
many process calculi (e.g., [5–7]) have been proposed that embody some asynchronous communication mechanism, amongst 
which the asynchronous CCS [8] is the most relevant for our work.

✩ Partly supported by EU FP7-ICT IP 257414 ASCENS, MIUR PRIN 2010LHT4KM CINA, and ANR 121S02001 PACE.

* Corresponding author.
E-mail addresses: baldan@math.unipd.it (P. Baldan), filippo.bonchi@gmail.com (F. Bonchi), fabio@di.unipi.it (F. Gadducci), vale@di.unipi.it (G.V. Monreale).
http://dx.doi.org/10.1016/j.scico.2014.11.019
0167-6423/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2014.11.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:baldan@math.unipd.it
mailto:filippo.bonchi@gmail.com
mailto:fabio@di.unipi.it
mailto:vale@di.unipi.it
http://dx.doi.org/10.1016/j.scico.2014.11.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2014.11.019&domain=pdf


P. Baldan et al. / Science of Computer Programming 109 (2015) 96–124 97
Petri nets [9] are among the most widely used formalisms for the visual specification of concurrent systems. In a Petri 
net the behavioural relations between computational steps, such as causal dependencies and non-deterministic choices, are 
explicit and easy to analyse. The appeal of Petri nets lies in their ease of use as well as in their expressiveness. Indeed, their 
graphical presentation allows for a simple description of possibly complex interaction patterns, in such a way that both 
synchronous and asynchronous features can be represented.

Synchronisation mechanisms are somehow less explicit in Petri nets. Roughly, the state of a net consists of a set of 
tokens distributed among the places of the net, while its dynamics is expressed by the token flows that are determined 
by transition firings. Thus, transitions realise a sort of synchronous composition of different token flows: all the places 
in the pre-set must be filled by tokens in order to enable a transition. The interaction on places, instead, is eminently 
asynchronous: a token is produced in a place and later consumed, when needed.

In order to take advantage from the best of the two settings, the relation between process calculi and Petri nets has been 
often investigated. In particular, Petri nets have been used as the target for the encoding of many process calculi (and other 
textual formalisms). On the one hand, thanks to the simple and immediate visual presentation of nets, a suitable encoding 
can clarify the nature of concurrency and distribution in the formalism at hand. At the same time, it can highlight if and how 
the different synchronisation mechanisms can be represented in the net setting. On the other hand, the availability of many 
tools and techniques for the analysis of net behavioural properties, like reachability, boundedness, and deadlock-freedom, 
suggests that any suitable encoding might offer the possibility of a fruitful technology transfer. Indeed, there has been since 
a long time an interest for the net encoding of calculi. Special attention has been devoted to CCS. There are several papers 
which show how the handshaking communication pattern of CCS (and π -calculus) can be implemented in the Petri net 
setting in such a way that the operational behaviour of a process is (at least) preserved by the encoding [10–13].

In this work we propose a modular and uniform approach to process encoding which relies on open nets [14–17], reac-
tive extensions of the ordinary net model, and we show that it can naturally be applied to calculi adhering to either the 
synchronous or the asynchronous interaction paradigm.

Our open nets are ordinary P/T Petri nets equipped with open places and visible transitions, i.e., distinguished sets of places 
and transitions which are accessible to the environment: a net may then interact with its environment either by exchanging 
tokens on open places or by synchronising on visible transitions. The choice of exposing both places and transitions to the 
environment emerges naturally from the need of encoding calculi featuring both synchronous and asynchronous commu-
nications since, as observed above, interactions on places and transitions have an asynchronous and synchronous flavor, 
respectively. Indeed, in our case studies, for encoding asynchronous communications we let net components to interact only 
on places while synchronous communications reduces to an interaction on transitions. Such a difference is reflected by the 
encoding of the restriction operator, which corresponds to closing an open place for asynchronous calculi and to hiding a 
visible transition for synchronous ones.

Concretely, as case studies we focus on two paradigmatic process calculi, namely CSP and CCS, and we encode two 
interaction mechanisms whose connection with nets has received less attention in the literature: the broadcast synchroni-
sation pattern of CSP [1] and the asymmetric message passing of asynchronous CCS [8]. These are instances of the main 
alternatives concerning the communication pattern, namely, asynchronous message reception vs broadcast synchronisation, 
respectively. A third classical paradigm is synchronous two-party communication, where channels adopt a strict handshak-
ing pattern, and messages are simultaneously sent and received as in the seminal CCS [2]. There is a large literature on the 
encoding of CCS into Petri nets (see, e.g., [10–13]) and the calculus naturally fits in our framework, by an easy adaptation of 
the ideas in these papers (especially the latter). As this case study would give no further insights, we decided not to treat 
it explicitly.

We identify fragments of both asynchronous CCS and CSP, hereafter referred to as bound, which can be mapped modularly
into Petri nets via encodings that preserve as well as reflect the operational semantics. The term bound refers to limita-
tions that are imposed to the use of recursion/replication which will be made precise later. The fragments are not Turing 
powerful (e.g., reachability is decidable), but expressive enough to model infinite state systems where standard behavioural 
equivalences (bisimilarity for asynchronous CCS and trace equivalence for CSP) are undecidable. Since most behavioural se-
mantics for process calculi are based on their transition system, this correspondence at the operational level translates to a 
correspondence between virtually any observational equivalence. We explicitly prove this fact for trace equivalence on CSP 
and (strong and weak) bisimulation equivalence on asynchronous CCS. The latter correspondence is more surprising, given 
the asymmetry between sending and receiving in asynchronous equivalences.

Summarising, the main features of our encodings are

1. modularity: the encoding is built inductively from a set of basic net constants, by using few composition operators;
2. structural congruence of processes coincides with isomorphism of nets;
3. process transitions are in one-to-one correspondence with net firings;
4. behavioural equivalences of processes are preserved and reflected.

These features allow for a fruitful technology transfer amongst nets and the fragments of the two calculi.
For instance, by using the fact that reachability is decidable for Petri nets, through the encodings we prove that reacha-

bility and convergence are decidable for bound asynchronous CCS and CSP (which, thus, are not Turing powerful).
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P ::= nil inactive process⊕n
i=1 μi .Pi summation

ā output
P | Q parallel operator
(νa)P restriction operator
!a. P replication

Fig. 1. ACCS processes.

In the other direction, we first show that for bound asynchronous CCS (strong and weak) bisimulation equivalence is 
undecidable, answering a question faced for the synchronous case in [18]. This is done by providing a suitable encoding of 
2-counter machines into bound asynchronous CCS. Incidentally, this shows that the bound fragment is far from trivial as it 
is expressive enough to allow some form of encoding of a Turing complete formalism. Then, by exploiting the encoding, we 
deduce that these equivalences are undecidable also for open nets without visible transitions. This falls outside the known 
undecidability results for Petri nets [19] since in open nets without visible transitions all transitions are indistinguishable 
for strong equivalences and unobservable for weak equivalences (e.g., all open Petri nets without visible transitions and 
without open places are weakly bisimilar in our setting).

Synopsis The paper is structured as follows. In Section 2 we recall the syntax and the operational semantics of the calculi of 
interest in the paper, namely asynchronous CCS and CSP, as well as their behavioural equivalences. In Section 3 we present 
the open Petri nets model used for the encoding, introducing nets with interfaces and a suitable algebra for them. The 
core of the paper is represented by Sections 4 and 5, where we present the modular encodings into open nets of (bound) 
asynchronous CCS and CSP processes, respectively. We also prove that the encoding of each calculus preserves and reflects 
its operational semantics as well as some common behavioural equivalences. The encodings are exploited in Section 6 to 
provide some examples of their effects on the technology transfer between the formalisms we consider. In Section 7 we 
compare our proposal with others already presented in the literature, while in Section 8 we draw some conclusions and 
provide pointers to future works.

This paper extends the conference versions [20] and [21], where the encodings for asynchronous CCS and CSP into nets 
were originally introduced. In particular, the solution for asynchronous CCS presented here largely differs from the one 
in [20] for its use of the modular encoding technique proposed in [21], which in turn had to be generalised in order to 
allow for the modelling of both interaction patterns.

2. Process calculi

In this section we briefly recall the basic facts concerning two paradigmatic process calculi, asynchronous CCS and CSP. 
They are chosen as the target of the Petri net encoding in order to show the flexibility of our proposal.

2.1. Asynchronous CCS

The asynchronous CCS (ACCS) is characterised by the fact that message sending and reception are not synchronised. 
Instead, messages are sent and travel through some media until they reach destination. Thus sending is non-blocking (i.e., 
a process may send even if the receiver is not ready), while receiving is (processes must wait until a message becomes 
available). Observations reflects this asymmetry: since sending is non-blocking, receiving is unobservable.

We adopt the presentation in [22] that allows a non-deterministic choice for input prefixes and silent actions (a feature 
missing in [6,8]).

Definition 1 (ACCS syntax). Let N be a set of names, ranged over by a, b, c, . . . and τ /∈ N . The set PA of ACCS processes is 
generated by the syntax in Fig. 1, for μ ranging over N ∪ {τ }. We let P , Q , R, . . . range over PA .

The main difference with standard CCS is the absence of output prefixes. The occurrence of an unguarded ā indicates a 
message that is available on some communication media named a, which disappears whenever it is received.

We assume the standard definitions for the set of free names of a process P , denoted by fn(P ). Similarly for 
α-convertibility with respect to the restriction operators (νa)P : the name a is restricted in P , and it can be freely 
α-converted.

Structural equivalence (≡) is the smallest congruence induced by the axioms in Fig. 2, where C[_] denotes a process 
context such that the “hole” _ does not occur inside the scope of a replication !a . The behaviour of a process P is described 
as a relation over processes up to ≡.

Definition 2 (Reduction semantics). The reduction relation for ACCS processes is the relation →⊆PA ×PA inductively defined 
by the set of rules in Fig. 3 and closed under ≡, where we write P → Q for 〈P , Q 〉 ∈→. As usual, we let ⇒ denote the 
reflexive and transitive closure of →.
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(Alt)
ρ permutation⊕n

i=1μi .Pi = ⊕n
i=1μρ(i).Pρ(i)

(Par1) P | Q = Q | P (Par2) P | (Q | R) = (P | Q ) | R

(Res1)
X ∩ fn(P ) = ∅

(ν X)P = P (Res2)
X ∩ fn(C[nil]) = ∅

C[(ν X)P ] = (ν X)C[P ]
Fig. 2. ACCS structural axioms, for C[_] a process context with no occurrence of !a.−.

(Syn)
j ∈ {1, . . . ,n} μ j = a j⊕n

i=1μi .Pi | a j −→ P j
(Tau)

j ∈ {1, . . . ,n} μ j = τ⊕n
i=1μi .Pi −→ P j

(Repl) !a. P | a −→ !a. P | P

(Par) P −→ P ′
P | Q −→ P ′ | Q

(Res) P −→ P ′
(νa)P −→ (νa)P ′

Fig. 3. ACCS reduction semantics.

Rule (Syn) represents the reception of a message in a non-deterministic context: the process a j .P j is ready to receive a 
message on the channel a j ; it then receives the message a j , which is consumed, and proceeds as P j . Rule (Tau) represents 
an internal computation step. Rule (Repl) allows the spawning of a new parallel copy of process P whenever a message 
is received on a. Lastly, rules (Par) and (Res) state the closure of the reduction relation with respect to the operators of 
restriction and parallel composition.

The main difference with respect to the syntax of the calculus in [22] is the presence of a guarded input replication !a. P , 
instead of the pure replication of a summation. Indeed, unguarded replication can have (unrealistic) infinitely branching 
behaviour, especially when considering a concurrent semantics. Just think of process !τ .ā, which can concurrently generate 
an unbounded number of messages on channel a. Concerning the structural congruence, with respect to [22] we added an 
axiom schema for distributing the restriction under each operator different from replication, thus also under the sum and 
the prefix.

Definition 3 (Bound ACCS processes). An ACCS process is called bound if no restriction (νa)_ occurs under replication.

Intuitively, the limitation to bound processes avoids the generation of an unbounded number of restricted (and thus 
conceptually different) names. This will be essential to guarantee the finiteness of the Petri net encoding.

The main difference with the synchronous calculus lies in the notion of observation. Since messages sending is non-
blocking, an external observer can just send messages to a system without knowing if they will be received or not. For 
this reason receiving should not be observable and thus barbs, i.e., basic observations on processes, take into account only 
outputs.

Definition 4 (Barb). Let P be an ACCS process. We say that P satisfies a strong barb ā, denoted P ↓ā , if there exists a process 
Q such that P ≡ ā | Q . Similarly, P satisfies a weak barb ā, denoted P ⇓ā , if P ⇒ Q and Q ↓ā . When we are interested in 
the process Q , we will write P ↓ā Q and P ⇓ā Q , respectively.

Now, strong and weak barbed bisimulation can be defined as in the synchronous case [23], but taking into account only 
output barbs.

Definition 5 (Barbed bisimulation). A symmetric relation R ⊆PA ×PA is a strong barbed bisimulation if whenever (P , Q ) ∈ R
then

1. if P ↓ā then Q ↓ā;
2. if P → P ′ then Q → Q ′ and (P ′, Q ′) ∈ R .

Strong barbed bisimilarity ∼bb is the largest strong barbed bisimulation. Weak barbed bisimulation and weak barbed bisimilarity
≈bb are defined analogously by replacing ↓ā with ⇓ā and → with ⇒.

Strong (weak) barbed bisimilarities are not congruences. For instance, a.b̄ ∼bb nil (and a.b̄ ≈bb nil), since neither process 
can perform any transition, but whenever we insert them into the context _ | ā, the former can perform a transition, the 
latter cannot. This fact suggests to define behavioural equivalence as follows.
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P ::= nil inactive process⊕n
i=1 ai .Pi guarded alternative

P + Q non-deterministic choice
P |X Q parallel operator
P\X hiding operator
!a. P replication

Fig. 4. CSP processes.

Definition 6 (Barbed equivalence). Two ACCS processes P , Q are strongly barbed equivalent, denoted P ∼be Q , if P | S ∼bb Q | S
for all processes S .

Similarly, they are weakly barbed equivalent, denoted P ≈be Q , if P | S ≈bb Q | S for all processes S .

An alternative characterisation of barbed equivalence is proposed in [22]. Besides internal reductions, the bisimulation 
game considers the addition as well as the observation of output messages (the latter determining their deletion).

Definition 7 (1-Bisimulation). A symmetric relation R ⊆PA ×PA is a strong 1-bisimulation if whenever (P , Q ) ∈ R then

1. if P ↓ā P ′ then Q ↓ā Q ′ and (P ′, Q ′) ∈ R;
2. if P → P ′ then Q → Q ′ and (P ′, Q ′) ∈ R;
3. ∀a ∈N . (P | ā, Q | ā) ∈ R .

