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Abstract

We develop a theory of non-interference for multilevel security based on causality, with
Petri nets as a reference model. We first focus on transitive non-interference, where the
relation representing the admitted flow is transitive. Then we extend the approach to
intransitive non-interference, where the transitivity assumption is dismissed, leading to
a framework which is suited to model a controlled disclosure of information. Efficient
verification algorithms based on the unfolding semantics of Petri nets stem out of the
theory. We also argue about the possibility of performing a compositional verification.
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1. Introduction

The problem of controlling the flow of information in a computing system is a classical
one, faced by many contributions in the literature. A general formalization of information
flow security is provided by [1] that introduces the notion of non-interference. Intuitively
a security level is said not to interfere with another if what can be observed at the
latter level is not affected by what happens at the former. In the simplest scenario,
entities are classified according only to two levels, a High level, which intuitively should
be confidential, and a Low level, which is public, and the information is allowed to flow
from Low to High, but not vice-versa.

Different notions of behavior and observation lead to different non-interference prop-
erties. Originally non-interference has been studied for deterministic sequential sys-
tems, relying on a trace semantics. Since then, several variants of non-interference have
been studied, dealing with concurrent and non-deterministic systems. In concurrent for-
malisms which offer forms of composition and synchronization, such as process calculi
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and Petri nets, a popular formulation of non-interference is the so-called NDC (Non-
Deducibility on Composition), which looks at the system under analysis as a component,
possibly interacting with the surrounding environment. It states that a process (or net)
S is free of interferences whenever S running in isolation, seen from the low level, is
behaviorally equivalent to S interacting with any parallel high level process (or net) that
may synchronize on high actions (or transitions) [2, 3, 4, 5, 6, 7, 8, 9]. Intuitively, this
is often described by referring to some informal notion of causality – the activity at high
level should not cause any visible effects on the behavior at low level – but formalized in
terms of interleaving semantics.

This informal reference to causality is made formal in [7] that, relying on some previ-
ous work on non-interference notions in contact-free elementary nets (or equivalently pure
safe nets) and trace nets [5], provides a causal characterization of BNDC (Bisimulation-
based NDC) for Petri nets, in terms of the unfolding semantics [10]. The interest for
a causal characterization is not only of theoretical nature. On the pragmatic side the
use of a true concurrent semantics, like the unfolding, which represents interleaving only
implicitly, is helpful to face the state explosion problem which affects the verification of
concurrent systems.

Since its infancy (see, e.g., [11]) information flow security has recognized the usefulness
of dealing with multilevel security domains, where the security levels are not limited to
“high” and “low”. In general, a domain of security levels is considered, with a relation
between levels specifying the admitted flows. The transitive nature of information flow –
if information flows from level A to level B and from B to C then it necessarily flows from
A to C – naturally leads to work with security domains where the admitted flow relation
is a partial order and a system policy of the kind no read-up, no write-down, only allowing
a flow of information from lower to higher levels. The order can be total, expressing a
hierarchy of confidentiality degrees (e.g., top secret, secret, confidential and unclassified
in a military setting). It can also be partial, typically when various confidentiality criteria
are combined into a single domain. For instance, an administration could keep public
and sensitive citizen data concerning taxes and civil status. The fact that the rights of
accessing sensitive tax and civil status data are independent, naturally leads to a lattice
of security levels.

As argued, e.g., in [12] it can also be natural to consider security policies where the
admitted flow relation is not transitive, in a way that a direct flow between two security
levels, say from A to B, is forbidden, while a flow mediated through a third level, say D,
is admitted. Intransitive policies are suited, for instance, for representing declassification
or downgrading of confidential information. This allows for a controlled form of leakage,
making such policies more realistic than pure non-interference policies that instead im-
pose a complete isolation of confidential levels. More generally, by exploiting intransitive
policies, it is possible to prescribe the (possibly cyclic) paths on which information is
allowed to flow in a given system.

In this paper, building on [7, 13], we provide a causal characterization of non-
interference properties for (safe) Petri nets in a multilevel setting. We first focus on
multilevel transitive policies and the property BNDC. Then we consider intransitive
policies and the property BINI (Bisimilarity-based Intransitive Non-Interference) the
adaptation of BNDC to intransitive security domains. The characterization is used to
develop corresponding verification algorithms based on the unfolding semantics, that are
implemented in a tool called MultiUBIC (Multi Unfolding-Based Interference Checker).
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More in detail, in the transitive case a Petri net is shown to enjoy BNDC when its
unfolding reveals neither a direct causality from a higher level transition to a lower level
one (witnessed by a weak causal place), nor a direct conflict between a lower level and
a higher level transition (witnessed by a weak conflict place). Both situations represent
a violation of the policy: in the first situation, intuitively, a token produced at a higher
level flows down to a lower level, while in the second situation a transition of a higher
level competes for a token with one at a lower level. In the intransitive case, the charac-
terization becomes slightly more complex: a violation of the policy is still witnessed by
an influence (causality or conflict) from some level A to a level B to which the flow is not
permitted, but this must not be mediated by a level where information can legitimately
flow from A. Such characterizations enable the definition of algorithms that check the
non-interference property on suitably defined complete prefixes of the unfolding.

Relying on the causal characterization, we also prove some compositionality proper-
ties of transitive and intransitive non-interference, that can be of help in reducing the
complexity of the verification phase. In particular we show that, when a system can be
decomposed as the parallel composition of subcomponents, the absence of interferences
(validity of BNDC or BINI) for the entire system can be deduced from the absence of
interferences in the subcomponents.

The unfolding-based algorithms are implemented in the tool MultiUBIC [14]. Com-
pared to tools that construct (or explore) the reachability graph of the net, like AN-
ICA (Automated Non-Interference Check Assistant) [15] and PNSC (Petri Net Security
Checker) [16], the partial order representation of concurrency in MultiUBIC - as for its
predecessor UBIC – leads to a gain of efficiency for highly concurrent systems where the
unfolding prefix can be exponentially smaller than the complete state space (see e.g. [17]).

In the paper we also show that the verification of multilevel policies can be reduced
to a number of problems on two-level security domains (possibly enriched with a down-
grading level in the intransitive case). This suggests an alternative way of dealing with
multilevel systems. Indeed, MultiUBIC comes equipped with facilities for performing the
reduction. The experiments suggest that, in general, a direct multilevel verification is
more efficient when the number of levels increases, but situations are singled out where
the reduction is instead more convenient.

This paper brings to a maturity the work initiated in [7, 13]. Concerning the transitive
setting, we generalize [7] by developing notions, algorithms and a tool that deal with
general multilevel domains rather than with two-level domains. Once the right notions
are identified some parts of the extension work relatively smoothly. Hence we tried to
describe only the main aspects, still keeping the paper as much as possible self-contained.
Concerning the intransitive case, the paper treats general multilevel intransitive domains
that include, as a special case, the two-level domains with downgrading of the conference
paper [13].

The rest of the paper is organized as follows. In § 2 we define multilevel security
domains and we review some basic notions for Petri nets, and their unfolding seman-
tics. In § 3 we focus on transitive policies and the BNDC property, providing a causal
characterization and a corresponding algorithm for verifying whether a safe Petri net is
BNDC. In § 4 we extend the results established for BNDC to intransitive policies. In § 5
we prove some compositionality properties for BNDC and BINI. In § 6 we present the
tool MultiUBIC and discuss the results of some test runs (fully detailed in Appendix B).
In § 7 we draw some conclusions and outline possible research directions. Results and
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algorithms presented for safe nets can be easily extended to the so-called locally-safe nets,
a larger class of possibly non-safe Petri nets defined in [13]. For the sake of simplicity, in
the main text we deal with safe nets. The (small) changes needed to adapt the theory
to locally-safe nets are described in Appendix A.

2. Multilevel Security Domains and Petri Nets

In this section, we introduce multilevel security domains and we review some basic
notions about Petri nets, with special attention to their unfolding semantic. xs

2.1. Multilevel Security Domains

We start by defining the notion of security domain.

Definition 1 (multilevel security domain). A multilevel security domain (L , ) is
a finite set of security levels L , endowed with a binary reflexive relation  ⊆ L × L
called security policy. If  is also transitive and thus a preorder we call (L , ) a
transitive multilevel security domain.

The security policy describes which information flows are legitimate. It is assumed
to be reflexive because entities at the same security level should reasonably be able to
freely exchange information. Concerning transitivity, as already observed, while the flow
of information is transitive by its nature, security policies need not to be. Security
levels will be ranged over by L,L′, L1, L

′
1 and so forth. Without loss of generality we

can assume any transitive security domain to be a partial order, i.e., the relation  
to be antisymmetric. In fact, if  is a proper preorder (i.e, it is not antisymmetric),
we can equivalently consider the induced partial order obtained as the quotient under
the equivalence  ∩  −1. In fact, since equivalent levels can communicate in either
direction, they can be safely collapsed. Examples of multilevel security domains will be
discussed later, after introducing also net systems. Given S ⊆ L we write S for its
complement L \ S.

Definition 2 (upper sets and targets). Let (L , ) be a multilevel security domain.
An upper set is a subset U ⊆ L such that if L ∈ U and L L′ then L′ ∈ U . The set of
targets of a security level L ∈ L is ↑L = {L′ ∈ L | L L′}. The set of strict targets
of L is ↑↑L = ↑L \ {L}.

Intuitively, an entity (user, program, variable, instruction) with associated security
level L has permission to influence, or to write, or to pass information to any entity with
security level in ↑L. Any other information flow is a violation of the policy. Notice that
a violation involves two levels: it is a flow from level L to level L′ with L 6 L′. It can
be perceived from both ends with different perspectives: L is “talking” to so someone it
should not, or L′ is “listening” something it should not.
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2.2. Petri Nets and Net Systems

A (Petri) net is a tuple N = (P, T, F ) where P , T are two disjoint sets of places and
transitions, respectively, and F : (P ×T )∪(T ×P )→ N is the flow function. Graphically
places and transitions are drawn as circles and rectangles, respectively, while the flow
function is represented by using weighted directed arcs connecting places and transitions.
For example if F (p, t) = 2 then there is an arc from p to t of weight 2. When the arc
weight is 1 it will be omitted. For x ∈ P ∪ T we define •x = {y ∈ P ∪ T : F (y, x) > 0}
(the pre-set of x) and x• = {y ∈ P ∪T : F (x, y) > 0} (the post-set of x). We will use •(.)
and (.)• also over sets, letting •X =

⋃
x∈X

•x and X• =
⋃
x∈X x

•, for any X ⊆ P ∪ T .
For all nets in the paper we will assume that •t 6= ∅ for all t ∈ T .

A marking of N is a function m : P → N. A transition t ∈ T is enabled at a marking
m, denoted m[t〉, if m(p) ≥ F (p, t) for all p ∈ P . If m[t〉 then t can be fired leading
to a new marking m′, written m[t〉m′, defined by m′(p) = m(p) + F (t, p) − F (p, t) for
all places p ∈ P . The enabling and firing relations are extended to σ ∈ T ∗ (set of all
finite sequences of elements of T ) by defining m[ε〉m (where ε is the empty sequence)
and m[σ〉m′[t〉m′′ imply m[σt〉m′′. For a marking m, we denote m◦ = {t ∈ T : m[t〉}. In
pictures markings are represented as black dots, called tokens, inside places (the presence
of n dots inside place p means that m(p) = n). A marked net is a pair N = (N,m0)
where N is a net and m0 is a marking of N . Since marked nets can be recognized by
the use of the boldface symbol, the qualification “marked” will be sometimes omitted. A
marking m′ is reachable if there exists σ ∈ T ∗ such that m0[σ〉m′. The set of reachable
markings of N is denoted by [m0〉. When m[t〉m′, the marking m′, uniquely determined
by m and t, is denoted by 〈m[t〉. Analogously, for σ ∈ T ∗, if m[σ〉 we can define the
marking 〈m[σ〉.

