
Theoretical Computer Science 935 (2022) 174–199
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Minimisation of event structures ✩

Paolo Baldan a,∗, Alessandra Raffaetà b

a University of Padova, Italy
b Ca’ Foscari University of Venice, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 November 2021
Received in revised form 30 June 2022
Accepted 5 September 2022
Available online 6 September 2022
Communicated by U. Montanari

Keywords:
Event structures
Minimisation
History-preserving bisimilarity
Behaviour preserving quotient

Event structures are fundamental models in concurrency theory, providing a representation
of events in computation and of their relations, notably concurrency, conflict and causality.
In this paper we present a theory of minimisation for event structures. Working in a
class of event structures that generalises many stable event structure models in the
literature (e.g., prime, asymmetric, flow and bundle event structures), we study a notion
of behaviour-preserving quotient, referred to as a folding, taking (hereditary) history-
preserving bisimilarity as a reference behavioural equivalence. We show that for any event
structure a folding producing a uniquely determined minimal quotient always exists. We
observe that each event structure can be seen as the folding of a prime event structure,
and that all foldings between general event structures arise from foldings of (suitably
defined) corresponding prime event structures. This gives a special relevance to foldings
in the class of prime event structures, which are studied in detail. We identify folding
conditions for prime and asymmetric event structures, and show that also prime event
structures always admit a unique minimal quotient (while this is not the case for various
other event structure models).

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

When dealing with formal models of computational systems, a classical problem is that of minimisation, i.e., for a given
system, define and possibly construct a compact version of the system which, very roughly speaking, exhibits the same
behaviour as the original one, avoiding unnecessary duplications. The minimisation procedure depends on the notion of be-
haviour of interest and also on the expressive power of the formalism at hand, which determines its capability of describing
succinctly some behaviour. One of the most classical examples is that of finite state automata, where one is typically in-
terested in the accepted language. Given a deterministic finite state automaton, a uniquely determined minimal automaton
accepting the same language can be constructed, e.g., as a quotient of the original automaton via a partition/refinement
algorithm (see, e.g., [1]). Moving to non-deterministic finite automata, minimal automata become smaller, at the price of a
computationally more expensive minimisation procedure and non-uniqueness of the minimal automaton [2].

In this paper we study the problem of minimisation for event structures, a fundamental model in concurrency the-
ory [3–5]. Event structures are a natural semantic model when one is interested in modelling the dynamics of a system
by providing an explicit representation of the events in computations (occurrences of atomic actions) and of the relations

✩ This work is supported by the Ministero dell’Universtà e della Ricerca Scientifica of Italy, under Grant No. 201784YSZ5, PRIN2017 – ASPRA.

* Corresponding author.
E-mail address: paolo.baldan@unipd.it (P. Baldan).
https://doi.org/10.1016/j.tcs.2022.09.006
0304-3975/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2022.09.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2022.09.006&domain=pdf
mailto:paolo.baldan@unipd.it
https://doi.org/10.1016/j.tcs.2022.09.006

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
between events, like causal dependencies, choices, possibility of parallel execution, i.e., in what is referred to as a true
concurrent (non-interleaving) semantics. Prime event structures [3], probably the most widely used event structure model,
capture dependencies between events in terms of causality and conflict. A number of variations of prime event structures
have been introduced in the literature. In this paper we will deal with asymmetric event structures [6], which generalise
prime event structures with an asymmetric form of conflict which allows one to model concurrent readings and precedences
between actions, and flow [7,8] and bundle [9] event structures, which add the possibility of directly modelling disjunctive
causes. Event structures have been used for defining a concurrent semantics of several formalisms, like Petri nets [3], graph
rewriting systems [10–12] and process calculi (see, e.g., [13,7,14–18]). Recent applications are in the field of weak memory
models [19–21] and of process mining and differencing [22].

Behavioural equivalences, defined in a true concurrent setting, take into account not only the possibility of performing
steps, but also the way in which such steps relate with each other. We will focus on hereditary history-preserving (hhp-
)bisimilarity [23], the finest equivalence in the true concurrent spectrum in [24], which, via the concept of open map, has
been shown to arise as a canonical behavioural equivalence when considering partially ordered computations as observa-
tions [25].

The motivation for the present paper originally stems from some work on the analysis and comparison of business
process models. The idea, advocated in [22,26], is to use event structures as a foundation for representing, analysing and
comparing process models. The processes, in their graphical presentation, should be understandable, as much as possible, by
a human user, who should be able, e.g., to interpret the differences between two processes diagnosed by a comparison tool.
For this aim it can be important to avoid “redundancies” in the representation and thus to reduce the number of events,
but clearly without altering the behaviour. The paper [27] explores the use of asymmetric and flow event structures and, for
such models, it introduces some ad hoc reduction techniques that allow one to merge sets of events without changing the
true concurrent behaviour. A general notion of behaviour preserving quotient, referred to as a folding, is introduced over an
abstract class of event structures, having asymmetric and flow event structures as subclasses. However, no general theory is
developed. The paper focuses on a special class of foldings, the so-called elementary foldings, which can only merge a single
set of events into one event, and these are studied separately on each specific subclass of event structures (asymmetric and
flow event structures), providing only sufficient conditions ensuring that a function is a folding.

A general theory of behaviour preserving quotients for event structures is thus called for, settling some natural foun-
dational questions. Is the notion of folding adequate, i.e., are all behaviour preserving quotients expressible in terms of
foldings? Is there a minimal quotient in some suitably defined general class of event structures? What happens in specific
subclasses? (For asymmetric and flow event structures the answer is known to be negative, but for prime event structures
the question is open.) Working in the specific subclasses of event structures, can we have a characterisation of general
foldings, providing not only sufficient but also necessary conditions?

In this paper we start addressing the above questions. We work in a general class of event structures based on the
idea of family of posets in [28], sufficiently expressive to generalise most stable event structures models in the literature,
including prime [3], asymmetric [6], flow [7] and bundle [9] event structures.

As a first step we study, in this general setting, the notion of folding, i.e., of behaviour preserving quotient. A folding
is a surjective function that identifies some events while keeping the behaviour unchanged. Formally, it establishes a hhp-
bisimilarity between the source and target event structure. Foldings can be characterised as open maps in the sense of [25].
Actually, it turns out that not all behaviour preserving quotients arise as a folding, but we show that for any behaviour
preserving quotient, there is a folding that induces a coarser equivalence, in a way that foldings properly capture all possible
behaviour preserving quotients. Additionally, given two possible foldings of an event structure we show that it is always
possible to “join” them. This allows us to prove that for each event structure a maximally folded version, namely a uniquely
determined minimal quotient always exists.

Relying on the order-theoretic properties of the set of configurations of event structures [28], and on the correspondence
between prime event structures and domains [3], we derive that each event structure in the considered class arises as the
folding of a canonical prime event structure. Moreover, all foldings between general event structures arise from foldings
of the corresponding canonical prime event structures. Interestingly, this result can be derived from the characterisation of
folding morphisms as open maps.

The results above give a special relevance to foldings in the class of prime event structures, which thus are studied in de-
tail. We provide necessary and sufficient conditions characterising foldings for prime event structures. This characterisation
of foldings can guide, at least in the case of finite structures, the construction of behaviour preserving quotients. Moreover
we show that also prime event structures always admit a minimal quotient.

Relying on the characterisation of foldings we can also establish a clear connection with the so-called abstraction homo-
morphisms, introduced in [29] for similar purposes in a more restricted context.

The fact that all event structures arise as foldings of prime event structures allows one to think of various brands of
event structures in the literature, like asymmetric, flow and bundle event structures, as more expressive models that allow
for smaller realisations of a given behaviour, i.e., of smaller quotients. For all these classes, however, the uniqueness of
the minimal quotient is lost. Despite the fact that foldings on wider classes of event structures can be studied on the
corresponding canonical prime event structures, a direct approach can be theoretically interesting and it can lead to more
efficient minimisation procedures. In this paper, a characterisation of foldings is explicitly devised for asymmetric event
structures.
175

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
Most results have a natural categorical interpretation. In order to keep the presentation simple, the categorical references
are inserted in side remarks (and sometimes used in proofs) that can be safely skipped by the non-interested reader. This
applies, in particular, to the possibility of viewing foldings as open maps in the sense of [25], which is discussed in an
appendix. This correspondence suggests the possibility of understanding and generalising our results to a more abstract
categorical setting.

The rest of the paper is structured as follows. In Section 2 we introduce the class of event structures we work with,
i.e., poset event structures, and our reference behavioural equivalence, namely hereditary history-preserving bisimilarity. We
also discuss how various event structure models in the literature embed into the considered class. In Section 3 we introduce
and study the notion of folding, we prove the existence of a minimal quotient and we show the tight relation between
general foldings and those on prime event structures. In Section 4 we present folding criteria on prime and asymmetric
event structures, and discuss the existence of minimal quotients. Finally, in Section 5 we draw some conclusions, discuss
connections with related literature and outline future work venues. An appendix discusses in detail the possibility of viewing
foldings as open maps, the relation with abstraction homomorphisms and provides some results of technical nature.

This is an extended version of the conference paper [30]. Here we provide full proofs of the results, we slightly simplify
the characterisation of foldings for PESs, we give a characterisation of foldings for asymmetric event structures and we treat
in detail the relation with abstraction homomorphisms and the view of foldings as open maps.

2. Event structures and history-preserving bisimilarity

In this section we define hereditary history-preserving bisimilarity, the reference behavioural equivalence in the paper. This
is done for an abstract notion of event structure, introduced in [28], of which various stable event structure models in the
literature can be seen as special subclasses. We will explicitly discuss prime [3], asymmetric [6], flow [7,8] and bundle [9]
event structures.

Notation. We first fix some basic notation on sets, relations and functions. Let R ⊆ X × X be a binary relation. Given
Y , Z ⊆ X , we write Y R∀ Z (resp. Y R∃ Z) if for all (resp. for some) y ∈ Y and z ∈ Z it holds that y R z. When Y or Z are
singletons, sometimes we replace them by their only element, writing, e.g., y R∃ Z for {y} R∃ Z . The relation R is acyclic
on Y if there is no {y0, y1, . . . , yn} ⊆ Y such that y0 R y1 R . . . R yn R y0. Relation R is a partial order if it is reflexive,
antisymmetric and transitive. Given a function f : X → Y we will denote by f [x �→ y] : X ∪ {x} → Y ∪ {y} the function
defined by f [x �→ y](x) = y and f [x �→ y](z) = f (z) for z ∈ X \ {x}. Note that this notation represents an update of f , when
x ∈ X , or an extension of its domain, otherwise. For Z ⊆ X , we denote by f |Z : Z → Y the restriction of f to Z .

2.1. Poset event structures

Following [28,31,32,27], we work on a class of event structures where configurations are given as a primitive notion.
More precisely, we borrow the idea of family of posets from [28].

Definition 2.1 (family of posets). A poset is a pair (C, ≤C) where C is a set and ≤C is a partial order on C . A poset will be
often denoted simply as C , leaving the partial order relation ≤C implicit. Given two posets C1 and C2 we say that C1 is a
prefix of C2 and write C1 � C2 if C1 ⊆ C2 and ≤C1=≤C2 ∩(C2× C1). A family of posets F is a prefix-closed set of finite posets
i.e., a set of finite posets such that if C2 ∈ F and C1 � C2 then C1 ∈ F . We say that two posets C1, C2 ∈ F are compatible,
written C1 � C2, if they have an upper bound, i.e., there is C ∈ F such that C1, C2 � C . The family of posets F is called
coherent if each subset of F whose elements are pairwise compatible has an upper bound.

Posets C will be used to represent configurations, i.e., sets of events executed in a computation of an event structure.
The order ≤C intuitively represents the order in which the events in C can occur. This motivates the notion of prefix order
that can be interpreted as a computational extension: in order to have C1 � C2 we require not only that C1 ⊆ C2, but also
that

1. events in C1 are ordered exactly as in C2, i.e., the order in C1 is the restriction of the order in C2;
2. the new events in C2 \ C1 cannot precede events already in C1 (i.e., for all x1 ∈ C1, x2 ∈ C2, if x2 ≤C2 x1 then x2 ∈ C1).

While ≤C1=≤C2 ∩(C1 × C1) would be the right formalisation of (1) alone, requiring the stronger ≤C1=≤C2 ∩(C2 × C1)

captures also (2).
An example of family of posets can be found in Fig. 1 (left). Observe, for instance, that the configuration with set of

events {c} is not a prefix of the one with set of events {a, c}, since in the latter a ≤ c.
An event structure is then defined simply as a coherent family of posets where events carry a label. Hereafter � denotes

a fixed set of labels.

Definition 2.2 (event structure). A (poset) event structure is a tuple E = 〈E, Conf (E), λ〉 where E is a set of events, Conf (E) is
a coherent family of posets such that E =⋃

Conf (E) and λ : E →� is a labelling function. For a configuration C ∈ Conf (E)

the order ≤C is referred to as the local order.
176

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
a

c

b

a

c a b
b

c

a c b

a

c

b

c

Fig. 1. An event structure E and the canonical pes P (E).

In [27] abstract event structures are defined as a collection of ordered configurations, without any further constraint.
This is sufficient for giving some general definitions which are then studied in specific subclasses of event structures. Here,
in order to develop a theory of foldings at the level of general event structures, we need to assume stronger properties, i.e.,
those of a family of posets from [28] (e.g., the fact that Definition 3.5 is well-given relies on this). This motivates the name
poset event structure. Also note that, differently from what happens in other general concurrency models, like configuration
structures [32], configurations are endowed explicitly with a partial order, which in turn intervenes in the definition of
the prefix order between configurations. This will be essential to view event structures featuring asymmetric conflicts, like
asymmetric event structures, as subclasses (see also Section 2.3).

Since we only deal with poset event structures and their subclasses, we will often omit the qualification “poset” and
refer to them just as event structures. Moreover, we will often identify an event structure E with the underlying set E of
events and write, e.g., x ∈ E for x ∈ E .

An isomorphism of configurations f : C → C ′ is an isomorphism of posets that respects the labels, i.e., for all x, y ∈ C , we
have λ(x) = λ(f (x)) and x ≤C y iff f (x) ≤C ′ f (y). When configurations C, C ′ are isomorphic we write C � C ′ .

As mentioned above, the prefix order on configurations can be interpreted as computational extension. This will be later
formalised by a notion of transition system over the set of configurations (see Definition 2.4).

Given an event x in a configuration C it will be useful to refer to the prefix of C including only those events that
necessarily precede x in C (and x itself). This motivates the following definition.

Definition 2.3 (history). Let E be an event structure, let C ∈ Conf (E) and let x ∈ C . The history of x in C is defined as the set
C[x] = {y ∈ C | y ≤C x} endowed with the restriction of ≤C to C[x], i.e., ≤C[x]=≤C ∩(C[x] × C[x]). The set of histories in E is
Hist(E) = {C[x] | C ∈ Conf (E) ∧ x ∈ C}. The set of histories of a specific event x ∈ E will be denoted by Hist(x).

Some properties of histories will be useful in the sequel.