Strong 1-bisimilarity ∼ is the largest strong 1-bisimulation. Weak 1-bisimulation and weak 1-bisimilarity ≈ are defined 
analogously by replacing −→ with ⇒ and ↓ā with ⇓ā .

Proposition 1. (See [22].) ∼be=∼ and ≈be=≈.

Example 1. Consider the processes P = (νd)(!d.ē | (a.(ā | d̄ | d.c̄) ⊕ τ .(d̄ | d.c̄))) and Q = (νd)(τ .(d.c̄ | d.ē | d̄)). It is not difficult 
to see that P ∼ Q . In fact, they both have a single possible reduction P −→ (νd)(!d.ē | d̄ | d.c̄) and Q −→ (νd)(d.c̄ | d.ē | d̄). 
Now (νd)(!d.ē | d̄ | d.c̄) ∼ (νd)(d.c̄ | d.ē | d̄), since after one further reduction the replication operator is stuck and the two 
processes becomes essentially identical.

The process P can also receive on channel a. In the 1-bisimulation game this behaviour is revealed by plugging the 
processes into the context _ | ā. The process P | ā can choose one of the two branches of ⊕, but in any case it performs 
a reduction becoming (νd)(!d.ē | ā | d̄ | d.c̄). On the other hand, Q | ā performs a reduction to (νd)(d.c̄ | d.ē | d̄ | ā), and the 
resulting states are 1-bisimilar.

Furthermore, consider the process a.ā: it is one of the idiosyncratic features of the asynchronous communication that 
the equivalence a.ā ≈ nil holds.

2.2. Communicating sequential processes

Together with CCS, CSP [1] is one of the earliest proposal of a calculus for modelling communicating and concurrent 
processes. Differently from the former, the latter adopts a broadcast communication pattern, so that messages are at once 
shared between all the processes participating in the synchronisation. In this section we briefly introduce some facts about 
the calculus, presenting its syntax and operational semantics.

Definition 8 (CSP syntax). Let Σ be the set of communication events, ranged over by a, b, c . . . and τ /∈ Σ . The set PC of 
CSP processes is generated by the grammar in Fig. 4, for X ⊆ Σ a finite set of events and μ ranging over Σ ∪ {τ }. We let 
P , Q , R, . . . range over PC .

The syntax has been slightly changed from the standard one in order to mimic as much as possible the one for ACCS, yet 
with equivalent operators. The deadlocked process nil stands e.g. for the standard STOP. The guarded alternative 

⊕n
i=1 ai .Pi

can perform any event ai , for i ∈ {1, . . . , n}, and then behaves as Pi . For the sake of simplicity, we assume that ∀ j, ∀z. a j �= az . 
The non-deterministic choice P + Q can behave as either P or Q . Observe that the operators ⊕ and + differs for the fact 
that for the former the choice is external, i.e., the environment can determine the branch which is chosen, while for the 
latter the choice is internal to the process. The process P |X Q is a parallel composition of P and Q , where the events in X
are forced to synchronise, while the others can be performed by P and Q independently. The hiding P\X behaves like P , 
except for the fact that the events in X are hidden to the environment. Finally, the replication !a. P can indefinitely perform 
an event a and spawn a copy of P .

The guarded alternative represents a specialisation of the external choice operator. This restriction does not represent a 
serious limitation since, as explained in [24], it is rare to find a usage of the external choice which cannot be expressed 
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(Alt) j ∈ {1, . . . ,n}⊕n
i=1ai .Pi

a j−−→ P j

(Cho)
P + Q τ−→ P

(Repl) !a. P a−→ !a. P |∅ P

(Asyn)
P

μ−→ P ′ μ /∈ X
P |X Q

μ−→ P ′ |X Q
(Syn)

P
μ−→ P ′ Q

μ−→ Q ′ μ ∈ X
P |X Q

μ−→ P ′ |X Q ′

(Hid1)
P

μ−→ P ′ μ /∈ X
P\X

μ−→ P ′\X
(Hid2)

P
μ−→ P ′ μ ∈ X

P\X τ−→ P ′\X

Fig. 5. CSP operational semantics.

(Cho) P + Q = Q + P (Alt)
ρ permutation⊕n

i=1ai .Pi = ⊕n
i=1aρ(i).Pρ(i)

(Par1) P |X Q = Q |X P (Par2) P |X (Q |X R) = (P |X Q ) |X R

(Par3)
X ∩ fn(P |Y Q ) = ∅
P |X∪Y Q = P |Y Q

(Res1)
X ∩ fn(P ) = ∅

P\X = P (Res2)
X ∩ fn(C[nil]) = ∅
C[P\X] = C[P ]\X

Fig. 6. CSP axioms.

as a guarded alternative. More interestingly, we consider guarded replication in place of recursion. This will simplify the 
definition of our Petri net encoding for the class of CSP processes considered (see Section 5.2).

We assume the standard definitions for the set of free names of a process P , denoted by fn(P ). In particular, 
fn(P |X Q ) = X ∪ fn(P ) ∪ fn(Q ). We also consider processes up to α-convertibility with respect to the hiding operator 
P\a: the name a is hidden in P and it can be freely α-converted.

Classical presentations of the calculus define the operational semantics by relying only on a set of syntax directed rules. 
Here, along the approach adopted also for ACCS, we consider a structural equivalence (≡) over CSP processes defined as the 
smallest congruence induced by the axioms in Fig. 6, where C[_] denotes a process context. The behaviour of a process P
is then described as a relation over processes up to ≡.

Definition 9 (Transition semantics). The transition relation for CSP processes is the relation →⊆P × (Σ ∪{τ }) ×P inductively 
defined by the rules in Fig. 5 and closed under ≡, where P

μ−→ P ′ means 〈P , μ, P ′〉 ∈→.

We let P ω−→∗ P ′ denote a sequence P = P1
μ1−−→ P2

μ2−−→ . . .
μn−1−−−→ Pn = P ′ with ω = μ1μ2 . . .μn−1. We write P

ω⇒∗ P ′
when P ω′−−→∗ P ′ for some ω′ such that ω is obtained from ω′ by removing the τ ’s.

As in the case of CCS the encoding into Petri nets is feasible for a suitable fragment of the calculus with “finitary” 
features.

Definition 10 (Bound CSP processes). A CSP process is called bound if no synchronised parallel _ |X _ occurs under replication 
unless X = ∅.

In words, in a bound process only pure parallel composition, without synchronisation, is allowed under the scope of 
replications. This avoids the possibility of having an unbounded number of parallel components synchronising on the same 
event. Additionally, a synchronisation under a replication would possibly lead to the generation of an unbounded number of 
conceptually different names as in !a.(b.b.nil |{b} b.nil). As shown in Section 5, the restriction to bound processes is essential 
for defining an encoding of CSP into Petri nets.

Relying on the transition relation defined above several observational semantics can be defined over CSP processes. In 
this paper, we focus on the one based on traces, i.e., sequences of visible transitions. Two processes are deemed trace 
equivalent when they exhibit the same set of traces.

Definition 11 (Traces). Let P be a CSP process. We define traces(P ) = {ω : ω ∈ Σ∗ ∧ ∃Q . P ω⇒∗ Q }. Two processes P , Q are 
called trace equivalent, denoted P ≈T Q , if traces(P ) = traces(Q ).

Example 2. Consider the processes P = a.(d.b.nil\d) ⊕ b.a.nil and Q = (c.a.nil |{c} c.b.nil)\c. It is easy to see that traces(P ) =
traces(Q ) = {ε, a, ab, b, ba}. Hence they are trace equivalent.
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Fig. 7. Graphical representation of Petri nets, the rightmost open.

3. Open Petri nets with interfaces

This section reviews open Petri nets, i.e., ordinary P/T nets [9] equipped with distinguished sets of places and transitions. 
Open nets will be enriched also with interfaces, consisting of lists of places, and endowed with composition operators in 
order to allow for an inductive encoding of processes.

3.1. Open Petri nets

Let X⊕ be the free commutative monoid over a set X and 2X the monoid of subsets over X , included in the obvious way 
in X⊕ . An element m ∈ X⊕ , called a multiset over X , is often viewed as a function m : X → N (the set of natural numbers) 
associating a multiplicity with each x ∈ X . We write m1 ⊆ m2 if ∀x ∈ X , m1(x) ≤ m2(x). If m1 ⊆ m2, the multiset m2 � m1 is 
defined as ∀x ∈ X m2 � m1(x) = m2(x) − m1(x). The symbol 0 denotes the empty multiset. Given f : X → Y we denote its 
extension to multisets by f ⊕ : X⊕ → Y ⊕ .

Definition 12 (Petri net). A Petri net is a tuple N = (S, T , •(.), (.)•) where S is the set of places, T is the set of transitions, 
and •(.), (.)• : T → 2S⊥ are functions mapping each transition to its pre- and post-set.

By S⊥ we denote the lifting of S , i.e., S⊥ = S � {⊥}, thus nets come equipped with a global “error” place ⊥, as it will 
become clear in the presentation of the encoding. The state of a net is given by a marking, i.e., a multiset of places m ∈ S⊕ . 
From now on we denote the components of a net N by S , T , •(.) and (.)• , possibly with subscripts, and write •t and t•
instead of •(t) and (t)• .

Definition 13 (Net morphism). Let N1, N2 be two nets. A net morphism f : N1 → N2 is a pair of functions f = 〈 f S , f T 〉, where 
f S : S1 → S2, f T : T1 → T2 satisfy for any t ∈ T1

1. f ⊕
S (•t) ⊆ • f T (t) (reflection of pre-set);

2. f ⊕
S (t•) ⊆ f T (t)• (reflection of post-set).

Net morphisms roughly represent the insertion of a net into a context. As a consequence, the pre- and post-set of 
transitions can be larger in the target net. In the following, given a net morphism f : N1 → N2 we will often use f also to 
refer to its place and transition components, omitting the subscripts.

Example 3. Fig. 7(left) shows a net. As usual, circles represent places and rectangles transitions. Arrows represent pre- and 
post-sets of transitions. Bullets in places, referred to as tokens, represent the current marking m of the net. For the sake of 
readability, places are often provided with an identifier, yet positioned outside of the corresponding item.

In order to encode process calculi featuring synchronous and asynchronous communication into nets we consider a 
reactive generalisation of Petri nets, in the line of [14–17]. More precisely, nets are endowed with distinguished sets of 
open places and visible transitions. They represent, respectively, the places through which the environment interacts asyn-
chronously with the net, by putting and removing tokens, and the events that are visible from the environment which can 
be used for synchronous interactions.

Open places and visible transitions of an open net carry a label. Hereafter we denote by N and Σ the corresponding 
fixed sets of labels. The choice is driven by our need of encoding CSP and ACCS, and it reflects the different frameworks: for 
ACCS channels become resources (hence tokens in places), while for CSP events become actions (hence firings of transitions).

Definition 14 (Open net). An open (Petri) net is a tuple O N = 〈N, O , V , λ〉, where N is a net, O  ⊆ S is a set of open places, 
V ⊆ T a set of visible transitions, and λ = 〈λS , λT 〉 a pair of labelling functions λS : O  → N , λT : V → Σ for places and 
transitions, respectively, with λS injective.
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(Vis) m = •t ⊕ m′ t ∈ V
m

λ(t)−−−→ t• ⊕ m′ (Hid)
m = •t ⊕ m′ t ∈ T \ V

m τ−→ t• ⊕ m′

(In) s ∈ O

m
λ(s)+−−−−→ m ⊕ s

(Out) s ∈ O

m
λ(s)−−−−−→ m � s

Fig. 8. Operational semantics of open nets.

When no confusion may arise, we often refer simply to λ as the labelling function, without specifying explicitly the net 
component it refers to. In the following, the components of an open net O N are assumed to be N , O , V , and λ, possibly 
with subscripts.

Definition 15 (Open net morphism). Let O N1, O N2 be two open nets. An open net morphism f : O N1 → O N2 is a net mor-
phism f : N1 → N2 such that for any t1 ∈ T1 and s1 ∈ S1

1. if f T (t1) ∈ V 2 then t1 ∈ V 1 and λ1(t1) = λ2( f T (t1));
2. if f S(s1) ∈ O 2 then s1 ∈ O 1 and λ1(s1) = λ2( f S (s1)).

An open net morphism is intended to represent the insertion of an open net into a larger context. Hence it is required 
to reflect visible transitions and places, as well as their labels.

The operational semantics of open nets is expressed by the rules in Fig. 8. Rule (Vis) and rule (Hid) are the standard 
rules of P/T nets (seen as multiset rewriting): the latter is the firing of a hidden transition, represented as a silent action τ . 
The remaining two rules model interaction with the environment. They state that in an open place at any moment the 
environment can generate (In) or remove (Out) a token.

Graphically, an open net is represented as an ordinary Petri net, with the open places and visible transitions in green 
(grey when viewed in b&w), while closed places and hidden transitions are white. Labels are inserted inside the corre-
sponding circle/rectangle.

Example 4. An open net is shown in Fig. 7(right). Any open item has a label that is placed inside the corresponding 
circle/rectangle. In particular, there is one open place, which is labelled by a, and one visible transition, labelled by b. In the 
current marking m of the net, the places α and β are marked. Starting from it, some transitions are possible. For example, 
by applying rule (Hid) in Fig. 8, we obtain the firing m τ−→ m1 = {γ , δ}. By rule (Vis), m1

b−→ m2 = {γ , σ }, while by rule (In)

m1
a+−−→ m3 = {γ , δ, a}. Moreover, by rule (Hid) m3

τ−→ m4 = {η, δ} and by rule (Vis) m4
b−→ m5 = {η, σ }.

Labels are ranged over by l. Weak transitions P
l⇒ Q are defined as usual, i.e., P

l⇒ Q means P τ−→∗ l−→ τ−→∗ Q for l �= τ
and P τ−→∗ Q otherwise.

Definition 16 (Strong and weak bisimilarity). Let O N1, O N2 be two open nets with λ1(O 1) = λ2(O 2). A strong bisimulation
between O N1 and O N2 is a relation over markings R ⊆ S⊕

1 × S⊕
2 such that if (m1, m2) ∈R then

• if m1
l−→ m′

1 in O N1 then m2
l−→ m′

2 in O N2 and (m′
1, m

′
2) ∈R;

• if m2
l−→ m′

2 in O N2 then m1
l−→ m′

1 in O N1 and (m′
1, m

′
2) ∈R.

Two markings m1 ∈ S⊕
1 and m2 ∈ S⊕

2 are strongly bisimilar, written m1 ∼ m2, if (m1, m2) ∈ R for some strong bisimula-
tion R.