A net N is safe if for every p ∈ P and every m ∈ [m0〉 we have m(p) ≤ 1.
In order to formalize information flow properties in the setting of Petri nets, as

in [5, 6], we work with Petri nets where transitions are associated with security levels
taken from a fixed multilevel domain. Differently from [5, 6] levels are not confined to
be just High and Low.

Definition 3 (net system). Given a multilevel security domain L , a net system over
L is a tuple N = (P, T, F, λ) where (P, T, F ) is a Petri net and λ : T → L is a function
which assigns a security level to each transition. For S ⊆ L we define TS = {t ∈ T |
λ(t) ∈ S}, the set of transitions whose security level is in S.

Net systems will typically be ranged over by N,N ′, N0 and so on. Superscripts and
postscripts carry over the components of the net system. With a slight abuse of notation,
we will write TL instead of T{L}. For the sake of conciseness, we will omit the parentheses
when applying λ to a transition, writing λt for λ(t). Moreover, we will apply λ to sets
of transitions T ′ ⊆ T , writing λT ′ for the set {λt | t ∈ T ′}.

As an example, consider the net system S and security domain in Fig. 1. It represents
a measurement device consisting of two independent sensors that get new data for a
processor, that, in turn, can poll them to acquire a more recent measurement. Each
sensor has a cyclic behavior. For instance, the left sensor is capable to get a measure
(transition getA). Such measure can be exposed at its interface (transition showA) and
then removed after a while (transition remA), restarting the cycle. Alternatively, the
measure can be sent to a shared cache (transition sendA) which in turn update the
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getA
a1

sendA
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sendB
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b¬b
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processP
LA
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Figure 1: A non-BNDC net system S over the security domain L (top left). Function λ is λtL = L.

memory (transition updC). Note that the presence or absence of a datum at the interface
is represented by a token in place a or ¬a, respectively. The cache is accessed by the two
sensors via transitions upd iC in mutual exclusion (since it can store a single measure),
as guaranteed by the use of place Free, consumed by transitions sendA and sendB , and
produced by upd1C and upd2C . The processor cyclically get some value for the measure.
If a value is exposed at the sensor interfaces (places a or b marked) then one of such
values is taken (transitions poll1P and poll2P ), otherwise (places ¬a and ¬b marked) the
value from the cache is read (transition readP ).

The security level of transitions is given by their subscript (namely, λtL 7→ L). Tran-
sitions modeling the left and right sensors have security level A and B, respectively. The
cache and processor have security levels C and P respectively. The intuition is that the
two sensors should not interfere with each other, and they can send information to the
processor directly or through the cache. The processor and the cache should not affect
the behavior of the sensors. Throughout the paper we will consistently adopt the same
graphical notation of Fig. 1 for net systems: transitions will be annotated with their level
as a subscript, and the associated domain will be drawn in a (blue) box.

An S-system is a net system such that T = TS , i.e. a system only capable of perform-
ing actions with security level in S. We call N = (N,m0) a marked S-system when N is
an S-system, and since we will consistently use the bold font to denote marked systems
we will often drop the qualification “marked”.

In order to formalize the non-interference notions we resort, as in [6], to some opera-
tions on nets systems, namely (parallel) composition and restriction.

Definition 4 (composition). Let N and N ′ be two net systems such that P ∩ P ′ = ∅
and for all t ∈ T ∩ T ′ it holds λt = λ′t. The composition of N and N ′ is the net
system N |N ′ = (P ∪ P ′, T ∪ T, λ ∪ λ′, F ∪ F ′). The composition of N = (N,m0) and
N′ = (N ′,m′0) is the marked net system N |N′ = (N |N ′,m0 ∪m′0).
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sendA
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sendB

b1

getB

a0 lA lB b0

remA showA upd1C upd2C showB remB

¬aa

cache

b¬b

poll1P readP poll2P

S1

poll1P readP poll2P

R W

processP

Figure 2: Two subsystems S1 and S2 of the running example S such that S = S1 |S2.

Note that above F ∪ F ′ and m0 ∪ m′0 are well-defined because of the disjointness
conditions on the set of places of N and N ′, and λ ∪ λ′ is well defined because we
required the labeling functions to agree over the common transitions of N and N ′.

IntuitivelyN |N ′ is the parallel composition ofN andN ′ synchronized on the common
transitions. Whenever we consider two net systems N and N ′ we shall implicitly assume
that the disjointness requirements are satisfied so that N |N ′ always makes sense. Note
that this might require some “renaming”.

As an example, the net system S of Fig. 1 can be obtained as the composition S1 |S2

where S1 and S2 are two subsystem reported in Fig. 2.
The restriction of net system with respect to a set of transitions T ′ simply removes

the transitions in T ′. The formal definition follows.

Definition 5 (restriction). Given a net system N and a subset T1 ⊆ T , the restriction
of N by T1 is the net system N \T1 = (P, T \T1, λ\T1, F \T1) where λ\T1 is the restriction
of λ to T1 and F \T1 is the restriction of F to (P × (T \T1))∪ ((T \T1)×P ). For a net
system N, the restriction N \ T1 is (N \ T1,m0).

As an example, the restriction S \ T ′, where S is the running example and T ′ =
{remA, showA, getA, sendA} can be found in Fig. 3.

2.3. Unfolding of Net Systems

The unfolding of a Petri net N is a structure that provides a compact representa-
tion of the possible computations of N: places represent occurrences of the tokens that
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a0 lA lB b0

upd1C upd2C showB remB

¬aa

cache
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poll1P readP poll2P
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processP

Figure 3: The restriction S \ T ′ with T ′ = {remA, showA, getA, sendA}.

are produced in computations of N and transitions are copies of the transitions of N,
representing their possible firings [10]. The unfolding is infinite whenever the net N has
a cyclic behavior, but when the net is finite state, along the lines of the seminal work
in [18, 19], finite fragments can be constructed containing a representation of all the
reachable markings. For highly concurrent systems, such prefixes are possibly exponen-
tially smaller than the so-called marking graph, i.e., the directed graph whose nodes are
the reachable markings of N and arcs correspond to transition firings.

We next define some relevant dependency relations that, on net unfoldings, allow us
to characterize computations and reachable markings.

Definition 6 (dependency relations). Let N be a net. The causality relation < is
the least transitive binary relation on P ∪ T such that x < y if x ∈ •y. By ≤ we denote
the reflexive closure of <. The conflict relation ] is the least symmetric binary relation
on P ∪T such that (i) if t, t′ ∈ T , t 6= t′ and •t∩ •t′ 6= ∅ then t]t′; (ii) if x < x′ and x]y
then x′]y. We say that x, x′ are concurrent when neither x < x′ nor x′ < x nor x#x′.

The unfolding is an acyclic net, constructed inductively starting from the initial
marking of N and then adding, at each step, an occurrence of each transition of N which
is enabled by (the image of) a concurrent subset of the places already generated. Below,
we write π1 for the standard projection function over the first component of pairs.

Definition 7 (unfolding). Let N = ((P, T, F ),m0) be a marked net. Define the net
U (0) = (T (0), P (0), F (0)) as follows:

T (0) = ∅ ; P (0) =
⋃
p∈P {(p, i) : 1 ≤ i ≤ m0(p)} ; F (0) = ∅ .

Then we define the unfolding as the least net U(N) = (P (ω), T (ω), F (ω)) containing U (0)

and such that
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• if t ∈ T and X ⊆ P (ω) is a pairwise concurrent set of places such that π1(X) = •t,
and ∀p ∈ •t. |{b ∈ X : π1(b) = p}| = F (p, t), then y = (t,X) ∈ T (ω); moreover
F (ω)(x, y) = 1 for all x ∈ X.

• if t ∈ T (ω), p ∈ π1(t)• and 1 ≤ i ≤ F (π1(t), p), then zi = (p, t, i) ∈ P (ω); moreover
F (ω)(t, zi) = 1 for all zi (i = 1, . . . , F (π1(t), p)).

The unfolding of a marked net system falls into the class of occurrence nets [10], a
subclass of nets where causality is acyclic and well-founded, conflict is irreflexive and the
arcs of the flow relation have weight at most 1 (i.e., F is a relation). The initial marking
is often left implicit as it is identified as the set of minimal places.

Places and transitions in the unfolding represent tokens and firing of transitions,
respectively, of the original net. Each place in the unfolding is a tuple recording the
place in the original net and the “history” of the token. For historical reasons transitions
and places in the unfolding are also called events and conditions, respectively. The
projection π1 over the first component maps places and transitions of the unfolding to
the corresponding items of the original net N.

Notation 1. Given an event e, the security level of the corresponding transition π1(e)
will be often referred to as the security level of the event and we will write λe for λπ1(e).

As an example, consider the net system N in Fig. 4 (left). This is a slightly simplified
version of the subnet that, in the running example of Fig. 1, corresponds to one of the
sensors. A fragment of the unfolding U(N) of such system is provided in Fig. 4(right). In
the unfolding, the conditions labeled by a0 and ¬a on the top, according to Definition 7,
are (a0, 1) and (¬a, 1), respectively. Event get1A is (getA, {(a0, 1)}) and the condition a1
in its post-set is (a1, get1A, 1). Similarly, event show1

A is (showA, {(a1, get1A, 1), (¬a, 1)}).
As examples of dependency relations, note that get1A ≤ show1

A and get1A ≤ send1
A, while

show1
A]send1

A and show1
A]updC1 . In this specific case there are no events which are neither

causally dependent nor in conflict, hence no pair of them is concurrent. Concurrency will
come into play later, when dealing with the full system where we have two copies of the
sensor.

The runs of N are represented by the configurations of U(N), i.e., subsets of T (ω) that
are causally closed and conflict-free. For an event e ∈ T (ω) we define its causes as the
set [e] = {e′ ∈ T (ω) : e′ ≤ e}. We write [e) for the set of strict causes, i.e., [e) = [e] \ {e}.
We extend the notion of set of causes to subsets X ⊆ T (ω) by setting [X] =

⋃
e∈X [e].

Definition 8 (configuration). A configuration of U(N) is a finite subset C ⊆ T (ω)

such that (C ×C)∩ ] = ∅ and [C] = C. The set of all configurations of U(N) is denoted
by C(U(N)).

A configuration of U(N) can be associated with a reachable marking of N, obtained
by firing all its events in any order compatible with causality. Formally, we define the
cut of a configuration C as the set of places C◦ = (P (0) ∪

⋃
e∈C e

•) \ (
⋃
e∈C

•e), which
is the marking of the unfolding reached after the execution of C. This in turn induces a
marking on N given by M(C)(p) = |{b ∈ C◦ : π1(b) = p}|, for every place p of N.

The unfolding can be shown to be marking complete in the sense that m ∈ [m0〉 if
and only if there exists C ∈ C(U(N)) such that M(C) = m (see [10, 20, 18]).
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Figure 4: A net system and the initial part of its unfolding.

3. Transitive Multilevel Non-Interference

In this section we focus on transitive multilevel security domains and we define the
reference security property in the paper as an instance of (Bisimulation-based) Non-
Deducibility on Composition (BNDC).

3.1. Bisimilarity-based Non-Deducibility on Composition

Let (L , ) be a fixed transitive multilevel security domain, that throughout the
section will be designated simply as L . The definition of BNDC is obtained by adapting
that in [5, 7] to the multilevel setting. First, in order to formalize the intuitive idea of
variations of the behavior which are visible at a given security level we rely on a view
function which filters any firing sequence by keeping only the transitions whose security
level is in a given set S. This is sometimes called a purge function (see e.g. [21]).

