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Abstract

In this paper we introduc8FPM, a category osFpdomains which provides very sat-
isfactorydomain-modelsi.e. “partializations”, of separable Stone spac@§tone spacgs
More specifically,SFPM is a subcategory d8FP®P, closed under direct limits as well as
many constructors, such as lifting, sum, product and Rigtkiwerdomain (with the no-
table exception of the function space constructsBPM is “structurally well behaved”, in
the sense that the functtAX, which associates to each objects#fPM the Stone space
of its maximal elements, is compositional with respect ® tbnstructors above, ano
continuous. A correspondence can be established betwese tonstructors ov&FPY
and appropriate constructors on Stone spaces, wherigomain-models of Stone spaces
defined as solutions of a vast class of recursive equatiosStmne, can be obtained sim-
ply by solving the corresponding equationsSREPM. Moreover any continuous function
between two 2-Stone spaces can be extended to a continuattiofubetween any two
SFPM domain-models of the original spaces. The categdiy™ does not include all the
SFPs with a 2-Stone space of maximal elementskprs). We show that theeSFPs can
be characterized precisely as suitable retrac& 6™ objects. Then the results proved for
SFPM easily extends to the wider category havirgFFs as objects.

Using SFPM we can provide a plethora of “partializations” of the spatéritary hy-
persets (the hyperuniversg, [15]). These includes the classical ones proposed in [2, 3]
and [20], which are also shown to hen-isomorphicthus providing a negative answer to a
problem raised in [20].

Keywords. Denotational Semantics, Domain Theory, Stone Spacedjtyota

Introduction

The problem of finding satisfactory “partializations” ofpmlogical spaces, arises in several
areas of Mathematics and Computer Science, when dealifgoainputable approximations
of classical notions. A “partialization”, or equivalentydomain-modelof a topological space
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(X,Q(X)), is a domain whose subspace of maximal points endowed wéthntluced Scott
topology is homeomorphic toX, Q(X)). The points of the original space appear thetosal,

or maximal elements of its domain-model, and the exigatial elements can be seen either
asapproximationof the former, or, equivalently, as the representativesossiblyintensional
propertiesof the original space.

Following the pioneering work of Scott, domain-models dadlreumbers and other met-
ric spaces have been used extensively to study generalimaputability on those structures
(see e.g. [25, 26, 10, 12]). The interest in domain-modelsetiic spaces arises also in the
study of the relations between metric semantics and otosretic semantics of programming
languages [26, 12, 5, 23, 8].

The problem of defining suitable domain-models of a giverotogical space, has an in-
verse. Namely, the problem of characterizing the topollgpaces determined by the max-
imal points of a given class of domains. These spaces, calledmal space@ [18], have
been widely studied in the literature. Kamimura and Tandlif], characterize the maximal
spaces of bounded complete continuous (and algebzaid®. Lawson, in [18], gives an ele-
gant characterization of the maximal spacesvafontinuouscPds which arecoherent at the
top, i.e. for which the Scott and Lawson topologies on maximeirednts coincide. These are
precisely the Polish spaces. Flagg and Kopperman, in [X8}gpthat the maximal spaces of
w-algebraiccPds coherent at the top, are exactly the complete separaiptenagtric spaces (or
equivalently the Polish zero-dimensional spaces). Rinlartin, in [19], shows that this latter
class of spaces is obtained also restricting to the maxip@ales ofv-algebraic Scott domains.

However, even if there has been considerable interest entgears in domain-models of
metric spaces and, conversely, in maximal spaces of dopigilesattention has been given so
far to investigating how tight can be made the structuratespondence between a space and
its “partialization”.

In this paper, following an idea originally suggested by &dosky (see [1, 2]), we address
this latter issue for the categories of separable Stoneesp@eStone spacefor short), i.e.
compact Hausdorff spaces with a countable basis of clopsn aedsFp domains This is a
very significant situation in the semantics of programmargluages. Both categories, in fact,
play prominent roles in metric semantics (see [9]) and otdeoretic semantics (see [21]),
respectively.

The crucial fact which allows to establish a tight corresgemce between 2-Stone spaces
and theirsrrdomain-models is that both havdimitary nature, i.e. they are limits of sequences
of finite structures, namely finite discrete spaces and fjai#ial orders, respectively. At the
level offinite structures, we have the following pleasing situation:

1. the subspace of maximal elements of a partial order isaealestopological space, and
every discrete space can be viewed as such a subspacetéepartial orders;

2. the functorMAX, which associates to each partial order the space of itsmadéle-
ments, is “compositional” with respect to many construsterg. lifting(.)_, separated
sum-+, productx and Plotkin powerdomaifp;

3. any function on maximal elements can be extended to a mpadtinction on the partial
orders.

Thus, one can defineompositionallydomain-models of (at least) finite discrete topological
spaces.

In this paper we show that what happens at finite level can hergéized to thew-limit.
In particular we introduce a suitable (non full) subcatgg&ffPM of SFPeP closed under direct
limits as well as under the above mentioned constructors. fiaximal space of eve§FPM
object is a 2-Stone space and, conversely, every 2-Stowwe spa be viewed as the subspace



of maximal elements of an object 5FPM. This category provides very satisfactory domain-
models of 2-Stone spaces, since the fundtigxX, from SFPM to 2-Stone, is w-continuous
and “compositional” with respect to several domain corcdtrs such as those listed in the
following correspondence table:

SFPY (e [ X | + | B
2-Stone Id X [ Tnco

where, for a 2-Stone spacé Pnco(X) denotes the set of non-empty compact subset’ of
endowed with the Vietoris topology. More precisely we iclnoe a clasg of constructors in
SFPM including the above and closed under composition and miiiatéon. For eaclF € F
we show that the “corresponding” construdioover2-Stone (defined inductively according to
the above table) is modelled By i.e., MAXoF = F o (MAX,...,MAX). Thus we can provide
naturally sFp domain-models of Stone spaces, defined as solutions of aleast of domain
equations ir2-Stone, by simply solving the corresponding equationsSFP™. Furthermore
any continuous function between 2-Stone spaces can bedextdn a continuous function
between any tw6FPM domain-models of the original spaces.

The categonsFPM does not include altsFps, i.e., all thesFPs with a 2-Stone space of
maximal elements. We show that theFPs can be characterized precisely as the retracts of
SFPM objects via M-pairs. The corresponding categes#PM of csFps and M-pairs, which
hasSFPM as a full subcategory, enjoys properties analogous to thased forSFPM. First,
it is closed under direct limits and under the constructothé classF. Moreover, the functor
MAX extends to a well-defined-continuous functor ovesSFPM, compositional with respect
to the constructors it .

Unfortunately, the mentioned results cannot be extendatttode thefunction space con-
structor. neitherSFPM nor 2-Stone are closed under the function space constructor and the
attempt of finding a functor over topological spaces whichdeis the function space construc-
tor over domains appears to be hopeless also in wider césguoir topological spaces and
SFPs.

Using SFPM as an ambient category, we can obtain various partializsiid finitary hy-
persets, i.e., of the closure with respect to the “bisimaifatnetric” of the space of hereditarily
finite hypersets, including those proposed in the liteetay Abramsky [2, 3] and Mislove,
Moss, Oles [20]. The space of finitary hypersets is homeohio the hyperuniversag,
of [14] and it appears quite frequently in topology undefetiént perspectives, e.g. as the
Cantor-1 space, i.e. the union of Cantor’s discontinuurtgiakd by the standard middle third
removal construction plus the centres of all the removeshitals. Abramsky in [2] defines his
domain directly by picking the initial solution of an appréte equation irbFPP. The same
equation is used in [3] to define the dom&iynchronization trees with divergenoser a single
action). Mislove Moss and Oles, on the other hand, introdbe& domain as the initiadon-
tinuous set algebrf20]. These two domains arise as solutionslifferentdomain equations in
SFP®P. The well-known fact that the solutions of such domain eiguathave homeomorphic
maximal spaces comes also as an immediate application oéslés in this paper. Actually,
our results show that there is indeeglathoraof reflexive domain equations whose initial so-
lutions have the hyperuniversg, as maximal space. There being so many different domain
equations yielding domain-models for the finitary hypessbe natural question arises as to
whether such domain-models are isomorphic. A special chfigioquestion was formally
raised in [20] concerning the two domains mentioned abowehiks paper we show that such
domains are not isomorphic and that, more generally, thastsean infinite humber of non-
isomorphic domain-models for the space of finitary hypetgdbwever, it is a matter of further
investigation to find out if such domain-models have sigaificindependent characterizations
as those in [3, 20].



Throughout the paper we use standard notation and basi dhddomain Theory and
Topology (see [22, 11, 4, 24]). In Section 1 we give the basfinitions and we recall some
useful properties of Stone spaces amgdomains. In Section 2 we define the categdFP™,
providing two alternative characterizations for its oltgedn Section 3 we show thaFPM is
closed under direct limits as well as under a significant kawfi constructors. In Section 4
we establish a tight structural relation betwédPM and the category of 2-Stone spaces, by
introducing the functoMAX. In Section 5 we discuss the problem of extending continuous
functions between 2-Stone spaces to 5P domain-models. In Section 6 we study the
retracts ofSFPM objects, providing a characterization for the classs£Ps. In Section 7 we
study domain-models of finitary hypersets, focusing onéhuf{20] and [2, 3]. Final remarks
appear in Section 8.

A preliminary version of this paper was presented at TAPSOFT6]. It grew out from
some initial results presented by the authors at the 1994imgda Rennes of the EEC project
MASK (Mathematical Structures for Concurrency).
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1 Stone spaces andrFpdomains

In this section we recall some notations, definitions andclfasts about Stone spaces awP
domains (see e.g. [22, 11, 4, 24] for more details). Both «iaflobjects ardinitary in the
sense that they can be obtained as limits of sequences @ dibjects in the corresponding
categories.