Weak bisimilarity ≈ is defined analogously by replacing strong transitions l−→ by weak transitions l⇒.

When a starting state is fixed, nets are called marked.

Definition 17 (Marked nets). A marked open net is a pair N = 〈O NN, mN〉, where O NN is an open net and mN ∈ S⊕ is the 
initial marking.

For marked nets we can consider the language of (weak) traces starting from the initial marking and the corresponding 
equivalence. As in the case of CSP processes, we let m ω−→∗ m′ denote a sequence m = m1

l1−→ m2
l2−→ . . .

ln−1−−−→ mn = m′ with 
ω = l1l2 . . . ln−1. We also write m ω⇒∗ m′ when m ω′−−→∗ m′ for some ω′ such that ω is obtained from ω′ by removing the τ ’s.

Definition 18 (Traces). Let N be a marked open net. We define the set of traces of N as traces(N) = {ω : ω ∈ (Σ ∪ N )∗ ∧
∃m. mN

ω⇒∗ m}. Two marked open nets N1, N2 are trace equivalent, denoted N1 ≈T N2, if traces(N1) = traces(N2).
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Fig. 9. Graphical representation of a net with interfaces.

3.2. Open Petri nets with interfaces

In order to provide a modular encoding for processes, it is necessary to define suitable composition operators on nets. 
However, the most obvious choice, namely pointwise disjoint union, fails to address all the nuances that are necessary for 
the encoding. To this end, we enrich open nets with two sets of interfaces, which represent “handles” through which net 
items can be singled out and manipulated during the composition. We then introduce two composition operations on nets 
that are relevant for building the encoding of a process.

In the following, for each n ∈ N we denote by n+ the set {1, . . . , n}, by n− the set {−1, . . . , −n} and by 0 the empty 
set ∅. Also, for f : n+ → S and g : m+ → S , we denote f + g : (n + m)+ → S the function ( f + g)(x) = f (x) if x ≤ n and 
g(x − n) otherwise (and similarly for n− and m−).

Definition 19 (Open nets with interfaces). An open net with left interface l and right interface r is a triple N = 〈li, O N, ri〉, 
where O N is an open net, li : l+ → S and ri : r− → S are the left and right functions, respectively.

We denote by l+ li−→ O N ri←− r− a net with left interface l+ and right interface r− . With an abuse of notation, in the 
following we refer to the places belonging to the image of the left morphism as left places, and similarly for the places in 
the image of the right morphism. From now on we denote the components of an open net with interfaces by l+, li, O N, ri, 
and r− , possibly with subscripts.

Intuitively, thinking of open nets as terms, their left and right places represent the roots and the variables, respectively. 
This will become clearer when giving the definition of sequential composition (see Definition 21 below), mimicking the 
standard notion of term substitution (see e.g. the rules of the ACCS encoding in Definition 26).

Graphically, a net with interfaces is represented as an open net, with the left interface on the left and the right interface 
on the right, marked with incoming and outgoing dotted arrows, respectively. Arrows of the left places are blue while those 
of the right places are red (grey when in b&w).

Example 5. A net with interfaces is shown in Fig. 9. The left interface consists of the places α, d and β , while the right 
interface contains only place c. The place labelled e does not belong to the interfaces.

We now define two suitable composition operators on nets with interfaces. Notation-wise, for each function f : A → B
and b ∈ B we denote by f −1(b) the counter image of b in A; with an abuse of notation, when f is injective we may also 
use f −1(b) to denote the unique element of the counter image.

Definition 20 (Net quotient). Given a net with interface N = l+ li−→ O N ri←− r− and a label-preserving equivalence relation ≡
on the set of places S , the quotient net N/≡ is the net N′ = l+ in◦li′−−−→ O N ′ in◦ri′←−−− r− where

• S ′ = S/≡ and in : S → S ′ maps each place into its equivalence class;
• T ′ = T with the obvious pre-sets and post-sets (a transition t ∈ T ′ has in(•t) and in(t•) as pre-set and post-set, respec-

tively);
• O ′ = O /≡ and V ′ = V .

Relying on the quotient we easily define some composition operators on nets.

Definition 21 (Sequential composition). Let N1 = l+1
li1−−→ O N1

ri1←−− r−
1 and N2 = l+2

li2−−→ O N2
ri2←−− r−

2 be (pointwise disjoint) 
nets with interfaces such that r1 = l2. Their sequential composition N1 ◦N2 is the net with interfaces arising as (N1 ∪N2)/≡
where ≡ is the equivalence on places induced by ri1(x) = li2(−x) for x ∈ r−

1 and λ−1
1 (l) = λ−1

2 (l) for l ∈ λ1(O 1) ∩ λ2(O 2).

The sequential composition N1 ◦N2 is obtained by taking the disjoint union of the underlying open nets, and gluing the 
open and right places of N1 respectively with the corresponding open and left places of N2. Note that the equivalence ≡ is 
well-defined, since λi is injective on O i for i ∈ {1, 2}.



P. Baldan et al. / Science of Computer Programming 109 (2015) 96–124 105
In the following, given a net with interfaces N and a set X ⊆ Σ , we denote by V X the subset of visible transitions in V
labelled with an event in X , namely V X = {t ∈ V : λ(t) ∈ X}.

Definition 22 (Synchronous composition). Let N1 = l+1
li1−−→ O N1

ri1←−− r−
1 and N2 = l+2

li2−−→ O N2
ri2←−− r−

2 be (pointwise disjoint) 
nets with interfaces and X ⊆ Σ . Their synchronous composition on X is the net with interfaces N1

⊗
X N2 = N≡ where 

N = l+ li−→ O N ri←− r− , for O N = 〈N, O , V , λ〉 such that

• S = S1 ∪ S2;
• T = (T1 \ W X

1 ) ∪ (T2 \ W X
2 ) ∪ W X , with W X = ⋃

a∈X λ−1
1 (a) × λ−1

2 (a) and W X
i ’s its projections

• •t =
⎧⎨
⎩

•t if t ∈ Ti \ V X
i•t ∪ {⊥} if t ∈ V X

i \ W X
i•t1 ∪ •t2 if t = 〈t1, t2〉 ∈ W X

• t• =
{

t• if t ∈ Ti \ W X
i

t1
• ∪ t2

• if t = 〈t1, t2〉 ∈ W X

• l = l1 + l2, li = li1 + li2, and similarly for r and ri;
• O  = O 1 ∪ O 2 and V = [(V 1 \ W X

1 ) ∪ (V 2 \ W X
2 )] � W X , with the obvious labelling functions;

and where ≡ is the equivalence on places induced by λ−1
1 (l) = λ−1

2 (l) for l ∈ λ1(O 1) ∩ λ2(O 2).

We write N1 ⊗ N2 for N1
⊗

∅ N2. Intuitively, the synchronous composition N1
⊗

X N2 is obtained by taking the disjoint 
union of the nets N1 and N2, except for the open places, which are merged, and for those visible transitions labelled with 
a symbol a ∈ X , which are forced to fire synchronously. Concretely, open places with the same label are glued and for each 
pair of transitions t1 ∈ V 1 and t2 ∈ V 2, with identical label in X , a new transition 〈t1, t2〉 is inserted whose pre- and post-set 
is obtained as the union of the pre- and post-set of t1 and t2. If a transition t1 in N1 has no possibility of synchronising 
with a transition of N2 since V 2 does not include transitions with the same label, it is not executable in the synchronised 
product. This is obtained by adding to its pre-set the “error” place ⊥, which is never going to be marked. The same happens 
for transitions in N2 that cannot synchronise with any transition in N1. An alternative solution, equivalent from the point 
of view of the behaviour, would be the removal of the dead transitions. We preferred this solution since, when used for 
the encoding of CSP processes into nets, it ensures a closer structural correspondence between reducts of a process and the 
markings of the net encoding. Finally, transitions which are labelled outside X can fire asynchronously and thus are kept 
unchanged.

Lastly, we introduce two operations for restricting the set of open places and the set of visible transitions, respectively.

Definition 23 (Restriction and hiding). Let N be a net with interfaces. The restriction of N with respect to a ∈ N is the net 
(νa)N = 〈li, O N ′, ri〉, where O N ′ = 〈N, O  \ λ−1(a), V , λ′〉 and λ′ is the restriction of λ. The hiding of N with respect to 
X ⊆ Σ is the net N \ X = 〈li, O N ′, ri〉, where O N ′ = 〈N, O , V \ V X , λ′〉 and λ′ is the restriction of λ.

Given a net N, the restricted net (νa)N is obtained by closing the open place labelled by a. Note that there could be 
no such place, in which case (νa)N = N. The restriction operator will be often used on sets of labels X ⊆ N and we will 
write (ν X)N with the obvious meaning. The net with hiding N \ X behaves exactly as N, but transitions labelled in X are 
no longer visible.

After building the net encoding of a process, we will need to mark its left places in order to fix the initial state. The 
following operation will then be used.

Definition 24 (Marking). Let N be a net with interfaces. The marking of N is the marked open net init(N) = 〈O N, mN〉, 
where mN = ⊎l+

n=1 li(n).

4. From ACCS processes to nets

In this section we introduce an encoding for ACCS processes into open nets and we prove that the encoding preserves and 
reflects the behaviour. As anticipated, the encoding will be restricted to bound processes, i.e., processes where restrictions 
never occur under replications.

4.1. Encoding ACCS processes as open nets

The encoding of ACCS processes into open nets is defined inductively by relying on a set of constant nets, depicted 
in Fig. 10, which are combined using the composition operators on nets introduced in Section 3. Nets with interfaces are 
exploited in the encoding for properly combining the different components. The net nil in Fig. 10(a), later used to represent 
the inactive process, consists of a single unmarked place. The net outa in Fig. 10(b) models the output action on a channel 
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Fig. 10. The constant nets stop, replai , outa , acta
i , dupli and actτi .

|nil| = nil
|ā| = outa∣∣⊕n

j=1 μ j .P j
∣∣ = dupln ◦ {⊗n

j=1

(
act

μ j

sdeg(P j)
◦ |P j |

)}
|!a. P | = replasdeg(P ) ◦ |P |
|(νa)P | = (νa)|P |
|P | Q | = |P | ⊗ |Q |

Fig. 11. Encoding for ACCS processes.

name a and it consists of a single left place which is also open. The net a in Fig. 10(c), where a ∈ N , is very similar to the 
previous one but it has an empty left interface. It will be used to model additional free names in the encoding of a process 
(see Section 4.2). The net dupli in Fig. 10(d) is a combinator for the summation of prefixes (input and τ actions) where i, the 
cardinality of the right interface, will match the number of prefixes involved in the sum. The net replai in Fig. 10(e), where 
a ∈ N , will be used as a combinator for replication. It allows for a new “parallel activation” of the net which follows, each 
time a token is inserted in the open place a. Again, i is the cardinality of the right interface which will match that of the left 
interface of the encoding of the process under the replication operator. The net acta

i in Fig. 10(f), where a ∈ N , is intended 
to provide a combinator for the input action on a channel a. It consists of a hidden transition with two places in the pre-set, 
a left place for the flow of control and the open place a modelling the channel on which the input is required. Again i is 
the cardinality of the right interface matching the left interface of the encoding of the continuation of a. Finally, the net 
actτi in Fig. 10(g) models a τ prefix: the only difference with respect to acta

i is the absence of an open place modelling the 
channel.

Note that transitions are hidden in all the constants of Fig. 10(g). Hence the nets built out of them will only offer 
transitions with silent actions τ (corresponding to reductions in corresponding ACCS processes). Labelled transitions will be 
determined by the interaction with the open places.

In order to define the encoding, we need to refer to the number of parallel sub-components for a process at the top 
level, as given by the definition below.

Definition 25 (Structural degree). The structural degree of a process P , denoted by sdeg(P), is inductively defined as 
sdeg(P | Q ) = sdeg(P ) + sdeg(Q ), sdeg((νa)P ) = sdeg(P ), and sdeg(P ) = 1 otherwise.

Finally, the definition below introduces the encoding of bound ACCS processes into nets with interfaces.

Definition 26 (Net encoding for ACCS). Let P be a bound ACCS process. The net encoding of P , denoted by � P �, is defined as 
� P � = init(|P |), where |.| is given by the inductive rules in Fig. 11.

The encoding of an ACCS process P is built inductively by composing the encodings of its subprocesses into nets with 
interfaces. Finally, in the resulting net the places in the left interface are marked. The encoding contains a place for each 
operator !a , ⊕ and process nil of P and a place for each name of P . Places corresponding to free names are open. Transitions 
mimic the control flow of a process, passing the token between its sequential components.
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Fig. 12. The encoding of the process a.b̄ | a.c̄ | ā | ā.

Fig. 13. Net encoding the process (νd)(τ .(d.c̄ | d.ē | d̄)).

Example 6 (Inputs and outputs). In Fig. 12 the encoding of the process a.b̄ | a.c̄ | ā | ā is illustrated step by step. For the 
component a.b̄ we have that |a.b̄| is acta

1 ◦ outb which results in a net with a single transition. The unnamed left place (with 
an incoming pin) models the flow of control. When such a place will be marked, in order to progress by firing the transition, 
the net will require a token in the open place a, representing an output message on channel a. The firing of the transition 
consumes the message and produce a token in the output place b, representing an output message on channel b. The 
encoding of the component a.c̄ is analogous. The component ā | ā gives rise to the net |ā | ā| = outa ⊗ outa depicted in (c). 
Note that place a appears twice in the left interface, since the net represents two occurrences of the output message on 
channel a. The various components are then put in parallel (this requires some adjustments in the interfaces), merging the 
common open places (only a in this case) as depicted in (d). Finally, the encoding �a.b̄ | a.c̄ | ā | ā� is obtained by “activating” 
the left interface, namely by inserting tokens in the left places.

Example 7 (Restricted and parallel processes). Consider the process Q = (νd)Q 1, with Q 1 = τ .(d.c̄ | d.ē | d̄), previously intro-
duced in Example 1. The net encoding � Q � is shown in Fig. 13. It is obtained by applying the init(·) operation to the net 
|(νd)Q 1| = (νd)|Q 1|. In turn, |Q 1| results from the sequential composition of dupl1 and actτ1 ◦ |Q 2|, where Q 2 = d.c̄ | d.ē | d̄. 
The net |Q 2| coincides with the net in Fig. 9, but without output interface. Note that the place d is still open in |Q 1|, but 
since d is restricted in Q , it is removed from the set of open places of |Q 1| by applying the restriction operation of nets.