Lemma 2.1 (properties of histories). Let E be an event structure. Then

1. for all C ∈ Conf (E), we have C[x] � C , hence C[x] ∈ Conf (E);
2. for all C1, C2 ∈ Conf (E), C1 � C2 iff for all x ∈ C1 , C1[x] = C2[x];
3. for all H1, H2 ∈ Hist(x), if H1 � H2 then H1 = H2;

Proof. 1. Immediate by the definition of C[x].
2. Let C1, C2 ∈ Conf (E) such that C1 � C2. For all x ∈ C1 we have that

C2[x] = {y ∈ C2 | y ≤C2 x}
= {y ∈ C1 | y ≤C1 x} [since C1 � C2]

= C1[x]
Conversely, assume that for all x ∈ C1 we have that C1[x] = C2[x]. Then, since x ∈ Ci[x], for i ∈ {1, 2}, clearly C1 ⊆ C2.
Moreover, for all y ∈ C1 and x ∈ C2, if x ≤C2 y then x ∈ C2[y]. Therefore, since by hypothesis C1[y] = C2[y], we have
x ∈ C1 and x ≤C1 y, as desired. Therefore, C1 � C2.

3. Let H1, H2 ∈ Hist(x) and assume that H1 � H2. This means that there exists C ∈ Conf (E) such that H1, H2 � C . There-
fore, by point (2), we have H1 = H1[x] = C[x] = H2[x] = H2. �

In words, property (1) says that a history can be always extended to the full configuration it derives from. Property (2)
means that a history of an event cannot change when the computation evolves. Finally, (3) states that different histories of
the same event are incompatible.
177

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
2.2. Hereditary history-preserving bisimilarity

Hereditary history-preserving bisimilarity [23] is a classical equivalence in the true concurrency spectrum. In order to
define it over poset event structures, it is convenient to have an explicit representation of the transitions between configu-
rations.

Definition 2.4 (transition system). Let E be an event structure. If C, C ′ ∈ Conf (E) with C � C ′ we write C
X−→ C ′ where X =

C ′ \ C .

When X is a singleton, i.e., X = {x}, we will often write C
x−→ C ′ instead of C

{x}−→ C ′ . It is easy to see that in an event
structure each configuration is reachable in the transition system from the empty one.

Lemma 2.2 (configurations are reachable). Let E be an event structure and let C ∈ Conf (E) be a configuration. Then ∅ −→∗ C. More in
detail, if x1, x2, . . . , xn is any linearisation of C compatible with ≤C then, for all k ∈ {1, . . . , n}, {x1, . . . , xk−1} xk−→ {x1, . . . , xk−1, xk}.

Proof. Immediate consequence of the prefix-closedness of the family of configurations. �
As it happens in the interleaving approach, a bisimulation between two event structures requires any event of an event

structure to be simulated by an event of the other, with the same label. Additionally, the two events are required to have
the same “causal history”.

Definition 2.5 ((hereditary) history-preserving bisimilarity). Let E, E′ be event structures. A history-preserving (hp-)bisimulation
is a set R of triples (C, f , C ′), where C ∈ Conf (E), C ′ ∈ Conf (E′) and f : C → C ′ is an isomorphism of configurations, such
that (∅, ∅, ∅) ∈ R and for all (C1, f , C ′1) ∈ R

1. for all C1
x−→ C2 there exists C ′1

x′−→ C ′2 such that (C2, f [x �→ x′], C ′2) ∈ R;

2. for all C ′1
x′−→ C ′2 there exists C1

x−→ C2 such that (C2, f [x �→ x′], C ′2) ∈ R .

Relation R is called a hereditary history-preserving (hhp-)bisimulation if, in addition, it is downward-closed, i.e., if (C1, f , C ′1) ∈
R and C2 ⊆ C1 then (C2, f |C2 , f (C2)) ∈ R .

Observe that, in the definition above, an event must be simulated by an event with the same label. In fact, in the triple
(C ∪{x}, f [x �→ x′], C ′ ∪ {x′}) ∈ R , the second component f [x �→ x′] must be an isomorphism of configurations, i.e., of labelled
posets, and thus it preserves labels. Hhp-bisimilarity has been shown to arise as a canonical behavioural equivalence on
prime event structures, as an instance of a general notion defined in terms of the concept of open map, when considering
partially ordered computations as observations [25].

2.3. Examples: prime, asymmetric, flow and bundle event structures

We next observe how different kinds of event structures, introduced for various purposes in the literature, can be natu-
rally viewed as subclasses of the poset event structures in Definition 2.2. This section is mainly intended to provide material
for examples and discussions. The reader can quickly browse through it: only the correspondence with prime event struc-
tures will play a major role in the rest of the paper.

Prime event structures. Prime event structures [3] are one of the simplest and most popular event structure models, where
dependencies between events are captured in terms of causality and conflict.

Definition 2.6 (prime event structure). A prime event structure (pes, for short) is a tuple P = 〈E, ≤, #, λ〉, where E is a set of
events, ≤ and # are binary relations on E called causality and conflict, respectively, and λ : E →� is a labelling function,
such that

• ≤ is a partial order and �x� = {y ∈ E | y ≤ x} is finite for all x ∈ E;
• # is irreflexive, symmetric and hereditary with respect to causality, i.e., for all x, y, z ∈ E , if x#y and y ≤ z then x#z.

The absence of conflicts between events is normally referred to as consistency. For later use, it is convenient to introduce
a notation for it.

Definition 2.7 (consistency). Let P = 〈E, ≤, #, λ〉 be a pes. We say that x, y ∈ E are consistent, written x � y, when ¬(x#y). A
subset X ⊆ E is called consistent, written �X , when its elements are pairwise consistent.
178

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
a1 a2 b3 c

b1 b2

a12 b3 c

b1 b2

a12 b3 c

b12

P0 P1 P2

a1 a2 b3 c

b11 b12 b21 b22

P3

Fig. 2. Some prime event structures.

a12 c b3

a12

b12

a12 c b3 c
a12 c

b12

Fig. 3. The configurations Conf (P2) of the pes P2 in Fig. 2 viewed as a poset event structure.

Configurations are consistent sets of events closed with respect to causality.

Definition 2.8 (pes configuration). Let P = 〈E, ≤, #, λ〉 be a pes. A configuration of P is a finite set of events C ⊆ E such that
(i) for all x ∈ C , �x� ⊆ C and (ii) �C .

Some examples of pess can be found in Fig. 2. Causality is represented as a solid arrow, while conflict is represented as
a dotted line. For instance, in P0 , event a1 is a cause of b1 and it is in conflict with both a2 and b3. Only direct causalities
and non-inherited conflicts are represented. For instance, in P0 , the conflicts a1#b2, a2#b1, b1#b2, b1#b3 and b2#b3 are not
represented since they are inherited. The labelling is implicitly represented by naming the events by their label, possibly
with some index. E.g., a1 and a2 are events labelled by a.

Clearly pess can be seen as poset event structures. Given a pes P = 〈E, ≤, #, λ〉 and its set of configurations Conf (P),
the local order of a configuration C ∈ Conf (P) is ≤C=≤ ∩(C × C), i.e., the restriction of the causality relation to C . The
extension order turns out to be simply subset inclusion. In fact, given C1 ⊆ C2 clearly ≤C1=≤ ∩(C1 × C1) is the restriction
to C1 of ≤C2=≤ ∩(C2 × C2). Moreover, if x1 ∈ C1 and x2 ∈ C2, with x2 ≤C2 x1, then necessarily x2 ∈ C1 since configurations
are causally closed. As an example, the pes P2 of Fig. 2, viewed as a poset event structure, can be found in Fig. 3.

Asymmetric event structures. Asymmetric event structures [6] are a generalisation of pess where conflict is allowed to be
non-symmetric.

Definition 2.9 (asymmetric event structure). An asymmetric event structure (aes, for short) is a tuple A = 〈E, ≤, ↗, λ〉, where E
is a set of events, ≤ and ↗ are binary relations on E called causality and asymmetric conflict, and λ : E →� is a labelling
function, such that

• ≤ is a partial order and �x� = {y ∈ E | y ≤ x} is finite for all x ∈ E;
• ↗ satisfies, for all x, y, z ∈ E

1. if x < y then x ↗ y;
2. if x ↗ y and y < z then x ↗ z;
3. ↗ is acyclic on �x�;
4. if ↗ is cyclic on �x� ∪ �y� then x ↗ y.

In the graphical representation, asymmetric conflict is depicted as a dotted arrow. For instance, in the asymmetric event
structure A0 of Fig. 4 we have a12 ↗ b123. Again, only non inherited asymmetric conflicts are represented.

The asymmetric conflict relation has two natural interpretations, i.e., x ↗ y can be understood as (i) the occurrence of
y prevents x, or (ii) x precedes y in all computations where both appear. This allows us to represent faithfully the existence
of precedences between actions and concurrent read accesses to a shared resource (intuitively, while readings can occur
concurrently, destructive accesses can follow, but obviously not precede a reading).
179

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
a12 c

b123

a1 a2 b

c1 c2

d1 d2

a1 a2 b

c12

d12

a12 b

c12

d12

A0 A1 A2 A3

Fig. 4. Some asymmetric event structures.

The interpretation of asymmetric conflict above should give some intuition for the conditions in Definition 2.9. Condition
(1) naturally arises from interpretation (ii) above: when x < y clearly x precedes y when both occur and thus x ↗ y.
Condition (2) is a form of hereditarity of asymmetric conflict along causality: if x ↗ y and y < z then all runs where x
and z appear, necessarily also include y, and x precedes y which in turn precedes z, hence x ↗ z. Concerning (3) and (4),
observe that events forming a cycle of asymmetric conflict cannot appear in the same run, since each event in the cycle
should occur before itself in the run. For instance, in the aes A1 of Fig. 4, we have a1 ↗ a2 ↗ a1, hence a1 and a2 cannot
appear in the same computation. In this view, condition (3) corresponds to irreflexiveness of conflict in pess, while condition
(4) requires that binary symmetric conflict is explicitly represented by asymmetric conflict in both directions. Indeed, prime
event structures can be identified with the subclass of aess where ↗ is symmetric.

Configurations are again defined as sets of events which are causally closed and conflict free.

Definition 2.10 (aes configuration). Let A = 〈E, ≤, ↗, λ〉 be an aes. A configuration of A is a finite set of events C ⊆ E such
that (i) for any x ∈ C , �x� ⊆ C (causally closed) (ii) ↗ is acyclic on C (conflict free).

Also aess can be seen as special poset event structures. Given an aes A = 〈E, ≤, ↗, λ〉 and its set of configurations
Conf (A), the local order of a configuration C ∈ Conf (A) is ≤C= (↗∩(C × C))∗ , i.e., the transitive closure of the restriction of
the asymmetric conflict to C . The prefix order on configurations is not simply set-inclusion: since a configuration C cannot
be extended with an event which is prevented by some of the events already present in C . Hence for C1, C2 ∈ Conf (A) we
have C1 � C2 iff C1 ⊆ C2 and for all x ∈ C1, y ∈ C2 \ C1, ¬(y ↗ x). For instance, the configurations Conf (A0) of the aes A0

in Fig. 4, ordered by prefix, can be obtained from those of Fig. 3, by replacing all occurrences of b12 and b3, by b123. Note,
e.g., that {b123} �� {a12, b123} since a12 ↗ b123.

Flow event structures. In some situations, it can be quite useful to have the possibility of modelling in a direct way the
presence of multiple disjunctive and mutually exclusive causes for an event, something that is not possible in pess and in
aess, where for each event there is a uniquely determined minimal set of causes. For instance, in a process calculus with
non deterministic choice “+” and sequential composition “;” in order to give a pes semantics to (a + b); c we are forced to
use two different events to represent the execution of c, one for the execution of c after a and the other for the execution
of c after b.

We briefly describe a model that overcomes this limitation, namely flow [7,8] event structures.

Definition 2.11 (flow event structure). A flow event structure (fes) is a tuple F = 〈E, ≺, #, λ〉, where E is a set of events,
≺⊆ E × E is an irreflexive relation called the flow relation, # ⊆ E × E is the symmetric conflict relation, and λ : E →� is a
labelling function.

Causality is replaced by an irreflexive (in general non transitive) flow relation ≺, intuitively representing immediate
causal dependency. Moreover, conflict is no longer hereditary.

An event can have causes which are in conflict and these have a disjunctive interpretation, i.e., the event will be enabled
by a maximal conflict-free subset of its causes. This is formalised by the notion of configuration.

Definition 2.12 (fes configuration). Let F = 〈E, ≺, #, λ〉 be a fes. A configuration of F is a finite set of events C ⊆ E such that
(i) ≺ is acyclic on C , (ii) ¬(x#x′) for all x, x′ ∈ C and (iii) for all x ∈ C and y /∈ C with y ≺ x, there exists z ∈ C such that y#z
and z ≺ x.

Some examples of fess can be found in Fig. 5. Relation ≺ is represented by a double headed solid arrow. For instance,
consider the fes F1. The set C = {a, d01} is a configuration. We have b ≺ d01 and b /∈ C , but this is fine since there is a ∈ C
such that a#b and a ≺ d01.

Under mild assumptions that exclude the presence of non-executable events (a condition referred to as fullness in [8]),
fess can be seen as poset event structures, by endowing each configuration C with a local order arising as the reflexive
and transitive closure of the restriction of the flow relation to C , i.e., ≤C= (≺∩(C × C))∗ . Note that excluding the presence
of non-executable events is necessary since in a poset event structure the set of events must coincide with the union of
all configurations (condition E =⋃

Conf (E) in Definition 2.2) and all configurations are reachable (Lemma 2.2), hence all
events are executable.
180

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
a b c

d0 d1 d2

a b c

d01 d2

a b c

d0 d12

a b c

d012

F0 F1 F2 F3

Fig. 5. Some flow event structures.

a

b

a b

a

b

a b

c

a0 a1 a2 a3 a4

b

A Conf (A) F4 F5

Fig. 6. Separating examples for aess, fess, bess.

Bundle event structures. Bundle event structures [9,14] are another event structure model that has been introduced in
order to enable a direct representation of disjunctive causes, thus easing the definition of the semantics of the process
description language lotos.

Definition 2.13 (bundle event structure). A bundle event structure (bes) is a triple B = 〈E, �→, #〉, where E is the set of events,
⊆ E × E is the irreflexive symmetric conflict relation and �→⊆ 2E

fin × E is the bundle relation such that if X �→ x then
X × X ⊆ #.

Whenever X �→ x the set X is called a bundle for the event x. It can be seen as a set of disjunctive and mutually exclusive
causes for the event. The explicit representation of the bundles makes bundle event structures strictly less expressive than
flow event structures, as briefly discussed below. On the other hand, bundle event structures offer the advantage of having a
simpler theory. For instance, differently from what happens for flow event structures, non-executable events can be removed
without affecting the behaviour of the event structure.

Configurations are conflict free sets of events such that if some event e is in the set then an event from of each of the
bundles of e is also included in the set.

Definition 2.14 (bes configuration). Let B = 〈E, �→, #〉 be a bes. Let �→→ denote the binary relation on E defined, for x, y ∈ E ,
by x �→→ y if X �→ y and x ∈ X . A finite set C ⊆ E is a configuration if (i) the relation �→→ is acyclic on C (ii) ¬(x#y) for all
x, y ∈ C ; (iii) X ∩ C �= ∅ for all x ∈ C and X �→ x.