1.1 Topological spaces and Stone spaces

A topological space will be denoted )X, Q(X)) whereX is the underlying set anf@(X)
the topology, or simply by when the topology is clear from the context. The category of
topological spaces and continuous functions will be deshbteTop.

Let (Xn, fn)n be an inverse sequenceTinp, i.e., a sequencé b X1 &L Xz... of topological
spaces and continuous functions. Timverse) limitof (X, fn)n, denoted by lingXy, fo)n, is the
categorical limit of the sequence. It can be characterizgti@seX = {(Xn)n € MpXn : VN>
0. fn(Xn+1) = X}, considered as a subspace of the produgX,, together with the obvious
projectionsit, : X — Xp.

DEFINITION 1 (2-STONE SPACEY A 2-Stonespace is a compact, Hausdorff space with a
countable basis of clopen sets. We denot@-8yone the full subcategory ofop consisting
of 2-Stone spaces.

The following proposition recalls some alternative chéggezations of 2-Stone spaces which
will be useful in the sequel.

PROPOSITION2 Let(X,Q(X)) be a topological space. The following are equivalent:
1. (X,Q(X)) is a 2-Stone space;
2. (X,Q(X)) =1lim{(Xn, Q(Xn)), fidn (X finite, Q(X,) discrete topology;

3. (X,Q(X)) is compact and ultrametrizable with a distance functionXx X — {0} U
{27":ne N}



1.2 Partial orders, CPO’s and SFP’s

A complete partial ordefor cpofor short) will be denoted byD,C) or simply byD. Given
an element € D we will write 1d for theupper sef{x € D : d C x} and | d for thelower set
{xe D:xLCd}. GiventwocpPds D andE, anembedding-projection paiiep-pai) p: D — E
is any pair of continuous functions: D — E, j : E — D) such thaio j Cidg andjoi =idp.
We denote byCPO®P the category o£Pds and embedding-projection pairs. L@y, pn)n be
a directed sequence ©PO®P, namely a sequendgy Ly D1 By D»... of cpds and ep-pairs
pn = {in, jn). The(direct) limit of (Dn, pn)n, denoted byﬂn(an, Pn)n, is the categorical colimit

of the sequence. It can be characterized as th@ sef (dn)n € MnDp : VN> 0. jn(Xnt+1) = Xn},
endowed with the pointwise order, together with the caralrép-pairsy, : D, — D. Typically,
we will denote byi, andj, the components of each ep-ppirand byy, = (an, Bn) the canonical
ep-pair from eacld,, into the direct limit. Moreover, fon,m e N we will write pp .« for the
ep-PairPn4k—19-. .. Pn: Dn — Dnik With components, .k and jn n1k. Fork=0itis intended
that pn n represent the identity pair.

DEFINITION 3 (SFP DOMAINS A Sequence of Finite PosetsApP domain or simplysFp is
a partial order which is the direct limit of a directed sequenof finitecPds in CPO®P. We
denote bysFP€P the full subcategory ocEPO®P consisting osFPdomains.

LetD be an algebraicPoand letk (D) be the set of its compact elements. Givea K(D),
we write 7(X) for the set ofminimal upper boundsf X. The sett(X) is said to beompletaf
for each upper bounglof X there existx € U(X) such thak C y. Moreover*(X) denotes the
smallest set containing and closed undeti. The following proposition gives a well known
alternative characterization sFpdomains.

PROPOSITION4 Let (D,C) be a partial order. Then D is asrpif and only if (i) D is an
w-algebraiccpoand for every finite XZ K(D), (i) the set of minimal upper boundd(X) is
finite and complete and (iiif* (X) is finite.

If D satisfies only the first two of the three conditions abovedtibed a 23 sFp(or acoherent
w-algebraic domaiin

Given anw-algebraiccPo D and an enumeratiok(D) = {ap,as,ay,...} of its compact
elements, a subbasis for thawson topologpn D is given by the sets

{1a, (1a)¢: ac K(D)},

whereX® denotes the complement &f in D, i.e. D\ X. The Lawson topology is always
metrizable with an ultrametric

d(x,y)=inf{27":Vi<n.g e |xiff a €|y}, forx,yeD.

The following lemma shows that when restricted to the spficgeximal elements of a/3
SFP, the Scott and Lawson topologies coincide, or, accordinederminology of [19], every
2/3sFpis coherent at the topA similar proofis used in [17] (Lemma 3.1) to show that boedd
and directed complete-continuouscPds are coherent at the top. Both results can be seen as a
consequence of Corollary 3.4 in [18], where it is shown tleditezence at the top holds of aty
continuouscpofor which the Lawson topology is compact. Indeed, the expioof provided
here essentially relies on the fact that, by thi& 8Fptheorem (see [22], Theorem8], if (and
only if) D is a 2/3 srrthen the Lawson topology ob is compact. Hereafter the topologies
induced by the the Scott and Lawson topologies over the nebdpace of a domaib will be
denoted bySp and Lp, respectively.



LEMMA 5 (COHERENCE AT THE TOR Let D be a2/3 srpand letMax(D) be the subset of
maximal elements of D. Then the induced topologiesnd Sp overMax(D) coincide.

Proof . The inclusion$p C Lp is trivial. In order to show the converse inclusion we prove
that Max((7a)°) is open in(Max(D),$p). Considerx € Max((1a)¢). SinceD is w-algebraic
there exists a chaifan), of compact elements such that | |,a,. We state thaiax(Ta,) C
Max((1a)¢) for somen. In fact, suppose by contradiction that for everyhere existy/, €
Max(Tan) N Max(Ta). SinceD is a 2/3 sFp, the Lawson topology is compact. Thi)n
admits a converging subsequengs, )k, whose limity must be inTa, sincefa is Lawson
closed. Now,(a,, )k is a chain, hencey, C a,, C yn, for all h > k and thus, sincg a,, is
Lawson closedap, C y for all k. Thus| Jian, = xC y. By maximality ofx we have thak =y,
contradictingy €Ta.

Summing up, for eaclk € Max((1a)°) there exists a compact elememt_ x such that
X € Max(1b) C Max((1a)¢). ThusMax((1a)°) is open in(Max(D),$p). O

The next proposition will be used to prove that, when dealiity a direct limit in SFPP,
certain properties of compact elements can be tested atalémel. In the sequel we will write
A Ciin Bto mean thaA is a finite subset oB.

PROPOSITIONG Let(Dn, pn)n be a directed sequence §FP€P and let D= lim (D, py)n and
let yn = (0, Bn) : Dn — D be the canonical ep-pairs from each, Bito the limit. Then:

2 The categorySFPM

In this section we introduce the categ6iPM, a subcategory &fFP®Pwhich provides domain-
models, exactly, for the class of 2-Stone spaces. Obje@ERY are defined as special direct
limits in SFPeP, but we provide also an “intrinsic” characterizatiors6#™ and a characteriza-
tion in terms of retractions. Besides sheding some lighherstructure o6FPM domains, such
charac'\aerizations will be helpful in the next section toy@reome interesting closure properties
of SFP™.

2.1 Definition of SFPM

A first basic observation which guides us to the definitiontaf tategonSFPM is a direct
consequence of Lemma 5.

PROPOSITION7 (MAXIMAL SPACES OF SFPS) Let(D,C)bea@/3) sFP. Then(Max(D),S$p)
is a Hausdorff space, with a countable basis of clopen sets.

By the above result, if the maximal space ofs#pis not a 2-Stone space the only possible
reason is the lack of compactness. Indeed, nasrils have a compact maximal space. For
instanceN, is clearly ansFpand the space of maximal eleme(dax(N ), Sy, ) is a discrete
infinite space, hence it is not compact.

We will show that a sufficient, although not necessary (sdes&etion 2.5), condition on
D which ensures the compactnesdvidx(D) is the existence of a directed sequence of finite
posets with limitD, whereprojections preserve maximal elemerf®r a sufficient aneseces-
sary condition the reader is referred to Section 6. First we needdllowing definition.



DEFINITION 8 (M-PAIR) Let D and E besrFPs. An ep-pair p= (i,j) : D — E is called a
maximals preserving paior M-pair, if j(Max(E)) C Max(D).

Notice thatifp= (i, j) : D — E is an M-pair then(Max(E)) = Max(D). In fact, by surjec-
tivity of j, for all x e Max(D) there existy € E such thatj(y) = x. Hence ify’ € Max(Ty) we
havej(y') = x. Moreover, it is immediate to verify that M-pairs are closedler composition.
Finally we can give the first definition of the categ&fyPM.

DEFINITION 9 (CATEGORY SFPM) The categonsFPM has as objectsFps that are limits of
directed sequences of finit®ds and M-pairs (inSFPP). Morphisms are M-pairs. Identities
and composition are standard.

2.2 SFPM provides domain-models for2-Stone, precisely!

In this subsection we prove that for ec&ffP" objectD the maximal spacklax(D) is a 2-Stone
space, and vice versa, that each 2-Stone siauas a domain-model iSFPM. The first part
amounts essentially to proving that the maximal space oS&® object is a Lawson closed
subspace of the whole domain. Thus, exploiting the compastof the Lawson topology for
an sFP, we immediately conclude that also the maximal space is e@mpVice versa, given
any 2-Stone spac¥, anSFPM domain-model foiX is constructed by taking the set of closed
balls of X, ordered by reverse inclusion.

A first technical lemma shows that given a directed sequéigepn)n of SFPs and
M-pairs, if eachD, has a compact maximal space then the maximal elements ofirét d
limit are sequences of maximal elements of the simy/s.

LEMMA 10 Let(Dpn, pn)n be a directed sequences#Ps and M-pairs, and let B=1im (D, pn)n.

Suppose that for each n, the maximal spéekx(Dp),Sp,) is compact. Then for any x
(Xn)n € D,

x € Max(D) iff Xn € Max(Dy), forallneN.