Example 8 (Bound processes). Consider the process Q = (νa)(a.a.nil | ā). Its encoding is depicted in Fig. 14(left). Note that 
the second transition, corresponding to the second input on a in process Q , cannot fire since after the firing of the first 
transition place a is emptied and not filled again. This is consistent with ACCS reduction semantics: Q → (νa)a.nil and the 
remaining occurrence of a cannot be executed since there is no output action on a in parallel.

Now consider R =!b.Q | b̄ | b̄ = (!b.(νa)(a.a.nil | ā)) | b̄ | b̄, obtained by inserting process Q under a replication on b and 
then in a context offering two output messages b̄, enabling the replication. Note that R is not bound because it contains a 
restriction operator under the replication.

The encoding of R , shown in Fig. 14(right), is obtained by marking the net |R|, which in turn is the parallel composition 
between replb2 ◦ |Q | and the net b ⊗ b. The leftmost transition can fire twice, thus generating two tokens in both a and β . 
Also the rightmost transition modelling the second input action in Q can then be fired, in a way which disagrees with ACCS 
operational semantics.
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Fig. 14. Encodings for the processes (νa)(a.a.nil | ā) and (!b .(νa)(a.a.nil | ā)) | b̄ | b̄.

Roughly speaking, the above problem arises since tokens corresponding to different occurrences of the replicated process 
are mixed in an improper way. Solving the problem by a different encoding, where each occurrence of a process involved 
in a replication corresponds to a different subnet in the encoding, would lead to an infinite net for processes that are not 
bound.

We conclude this section by observing that the encoding respects structural congruence, i.e., structural congruent pro-
cesses are mapped into isomorphic nets and vice versa: the proof is laborious yet conceptually simple (see e.g. [25]).

Proposition 2. Let P , Q be bound ACCS processes. Then, P ≡ Q if and only if there is an isomorphism f : � P � → � Q � such that 
f ⊕(m� P �) = m� Q � .

4.2. Relating ACCS and open nets

This section shows that the encoding of ACCS processes preserves and reflects process reductions, as well as strong and 
weak bisimilarity. Hereafter we denote by � P �Γ the encoding of a bound process P with respect to a set of names Γ , that 
is, � P �Γ = init(|P | ⊗ (

⊗
a∈Γ a)). The addition of the component 

⊗
a∈Γ a to the encoding determines the presence of a place 

for each channel in Γ (which could possibly not occur free in P ).
In order to state the correspondence results, we first need to establish a correspondence between the ACCS processes 

reachable from P , hereafter denoted by reach(P ) = {Q : P ⇒ Q }, and the markings of the encoding � P �Γ .
The encoding of a process P is inductively defined as the composition of the encoding of its subprocesses. Since by 

definition whenever an ACCS process P performs a reduction to P ′ , the process P ′ is obtained from P by replacing a 
subprocess with its reduct, it is not difficult to see that the encoding of processes reachable from P can be mapped to 
subnets of � P �Γ . We denote by S N� P � the set of places of � P � which corresponds to names in P .

Lemma 1 (Reachable processes as subnets). Let P be a bound ACCS process, Q ∈ reach(P ) and Γ a set of names. Then, an open net 
morphism f Q � P : � Q �Γ → � P �Γ can be uniquely chosen, which is injective on S N� Q �Γ

.

The proof, detailed in Appendix A, relies on the fact that given a subprocess Q of a process P , a mapping of � Q �Γ into 
� P �Γ can be obtained by the inductive definition of the encoding. The open places representing the names Γ of � Q �Γ are 
mapped in the corresponding places of � P �Γ . Then, by using the fact that each subprocess of P corresponds to a subnet 
of � P �Γ , it is not difficult to prove that also the encoding of a process reachable from P can be mapped to a subnet of 
� P �Γ . In fact, the processes in reach(P ) consist of compositions of reducts of subprocesses of P , where, due to replication, 
for some reducts we may have several parallel copies. The encodings of these copies, since by definition they do not contain 
restriction operators, can be mapped to the same subnet.

The injectivity condition ensures that the mapping f Q � P does not collapse places of � Q �Γ which correspond to differ-
ent names. The property clearly holds for the places in O � P � corresponding to the free names: it is implied by the fact 
that the labelling function is injective and preserved by net morphisms. As for the places in S N� Q � \ O � Q � , the prop-
erty holds precisely thanks to the restriction to bound processes. Consider again the encoding in Fig. 14, with processes 
P = (!b.(νa)(a.a.nil | ā)) | b̄ | b̄ and Q = (!b.(νa)(a.a.nil | ā)) | (νa)(a.a.nil | ā)) | b̄ ∈ reach(P ). Now, the only possible morphism 
from � Q � to � P � would collapse the places corresponding to the two bound occurrences of a.

By using the lemma above, we can easily define a correspondence between the processes belonging to reach(P ) and the 
markings of � P �Γ .

Definition 27 (Reachable processes as markings). Let P be a bound ACCS process. The function mP
Γ : reach(P ) → S⊕

� P �Γ
maps 

any process Q ∈ reach(P ) into the marking f ⊕
Q � P (m� Q �Γ

).

Once established that each process reachable from a bound process P identifies a marking in the net encoding � P �Γ , we 
can state the two main correspondence results of this section.

Theorem 1 (Process reductions as net firings). Let P be a bound ACCS process, Q ∈ reach(P ) and Γ ⊆N a set of names. Then
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Fig. 15. Encodings for ACCS processes.

1. if Q → R then mP
Γ (Q ) τ−→ mP

Γ (R) in � P �Γ ;
2. if mP

Γ (Q ) τ−→ m in � P �Γ then Q → R for some R with m = mP
Γ (R).

Proof. See Appendix A. �
The result establishes a bijection between the reductions performed by any process Q ∈ reach(P ) and the firings in � P �Γ

from the marking mP
Γ (Q ).

Such a bijection can then be lifted to a fundamental correspondence between the observational semantics in the two 
formalisms.

Theorem 2. Let P , Q be bound ACCS processes and Γ a set of names such that fn(P ) ∪fn(Q ) ⊆ Γ . Then for � either strong or weak 
bisimilarity

P � Q if and only if mP
Γ (P ) � mQ

Γ (Q )

Proof. See Appendix A. �
Example 9. Consider the processes P = (νd)(!d.ē | (a.(ā | d̄ | d.c̄) ⊕ τ .(d̄ | d.c̄))) and Q = (νd)(τ .(d.c̄ | d.ē | d̄)) as in Example 1, 
and the set Γ = {a, c, e} including the free names of both processes. The encoding of � P �Γ is depicted in Fig. 15(left), while 
� Q �Γ corresponds to the net in Fig. 13 with an additional isolated open place labelled a.

Since P ∼ Q , according to Theorem 2 also the markings mP
Γ (P ) = {α, β} in � P �Γ and mQ

Γ (Q ) = {α′} in � Q �Γ are 
strongly bisimilar. Clearly, they exhibit the same behaviour as far as hidden transitions are concerned. Moreover, when the 
environment inserts a token into a, in � P �Γ we obtain the marking {α, β, a} enabling the upper most transition and leading 
to {β, δ, γ , a}. This is clearly equivalent to fire the other hidden transition.

Consider now the net encodings �a.ā�{a} in Fig. 15(centre) and �nil�{a} in Fig. 15(right). In both cases the only observable 
actions are either placing or removing a token on the open place a. In fact, in �a.ā�{a} the execution of the hidden transition, 
consuming and producing a token in a, is unobservable when considering weak bisimilarity. The two nets are thus weakly 
bisimilar, consistently with the fact that a.ā ≈ nil.

5. From CSP processes to nets

In this section we turn our attention to CSP and provide an open net encoding for CSP processes. As before, we prove that 
the encoding preserves and reflects the behaviour of processes. The encoding, also in the case of CSP, will be restricted to 
bound processes, where parallel composition can occur under the scope of replications only in the form |∅ , that is, without 
synchronisation.

5.1. Encoding CSP processes as open nets

The encoding of CSP processes is based on some constant nets already introduced in Fig. 10, namely the net nil which 
encodes the process nil, the net dupli used as a combinator for the internal and external choice and the net actτi which 
models the behaviour of the internal choice. In addition, we exploit the nets in Fig. 16, explicitly designed for CSP. The net 
eva

i (on the left), where a ∈ Σ , models an event a. It consists of a visible transition labelled a whose post-set is the right 
interface of the net, which will match the left interface of the encoding of the continuation of a. The net replai (on the 
right), with a ∈ Σ , by repeated firing of transition a allows for an arbitrary number of “parallel activations” of the net which 
follows. This will be used as a combinator for replication, where the cardinality of the right interface i will match that of 
the left interface of the encoding of the process under the replication operator.
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Fig. 16. The constant nets eva
i and replai .

|nil| = nil∣∣⊕n
j=1 ai .Pi

∣∣ = dupln ◦ {⊗n
j=1

(
ev

a j

sdeg(P j)
◦ |P j|

)}
|P1 + P2| = dupl2 ◦ {⊗2

j=1

(
actτsdeg(P j)

◦ |P j |
)}

|!a. P | = replasdeg(P ) ◦ |P |
|P\X| = |P |\X
|P1 |X P2| = |P | ⊗X |Q |

Fig. 17. Encoding for CSP processes.

Fig. 18. Some process encodings.

The definition below introduces the encoding of CSP processes into nets. It uses the structural degree sdeg(P ) of a CSP 
process P , which is defined exactly as for ACCS (see Definition 25).

Definition 28 (Net encoding for CSP). Let P be a bound CSP process. The encoding of P , denoted by � P �, is defined as 
� P � = init(|P |), where |.| is given inductively according to the rules in Fig. 17.

The encoding of a process P is obtained by composing the encoding of its subprocesses and finally marking the left 
places. It therefore contains a place for each operator !a , +, ⊕ and process nil of P . The error place can be used by 
the synchronised parallel composition of nets in order to keep some components inactive (see Definition 22). Transitions 
correspond to events. Recall that whenever two components are in a synchronised parallel composition a transition is 
inserted for each possible synchronisation, i.e., for each pair of events with the same name. Note that, differently from the 
ACCS encoding, places are all closed while visible events are modelled by visible transitions.

Example 10 (Prefix and parallel synchronised processes). Consider the process P = (a.c.nil ⊕ b.d.nil) |{d} c.d.nil. Its encoding is 
depicted in Fig. 18(right) where all transitions are visible. It is obtained by marking the left interface of the net |P |, the 
result of the parallel composition, synchronised on d, of the encodings |a.c.nil ⊕ b.d.nil| and |c.d.nil|, in turn depicted in 
the left side of Fig. 18. Let us focus on the net on the upper part, which illustrates |a.c.nil ⊕ b.d.nil|. The places ν and 
σ represent the subnets encoding the nil processes (those reached after the events c and d, respectively). The subnet 
rooted at place δ is the encoding of the subprocess c.nil, namely eva

1 ◦ nil. Analogously, the subnet rooted at γ is the 
encoding of d.nil. The encoding of the subprocess a.c.nil ⊕ b.d.nil is obtained by sequentially composing the net dupl2 with 
(eva

1 ◦ |c.nil|) ⊗ (evb
1 ◦ |d.nil|).

As in the case of ACCS the encoding is limited to bound processes. The following example provide an intuitive motivation 
of this restriction.
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Fig. 19. Process encodings.

Example 11 (Bound processes). Consider the process Q = a.a.nil |{a} a.nil. The encodings |a.a.nil| and |a.nil| are depicted in 
Fig. 19(a) and Fig. 19(b), respectively. The encoding |Q | is obtained as the parallel composition, synchronised on a, between 
|a.a.nil| and |a.nil|, as shown in Fig. 19(c). Each transition labelled by a of |a.a.nil| is “combined” with any other transition 
labelled by a in |a.nil|. Observe that the second a-labelled transition in the encoding of Q cannot fire since after the firing 
of the first a-labelled transition, place δ is emptied and never filled again. This is consistent with the operational semantics 
of CSP where Q a−→ a.nil |{a} nil, in such a way that the remaining occurrence of a cannot be executed since it has no 
counterpart in the parallel subprocess.

Now consider R =!b.Q =!b.(a.a.nil |{a} a.nil), that is the process Q inserted in a replication. Observe that R is not a bound 
process as it contains a non-trivial parallel synchronised product (where synchronisation is over a non-empty set of events) 
under the scope of a replication.

The net � R � in Fig. 19(d) is obtained by marking |R|, which in turn is the sequential composition of replb2 with |Q |. 
Note that the b-labelled transition can fire any number of times, thus generating an unbounded number of tokens in α
and δ. Hence, also the second a-labelled transition has the opportunity of being fired, in a way which disagrees with the 
operational semantics of CSP.

Once again the problem arises since tokens corresponding to different occurrences of a replicated process are improperly 
mixed. So, also for CSP solving the problem would lead to an infinite net for processes that are not bound.

The net encoding for CSP respects the structural congruence.

Proposition 3. Let P , Q be bound CSP processes. Then, P ≡ Q if and only if there is an isomorphism f : � P � → � Q � such that 
f ⊕(m� P �) = m� Q � .

5.2. Relating CSP and open nets

In this section we show that any bound CSP process and its net encoding behave essentially in the same way. More 
precisely, the net encoding of CSP processes preserves and reflects process transitions, and, consequently, the standard 
behavioural equivalences for CSP like, for instance, trace equivalence.

In order to state these results, as in the case of ACCS, we establish a correspondence between reach(P ) = {Q : P ω−→∗ Q }, 
the processes reachable from P , and the markings reachable in the net � P �. We denote by T S � P � the set of transitions of 
� P � which arise as synchronisations, namely which correspond to events a that occur under the scope of a synchronisation 
|X with a ∈ X . These are exactly those transitions whose pre-set has cardinality greater than one.

Lemma 2 (Reachable processes as subnets). Let P be a bound CSP process and Q ∈ reach(P ). Then, an open net morphism f Q � P :
� Q � → � P � can be uniquely chosen, which is injective on T S � Q � .

As it happened for ACCS, also in the encoding of CSP processes parallel copies of the same subprocess are mapped 
to the same subnet. This does not lead to a violation of the injectivity requirement since, by definition, the replicated 
subprocesses do not synchronise on any event. The proof follows the same outline as the one for ACCS. More details are 
given in Appendix B.

By using the lemma above, we define a correspondence between the processes in reach(P ) and markings of � P �.

Definition 29 (Reachable processes as markings). Let P be a bound CSP process. The function mP : reach(P ) → S⊕
� P �

maps any 
process Q ∈ reach(P ) into the marking f ⊕

Q � P (m� Q �).
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Fig. 20. Encoding for a.(d.b.nil\d) ⊕ b.a.nil and (c.a.nil |{c} c.b.nil)\c.

Now, we can state the two main correspondence results for the CSP encoding.