Definition 9 (view function). Given a subset of the domain S ⊆ L and any net
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system N , the view function S(•) : T ∗ → T ∗S , is defined inductively by

S(σ) =


ε if σ = ε

tS(σ′) if σ = tσ′ and λt ∈ S
S(σ′) if σ = tσ′ and λt 6∈ S

The view function is used to define a bisimulation equivalence intended to capture
the discriminating power of a user which is able to observe only events with security level
in a given set.

Definition 10 (S-view bisimulation). Let N and N′ be net systems and S ⊆ L . An
S-view simulation of N by N′ is a relation R ⊆ [m0〉 × [m′0〉 such that:

• (m0,m
′
0) ∈ R ;

• if (m,m′) ∈ R and m[σ〉 then there exists σ′ such that S(σ) = S(σ′), m′[σ′〉 and
(〈m[σ〉, 〈m′[σ′〉) ∈ R.

An S-view bisimulation between N and N′ is a relation R ⊆ [m0〉 × [m′0〉 such that
both R and R−1 are S-view simulations. If there exists an S-view bisimulation between
N and N′, we say that they are S-view bisimilar and we write N ≈S N′.

When working in a two-level setting, namely in the domain B = {Low  High}, a
system is considered free of interferences when the low level behavior is not influenced
by high level interactions. Formally, following [6], a net system N is BNDC when for
any High-net system N′ (where all transitions are labeled High),

N ≈Low (N |N′) \ (THigh \ T ′)

i.e., the “low level” view of the behavior of N remains unchanged when the net interacts
with any high level net system.

The generalization to the multilevel setting considers any partition of the security
domain in an upper set U ⊆ L and its complement U , and requires that U does not
influence the view of U .

Definition 11 (BNDC). Let N be a net system. Given an upper set U ⊆ L , we say
that N is U -BNDC if for every marked U -system N′ we have that

N ≈U (N |N′) \ (TU \ T ′).

The system is BNDC if it is U -BNDC for any upper set U ⊆ L .

The definition can be understood as follows. Observe that, given an upper set U , if
the system is not U -BNDC then there is a flow from some level L ∈ U to some level
L′ ∈ U . This flow is a security violation since L 6 L′ otherwise L′ would be in U . Vice
versa, if there is a security violation, it will consist of a flow of information from some
security level L to a level L′ which cannot be influenced by L, namely L 6 L′. This is
captured by the definition above when considering the upper set U = ↑L. In fact, by
hypothesis L′ ∈ U .
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Clearly, in the two-level domain B = {Low  High}, Definition 11 is the usual one.
In fact, the only non-trivial partition is induced by the upper set U = {High}.

Note that the validity of the BNDC property for a multilevel system is reduced to
the validity of BNDC in a number of two-level domains, one for each upper set, with U
playing the role of the high part of the system, and its complement playing the role of
the low part.

The considerations above suggests that, whenever a security violation exists, it can be
detected when analyzing an upper set in the security domain of the kind U = ↑L for some
level L. This is indeed the case and we will prove it by exploiting the characterization
of BNDC based on causal and conflict places in the next section (see Corollary 1).

3.2. Characterizing Multilevel BNDC through Causal and Conflict Places

In this section we provide a characterization of the BNDC property on multilevel
domains based on causal and conflict places. Roughly speaking, a net system is shown
to be BNDC when there is no causal flow which is not allowed by the security policy,
i.e., when there is no causal dependency from a level L1 to a level L2 such that L1 6 L2.
Additionally, transitions with different security levels must never be in conflict, competing
for a token. In fact, if transitions of different levels L1 and L2 were in conflict, each one
would influence the behaviour of the other, and thus, since by antisymmetry, either
L1 6 L2 or L2 6 L1, at least in one direction the influence would violate the policy.
This generalizes the work developed for the two-level case in [5, 7].

Definition 12 (causal place). Let H, L ∈ L be two security levels such that H 6 L.
A place p ∈ P of a net system N is HL-causal if:

(i) p ∈ •l ∩ h• for transitions h, l ∈ T such that λh = H and λl = L;

(ii) there exists m ∈ [m0〉 satisfying m[hτl〉, m[τ〉 and 〈m[τ〉(p) < F (p, l), with τ ∈ T ∗↑H .

Place p is called causal if it is HL-causal for some levels H,L ∈ L .

By condition (i), transition l potentially consumes a token produced by transition h,
despite the fact that a flow between their security levels is forbidden by the policy. By
condition (ii) there is a firing sequence hτl where this indeed happens. In fact, since l
is enabled by m[hτ〉 but not by m[τ〉 with 〈m[τ〉(p) < F (p, l), it means that the firing
of h generates a token in p which is essential for the firing of l. The requirement that
τ ∈ T ∗↑H could be relaxed, allowing τ ∈ T ∗, without altering the theory. Intuitively, if the

condition in Definition 12 is satisfied with a firing sequence τ ∈ T ∗ that includes some
transition t with security level H ′ ∈ ↑H, say τ = τ1tτ2, then either t can be removed or
we would have a violation from t to l, with τ2 shorter than τ . In fact, note that since
H  H ′ and H 6 L, by transitivity we deduce H ′ 6 L. Since τ can be shortened a
finite number of times, eventually we would end up in a sequence τ ∈ T ∗↑H .

A causal place catches the presence of a positive information flow forbidden by the
policy: observing l it is possible to deduce that h happened in the past, even not having
the security level required to observe h. Instead, a conflict place intuitively captures
a negative information flow forbidden by the policy. It is a place where transitions at
different security levels L and H compete for a token in some computation. As observed
above, each transition influence the other, and necessarily, since we work in a partially
ordered domain, in one direction the influence is forbidden by the policy.
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Definition 13 (conflict place). Let H, L ∈ L be two security levels such that H 6 L.
A place p ∈ P of a net system N is HL-conflict if:

(i) p ∈ •l ∩ •h for transitions h, l ∈ T such that λh = H and λl = L;

(ii) there exists m ∈ [m0〉 satisfying m[hτ〉, m[τ l〉 and 〈m[hτ〉(p) < F (p, l), with τ ∈
T ∗↑H .

Place p is called conflict if it is HL-conflict for some H,L ∈ L .

In this case, the observation of l allows one to deduce that there was a time in the
past at which h could have fired, but it did not. This determines an illegal information
flow from level H to level L.

Lemma 1 (U-BNDC through HL-causal and HL-conflict places). Let U ⊆ L
be an upper set. A net system N is not U -BNDC iff N contains a HL-causal or HL-
conflict place for some H ∈ U and L ∈ U .

Proof. We build on the results for the two-level case in [7]. In fact, let U ⊆ L be an
upper set. Relabel the net over a two-level domain B = {Low  High} by assigning all
transitions in TU security level High and all transitions in TU security level Low . Then
U -view bisimilarity in the original net is exactly {Low}-bisimilarity in the two-level net.

Now, assume that N is not U -BNDC. It follows that the relabeled net is not BNDC
in the two-level domain B. By [7, Theorem 3.3] there must be a causal or conflict place
p in N. We can conclude by observing that p is an HL-causal or HL-conflict place,
respectively, for some H ∈ U and L ∈ U . For instance, assume that p is a causal place
with respect to the two-level domain B. This means that p ∈ •l ∩ h• for transitions
h, l ∈ T of levels High and Low respectively, and there exists m ∈ [m0〉 satisfying m[hτl〉,
m[τ〉 and 〈m[τ〉(p) < F (p, l), with τ ∈ T ∗Low . Therefore, with respect to the original
labelling, λh = H, λl = L with H ∈ U and L ∈ U and τ ∈ T ∗

U
. Since U is an upper set

and H ∈ U , we have that ↑H ⊆ U and thus U ⊆ ↑H which in turn implies TU ⊆ T↑H .
Hence τ ∈ T ∗

H
and, therefore, p is a HL-causal place.

The converse implication works in an analogous way. �

Theorem 1 (BNDC through causal and conflict places). A net system N is BNDC
iff N does not contain any causal or conflict place.

Proof. Immediate consequence of the definition of BNDC (Definition 11) and Lemma 1.
�

As an example, consider the net system and the security domain in Fig. 1. The
system is not BNDC as witnessed by places a0, b0 and Free, which are causal. E.g., for
a0 observe that a0 ∈ •getA∩upd1C

•, with C 6 A. Moreover, if we consider the marking
m reached after firing getA sendA (i.e., m0[getA sendA〉m), we have m[upd1C ε getA〉 (in
the notation of Definition 12, the firing sequence τ = ε, , i.e., it is empty) and 〈m[ε〉(a0) =
m(a0) = 0 < 1 = F (a0, getA), i.e., the firing of upd1C is essential to enable getA. Observe
that Free is also a conflict place. In fact, Free ∈ •sendA ∩ •sendB , A 6 B and there
is a reachable marking m, obtained by firing getA and getB (i.e., m0[getAgetB〉m) such
that m[sendA〉, m[sendB〉 and 〈m[sendA〉(Free) = 0 < F (Free, sendB), i.e., the firing of
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getA disables getB (again, with respect to the notation of the general Definition 13, the
sequence τ = ε). Intuitively, the origin of the conflict place is the mutually exclusive
access to the cache by the sensors that determines a covert channel between them. The
causal places, instead, are the result of the control switch between sensor and cache
during an update. If the requisite is to ensure that when a value is sent to the cache,
an update actually happens, these issues seem to be hardly solvable. The interference
between the sensor seems to be unavoidable as well, unless a dedicated cache is added.
In Section 4 we will see how by using intransitive policies and downgrading transitions
these interferences can be amended.

As announced before, by exploiting the above characterization of BNDC we can
prove that any security violation can be detected by analyzing only upper sets of the
kind U = ↑L for some level L. We first need a technical lemma.

Lemma 2 (BNDC is preserved by union). Let N be a net system and let U1, U2 ⊆
L be upper sets. If N is U1-BNDC and U2-BNDC then it is U1 ∪ U2-BNDC.

Proof. We exploit the characterization of BNDC through causal and conflict places in
Lemma 1. Assume that N is not U1 ∪ U2-BNDC. Then by Lemma 1 the net system N
contains a HL-causal or HL-conflict place p for some H ∈ U1 ∪ U2 and L ∈ U1 ∪ U2 =
U1 ∩ U2. Therefore either H ∈ U1 or H ∈ U2, and L is in both complements. Again by
Lemma 1, we deduce that either N is not U1-BNDC or it is not U2-BNDC, as desired.
�

Notice that the converse implication does not hold: a net system can be U1∪U2-BNDC
without being neither U1-BNDC nor U2-BNDC. The reason is that if a system contains a
forbidden interference between levels in U1 and U2, this interference could not be observed
with a U1 ∪ U2 bisimulation. A simple example of this can be obtained by considering
a domain L = {⊥, A,B,AB}, with policy ⊥  A  AB and ⊥  B  AB. Assume
that there are forbidden interferences between A and B. Then if we take U1 = {A,AB}
and U2 = {B,AB}, we have that the system is U1 ∪ U2-BNDC since all forbidden flows
are internal to U1∪U2, but it is neither U1-BNDC nor U2-BNDC, due to the interferences
between A and B.

The desired result then follows as a corollary.

Corollary 1 (multilevel BNDC to 2-level BNDC). A net system N is BNDC iff
N is ↑L-BNDC for each L ∈ L .

Another easy consequence of the characterization in Theorem 1 is that a BNDC net
systems, remains BNDC if we take any reachable marking as initial marking. This and
the subsequent characterization of BNDC will be useful later in the treatment of the
intransitive case (see the proof of Proposition 2).

Lemma 3 (persistency of BNDC). If a net system N = (N,m0) is BNDC, then also
N′ = (N,m) is BNDC for all m ∈ [m0〉.