Again, under the assumption that there are no non-executable events, one can turn a bes into a poset event structure in
the sense of Definition 2.2 by endowing each configuration C with an order ≤C= (�→→∩(C × C))∗ .

Comparing models. It can be easily seen that the expressive power of aess is incomparable with that of fess and bess.
This is due to the fact that aess cannot represent disjunctive causes, while fess and bess cannot represent asymmetric
conflicts. For instance, consider the fes F4 in Fig. 6 (which can be also seen as a bes with a bundle {a, b} for c). We have
Conf (F4) = {∅, {a}, {b}, {a, c}, {b, c}} and it is easily seen that no aes exists with the same configurations. Now, consider
the aes A in Fig. 6. We have Conf (A) = {∅, {a}, {b}, {a, b}} and also here it is immediate to see that there is no fes or bes

having the same configurations. In passing, we note also that this behaviour cannot be expressed in terms of a configuration
structure [32]. In fact, as shown in Fig. 6, in Conf (A), the configuration {a, b} is not an extension of {b}, consistently with
the fact that a cannot be executed after b. Instead, in a configuration structure, where the order between configurations is
just subset inclusion, configuration {a, b} would be unavoidably seen as an extension of {b}.

In addition, as mentioned above and discussed in detail in [33,14], bess are strictly less expressive than fess. For instance,
for the fes F5 in Fig. 6 there is no bes having the same configurations. This can be seen by observing that here only pairs
of conflicting events can be in the same bundle.

Event structures models joining the features of aess with those of fess and bess have been considered in the literature,
like extended bess [14], which enrich bess with asymmetric conflict, and fess with possible flow [34,35], which extend fess
with a possible flow relation enabling the representation of asymmetric conflicts. Also these generalised models can be
viewed as poset event structures.
181

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
3. Foldings of event structures

In this section, we study a notion of folding, which is intended to formalise the intuition of a behaviour-preserving
quotient for an event structure. We prove that there always exists a minimal quotient and we show that foldings between
general poset event structures always arise, in a suitable formal sense, from foldings over prime event structures.

3.1. Morphisms and foldings

We first endow event structures with a notion of morphism. Below, given two event structures E, E′ , a function f :
E → E ′ and a configuration C ∈ Conf (E), we write f (C) to refer to the configuration whose underlying set is { f (x) | x ∈ C},
endowed with the order f (x) ≤ f (C) f (y) iff x ≤ y.

Definition 3.1 (morphism). Let E, E′ be event structures. A (strong) morphism f : E → E′ is a function between the underlying
sets of events such that λ = λ′ ◦ f and for all configurations C ∈ Conf (E), the function f is injective on C and f (C) ∈ Conf (E′).

Hereafter, the qualification “strong” will be omitted since this is the only kind of morphisms we deal with. It is motivated
by the fact that normally morphisms on event structures are designed to represent simulations. If this were the purpose,
then the requirement on preservation of configurations could have been weaker, i.e., we could have asked the order in the
target configuration to be included in (not identical to) the image of the order of the source configuration (precisely, given a
configuration 〈C, ≤C 〉 ∈ Conf (E) then there exists 〈C ′, ≤C ′ 〉 ∈ Conf (E′) such that C ′ = f (C) and for all x, y ∈ C , f (x) ≤C ′ f (y)

implies x ≤C y). Moreover, morphisms could have been partial. However, in our setting, for the objective of defining history-
preserving quotients, the stronger notion works fine and simplifies the presentation.

Remark 1. The composition of morphisms is a morphism and the identity is a morphism. Hence the class of event structures
and event structure morphisms form a category ES.

Lemma 3.1 (morphisms preserve prefixes). Let E, E′ be event structures, let f : E → E′ be a morphism and let C1, C2 ∈ Conf (E) be
configurations. If C1 � C2 then f (C1) � f (C2).

Proof. Immediate, since from the definition of morphism we have C1 � f (C1) and C2 � f (C2). �
Definition 3.2 (folding). Let E and E′ be event structures. A folding is a morphism f : E → E′ such that the relation R f =
{(C, f |C , f (C)) | C ∈ Conf (E)} is a hhp-bisimulation. A folding is called elementary if there is a set X ⊆ E such that for all
x, y ∈ E, x �= y, we have f (x) = f (y) if and only if x, y ∈ X .

In words, a folding is a function that “merges” some sets of events of an event structure into single events without
altering the behaviour modulo hhp-bisimilarity. It is elementary if it merges only a single set of events. In [27] the notion of
folding asks for the preservation of hp-bisimilarity, a weaker behavioural equivalence which is defined as hhp-bisimilarity
but omitting the requirement of downward-closure. Note that, as far as the notion of folding is concerned, this makes no
difference: R f is downward-closed by definition, hence it is a hhp-bisimulation whenever it is a hp-bisimulation. Instead,
taking hhp-bisimilarity as the reference equivalence appears to be the right choice for the development of the theory. E.g.,
it allows one to prove Lemma 3.8 that plays an important role for arguing about the adequateness of the notion of folding.
Interestingly, foldings can be characterised as open maps in the sense of [25], by taking conflict free prime event structures
as subcategory of observations. This is explicitly worked out in Appendix A.

As an example, consider the pess in Fig. 2 and the function f02 : P0 → P2 that maps events as suggested by the indices,
i.e., f02(a1) = f02(a2) = a12, f02(b1) = f02(b2) = b12, f02(b3) = b3 and f02(c) = c. Then it is easy to see that f02 is a folding.
Note that, instead, f01 : P0 → P1 , again mapping events according to their indices, is a morphism but not a folding. In fact,
f01({a1}) = {a12} b2−→ {a12, b2}, but clearly there is no transition {a1} x−→ with f01(x) = b2, since x can only be b1 and the only
counterimage of b2 in P0 is b2.

It is also interesting to observe that the greater expressiveness of aess allows one to obtain smaller quotients. For in-
stance, while the pes P2 in Fig. 2 is minimal in the class of pess, if we view it as an aes, it can be further reduced. In fact the
obvious function from P2 to the aes A0 in Fig. 4 can be easily seen to be a folding. Observe that this folding “transforms”
the causality a12 < b12 in P2 into an asymmetric conflict a12 ↗ b123 in A0 . This is legal because also the event b3 in P2 , in
conflict with a12, is mapped to b123. In this way the situation in which in A0 the event b123 is executed before a12, thus
disabling this latter event, can be simulated in P2 by executing b3.

Lemma 3.2 (foldings are closed under composition). Let E, E′, E′′ be event structures and let f : E → E′ and f ′ : E′ → E′′ be foldings.
Then f ′ ◦ f : E → E′′ is a folding.
182

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
Proof. We rely on the characterisation of foldings provided in Lemma 3.3. Let C1 ∈ Conf (E) and assume that f ′(f (C1))
x′′−→

C ′′2 . Since f (C1) ∈ Conf (E′) and f ′ is a folding, there exists x′ such that f (C1)
x′−→ C ′2 with f ′(x′) = x′′ and f ′(C ′2) = C ′′2 . In

turn, since f is a folding, from f (C1)
x′−→ C ′2, we derive the existence of a transition C1

x−→ C2 with f (x) = x′ and f (C2) = C ′2.
Therefore f ′(f (x)) = x′′ and f ′(f (C2)) = C ′′2 , as desired. �
Remark 2. Since composition of foldings is a folding (Lemma 3.2) and the identity is a folding, we can consider a subcate-
gory ESf of ES with the same objects and foldings as morphisms.

Again in the setting of aess, consider the structures in Fig. 4 and the functions g12 : A1 → A2 , and g23 : A2 → A3 , naturally
induced by the indices. These can be seen to be foldings. The first one merges c1, in conflict with b and c2 caused by b to
a single event c12, in asymmetric conflict with b. The second one merges the two conflicting events a1 and a2 into a single
one a12. Their composition g13 = g23 ◦ g12 : A1 → A3 is again a folding.

As a last example, consider the fess in Fig. 5. Again the obvious functions from F0 to F1 and F2 can be seen to be
foldings. Instead, seen as a pes, the event structure F0 is minimal.

The next result shows that if we know that f : E → E′ is a morphism, then half of the conditions needed to be a hhp-
bisimulation and thus a folding, i.e., condition (1) in Definition 2.5, is automatically satisfied. This is used later in proofs
whenever we need to show that some map is a folding.

Lemma 3.3 (from morphisms to foldings). Let E and E′ be event structures and let f : E → E′ be a morphism. If for all C1 ∈ Conf (E)

and transition f (C1)
x′−→ C ′2 there exists C1

x−→ C2 such that f (C2) = C ′2 then f is a folding.

Proof. We have to show that R f = {(C, f |C , f (C)) | C ∈ Conf (E)} satisfies conditions (1) and (2) of Definition 2.5. Condition
(2) is in the hypotheses. Concerning (1), let C1 ∈ Conf (E) and consider a transition C1

x−→ C2. Then by definition of morphism,
f (Ci) is in Conf (E) and it is isomorphic to Ci , for i ∈ {1, 2}. Therefore f (C1)

f (x)−−→ f (C2). �
Another simple but crucial result shows that the target event structure for a folding is completely determined by the

mapping on events. This allows us to view foldings as equivalences on the source event structures. We first define the
quotient induced by a morphism.

Definition 3.3 (quotients from morphisms). Let E, E′ be event structures and let f : E → E′ be a morphism. Let ≡ f be the
equivalence relation on E defined by x ≡ f y if f (x) = f (y). We denote by E/≡ f

the event structure with configurations
Conf (E/≡ f

) = {[C]≡ f
| C ∈ Conf (E)} where [C]≡ f

= {[x]≡ f
| x ∈ C} is ordered by [x]≡ f

≤[C]≡ f
[y]≡ f

iff x ≤C y.

It is immediate to see that E/≡ f
is a well-defined event structure. This also follows from the lemma below.

Lemma 3.4 (folding as equivalences). Let E, E′ be event structures and let f : E → E′ be a morphism. If f is a folding then E/≡ f
is

isomorphic to E′ .

Proof. Consider the function g : E/≡ f
→ E′ defined by g([x]≡ f

) = f (x). It is well defined, since all elements in [x]≡ f
have

the same f -image, and clearly injective. Moreover, it is also surjective. In fact, if x′ ∈ E′ then there exists C ′ ∈ Conf (E′) such
that x′ ∈ C ′ . By Lemma 2.2, configuration C ′ is reachable from the empty one, and thus, since f is an hp-bisimulation, there
exists C ∈ Conf (E) such that C ′ = f (C). Therefore there is x ∈ C such that f (x) = x′ and thus g([x]≡ f

) = x′ .
Finally, observe that by definition, for all configuration C ′ ∈ Conf (E/≡ f

), we have g(C ′) � C ′ , hence we conclude. �
The previous result allows us to identify foldings with the corresponding equivalences on the source event structures

and motivates the following definition.

Definition 3.4 (folding equivalences). Let E be an event structure. The set of folding equivalences over E is defined as FEq(E) =
{≡ f | f : E → E′ folding for some E′}.

Hereafter, we will freely switch between the two views of foldings as morphisms or as equivalences, since each will be
convenient for some purposes.

We next observe that given two foldings we can always take their “join”, providing a new folding that, roughly speaking,
produces a smaller quotient than both the original ones. We first show a useful factorisation property involving morphisms
and foldings.
183

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
Lemma 3.5 (factorising morphisms). Let E, E′, E′′ be event structures and let f : E′′ → E′ be a morphism and h : E′′ → E be a folding.
Let g : E → E′ be a function such that f = g ◦ h.

E E′

E′′

g

f
h

Then g is a morphism. Moreover, if f is a folding then g is.

Proof. Let us show that g is a morphism. For all C ∈ Conf (E), since h is a folding, there exists C ′′ ∈ Conf (E′′) such that
h(C ′′) = C and C ′′ � C . Since f is a morphism f (C ′′) ∈ Conf (E′). Therefore g(C) = g(h(C ′′)) = f (C ′′), as desired.

Let us assume now that g is a folding. Let C1 ∈ Conf (E) and suppose that there is a transition g(C1) x′−→ C ′2. Since h is a

folding, there is a configuration C ′′1 ∈ Conf (E′′) such that C1 = h(C ′′1). Therefore f (C ′′1) = g(h(C ′′1) = g(C1)
x′−→ C ′2. Since f is

a folding there is a transition C ′′1
x′′−→ C ′′2 with f (C ′′2) = C ′2. Therefore h(C ′′1) = C1

h(x′′)−−−→ h(C ′′2) with g(h(C ′′2)) = f (C ′′2) = C ′2, as
desired. �

We can then prove the desired result concerning the possibility of joining foldings.

Proposition 3.6 (joining foldings). Let E, E′, E′′ be event structures and let f ′ : E → E′ , f ′′ : E → E′′ be foldings. Define E′′′ as the
quotient E/≡ where ≡ is the transitive closure of ≡ f ′ ∪ ≡ f ′′ . Then g′ : E′ → E′′′ defined by g′(x′) = [x]≡ if f ′(x) = x′ and g′′ : E′′ →
E′′′ defined by g′′(x′′) = [x]≡ if f ′′(x) = x′′ are foldings.

Proof. We actually show that the construction described in the statement produces the pushout in the category ES and also
in ESf . Consider the diagram

E

E′ E′′

E′′′

f ′ f ′′

g′ g′′

Observe that E′′′ , with functions g′ and g′′ is the pushout in Set, as it easily follows recalling that f ′ and f ′′ are
surjective. Another immediate observation is that the set of configurations of E′′′ can be written

Conf (E′′′)= {g′(f ′(C)) | C ∈ Conf (E)} = {g′′(f ′′(C)) | C ∈ Conf (E)} (1)

We prove that g′ is a folding. In fact

• g′ is a morphism.
For all C ′ ∈ Conf (E′), since f ′ is a folding, there is C ∈ Conf (E) such that f ′(C) = C ′ . Therefore g′(C ′) = g′(f ′(C)) ∈
Conf (E′′′), by construction. Moreover, g′ is injective on C ′ . In fact, take x′, y′ ∈ C ′ , with g′(x′) = g′(y′). Since C ′ = f ′(C),
there are x, y ∈ C such that f ′(x) = x′ and f ′(y) = y′ . Therefore, g′(f ′(x)) = g′(f ′(y)), and thus, by the properties of
pushouts, f ′′(x) = f ′′(y). Since f ′′ is a folding, thus a morphism, this implies x = y and thus x′ = f ′(x) = f ′(y) = y′ , as
desired.

• g′ is a folding.