Theorem 3 (Process transitions as net firings). Let P be a bound CSP process and Q ∈ reach(P ). Then

1. if Q μ−→ R then mP (Q ) μ−→ mP (R) in � P �;
2. if mP (Q ) μ−→ m in � P � then Q μ−→ R for some R such that m = mP (R).

Proof. See Appendix B. �
The result establishes a bijection between the labelled transitions performed by any process Q ∈ reach(P ) and the firings 

in � P � from the marking mP (Q ). Such a bijection can then be lifted to a fundamental correspondence between the trace 
semantics in the two formalisms.

Theorem 4. Let P , Q be bound processes. Then

P ≈T Q if and only if � P � ≈T � Q �.

Example 12. Recall the processes of Example 2, namely P = a.(d.b.nil\d) ⊕ b.a.nil and Q = (c.a.nil |{c} c.b.nil)\c. The en-
coding of P is the net in Fig. 20(left), while the encoding of Q is in Fig. 20(right). As prescribed by Theorem 3, there is 
a correspondence between the labelled transitions of each process and those of its encoding. For instance, P a−→ d.b.nil\d
corresponds to mP (P ) = {α} a−→ {γ } = mP (d.b.nil\d). The transition d.b.nil\d τ−→ b.nil\d corresponds to mP (d.b.nil\d) =
{γ } τ−→ {σ } = mP (b.nil\d) and b.nil\d b−→ nil\d to mP (b.nil\d) = {σ } b−→ {ρ} = mP (nil\d). Moreover, P b−→ a.nil corresponds 
to mP (P ) = {α} b−→ {δ} = mP (a.nil), and finally a.nil a−→ nil to mP (a.nil) = {δ} a−→ {ν} = mP (nil). It is also easy to see that, as 
it follows from P ≈T Q and Theorem 4, the net encodings � P � and � Q � are trace bisimilar.

6. On the technology transfer

The proposed encodings of process calculi into (open) Petri nets, thanks to the tight correspondence they establish 
between the structure and behaviour of the original process and its net encoding, enable to transfer results concerning 
expressiveness and tractability from one formalism to the other. We next discuss this possibility for the two cases considered 
in the paper, namely ACCS and CSP.

6.1. Undecidability of bisimilarity for open nets

This section shows the undecidability of (strong and weak) bisimulation equivalence of open nets, taking advantage from 
the encodings we have proposed. Observe that while for general open nets these undecidability results immediately follows 
from the undecidability of trace and bisimulation equivalence for ordinary labelled Petri nets, for those open nets where all 
transitions are hidden (and thus are considered indistinguishable in the strong case and unobservable in the weak case) the 
results were previously unknown.

We first notice that trace equivalence is obviously undecidable for both bound CSP processes and labelled open nets 
(since they include as a fragment the basic parallel processes for which trace equivalence is known to be undecidable [26]). 
Even though this does not give new insights, it is worth noting that, by using the encoding, the undecidability of trace 
equivalence for Petri nets can be deduced directly from the undecidability of trace equivalence for bound CSP.

Concerning open nets where all transitions are hidden (and thus unlabelled), we first show that (strong and weak 
bisimilarity) for bound ACCS processes is undecidable. In particular, the result about bisimilarity answers a question faced 
for the synchronous case in [18]. Then, by using Theorem 2 we deduce that the same result holds for open nets, a previously 
unknown fact.

The undecidability of bisimilarity for bound ACCS processes is proved by reduction to the halting problem for Minsky’s 
two-register machines, adapting a proof technique originally proposed in [19].
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Definition 30 (Two-register machine). A two-register machine is a triple 〈r1, r2, P 〉 where r1 and r2 are two registers which 
can hold any natural number, and the program P = I1 . . . Is consists of a sequence of instructions. An instruction Ii can be 
one of the following: for x ∈ {r1, r2}, j, k ∈ {1, . . . , s + 1}

• s(x, j): increment the value of register x and jump to instruction I j ;
• zd(x, j, k): if x is zero, then jump to I j else decrement x and jump to Ik .

The execution of the program starts from instruction I1, with r1 = 0, r2 = 0, and possibly terminate when the (s + 1)st 
instruction is executed.

The idea consists in defining, for any two-register machine program P , a bound process γ (P ) which “non-deterministi-
cally simulates” the computations of the program (starting with null registers). Some “wrongful” computations are possible 
in the process γ (P ), which do not correspond to a correct computation of the program P (due to the absence of zero-
tests in ACCS). Still, this can be used to prove undecidability of (strong and weak) bisimulation equivalence. In fact, given 
P , a second process γ ′(P ) can be built such that γ (P ) and γ ′(P ) are behaviourally equivalent if and only if program P
does not terminate. Therefore, deciding the corresponding equivalence for bound ACCS processes would allow to decide the 
termination of two-register machines. As two-register machines are Turing powerful, we can state the result below.

Theorem 5 (Undecidability of ACCS bisimilarity). Strong and weak bisimilarity are undecidable for bound ACCS processes.

Proof. See Appendix C. �
The properties of the encoding (Theorem 2) ensure that the same undecidability results hold for open nets, even if we 

restrict to nets with no visible transition.

Corollary 1 (Undecidability of open net bisimilarity). Weak and strong bisimilarity are undecidable for open nets with no visible 
transitions.

The results above can be easily adapted to other behavioural equivalences, such as trace equivalence [27] or failure 
equivalence [18].

6.2. Decidability of ACCS and CSP properties

In this section we use the encodings for transferring some decidability results from Petri nets to the bound fragments 
of ACCS and CSP. More precisely, by using the fact that properties like reachability, boundedness and presence of deadlocks 
are decidable for nets, we show that analogous properties are decidable for bound ACCS and CSP (thus, in particular, they 
are not Turing powerful).

It is worth remarking that the properties we consider on ACCS and CSP regards their operational behaviour (reduction 
semantics for ACCS and labelled transitions for CSP). This is captured in the encodings by transition firings only. Hence 
the presence of open places in the encodings is irrelevant for this section and the net encodings can be seen as ordinary 
(labelled, for CSP) Petri nets.

Let us start with reachability. Note that this property, seen as the possibility of reaching a given process Q via a sequence 
of transitions from a start process P , is not particularly meaningful in this context. Since during process evolution the 
number of parallel components can only increase, even though some components could terminate or get stuck, the property 
turns out to be decidable. Indeed, in order to establish whether Q is reachable it suffices to consider the fragment of the 
transition system including the processes reachable from P having a number of parallel subprocesses bounded by that of Q . 
A more interesting property is the reachability under the garbage collection of deadlock processes nil, since it breaks the 
monotonicity we mentioned above. However, for CSP the removal itself is not trivial: it is in general false that P |X nil is 
trace equivalent to P .

Alternatively, one can consider control state reachability, i.e., the reachability of a configuration including a given sub-
process. Through the encoding, control state reachability in process calculi can be reduced to coverability in Petri nets. 
It is folklore that the control state reachability problem is undecidable for Turing complete process calculi like CCS and 
CSP, while the corresponding property of coverability is known to be decidable for Petri nets [28]. By exploiting the en-
coding, we can deduce decidability of control state reachability for bound ACCS and CSP processes. For a given process 
P , below we denote by subreach(P ) the set of subprocess of processes reachable from P , namely subreach(P ) = {Q | ∃R ∈
reach(P ). Q subprocess of R}.

Proposition 4 (Decidability of control state reachability). Let P , Q be bound ACCS or CSP processes. The problem of establishing 
whether Q ∈ subreach(P ) is decidable.
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Proof. In the case of CSP, by Theorem 3 we have that Q ∈ subreach(P ) if and only if there exists an open net morphism 
f : � Q � → � P � such that f S

⊕(m� Q �) is coverable in � P �, which – for CSP – is a net not including open places.
By Theorem 1 the same holds also for ACCS, with the proviso that f S

⊕(m� Q �) should be coverable in � P � by using only 
hidden transitions, that is, f S

⊕(m� Q �) must be coverable in the net obtained by � P � by closing the open places.
Exploiting this fact, since the number of morphisms f : � Q � → � P � is finite, decidability of coverability for Petri nets 

immediately implies decidability of control state reachability for bound ACCS and CSP processes. �
The correspondence between ACCS reductions/CSP transitions and net firings can be exploited to obtain other results 

for bound processes. For example, since boundedness is decidable for Petri nets [28], it is possible to determine whether a 
bound process can reach only a finite number of states.

Proposition 5 (Finite state). Let P be a bound ACCS or CSP process. The problem of establishing whether reach(P ) is finite is decidable.

Proof. Let P a CSP process. The result immediately follows by observing that, thanks to Theorem 3, we have that reach(P )

is finite if and only if in � P � the set of reachable markings is finite. An analogous argument holds for ACCS processes. 
It suffices to observe that, since by Theorem 1 reductions of a process P corresponds to firings of hidden transitions in 
� P �, we need to consider only those markings reachable by firing hidden transitions, namely markings reachable in the net 
obtained from � P � by closing the open places. �

Analogously, it is possible to identify an upper bound to the degree of parallelism of a bound ACCS or CSP process, i.e., to 
the number of parallel subcomponents of a process during its evolution. Define the degree of P as deg(P ) = sup{sdeg(P ′) :
P ′ ∈ reach(P )}. For both calculi, the close correspondence between deg(P ) and the maximal total number of tokens in the 
reachable markings of � P � immediately leads to the following.

Proposition 6 (Parallelism). Let P be a bound ACCS or CSP process. The problem of determining whether deg(P ) is finite is decidable. 
Moreover, for any given k ∈N, the problem of determining whether deg(P ) ≤ k is decidable.

Another property which is often considered when studying the expressiveness of process calculi is convergence, i.e., 
the existence of a terminating computation. A process P is called convergent (according to [29]) if there exists process 
Q ∈ reach(P ) such that Q is deadlocked (it cannot further progress). Again, as an immediate corollary of the tight corre-
spondence between the operational semantics of a bound process and of its net encoding, as established by Theorems 1
and 3, convergence of a process can be reduced to the presence of deadlocks in a Petri net, a property which is known to 
be decidable [28].

Corollary 2 (Convergence). Convergence is decidable for bound processes.

In [18] it is shown that, in the synchronous case, adding priorities radically changes the situation: bound CCS becomes 
Turing complete and convergence is thus undecidable. It is almost immediate to show that the same applies to the asyn-
chronous case. The fact that adding priorities makes bound ACCS Turing complete is proved by noting that, by using 
priorities, the encoding of two-register machines into bound ACCS (denoted by γ (.) in Appendix C) can be made deter-
ministic. This is not surprising as, on the net side, priorities are strictly connected to inhibitor arcs, which make Petri nets 
Turing powerful [30].

7. Related works

The open net model proposed in this paper is a mild variation of the one in [14], with the addition of visible transitions 
and explicit interfaces. In the literature a number of reactive extension of Petri nets, endowed with suitable composition 
operators, have been considered. Some approaches emphasise the algebraic view, identifying a set of operators which allow 
one to build complex nets starting from a set of predefined basic components. For instance, in the Petri box calculus [31–33], 
a special class of nets, called plain boxes, provides the basic components which are then combined by means of refinement-
based operations. The Petri nets with interface [34,35] are based on an algebra of (labelled) Petri nets with interfaces. The 
interface consists of a set of public (output) places and (input) transitions and the operators allow one to add new transi-
tions and places, to connect existing public transitions and places by new arcs or to hide items. The latter work has a natural 
evolution in the encoding of Petri nets into bigraphical reactive systems [15], which in turn has been the inspiration for 
open CPR nets [36,37]. Other approaches are more “component-oriented” and put the emphasis on the mechanisms which 
allow one to build larger systems by combining nets with clearly identified interfaces. The book [38] proposes a frame-
work for net composition where a so-called daughter net can be inserted into a host net, by joining the two nets along a 
predefined set of places, playing the role of open places. Interestingly, the same book [38] also focuses on an alternative 
approach to net composition, based on an operation of synchronised parallel product in the style of [13], which joins two 
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nets by forcing the synchronisation of transitions with the same label. This is essentially the same mechanism that we used 
for synchronising transitions. Petri net components [39] again offer an interface with input and output places along with an 
operation for combining components by connecting the input places of a component to the output places of the other, and 
vice versa. There are close similarities with many of these models. Indeed, in designing our open net model we followed 
the intuition that encoding synchronous and asynchronous interactions would require a reactive extension exposing both 
places and transitions to the environment, and took from the literature the features needed for doing this in the simplest 
way.

The idea of mapping CSP processes into nets arose early on, see among others [40–42]. Conceptually, all these encodings 
are syntax-driven: each process is split into a family of sequential components, which represent the places of a net, and 
a (possibly concurrent) semantics for the calculus is thus obtained. As of more recent advances, we are aware of [43]. 
There, an on-the-fly algorithm is devised for building (and optimising) a net from a CSP process by exploiting its transition 
system. In our encoding we followed the spirit of the former proposals, striving for modularity: the encoding itself has a 
denotational flavor, mapping each operator of the calculus into an operator on nets, and as a consequence preservation and 
reflection of CSP operational semantics are easily stated and proved. We believe that such clarity is due to the identification 
of the right CSP fragment. Indeed, it is noteworthy that in all those papers mentioned above the recursion of nested parallel 
processes is not allowed “because the set of places of the generated Petri net would be infinite” [43, p. 111]. Our paper 
lifts such a constraint: our chosen CSP fragment is not finite state, but rather it bounds the number of parallel processes 
synchronising on the same channel.

Concerning CCS [2], as already mentioned, the encoding of its synchronous version into Petri nets has been widely 
studied (see, e.g., [10–13]). Although not explicitly treated, synchronous two-party communications, where channels adopt 
a strict handshaking pattern, would naturally fit in our framework, by an easy adaptation of other encodings proposed in the 
literature (see in particular [13]). This would require the addition to our framework a two-party synchronisation operator 
for open Petri nets.

Coming to asynchronous interactions, their relation with Petri nets has received much less attention than the syn-
chronous case. In general terms, most proposals we are aware of put their emphasis on the preservation of the operational 
semantics, while behavioural equivalences are seldom studied. This happens, e.g., in the net encoding of the join calculus, 
where communication is asynchronous, presented in [44]. In particular, the fragment of the join calculus with no name 
passing and process generation is shown to correspond to ordinary P/T nets, while, in order to encode wider classes of join 
processes, high-level nets, ranging from coloured nets to dynamic nets, must be considered. The encoding share some ideas 
with ours, e.g., the fact that Petri net places are partitioned into public and private places, even if it does not tackle the 
relations between process and net behavioural equivalences. Some related work has been done in the direction of encod-
ing several brands of coordination languages, where processes communicate through shared dataspaces, as Petri nets. The 
papers [44,45] exploit the encoding to compare the expressiveness of Linda-like calculi with various communication prim-
itives. In [46] an encoding of KLAIM, a Linda-like language with primitives for mobile computing, into high-level Petri nets 
is provided. The long-term goal there is to reuse for KLAIM the techniques available for net verification. Concrete results 
in this direction are obtained in [47], where finite control π -calculus processes are encoded as safe Petri nets and verified 
using an unfolding-based technique.