Proof. We prove the contrapositive. Let m ∈ [m0〉 be a reachable marking in N and
assume that N′ = (N,m) is not BNDC. By Theorem 1, the net system N′ contains a
causal or conflict place p. Assume, without loss of generality, that it is causal and let
m′ ∈ [m〉 be the marking satisfying Definition 12. Then p is causal also in N because
it satisfies all the structural conditions and m′ ∈ [m0〉. Hence, again by Theorem 1, the
net system N is not BNDC, as desired. �
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3.3. Characterizing Multilevel BNDC in Safe Net Systems
In this section we set the ground for the design of an algorithm for checking multilevel

BNDC over safe Petri net systems. We start by showing that BNDC can be characterized
in safe nets by relying on weaker, algorithmically more convenient, notions of causal and
conflict place.

Notation 2. Given a safe net system N we denote by t− = {p ∈ P : p ∈ •t ∧ p 6∈ t•}
and t+ = {p ∈ P : t• ∧ p 6∈ •t} the sets of places where the firing of t decreases and
increases, respectively, the number of tokens.

Definition 14 (weak causal place). Let H, L ∈ L be two security levels such that
H 6 L and let N be a net system. A weak HL-causal place in N is any place p ∈ •l∩h+,
for some l, h ∈ T such that λh = H, λl = L, and there exists a reachable marking
m ∈ [m0〉 such that m[hτl〉, with τ ∈ T ∗. Place p is called weak causal if it is a weak
HL-causal for some H,L ∈ L .

Intuitively, the existence of a firing sequence hτl and of the place p ∈ •l ∩ h+ gives the
possibility that the firing of l depends on the firing of h, thus determining an illegal flow
from level H = λh to level L = λl. We will prove that for safe nets this potential flow
actually exists. Weak conflict places are defined along the same lines.

Definition 15 (weak conflict place). Let H, L ∈ L be two security levels such that
H 6 L and let N be a net system. A weakHL-conflict place in N is any place p ∈ •l∩h−,
for some l, h ∈ T such that λh = H, λl = L, and there exists a reachable marking
m ∈ [m0〉 such that m[h〉 and m[τ l〉, with τ ∈ T ∗. Place p is called weak conflict if it is
a weak HL-conflict for some H,L ∈ L .

As suggested by the terminology it is immediate to see that that any causal/conflict place
is a weak causal/conflict place, while the converse does not hold. However, for safe nets
from the presence of a weak causal or weak conflict place we can deduce the presence of
a (possibly different) causal or conflict place. Hence they witness the failure of BNDC.

Theorem 2 (BNDC through weak causal and conflict places). Let N be a safe
net system. Then N is not BNDC iff N has either a weak causal place or a weak conflict
place.

Proof. As in Lemma 1, we can build on the results for the two-level case in [7]. If N
is not BNDC in the multilevel domain L , then, by definition (Definition 11) it is not
U -BNDC for some upper set U ⊆ L . Consider the net system N′ obtained by relabeling
N over the two-level domain B = {Low  High}: transitions in TU and TU are assigned
security level High and Low , respectively. Then, as observed in the proof of Lemma 1,
the two-level net N′ is not BNDC. Therefore, by Theorem [7, Theorem 3.10], N′ contains
a weak causal or conflict place p. We can conclude by observing that in N place p is
weak HL-causal or weak HL-conflict, respectively, for some H ∈ U and L ∈ U . In order
to see this, assume, for instance, that p is a weak causal place in the two-level net N′.
This means that p ∈ •l ∩ h+ for transitions h, l ∈ T of levels High and Low respectively,
and there exists m ∈ [m0〉 satisfying m[hτl〉, with τ ∈ T ∗. If, in the original labelling,
λh = H and λl = L then H ∈ U and L ∈ U , and since U is an upper set H 6 L.
Therefore p is a weak HL-causal place. Similarly, if p is a weak conflict place in N′, we
can show that p is a weak HL-conflict place in N.

The converse implication works in an analogous way. �
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3.4. Characterizing Multilevel BNDC in the Unfolding of Safe Nets

We next observe that occurrences of weak causal and conflict places in the unfolding
of a safe net system can be given a characterization in terms of structural conditions.
Jointly with Theorem 2, this leads to a characterization of the BNDC property on the
unfolding of safe nets.

Notation 3. For a condition b and an event e in the unfolding U(N) we set e+ = {b ∈
P (ω) : π1(b) ∈ π1(e)+} and e− = {b ∈ P (ω) : π1(b) ∈ π1(e)−}.

Lemma 4 (weak causal/conflict places in the unfolding). Let N be a net system
and let p be a place in N. Then

(i) p is a weak causal place in N iff there are events h′, l′ with λh′ 6 λl′ and a condition
b ∈ •l′ ∩ h′+ such that π1(b) = p;

(ii) p is a weak conflict place in N iff there are events h′, l′ with λh′ 6 λl′ and [h′)∪[l′] ∈
C(U(N)), and a condition b ∈ •l′ ∩ h′− such that π1(b) = p.

Proof. (i) Let p be a weak HL-causal place in N, for some levels H,L ∈ L such that
H 6 L. Then there are transitions h, l in N such that λl = L, λh = H and a place
p ∈ •l ∩ h+ such that there exist m ∈ [m0〉 and τ ∈ T ∗ such that m[hτl〉. Therefore in
the unfolding there are occurrences of p, l, h, namely a condition b and events l′, h′ such
that π1(b) = p, π1(h′) = h, π1(l′) = l and b ∈ •l′ ∩ h′+, as desired.

Vice versa, assume that h = π1(h′), l = π1(l′) and p = π1(b), for some condition b
and events l′, h′ such that λh′ = H 6 L = λl′. Since, by hypotheses, b ∈ •l′ ∩ h′+, we
deduce that p ∈ •l ∩ h+. Consider the markings m1 = M([h′)) and m2 = M([l′)) and
let τ be any linearization of [l′) \ [h′] compatible with causality. Then m1[hτ〉m2[l〉 and
hence p is a weak HL-causal place in N.

(ii) Let p be a weak HL-conflict place in N, for some levels H,L ∈ L such that H 6 L.
Then p ∈ •l ∩ h− and there exists m ∈ [m0〉 and τ ∈ T ∗ such that m[h〉 and m[τ l〉.
Therefore in the unfolding there are occurrences of p, l, h, namely a condition b and events
l′, h′ such that π1(b) = p, π1(h′) = h, π1(l′) = l, with b ∈ •l′ ∩ h′−. Moreover there is a
configuration C such that M(C) = 〈m[τ l〉 and C ⊇ [h′)∪ [l′]. Hence [h′)∪ [l′] ∈ C(U(N)).

Vice versa, assume that h = π1(h′), l = π1(l′) and p = π1(b), for some condition b
and events l′, h′ such that λh′ = H 6 L = λl′. Since, by hypotheses, b ∈ •l′ ∩ h′−,
we deduce that p ∈ •l ∩ h−. Consider the markings m1 = M([h′)) and m2 = M([l′))
and let τ be any linearization of [l′) \ [h′] compatible with causality. Then m1[h〉 and
m1[τ〉m2[l〉, the second firing sequence being possible since [h′) ∪ [l′] ∈ C(U(N)). Hence
p is a weak HL-conflict place in N. �

As an immediate consequence we obtain the following characterization that relates
BNDC to the absence, in the unfolding, of conditions enjoying certain simple structural
properties.

Corollary 2 (BNDC in the unfolding of safe nets). Let N be a safe net system.
Then N is not BNDC iff there exist events h′, l′ such that λh′ 6 λl′ and a condition b
in U(N) such that one of the following holds:
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(i) b ∈ •l′ ∩ h′+

(ii) b ∈ •l′ ∩ h′− and [h′) ∪ [l′] ∈ C(U(N)).

Proof. Direct consequence of Theorem 2 and Lemma 4. �

An interesting fact is the possibility of reducing, by a suitable transformation of the
net, all interferences to causal ones. This was possible in the two-level case and, nicely,
the construction can be adapted to work with general multilevel domains. It will be useful
for the development of an efficient unfolding-based algorithm for checking BNDC (see
§ 3.5) since occurrences of causal places are characterized by a very local condition in the
unfolding, while checking the condition for weak conflict places requires an exploration
of the history of the interacting transitions. It will play a role also in the algorithm for
checking intransitive non-interference (see § 4.5).

Definition 16 (causal reduct). Given a net system N, let T# = {h ∈ T | ∃l ∈ T . •l∩
h− 6= ∅ ∧ λh 6 λl} and define the causal reduct γ(N) as the net system (N ′,m′0)
obtained from N as follows:

• P ′ = P ∪ {pH} ∪ {ph | h ∈ T#}

• T ′ = T ∪ {ch | h ∈ T#} ∪ Tγ where Tγ is defined as:
Tγ = {clh | h ∈ T# and l ∈ T and λh 6 λl and •l ∩ h− 6= ∅}

• λch = λh ∀h ∈ T#
λclh = λl ∀clh ∈ Tγ

• F ′(x, y) = F (x, y) ∀x, y ∈ P ∪ T
F ′(p, ch) = F ′(ch, p) = F (p, h) ∀h ∈ T# and ∀p ∈ P
F ′(ch, ph) = 1 and F ′(pH , ch) = 1 ∀h ∈ T#
F ′(p, clh) = F (p, l) and F ′(clh, p) = F (l, p) ∀clh ∈ Tγ and ∀p ∈ P
F ′(ph, clh) = 1 ∀clh ∈ Tγ

• m′0(p) = m0(p) ∀p ∈ P
m′0(ph) = 0 ∀h ∈ T#
m′0(pH) = 1

The set T# includes the transitions that have in their pre-set a potential conflict
place, i.e., transitions h for which there is some other transition l with λh 6 λl such that
•l ∩ h− 6= ∅. For each transition h ∈ T# we add to the net another transition ch that
tests whether h is enabled, by consuming and reproducing the pre-set of h. Transition
ch additionally produces a token in a new place ph. Hence, the presence of a token in ph
witnesses that the fact that previously h has been enabled. All new transitions ch inputs
a token from a new common place pH , ensuring that each firing sequence will include at
most one of them. Additionally, for each h ∈ T# and for all potentially illegal conflicts,
i.e., for each l such that h− ∩ •l 6= ∅ and λh 6 λl, we insert a new transition clh that is
a copy of l, but in addition it inputs the token generated by ch in ph. In this way, the
execution of clh will be possible only if in the past h was enabled but not executed, thus,
intuitively, transforming a conflict interference into a causal one.
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a1

sendA

Free

sendB

b1

lA lB

csendA
csendB

csendAsendB
csendBsendA

pH
psendA

psendB

Figure 5: A part of the causal reduct of the running example S. The rest of the net is unchanged. Green
transitions belong to the original net system.

As an example, (a part of) the causal reduct of the running example net system S is
reported in Fig. 5. Since A 6 B and Free ∈ •sendB ∩sendA

− we have that sendA ∈ T#.
This leads to the introduction of the transitions csendA

and csendAsendB
connected by

place psendA
. Since Free is weak conflict place psendA

becomes a weak causal place.
We define two functions f1 : (T ′)∗ → T ∗ and f2 : [m′0〉 → [m0〉 which project firings

sequences and markings of γ(N) over N by stripping the newly added items:

• f1(σ) =


ε if σ = ε

tf1(σ′) if σ = tσ′, t ∈ T
f1(σ′) if σ = chσ

′, h ∈ T#
lf1(σ′) if σ = clhσ

′, clh ∈ Tγ

• f2(m′) is the restriction of m′ to P .

It is easy to see that functions f1 and f2 are a indeed a simulation of γ(N) into N,
in the following sense.

Lemma 5 (simulation). Let N be a net system and let f1 : (T ′)∗ → T ∗ and f2 :
[m′0〉 → [m0〉 be functions defined as above. If m′1[τ〉m′2 in the causal reduct γ(N), then
f2(m′1)[f1(τ)〉f2(m′2) in the original net system N.