Let C ′1 ∈ Conf (E′) and assume that g′(C ′1)
x′′′−→ D ′′′2 . By (1) we know that there is D2 ∈ Conf (E) such that D ′′′2 = g′(f ′(D2))

and D2 � D ′′′2 . Therefore, there is D1 � D2 such that g′(f ′(D1)) = g′(C ′1) and

D1
x−→ D2. (2)

Define D ′1 = f ′(D1) ∈ Conf (E′). Now, since f ′ is a folding and C ′1 ∈ Conf (E′), there is also C1 ∈ Conf (E) such that
f ′(C1) = C ′1. Recall that g′(D ′1) = g′(f ′(D1)) = g′(C ′1), hence, by pushout properties, it must be f ′′(C1) = f ′′(D1). From

(2), since f ′′ is a folding, we deduce f ′′(C1) = f ′′(D1)
x′′−→ D ′′2, with f ′′(D2) = D ′′2. And, using again the fact that f ′′ is a

folding, this implies C1
y−→ C2, with f ′′(C2) = D ′′2 = f ′′(D2).

Now, we use the fact that f ′ is a folding, and derive that C ′1 = f ′(C1)
f ′(y)−−−→ f ′(C2). If we call C ′2 = f ′(C2), we have that

g′(C ′2) = g′(f ′(D2)) = g′′(f ′′(D2)) = g′′(f ′′(C2)) = D ′′′2 , as desired (where the second last passage is motivated by the
fact that, as observed above, f ′′(C2) = f ′′(D2)).
184

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
a1 a2

b1 b2

a1 a2

b1 b2

a12

b12

P4 P5 P6

Fig. 7. Non existence of pushout of general morphisms.

In the same way, one concludes that also g′′ is a folding.
Given any other E1 with morphisms g′1 : E′ → E1 and g′′1 : E′′ → E1 such that g′1 ◦ f ′ = g′′1 ◦ f ′′ , we show that there exists

a unique morphism h : E′′′ → E1 that makes the diagram commute.

E

E′ E′′

E′′′

E1

f ′ f ′′

g′

g′1

g′′

g′′1h

Consider the unique map h : E′′′ → E1 making the diagram commute in Set. Since g′ is a folding and g′1 is a morphism, by
Lemma 3.5, also h is a morphism. This proves that E′′′ is a pushout in ES.

By the same result, if g′1 is a folding, also the mediating morphism h is. This means that the same construction produces
a pushout in ESf . �

As an example, consider the pes in Fig. 2 and two morphisms f30 : P3 → P0 and f31 : P3 → P1 . The way all events are
mapped by f30 and f31 is naturally suggested by their labelling, apart from the events bij for which we let f30(bij) = bi
while f31(bij) = b j . It can be seen that both are foldings. Their join, constructed as in Proposition 3.6, is P2 with the folding
morphisms f02 : P0 → P2 and f12 : P1 → P2 .

Remark 3. Proposition 3.6 is a consequence of the fact that the category ES has pushouts of foldings. Indeed, E′′′ as defined
in Proposition 3.6 is the pushout of f ′ and f ′′ (in ES and also in ESf).

Also note that ES does not have all pushouts. As a counterexample to the existence of pushouts in ES for general
morphisms, consider the obvious mappings f45 : P4 → P5 and f46 : P4 → P6 in Fig. 7. It is easy to realise that, if a pushout
existed, the mapping from P5 into the pushout object should identify the concurrent events a1 and a2, failing to be an event
structure morphism.

When interpreted in the set of folding equivalences of an event structure, Proposition 3.6 has a clear meaning. Recall
that the equivalences over some fixed set X , ordered by inclusion, form a complete lattice, where the top element is the
universal equivalence X × X and the bottom is the identity on X . Then Proposition 3.6 implies that FEq(E) is a sublattice
of the lattice of equivalences. Actually, it can be shown that FEq(E) is itself a complete lattice. This implies that each event
structure E admits a maximally folded version.

Theorem 3.7 (lattice of foldings). Let E be an event structure. Then FEq(E) is a sublattice of the complete lattice of equivalence relations
over E.

Proof. We proceed by showing a generalisation of Proposition 3.6 from which the thesis follows. We prove that for any
event structure E, each collection of foldings f i : E → Ei , with i ∈ I , admits a colimit in ES.

When I is finite, the proof proceeds by straightforward induction on I , using Proposition 3.6. If instead I is infinite, let
E′ be the colimit of the f i ’s in Set,

E

Ei E j . . .

E′

f i

f j

gi

g j

seen as an event structure by taking as configurations Conf (E′) = {gi(f i(C)) | C ∈ Conf (E)}. The proof of the fact that the
gi ’s are foldings then proceeds as in Proposition 3.6. The only delicate point is the following. Given configurations C, C ′ ∈
Conf (E), define Ci = f i(C) and C ′ = f i(C ′) ∈ Conf (Ei). If gi(Ci) = gi(C ′), then it is not necessarily the case that f j(C) = f j(C ′)
i i

185

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
for some j ∈ I . However, since configurations are finite, there is a finite subset J ⊆ I such that, if E J is the colimit of
{ f j | j ∈ J } and f J : E → E J the corresponding folding, whose existence is proved in the first part, then f J (C) = f J (C ′).
Exploiting this fact, we can conclude exactly as in Proposition 3.6. �
Remark 4. The proof of Theorem 3.7 shows that for any event structure E, each collection of foldings f i : E → Ei , with
i ∈ I , admits a colimit in ES. Thus the coslice category (E ↓ ESf) has a terminal object, which is the maximally folded event
structure.

It is natural to ask whether all behaviour preserving quotients correspond to foldings. Strictly speaking, the answer is
negative. More precisely, there can be morphisms f : E → E′ such that E/≡ f

is hhp-bisimilar to E, but f is not a folding. For
an example, consider the pess P0 and P1 in Fig. 2 and the morphism f01 : P0 → P1 suggested by the indexing. We already
observed this is not a folding, but P0/≡ f01

, which is isomorphic to P1 , is hhp-bisimilar to P0 .

However, we can show that for any behaviour preserving quotient, there is a folding that produces a coarser equivalence,
and thus a smaller quotient. For instance, in the example discussed above, there is the folding f02 : P0 → P2 , that “produces”
a smaller quotient.

This follows from two results. The first one is the possibility of joining foldings (Proposition 3.6). The second one, proved
below, is the possibility of viewing a hhp-bisimulation between two event structures E′ , E′′ as an event structure itself. This
is a generalisation to our setting of a property proved for pess in [23].

Lemma 3.8 (hhp-bisimulation as an event structure). Let E′, E′′ be event structures and let R be a hhp-bisimulation between them.
Then there exists a (prime) event structure ER and two foldings π ′ : ER → E′ and π ′′ : ER → E′′ .

Proof. Let E′ , E′′ be event structures and let R be a hhp-bisimulation between them. Define ER as follows. Events are his-
tories related by R , namely the triples {(H ′, f , H ′′)} | H ′ ∈ Hist(E′)}, labelled by λER (H ′, f , H ′′) = λE(x′) when H ′ ∈ Hist(x′).
For each (C ′, f , C ′′) ∈ R , define

C f = {(C ′[x′], f |C ′[x′], C ′′[f (x′)]) | x ∈ C ′}
ordered by pointwise inclusion, i.e., (H ′1, f1, H ′′1) ≤C f (H ′2, f2, H ′′2) if f1 ⊆ f2, and thus H ′1 ⊆ H ′′1 , H ′2 ⊆ H ′′2 . The set of config-
urations of ER is Conf (ER) = {C R | C ∈ Conf (E)}.

It is easy to see that Conf (ER) is well-defined. Prefix-closedness of Conf (ER) follows from the fact that R is downward-
closed by definition of hhp-bisimulation. It can be seen that ER is actually a prime event structure, with causality defined
by (H ′1, f1, H ′′1) ≤ (H ′2, f2, H ′′2) if H ′1 � H ′2 and f1 � f2, and conflict defined by (H ′1, f1, H ′′1)#(H ′2, f2, H ′′2) if there is no
(C ′, f , C ′′) ∈ R such that H ′1, H ′2 � C ′ and f1, f2 ⊆ f .

Consider two configurations C f1 , C f2 ∈ Conf (ER), arising from the triples (C ′i, f i, C ′′i) ∈ R , for i ∈ {1, 2}. Then it holds that

C f1 � C f2

iff C f1 ⊆ C f2

iff for all x′ ∈ C ′1, (C ′1[x′], f1|C ′1[x′], C
′′
1 [f1(x′)]) ∈ C f2

iff for all x′ ∈ C ′1, C ′1[x′] = C ′2[x′] and f1(x′) = f2(x′)
iff C ′1 � C ′2 and f1 ⊆ f2.

We can now define π ′ : ER → E′ as π ′(H ′, f , H ′′) = x′ if H ′ ∈ Hist(x′) and, similarly, π ′′ : ER → E′ as π ′′(H ′, f , H ′′) = x′′
if H ′′ ∈ Hist(x′′).

Then π ′ and π ′′ are well-defined morphisms and they are foldings. We prove this for π ′ (for π ′′ the proof is completely
analogous).

• π ′ is a morphism.
This is immediate by observing that for any configuration C f ∈ Conf (ER), arising from the triple (C ′, f , C ′′) ∈ R , then
we have π ′(C f) = C ′ . Note that, concerning the local order, for x′, y′ ∈ C ′ we have (C ′[x′], f |C ′[x′], C ′′[f (x′)]) ≤C f

(C ′[y′], f |C ′[y′], C ′′[f (y′)]) iff inclusion holds pointwise iff x′ ∈ C ′[y′] iff x′ ≤C ′ y′ , which means π ′(C ′[x′]) = x′ ≤C ′ y′ =
π ′(C ′[y′]).

• π ′ is a folding.

In fact, for any configuration C f ∈ Conf (ER), arising from the triple (C ′, f , C ′′) ∈ R , if π ′(C f) = C ′ x′−→ D ′ then, since R is

an hhp-bisimulation, there is C ′′ x′′−→ D ′′ with (C ′′, g, D ′′) ∈ R with g = f [x′ �→ x′′]. Hence, if we let H ′ = D ′[x′], we have

that C f
(H ′,g|H ′ ,g(H ′))−−−−−−−−−→ C g and π ′(C g) = D ′ , as desired. �

We can finally prove the desired property.
186

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
Proposition 3.9 (foldings subsume behavioural quotients). Let E be an event structure and let f : E → E′ be a morphism such that
E/≡ f

is hhp-bisimilar to E. Then there exists a folding g : E → E′′ such that ≡g is coarser than ≡ f .

Proof. Let R be a hhp-bisimulation between E and E/≡ f
. Consider the event structure ER and the foldings π : ER → E and

π ′ : ER → E/≡ f
, given by Lemma 3.8. By Proposition 3.6 we can close the diagram as follows:

ER

E E/≡ f

E′′

π π ′

g
g′

and both g and g′ are foldings. Then E′′ = E/≡g =
(

E/≡ f

)
/≡g′

and we conclude. �

We already proved in Theorem 3.7 that every event structure admits a maximally folded version. Relying on Lemma 3.8
we can also prove that the maximally folded versions of hhp-bisimilar event structures are isomorphic, i.e., there is a unique
minimal quotient for each hhp-equivalence class of event structures.

Corollary 3.10 (unique minimal quotient). Let E1 and E2 be hhp-bisimilar event structures and let E′1 and E′2 be the corresponding
maximally folded versions. Then E′1 and E′2 are isomorphic.

Proof. Let R be a hhp-bisimulation between E1 and E2 . By Lemma 3.8 we can turn R into a (prime) event structure ER

with two foldings π1 : ER → E1 and π2 : ER → E2. Let f1 : E1 → E′1 and f2 : E2 → E′2 be the folding morphism of E1 and E2

into their maximally folded versions given by Theorem 3.7.
By Proposition 3.6 we can obtain the following pushout diagram

ER

E1 E2

E′1 E′2

E

π1 π2

f1 f2

g1 g2

For i ∈ {1, 2}, since gi ◦ f i : Ei → E is a folding and E′i is final in (Ei ↓ ESf) we deduce that E′i is isomorphic to E. Hence E′1
and E′2 are isomorphic, as desired. �
Remark 5. Corollary 3.10, in categorical terms, shows that for every event structure E, the full subcategory of ESf having
as objects the event structures in the hhp-bisimilarity class of E has a terminal object, which is the (common) maximally
folded event structure for the event structures in the class.

3.2. Folding through prime event structures

Here we observe that each poset event structure is the folding of a corresponding canonical pes. We then prove that,
interestingly enough, all foldings between event structures arise from foldings of the corresponding canonical pess.

We start with the definition of the canonical pes associated with an event structure.

Definition 3.5 (pes for an event structure). Let E be an event structure. Its canonical pes is P (E) = 〈Hist(E), �, #, λ′〉 where
� is prefix, # is inconsistency, i.e., for H1, H2 ∈ Hist(E) we let H1#H2 if ¬(H1 � H2) and λ′(H) = λ(x) when H ∈ Hist(x).
Given a morphism f : E → E′ we write P (f) :P (E) →P (E′) for the morphism defined by P (f)(H) = f (H).

It can be easily seen that the definition above is well-given. In particular, P (E) is a well-defined pes because, as proved
in [28], a family of posets ordered by prefix is a finitary coherent prime algebraic domain. Then the tight relation between
this class of domains and pess highlighted in [3] allows one to conclude the proof. For instance, in Fig. 1(right) one can find
the canonical pes for the event structure on the left.

The canonical pes associated with an event structure can always be folded to the original event structure. For this
purpose, it is useful to state some properties of the corresponding partial orders of configurations.
187

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
Lemma 3.11 (configurations of the canonical pes). Let E be an event structure. Then Conf (E) and Conf (P (E S)) seen as partial orders,
ordered by prefix, are isomorphic.

More in detail, for all C ∈ Conf (E) it holds hs(C) = {C[x] | x ∈ C}, with inclusion as local order, is in Conf (P (E)). Moreover
C � hs(C) and hs(·) : Conf (E) → Conf (P (E)) is a poset isomorphism.

Its inverse is as follows. For D ∈ Conf (P (E)) consider fl(D) =⋃
D. Then, for each x ∈ fl(D) there exists a unique Hx ∈ D such that

Hx ∈ Hist(x). Define the order ≤fl(D) , for x, y ∈ fl(D), by x ≤fl(D) y iff x ∈ H y. Then fl(D) ∈ Conf (E) and fl(D) � D as posets.

Proof. Let C ∈ Conf (E) and let us show that hs(C) = {C[x] | x ∈ C}, with inclusion as local order, is in Conf (P (E)). First, note
that hs(C) is consistent by construction, since C[x] � C for all x ∈ C . Moreover, it is causally closed. In fact, if H � C[x] for
some H ∈ Hist(E), then, if H ∈ Hist(y), by Lemma 2.1(2) we have H = C[x][y] = C[y] ∈ hs(C). Moreover, hs(C) is isomorphic
to C , the isomorphism established by the mapping C[x] �→ x. It is clearly bijective. Moreover, for all x1, x2 ∈ C it holds that
C[x1] ⊆ C[x2] iff x1 ∈ C[x2] and thus x1 ≤C x2.