Proof . (<) Assumex, € Max(Dy), forallne N. Giveny € D, if xC y, i.e.,xn C y, for all n,
then by maximality ok, we havex, = y for all nand thusx =Y.

(=) Letx= (Xn)n € Max(D) and, for alln, lety, € Max(Dp) such that, C y,. We build,
for all k, a sequence® € MyMax(Dy,) whose componentg®)), € Max(Dy,) are defined as

follows:
ink(Yk) if n<k,
(2 =14 ¥ if n=Kk,
anyze -4 ((Z9)n-1)NMax(Dy)  if n>k.

Notice that, by definition of M-pairj, k(yk) is maximal inDy. Furthermorgn_1(Max(Dn)) =
Max(Dp-1) and thusj,, % ((z%)n_1) N Max(Dy) is not empty.

By hypothesis eacMax(Dy) is compact and thus, by the Tychonoff Theor&mMax(Dy,),
with the product topology, is compact. Therefaf® admits a subsequenzé™ converging to
z€ MpMax(Dp).

Lety, = (an, Bn) be the canonical ep-pair from eabh into the direct limitD. By definition
of Z¥ and taking into account that,(Xn) = Qnyr (X ), it follows that, fork > n, an(x,)
ak(x«) C ak(yk) © ZX¥. In particular, since for eadhthe single componeriz*)), converges
to z, w.r.t. the Lawson metric andl (an(Xn))n is Lawson closed(dn(X,))n C zy and thus
On(Xn) C z Thereforex C zand thus, by maximality af, x = z. Recalling thatz, € Max(Dp)
for eachn € N, we get the thesis. O



Observe that the above lemma applies, in particular, WBenpn)n is a directed sequence of
finite posets, since in this case eddhx(Dy) is obviously compact.

One can easily check that projections are Lawson contindodact, if p=(i,j) :D — E
is an ep-pair, then, for arg< D, Ti(d) = j~1(1d) and thug1i(d))® = j~1((1d)®). This simple
remark is useful in proving the following lemma.

LEMMA 11 Let (Dn, pn)n be a directed sequence of finite posets and M-pairs, and let D
lim (Dp, pn)n in SFP®P. ThenMax(D) is Lawson closed in D, hence compact.

Proof . Let (x¢ )k be a sequence iMax(D) converging toc € D. Since projections are Lawson
continuous, for each, the sequencé3n(x) )k converges t@n(x). Therefore, by finiteness of
Dy, there exist&g such thas (%) = Bn(X) for all k > kg and, by Lemma 1QBn(X) € Max(Dp).
HencePn(x) € Max(Dp) for all n, and thus, again by Lemma 10¢ Max(D). O

By exploiting the above lemma we can finally prove the maimtbm of this section.

THEOREM 12 For anySFPM object D the spacéMax(D), $p) is a 2-Stone space. Vice versa
for any 2-Stone space X there existsS&#P™ object D such that X~ (Max(D), $p).

Proof . For the first part, sinc® is ansFp, by Proposition 7(Max(D), $p) is a Hausdorff
space, with a countable basis of clopen sets. Moreover, bynha 11, the Lawson topology on
Max(D) is compact. Recalling that, by Lemma 5, the Scott and the bawepologies coincide
on the maximal space of &2 SFPR, we conclude thatMax(D), Sp) is compact and therefore a
2-Stone space.

Vice versa, leX be a 2-Stone space. We know by Proposition 2 ¥h@tmetrizable with an
ultrametricd : X x X — {0}U{2": ne N}. Following a classical idea (see, e.g., [26, 7, 5, 12])
one can consider the ideal completion of the partial ordetasfed balls of a metrization o,
ordered by reverse inclusion, namely

DX =1dI({B(x,2 ") :x€ X A n€N},D),

whereB(x,r) denotes the closed ball with centrand radiug, i.e.,{y € X :d(x,y) <r}. Then

DX is anw-algebraiccPo where incomparable elements have no upper boundspDreis a
finitary (finitely branching) tree. Hend®* is in SFPM, since it can be obtained as the limit of a
directed sequend®, pn)n, WhereDj, is the subtree db including elements of height less than
nandip : D, — Dpy1 is the inclusion. Maximal elements B¥ can be identified with maximal
chains in({B(x,2™") : x€ X A ne N}, D) and the functiorf : (Max(D*),Spx) — (X,Q(X))
mapping a chairiBy),, to the sole point if), By is a homeomorphism. O

Observe that the domain-mod2f defined in the proof above contains only elements cor-

responding to a system of disjoint clopen sets. Howevernbisa “minimal” domain-model.

In fact, a “minimal” domain-model does not exist, in genesthce we can always remove in
the tree “branches” of level less tharfor a fixedn.

2.3 Anintrinsic characterization of SFPM

We give now an “intrinsic” characterization 6FPM objects in terms of an order-theoretic
property, that amounts, basically, to a “compactness”irequent. This will be essential later
in proving the closure o8FPM with respect to direct limits.

DEFINITION 13 (M-CcONDITION) We say that arsFp D satisfies theM-condition if for all
u Ctin K(D) there exists ¥ tin K(D) such that:

1. uCy,



2. Max(U*(v)) Cs Max(D),
whereCs is the Smyth preorder (i.e.,Ls Vv iff Yy € v. Ix € u. X C y).

In order to show thasFPM objects are exactly thoserPs which satisfy the M-condition
we proceed as follows. First we prove that the M-conditioprisserved under direct limits.
Then, noticing that every finiteposatisfies the M-condition, we can conclude that egeh™
object satisfies the M-condition. For the converse, givearmsatisfying the M-condition, we
explicitly show how it can be obtained as direct limit of aedited sequence of finitepds and
M-pairs.

LEMMA 14 Let D = lim(Dy, pn)n, with (Dn, pn)n directed sequence &FPM objects and
M-pairs. If each [} satisfies the M-condition then also D satisfies the M-cooliti

Proof . Let u Ciin K(D). By Proposition 6.(1), there existe N andup Ciin K(Dp) such
thatu = an(un). Since eactb, satisfies the M-condition, there exisis Cin K(Dp) such that
un C vy andMax(U*(vn)) Es Max(Dp).

We show that/ = an(vp) is the finite set of compact elements required by the M-caodit
In fact, clearly,u C v. Moreover,Max(U*(v)) Cs Max(D). In fact, letx € Max(D). By
Theorem 12, eacMax(Dp) is compact, and thus, by Lemma 18,(x) € Max(Dy). Hence,
by construction, there exist, € Max(U*(vn)) such thata, C Bn(x). By Proposition 6.(2),
On(an) € Max(U*(0n(vn))) = Max(U*(v)) andan(an) C adn(Bn(X)) C X. O

THEOREM 15 (INTRINSIC CHARACTERIZATION OFSFPM 0BJECTY Let D be ansrp. Then
D is anSFPM object iff D satisfies the M-condition.

Proof . (=) Let D be anSFPM object; henc® is the limit of a directed sequengBn, pn)n Of
finite cPOs and M-pairs. Since eadby, is finite, it is trivially anSFPM object and it satisfies
the M-condition. Thus, by Lemma 14, alBosatisfies the M-condition.

(<) Let D be ansFprthat satisfies the M-condition and lag (= L),a;,ap,... be an enu-
meration of its compact elements. Define inductively a seqeigDy,),, of finite subspaces d
as follows:

Do={a} and Dn.1=U(vy), forallneN,

wherev, Ctin K(D) is such thaDy U {an+1} C vh andMax(U*(vn)) Es Max(D) (such avy
exists sinced satisfies M-condition). For afi, let p, = (in, jn) : Dn — Dn+1, defined by

in(dn) = dn, fOI' a.” dn S Dn,
jn(dny1) =L{X € Dn : XE dny1}, foralldn;1 € Dny1.

One can easily check that, is a well defined ep-pair. In particular, from the fact tha& Dy,
using the definition oftl, it follows that fordn;1 € Dnt1, the set{x € Dy : X C dnt1} IS non-
empty and directed.

Givendn1 € Max(Dpy1) we show that there is a uniqdg € Max(Dy) such thatl, C dp. 1.
First we prove the existence of sudh. Let x € Max(D) N (Tpdns1). SinceMax(Dy) Cs
Max(D), there existd, € Dy, such thatd, C x. Recalling thatD,, C Dn11, we deduce that
U({dn,dn+1}) is included inDpy1, and it is non-empty, otherwigg d,) N (7dn11) should be
empty. Sinceln, 1 is maximal inDy 1, it follows thatdn;1 € U({dn,dn+1}), henced, C dn1.
As for uniqueness, ifl, € Max(Dp), df, C dn+1, then U({dn,d}}) C Dy is non-empty. But,
sinced, andd], are maximal, they must coincide. Therefgpédn;1) = | |{X € Dp : XC dn+1}
is such uniquel, and thuspy, is indeed an M-pair.

Finally for eachn we define an ep-paio, 3n) : Dn — D:



an(dn) == dn, fOI’ a” dn S Dn,
Bn(d) = U{xe€Dn:xC d}, foralld € D.

One can easily check théD, (an,Bn)n) is a cocone for the directed sequeribg, pn)n, and it
is initial since| |, 0noPBn(d) = |y {X € Dn: xC d} = d. HenceD ~ lim(Dy, pn)n. Since all

Dy, are finitecPds and allp, are M-pairs we conclude thatis anSFPM object. O

2.4 A characterization of SFPM based on retractions

Finally, we provide a characterization 8FP™ objects in terms of retractions. More precisely
we characterize such domains as thesedomains having a finitely branching finitary tree as
continuous retract via a special kind of M-pair. Intuitiyedince arSFPM object is the limit of

a directed sequence where projections preserve maxinadljgpints, a maximal point added
in certain approximation must dominate a single maximahpoi the previous approximation.
Hence the set of maximal elements of every approximatiodoeed with the induced order,
forms a finitely branching finitary tree. The retraction i each poink of the original
domain to the greatest element dominated bythe tree. This result will be used in Section 5
to prove that any continuous function between 2-Stone spadends to a continuous function
between angFPM domain-models of such spaces.