Proof. Straightforward induction on |τ |.

Proposition 1 (BNDC in the causal reduct). Let N be a net system. Then N is
not BNDC iff γ(N) contains a weak causal place.

Proof. Let N be a net system and let γ(N) = (N ′,m′0) be its causal reduct. In the
proof we use the notation of Definition 16.

(⇒) If N is not BNDC, then it contains either a (weak) causal place or a (weak) conflict
place. Let p ∈ •l ∩ h+ be a weak causal place in N. Then there exists a reachable
marking m ∈ [m0〉 satisfying the conditions of Definition 14. The unique marking m′ on
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N′ that extends m and such that m′(p′) = m′0(p′) for p′ ∈ P ′ \P witnesses the fact that
p is a weak causal place in γ(N).

Let p ∈ •l ∩ h− be a weak conflict place in N. There exist a reachable marking
m ∈ [m0〉 and a sequence τ ∈ T ∗ such that m[h〉, m[τ l〉. Let m′ be the unique marking
on N ′ that agrees with m on P and agrees with m′0 on P ′ \ P . Then by construction
m′[chτclh〉 and ph ∈ •clh ∩ ch+, meaning that ph is a weak causal place in γ(N).

(⇐) Assume that p′ is a weak causal place in γ(N). Therefore there are h′, l′ ∈ T ′,
p′ ∈ •l′ ∩ h′−, and m′ ∈ [m′0〉 such that λh′ 6 λl′, and m′[h′τ l′〉 with τ ∈ T ′∗. We
distinguish various cases according to the membership of h′ and l′.

• If h′ ∈ T then necessarily p′ ∈ P and, by Lemma 5, there is a firing sequence
f2(m′)[h′f1(τ ′)f1(l′)〉 in N. Now, note that if l′ ∈ T then f1(l′) = l′, otherwise, it
must be l′ ∈ Tγ and thus, also in this case, f1(l′) 6= ε. Hence in both cases p′ is a
causal place in N involving h′ and f1(l′).

• If h′ ∈ T ′\T then, by construction, it must be l′ ∈ T ′\T , with h′ = ch, l′ = clh and
p′ = ph for suitable l, h ∈ T . By Lemma 5 and observing that f1(chτ

′clh) = f1(τ ′)l,
we deduce f2(m′)[f1(τ ′)l〉. Moreover, since m′[ch〉, we have that f2(m′)[h〉 (recall
that, apart from place pH , transitions ch and h have the same pre-set). Finally,
•l ∩ h− 6= ∅, otherwise clh would have not been inserted. Hence any p ∈ •l ∩ h− is
a weak conflict place in N. �

3.5. Unfolding-based Algorithm for Multilevel BNDC on Safe Nets

Relying on the theory developed so far, we provide an algorithm for checking mul-
tilevel BNDC on a finite prefix of the unfolding of a safe net. Interestingly, while the
definition of multilevel BNDC is formulated in terms of a number of checks in the two-
level setting, we propose a verification technique based on the construction of a single
unfolding prefix.

3.5.1. Complete prefixes for multilevel BNDC interferences.

Starting with [18] techniques have been developed for efficiently constructing finite
prefixes of the unfolding which are complete with respect to some property of interest.
As already discussed in [7] in the two-level case, a prefix which is complete for marking
reachability could omit relevant information concerning interferences. In order to exploit
the theory of finite prefixes in [19], as a first step we identify a completeness criterion
ensuring that a prefix includes at least a representative for causal interferences, when a
net system is not multilevel BNDC.

Intuitively, in order to be complete for (causal) interferences a prefix should include
representatives of all possible situations of direct causal dependency. For this aim, in
the two-level case, markings were enriched by recording which tokens were generated by
high level transitions. Here we need to record, for each token, the level of the transition
generating it. The notion of completeness is adapted accordingly.

Definition 17 (c-marking, c-complete prefix). Let N be a net system and let C ∈
C(U(N)). The confidentiality marking (c-marking) of C is M∗(C) = 〈M(C),ΛC〉, where
ΛC : P → 2L is the function defined as:

ΛC(p) = {λe | e ∈ T (ω) ∧ p ∈ π1(e+ ∩ C◦)}
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A prefix UF of U(N) is complete for c-marking reachability, or simply c-complete, when
for any configuration C ∈ C(U(N)) there exists C ′ ∈ C(UF ) such that M∗(C) = M∗(C ′).

In words, the marking of a configuration C is enriched with a function ΛC , which
records, for each place, the security level of the transition, if any, that generated the
token in that place. Observe that, since nets are safe, for any p ∈ P there is at most one
token and thus at most one event e such that p ∈ π1(e+ ∩ C◦). This means that ΛC(p)
is empty or a singleton, and thus ΛC can be seen as a partial function from P to L .

The unfolding prefix is generated, inductively, starting from the initial marking and
adding, at each step, an occurrence of a transition enabled by a marking in the current
prefix. We next formalize the notion of possible extension of a prefix.

Definition 18 (possible extensions). Let N be a net systems and let UF be a prefix
of U(N). A possible extension of UF is any event e ∈ T (ω) such that e 6∈ TUF and
•e ⊆ C◦ for some configuration C of UF . The set of possible extensions of UF is denoted
PE(UF ). The one-step extension of U , denoted UB, is the prefix obtained by adding to
UF all possible extensions in PE(UF ).

We can now show that a c-complete prefix UF of U(N) includes sufficient information
for deciding whether or not N contains a weak causal place. Actually, besides the events
in the prefix, we need to consider also its possible extensions. In the algorithmic procedure
for producing the prefix, such events, that would be added by a further unfolding step,
are indeed added and marked as cut-offs.

Theorem 3 (weak causal places in c-complete prefixes). Let N be a safe net sys-
tem and let UF be a c-complete prefix of U(N). Then p is a weak causal place in N iff
there exist in UFB a condition b and events h′ and l′ such that π1(b) = p, b ∈ •l′ ∩ h′+
and λh′ 6 λl′.

Proof. Let p be a causal place in N. By Lemma 4(i) in U(N) there are a condition b′

and events h′′, l′′ such that b′ ∈ •l′′ ∩ h′′+, λh′′ 6 λl′′, and π1(b′) = p.
Let C ′ = [l′′). By c-completeness of UF there exists a configuration C ∈ C(UF )

such that M∗(C) = M∗(C ′). In particular ΛC(p) = ΛC′(p) 3 λh′. Thus we deduce
the existence of h′ and b such that λh′ = λh′′, b ∈ h′+ ∩ C◦ and π1(b) = p. Since
M(C) = M(C ′) and M(C ′)[π1(l′′)〉 there exists l′ in UFB such that π(l′) = π1(l′′) hence
λ(l′) = λ(l′′). Moreover, since p ∈ •π1(l′) and π1(b) = p we also have b ∈ •l′. Summing
up, λ(h′) = λ(h′′) 6 λ(l′′) = λ(l′) and b ∈ •l′ ∩ h′+, as desired.

For the converse implication, just observe that UFB is a subnet of U(N) and use
Lemma 4(i). �

Combining the previous theorem with Proposition 1 and Lemma 4 we obtain that
one can check BNDC on a c-complete prefix of the unfolding of its causal reduct.

Corollary 3 (BNDC on c-complete prefixes). Let N be a safe net system and let
UF be a c-complete prefix of U(γ(N)). Then N is not BNDC iff there exist events
h′, l′ ∈ UFB such that λh′ 6 λl′ and •l′ ∩ h′+ 6= ∅.
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3.5.2. Unfolding-based algorithm for multilevel BNDC on safe net systems.

From Corollary 3 we can derive an algorithm for checking the BNDC property on
safe nets. It incrementally constructs a c-complete prefix of the unfolding of the causal
reduct, checking, at any step, for the presence of a condition witnessing an illegal flow
(namely, a condition produced by an event at level H and consumed by an event at level
L such that H 6 L). Since safe nets are clearly finite-state, a c-complete prefix is finite
and thus the process necessarily terminates.

The construction of the prefix stops at events, called cut-offs [18], that are “useless”
since they produce a c-marking already produced by another event with smaller history.
The term smaller refers to some chosen adequate order ≺ on configurations [19]. The
simplest option is to define C ≺ C ′ is |C| < |C ′| as in [18]. The size of a complete prefixes
can be considerably reduced by choosing finer adequate orders [22]. This is actually done
in the tool MultiUBIC.

Definition 19 (cut-off). Let N be a net system and let UF be a prefix of U(N). An
event e in UF is called a cut-off when there exists another event e′ in UF such that
M∗([e]) = M∗([e′]) and [e′] ≺ [e].

The complete prefix is created by selecting iteratively one possible extension at a time,
the starting point being a prefix consisting only of the initial marking of the original net.
The construction of the prefix proceeds by adding events with ≺-minimal history and
stopping at cut-offs. From the general theory in [19], one can deduce that for a safe net
the algorithm stops producing a finite c-complete prefix. We omit the details as they
largely overlap with those for the two-level case in [7].

On these bases we developed the algorithm for checking BNDC on safe net systems
outlined in Fig. 6. It first computes the causal reduct γ(N) of N. Then it builds a c-
complete prefix of the unfolding of γ(N), looking, at each step, for the presence of direct
causalities between events satisfying the conditions in Theorem 3.

Corollary 4 (correctness of the algorithm for safe nets). Let N be a safe net sys-
tem. Then the algorithm of Fig. 6 always terminates and provides the answer ‘yes’ iff N
is BNDC.

Proof. Immediate consequence of Corollary 3. �

A bound on the size of a complete prefix can be obtained along the lines of [22]. When
the adequate order ≺ is total, in the worst case the number of events in a c-complete
prefix coincides with the number of c-markings (observe that given distinct events e, e′

such that M∗([e]) = M([e′]) then, since the order is total, either [e] ≺ [e′] or vice versa
and thus one of the events is a cut-off). In turn, the number of c-markings is (|L |+1)|S|

since each place can either be marked or not, and, for marked places, we record the
security level of the transition that generated the token, that gives |L |+ 1 possibilities
for each place.
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Data: A safe net system N.
compute γ(N)
UF = γ(m0)
pe = PE(UF )
while pe 6= ∅ do

take e ∈ pe such that [e] is ≺-minimal;
if ∃h, b ∈ UF . λh 6 λe ∧ b ∈ •e ∩ h+ then

return ‘no’
end
add e to UF
if e is not a cut-off then

add e• to UF
end
pe = PE(UF )

end
return ‘yes’;

Figure 6: Algorithm to decide BNDC on safe net systems.

4. Intransitive Multilevel Non-Interference

In this section we focus on intransitive policies. The general idea is that some flows
of information between levels that cannot communicate directly become allowed if they
are mediated by a chain of trusted intermediaries.

4.1. Bisimilarity-based Intransitive Non-Interference

In order to formalize the notion of violation with respect to an intransitive security
policy, we resort to an the idea that resembles that of separability in [21]. Roughly
speaking, in order to check whether there are illegal flows from a set of levels U , we
artificially isolate that set by removing from the system all legitimate targets, namely
elements whose level L′ is such that L  L′ for some L ∈ U . Then we check if some
level in U can still influence other levels in the rest of the system. If this happens, the
influence is certainly illegal, as it cannot be mediated by a chain of legal intermediaries
since any such chain has been broken by our construction. We extend the strict targets
(Definition 2) to sets of levels U ⊆ L by defining ↑↑U = ↑U \ U .

Definition 20 (U-BINI). Let U ⊆ L be a set of levels. A net system N is U -BINI if
for every reachable marking m ∈ [m0〉 the net system (N \ T↑↑U ,m) is U -BNDC in the

domain L ′ = (L \ ↑↑U, ∗).