Let us show that hs(·) : Conf (E) → Conf (P (E)) is a poset isomorphism. It is injective. In fact, if hs(C1) = hs(C2) then
clearly C1 and C2 contain the same events. Moreover, ≤C1=≤C2 and thus the two configurations coincide. Otherwise, there
would be x, y ∈ C1 such that x ≤C1 y and ¬(x ≤C2 y), or conversely ¬(x ≤C1 y) and x ≤C2 y. Assume, without loss of
generality, that we are in the first case. Then x ∈ C1[y] and x /∈ C2[y], and thus hs(C1) �= hs(C2) contradicting the hypotheses.
Moreover, it preserves and reflects the prefix order, i.e., given C1, C2 ∈ Conf (E) we have C1 � C2 iff hs(C1) ⊆ hs(C2) as it
immediately follows from Lemma 2.1(2).

We conclude, by showing that it is also surjective. Consider any configuration D ∈ Conf (P (E)). Since D has no conflicts,
its elements are pairwise compatible. Therefore, by coherence of the class of configurations, there exists C ∈ Conf (E) such
that H � C for all H ∈ D . Let fl(D) =⋃

D . Then, for each x ∈ fl(D) there exists a unique Hx ∈ D such that Hx ∈ Hist(x),
since by Lemma 2.1(2) different histories of the same event are not compatible. Define the order ≤fl(D) , for x, y ∈ fl(D), by
x ≤fl(D) y iff x ∈ H y . It is easy to check that fl(D) � C , and thus by prefix closedness of Conf (E), we have fl(D) ∈ Conf (E). It
is now immediate to see that hs(fl(D)) = D , thus we conclude. �

The next lemma shows that every event structure E can be transformed into an hhp-bisimilar pess P (E) which can be
folded into E. For this reason we also say that E is unfolded to P (E).

Lemma 3.12 (unfolding event structures to pes’s). Let E be an event structure. Define a function φE :P (E) → E, for all H ∈ Hist(E) by
φE(H) = x if H ∈ Hist(x) for x ∈ E. Then φE is a folding.

Proof. The fact that φE is a morphism immediately follows from the observation that φE(D) = fl(D). Then by Lemma 3.11,
we have D � φE(D), as desired.

In order to conclude that it is a folding we show that given D1 ∈ Conf (P (E)), if φE(D1)
x−→ C2 then D1

H−→ D2 with
φE(D2) = C2. Let C1 = φE(D1) and assume C1

x−→ C2. By definition of transition (Definition 2.4), we have C1 � C2. Let
Hx = C2[x]. By definition of P (E), the causes �Hx� = {Hx[y] | y ∈ Hx}. For all y ∈ Hx \ {x}, clearly y ∈ C1. Moreover Hx[y] =
C2[y] = C1[y]. Therefore, by Lemma 2.1(2), Hx[y] ∈ D1. We thus conclude that

D1
Hx−→ D2

and moreover φE(D2) � C2. For the last statement, the only thing to observe is that the image of the causes of Hx are
exactly the causes of x. Indeed we have, for all H ∈ D2, say H ∈ Hist(y), that H � Hx iff y ∈ Hx iff y ≤C2 x, as desired. �

We next show that any morphism and any folding from a pes to an event structure E factorises uniquely through the
pes P (E) associated with E (categorically, φE is cofree over E). This will be useful to relate foldings in E with foldings in
P (E).

Lemma 3.13 (cofreeness of φE). Let E be an event structure, let P′ be a pes and let f : P′ → E be an event structure morphism. Then
there exists a unique morphism g : P′ →P (E) such that f = φE ◦ g.

P (E) E

P′

φE

f
g

Moreover, when f is a folding then so is g.

Proof. The function g can be defined, for all x′ ∈ P′ as

g(x′)= f (�x′�)

188

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
Note that this is a well-defined morphism. First observe that g(x′) ∈ Hist(E), hence it is an event in P (E). In fact, for
all x′ ∈ P′ , since f is a morphism and �x′� ∈ Conf (P′), f (�x′�) ∈ Conf (E), and f (�x′�) � �x′�, therefore g(x′) = f (�x′�) =
f (�x′�)[f (x′)] ∈ Hist(E). Moreover, the reasoning above shows that g(x′) ∈ Hist(f (x′)). Therefore, if g(x′) = g(y′) then
f (x′) = f (y′). This fact, recalling that f is injective on configurations, implies that also g is. Finally, for all C ′ ∈ Conf (P′),
since f is a morphism, f (C ′) ∈ Conf (E) and f (C ′) � C ′ . Therefore its g-image is

g(C ′)= {g(x′) | x′ ∈ C ′}
= { f (�x′�) | x′ ∈ C ′}
= { f (�x′�)[f (x′)] | x′ ∈ C ′} [Since morphisms preserve prefix order]

= { f (C ′)[f (x′)] | x′ ∈ C ′}
= hs(f (C ′))

Hence, by Lemma 3.11, g(C ′) = hs(f (C ′)) ∈ Conf (P (E)) and hs(f (C ′)) � C ′ , as desired.
For the second part, assume that f is a folding and let us show that also g is. We use the characterisation in Lemma 3.3.

Let C ′1 ∈ Conf (P′) and assume that g(C ′1) H−→ D2. Since φE is a morphism, this implies that f (C ′1) = φE(g(C ′1))
φE(H)−−−→ φE(D2).

Since f is a folding, by Lemma 3.3, there exists a transition C ′1
x′−→ C ′2 such that f (C ′2) = φE(C2). Observe that this implies

f (x′) = φE(H) and more generally f (�x′�) = φE(�H�), but since φE(�H�) = H

f (�x′�)= H .

We only need to show that g(C ′2) = D2. This is an immediate consequence of the fact that g(C ′2) = g(C ′1) ∪ {g(x′)} =
D1 ∪ {H} = D2, as desired. �
Remark 6. Lemma 3.13 means that the category PES of prime event structures is a coreflective subcategory of ES, i.e.,
P : ES→ PES can be seen as a functor, right adjoint to the inclusion I : PES→ ES. Moreover, P restricts to a functor on the
subcategory of foldings, P : ESf → PESf , where an analogous result holds. This is in line with many classical results in the
comparison of models of concurrency [36]. Intuitively, the existence of a coreflection means that for every event structure
in ES there exists a pes which represents its best approximation in the category PES, where the idea of approximation is
formalised by the notion of morphism in the category.

We conclude that all foldings between event structures arise from foldings of the associated pess.

Proposition 3.14 (folding through pess). Let E, E′ be event structures. For all morphisms f : E → E′ consider P (f) : P (E) → P (E′)
defined by P (f)(H) = f (H). Then f is a folding iff P (f) is a folding.

Proof. Let E, E′ be event structures, let f : E → E′ be a morphism and consider the commuting diagram

E E′

P (E) P (E′)

f

P (f)

φE φE′

If f is a folding then f ◦ φE : P (E) → E′ is a composition of foldings and thus, by Lemma 3.2, it is a folding. In turn, by
Lemma 3.13 this implies that P (f) is a folding.

Conversely, if P (f) is a folding, then φ′E ◦P (f) : P (E) → E′ is a composition of foldings and thus, by Lemma 3.2, it is a
folding. In turn, by Lemma 3.5 this implies that f is a folding. �
4. Foldings for prime and asymmetric event structures

In this section we study foldings on specific subclasses of poset event structures, providing suitable characterisations.
Motivated by the fact that foldings on general poset event structures always arise from foldings of the corresponding canon-
ical pess we first and mainly focus on pess. Then we discuss how this can be extended to asymmetric event structures (and
only give a hint to flow and bundle event structures). We will see that while each pes admits a maximally folded version,
for the other classes of event structures this does not happen in general.
189

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
4.1. Folding prime event structures

Since foldings are special morphisms, we first provide a characterisation of pes morphisms.

Lemma 4.1 (pes morphisms). Let P and P′ be pess and let f : P → P ′ be a function on the underlying sets of events. Then f is a
morphism iff for all x, y ∈ P

1. λ′(f (x)) = λ(x);
2. f (�x�) = � f (x)�; namely (a) for all x′ ∈ P′ , if x′ ≤ f (y) there exists x ∈ P such that x ≤ y and f (x) = x′ (b) if x ≤ y then

f (x) ≤ f (y);
3. (a) if f (x) = f (y) and x �= y then x#y and (b) if f (x)# f (y) then x#y.

Proof. First observe that pess have global precedence (see Definition C.1 in Appendix C) and x � y iff x ≤ y or x#y.
Now, assume that f is a morphism. Then property (1) holds by definition. Property (2) follows from the fact that

�x� ∈ Conf (P). Hence f (�x�) ∈ Conf (P′) and f (�x�) � �x�, which implies f (�x�) = � f (x)�.
Concerning condition (3b), observe that from Lemma C.2(1), instantiated with the notion of � for pess, we get

f (x)≤ f (y) or f (x)# f (y) implies x≤ y or x#y.

In particular, if f (x)# f (y) then x ≤ y or x#y and, since conflict is symmetric, we also have y ≤ x or y#x. It is now easy to
see that only the second possibility x#y can hold true, which is the desired conclusion. Property (3a) immediately derives
from Lemma C.2(2).

Conversely, assume that f satisfies conditions (1)-(3) above. Given a configuration C ∈ Conf (P), by conditions (2a) and
(3b), f (C) is a configuration in P′ . By condition (3a), f is injective on C . This, together with condition (2b), implies that
C � f (C). �

Those in Lemma 4.1 are the standard conditions characterising (total) pes morphisms (see, e.g., [4]), with the addition of
condition (2b) that is imposed to ensure that configurations are mapped to isomorphic configurations, as required by the
notion of (strong) morphism (Definition 3.1).

We know that not all pes morphisms are foldings. We next identify some additional conditions characterising those
morphisms which are foldings. The characterisation is later transferred to folding equivalences where it becomes simpler.

Theorem 4.2 (pes foldings). Let P and P′ be pess and let f : P → P′ be a morphism. Then f is a folding if and only if it is surjective
and for all W ⊆ P, x, y ∈ P, y′ ∈ P′

1. if x#∀ f −1(y′) then f (x)#y′;
2. if f (x) = f (y), �W and for all w ∈W w �∃ {x, y} then there exists z ∈ P such that f (z) = f (x) and �(W ∪ {z}).

Proof. Let f : P → P′ be a folding. Let us first observe that f is surjective. Take x′ ∈ P′ . Since �x′� ∈ Conf (P′), we have that

∅ �x
′�−−→ �x′�. Since f is a folding, there must be C ∈ Conf (P) such that f (C) = �x′�, and thus there is x ∈ C such that f (x) = x′ ,

as desired.
We next show that properties (1) and (2) hold.

1. We prove the contronominal, namely that if f (x) � y′ then there is y ∈ P such that f (y) = y′ and x � y. Assume that
f (x) � y′ . We distinguish two possibilities:
• If y′ ≤ f (x) then, by Lemma 4.1(2a), there exists y ≤ x such that f (y) = y′ . Hence x � y, as desired.
• Assume that, instead, ¬(y′ ≤ f (x)). Therefore, if we let C ′ = � f (x)� ∪ �y′� and X ′ = C ′ \ � f (x)�

� f (x)� X ′−→ C ′ (3)

By Lemma 4.1(2), we have that f (�x�) = � f (x)�. Therefore, since f is a folding, there must be a transition �x� X−→ C
with f (C) = C ′ . This means that there exists y ∈ C such that f (y) ∈ C ′ and, since x ∈ C , necessarily x � y, as desired.

2. Assume that �W , for all w ∈W w �∃ {x, y} and f (x) = f (y). Define C = �W � ∈ Conf (P). We distinguish two cases.
• If x ∈ C then we can simply take z = x, since clearly �(W ∪ {x}).
• Assume now that x /∈ C . Clearly f (x) /∈ f (C). Moreover, �(f (C)∪ { f (x)}). In fact, by Lemma 4.1(3), if for some u ∈ C

it were f (u)# f (x) = f (y) there would exist w ∈ W such that f (w)# f (x) = f (y). Hence we would have w#x and
w#y, contradicting the assumption w �∃ {x, y}.
Therefore f (C) X ′−→ f (C) ∪� f (x)� with X ′ = f � f (x)� \ f (C). Since f is a folding, this implies that C X−→ D with f (D) =
f (C) ∪ � f (x)� and D � f (C) ∪ � f (x)�. Therefore there exists z ∈ D such that f (z) = f (x). Since W ⊆ D , we have that
�(W ∪ {z}), as desired.
190

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
For the converse implication, assume that f is surjective morphisms satisfying conditions (1) and (2). We have to prove
that it is a folding.

Let C1 ∈ Conf (P) and assume that f (C1)
x′−→ C ′2. If C1 = ∅, take any x ∈ P such that f (x) = x′ , which exists by surjectivity.

By Lemma 4.1(2b) we have f (�x�) = �x′� = {x′}, and thus �x� = {x}. This means that C1 = ∅ x−→ {x}, and we conclude.
Otherwise, if C1 �= ∅, first observe that for all y ∈ C1 since f (y) � x′ , by condition (1), there exists some element
xy ∈ P such that xy � y and f (xy) = x. Note that necessarily ¬(xy ≤ y), otherwise, by Lemma 4.1(2b) we would have
x′ = f (xy) ≤ f (y), which is not the case.
Since C1 is finite and consistent, an inductive argument based on condition (2), allows us to derive the existence of
x such that f (x) = x′ and �(C1 ∪ {x}). Moreover, as argued above for the xy ’s, it is not the case that x ≤ y for some
y ∈ C1. Therefore there is a transition

C1
X−→ C1 ∪ �x�

where X = �x� \ C1.
We argue that X = {x} and thus we conclude. In fact, assume that there is some z ∈ X \ {x}. Since f is a morphism

f (z) ≤ f (x) = x′ . Now, since there is the transition f (C1)
x′−→, all causes of x′ must be in f (C1). Note that, since f is a

morphism, by Lemma 4.1(2), we have �x′� = � f (x)� = f (�x�). Therefore, there must exist z1 ∈ C1 such that f (z1) = f (z).
However, since z, z1 ∈ C1 ∪ (�x� \ {x}) which is a configuration in Conf (P), and f is injective on configurations, we get
z= z1 ∈ C1, contradicting the hypothesis. �

The notion of folding on pess turns out to be closely related to that of abstraction homomorphism for pess introduced
in [29] for similar purposes. More precisely, abstraction homomorphisms can be characterised as those pes morphisms
additionally satisfying condition (1) of Theorem 4.2, while they do not necessarily satisfy condition (2). Their more liberal
definition is explained by the fact that they are designed to work on a subclass of structured pess (see Appendix B for a
detailed discussion).

We finally show what the conditions characterising foldings look like when transferred to equivalences.

Corollary 4.3 (folding equivalences for pess). Let P be a pes and let ≡ be an equivalence on P. Then ≡ is a folding equivalence in
FEq(P) iff for all x, y ∈ P, x �= y, if x ≡ y then

1. λ(x) = λ(y);
2. [�x�]≡ = [�y�]≡;
3. x#y.

Moreover, for all x, y ∈ P, W ⊆ P

4. if x#∀[y]≡ then [x]≡#∀[y]≡;
5. if �W and for all w ∈W , w �∃ [x]≡ then there exists z ∈ [x]≡ such that �(W ∪ {z}).