The undecidability result that we obtained for asynchronous CCS is analogous to that in [18] for the synchronous case: 
building upon [29], that paper offers some results concerning the expressive power of restriction and its interplay with 
replication in synchronous CCS-like calculi.

8. Conclusions and further works

In this paper we presented a framework for the modular encoding of process calculi into open Petri nets, a reactive 
generalisation of ordinary nets with distinguished sets of open places and visible transitions, which are accessible from 
the environment. Interestingly enough, asynchronous interactions are captured by interaction over open places, while syn-
chronous interactions are realised by letting net components interact over visible transitions. This translates at a formal 
level the intuition that in Petri nets the token flow is eminently asynchronous, while transitions synchronise different token 
flows. Our encodings are syntax-driven, hence modular, mapping each process operator into a suitable one for nets. Actually, 
in order to allow an inductive construction of open Petri nets from a set of constants, we considered open nets enriched 
with interfaces, which are used for net composition.

In particular, we have detailed the encodings of ACCS and CSP, representing paradigmatic instances of two main alter-
natives concerning the pattern of communications, namely, asynchronous message passing and broadcast synchronisation, 
respectively. For both calculi, we have identified an expressive fragment by proposing an encoding which, besides respect-
ing the structural congruence of processes, preserves as well as reflects the operational semantics and, consequently, their 
behavioural equivalences.

Even though the study of asynchronous interaction has been tailored over ACCS, we feel confident that it can be gener-
alised to other asynchronous calculi as well, at least to those based on a primitive notion of communication, i.e., without 
either value or name passing. As suggested by the work in [12,44,46], the generalisation to calculi with value or name pass-
ing looks feasible if one considers more expressive variants of Petri nets, ranging from high-level to reconfigurable/dynamic 
Petri nets.
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We believe that the tight connection between open nets and synchronous and asynchronous calculi is quite enlightening. 
First of all, most of the encodings we are aware of focus on the preservation of variants of reachability or of the operational 
behaviour [44–46,48]. Instead, ours encoding allows us to establish a correspondence at the observational level. Most impor-
tantly, it allows for a fruitful “technology transfer”. For ACCS, we proved the undecidability of strong and weak bisimilarity 
for bound processes, answering a question faced for the synchronous case in [18]. Through the encoding this result can be 
used to prove the undecidability of bisimilarity also for open nets without visible transitions, a previously unknown fact. 
Conversely, by using the fact that reachability/coverability is decidable for Petri nets, through the encoding we prove that 
various properties like (control state) reachability and convergence are decidable for bound ACCS and CSP.
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Appendix A. Proofs for Section 4.2

In order to prove Theorem 1 we extend Lemma 1 and Definition 27, by considering not only the set of processes 
reachable from a given process P , but also all the corresponding subprocesses, hereafter denoted by subreach(P ).

We start with a simple technical observation.

Lemma 3 (Subprocesses as subnets). Let P be an ACCS process, Γ a finite set of names and Q a subprocess of P . Then an injective open 
net morphism f Q � P : � Q �Γ → � P �Γ can be uniquely chosen.

Proof. The result follows from the observation that the encoding � P �Γ of process P is defined inductively relying on the 
encoding of its subprocesses, a fact that naturally provides a mapping f Q � P : � Q �Γ → � P �Γ . When building the encoding 
of a larger process, the pre- and post-set of transitions can only be made larger, hence f Q � P reflects pre- and post-sets, as 
required by the definition of net morphism (Definition 13). Moreover, f Q � P is an open net morphism. In fact, no transition 
is visible, hence condition 1 of Definition 15 is trivially satisfied. Additionally, open places can be closed (as an effect of 
restrictions), but not the converse, hence also reflection of open places holds, as required to be an open net morphism 
(condition 2 in Definition 15). �

A generalisation of Lemma 1 holds, where also subprocesses of processes reachable from a process P are seen as mark-
ings of the net encoding � P �. Recall that S N� P � denotes the set of places of � P � that corresponds to names in P .

Lemma 4 (Subprocesses of reachable processes as subnets). Let P be a bound ACCS process, Q ∈ subreach(P ) and Γ a finite set of 
names. Then an open net morphism f Q � P : � Q �Γ → � P �Γ can be uniquely chosen, which is injective on S N� Q � .

Moreover, if Q 1 ∈ subreach(Q ) ∩ subreach(P ), then f Q 1 � P = f Q � P ◦ f Q 1 � Q .

Proof. Consider a process Q ∈ subreach(P ). This means that there is a process Q ′ such that P ⇒ Q ′ and Q is a subprocess 
of Q ′ . The existence of the open net morphism f Q � P : � Q �Γ → � P �Γ can be proved inductively on the length of the 
reduction sequence. When the length is 0, the result follows from Lemma 3. When the length is greater than 0, namely 
P ⇒ P ′ −→ Q ′ , then we distinguish various cases according to the reduction rule used in the last step.

For rules (Syn) and (Tau), Q ′ is a subprocess of P ′ , hence Q is a subprocess of P ′ and thus we conclude by inductive 
hypothesis.

For rule (Par), we have that P ′ = P ′
1 | P ′

2 and Q ′ = P ′
1 | Q ′

2 with P ′
2 −→ Q ′

2. The inductive hypothesis provides a mor-
phism f Q 2 � P ′

2
: � Q 2 �Γ → � P ′

2 �Γ for any subprocess Q 2 of Q ′
2 and a morphism f P ′

2 � P : � P ′
2 �Γ → � P �Γ . Hence we get an 

open net morphism f Q 2 � P : � Q 2 �Γ → � P �Γ for any subprocess Q 2 of Q ′
2. Similarly, by inductive hypothesis we have a 

morphism f P1 � P : � P1 �Γ → � P �Γ for any subprocess P1 of P ′
1. Since the subprocesses of Q ′ are either subprocesses of Q ′

1
or subprocesses of Q ′

2 or Q ′ itself, we easily conclude.
For rule (Res), we have that P ′ = (νa)P ′

1 and Q ′ = (νa)Q ′
1 with P ′

1 −→ Q ′
1. As above, the inductive hypothesis provides 

a morphism f Q 1 � P ′
1
: � Q 1 �Γ → � P ′

1 �Γ for any subprocess Q 1 of Q ′
1 and a morphism f Q ′

1 � P : � Q ′
1 �Γ → � P �Γ . Hence we get 

an open net morphism f Q 1 � P : � Q 1 �Γ → � P �Γ for any subprocess Q 1 of Q ′ .
For the case of rule (Repl) the boundness hypothesis plays a central role. In fact, P ′ = !a. P ′

1 | a and Q ′ = !a. P ′
1 | P ′

1. 
Hence the inductive hypothesis, exactly as before, ensures the existence of open net morphisms f P1 � P : � P1 �Γ → � P �Γ , 
satisfying the injectivity property, for any subprocess P1 of !a. P ′

1 (and thus for any subprocess of P ′
1). This naturally gives 

also an open net morphism for the entire Q ′ = !a. P ′
1 | P ′

1, namely f Q ′ � P : � Q ′�Γ → � P �Γ . Such a morphism maps the 
encoding of the two copies of P ′ in Q ′ to the encoding of the unique copy of P ′ in P ′ . However, this is still injective on 
1 1
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Fig. 21. Subnet corresponding to the process
⊕n

i=1 ai .Pi .

Fig. 22. Subnet corresponding to the process !a. Q 1 | a.

S N� Q ′ � . In fact, by the boundness hypothesis, P ′
1 does not contains restrictions, hence places corresponding to names are 

open. Therefore in the encoding �!a. P ′
1 | P ′

1 �Γ for any name there is a unique place. �
Definition 31 (Subprocesses of reachable processes as markings). Let P be a bound ACCS process. The function mP

Γ :
subreach(P ) → S⊕

� P �Γ
maps any subprocess Q of a process reachable from P into the marking f

⊕
Q � P (m� Q �Γ

).

Now we are ready to provide a proof for Theorem 1, that we report below.

Theorem 1 (Process reductions as net firings). Let P be a bound ACCS process, Q ∈ reach(P ) and Γ ⊆N a set of names. Then

1. if Q → R then mP
Γ (Q ) τ−→ mP

Γ (R) in � P �Γ ;
2. if mP

Γ (Q ) τ−→ m in � P �Γ then Q → R for some R with m = mP
Γ (R).

Proof. (1) The proof is by induction on the depth of the derivation Q → R .

• Assume that Q → R by applying rule (Syn). This means that Q = ⊕n
i=1 μi .Pi | a j , μ j = a j with j ∈ {1, . . . , n}, and 

R = P j . By Lemma 4, in � P �Γ there is the subnet of Fig. 21 and mP
Γ (Q ) = {α, a j}. Thus mP

Γ (Q ) τ−→ m′ and m′ =
{α j1, . . . , α jm j } = f

⊕
R � P (m� R �Γ

) = mP
Γ (R).

• Assume that Q → R by applying rule (Repl). This means that Q = !a. Q 1 | a and R = !a. Q 1 | Q 1. By Lemma 4, in � P �Γ

there is the subnet of Fig. 22 and mP
Γ (Q ) = {α, a}. Thus mP

Γ (Q ) τ−→ m′ and m′ = {α, α1, . . . , αm} = f ⊕
R � P (m� R �Γ

) =
mP

Γ (R).
• The cases of rules (Par) and (Res) are analogous. Hence we focus on (Par).

Assume that Q → R by applying the (Par) rule. This means that Q = Q 1 | Q 2, Q 1 → Q ′
1, and R = Q ′

1 | Q 2.
By definition we have mP

Γ (Q ) = f ⊕
Q � P (m� Q �Γ

) = f ⊕
Q � P ( f ⊕

Q 1 � Q (m� Q 1 �Γ
) ⊕ f ⊕

Q 2 � Q (m� Q 2 �Γ
)) = f ⊕

Q � P ( f ⊕
Q 1 � Q (m� Q 1 �Γ

)) ⊕
f ⊕

Q � P ( f ⊕
Q 2 � Q (m� Q 2 �Γ

)). Now, since Q 1 → Q ′
1, by inductive hypothesis we know that mQ 1

Γ (Q 1) τ−→ mQ 1
Γ (Q ′

1) =
f ⊕

Q ′
1 � Q 1

(m� Q ′
1 �Γ

). Therefore, since Q 1 is a subprocess of Q , by Lemma 4 f ⊕
Q 1 � Q (mQ 1

Γ (Q 1)) τ−→ f ⊕
Q 1 � Q ( f ⊕

Q ′
1 � Q 1

(m� Q ′
1 �Γ

)). 

By definition, f ⊕
Q 1 � Q (mQ 1

Γ (Q 1)) = f ⊕
Q 1 � Q (m� Q 1 �Γ

) and by Lemma 4, since Q ′
1 ∈ subreach(Q 1), Q ′

1 ∈ subreach(Q ) and 
Q 1 ∈ subreach(Q ), we also have f ⊕

Q 1 � Q ( f ⊕
Q ′

1 � Q 1
(m� Q ′

1 �Γ
)) = f ⊕

Q 1 � Q (m� Q ′
1 �Γ

). Moreover, we know that Q is reach-

able from P , Q 1 is a subprocess of it, and Q ′
1 ∈ subreach(Q 1), therefore by Lemma 4 f ⊕

Q � P ( f ⊕
Q 1 � Q (m� Q 1 �Γ

)) τ−→
f ⊕

Q � P ( f ⊕
Q ′

1 � Q
(m� Q ′

1 �Γ
)).

Now, by the operational semantics of open nets, f ⊕
Q � P ( f ⊕

Q 1 � Q (m� Q 1 �Γ
)) ⊕ f ⊕

Q � P ( f ⊕
Q 2 � Q (m� Q 2 �Γ

)) τ−→
f ⊕

Q � P ( f ⊕
Q ′

1 � Q
(m� Q ′

1 �Γ
)) ⊕ f ⊕

Q � P ( f ⊕
Q 2 � Q (m� Q 2 �Γ

)) = m and by using Lemma 4 it is possible to deduce m = mP
Γ (R).

• Assume that Q → R because Q ≡ Q 1, Q 1 → R1, and R1 ≡ R . Since Q ≡ Q 1, then by Proposition 2 we deduce that 
� Q � and � Q 1 � are isomorphic and thus also � Q �Γ and � Q 1 �Γ are. Analogously, since R1 ≡ R , we have that � R �Γ is 
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Fig. 23. Subnet corresponding to the process
⊕n

i=1 μi .Pi .

isomorphic to � R1 �Γ . Moreover, since Q 1 → R1, we can apply the inductive hypothesis and obtain mP
Γ (Q 1) τ−→ mP

Γ (R1). 
Therefore we can easily conclude that mP

Γ (Q ) τ−→ mP
Γ (R).

(2) Assume mP
Γ (Q ) τ−→ m. The proof proceeds by structural induction on Q .

• Suppose Q = nil, Q = a or Q = !a. Q 1. In all these cases the thesis trivially holds, because there are no transitions from 
mP (Q ).

• Suppose that Q = ⊕n
i=1 μi .Pi . By Lemma 4 this means that the encoding of P includes a subnet like the one in Fig. 23, 

corresponding to the encoding of Q in P , where the places μi are dotted since they must be omitted for all i such 
that μi = τ . By construction, mP (Q ) = {α} and, since mP

Γ (Q ) τ−→ m, there exists j ∈ {1, . . . , n} with μ j = τ (otherwise 
the corresponding transition could not fire). Moreover m = {α j1 , . . . , α jm j

}. By the operational semantics of ACCS, we 
immediately get that Q → P j and, by Lemma 4, {α j1 , . . . , α jn } = mP

Γ (P j) as desired.
• Suppose that Q = (νx)Q 1. We know that mP

Γ (Q ) = f ⊕
Q � P (m� Q �Γ

) = f ⊕
Q � P ( f ⊕

Q 1 � Q (m� Q 1 �Γ
)). By Lemma 4 we have 

f ⊕
Q � P ( f ⊕

Q 1 � Q (m� Q 1 �Γ
)) = f ⊕

Q 1 � P (m� Q 1 �Γ
) = mP

Γ (Q 1). We thus have that mP
Γ (Q 1) τ−→ m and so mQ 1

Γ (Q 1) τ−→ m1 with 
m = f Q 1 � P (m1). Since mQ 1

Γ (Q 1) τ−→ m1, we can apply the inductive hypothesis and deduce Q 1 → Q ′
1 and m1 =

mQ 1
Γ (Q ′

1). By the operational semantics Q → (νx)Q ′
1 = R and m = f Q 1 � P (mQ 1

Γ (Q ′
1)), which by Lemma 4 is equal to 

mP
Γ (Q ′

1) = mP
Γ (R).