Observe that the definition is well-given since, by construction, U is an upper set in the
transitive domain L ′ = (L \↑↑U, ∗), hence it respects the requirements in Definition 11.

The definition can be understood as follows. As mentioned above, for a set of levels
U we consider the net N \ T↑↑U , obtained by pruning the transitions whose level is in
↑↑U . These are the transition to which a flow from some level in U is admitted. The
absence of an illegal flow from U is thus reduced to the absence of any flow in the pruned
subsystem.
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Figure 7: Over the security domain L , net system N is not BINI while system N′ is.

Note that an illegal flow from U could occur at any reachable marking m of the
original system, but clearly the pruning operation can make m unreachable from the
initial marking. This is the reason why the pruned net N \T↑↑U needs to be checked with
respect to any marking reachable in the original net system N.

The fact that considering only the initial marking of the original net is not sufficient
to identify all violations is exemplified by the net system N in Fig. 7. It is easy to see that
the system has a violation of the policy λh  λd  λl witnessed by place p′. However
in the system were level λd has been pruned, if we start from the initial marking, there
is no way of firing l and thus of observing the interference. Instead, the interference is
revealed when starting from marking {p, q′}, which was reachable in the original system.

The definition of BINI in a multilevel setting, at this point, is the natural one.

Definition 21 (BINI). A net system N is BINI if it is U -BINI for every U ⊆ L .

In the next subsection we will show that that in a transitive security domain BINI
coincides with BNDC, a result that confirms the view of BINI as a natural generalization
of BNDC to intransitive domains.

4.2. Characterizing Multilevel BINI through Causal and Conflict Places

We show that the BINI property can be characterized, for general P/T nets, in terms
of the absence of causal and conflict places. Interestingly enough, the notion of causal
and conflict places remains formally the same as in the transitive case (see Definition 12
and Definition 13), but it is now taken in an intransitive security domain.

Lemma 6 (U-BINI through HL-causal and HL-conflict places). Let N be a net
system and let U ⊆ L be a set of levels. If N is not U -BINI then it contains a HL-causal
or HL-conflict place for some H ∈ U and L 6∈ U . Vice versa, if N contains a HL-causal
or HL-conflict place for H,L ∈ L then N is not {H}-BINI.

Proof. Let U ⊆ L be a set of levels. Let us first prove that if N is not U -BINI then
N contains HL-causal or HL-conflict places with H ∈ U and L 6∈ U . If N is not U -
BINI then there is a marking m ∈ [m0〉 for which (N \ T↑↑U ,m) is not U -BNDC in the

transitive domain L ′ = (L \ ↑↑U, ∗). By Lemma 1, this implies that in the pruned net
(N \T↑↑U ,m) in the transitive domain L ′ there exists a HL-causal or HL-conflict place,
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for some H ∈ U and L ∈ L ′ \ U = (L \ ↑↑U) \ U = L \ ↑U . Spelling out the definition
of causal place (Definition 12), it is readily seen that p is a HL-causal or HL-conflict
place also in N with respect to the intransitive domain L . In fact, H 6 L since, as
observed above, L ∈ L \ ↑U . Moreover, the firing sequence τ required by the definition
is included in T↑H also in L . In fact, ↑H ⊆ ↑↑U ∪ (↑H ∩ U) and note that τ it does

not include transitions with label in ↑↑U , which has been removed by the pruning, and it
does not include transitions in ↑H ∩U since these would be in ↑H also in the transitive
domain L ′.

For the converse implication, assume that the net system N contains a HL-causal
or HL-conflict place p for some H,L ∈ L . Let m and τ be respectively the marking
and firing sequence required by Definition 12 or Definition 13. It is easy to see that
(N \ T↑↑{H},m) has p as HL-causal or HL-conflict place in the transitive domain L ′ =

(L \↑↑{H}, ∗), because τ is not affected by the pruning. Hence, by Lemma 1, such net
is not {H}-BNDC and thus N is not {H}-BINI. �

Theorem 4 (BINI through causal and conflict places). A net system N is BINI
iff N does not contain any causal or conflict place.

Proof. Immediate consequence of Lemma 6. �

The characterization above is used to prove that in a transitive security domain the
properties BINI and BNDC coincide. Besides being useful from a at a technical level,
this result confirms that BINI is a natural generalization of BNDC.

Proposition 2 (BINI is BNDC on transitive domains). In a transitive multilevel
security domain L , a net system N is BINI if and only if it is BNDC.

Proof. (⇒) We proceed by contradiction. Suppose that N is BNDC but not BINI. Then
there are an upper set U ⊆ L and a reachable marking m ∈ [m0〉 such that (N \T↑↑U ,m)

is not U -BNDC over the domain L ′ = (L \↑↑U, ∗). By Theorem 1 such net contains a
HL-causal place p with H ∈ Uand L ∈ U . Observe that since the complement is taken
in L ′, we have that H 6 L. By definition of causal place, there are p ∈ •l ∩ h• for
transitions h, l ∈ T such that λh = H and λl = L and there is a marking m′ ∈ [m〉,
reachable in (N\T↑↑U ,m), satisfying m′[hτl〉, m′[τ〉 and 〈m[τ〉(p) < F (p, l), with τ ∈ T ∗↑H .

Observe that since m is reachable in N also m′ is reachable in N. Moreover, ↑H in L ′ is
a subset of ↑H in L . Hence p is also a HL-place for N in L . Therefore by Theorem 4
we conclude that N is not BINI.

(⇐) Suppose for the sake of contradiction that N is BINI but not BNDC. Since it is not
BNDC, by Theorem 1 there is a causal or conflict place p in N.

Assume, e.g., that there is a HL-causal place p for H,L ∈ L such that H 6 L. This
means that p ∈ •l ∩ h• for transitions h, l ∈ T such that λh = H and λl = L and there
is a reachable marking m ∈ [m0〉 satisfying m[hτl〉, m[τ〉 and 〈m[τ〉(p) < F (p, l), with
τ ∈ T ∗↑H . If we let U = {H}, we can see that p is a causal place in the system (N \T↑↑U ,m)

as well. In fact, ↑↑U = ↑H \ {H} and thus, since the firing sequence τ ∈ T ∗↑H , it is not

affected by the pruning. Again by by Theorem 1, we deduce that N is not U -BINI and
thus not BINI, thus reaching a contradiction.

An analogous argument applies to the case in which N contains a conflict place. �
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Figure 8: Three-level security domain D with downgrading.

We next observe that, as in the transitive case, in order to detect security violations
for BINI we do not need to examine all subsets of the security domain, but we can restrict
to singletons, i.e. to subsets of the kind U = {L}.

Proposition 3 (multilevel BINI on single levels). A net system N is BINI iff N
is {L}-BINI for each L ∈ L .

Proof. The fact that if a net is BINI then it is {L}-BINI for each L ∈ L is a straight
consequence of Definition 21. For the converse implication, observe that if N is not BINI
then, by Definition 21, there is some U ⊆ L such that N is not U -BINI. By Lemma 6
this implies the existence of a HL-causal or conflict place for some levels H,L ∈ L .
From this fact, by the same lemma, we have that N is not {H}-BINI, as desired. �

Now we can prove that BINI in a multilevel domain can be reduced to BINI for
three-levels systems. Let us denote by D the three-level domain in Fig. 8, where we
have a High level, a Low level and a downgrading level that can mediate the flows from
High to Low . The notion of BINI in a net system over D , apart from a slightly different
presentation, is exactly the one studied in [13].

Definition 22 (mapping to three-levels). Let N = ((P, T, λ, F ),m0) be a net sys-
tems over a multilevel security domain L . For each L ∈ L we define a net system over
the three-level domain D as ΦL(N) = ((P, T, λ′, F ),m0) where

λ′(t) =


High if t ∈ TL
Down if t ∈ T↑↑L
Low if t ∈ T↑L

Proposition 4 (multilevel BINI to 3-level BINI). A net system N is BINI if and
only for each L ∈ L the three-levels system ΦL(N) is BINI.

Proof. By Proposition 3, we know that N is BINI iff it is {L}-BINI for any L ∈ L .
In order to conclude observe that N is {L}-BINI iff ΦL(N) is BINI. By Definition 21,
ΦL(N) is BINI if it is U -BINI for every subset U ⊆ D . It is easy to verify that this
is a non-trivial requirement only for U = {High}. Since ↑↑{High} = {Down}, applying
Definition 20, we get that ΦL(N) is {High}-BINI if the pruned net system N \T{Down} is
{High}-BNDC in the transitive domain ({High,Low}, ∗D). Recalling how the relabeling
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has been defined, it is easy to see that N \T{Down} is the relabeling of N \T↑↑L. Moreover
requiring that N \ T{Down} is {High}-BNDC in the domain ({High,Low}, ∗D) is the

same as requiring that N \ T↑↑L is {L}-BNDC in the domain (L \ ↑↑L, ∗). Therefore
Proposition 3 allows us to conclude. �

4.3. Characterizing Multilevel BINI in Safe Net Systems

In this section we show that focusing on safe net systems [7] it is possible to identify
weaker notions of causal and conflict place, providing a characterization of BINI amenable
of effective verification in the unfolding. While the notions of causal and conflict places
were exactly the same in the transitive and intransitive case, their weak variants need to
be slightly changed when moving to intransitive domains.

Definition 23 (intransitive weak causal place). Let H, L ∈ L be security levels
such that H 6 L. An intransitive weak HL-causal place in a net system N is a place
p ∈ •l ∩ h+, for some l, h ∈ T such that λh = H, λl = L, and there exists a reachable
marking m ∈ [m0〉 such that m[hτl〉, with τ ∈ T ∗↑↑H . Place p is called intransitive weak

causal if it is a intransitive weak HL-causal for some H,L ∈ L .

Definition 24 (intransitive weak conflict place). Let H, L ∈ L be two security
levels such that H 6 L. An intransitive weak HL-conflict place in a net system N
is a place p ∈ •l ∩ h−, for some l, h ∈ t such that λh = H, λl = L, and there exists a
reachable marking m ∈ [m0〉 such that m[h〉 and m[τ l〉, with τ ∈ t∗↑↑H . Place p is called

intransitive weak conflict if it is a intransitive weak HL-conflict for some H,L ∈ L .

The difference with respect to the notions of weak causal and conflict place given in
Section 3.3 for transitive policies is that here we require τ not to contain any transition
to which information can could legally flow from h, according to the policy. Intuitively,
the reason is that, otherwise, the flow from h to l would be mediated by such transition,
possibly making the flow legal.

Theorem 5 (BINI through intransitive causal and conflict places). A safe net
system N is BINI iff it contains no intransitive weak causal or conflict place.

Proof. Assume that N is not BINI. Then there is U ⊆ L such that N is not U -BINI. In
turn, this means that there exists a reachable marking m ∈ [m0〉 for which (N \ T↑↑U ,m)

is not U -BNDC in the transitive domain L ′ = (L \↑↑U, ∗). By Lemma 1 we know that
this implies the existence of a HL-causal or conflict place in the pruned net (N\T↑↑U ,m)

in the transitive domain L ′, for levels L,H ∈ L such that H ∈ U and L ∈ U (whence,
in particular, H 6 L).