Proof. Let P be a pess and let ≡ be a folding equivalence. This means that there exists a folding f : P → P′ such that
≡ and ≡ f coincide. By Lemma 3.4 we know that P/≡ f

is isomorphic to P′ . Therefore using Lemma 4.1 and Theorem 4.2
we immediately get the validity of properties (1)-(4). Concerning property (5), we show that, more generally, if ∼ W ,
{x1, . . . , xn} ⊆ [x]≡ and for all w ∈W w �∃ {x1, . . . , xn} then there is z ∈ [x]≡ such that � (W ∪{z}). The proof is by induction
on n.

• if n ≤ 2, we conclude by hypothesis.
• if n > 2, let us split W = W ′ ∪ W ′′ in a way that for all w ′ ∈ W ′ w ′ � x1 and for all w ′′ ∈ W ′′ w ′ �∃ {x2, . . . , xn}.

By inductive hypothesis, there is z′′ ∈ [x]≡ such that � (W ′′ ∪ {z′′}). Therefore we have that for all w ∈ W = W ′ ∪ W ′′
w �∃ {x1, z′′}. Now by hypothesis, we deduce the existence of z such that f (x1) = f (z) (hence z ∈ [x]≡) such that
� (W ∪ {z}), as desired.

Conversely, assume that ≡ satisfies properties (1)-(5) above. Define a pes P′ as follows.

• E ′ = E/≡;
• [x]≡ ≤′ [y]≡ if [x]≡ ≤∃ [y]≡;
• [x]≡#′[y]≡ if [x]≡#∀[y]≡
• λ′([x]≡) = λ(x).

Observe that P′ is a well-defined pes. A simple key observation is that

[x]≡ ≤′ [y]≡ ≤′ [z]≡ ⇒ ∃x′ ∈ [x]≡. y′ ∈ [y]≡. z′ ∈ [z]≡. x′ ≤ y′ ≤ z′ (4)
191

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
In fact, since [y]≡ ≤′ [z]≡ , by definition we have the existence of y′ ∈ [y]≡ and z′ ∈ [z]≡ such that y′ ≤ z′ . Moreover, since
[x]≡ ≤′ [y]≡ , by definition we have the existence of x′′ ∈ [x]≡ and y′′ ∈ [y]≡ such that x′′ ≤ y′′ . Since y′ ≡ y′′ , by condition
(2), [y′]≡ = [y′′]≡ . Hence from x′′ ≤ y′′ we deduce the existence of x′ ≤ y′ with x′ ∈ [x]≡ as desired.

Using (4), we can immediately inherit the partial order properties of ≤′ and irreflexivity and hereditarity of #′ from the
analogous properties of #.

If we define a function f : P → P′ as f (x) = [x]≡ , it is now easy to show that it satisfies properties (1)-(3) in Lemma 4.1,
and (1), (2) in Theorem 4.2, hence it is a folding and we conclude. �

For instance, in Fig. 2, consider the equivalence ≡01 over P0 such that a1 ≡01 a2. This produces P1 as quotient. This
is not a folding equivalence since condition (4) fails: a1#∀[b2]≡01

, but ¬(a2#b2) and thus ¬([a1]≡01
#∀[b2]≡01

). Instead, the
equivalence ≡02 over P0 such that a1 ≡02 a2 and b1 ≡02 b2, producing P2 as quotient, satisfies all five conditions.

When pess are finite, the result above suggests a possible way of identifying foldings: one can pair candidate events
to be folded on the basis of conditions (1)-(3) and then try to extend the sets with condition (4)-(5) when possible. The
procedure can be inefficient due to the global flavor of the conditions. This will be further discussed in the conclusions.

We know from Proposition 3.6 that all event structures admit a “maximally folded” version. We next observe that the
same result holds in the class of pess, i.e., that for each pes there is a uniquely determined minimal quotient.

Theorem 4.4 (joining foldings on pes’s). Let P, P′, P′′ be pess and let f ′ : P → P′ , f ′′ : P → P′′ be foldings. Define E′′′ along with
g′ : P′ → E′′′ and g′′ : P′′ → E′′′ as in Proposition 3.6. Then E′′′ is a pes. Therefore, any pes admits a unique minimal quotient which is
a pes.

Proof. The fact that Pr(g′) : P′ → P (E′′′) and P (g′′) : P′′ → P (E′′′) are foldings derives from Proposition 3.14. In order to
show that this actually provides a pushout in PES, consider two morphisms g′1 and g′2 as in the diagram below, such that
g′1 ◦ f ′ = g′′1 ◦ f ′′:

P

P′ P′′

E′′′

P (E′′′)

f ′ f ′′

g′

P (g′)

g′′

P (g′′)
hφE′′′

Since E′′′ is a pushout and P (g′) ◦ f ′ = P (g′′) ◦ f ′′ , there is a unique morphism h : E′′′ → P (E′′′), making the diagram
commute. Now, observe that φE′′′ ◦ h : E′′′ → E′′′ can be used in the diagram below as mediating morphisms:

P

P′ P′′

E′′′

E′′′

f ′ f ′′

g′

P (g′)

g′′

P (g′′)
idE′′′ φE′′′ ◦h

Now, since also the identity works as mediating morphisms we deduce that φE′′′ ◦ h = idE′′′ , which implies that φE′′′ is
injective. Since it is a folding, it is also surjective, and therefore it is an isomorphism, as desired. �
Remark 7. Theorem 4.4 can be also obtained as a consequence of the fact that the subcategory PESf is a coreflective sub-
category of ESf and thus it is closed under pushouts as proved in [37, Corollary 1].

4.2. Folding asymmetric event structures

We know that foldings on all poset event structures arise from foldings on the corresponding canonical pess. Still, for
theoretical purposes and for efficiency reasons, a direct approach, not requiring the generation of the associated pes, can
be of interest. Here we discuss the case of asymmetric event structures. This generalises the results in [27] that identify
conditions which are only sufficient and apply to a subclass of foldings (the so-called elementary foldings, merging a single
192

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
set of events). Note also that, despite the fact that in this paper we work in a slightly different framework, we continue to
have that, as observed in [27], aess (and also fess) do not admit a unique minimal quotient in general.

We first characterise morphisms in the sense of Definition 3.1 on aess.

Lemma 4.5 (aes morphisms). Let A and A′ be aess and let f : A → A′ be a function on the underlying sets of events. Then f is a
morphism if and only if for all x, y ∈ A, x �= y

1. λ(f (x)) = λ(x);
2. � f (x)� ⊆ f (�x�);
3. (a) if f (x) ↗ f (y) then x ↗ y and (b) if x ↗ y and ¬(y ↗ x) then f (x) ↗ f (y);
4. if f (x) = f (y) then x ↗ y.

Proof. Let f : A → A′ be a morphism. Just observe that pess have global precedence (see Definition C.1) and x � y iff
x ↗ y. Condition (1) is obviously true. Property (2) follows by observing that, for all x ∈ A, since �x� ∈ Conf (A) and f is a
morphism, then f (�x�) ∈ Conf (A). Since configurations are causally closed we deduce that � f (x)� ⊆ f (�x�). The validity of
properties (3) and (4) is given directly by items (2) and (3) of Lemma C.2.

Conversely, assume that f : A → A′ enjoys properties (1)-(4). Let C ∈ Conf (A) be a configuration. Function f is injective
on C since, otherwise, if there are x, y ∈ C such that f (x) = f (y) and x �= y, we would get x ↗ y ↗ x, contradicting acyclicity
of ↗ in C . Observe that f (C) is a configuration. In fact, ↗ is acyclic in f (C) since C is and, by (3a), cycles are reflected by
f . In addition, f (C) is causally closed by (2), since C is. Finally, note that C � f (C). In fact, for all x, y ∈ C , if x ↗ y, since
¬(y ↗ x), by (3b), we get f (x) ↗ f (y). Conversely, if f (x) ↗ f (y) then x ↗ y, by (3a). �

These are the standard conditions characterising (total) aes morphisms (see [6]), with the addition of (3b), needed in
order to ensure that configurations are mapped to isomorphic configurations.

Proposition 4.6 (aes foldings). Let A and A′ be aess and let f : A → A′ be a morphism. Then f is a folding if and only if it is surjective
and for all X, Y ⊆ A, x, y ∈ A with x /∈ X, y /∈ Y , y′ ∈ A′

1. if f −1(y′) ↗∀ x then y′ ↗∃ f (�x�);
2. if ¬(x ↗∃ X), ¬(y ↗∃ Y), �(X ∪ Y) and f (x) = f (y) then there exists z ∈ A such that f (z) = f (x) and ¬(z↗∃ X ∪ Y).
3. given H ∈ Hist(x), if ¬(H ↗∃ X), and H1 Ĺ H such that f (H1) ∪ { f (x)} ∈ Hist(f (x)) there exists x1 such that H1 ∪ {x1} ∈

Hist(x1) and ¬(x1 ↗∃ X).

Proof. Let f : A → A′ be a folding. Surjectivity of f can be proved exactly as in Theorem 4.2. We show that properties
(1)-(3) hold.

1. We prove the contronominal, namely that if ¬(y′ ↗∃ f (�x�)) then there is y ∈ A such that f (y) = y′ and ¬(y ↗ x).
Let H = �x� ∈ Conf (A) and assume that ¬(y′ ↗∃ f (H)). Since f is a morphism H ′ = f (H) ∈ Hist(f (x)). Observe that we
can safely assume that y′ /∈ H ′ . In fact, otherwise, since ¬(y′ ↗∃ H ′), the only possibility would be y′ = f (x) and thus
we could take y = x since ¬(x ↗ x), as desired. Using the fact that ¬(y′ ↗∃ H ′) and y /∈ H ′ , if we let C ′ = H ′ ∪ �y′� and
Y ′ = C ′ \ H ′

H ′ Y ′−→ C ′ (5)

Therefore, since f is a folding, there must be a transition H
X−→ C with f (C) = C ′ . This means that there exists y ∈ X

such that f (y) = y′ and since H = �x�, necessarily ¬(y ↗ x), as desired.
2. Assume that x /∈ X , y /∈ Y ¬(x ↗∃ X), ¬(y ↗∃ Y), �(X ∪ Y) and f (x) = f (y). Define C = �X ∪ Y � ∈ Conf (A). We show

that x /∈ C . In fact, x /∈ �X� since x /∈ X and ¬(x ↗∃ X), and, for analogous reasons, y /∈ �Y �. Now, if x = y we are
done. Otherwise, we can prove that x /∈ �Y � and conclude. In fact, assume by contradiction that x ∈ �Y �, i.e., x ≤ w for
some w ∈ Y . Since f (x) = f (y) and x �= y, we deduce, by Lemma 4.5(4), that y ↗ x. Recalling x ≤ w , by inheritance of
asymmetric conflict, we get y ↗∃ Y , contradicting the hypotheses.
Since x /∈ C , we have f (x) /∈ f (C). Moreover, if we let y′ = f (x) = f (y), we have ¬(y′ ↗∃ f (C)). Otherwise, by
Lemma 4.5(3a), we would deduce x ↗∃ X or y ↗∃ Y , contradicting the hypotheses.

Therefore f (C) X ′−→ f (C) ∪ � f (x)� with X ′ = f � f (x)� \ f (C). Since f is a folding, this implies that C
X−→ D with f (D) =

f (C) ∪ � f (x)� and D � f (C) ∪ � f (x)�. Therefore there exists z ∈ D such that f (z) = f (x). Therefore ¬(z↗∃ C). Hence,
recalling C = �X� ∪ �Y �, we have ¬(z↗∃ X ∪ Y), as desired.

3. Take H ∈ Hist(x) with ¬(H ↗∃ X) and H1 Ĺ H such that f (H1) ∪ { f (x)} ∈ Hist(f (x)), hence f (H1)
f (x)−−→ f (H1) ∪ { f (x)}.

Consider C = H1 ∪ �X�. Since H1 ∪ {x} ⊆ H and ¬(H ↗∃ X), we have ¬(H1 ∪ {x} ↗∃ �X�) and thus, by Lemma 4.5(3a),
193

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
a c0 b

c1 c2

a b

c01 c2

a b

c1 c02

a b

c012

A0 A1 A2 A3

Fig. 8. Asymmetric event structures do not admit a minimal quotient.

¬(f (H1 ∪ {x}) ↗∃ f (�X�). Therefore f (H1 ∪ �X�) = f (H1) ∪ f (�X�) f (x)−−→ C ′1, and since f is a folding H1 ∪ �X� x1−→ C1,
with f (x1) = f (x) and clearly, given that the transition exists, x1 ↗∃ X , as desired.

For the converse implication, assume that f is a surjective morphism satisfying conditions (1)-(3). We have to prove that
it is a folding.

Let C1 ∈ Conf (A) and assume that f (C1)
x′−→ C ′2. When C1 = ∅ we argue as in Theorem 4.2. Otherwise, if C1 �= ∅, for

all y ∈ C1 it holds �y� ⊆ C1 and thus ¬(x′ ↗∃ f (�y�). Thus, by condition (1), there exists some element xy ∈ A such that
f (xy) = x′ and ¬(xy ↗ y). Note that necessarily xy �= y.

Since C1 is finite and consistent, an inductive argument based on condition (2) allows us to derive the existence of x
such that f (x) = x′ and ¬(x ↗∃ C1). Therefore there is a transition

C1
X−→ C2

where C2 = C1 ∪ �x� and X = �x� \ C1.
Let H = C2[x]. By definition of history, if ¬(H ↗∃ C2 \ H). Let H ′1 = f (C1)[x′] \ {x′} and let H1 its f -counterimage in

C1. We have H1 � H , x′ = f (x) /∈ f (H1) and f (H1) ∪ { f (x)} ∈ Hist(f (x)). Then, by condition (3), there exists x1 such that
H1 ∪ {x1} ∈ Hist(x1) and ¬(x1 ↗∃ C2 \ H), hence ¬(x1 ↗∃ C1 \ H1). This implies C1

x1−→ C1 ∪ {x1}, as desired. �
We already observed that working in the class of aess we can obtain smaller quotients than in the class of pess (see,

e.g., the hhp-bisimilar structures P2 in Fig. 2 and A0 in Fig. 4). However, unsurprisingly, the folding criteria for aess are
less elegant and more complex than those for pess. For a practical use, the reference to histories could cause a loss of
efficiency. Moreover, the uniqueness of the minimal quotient is lost. Consider for instance the aess in Fig. 8. It can be seen
that h01 : A0 → A1 is a folding where the events c1, caused by a and c0 in conflict with a, are merged in a single event c01
in asymmetric conflict with a. Similarly, h02 : A0 → A2 is a folding obtained by merging c0 and c2. These are two minimal
foldings that do not admit a join in the class of aess. In fact, if we merge all three c-labelled events we obtain A3 , and it is
easy to see that the function h03 : A0 → A3 is not a folding. In fact, consider {a, b} ∈ Conf (A0). Then h03({a, b}) = {a, b} c012−−→,
a transition that cannot be simulated in A0 . Indeed, it can be seen that the join of h01 and h02 is the event structure E in
Fig. 1(right), which cannot be represented as an aes.

In passing, we note that also in the class of fess and bess the existence of minimal foldings is lost. In fact, consider the
fess in Fig. 5 (which can be also viewed as bess). It can be easily seen that F1 and F2 are different minimal foldings of
F0 . In particular, merging the three d-labelled events as in F3 modifies the behaviour. In fact, in F3 , the event d012 is not
enabled in C = {a} since c ≺ d012 and no event in C is in conflict with c. Instead, in F0 , the event d0 is clearly enabled from
{a}.