• Suppose that Q = Q 1 | Q 2. By Lemma 4 we can show that mP
Γ (Q ) = mP

Γ (Q 1) ⊕ mP
Γ (Q 2). We distinguish two cases. 

When, for some i ∈ {1, 2} the fired transition is enabled by mP
Γ (Q 1) or by mP

Γ (Q 2) we can proceed by induction 
similarly to what we did for Q = (νx)Q 1.
Otherwise, the firing of the transition requires the marking mP

Γ (Q 1) ⊕ mP
Γ (Q 2). This means that the encoding of one 

of the two processes in parallel, say Q 1, is performing a transition requiring a token in some place s and the other, 
say Q 2, is providing the token in s. By definition of the encoding the place s must be open. The transitions requiring a 
token in an open place originates either from the encoding of input prefixes, i.e., of processes of the shape 

⊕n
i=1 μi .Pi , 

or from a replication !a. P1. Accordingly, we distinguish two possibilities.
– The first possibility is that the encoding of Q 1 contains the subnet shown in Fig. 21 and mP

Γ (Q 1) = {α} ⊕ m1. Hence 
Q 1 ≡ ⊕n

i=1 μi .Pi | R1, with m1 = mP
Γ (R1). The encoding of Q 2 must provide a token in some place μ j . Since, by 

Lemma 4, the morphism f Q � P is injective on places corresponding to names, we deduce that the encoding of Q 2
must include a place a j which is marked, i.e., mP

Γ (Q 2) = {a j} ⊕ m2, with μ j = a j . Therefore Q 2 ≡ μ j | R2 with 
m2 = mP

Γ (R2). By the operational semantics of ACCS, Q → P j | R1 | R2. Thus we conclude that the target marking is

m = {α j1, . . . ,α jm j } ⊕ m1 ⊕ m2

= mP
Γ (P j) ⊕ mP

Γ (R1) ⊕ mP
Γ (R2)

= mP
Γ (P j | R1 | R2)

as desired.
– The second possibility is that � Q 1 �Γ contains the subnet of Fig. 22 and mP

Γ (Q 1) = {α} ⊕ m1, hence Q 1 ≡ !a. P1 | R1

with m1 = mP
Γ (R1). The encoding � Q 2 � is providing the token in a. Since, by Lemma 4, the morphism f Q � P is 

injective on places corresponding to names, we deduce that the encoding of Q 2 must include a place a, which 
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is marked, i.e., mP
Γ (Q 2) = {a} ⊕ m2. Hence Q 2 ≡ a | R2 with m2 = mP

Γ (R2). By the operational semantics of ACCS 
Q → !a. P1 | P1 | R1 | R2. Thus the target marking is

m = {α,α1, . . . ,αm} ⊕ m1 ⊕ m2

= mP
Γ (!a. P1) ⊕ mP

Γ (P1) ⊕ mP
Γ (R1) ⊕ mP

Γ (R2)

= mP
Γ (!a. P1 | P1 | R1 | R2)

as desired. �
In order to prove Theorem 2, we extend the domain of the function mP

Γ by considering the set reach(P )Γ , that is, the 
set of states reachable by freely adding in parallel output messages on the names in Γ . Given P2 ∈ reach(P )Γ and ai ∈ Γ

with i ∈ {1, . . . , n}, we have mP
Γ (P2 | a1 | . . . | an ) = mP

Γ (P2) ⊕ a1 ⊕ . . . ⊕ an .
Moreover, we also observe that Theorem 1 can be extended by considering processes Q ∈ reach(P )Γ . The proof relies on 

the fact that if Q ∈ reach(P )Γ , then there exists P ′ such that Q ∈ reach(P ′) and P ′ ≡ P | a1 | . . . | an , where ai ∈ Γ are the 
output messages added to reach from P the process Q .

Theorem 2. Let P , Q be bound ACCS processes and Γ a set of names such that fn(P ) ∪fn(Q ) ⊆ Γ . Then for � either strong or weak 
bisimilarity

P � Q if and only if mP
Γ (P ) � mQ

Γ (Q )

Proof. We focus on strong bisimilarity ∼. The proof for weak bisimilarity ≈ is completely analogous.
In order to prove that if mP

Γ (P ) ∼ mQ
Γ (Q ) then P ∼ Q , we build the relation

R = {(
P ′, Q ′) ∈ reach(P )Γ × reach(Q )Γ

∣∣ mP
Γ

(
P ′) ∼ mQ

Γ

(
Q ′)}

and we prove that it is a strong 1-bisimulation. Consider (P ′, Q ′) ∈ R . We have to prove that conditions (1)–(3) of Defini-
tion 7 hold.

1. if P ′ ↓ā P ′′ then Q ′ ↓ā Q ′′ and (P ′′, Q ′′) ∈ R

By definition P ′ ≡ ā | P ′′ , thus mP
Γ (P ′) = a ⊕ mP

Γ (P ′′). Note that a ∈ Γ , so a is an open place of � P �Γ and mP
Γ (P ′) a−−−→

mP
Γ (P ′′). Since mP

Γ (P ′) ∼ mQ
Γ (Q ′), then mQ

Γ (Q ′) a−−−→ mQ
Γ (Q ′) � a with mP

Γ (P ′′) ∼ mQ
Γ (Q ′) � a. This transition can be 

performed only if a belongs to mQ
Γ (Q ′). Therefore Q ′ ≡ ā | Q ′′ and mQ

Γ (Q ′′) = mQ
Γ (Q ′) � a. Thus (P ′′, Q ′′) ∈ R , as 

desired.
2. if P ′ → P ′′ then Q ′ → Q ′′ and (P ′′, Q ′′) ∈ R

By Theorem 1, P ′ → P ′′ implies that mP
Γ (P ′) τ−→ mP

Γ (P ′′) in � P �Γ . Since mP
Γ (P ′) ∼ mQ

Γ (Q ′), then mP
Γ (Q ′) τ−→ mQ

Γ (Q ′′)
and mP

Γ (P ′′) ∼ mP
Γ (Q ′′). Again by Theorem 1 we have Q ′ → Q ′′ and by construction (P ′′, Q ′′) ∈ R .

3. ∀a ∈N . (P ′ | ā, Q ′ | ā) ∈ R
Let a ∈N . Without loss of generality we may assume that a ∈ Γ , since otherwise a would not belong to fn(P ) ∪fn(Q )

and thus it could interact neither with P ′ nor with Q ′ . By construction, since (P ′, Q ′) ∈ R we have that mP
Γ (P ′) ∼

mQ
Γ (Q ′). Now, since a ∈ Γ is an open place, mP

Γ (P ′) a+−−→ mP
Γ (P ′) ⊕ a. Hence we must have mQ

Γ (Q ′) a+−−→ m′ with 
mP

Γ (P ′) ∼ m′ . Necessarily, by the operational semantics of open nets, m′ = mQ
Γ (Q ′) ⊕ a and thus mP

Γ (P ′) ⊕ a ∼
mQ

Γ (Q ′) ⊕ a. Recalling that mP
Γ (P ′ | ā) = mP

Γ (P ′) ⊕ a, and analogously mQ
Γ (Q ′ | ā) = mQ

Γ (Q ′) ⊕ a we immediately con-
clude that (P ′ | ā, Q ′ | ā) ∈ R .

Conversely, in order to prove that if P ∼ Q then mP
Γ (P ) ∼ mQ

Γ (Q ), one can easily show that the relation below is a 
strong bisimulation

{(
mP

Γ

(
P ′),mQ

Γ

(
Q ′)) ∣∣ (

P ′, Q ′) ∈ reach(P )Γ × reach(Q )Γ and P ′ ∼ Q ′}. �
Appendix B. Proofs for Section 5.2

As in the case of ACCS, in order to prove Theorem 3 we provide a technical lemma. The proof is omitted since it is 
completely analogous to that of Lemma 3.

Lemma 5 (Subprocesses as subnets). Let P be a CSP process and Q a subprocess of P . Then an injective open net morphism f Q � P :
� Q � → � P � can be uniquely chosen.

Then we extend Lemma 2 and Definition 29 by considering the set subreach(P ), containing all the subprocesses of a 
process reachable from P .
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Fig. 24. Subnet corresponding to the process
⊕n

i=1 ai .Pi .

Lemma 6 (Subprocesses of reachable processes as subnets). Let P be a bound CSP process and Q ∈ subreach(P ). Then, an open net 
morphism f Q � P : � Q � → � P � can be uniquely chosen, which is injective on T S � Q � .

Moreover, if Q 1 ∈ subreach(Q ) ∩ subreach(P ), then f Q 1 � P = f Q � P ◦ f Q 1 � Q .

Proof sketch. The proof is analogous to that of Lemma 4. Consider a process Q ∈ subreach(P ). Then there is a process Q ′
such that P

ω⇒ Q ′ and Q is a subprocess of Q ′ . The existence of the open net morphism f Q � P : � Q �Γ → � P �Γ can be 
proved inductively on the length of the derivation, distinguishing various cases according to the rule used in the last step.

This is a routine induction. The most interesting case, where the boundness hypothesis is fundamental, is when P
ω⇒

P ′ μ−→ Q ′ and the last step uses rule (Repl). Then P ′ =!μ.P ′
1 and Q ′ =!μ.P ′

1 | P ′
1. Using the inductive hypothesis we easily 

build a morphism f Q ′ � P : � Q ′� → � P � which maps the encoding of the two copies of P ′
1 in Q ′ to the encoding of the unique 

copy of P ′
1 in P ′ . Since, by the boundness hypothesis, P ′

1 does not include synchronisations, we have that T S � Q ′ � = ∅ and 
thus the injectivity requirement is trivially satisfied. �
Definition 32 (Subprocesses of reachable processes as markings). Let P be a bound CSP process. The function mP :
subreach(P ) → S⊕

� P �
maps any subprocess Q of a process reachable from P to the marking f ⊕

Q � P (m� Q �).

Theorem 3 (Process transitions as net firings). Let P be a bound CSP process and Q ∈ reach(P ). Then

1. if Q μ−→ R then mP (Q ) μ−→ mP (R) in � P �;
2. if mP (Q ) μ−→ m in � P � then Q μ−→ R for some R such that m = mP (R).

Proof. (1) The proof is by induction on the depth of the derivation Q
μ−→ R .

• The cases for rules (Alt), (Cho) and (Repl) are similar. We focus on (Alt).
Assume that Q

μ−→ R by applying rule (Alt). This means that Q = ⊕n
i=1 ai .Pi , μ = a j with j ∈ {1, . . . , n}, and R = P j . 

Thanks to Lemma 6, in � P � there exists the subnet of Fig. 24 and mP (Q ) = {α}. Hence, mP (Q ) 
a j−−→ m′ and m′ =

{α j1, . . . , α jm j } = f ⊕
R � P (m� R �) = mP (R).

• Assume that Q
μ−→ R by applying rule (Asyn). This means that Q = Q 1 |X Q 2, μ /∈ X , Q 1

μ−→ Q ′
1, and R = Q ′

1 |X

Q 2. By definition, we have mP (Q ) = f ⊕
Q � P (m� Q �) = f ⊕

Q � P ( f ⊕
Q 1 � Q (m� Q 1 �) ⊕ f ⊕

Q 2 � Q (m� Q 2 �)) = f ⊕
Q � P ( f ⊕

Q 1 � Q (m� Q 1 �)) ⊕
f ⊕

Q � P ( f ⊕
Q 2 � Q (m� Q 2 �)).

Since Q 1
μ−→ Q ′

1, by inductive hypothesis we get that mQ 1 (Q 1) 
μ−→ mQ 1 (Q ′

1). This means that m� Q 1 �
μ−→ f ⊕

Q ′
1 � Q 1

(m� Q ′
1 �)

and thus f ⊕
Q 1 � Q (m� Q 1 �) μ−→ f ⊕

Q 1 � Q ( f ⊕
Q ′

1 � Q 1
(m� Q ′

1 �)), since Q 1 is a subprocess of Q . Now, since Q ′
1 ∈ subreach(Q 1), 

Q ′
1 ∈ subreach(Q ), and Q 1 ∈ subreach(Q ), by Lemma 6 we have f ⊕

Q 1 � Q (m� Q 1 �) μ−→ f ⊕
Q ′

1 � Q
(m� Q ′

1 �). Additionally 

Q ∈ reach(P ) and thus f ⊕
Q � P ( f ⊕

Q 1 � Q (m� Q 1 �)) μ−→ f ⊕
Q � P ( f ⊕

Q ′
1 � Q

(m� Q ′
1 �)).

Now, by the definition of the operational semantics, f ⊕
Q � P ( f ⊕

Q 1 � Q (m� Q 1 �)) ⊕ f ⊕
Q � P ( f ⊕

Q 2 � Q (m� Q 2 �)) μ−→
f ⊕

Q � P ( f ⊕
Q ′

1 � Q
(m� Q ′

1 �)) ⊕ f ⊕
Q � P ( f ⊕

Q 2 � Q (m� Q 2 �)). Finally, by Lemma 6, we can easily deduce that f ⊕
Q � P ( f ⊕

Q ′
1 � Q

(m� Q ′
1 �)) ⊕

f ⊕
Q � P ( f ⊕

Q 2 � Q (m� Q 2 �)) = mP (R).