Assume, e.g., that there is a HL-causal place p. This means that p ∈ •l∩h• for some
l, h ∈ T such that λh = H, λl = L, and there exists a reachable marking m ∈ [m0〉 such
that m[hτl〉, m[τ〉 and 〈m[τ〉(p) < F (p, l), with τ ∈ (T ′↑H)∗, where T ′ = T \ T↑↑U is the

set of transitions of (N \ T↑↑U ,m). It follows that τ ∈ (T↑↑H)∗ in the original domain L

and thus p is an intransitive weak HL-causal place in N with respect to the intransitive
domain L . If p were a HL-conflict place we can proceed analogously and conclude that
p is a weak HL-conflict place also in the intransitive domain.
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For the converse implication, assume that N contains an intransitive weak causal or
conflict place p. Suppose, e.g., that p is an intransitive weak HL-causal place, namely
p ∈ •l ∩ h+, for some l, h ∈ T such that H = λh 6 λl = L, and there exists a reachable
marking m ∈ [m0〉 such that m[hτl〉, with τ ∈ (T↑↑H)∗. Now, take U = {H} and consider

the pruned system (N\T↑↑U ,m). In such system we have exactly the same firing sequence

showing that p is a weak causal place in the transitive domain L ′ = (L \ ↑↑U, ∗). The
net system (N\T↑↑U ,m) is safe since N is. Therefore by Theorem 2, the net (N\T↑↑U ,m)
is not U -BNDC and thus N is not BINI. �

Consider again the net system S in Fig. 1. In Section 3.2 we observed that S is not
BNDC due to some interferences between the cache and the sensors, and between the
sensors themselves. In both cases the interferences were stemming out from the mutually
exclusive access to the cache. If this mode of access is a requisite of the system, or if it
is an hardware constraint, it may well be the case that the developer will want to ignore
those interferences, deeming them inevitable and not problematic. One way to do so
could be changing the old transitive policy into an intransitive one and adding the flows
C  A and C  B. In this way, places a0, b0 and Free would no longer be causal, but
place Free would still be conflict. Furthermore, altering the policy in this way is a poor
modeling practice, because it allows all sorts of other interferences to occur between the
cache and the sensors, whereas the goal was only to amend the inevitable and known
ones.

A better solution is to introduce an appropriate number of additional “downgrading”
levels to the security domain, and to modify the net by adding downgrading transitions
that play the role of “explicit casts” of the interferences to be ignored. In Fig. 9 we show
how this can be done in order to make the net system BINI (we only show a part of the
system: the processor is unchanged and the second sensor is symmetric to the first one).
In the coloured version, downgrading transitions d1D, d2D and d3D are highlighted in
green. As the reader can see, transition d3D is causally included between transitions
update1C and transition getA, and it downgrades the former to level D, so that place a0
is no longer causal for the latter. In a slightly more complex way, transitions d1D and
d2D achieve the same result for place Free.

4.4. Characterizing BINI in the Unfolding of Safe Nets

In this section we give a characterization of BINI for safe nets based on the unfolding
semantics: as in the transitive case we reduce the satisfaction of the property BINI to a
structural property of the unfolding of the net. This is done by showing how occurrences
of intransitive weak causal or conflict places can be characterized in the unfolded net.

Theorem 6 (intransitive weak causal/conflict places in the unfolding). Let N be
a net system and let p be a place in N. Then

(i) p is an intransitive weak causal place in N iff there exists a condition b in U(N)
such that π1(b) = p and there are events h′, l′ such that

1. b ∈ •l′ ∩ h′+,

2. for all events e such that h′ < e′ ≤ l′ it holds λh′ 6 λe.
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Figure 9: A possible fix of the net systems S that makes it BINI. Only part of the system is shown, and
as usual λxL = L.

(ii) p is an intransitive weak conflict place in N iff there exists a condition b in U(N)
such that π1(b) = p and there are events h′, l′ such that

1. b ∈ •l′ ∩ h′−,

2. C = [h′) ∪ [l′] ∈ C(U(N)) and for all d′ ∈ C if λh′  λd′ and d′ ≤ l′ then
¬(d′#h′).

Proof. (i) Let p be an intransitive weak causal place in N. Then p ∈ •l ∩ h+ for
transitions l, h such that λh 6 λl, and there exist m ∈ [m0〉 and τ ∈ T ∗↑↑λh

such that

m[hτl〉. Therefore in the unfolding there are occurrences of p, l, h, namely a condition
b and events l′, h′ such that π1(b) = p, π1(h′) = h, π1(l′) = l (hence λh′ 6 λl′) and
b ∈ •l′∩h′+. Furthermore for every e such that h′ < e ≤ l′, the corresponding transition
π1(e) occurs in τ l. Since τ ∈ T ∗↑↑λh and λh′ 6 λl′ we deduce that λh′ 6 λe as desired.

Vice versa, assume that h = π1(h′), l = π1(l′) and p = π1(b), for some condition b
and events l′, h′ such that b ∈ •l′ ∩ h′+, and furthermore for all e such that h′ < e ≤ l′

it holds λh 6 λe. First, observe that p ∈ •l ∩ h+ and λh 6 λl. Consider the set
C = {e ∈ [l′) | [e]∩ [h′] = ∅}, which is a configuration: it is conflict-free because C ⊆ [l′)
and it is down-closed because if e ∈ C and e′ ≤ e then e′ ≤ e < l′, namely e′ ∈ [l′).
Moreover [e′] ⊆ [e] and thus [e′] ∩ [h′] ⊆ [e] ∩ [h′] = ∅. Now consider the markings
m1 = M([h′) ∪ C) and m2 = M([l′)) and let τ be any linearization of [l′) \ ([h′] ∪ C)
compatible with causality. Notice that ([h′]∪C) ⊆ [l′) and hence is indeed a configuration,
and [l′)\([h′]∪C) is precisely the set of all e′ such that h′ < e′ < l′. Then m1[hπ1(τ)〉m2[l〉
and furthermore λτ ⊆ ↑λh′, hence p is an intransitive weak causal place in N.

(ii) Let p be an intransitive weak conflict place in N. Then p ∈ •l∩h− with λh 6 λl, and
there exists m ∈ [m0〉 and τ ∈ T ∗↑↑λh such that m[h〉 and m[τ l〉. Therefore in the unfolding

there are occurrences of p, l, h, namely a condition b and events l′, h′ such that π1(b) = p,
π1(h′) = h, π1(l′) = l, with b ∈ •l′ ∩ h′−. Moreover there are configurations C ′ ⊆ C
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such that M(C ′) = m, M(C) = 〈m[τ l〉 and C ⊇ [h′) ∪ [l′]. Hence [h′) ∪ [l′] ∈ C(U(N)).
Furthermore, also the second part of condition (2) holds: consider any d′ such that
λh′  λd′ and d′ < l′, we reason by cases. If d′ ∈ C ′, then ¬(d′#h′) because M(C ′)[h〉.
Otherwise, if d′ ∈ C\C ′ then it means d′ ∈ τ l and thus λh′ 6 λd′ against the hypotheses.

Vice versa, assume that conditions (1) and (2) are satisfied. By (1), if we let h =
π1(h′), l = π1(l′), we have that p ∈ •l∩h− and λh 6 λl. We need to prove the existence
of m and τ satisfying the remaining conditions in the definition of intransitive weak
conflict place (Definition 24). Consider the set D = {d′ ∈ [l′) | ¬(d′#h′)}, we claim that
C = [h′)∪D is a configuration. To see that C is down-closed consider d′ ∈ C and d′′ < d′.
If d′ ∈ [h′), then clearly d′′ ∈ [h′) ⊆ C. If d′ ∈ D then also d′′ ∈ D ⊆ C. In fact, since
d′ ∈ [l′) then also d′′ ∈ [l′). Moreover, since ¬(d′#h′), d′′ < d′ and conflict is inherited
necessarily ¬(d′′#h′). To see that C is conflict-free assume for the sake of contradiction
d′, d′′ ∈ C and d′#d′′. First of all, since both [h′) and D ⊆ [l′) are conflict-free, the only
possibility is that d′ ∈ [h′) and d′′ ∈ D. But then again from d′ < h and the inheritance
of # with respect to < we would have d′′#h, producing contradiction. Thus C is indeed
a configuration, and furthermore M(C)[h〉 by construction.

Call τ any linearization of [l′) \ C consistent with causality. Then M(C)[τ l〉 as well.
In order to conclude that p is an intransitive weak conflict place we only need to prove
that τ ∈ (T↑λh)∗ ⊇ (T↑↑λh)∗. Suppose this is false. Then there is t ∈ τ such that λh λt.

But since t = π1(e) for some e < l′, we would have by hypothesis that ¬(e#h′) and thus
e ∈ D, a contradiction since τ does not contains elements of C ⊇ D. �

Checking condition (ii) is much harder than condition (i). The problem can be over-
come since the construction of the causal reduct in Definition 16 still works as intended
also in the intransitive case. This leads us to the following.

Proposition 5 (BINI in the causal reduct). Let N be a net system. Then N is not
BINI iff γ(N) contains an intransitive causal place.

Proof. Analogous to the proof of Proposition 1. �

4.5. Unfolding-based Algorithm for Multilevel BINI in Safe Net Systems

We next show how the characterization of BINI in the unfolding can be helpful for
devising an algorithm for verifying the validity of such property in a safe net system.
We try to adhere as much as possible to the structure of Subsection 3.5, highlighting the
changes due to the use of intransitive policies.

4.5.1. Complete prefixes for multilevel BINI interferences.

In order to build a complete prefix, as in the transitive case, we need to enrich the
marking associated with a configuration C with a function ΛC , which records the security
levels of the transitions that generated the tokens in each place. However, due to the
intransitivity of the policy, this could be no longer sufficient to detect a violation. In
fact, assume that an event l of level L consumes a token of level H such that H 6 L.
Apparently this represents a violation of the policy since the presence of a token of level
H reveals that an event of the same level, say h, have been executed before, making this
fact visible at level L. However, this might not be a problem, since it could well be that a
token of a level D such that H  D  L, is also in the pre-set of l, produced by an event
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Figure 10: The definition of relations δC (left) and KC (right), graphically.

d such that h < d < l. In this case, the flow of information from L to H is legitimately
mediated by D. Clearly, a situation like this cannot happen within a transitive security
domain, since by transitivity we could not have H  D  L and H 6 L.

Roughly, in the situation above, we can think that the token of level D absorbs
the token of level H to its level. In order to take care of this phenomenon we further
enrich the markings with an absorbing relation δC over the places of the marking of a
configuration.

Definition 25 (i-marking, i-complete prefix). Let N be a safe net system. Given a
configuration C ∈ C(U(N)), the intransitive confidentiality marking (i-marking) of C is
M∗i (C) = 〈M(C),ΛC , δC〉, where ΛC : P → 2L is the function defined as:

ΛC(p) = {λe | e ∈ T (ω) ∧ p ∈ π1(e+ ∩ C◦)}

and δC is the binary relation on the marking M(C):

δC = {(π1(b), π1(b′)) | b, b′ ∈ C◦ ∧ ∃e, e′ ∈ C . (b′ ∈ e′• ∧ e′ < e < b ∧ λe′  λe)}.

A prefix UF of U(N) is complete for i-marking reachability, or simply i-complete, when
for any configuration C ∈ C(U(N)) there exists C ′ ∈ C(UF ) such that M∗i (C) = M∗i (C

′).

As in the transitive case, ΛC maps each place p in the marking M(C) to the set of
security levels of the transitions that generated tokens in p and, since the net is safe, this
is actually a singleton or the empty set. Concerning relation δC , intuitively, whenever
δ(p, p′) we know that that the token p can absorb the token p′ to its level, in the sense
explained above. The situation is schematized in Fig. 10 (left): there are b, b′ ∈ C◦ such
that π1(b) = p, π1(b′) = p′, the event e′ generating b′ is a causal ancestor of b and there is
e such that e′ < e ≤ b such that λe′  λe. When b, b′ are consumed by the same event,
say e′′, the flow from e′ to e′′ is necessarily mediated by e′ through b. Thus we only need
to check that b is of a legal level. Hence we can intuitively think that b′ is absorbed to
the level of b.