We first prove that for all and only th& PM objects it is possible to single out a special
subset of the compact elements, calleskaleton which is a finitely branching finitary tree.
Then (the completion of) each skeleton is shown to be a tetifabe original domain via an
M-pair which restricts to a homeomorphism between the makapaces. Conversely, angpP
which can be projected over (the completion of) a finitelyniatang finitary tree via a retraction
of this kind is shown to have a skeleton, and thus to bgf# object.

Before introducing the notion of skeleton, we fix the notatid\ tree is a posefl where
compatible elements are totally ordered, i.e., foram@y € T, if aanda’ are compatible, written
afa,thenaC & ora C a. AtreeT is calledfinitary if foranya e T, | ais finite, andfinitely
branchingfforanyac T, the seSucc(a) ={beT:aCb A ¥x.(aCXxCh = x=aVx=Db)}
is finite.

DEFINITION 16 (SKELETON) A skeletonof ansrFpdomain D is a subset of its compact ele-
mentsSK(D) C K(D) such that

1. SK(D), with the induced order, is a finitely branching finitary tree
2. forany ac K(D). 3d € SK(D). aC d.

For eachd € D we defineK(d) = K(D) N (] d) andSK(d) = SK(D) N (| d). Observe that
SK(d) C K(d) andSK(d) is a totally ordered subset 6K (D). In fact, ifd € K(D), by definition

of skeletond C d’ for somed’ € SK(D), and thussK(d) is included inSK(d’), which is totally
ordered sinc&K(D) is a tree. Ifd is not compact, just use the fact that, by algebraicity of
D, d = | |K(d). The next proposition shows that a skeleton contains enmfghmation to
“reconstruct” the maximal elements of the original space.

PROPOSITION17 Let D be ansrpand letSK(D) be a skeleton of D. For any& Max(D),
x=|]SK(x). Furthermore the spacgMax(D), Sp) is compact.

Proof . Let x € Max(D). By w-algebraicity ofD, there exists a chaifa,)n in K(D) such
thatd = | |,,an and by definition of skeleton, for any there isb, € SK(D) such thag, C by,.
SinceSK(D) is a finitely branching finitary tree, the sequeribg), surely includes a chain
(bn, k. Taking its least upper bound, we obtairiC | | bn,, and thus, by maximality ok,
x = Lbn, = LISK(x).
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To prove the compactness of the spébkax(D),Sp), observe that, by the previous point,
{Max(7a) :a€ SK(D)} is a basis fo{Max(D),Sp), and use the fact th&K(D) is a finitely
branching finitary tree. i

The next lemma shows that tsePs which admit a skeleton are exactly tiEPM objects.

LEMMA 18 Let D be ansrp. Then D is arSFPM object iff there exists a skeleton of D.

Proof . (=) Let D be anSFPM object and letag (=1 ),a3,ay,... be an enumeration of its
compact elements. Then, as shown in the proof of Theorer® 15)im (D, pn)n, where the

Dy’s are defined inductively by

Do = {ao}
Dni1= U*(Vn)

wherev, Cin K(D) is such thaDpU {an1} C vh andMax(U* (vy)) Es Max(D). We show that
SK(D) = U, Max(Dy) is a skeleton obD.

1. SK(D) is a finitely branching finitary tree
First observe the8K(D) is atree. Les, & € SK(D) and letaf} &@. Suppos@ € Max(Dp)
anda € Max(Dy). Without loss of generality we can assumg n’ and thusa,a € Dyy.
Sincea anda’ have a common upper bourid, is U-closed and’ is maximal inD,y it
is easy to conclude thatC a'.

FurthermoreSK(D) is finitary. Givena € Max(Dp), just notice that| a in SK(D) is a
subset of| ain Dy, which is clearly finite.

Finally, to see tha®K(D) is finitely branching, take € K(D) and considet = {ne N :
Jb € Max(Dp). arC b}. If | =0thenSucc(a) = 0. Otherwise, takingng = minl, we have
thatSucc(a) = (Ta) N Max(Dn,), which is clearly finite.

2. Yae K(D).3d € SK(D).aC d.
Letae K(D). Then there exists € N such that € D,. Consider any maximal element
x € Max(Ta). Since, by constructioklax(Dy) Cs Max(D), there existsl € Max(Dp) C
SK(D) such thad C x. SinceDy, is U-closed, it must include an upper boundeoénd
d. By maximality ofd in D, we conclude that such upper bound mustibee.,a C d.

(<) Let SK(D) be a skeleton oD. SinceSK(D) is a finitely branching finitary tree,
SK(D) = UxMK, where, for anyk, MX is the set of maximal elements of the truncation of
SK(D) at levelk (observe that an elementilK can have heighi < kin the tree). Notice that
for any compact elemente K(D) we can findkg € N such that if we define=7dN M ! then

z ES MaX(Td)

In fact, for allx € Max(7d), by Proposition 17x = | |SK(x), and thus, sincd is compact, there
existsd* € SK(D) such thad C d* C x. SinceMax(1d) = J{Max(1d*) : x € Max(7d)} and
Max(7d) is compact (it is a closed subsetdfx(D), which is compact by Proposition 17) we
conclude the existence of finite subsdi, . ..,d,} of the elements*’s such that

Max(1d) = U{Max(Td) :i € {1,...,n}}.

Therefore we can defirg as maxk: di e MK Ai e {1,...,n}}.
We are now able to show thatis anSFPM by proving that it satisfies the M-condition.
Givenu Ctin K(D), by the property just proved and the finitenes€5{u), there existk € N

such that, iz=11*(u)nMX then
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zCs Max(TU*(u)).

Then it easy to see that the seequired by the M-condition can be definedras MK U 77* (u).
In fact it can be checked that* (v) = v. ThusMax(2*(v)) = MK and clearlyMK Cs Max(D).
O
Notice that the tree of balls of a 2-Stone space, as consttuctthe proof of Theorem 12,
is a domain-model ok which can be taken as the skeleton of itself.

Let D be anSFPM object and le6K(D) be any of its skeletons. We wrifK(D) to denote
the completion 06K (D), i.e.,SK(D) = IdI(SK(D)). Notice that sinc&K(D) is a (countable)
tree an ideak in SK(D) is a (@-)chain. Therefore the ideal completion can be thought of
as obtained by adding a limit point to each maximal (infinlbednch. Our aim is now to
prove that it is possible to project continuouBlyntoSK (D) via a function which “preserves”
maximality of points and which restricts to an homeomorphitween the maximal spaces.
We first introduce the corresponding class of M-pairs.

DEFINITION 19 (IM-PAIR) An M-pair p= (i, j) : D — E is called anIM-pair if i and j re-
stricts to homeomorphisms between the maximal spaces ofl B an

LEMMA 20 LetD be arSFPM object and leBK(D) be a skeleton of D. Defing j D — SK(D)
and ip : SK(D) — D as follows: for de D and xe SK(D)

ip(d) = SK(d) and ib(X) =LIpx.
Then the pairip, jp) : SK(D) — D is an IM-pair.

Proof . The function_siD and jp are obviously monotone. Moreovigy is continuous since,
given a chain(x,)n in SK(D), it is easily seen that

ip(UnXn) = (Un*n) = Un(LUXn)-

Also jp is continuous. In fact, given a chafdy), in D, we have

jo(Undn) = SK(Lndn) = Un SK(dh).
To justify the last equality observe thatafe SK(| |,dn), hamelya € SK(D) anda C | |, dn,
then, by compactness af there exist such that C dy; thusa € SK(d,). This proves that
SK(Undn) € U,SK(dn). The converse inclusion is trivial.

To show that(ip, jp) is an M-pair we must prove that (jp oip = idsg p), (ii) ip o jp Cidp
and (iii) jp(Max(D)) C Max(SK(D)). (i) Let x € SK(D). Clearlyx C jp(ip(x)) = SK(LJX).
Vice versa, ifa € SK(|_|x), then, sinca is compact, there exists € x such thas C a'. Sincex
is downward-closed we obtaie x, and thus the converse inclusion. (ii) Lt D. Recalling
thatd =| |K(d) andSK(D) C K(D) we immediately havey (jp(d)) = ISK(d) C |K(d) =d.
Point (iii) trivially follows from the fact that the ideal®iSK(D) are totally ordered subsets of
SK(D).

To conclude thatip, jp) is an IM-pair, sincejp oip = idW(D), the only thing to prove is
thatip max(D) © ID|Max(D) = Idmax(D)- But this immediately follows from Proposition 17. O

The previous lemma can be equivalently formulated by sagfiagif D is anSFPM object
then (the completion of) any of its skeletoBK (D) is a continuous retract dd via an IM-
pair. Vice versa, ifD is ansFpand there exists an IM-pap = (i, j) : T — D, whereT is
(the completion of) a finitely branching finitary tree, thénsi easy to see thatK(T)) is a
skeleton forD. Hence, by Lemma 18) is anSFPM object. This gives the announced new
characterization oc§FPM objects in term of retractions.

THEOREM21 Let D be ansrpr. D is anSFPM object iff it has (the completion of) a finitely
branching finitary tree as continuous retract, via an IM-pai

12



Figure 1: AnsFp Z which is not inSFPM, but with a 2-Stone space of maximal elements.

2.5 SFPM does not include all SFP’s with a compact maximal space

As we mentioned earlier, the categdPM does not contain alsFPs that model 2-Stone
spaces. Consider for instance the funetdrover SFPEP defined as follows:

D+*E=({(d,0):deD}U{(e1):ec E}U{L,*},C*),

where for eaclx,y # %, x C* yif and only if X Cpyg yand(Lp,0) °* x, (Lg,1) C* .

Given twostrict functionsf : D — D', g: E — E’, f +* g coincides withf + g on all the
elements different fromx and it maps«p,+g t0 *p «gz. The action of+* over M-pairs is
defined by(i, j) +* (h,k) = (i+*h, j +* k).