• Assume that Q
μ−→ R by applying rule (Syn). This means that Q = Q 1 |X Q 2, μ ∈ X , Q 1

μ−→ Q ′
1, Q 2

μ−→ Q ′
2, and 

R = Q ′
1 |X Q ′

2. By definition we have mP (Q ) = f ⊕
Q � P (m� Q �). Since Q 1

μ−→ Q ′
1, by inductive hypothesis mQ 1 (Q 1) 

μ−→
mQ 1 (Q ′

1), that is, m� Q 1 �
μ−→ f ⊕

Q ′
1 � Q 1

(m� Q ′
1 �). Analogously, we have that m� Q 2 �

μ−→ f ⊕
Q ′

2 � Q 2
(m� Q ′

2 �). Moreover, Q 1 and 
Q 2 are subprocesses of Q , therefore by Lemma 6 we have mappings of the encodings of Q 1 and Q 2 into � Q �. By the 
definition of the encoding, since μ ∈ X , both μ transitions of � Q 1 � and � Q 2 � are mapped to the same transition in 
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� Q �, with pre-set f ⊕
Q 1 � Q (m� Q 1 �) ⊕ f ⊕

Q 2 � Q (m� Q 2 �) and post-set f ⊕
Q 1 � Q ( f ⊕

Q ′
1 � Q 1

(m� Q ′
1 �)) ⊕ f ⊕

Q 2 � Q ( f ⊕
Q ′

2 � Q 2
(m� Q ′

2 �)). This 

means that m� Q �
μ−→ f ⊕

R � Q (m� R �). So f ⊕
Q � P (m� Q �) μ−→ f ⊕

Q � P ( f ⊕
R � Q (m� R �)) since Q ∈ reach(P ), and thus, by Lemma 6, 

mP (Q ) μ−→ mP (R).
• Assume that Q

μ−→ R by applying rule (Hid1). This means that Q = Q 1\X , μ /∈ X , Q 1
μ−→ Q ′

1, and R = Q ′
1\X . We 

have that mP (Q ) = f ⊕
Q � P (m� Q �) = f ⊕

Q � P ( f ⊕
Q 1 � Q (m� Q 1 �)). By inductive hypothesis we have mQ 1 (Q 1) 

μ−→ mQ 1 (Q ′
1). 

This means that m� Q 1 �
μ−→ f ⊕

Q ′
1 � Q 1

(m� Q ′
1 �). Since Q 1 is a subprocess of Q and μ /∈ X , that is, the corresponding tran-

sition is also visible in � Q �, we deduce f ⊕
Q 1 � Q (m� Q 1 �) μ−→ f ⊕

Q 1 � Q ( f ⊕
Q ′

1 � Q 1
(m� Q ′

1 �)). By Lemma 6, f ⊕
Q 1 � Q (m� Q 1 �) μ−→

f ⊕
Q ′

1 � Q
(m� Q ′

1 �)), and since Q ∈ reach(P ) we have f ⊕
Q � P ( f ⊕

Q 1 � Q (m� Q 1 �)) μ−→ f ⊕
Q � P ( f ⊕

Q ′
1 � Q

(m� Q ′
1 �)). Thanks again to 

Lemma 6, we infer that f ⊕
Q � P ( f ⊕

Q ′
1 � Q

(m� Q ′
1 �)) = mP (R), and therefore mP (Q ) μ−→ mP (R).

• The case for the rule (Hid2) is very similar to the previous one. The only difference is that the label of the transition of 
Q 1 belongs to X , so the corresponding transition in the encoding of Q becomes hidden.

• Assume that Q
μ−→ R because Q ≡ Q ′ , Q ′ μ−→ R ′ and R ′ ≡ R . Since Q ≡ Q ′ , by Proposition 3 we know that � Q � =

� Q ′�. Analogously, since R ′ ≡ R , then � R � = � R ′�. Moreover, since Q ′ μ−→ R ′ , by inductive hypothesis mP (Q ′) μ−→
mP (R ′). It is then immediate to conclude mP (Q ) μ−→ mP (R).

(2) Assume that mP (Q ) μ−→ m. The proof is by structural induction on Q .

• The cases for Q = ⊕n
i=1 ai .Pi , Q = Q 1 + Q 2 and Q = !a. Q 1 are similar. We focus on the first one. Suppose that 

Q = ⊕n
i=1 ai .Pi . By Lemma 6, this means that the encoding of P has a subnet like the one in Fig. 24, corresponding to 

the encoding of Q in P . Therefore, mP (Q ) = {α}, μ = a j for j ∈ {1, . . . , n} and m = {α j1 , . . . , α jm j
}. As desired, by the 

operational semantics of CSP, Q
a j−−→ P j and moreover, by Lemma 6, {α j1 , . . . , α jn } = mP (P j).

• Suppose that Q = Q 1 |X Q 2. This means that mP (Q ) = mP (Q 1) ⊕ mP (Q 2). We distinguish two cases. The first case is 
when for some i ∈ {1, 2} the fired transition is enabled by mP (Q 1) or by mP (Q 2). Without loss of generality, we can 
assume that mP (Q 1) 

μ−→ m′
1. This means that μ /∈ X and m = m′

1 ⊕ mP (Q 2). By Lemma 6, we have that mQ 1 (Q 1) 
μ−→

m1 with m′
1 = f ⊕

Q 1 � P (m1). Now, by inductive hypothesis, Q 1
μ−→ Q ′

1 and mQ 1 (Q ′
1) = m1. By the operational semantics 

of CSP, we immediately get Q
μ−→ Q ′

1 |X Q 2 = R and, by Lemma 6, we deduce also that m = mP (R).
In the second case, the firing of the transition t with λ(t) = μ requires the marking mP (Q 1) ⊕ mP (Q 2). By defini-
tion of the encoding we have μ ∈ X . Additionally since, by Lemma 6, the morphism f Q � P is injective on transitions 
corresponding to synchronisation events, there is a single μ-labelled transition in � Q � which is mapped to the fired 
transition t in � P �. Since � Q � = � Q 1 � 

⊗
X � Q 2 �, such a transition must arise as the synchronisation of μ-labelled tran-

sitions t1 in � Q 1 � and t2 in � Q 2 �. Therefore, mQ 1(Q 1) 
μ−→ m1 and mQ 1 (Q 2) 

μ−→ m2 and m = f ⊕
Q 1 � P (m1) ⊕ f ⊕

Q 2 � P (m2). 
By inductive hypothesis we have Q 1

μ−→ Q ′
1 and m1 = mQ 1 (Q ′

1) and Q 2
μ−→ Q ′

2 and m2 = mQ 2 (Q ′
2). So, we can con-

clude that Q
μ−→ R = Q ′

1 |X Q ′
2 and m = f ⊕

Q 1 � P (mQ 1 (Q ′
1)) ⊕ f ⊕

Q 2 � P (mQ 1 (Q ′
2)). Finally, by using Lemma 6, we can show 

that m = mP (R).
• Suppose that Q = Q 1\X . By definition, mP (Q ) = f ⊕

Q � P (m� Q �) = f ⊕
Q � P ( f ⊕

Q 1 � Q (m� Q 1 �)) and, by Lemma 6,
f ⊕

Q � P ( f ⊕
Q 1 � Q (m� Q 1 �)) = mP (Q 1). We have two cases: either μ /∈ X or μ = τ . Assume that μ /∈ X . Since by hypoth-

esis mP (Q 1) 
μ−→ m and μ /∈ X , also mQ 1 (Q 1) 

μ−→ m1 with m = f ⊕
Q 1 � P (m1). By inductive hypothesis Q 1

μ−→ Q ′
1 and 

m1 = mQ 1 (Q ′
1). Therefore, we can conclude that Q

μ−→ Q ′
1\X = R . Moreover, m = f ⊕

Q 1 � P (mQ 1 (Q ′
1)) and, by Lemma 6, 

m = mP (Q ′
1) = mP (R).

Assume that μ = τ . Since by hypothesis mP (Q 1) 
μ−→ m, we have that mQ 1 (Q 1) 

μ′−−→ m1, with m = f ⊕
Q 1 � P (m1) and 

μ′ = τ or μ′ �= τ . In both cases, by inductive hypothesis Q 1
μ′−−→ Q ′

1 and m1 = mQ 1 (Q ′
1). Moreover, if μ′ = τ , also 

Q τ−→ Q ′
1\X = R . Otherwise, if μ′ �= τ , since μ = τ , the transition t of � Q 1 � such that λ(t) = μ′ , must be visible and it 

becomes hidden in � Q �. This means that μ′ ∈ X and, by definition of the operational semantics for CSP, Q
μ′−−→ Q ′

1\X =
R . In both cases, m = f ⊕

Q 1 � P (mQ 1 (Q ′
1)) = mP (Q ′

1) = mP (R). �
Appendix C. Proof of Theorem 5

Theorem 5 (Undecidability of ACCS bisimilarity). Strong and weak bisimilarity are undecidable for bound ACCS processes.

Proof. We first define, for any two-register machine program P, a bound process γ (P) which “non-deterministically sim-
ulates” the computations of the program (starting with null registers). Some “wrongful” computations are possible in the 
process γ (P), not corresponding to a correct computation of the program P (due to the absence of zero-tests in the con-
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sidered fragment of ACCS). Still, adapting an idea of [19], this can be used to prove undecidability of trace and (strong and 
weak) bisimulation equivalence.

Hereafter, we use process constants which are not in the considered fragment of asynchronous CCS. However, observe that 
they can be represented by means of bound processes. Indeed any constant K defined by K = P [K ] can be represented as 
(νa)ā | !a. P {ā/K }, where a is a fresh name for P [K ] and P {ā/K } denotes the substitution of all the occurrences of K with ā. 
As an example the process K = a.(K |c̄) + b.(K | d̄) stands for (νe)[ē |!e.(a.(ē|c̄) + b.(ē | d̄))].

Observe that if a process P using constant definitions is restriction-free then the associated process using guarded 
replications is a bound process.

The idea is to view registers r1 and r2 as channel names. The presence of value n in a register x is represented by the 
presence of n basic processes x̄ in parallel in the current state, and the decrement and increment operations over x are 
modelled by an input and an output over x, respectively.

For a program P = I1 . . . Is , different channel names a1, . . . , as, as+1 model the program counter. The processes encoding 
each single instruction are in parallel, but the process encoding instruction Ii is enabled by an input on channel ai . More 
precisely, the encoding of Ii , denoted Ii , is defined by the clauses

• if Ii = s(x, j) then Ii = ai . s. (x̄ | ā j | ōi | Ii);
• if Ii = zd(x, j, k) then Ii = ai . (τ . z.(ā j | ōi | Ii) + x. d. (āk | ōi | Ii)).

The presence of τ in the encoding of zd(x, j, k) is needed for technical reasons which will be clarified below. Finally, there 
is a process corresponding to termination, namely, Is+1 = as+1. out.

Any instruction contains an input operation which corresponds to the kind of instruction which has been executed: for 
instructions s(x, j), an input on channel s is performed; for instructions zd(x, j, k), an input on z (zero) or d (decrement) 
is executed, according to the branch followed. Thus, the fact that the instruction i has been executed is signalled with an 
output on channel oi .

We can now define the process associated with a program P as

γ (P) = (νL)Q

where Q = ā0 | I1 | . . . | Is+1 and L = {a0, . . . , as+1, r1, r2}.
Computations of γ (P) are non-deterministic simulations of computations of the two-register machine, which may include 

false trails: when executing the process corresponding to an instruction zd(x, j, k), the branch “z” corresponding to x = 0
can be chosen even though register x is strictly positive.

Following [19] we build a process γ ′(P) such that γ (P) ∼ γ ′(P) if and only if the program P terminates. Intuitively, 
γ ′(P) contains two copies of process Q previously defined. The second copy, denoted Q ′ , has its own program counter 
and it does not include the output message on out at termination. One starts executing Q ′ and the only way to jump to 
the instructions of the first copy Q is to execute a cheating transition, i.e., to follow the “z” branch in the encoding of an 
instruction zd(x, j, k), when x > 0. Observe that the presence of τ in the first “z” branch (the “innocent” one) ensures that 
this branch can be used to strongly simulate the second cheating “z” branch, as needed later in the proof.

Formally, the process γ ′(P) corresponding to a program P is defined as

γ ′(P) = (
νL ∪ L′)(Q | Q ′)

where Q is as before and Q ′ = b̄0 | I ′1 | . . . | I ′s+1 and L′ = {b0, . . . , bs+1, r1, r2}.
The instructions in Q ′ follow those of program P, according to the intuition above. More precisely

• if Ii = s(x, j) then I ′i = bi . s. (x̄ | b̄ j | ōi | I ′i);
• if Ii = zd(x, j, k) then

I ′i = bi .
(
τ .z.

(
b̄ j

∣∣ ōi
∣∣ I ′i

) + x. z.
(
x̄
∣∣ ā j

∣∣ ōi
∣∣ I ′i

) + x.d.
(
b̄k

∣∣ ōi
∣∣ I ′i

));
where, in the second case, the summand x. z. (x̄ | ā j | ōi | I ′i) adds the possibility of choosing explicitly the wrong branch of 
the jump instruction: knowing that x > 0, we deliberately assume it to be zero and choose the “z” branch. In this way, and 
only in this way, we jump to the other copy Q of the process.

Finally, the process corresponding to termination is Is+1 = bs+1. 0. Note that it does not output on channel out.
We now prove the desired result. The idea is to show that for a program P

1. if the computation of P does terminate then γ (P) �≈ γ ′(P) (hence γ (P) and γ ′(P) are neither strong bisimilar);
2. if the computation of P does not terminate then γ (P) ∼ γ ′(P) (hence γ (P) and γ ′(P) are also weak bisimilar).

Having this, since termination for two-register machines is undecidable, it cannot be possible to decide if γ (P) ∼ γ ′(P) or 
if γ (P) ≈ γ ′(P).

We thus finally show that items (1) and (2) above actually hold:
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1. If the machine terminates, then γ (P) may terminate by executing only steps in which the machine is correctly simulated 
(“z” branches are followed only when the register is 0). The process γ ′(P) can only do the same thing, executing the 
subprocess Q ′ and terminating without making an output on out. In particular, it is never able to “jump” to the Q
subprocess, as the only possible way of doing this would be to take the cheating “z” branch of a jump instruction 
(execute z branch when register is not zero).
More formally, let i1, . . . , ik be the sequence of instructions executed by the program in order to terminate. Then 
the process γ (P) is able to consume a corresponding sequence of output messages t̄1 . . . t̄k , with ti ∈ {s, d, z} for i ∈
{1, . . . , k}, namely there is a sequence of processes P0 = γ (P), P1, . . . , Pk such that for any i ∈ {1, . . . , k}

Pi−1 | t̄i ⇓ōi P i

and Pk ⇓out . This sequence cannot be weakly simulated by γ ′(P), since whenever P ′
0 = γ ′(P), P ′

1, . . . , P ′
k such that for 

any i ∈ {1, . . . , k}

P ′
i−1 | t̄i ⇓ōi P ′

i

we necessarily have that P ′
k ⇓out does not hold (since the simulating sequence is “confined” to the Q ′ component). This 

violates the requirements of Definition 7 and thus γ (P) �≈ γ ′(P).
2. If the machine does not terminate, then γ (P) ∼ γ ′(P). In fact the two processes are essentially identical. The only 

difference is that γ ′(P) can deliberately choose the cheating z branch of a jump instruction (execute z branch when 
register is not zero), but this can be strongly simulated in γ (P). After this, the two processes will be executing the 
same “instruction” of the sub-process Q and will never be distinguishable. Hence it is immediate to see that γ (P) ∼
γ ′(P). �
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