Existence of a unique minimal folding could be possibly recovered by strengthening the notion of folding and, in par-
ticular, by requiring that foldings preserve and reflect histories. Note, however, that this would be against the spirit of our
work where the notion of folding is not a choice. Rather, after having assumed hhp-bisimilarity as the reference behavioural
equivalence, the notion of folding is essentially “determined” as a quotient (surjective function) that preserves the behaviour
up to hhp-bisimilarity.

5. Conclusions

We studied the problem of minimisation for poset event structures, a class that encompasses many stable event structure
models in the literature, assuming hereditary history-preserving bisimilarity as the reference behavioural equivalence. We
showed that a uniquely determined minimal quotient always exists for poset event structures and also in the subclass of
prime event structures, while this is not the case for various models extending prime event structures. We showed that
foldings between general poset event structures arise from foldings of corresponding canonical prime event structures.
Finally, we provided a characterisation of foldings of prime event structures, and discussed how this could be generalised to
other classes, developing explicitly the case of asymmetric event structures.

We believe that, besides its original motivations from the setting of business process models and its foundational interest,
this work can be of help in the study of minimisation, under a true concurrent equivalence, of operational models which
can be mapped to event structures, like transition systems with independence or Petri nets.
194

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
d c

a1 b1 a2 b2

c d

a1 b1 a2 b2

Fig. 9. Two pess involved in the absorption law.

As underlined throughout the paper, our theory of folding has many connections with the literature on event structures.
The idea of “unfolding” more expressive models to prime algebraic domains and prime event structures has been stud-
ied by many authors (e.g., in [28,3,31,32,7]). The same can be said for the idea of refining a single action into a complex
computation (see, e.g., [24] and references therein). Instead, the problem of characterising behaviour-preserving quotients
of event structures has received less attention. We already commented on the relation with the notion of abstraction ho-
momorphisms for pess [29], which captures the idea of behaviour preserving abstraction in a subclass of structured pess.
In some cases, given a Petri net or an event structure a special transition system can be extracted, on which minimisation
is performed. In particular, in [38] the authors propose an encoding of safe Petri nets into causal automata, in a way that
preserves hp-bisimilarity. The causal automata can be transformed into a standard labelled transition system, which in turn
can be minimised. However, in this way, the correspondence with the original events is lost.

The notion of behaviour preserving function has been given an elegant abstract characterisation in terms of open
maps [25]. In the paper we mentioned the possibility, discussed in detail in Appendix A, of viewing our foldings as open
maps and we observed that various results admit a categorical interpretation. This gives clear indications of the possibility
of providing a general abstract view of the results in this paper, something which represents an interesting topic of future
research.

The characterisation of foldings on prime (and asymmetric) event structures can be used as a basis to develop, at least
in the case of finite structures, an algorithm for the definition of behaviour preserving quotients. The fact that conditions for
folding refer to sets of events might make the minimisation procedure very inefficient. Determining suitable heuristics for
the identification of folding sets and investigating the possibility of having more “local” conditions characterising foldings
are interesting directions of future development.

Although not explicitly discussed in the paper, considering elementary foldings, i.e., foldings that just merge a single set
of events, one can indeed determine some more efficient folding rules. This is essentially what is done for aess and fess
in [27]. However, restricting to elementary foldings is limitative, since it can be seen that general foldings cannot be always
decomposed in terms of elementary ones (e.g., it can be seen that in Fig. 2, the folding f02 : P0 → P2 cannot be obtained as
the composition of elementary foldings).

When dealing with possibly infinite event structures one could work on some finitary representation and try to devise
reduction rules acting on the representation and inducing foldings on the corresponding event structure. Observe that work-
ing, e.g., on finite safe Petri nets, the minimisation procedure would be necessarily incomplete, given that hhp-bisimilarity
is known to be undecidable [39].

A natural question concerns the possibility of extending the results in this paper to concurrent behavioural equiva-
lences weaker than hereditary history-preserving bisimilarity. While reduction techniques of practical interest can be surely
devised, we believe that the results in this paper, eminently the existence of a unique minimal quotient, can be hardly
extended to other behavioural equivalences. An obvious candidate equivalence would be history-preserving bisimilarity, but
the attempt would fall short. In fact, consider the pess in Fig. 9, which are known to be history-preserving bisimilar but not
hereditary history-preserving bisimilar [25]. One can easily realise that they are both minimal, i.e., no quotient preserves
history-preserving bisimilarity. In fact two instances of both a and b are needed: one excluding and the other allowing
for the execution of c and d, respectively. Technically, an important property that fails is the analogous of Lemma 3.8 for
history-preserving bisimilarity, i.e., the possibility of viewing a history-preserving bisimilarity as an event structure. For even
weaker notions of behavioural equivalence, like step or pomset bisimulation equivalence (see, e.g., [24]) the answer is less
immediate. However, for equivalences which do not fully preserve the causal structure of computations it looks very difficult
to be able to get a legal event structure model as a quotient.

In addition, we recall that hereditary history-preserving bisimilarity has been defined on other general models of con-
currency, like configuration structures and higher-dimensional automata [40,41]. Understanding whether the results in this
paper can be generalised also to these settings is an interesting direction of future research.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
195

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
Appendix A. Foldings as open maps

Here we observe that foldings, as defined in the paper, arise as open maps in the sense of [25]. We start by recalling the
notion of open map.

Definition A.1 (open map). Let M be a category and let C be a subcategory of M. A morphism f : M → M ′ is C-open if for all
morphisms e : C → C ′ and commuting square

C M

C ′ M ′

c

e f

c′

c′′

there exists a morphism c′′ : C ′ → M such that the two triangles commute.

Let Pom denote the subcategory of ES having conflict-free pess as objects and injective morphisms as arrows. Then
we can show that foldings are Pom-open morphisms in ES, generalising to our setting a result proved for prime event
structures in [25].

Lemma A.1 (foldings as open maps). Let E, E′ be event structures and let f : E → E′ be a morphism. Then f is a folding if and only if
f is Pom-open.

Proof. Let f be a folding. In order to prove that f is a Pom-open map, assume to have a commuting square as in Defini-
tion A.1. Since C is a conflict-free prime event structures, its set of events, ordered by causality, which abusing the notation,
we still denote by C is a configuration. Since c is a morphism c(C) ∈ Conf (E) and c(C) � C , and thus f (c(C)) ∈ Conf (E′)
and f (c(C)) � C . Similarly, c′(C ′) ∈ Conf (E′) and c′(C ′) � C ′ . Finally observe that e(C) � C ′ . Thus c′(e(C)) = f (c(C)) � c′(C ′),

meaning that f (c(C)) X ′−→ c′(C ′) for a suitable X ′ . By definition of folding, there must be a transition c(C) X−→ D such that
f (D) = c′(C ′). Therefore, we can define c′′ : C ′ → E as follows: for all x′ ∈ C ′ , let c′′(x′) be the unique y ∈ D such that
f (y) = c′(x′).

Conversely, assume that f is an Pom-open map. We show that f satisfies the condition of Lemma 3.3. Let C1 ∈ Conf (E)

and consider a transition f (C1)
x′−→ C ′2. If we view configurations C1, C ′2 as pomsets, then we can build the following com-

muting square

C1 E

C ′2 E′
f |C1 f

c′′

By the fact that f is open, we get the morphism c′′ , and it is immediate to see that C1
x−→ c′′(C ′2) is the desired transition

that completes the proof. �
The above characterisation of foldings as Pom-open maps and the fact that PES is a coreflective subcategory of ES

(Lemma 3.13) can be exploited to derive some results in the paper. More precisely, Proposition 3.14 arises as an instance
of [25, Lemma 6(iii)] and Lemma 3.12 of [25, Lemma 6(ii)].

Appendix B. Relating foldings and abstraction homorphisms

Abstraction homomorphisms have been introduced in [29] as a way of capturing behaviour preserving quotients of event
structures. As explained in the main text, the mentioned work focuses on a subclass of “well-structured” event structures
which can be obtained from the empty event structure by action-prefixing, non-deterministic choice + and parallel com-
position |. This allows the author to have a more liberal notion of quotient. More precisely, we next show that abstraction
homomorphisms can be characterised as those pes morphisms additionally satisfying condition (1) of Theorem 4.2, while
they do not necessarily satisfy condition (2).

In order to recall the notion of abstraction homomorphism, it is worth introducing some notation. Given a pes P and an
event x ∈ P let us define �x) = �x� \ {x}, �x� = {y | y ∈ P ∧ x < y}, and conc(x) = {y | y ∈ P ∧ ¬(x ≤ y ∨ y ≤ x ∨ x#y)}.

Definition B.1 (abstraction homomorphisms [29]). Let P, P′ be pess. An abstraction morphism is a function f : P → P′ such that
for all x, y ∈ P
196

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
1. λ′(f (x)) = λ(x);
2. f (�x)) = � f (x));
3. f (�x�) = � f (x)�;
4. f (conc(x)) = conc(f (x))

Lemma B.1 (foldings vs abstraction homomorphisms). Let P, P′ be pes and let f : P → P′ be a function. Then f is an abstraction
morphism iff f is a pes morphism additionally satisfying condition (1) of Theorem 4.2.

Proof. Let f be an abstraction homomorphism. We first prove conditions (1)-(3) of Lemma 4.1. The first condition is already
in Definition B.1. Condition (2), is immediately implied by Definition B.1(2) Concerning condition (3), let x, y ∈ P such that
f (x) = f (y) and x �= y. Observe that we cannot have x < y, otherwise by Definition B.1(2), we would have f (x) < f (y).
Dually, it cannot be y < x. Moreover, it cannot be x ∈ conc(y), otherwise Definition B.1(4) would be violated. Therefore,
necessarily x#y. The validity of condition (3b) is proved analogously.

We finally show that f satisfies also condition (1) of Theorem 4.2. Let x ∈ P, y′ ∈ P′ such that ¬(f (x)#y′) and we show
that ¬(x#y) for some y ∈ P such that f (y) = y′ . We distinguish various possibilities:

• If f (x) = y′ , we simply take y = x.
• If y′ < f (x), by Definition B.1(2) there exists y ∈ P with y < x such that f (y) = y′ , and we conclude.
• If f (x) < y′ , by Definition B.1(3) there exists y ∈ P with x < y such that f (y) = y′ , and we conclude.
• If none of the above holds, necessarily y′ ∈ conc(f (x)), and thus by Definition B.1(4) there exists y ∈ P with y ∈ conc(x)

such that f (y) = y′ , and we conclude.

Conversely, let f be a pes morphism additionally satisfying condition (1) of Theorem 4.2. We prove that conditions (1)-(4)
of Definition B.1 hold. As above, the first condition is already in Lemma 4.1. The second condition, namely f (�x)) = � f (x))
immediately follows from Lemma 4.1(2), i.e., f (�x�) = � f (x)�. In fact, we only need to observe that for all y < x, f (y) �= f (x),
otherwise, by Lemma 4.1(3a) we would have x#y.

Concerning (3), i.e., for x ∈ P, f (�x�) = � f (x)� let us prove separately the two inclusions.

• (⊆) Let y′ ∈ f (�x�), i.e., y′ = f (y) for some y ∈ �x�. Since x < y, by Lemma 4.1(2b), f (x) < f (y) and thus y′ = f (y) ∈
� f (x)�, as desired.

• (⊇) Let y′ ∈ � f (x)�, i.e., f (x) < y′ . Then, for all y ∈ f −1(y′), since f (x) < y′ = f (y), by Lemma 4.1(2a), there is z < y
such that f (z) = f (x). Hence either z= x and thus x < y or z �= x, hence, by Lemma 4.1(3a), x#z and thus x#y.
It cannot be that x#∀ f −1(y′), otherwise, by Theorem 4.2(1), we would have x#y, which is not the case. Therefore there
must exist y ∈ f −1(y′) such that x < y. Therefore y′ = f (y) ∈ f (�x�).

Let us finally prove condition (4), i.e., for x ∈ P, f (conc(x)) = conc(f (x)). Again, we prove separately the two inclusions.

• (⊆) Let y′ ∈ f (conc(x)), i.e., y′ = f (y) for some y ∈ conc(x). By Lemma 4.1(2b) and Lemma 4.1(3b), it must be y′ =
f (y) ∈ conc(f (x)), as desired.

• (⊇) Let y′ ∈ conc(f (x)). Since ¬(f (x)#y′), by Theorem 4.2(1), we deduce that ¬(x#∀ f −1(y′)). Take any y ∈ f −1(y′)
such that ¬(x#y). Now observe that it cannot be x < y or y < x, otherwise, by Lemma 4.1(2b) f (x) and y′ = f (y)

would be ordered in the same way, contradicting y′ ∈ conc(f (x)). It cannot be x = y either, otherwise y′ = f (y) = f (x),
again contradicting y′ ∈ conc(f (x)).
Therefore, y ∈ conc(x) and thus y′ = f (y) ∈ f (conc(x)), as desired. �

For instance, consider the pess P7 and P8 in Fig. 10. It can be seen that the obvious function f78 : P7 → P8 is an
abstraction homomorphism but not a folding. Indeed, consider the configuration {b0, a1}. Then the step f78({b0, a1}) c01−→
{b01, a01, c01} cannot be simulated starting from {b0, a1}.

One can see that the pess P7 and P8 are not in the subclass of well-structured pess generated by the language considered
in [29]. In fact none of the available operators can be used as the top operator: action-prefixing would produce a pes with
a causally minimal event, while + or | would produce a pes whose events can be partitioned into two blocks pairwise in
conflict or concurrent, respectively.

Appendix C. Some properties of morphisms and foldings

Here we define some relations between the events of an event structure, based on the way in which such events occur
in configurations. They are used to prove general properties of morphisms and foldings of event structures, that then can
be instantiated on specific subclasses.
197

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
a0 b0 a1 b1

c0 c1

a01 b01

c01

P7 P8

Fig. 10. Abstraction homomorphisms vs folding morphisms.

Definition C.1 (precedence). Let E be an event structure. The precedence as the relation �⊆ E × E, defined for x, y ∈ E by
x � y if for all C ∈ Conf (E) such that x, y ∈ C it holds x <C y. We say that E has global precedence if for x, y ∈ E, if x, y ∈ C
and x <C y then x � y.

In words, x � y whenever in each computation where x, y occur necessarily x occurs before y. The precedence relation
is useful also to define a notion of semantic conflict. Observe that for any configuration C the precedences expressed by
� are always respected by ≤C , i.e., �∗

C⊆≤C . When the event structure has global precedence, the precedence relation is
sufficient to completely characterise the local order of configuration, i.e., for all configurations C it holds that <C= (�|C)∗ .

Closely connected, we can introduce a notion of semantic conflict.

Definition C.2 (conflict). Let E be an event structure. The conflict is a relation # ⊆ 2E , defined for a finite X ⊆ E by #X if
there is no C ∈ Conf (E) such that X ⊆ C . When {x, y} we often write x#y.