The initial solutionZ of the domain equatioX ~ X +* X (represented in Fig. 1) has a
2-Stone maximal space. In fact, since each compact elemehithas a finite number of suc-
cessors, it is easy to see that for any sequéxgg in Max(Z) there exists a chaifen)n in 2
such that for any, Ta, contains infinitely many elements of the sequefgen and the least
upper bound = | |,an is @ maximal element i©. Thus there exists a subsequencéx@fn
converging tax. However, by resorting to Theorem 21 one can prove fhat not in SFPM.

In fact, assume, by contradiction, that there exists an #8#-p= (i,j) : T — D, whereT is

(the completion of) a finitely branching finitary tree, anéided =ioj: D — D. Thenf is

the identity over the maximal space and in particular oversit of finite maximal elements of
D, i.e.,Max(K(D)). Hence, sincd (D) ~ T is a tree, for anyx € Max(K(D)) one of the two
immediate predecessdgsandry of x (see Fig. 1) must be mapped to a strictly smaller element,
i.e. f(lx) T Ixor f(rx) Crx. Itis not difficult to see that this fact implies the presenta
chain (dn)n in D such thatnd, € Max(D), but, such that for each, f(d,) = L and thus by
continuity f (Undy) = L. But this is absurd sincéshould be the identity on the maximal space.

In Section 6 we will come back to this issue, showing that @igeecharacterization of the
SFPs having a 2-Stone maximal space can be given in term ofatstafSFPM objects.

3 Closure properties ofSFPM

In this section we show that the categ&fyPM is closed under direct limits as well as under
a significant family of constructors, obtained from projecs, constants, lifting, product, (co-
alesced) sum, Plotkin powerdomain by composition and maliation. The function space
constructor is instead very problematic. See Section 8 bred discussion of this issue.

3.1 Closure under direct limits

The closure of categoryFPM under direct limits is easily proved by resorting to theiimgic
characterization oc§FPM objects given in Theorem 15.
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THEOREM 22 The categonsFPM is closed under direct limits.

Proof . Let (Dp, pn)n be a directed sequence &FPM, By Theorem 15, each, satis-
fies the M-condition and thus, by Lemma 14, the direct liBit lim(Dy, pn)n satisfies the

M-condition. Thereford is anSFPV object. Furthermore, by Lemma 10, the canonical ep-
pairsy, : Dn — D are M-pairs. Hence, althou@FPV is not a full subcategory §FP®P, the
direct limit of (D, pn)n computed irSFPeP coincides with the direct limit isFPM. O

Since the direct limit of a directed sequen @, pn)n computedSFPEP or in SFPM is the
same, in the following we will not specify in which categorgare taking the limit.

3.2 Closure under constructors

Now we prove the closure of categds¥PM under some significant constructors. More pre-
cisely we first introduce a clags of constructors ove$FP®P, including constants, identities,
lifting, product, (coalesced) sum, Plotkin powerdomaid alosed under composition and min-
imalization. Then we show that each functorgnrestricts (under a mild assumption on the
coalesced sum) to a well-defined functor o§EPM.

DEFINITION 23 For each n, the clas¥ (" of n-ary constructors is defined by the following
abstract grammar

FO o= ¢ n® | (FO), | EOxF® | FO) L F®
FOGFEM™ | g (FM) | pF+D)

where D is anySFPM object. We denote b§ the set of constructors of any arity, i.ef, =

Un F™.
EachF(™ ¢ #( isinterpreted as a functé™ : (SFP®P)" — SFPePinductively defined as fol-

lows. For anySFPM objectD, Cé,n) denotes the corresponding constant functor. The téf?’}]

denotes the projection on tkth componentF ), the functonx. (F(M (%)), andF," opF,"

the functonx. F\" (%) op F{" (%) for op € {x,+,@}.

The functor®p (F(M) is defined as\X. B (F((X)) where®p denotes the Plotkin pow-
erdomain. We shall use the characterization of the Plotkimggdomain®y(D) as the set
{X C D: X non-empty, convex and Lawson clo$eéndowed with the Egli-Milner ordering.
Let Con(X) denote the least convex set that cont&{remd letCl(-) denote the closure operator
in Lawson topology. Iff : D — E is a continuous function theBy () : Pp(D) — Ppi(E) is de-
fined asPp(f)(X) = Con(CI(f(X))). In particular, iff is a projection therPp (f)(X) = f(X).
In fact any projection is Lawson continuous and thgX) is closed. Moreovef (X) is convex
if Xis.

Finally, the functo F("1 is defined as follows. For anytuple ofsFPs D, pF(™1 (D)
is the initial solution of the equation

Y =F™v,B)
which is computed as the direct limit
Iim(Dk, rk>k
whereD = 1is the one-poinsFp(initial object inSFP®P) andDy, 1 = F ("1 (Dy, B), while the
ep-pairrg =! : Do — Dy is the unique ep-pair froo = 1, andri;1 = F™3(ry,id5). More-
over, for any tuple of ep-paig: D — E, its imageu F™ D (g) : uF( (D) — pF(E) is

the arrow induced by the universal property of the directtltonstruction (see Fig. 2). Itis a
standard result that this functor is well defineiFP®P [4].
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Figure 2: The minimalization constructor.

REMARK 24 Observe thaf is closed under composition, in the sense that adding a ceimpo
tion ruleF™ = FR(F™ | k(”)) would not enlarge the family of functors.

To prove that the constructorsjh are functorial ove§FPM we first show that they preserve
the property of being an M-pair. Then, using the characation of theSFPM objects as direct
limits and the closure &FP™ under direct limits, we will be able to conclude the desiresdit.
We will see that when considering the coalesced sume have to restrict to the subcategory
of SFPM consisting of non-triviakFPs (i.e., the category without initial objed). Hence, from
now on when considering a functére F’ in F it will be understood thaF andF’ do not
includel in their images and, by abuse of notation, we will continudéoote such restricted
class of constructors by .

To deal with the case of the Plotkin powerdomain we need anpiredry technical lemma
which provides a characterization fax(%p| (D)) for anSFPM objectD.

LEMMA 25 Let D be arSFPM object. Then
Max(%pi(D)) = {X € Bpi(D) : X € Max(D)}.

Proof . Let X € (D). If X C Max(D) then obviouslyX is maximal. For the converse, let
us suppose that iX there is a non-maximal poixt SinceX is Lawson compact, it is easy to
see that alsd X is Lawson compact. Therefoldax(1X) = (1X) NMax(D) is Lawson closed
in D (sinceMax(D) is Lawson closed by Lemma 11). Henkkx(1X) is in (D). Since
X EemMax(1X), X # Max(1X), we haveX ¢ Max(Pp|(D)). O

Observe that, since each subsetMdx(D) is clearly convex, the above result implies
Max(Pp|(D)) = {X C Max(D) : 0 # X Lawson closegl.

We are now ready to prove that the constructorg ipreserve M-pairs.
LEMMA 26 Forany Fe (" if D andE are n-tuples o8FPM objects andg: D — E is an
n-tuple of M-pairs, then Fp) : F(D) — F(E) is an M-pair.

Proof . Let D andE ben-tuples ofSFPM objects and lep : D — E be ann-tuple of M-pairs.
The proof thaf () is an M-pair proceeds by induction on the structuré& of
The cases in whick is a constant functor or a projection are trivial. For theesasf(F ), ,
FxF',F+F', F@F (with F, F' not includingl in their images) and%(F), we argue by
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Figure 3: Coalesced sum is not functorial 0§&PM (dotted arrows represent projections).

using the induction hypothesis and noticing that foS&IPM objectsE andE’

Max(E_ ) = Max(E),

Max(E x E’) = Max(E) x Max(E"),

Max(E + E’) = Max(E) + Max(E'),

Max(E & E') = Max(E) + Max(E') (if |E|,|E'| > 1),
Max(Ppi(E)) = {X € Ppoi(E) : X C Max(E)} [by Lemma 25]

Finally, let us consider the case jpF. By induction hypothesis : (SFPeP)"1 . SFpPeP
preserves M-pairs. Referring to Fig. 2, |eF(p) = (i, j’) and, for anyk, yi = (o, Bi) and
Pk = (ik, Jk). For anyk, sincep F(p) o Yk = Vi o P, if x € Max(uF(E)) then

Br(i' () = jk(Bk())

Now, observe that evergy is an M-pair by induction hypothesis, apfis an M-pair since
SFPM is closed under direct limits (Theorem 22). Herfigj’(x)) = jk(Bi(x)) is a maxi-
mal elemgnt in the corresponding approximatioru@f(ﬁ) and thus, by Lemma 1G/(x) €
Max(MF(D)). HenceuF(p) is an M-pair. O
We remark that given two M-pains: D — E andp’ : D’ — E/, if eitherD or D’ is the initial
object1 in SFP¢P thenp @ p’ can fail to be an M-pair. Consider, for instance, the sitrati
in Fig. 3, where dotted arrows represent the projection amapts of the corresponding ep-

pairs: the coalesced sum of the two M-pairs produce an epypéch maps a maximal point in
D’ @ E’ to a non maximal point (the bottom) D E.

To conclude that the constructors §n are functorial oveSFPM it remains only to show
that they magsFPM objects intaSFPM objects. This will follow easily from the general result
below.

LEMMA 27 Let F: (SFP®P)" — SFP®P be a locally continuous functor which preserves
M-pairs and finiteness of domains (i.e.() is finite for any n-tupleD of finite SFPs). If
D is an n-tuple o6FPM objects, then also (D) is anSFPM object.

Proof . LetD =D, ... D be ann-tuple of SFP™ objects. By definition eacB() is the
limit of a directed sequence of finiePds and M-pairs, i.eD() = Iim(Df('), D|(<'>)k- Therefore

..., DMy =
, . 1 L
= I|mHk1 .. .|Imﬂkn<F(D;<<1), .. 7Dl((:))7|:(pl((1)a ERRE) pl((:))>

lim(F(@DY,....D"),F(pY,....pM)).

16



Hence the domaiff (DY, ..., D(") is obtained as limit of a directed sequence of firiteds
F(D,...,D{") and M-pairsF (p",..., p{"). Therefore it is arsFPM object. O

LEMMA 28 Let F e 7™ and letD be any n-tuple o8FPM objects. Then FD) is an SFPM
object.

Proof . The proof can be carried out by induction on the structuré .ofVhenF is a con-
stant or a projection the thesis is trivial. For the the cdées, F xF', F+F’, F&F and
P (F) observe that the basic constructors , x, +, @ and®p; are locally continuous, they
preserve M-pairs (by Lemma 26) and finiteness of domains.céléime induction hypothesis
and Lemma 27 allow us to conclude. Finally, for the casgBfust use the closure &PV
with respect to direct limits (Theorem 22). ]

Now the main result of this section can be obtained as an inateedonsequence of Lem-
mata 26 and 28.

THEOREM 29 (CONSTRUCTORS INSFPM) The constructors i (where the applications of
coalesced sum B F’ are restricted to functors F and’Fhot includingl in their images) are
functorial overSFPM.

4 Relating SFPM to 2-Stone

We have already shown that the categbFPM provides domain-models exactly for 2-Stone
spaces. In this section we establish a more structuraioelaetween the categori€sPM
and2-Stone. First of all we show that it is possible to define @arcontinuous functoMAX :
SFPM — 2-Stone, which associates to eaSRPM object its subspace of maximal elements with
the induced (Scott/Lawson) topology. Then we prove thafuhetorMAX is “compositional”
with respect to the constructors in the clggsntroduced in the previous section, in the sense
that, for anyF € 7,

MAX(F(Dy,...,Dp)) ~ F(MAX(D1),...,MAX(Dp)),

whereF is the functor oveR-Stone “corresponding” ta-.

The results in this section illustrate the fact that the @mtion betweeSFPM and2-Stone
is indeed tight, and henc&PM constitutes a well-behaved category of domain-models for
2-Stone spaces. For example, an interesting consequetiis obrrespondence is the fact that
a domain-model for the solution of an equatior2iStone can be obtained simply by solving
the “corresponding” equation i&FPM, or, equivalently, irSFPP. This will be exploited in
Section 7 to study various partializations of finitary hygess.

4.1 The functor MAX

DEFINITION 30 The (contravariant) functoMAX : SFPM — 2-Stone is defined as follows:
for eachSFPM object D,MAX(D) = (Max(D),Sp) and for each M-pair p= (i, j) : D — E,
MAX(P) = jjmax(E) : MAX(E) — MAX(D).

It is straightforward to check thalAX is well-defined. Moreover, as shown below, itus
continuous, in the sense that it maps the direct limit of aade&d sequence to the inverse limit
of the image of the sequence.

THEOREM 31 (CONTINUITY OF MAX) Let D = lim (D, pn)n, Where(Dn, pn)n is a directed
sequence iSFPM. ThenMAX(D) ~ lim (MAX(Dy), MAX(pn))n.
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Proof . Let us first note that lifMAX(Dpn), MAX(pn))n and MAX(D) contain exactly the
same points. In fact, gty = (in, jn) for allne N. Then

X= (Xn)n € MAX(D)
< Vn. (xqp € MAX(Dn) A X0 = jn(Xn+1)) [by Lemma 10]
< VN, (%0 € MAX(Dn) A Xn = MAX(pn) (Xnt+1))
& XE€ IiLn<MAX(Dn), MAX(pn))n.

We denote byt : lim(MAX(Dp), MAX(pn))n — MAX(D;) the projection over theth compo-

nent. A basis for the topology dIAX(D;) is given by{Max(1a&) : & € K(Dj)}, and thus a
subbasis for liffMAX(Dn), MAX(pn))n is given by the setst *(Max(Ta)) with a € K(Dj)
andi € N. Now we have:
mH(Max(1a)) =
= {(¥Yn)n € im (MAX(Dn), MAX(pn))n : & E ¥i}
{y € MAX(D) : ai(ai) £y}
Max(Tai(a)).

By the characterization of compact elements of the dirett liiven in Proposition 6, we imme-
diately conclude that the two topologies coincide. Held@eX (D) and lim{(MAX(Dy,), MAX(pn))n

are the same space. O

The “correspondence” between constructorSF®™ and in2-Stone is formalized as fol-
lows:

DEFINITION 32 We say that a functor E(SFPM)" — SFPM modelsa functor G: (2-Stone)" —
2-Stone, written F o« G, if there exists a natural isomorphism: Go (MAX;,...,MAX) —
MAXoF.

Notice that wherF o G, the functor= can be viewed, so to speak, as a possible “higher order”
domain-model foG.

The next definition provides an inductive translation ofstouctors- in F to constructors
F over2-Stone. In the rest of this section we will show that eaehin # models the “cor-
responding” constructdf over2-Stone. Roughly speaking, the translation leaves the “struc-
tural” constructors unchanged and mdps , x, + (or @) and Py in SFPM into the “corre-
sponding” constructoril (identity), x (product),w (disjoint union) and?,¢, (hyperspace of
non-empty compact subsets) 2rStone. Recall that the spac&,co(X) is defined as the set
{K € X : K non-empty and compacendowed with the Vietoris topology, i.e. the topology
having as subbasis the sdtg = {K € Pco(X) : K C A} and Za = {K € Preo(X) : KNA £ 0}
for Ac Q(X). If Bis a basis foX then a subbasis for the Vietoris topology Bo(X) is given
by the setsla,u..ua, andZp, for Ay, ..., An, A€ B.

DEFINITION 33 Forany constructor Fe 7 (" the corresponding construct®r: (2-Stone)” —
2-Stone is inductively defined as follows:

n™=n" R S o
(F), =F0 Ppi (FM) = Feo(F M)
AR =R xR WD = pF()
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where the constructors on the right-hand side are integutah the natural way as functors
over2-Stone.

To prove that for eacl € ¥, the constructoF over SFPM models the constructde
over2-Stone, we first observe that the functttAX “commutes” for such constructors in the
sense that the 2-Stone spat&aX (F (D)) andF (MAX(D)) are homeomorphic; actually they
are the same space if we adopt the usual concrete constsiétio(-) |, x, +, @, Pp; and
the direct/inverse limit. Then we will conclude simply obgag that the identity is a natural
isomorphism betweeh o (MAX, ..., MAX) andMAXoF.

We start with a preliminary lemma which shows thé&AX is “compositional” with respect
to the basic constructofs) | , x, +, ® and®p,.

LEMMA 34 LetD, D; and D, beSFPM objects. Then
1. MAX(D, ) = MAX(D);

2. MAX(D1 x D2) = MAX(D1) x MAX(D5);

3. MAX(D; + Dz) = MAX(D;) & MAX(D);

4. MAX(D1 & D) = MAX(D1) & MAX(Dy).

5. MAX(Zpi(D)) = Breo(MAX(D));

Proof .

1. ClearlyMax(D ) andMax(D) contain the same elements[if is obtained by adding to
D an extra element ¢ D) and the topologiesp andSp , , induced by the Scott topology
over the maximal space, coincide.

2. We haveMax(D1 x D2) = Max(D1) x Max(D>), and also their topologies coincide. In
factK(Dy x D) = K(D1) x K(D2) and a basis foMAX(D1 x Dy) is

Max(1(a1,a2)), a € K(Dy), i € {1,2},

while a subbasis foMAX(D1) x MAX(D;) is given by the sets
T (Max(Ta)) & €K(Dy), i€{12}.

Each elementt }(Max(] &)) in the subbasis oMAX(D1) x MAX(D2) is open in
MAX(D1 x D2), since it can be written aslax(7 (&, L)). Conversely, for any element
Max(7(a1,a2)) in the basis oMAX(D; x D), we have

Max(1 (ar, 82)) = Max(Tar) x Max(1az) = 1 “(Max(Tas)) N g 2(Max(Taz)),

and thusMax(7(a1,a2)) is open inMAX(D1) x MAX(D5).

3. Again, we have thalax(D1 + D7) = Max(D1) W Max(D3), and also their topologies co-
incide. In fact K(D1+D2) = (K(D1) + K(D2)) U {L}. Hence a basis for
MAX(D1+ D) is

{Max(1(i,a)): (i,a) e K(D1+D2), i € {1,2} }U{Max(TL)} =
= {{i} xMax(Ta):acK(Dj), i € {1,2}} U{Max(D1+D>)}
= {{i} xMax(Ta):ae K(Dj), i € {1,2}} U{Max(D1) & Max(D2))},

which is also a basis falAX(D1) & MAX(D2).
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4. The proof is analogous to that for (3).

5. As above we first notice thddax(Pp| (D)) = Prco(Max(D)). In fact, by Lemma 25, the
maximal elements of| (D) are non-empty Lawson closed subsetdvaix(D). These
are the compact non-empty subsetd/%X(D), since, by Theorem 12, the Lawson and
the Scott topologies coincide drax(D) (which is compact).

Let us consider the topologies. The spataAX(%p (D)) is equipped with the induced
Scott topology and thus a basis is given by the bkts(1X), with X € K(®p(D)). Recall
thatX € K(2p(D)) iff X = Con(u), whereu Cin K(D). It is easy to show that for any
suchX we have:

XEemY < ULenY.