We observe that conflict and precedence are strictly related. In particular, binary conflict can be characterised in terms
of precedence.

Proposition C.1 (precedence vs conflict). Let E be an event structure. Then

• for X ⊆ E, if �|X is cyclic then #X.
• for x, y ∈ E, we have x#y iff x ≺ y ≺ x.

Proof. • Let X ⊆ E . If �|X is cyclic, i.e., there are x1, . . . , xn ∈ X such that x1 � x2 � . . . xn � x1 then the events x1, . . . , xn

and thus X can never occur together in the same computation, i.e., there cannot be C ∈ Conf (E) such that X ⊆ C . In
fact, otherwise, we should have �∗|C⊆≤C , contradicting the fact that ≤C is a partial order. In words, each of the events
xi should occur before the others, which is impossible.

• In particular, if x#y then x, y can never be in the same computation, hence trivially x ≺ y and y ≺ x, and observe that
also the converse holds. �

Morphisms on event structures can be shown to enjoy interesting properties with respect to the semantic relations.

Lemma C.2 (morphism properties). Let E, E′ be event structures and let f : E → E′ be a morphism. Then for all x, y ∈ E

1. if f (x) � f (y) then x � y;
2. if f (x) = f (y) then x � y, hence by duality x#y.

Moreover, if E, E′ have global precedence, then

3. if x � y and ¬(y � x) then f (x) � f (y);

Proof. Let x, y ∈ E

1. Assume f (x) � f (y). Let C ∈ Conf (E) be a configuration such that x, y ∈ C . Then f (x), f (y) ∈ f (C) and C ∈ Conf (E′).
Since f (x) � f (y) we have that f (x) < f (C) f (y) and thus, since f is a morphism, x <C y. Since this holds for any
configuration, we conclude x � y.

2. Assume f (x) = f (y). Since f is injective on configurations, there cannot be C ∈ Conf (E) such that x, y ∈ C . Therefore,
trivially x � y (and y � x, whence x#y).

3. If E, E′ have global precedence, f is a folding and x � y and ¬(y � x) then ¬(x#y) and thus there is some configura-
tion C ∈ Conf (E) such that x, y ∈ C . Since E has global precedence, x ≤C y. Now f (x), f (y) ∈ f (C) which is in Conf (E′).
Therefore f (x) ≤ f (C) f (y). Again, since E′ has global precedence, f (x) � f (y), as desired. �
198

P. Baldan and A. Raffaetà Theoretical Computer Science 935 (2022) 174–199
References

[1] J. Hopcroft, R. Motwani, J. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 2006.
[2] A. Meyer, L. Stockmeyer, The equivalence problem for regular expressions with squaring requires exponential space, in: SWAT (FOCS), IEEE Computer

Society, 1972, pp. 125–129.
[3] M. Nielsen, G. Plotkin, G. Winskel, Petri nets, event structures and domains, part 1, Theor. Comput. Sci. 13 (1981) 85–108.
[4] G. Winskel, Event structures, in: Petri Nets: Applications and Relationships to Other Models of Concurrency, in: LNCS, vol. 255, Springer, 1987,

pp. 325–392.
[5] G. Winskel, Events, causality and symmetry, Comput. J. 54 (1) (2011) 42–57.
[6] P. Baldan, A. Corradini, U. Montanari, Contextual Petri nets, asymmetric event structures and processes, Inf. Comput. 171 (1) (2001) 1–49.
[7] G. Boudol, I. Castellani, Permutation of transitions: an event structure semantics for CCS and SCCS, in: Linear Time, Branching Time and Partial Order

Semantics in Logics and Models for Concurrency, in: LNCS, vol. 354, Springer Verlag, 1988, pp. 411–427.
[8] G. Boudol, Flow event structures and flow nets, in: Semantics of System of Concurrent Processes, in: LNCS, vol. 469, Springer Verlag, 1990, pp. 62–95.
[9] R. Langerak, Bundle event structures: a non-interleaving semantics for lotos, in: 5th Intl. Conf. on Formal Description Techniques (FORTE’92), North-

Holland, 1992, pp. 331–346.
[10] P. Baldan, A. Corradini, H. Ehrig, M. Löwe, U. Montanari, F. Rossi, Concurrent semantics of algebraic graph transformation systems, in: G. Rozenberg

(Ed.), Handbook of Graph Grammars and Computing by Graph Transformation, Vol. III: Concurrency, World Scientific, 1999, pp. 107–187.
[11] P. Baldan, Modelling concurrent computations: from contextual Petri nets to graph grammars, Ph.D. thesis, University of Pisa, 2000.
[12] G. Schied, On relating rewriting systems and graph grammars to event structures, in: H.-J. Schneider, H. Ehrig (Eds.), Dagstuhl Seminar 9301 on Graph

Transformations in Computer Science, in: LNCS, vol. 776, Springer, 1994, pp. 326–340.
[13] G. Winskel, Event structure semantics for CCS and related languages, in: M. Nielsen, E. Schmidt (Eds.), Proceedings of ICALP’82, in: LNCS, vol. 140,

Springer Verlag, 1982, pp. 561–576.
[14] R. Langerak, Transformation and Semantics for Lotos, Ph.D. thesis, Department of Computer Science, University of Twente, 1992.
[15] D. Varacca, N. Yoshida, Typed event structures and the linear pi-calculus, Theor. Comput. Sci. 411 (19) (2010) 1949–1973.
[16] N. Busi, R. Gorrieri, A Petri nets semantics for π -calculus, in: Proceedings of CONCUR’95, in: LNCS, vol. 962, Springer Verlag, 1995, pp. 145–159.
[17] R. Bruni, H. Melgratti, U. Montanari, Event structure semantics for nominal calculi, in: C. Baier, H. Hermanns (Eds.), CONCUR 2006, in: LNCS, vol. 4137,

Springer, 2006, pp. 295–309.
[18] S. Crafa, D. Varacca, N. Yoshida, Event structure semantics of parallel extrusion in the pi-calculus, in: L. Birkedal (Ed.), Proceedings of FoSSaCS’12, in:

LNCS, vol. 7213, Springer, 2012, pp. 225–239.
[19] J. Pichon-Pharabod, P. Sewell, A concurrency semantics for relaxed atomics that permits optimisation and avoids thin-air executions, in: R. Bodík, R.

Majumdar (Eds.), POPL 2016, ACM, 2016, pp. 622–633.
[20] A. Jeffrey, J. Riely, On thin air reads: towards an event structures model of relaxed memory, in: M. Grohe, E. Koskinen, N. Shankar (Eds.), LICS 2016,

ACM, 2016, pp. 759–767.
[21] S. Chakraborty, V. Vafeiadis, Grounding thin-air reads with event structures, Proc. ACM Program. Lang. 3 (POPL) (2019) 70:1–70:28.
[22] M. Dumas, L. García-Bañuelos, Process mining reloaded: event structures as a unified representation of process models and event logs, in: R. Devillers,

A. Valmari (Eds.), Petri Nets 2015, in: LNCS, vol. 9115, Springer, 2015, pp. 33–48.
[23] M. Bednarczyk, Hereditary history preserving bisimulations or what is the power of the future perfect in program logics, Tech. Rep., Polish Academy

of Sciences, 1991.
[24] R. van Glabbeek, U. Goltz, Refinement of actions and equivalence notions for concurrent systems, Acta Inform. 37 (4/5) (2001) 229–327.
[25] A. Joyal, M. Nielsen, G. Winskel, Bisimulation from open maps, Inf. Comput. 127 (2) (1996) 164–185.
[26] A. Armas-Cervantes, P. Baldan, M. Dumas, L. García-Bañuelos, Diagnosing behavioral differences between business process models: an approach based

on event structures, Inf. Sci. 56 (2016) 304–325.
[27] A. Armas-Cervantes, P. Baldan, L. García-Bañuelos, Reduction of event structures under history preserving bisimulation, J. Log. Algebraic Methods

Program. 85 (6) (2016) 1110–1130.
[28] A. Rensink, Posets for configurations!, in: W.R. Cleaveland (Ed.), Proceedings of CONCUR’92, in: LNCS, vol. 630, Springer, 1992, pp. 269–285.
[29] I. Castellani, Bisimulations for concurrency, Ph.D. thesis, University of Edinburgh, 1988.
[30] P. Baldan, A. Raffaetà, Minimisation of event structures, in: A. Chattopadhyay, P. Gastin (Eds.), Proceedings of FSTTCS’19, in: LIPIcs, vol. 150, Schloss

Dagstuhl - Leibniz-Zentrum Für Informatik, 2019, pp. 30:1–30:15.
[31] R. van Glabbeek, History preserving process graphs, Draft available at http://theory.stanford .edu /~rvg /abstracts .html #hppg, 1996.
[32] R. van Glabbeek, G. Plotkin, Configuration structures, event structures and Petri nets, Theor. Comput. Sci. 410 (41) (2009) 4111–4159.
[33] G. Boudol, I. Castellani, Flow models of distributed computations: event structures and nets, Tech. Rep. 1482, INRIA, https://hal .inria .fr /inria -00075080,

1991.
[34] G.M. Pinna, A. Poigné, On the nature of events, in: Proceedings of MFCS’92, in: LNCS, vol. 629, Springer Verlag, 1992, pp. 430–441.
[35] G.M. Pinna, A. Poigné, On the nature of events: another perspective in concurrency, Theor. Comput. Sci. 138 (2) (1995) 425–454.
[36] G. Winskel, M. Nielsen, Models for concurrency, in: S. Abramsky, D. Gabbay, T.S.E. Maibaum (Eds.), Semantic Modelling, in: Handbook of Logic in

Computer Science, vol. 4, Oxford University Press, 1995.
[37] H. Herrlich, G. Strecker, Coreflective subcategories, Trans. Am. Math. Soc. 157 (1971) 205–226.
[38] U. Montanari, M. Pistore, Minimal transition systems for history-preserving bisimulation, in: 14th Annual Symposium on Theoretical Aspects of Com-

puter Science, in: LNCS, vol. 1200, Springer Verlag, 1997, pp. 413–425.
[39] M. Jurdzinski, M. Nielsen, J. Srba, Undecidability of domino games and hhp-bisimilarity, Inf. Comput. 184 (2) (2003) 343–368.
[40] R.J. van Glabbeek, On the expressiveness of higher dimensional automata, Theor. Comput. Sci. 356 (3) (2006) 265–290.
[41] P. Baldan, D. Gorla, T. Padoan, I. Salvo, Behavioural logics for configuration structures, Theor. Comput. Sci. 913 (2022) 94–112.
199

http://refhub.elsevier.com/S0304-3975(22)00533-3/bib3E8F6BF9BD72BDC7E42DA9593E699671s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib0396EFD45A2A2B37995C85EEE2453FD6s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib0396EFD45A2A2B37995C85EEE2453FD6s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib711B702B2D37C36C7AFC1824BA7E7CCBs1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibA0B2D4343C76F15E4D65297C09F1B7D8s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibA0B2D4343C76F15E4D65297C09F1B7D8s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibEC018A34FEDD33C158E81FEEBE337E17s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib9A90EC4D542B1395478DA32C85AA3FB7s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibD9DA8920E931C7248FF2EF0DC652D3B1s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibD9DA8920E931C7248FF2EF0DC652D3B1s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib0198029C7AD06D1AB3E18AC5808B753Bs1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibFD200E101ADC7DB92514012EDF9535D4s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibFD200E101ADC7DB92514012EDF9535D4s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibDFF9299D93106BDCF6190006046A6DDDs1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibDFF9299D93106BDCF6190006046A6DDDs1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibDE804DEEDEA4EC0F7301D7D655689984s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib35B5708A877B2CCC81D1A9AD0E184F2Fs1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib35B5708A877B2CCC81D1A9AD0E184F2Fs1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibBD65483BCBB7DB5179318308237816B9s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibBD65483BCBB7DB5179318308237816B9s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib3AEE00B3DFC448857A3BD632EA5AD6A2s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib9D90F0E69FA6E32F2E12C52178A5D340s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib134A90F6CEF3B6C8BF53206E73BE8D14s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibAB7C95DDEB33767FE73747E316F8BA27s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibAB7C95DDEB33767FE73747E316F8BA27s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibEFE0FBE4FA92D25DAF0E4BCBC713217Es1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibEFE0FBE4FA92D25DAF0E4BCBC713217Es1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib4A6C64AE624A7973C3E27D7108445793s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib4A6C64AE624A7973C3E27D7108445793s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibCB5E84FE20F69EBE0C2822791470FA32s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibCB5E84FE20F69EBE0C2822791470FA32s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib6D49A2A13C79D3CA6DA11695193F6246s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibEFBFBB27C39D88B803F2C37C96B50FEFs1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibEFBFBB27C39D88B803F2C37C96B50FEFs1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib57428CB7D150F97F076E6DCE221DCC41s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib57428CB7D150F97F076E6DCE221DCC41s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib3510D90BAE6BD9857C66BDBEB8EFFDC1s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib9C2922B15C4B1751BAA1460FAEF5E90As1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib0DA37CDE37F3FF6321B7CAFFF3C77DC9s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib0DA37CDE37F3FF6321B7CAFFF3C77DC9s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibC4A81CFE791361341467A30C70EEA430s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibC4A81CFE791361341467A30C70EEA430s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibF43EFD0DE0434B63BB9E03B7C7777523s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibD30831B7D98BFD319A59D36C4B3B1CEBs1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibBA1FDBEC02CB60C6A051F6944E5E8343s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibBA1FDBEC02CB60C6A051F6944E5E8343s1
http://theory.stanford.edu/~rvg/abstracts.html#hppg
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib65F719CE7E1D9A582F71DEADA03CB1BCs1
https://hal.inria.fr/inria-00075080
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibA892D41D41EA3A89439D0214101B9A06s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibF3A29DF9336287A4B992D2C6666E5E1Fs1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib13D123EFF281AF489779887966D61DB5s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib13D123EFF281AF489779887966D61DB5s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib589EF6CF4F71036B08863DD38FA6ED99s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib5D60A01374B35F5B7572E1FF9EF67C00s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib5D60A01374B35F5B7572E1FF9EF67C00s1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bibB8019F41E8193FA9207710BAD1D711CAs1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib713325B8CDF004D09DE4CC9F58A6542Es1
http://refhub.elsevier.com/S0304-3975(22)00533-3/bib459A19A7776AA7127FA029187A45C14Ds1

	Minimisation of event structures
	1 Introduction
	2 Event structures and history-preserving bisimilarity
	2.1 Poset event structures
	2.2 Hereditary history-preserving bisimilarity
	2.3 Examples: prime, asymmetric, flow and bundle event structures

	3 Foldings of event structures
	3.1 Morphisms and foldings
	3.2 Folding through prime event structures

	4 Foldings for prime and asymmetric event structures
	4.1 Folding prime event structures
	4.2 Folding asymmetric event structures

	5 Conclusions
	Declaration of competing interest
	Appendix A Foldings as open maps
	Appendix B Relating foldings and abstraction homorphisms
	Appendix C Some properties of morphisms and foldings
	References