Thus a basis foMAX(®p (D)) is given by
{Max(Tu)}uQﬂnK(D)-

On the other hand, a basis f/diAX (D) is {Max(Ta) : a€ K(D)}. SinceMax(Taz)U...U
Max(Tan) = Max(1{as,...,an}), a subbasis for the Vietoris topology &fc.o(MAX(D))
is given by the sets

‘VMax(Tu)aZMax(Ta)v for uCtin K(D)v ac K(D)

Let Max(Tu), whereu Cin K(D) be an element of the basis of the first topology and let
Y € Max(Pp((D)). The following hold:

Y € Max(Tu) & uCemY
< (YeY.Jacu aCy)A(Vacu. JyeY.aCy)
< (Y€ Naxu) A (VA€ U Y € Zyay(ra)

< Ye rVMax(Tu) N m ZMax(Ta)a

acu

henceMax(Tu) is an open set of the second topology.
As to the converse, an element of the subbasis of the secpabbty can be either

Maax(tu) = 1Y UG Y} ={Y IV Cu vEemY} = U{Max(Tv):vCu},
or
Zuax(ia) = {Y 1 Y Max (1) # 0} = {Y : {L,a} CemY} = Max(T{L.a}).

whereu Cyin K(D) anda € K(D). In both cases we conclude that the sets are open in the
first topology. Therefore the two topologies coincide. O

We can now extend the compositionality BfAX to the whole family#. In the se-
quel, given am-tuple of domaindD = Dy,...,Dn we will often write MAX(D) as a short
for MAX(D1),... MAX(Dp).

LEMMA 35 For any constructor Fe 7™ and n-tuple o6FPM objectsD

MAX(F (D)) = F(MAX(D)).
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Proof . LetF € (™ and letD be amn-tuple of SFPM objects. The proof proceeds by induction
on the structure oF. As usual, wherF is a constant or a projection the thesis is trivial. The
casegF),,F xF',F+F',F®F’, B (F) are dealt with by exploiting the induction hypothesis
and Lemma 34.

Finally, for the case ofiF, recall thatu F(Ij) = IiLn<Ek,rk)k, whereEg = 1 andEy,; =

F(Ex,D). Therefore

MAX(UF(B)) =
= MAX(lim (Ex, rk)k)
= IiLn<MAX(Ek), MAX(r))k  [by Theorem 31]

On the other handiF(MAX(D)) = uF(MAX(D)) is given by the inverse limit lirX, fi ),

whereXg = 1is the final object i2-Stone andX 1 = F (X, I\/IAX(E))). Now, by exploiting the
induction hypothesis, one can prove that, for anyIAX(Ex) = Xx andMAX(ri) = fx. Hence
we conclude thaMAX(uF (D)) = uF(MAX(D)). m

Now, the main result of the section, stating that each caogirF € ¥ models the corre-
sponding constructdf over2-Stone, follows as an easy corollary.

THEOREM 36 For any constructor i€ F, F o« F.

Proof . Let F € ¥ and letD be ann-tuple of SFPM objects. In view of the previous lemma
it is enough to show that, for any choice of theuple of M-pairsp = (py,...,pn) in SFPM,

MAX(F(B)) = F(MAX(p1),...,MAX(pn)). The proof is by induction on the structurefef
(Cpb), (MNy): Obvious.

((F)L): First observe that, ip: D — E is an M-pair therMAX(p, ) = MAX(p). In fact, for
anyy € Max(E_ ) = Max(E), sincey # L, we haveMAX(p_ )(y) = MAX(p)(y). Hence

MAX((F)L(P)) =
=MAX(F(p))
=F(MAX(P)) [by induction hyp.]
= (F)L(MAX(P)) [by definition of ()]

(F x G): First observe that ifpx = (ix, jk) : Dk — Ex is an M-pair fork € {1,2}, then
MAX(pl X pz) = MAX(pl) X MAX(pz). In faCt,V(Xl,Xz) € Max(E1 X Ez) = I\/Iax(El) X
Max(Ey), we have:

(MAX(p1 % P2))(X1,%2) =
= (J1 x j2)(x1,%2)
= (J1(x1), j2(x2))
= (MAX(p1)(x1), MAX(p2)(X2))
= (I\/IAX(pl) X MAX(pl))(X]_,Xz).

Hence,
MAX(F x G(p))) =
= MAX(F(P)) x MAX(G(p))
=F(MAX(B)) x G(MAX(P)) [by induction hyp.]
=F x G(MAX(B)) [by definition of (-)]
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(LF): “Apply” the functor MAX to the diagram in Fig. 2 which defingd=(p). By induction
hypothesis andw-continuity of MAX (Theorem 31) we obtain the diagram for
UF(MAX(P)). SincepF(MAX(p)) is defined using the universal property of the limit
construction, it is easy to conclude that the equaliyX (L F(B)) = uF (MAX(P)) holds.

O

4.2 Relating solutions of domain equations ilsFPM and 2-Stone

As an application of the previous results, it is now easy &tssv domain-models for solutions
of domain equations i@-Stone can be obtained by solving the “corresponding” equations in
SFPM (or equivalently inSFP®P). This fact will be used in Section 7 to study various partial
izations of finitary hypersets.

Consider any unary functét € #. Then the solution of the domain equati¥r~ F(X) in
2-Stone is obtained as the inverse limit

lim (F"1,F" fo)n

wherel is the final object ir2-Stone and fq is the unique function fronf (1) to 1. In other
words, the solution is given hyF. But, by Theorem 36 we know thgF ~ MAX(uF), which
simply means that F, the solution of the equatioX ~ F (X) overSFPM, is a domain-model
for uF, the solution of the corresponding equation d&tone.

5 Continuous extensions irsFPM

It is well-known that domain-models of 2-Stone spaces asfuliglso for the study of gen-
eralized computability over such spaces. To this end it eessary that continuous functions
over the original spaces can be extended to Scott contirfuogtions over the corresponding
domain-models.

A continuous function betweedFPM objects, mapping maximal points into maximal points,
clearly restricts to a continuous function between theesponding maximal spaces. Here we
show that also the converse holds, namely that any contsfumction between the maximal
spaces of tw@&FPM objects extends to a continuous function between the whateaghs. Sev-
eral extendability results have appeared in the literatsee, e.g., the classical [16] or [18])
for the case where the target domain is bounded completee SinSFPM object is not, in
general, bounded complete we cannot extend those teclnitueur proof we capitalize on
the characterization &fFPM objects as the class sfPs having (the completion of) a finitely
branching finitary tree as continuous retract via an IM-fsg@e Theorem 21).

THEOREM 37 (CONTINUOUS EXTENSION Let D be anw-algebraiccpo, let E be anSFPY
object, and let £ MAX(D) — MAX(E) be a continuous function. Then there exists a continu-
ous function g D — E such that gy..p) = f.

Proof . SinceE is anSFPM object, by Theorem 21 there is an IM-pair
(ig,je) : Te— E

whereTg is (the completion of) a finitely branching finitary tree. Thmmction f induces a
continuous functiorf’ = jgo f

f’: Max(D) — Max(Tg).
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SinceTg is a tree, the functior’ easily extends to a continuous function
f7:D — Tg,

defined byf”(a) = [{f'(x) : x € Max(fa)} for a € K(D), and extended by continuity to the
non compact points.

Now, by using again the IM-paifig, je) we can obtairg = ig o f” which is the desired
function, namely it is continuous and it coincides witlon the maximal elements. For the last
fact, observe that ifl € Max(D) then

g(d) =ie(f"(d)) =
f'(d)) = [by def. of f”, sinced is maximal]

[sinceig o jg is the identity on maximal elements]

Notice, however, thaFPM is not the largest class afFPs which satisfies the function
extension property. For instance, it is sufficient that thbasideredsFPs have a retraction,
via an IM-pair, onto a generic algebraic bounded comptete. More specifically, leD, E
be sFPs, such that there exists an IM-pair= (i, j) : E' — E, and assumg&’ to be bounded-
complete. Then any continuous functibnMax(D) — Max(E) admits a continuous extension
f’: D — E. In fact, as above, consider the functige- jo f : Max(D) — Max(E’), which by
classical results (see, e.g, [16]) extends to a continuausion

g:D—FE

such thaty'(x) = g(x) for anyx € Max(D). The functiong’ can be defined on the compact
elementd € K(D) asg'(d) =[{g(x) : x € Max(1d)}, which exists by bounded completeness
of E/, and then extended by continuity to the non compact poirttenthe functiorf’ : D — E

we are looking for can be simply defined as

f'=iod.

In fact, forx € Max(D) we havef’(x) =i(d'(x)) =i(j(f(x))) E f(x), where the last inequality
follows from the definition of ep-pair. Sinc€(x) is maximal we concludd’(x) = f(x), as
desired.

6 Retracts of SFPM objects

In this section we investigate the possibility of extendihg theory developed so far to take
into account retracts of 2-Stone spaces and retrack$BY objects. This will lead us to a
characterization of therPs with a 2-Stone maximal space, called hesFpPs. All the previous
results extend to the corresponding categ@iyP™ of csFPs and M-pairs, which haSFPM as
a full subcategory. The categar§FPM is closed under direct limits and under the constructors
in 7. Moreover, the functoMAX extends to a well-defined-continuous functor overSFPM,
compositional with respect to the constructorgin

We notice first that while a continuous retract of a 2-Storaxeps still a 2-Stone space, in
general the continuous retract of $FPY object is not arlsFPM object and it might have a non-
compact maximal space. Forinstance, itis easy to se&that a retract oNj,y via an ep-pair.
The projection can be the function which maps each lazy nuinib@ the corresponding flat
number and each intermediate poinf4,y into L € N, . Thus by continuityw € Nj5,y must
be mapped ta..

The observation above suggests that, in this setting, a magal choice could be to
consider retracts via M-pairs: if,j) : D — E is an M-pair,D is ansrFrpandE is anSFPY
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Figure 4: The initial solutior’ of the equatiorX ~ (X +*X) .

object, surely the maximal spa¢®lax(D),Sp) is a 2-Stone, since it is a continuous retract of
(Max(E), Se), but still D might not be arSFPM object. For instance, let* be the functor
defined in Subsection 2.5. Then it is easy to see that thalisitilutionZ' in SFP®P of the
equationX ~ (X +* X) |, depicted in Fig. 4, is aBFPM object. Moreover, the initial solution
of the equatiorX ~ X +* X (see Fig. 1), which imotanSFPM object, is a retract of/ via an
M-pair. We will show that this is a special case of a more gahgtuation, namely that the
CSFPs can be characterized as thase’s which are retracts FPM objects via M-pairs.

The example just considered suggests that, giesr®D, if D is notinSFPM the reason is
that it does not have “enough compact elements”, in the shiasét is not possible to express
each clopen of its maximal space as the union of a finite disj@imily of clopens of the
kind Max(Ta), for a € K(D). For instance, in the domaif of Fig. 1, each clopen of the
form Max(Tlx) U{x} UMax(Trx) cannot be expressed as the union of a finite disjoint family of
clopens of the forrMax(Ta). Instead, in the domai&/, due to the presence of the lifting in
the equation, this does not happen.

We will prove that it is always possible to turncsFpinto anSFPV objectSat(D), called
the saturation ob, by suitably enriching its set of compact elements. Then \lleshow that
D is aretract oSat(D) via an IM-pair, and thus that thesrFPs are exactly the class of retracts
of SFPM objects via M-pairs. In the sequel, given a topological s Q (X)), we will write
KQne(X,Q(X)) to denote the set of non-empty compact open subsets of

DEFINITION 38 (SATURATION) Let D be ansFpdomain. Thesaturationof D, denoted by
Sat(D), is defined as the ideal completion of the partial order

B(D) ={(a,A):ac K(D) A Ac KQne(Max(D),$p) A Max(Ta) 2 A}
ordered by(a,A) C (a/,A) iffaC a and AD A.

For any ideal € Sat(D) = IdI(B(D)), the projection on the first component, i.e., the set
g(l) ={ae K(D): 3A € KQne(Max(D)). (a,A) € I} is an ideal inD, and the projection on the
second componemt(l) = {A € KQne(Max(D)) : Ja € K(D). (a,A) € 1} is afiltered subset of
KQne(Max(D)) with a non-empty (compact) intersection. It is not difficidtsee thafat(D)
is isomorphic to{ (L]e(l),Nn(l)) : | € Sat(D)}, ordered in the obvious way. Hence, in the
following we will identify Sat(D) with the latter poset, and thus each idealSat(D) with the
pair (Lle(1),Nn(1)). In particular, each principal idedl(a, A) corresponds téa, A) itself.
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The next proposition shows that the above constructionnvelpplied to acSFR, produces
anSFPM object, which has the originalFpas continuous retract via an IM-pair.

LEMMA 39 Let D be acsFr ThenSat(D) is anSFPM object and D is a retract ofat(D) via
an IM-pair.

Proof . First observe thafat(D) is anw-algebraiccpo. In factMax(D) is a 2-Stone space.
Hence its basis and th&Qn(Max(D)) are denumerable, and therefét€Sat(D)) = B(D) is
denumerable. The fact thast(D) is ansFpfollows by the observation that, given a finite set
of compact elements iBat(D), u= {(a,A) :i € {1,...,n}}, one has

U(u)={(a,Max(Ta)NA):ae Up({a1,...,an}) A Max(Ta)NA# 0},

whereA = N{A,...,Aqy} and Up gives the set of minimal upper boundsin Hence the
completeness ofi(u) and the finiteness otl*(u) can be proved by exploiting the analogous
properties oflp.

Let us show thaD is anSFPM object. Observe that the maximal elementSin(D) are
pairs(x, {x}) for x € Max(D) (corresponding to idealssuch that |&(1) = x € Max(D) and thus
Nn(l) = {x}). Furthermore, for anya,A) € B(D), we haveMax(T (a,A)) = {(x, {x}) : x € A}
(i.e., if we identify the maximal spaces ©&f andSat(D), then the set of maximal elements
above(a, A) is exactlyA). We can now prove th&at(D) satisfies the M-condition and thus,
by Theorem 15, it is aBFPM object. Take any Cin B(D). For any(c,C) € U*(u), define

r(c,C)=C—-J{C':3c. (c,C") € u*(u) A (c,C)C (c,C")}.

Letv= u*(u)U{(c,r(c,C)): (c,C) € U*(u) A r(c,C)# 0}. Thenvis U-closed and each
element(c,r(c,C)) is maximal inv. Hence

Max(v) = Max(U*(u)) U{(c,r(c,C)): (c,C) € U*(u) A r(c,C) # 0}

and thusMax(v) Cs {(x, {x}) : x € A}. Finally, it is easy to see that= {(_Lp,Max(D) — A) } Uv
is still 7/*-closed and thaltlax(V') Cs Max(Sat(D)). Hencev' can be the set of finite elements
required by the M-condition.

To conclude, define an ep-pair= (i, j) : D — Sat(D) as follows. For anya € D, i(a) =
(a,Max(Ta)) and for any(a,A) € Sat(D), j(a,A) =a. Thenitis easy to see thét j) is a
well-defined M-pair and thab |, restricted to the maximal space is the identity. Therefose
an IM-pair. O

The main result of this section now follows as an easy camplla

THEOREM40 The class oEsFPs is the class of retracts &FPM objects via M-pairs.

Proof . If D is acsFpPthen, by the previous lemma, it is the retract via an (I)Mrdian
SFPM object. Vice versa, leb be ansrFpwhich is the retract of aSFPM objectE via an
M-pair (i, j) : D — E. SinceMax(D) = j(Max(E)) andMax(E) is compact irE, thenMax(D)
is compact irD. HenceD is aCSFR O

Let us introduce the category o6FPs and M-pairs, which haSFPM as a full subcategory.

DEFINITION 41 We denote bySFPM the category havingsFPs as objects and M-pairs as
arrows.

Using the characterization of thesFPs given in Theorem 40, it is not difficult to verify
thatcSFPM can replac&FPM as category of compositional models for 2-Stone spacesttiee
following facts hold:
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e cSFPMis closed under direct limits
In fact the maximal space of a direct limit &5FPM is the inverse limit of the maximal
spaces of the domains in the sequence (this result relieatésy on Lemma 10, which
uses only the compactness of the maximal spaces of the demahme sequence).

e cSFPM s closed under the constructors jA.
This follows immediately by recalling that the construstor & preserves M-pairs (see
Lemma 26). Then, for instance, IEtc # be a unary constructor and Btbe acSFPM
object. By Theorem 40 there exists an M-ppirD — E, where E is arsFPM object.
HenceF (p) : F(D) — F(E) is an M-pair and, sinc6FPM is closed undeF, F (E) is an
SFPM object. Therefore, by Theorem 49(D) is acSFPM object.

e the functorMAX : cSFPM — 2-Stone is well-defined ando-continuous
Well-definedness is obvious, while-continuity relies on Lemma 10, which, as already
observed, only requires the compactness of the maximakspafcthe domains in the
directed sequence.

e forany Fc #, F oc F in cSFPM,;
The proofs remain the same as §#PV.

e each continuous function:fMax(D) — Max(E), where D is anw-algebraiccroand E
is acSFPM object, extends to a continuous function® — E.
In fact, sinceE is acSFPM object, by Lemma 39, there exists an IM-ppi¢ (i, j) : E —
E’, whereE' is anSFPM object. By Theorem 37, the function f : Max(D) — Max(E’)
admits a continuous extensigh: D — E’. The functiong can thus be defined ag=
jod. Infact, for anyx € Max(D), we haveg(x) = j(d'(x)) = j(i(f(x))) = f(x).

We conclude this section by observing that the result ontfanextendability of Section 5
does not fit nicely with the notion of retract. In fact, notatth retraction between the maximal
spaces of two domains does not extend, in general, to a tietrdi=tween the originadFpPs.

It suffices to takeD = 1 andE = 2 and the unique function between the maximal spaces.
However, given two 2-Stone spacésandY, such thatY is a continuous retract of via the
functions(i, j) : Y — X we can always find isFPM two domain-model® andE of X and

Y, respectively, such thdt, j) extends to a retraction betweBnandE. In fact, observe that,
for any 2-Stone spack, the posetd|((KQne(X), 2)), which is isomorphic to the set of non-
empty compact subsets ¥fordered by reverse subset inclusion, is a Scott domain fausl t
anSFPM object). Therefore one can take= IdI((KQne(X), D)), E = IdI((KQne(Y), D)), and

the obvious extensioni$ and j* of i and j, respectively, to sets, e.g¥ : D — E defined by
i*(A) = {i(a) : ac A} for anyA € KQne(X).

7 Domain equations for finitary hypersets

In this section we utilize the machinery developed so fatht $tudy of the metric domain
of finitary hypersets, i.e. of the hyperuniverag [15, 2, 20]. Various domain-models have
been proposed in the literature fag,. Mislove, Moss and Oles in [20], characterized it as the
solution of the equation ov&fFPEP

X = 14 Ppi(X) (Eql)

Another domain-model fof\g, can be obtained by considering the “domain equation for
bisimulation”, introduced by Abramsky in [2, 3] as a destidp of Milner's Synchronization
Trees with divergence. In the special case of a languageangthgle action Abramsky’s equa-
tion becomes
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X = 2@ Poy(X1) (Eq2)

We will refer to the initial solution ofEql) and(Eq2) above asW and 4, respectively.

The results in Section 4 immediately show thi#tand.2 areSFPM objects and that the 2-
Stone spaces consisting of their maximal elements are hmogdic. In fact, the functdf,,
corresponding toEq1) can be expressed Bg; = C; + Pp, while the functoiF4 corresponding
to (Eq2) can be expressed Bg =Co @ Ppi((M1) 1 ) (all the involved functors are unary). Hence
bothF,, andF are in the clasg . Furthermore

WZF_ﬂ:Cl&JTnCO

and thus a single equation MStone, i.e. X ~ 14 Pheo(X), corresponds both t(Eql) and
(Eq2), and, by Theorem 36, the solution of such an eq