An i-complete prefix UF of U(N) includes sufficient information for deciding whether
or not N contains an intransitive weak causal place.
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Theorem 7 (intransitive weak causal places in i-complete prefixes). Let N be a
safe net system and let UF be an i-complete prefix of U(N). Then p is an intransitive
weak causal place in N iff there are in UFB a condition b such that π1(b) = p, and events
h′, l′ such that b ∈ •l′ ∩ h′+, λh′ 6 λl′, and for all b′ ∈ •l′ it holds ¬δ[l′)(π1(b′), p).

Proof. (⇒) Suppose that p in N is an intransitive weak causal place. Then by The-
orem 6(i) there exists a condition b in U(N) such that π1(b) = p and events h′, l′ such
that b ∈ •l′ ∩ h′+ and for all e such that h′ < e ≤ l′ we have λh′ 6 λe. Consider the
configuration C = [l′).

Observe that ¬δC(π1(b′), p) for all b′ ∈ •l′. In fact, if for some b′ ∈ •l′ we have
δC(π1(b′), p), we would get the existence of e ∈ C such that λh′  λe and h′ < e ≤ •b′ <
l′, contradicting the hypotheses.

Now, from i-completeness of UF , there exists C ′ ∈ C(UF ) such that M∗i (C) = M∗i (C
′).

From ΛC = ΛC′ and M(C) = M(C ′), we deduce the existence of b′′ ∈ C ′
◦

such that
π1(b′′) = π1(b) = p and ΛC′(p) = ΛC(p), and an event l′′ ∈ b′′• such that •l′′ ⊆ C ′

◦

(hence l′′ in UFB) with π1(l′′) = π1(l′). From the fact that ΛC(p) = ΛC′(p) we deduce
the existence of h′′ ∈ C ′ such that b′′ ∈ h′′+ and λh′′ = λh′ = ΛC(p). Summing up,
we have b′′ ∈ h′′+ ∩ •l′′, λh′′ = λh′ 6 λl′ = λl′′ and π1(b′′) = p. Furthermore, from
δC = δC′ we know that for all b′′′ ∈ •l′′ it holds ¬δC′(π1(b′′′), p), as desired.

(⇐) Suppose that there exists in UFB a condition b such that π1(b) = p, and events h′,
l′ such that b ∈ •l′ ∩ h′+, λh′ 6 λl′, and for all b′ ∈ •l′ it holds ¬δ[l′)(π1(b′), p). From
the last condition we deduce that for all e such that h′ < e ≤ l′ we have that λh′ 6 λe.
Therefore we can use Theorem 6(i) to deduce that p is an intransitive weak causal place.

�

Corollary 5 (BINI on i-complete prefixes). Let N be a safe net system and let UF
be a i-complete prefix of U(γ(N)). Then N is not BINI iff UFB contains a condition b
and events h′, l′ such that b ∈ •l′ ∩ h′+, λh′ 6 λl′, and ¬δ[l′)(π1(b′), p) for all b′ ∈ •l′.

From Corollary 5 we deduce that given a safe net one can check for BINI on a i-complete
prefix of the unfolding of its causal reduct. This point is developed in the next section.

4.5.2. Unfolding-based algorithm for multilevel BINI on safe net systems.

Despite the fact that i-markings are sufficient to characterize BINI, they do not
carry enough information for an inductive construction of a complete prefix. This
is explained with the aid of Fig. 11. Consider the configurations C1 = {h1, l2, t5}
and C2 = {l1, h2, t4}. They have the same i-marking M∗i (C1) = M∗i (C2). In fact,
M(C1) = M(C2) = {p, q, s}, and ΛC1

= ΛC2
= {p 7→ λh, q 7→ λl, s 7→ λt}, and

δC1 = δC2 = ∅. Therefore, in principle, one of the two configurations could be discarded
in the construction of the prefix. However, note that they enable an occurrence of transi-
tion d and, once extended with the corresponding event, their absorbing relations become
different in that δC1

(p′, p) while ¬δC2
(p′, p). This is the reason why we need to further

enrich the marking by recording what we call a kinfolk relation.

Definition 26 (ai-marking). Let N be a net system and let C ∈ C(U(N)). The algo-
rithmic intransitive confidentiality marking (ai-marking) of C is M∗ai(C) = 〈M∗i (C),KC〉,
where KC is the binary relation over M(C) defined by:
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Figure 11: An example motivating the need of the kinfolk relation.

KC = {(π1(b), π1(b′)) | b, b′ ∈ C◦ ∧ ∃e′ ∈ C . b′ ∈ e′• ∧ e′ < b}

When KC(p, p′) we say that p is in the kinfolk of p′. The situation is schematized
in Fig. 10 (right). As in the definition of δC , there are b, b′ ∈ C◦ such that π1(b) = p,
π1(b′) = p′, the event e′ generating b′ is a causal ancestor of b, but here we do not require
the existence of e such that e′ < e ≤ b and λe′  λe. Hence, it might not be the case
that δC(p, p′). However, knowing that e′ is an ancestor of b is relevant since if an event e
such that λe λe′ consumes b then all places in e• (like those corresponding to b1 and
b2 in the picture) will be in relation δC with p′.

Note that, with the aid of the kinfolk relation the configurations C1 and C2 in the ex-
ample of Fig. 11 are taken apart. In fact, KC1

= {(q, p), (s, q)} and KC2
= {(p, q), (s, q)}.

The notion of cut-off is thus updated by replacing the confidentiality marking with
the algorithmic marking.

Definition 27 (algorithmic cut-off). Let N be a net system and let UF be a prefix of
its unfolding U(N). An event e in UF is called an (algorithmic) cut-off if there exists
another event e′ in UF such that M∗ai([e]) = M∗ai([e

′]) and [e′] ≺ [e].

An algorithm for verifying whether a safe net system is BINI easily follows from the
previous results. It is reported in Fig. 12. Note that with respect to the algorithm for
checking BNDC in Fig. 6, we only need to update the test in the first if clause by
adapting it to the condition from Theorem 7.

Corollary 6 (correctness of the algorithm for safe nets). Let N be a safe net sys-
tem. The algorithm of Fig. 12 always terminates and provides the answer ‘yes’ iff N is
BINI.

Proof. Observe that the equivalence of ai-markings over configurations is preserved by
extension, namely given two configurations C,C ′ ∈ C(U(N)), if M∗ai(C) = M∗ai(C

′) and
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Data: A safe net system N.
compute γ(N)
UF = γ(m0)
pe = PE(UF )
while pe 6= ∅ do

take e ∈ pe such that [e] is ≺-minimal;
if ∃h, b ∈ UF . b ∈ •e ∩ h+ ∧ λh 6 λe ∧ ∀b′ ∈ •e .¬δ[e)(π1(b′), π1(b)) then

return ‘no’
end
add e to UF
if e is not an algorithmic cut-off then

add e• to UF
end
pe = PE(UF )

end
return ‘yes’;

Figure 12: Algorithm to decide BINI on safe net systems.

C∪{e} ∈ C(U(N)) for some e 6∈ C then there exists e′ 6∈ C ′ such that C ′∪{e′} ∈ C(U(N))
and M∗ai(C ∪ {e}) = M∗ai(C

′ ∪ {e′}). It is easily seen that e′ is the unique (since the net
is safe) event enabled at C ′ such that π1(e) = π1(e′). Then by [19], the construction of a
prefix based on ai-markings terminates producing a finite prefix of the unfolding complete
for ai-markings. This is clearly also complete for i-markings and thus the desired result
immediately follows from Corollary 5. �

5. Compositionality of BNDC and BINI

We conclude the theoretical part of the paper with the observation that BNDC and
BINI are compositional with respect to the operations of (parallel) composition and
restriction, as defined in Section 2.2. This can be helpful in the verification phase.

Let N and N′ be net systems such that N |N′ is defined. Since the set of places of
N |N′ is the (disjoint) union of the sets of places of N and N′, given m and m′ markings
of N and N′, respectively, clearly m |m′ defined as m ∪m′ is a marking of N |N′, and
any marking of N |N′ is of such shape. In particular, the initial marking is m0 |m′0.

Given a firing sequence m |m[σ〉 we denote its projection to N as follows:

σ�N=


ε if σ = ε

σ′�N t if σ = σ′t and t ∈ T
σ′�N if σ = σ′t and t 6∈ T

The projection on N′ is defined analogously.

Lemma 7 (soundness of projections). Let N and N′ be net systems such that N |N′
is defined. If m |m′[σ〉m1 |m′1 then m[σ�N〉m1 and m′[σ�N′〉m′1.
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Proof. We only prove the statement for the projection on N (the one for N′ is analo-
gous). We proceed by induction on |σ|, the length of σ. If |σ| = 0 then σ = ε and the
statement is trivial. Otherwise σ = σ′t, with m |m′[σ′〉m2 |m′2[t〉m1 |m′1.

By inductive hypothesis applied to m | m′[σ′〉m2 | m′2, we obtain m[σ′�N〉m2. We
conclude by distinguishing various cases according to the nature of transition t. If t 6∈ T
then σ′t�N= σ′�N and m1 = m2, hence m[σ�N〉m1, trivially. Otherwise, σ�N= σ′�N t.
Moreover, the observation that the pre- and post-set of transition t in N | N′, when
restricted to S, are exactly the original pre- and post-set of t in N allows us to conclude
that m2[t〉m1. Thus m[σ′�N t〉m1, as desired. �

Proposition 6 (Compositionality of BNDC and BINI). If two nets systems N and
N′ are BNDC (or BINI) then N |N′ is also BNDC (or BINI). Moreover, for any T ′ ⊆ T ,
then N \ T ′ is BNDC (or BINI).

Proof. Assume for the sake of contradiction that N |N′ is not BNDC. Then by The-
orem 1 we know that it contains either a HL-causal or a HL-conflict place p for some
H,L ∈ L . We can assume without loss of generality p ∈ P .

If p is HL-causal then, by Definition 12, p ∈ •l∩h• for suitable transitions h, l ∈ T∪T ′
such that λh = H and λl = L and there exists a reachable marking m |m′ ∈ [m0 |m′0〉
satisfying m |m′[hτl〉, m |m′[τ〉 and 〈m |m′[τ〉(p) < F (p, l), with τ ∈ T ∗↑H . From p ∈ P we

deduce also l, h ∈ T . Let σ be a firing sequence such that m0 |m′0[σ〉m |m′. By Lemma 7
applied to στ we can deduce that all the conditions hold in N once we substitute τ�N for
τ . Hence p is a causal place in N, leading to a contradiction. The very same reasoning
allows us to deduce that if p is conflict in N |N′, it is conflict also in N, so N |N′ must
be BNDC.

Concerning restriction, assume that N \ T ′ is not BNDC. Then there must exists a
causal or conflict place p in N \ T ′. Since N \ T ′ has the same places as N and a subset
of its transitions, it is immediate to see that p is a causal place also in N.

The proof for BINI is analogous. Since the notions of transitive causal and conflict
places are formally the same in the transitive and intransitive case we just need to use
Theorem 4 instead of Theorem 1. �

Consider, for instance, the running example net system S as modified in Fig. 9. It
is easy to see that the decomposition proposed in Fig. 2 can be adapted to the modified
version. Then it is possible to verify separately that the two parallel components are
BINI and thus conclude that also the full system is.

6. The tool MultiUBIC

The unfolding-based algorithms outlined in the previous sections are implemented in
a tool called MultiUBIC [14]. It extends a previous tool UBIC which was limited to
two-level security domains (possibly with downgrading). MultiUBIC inputs a security
policy (transitive or intransitive) and a safe net system, and it checks whether the system
satisfies BNDC (for transitive policies) or BINI (for intransitive policies). The security
policy is specified in a format illustrated in Listing 1. It first specifies the type of
the policy (transitive or intransitive) which determines the property, BNDC or BINI,
respectively, to be checked, the number n of security levels the domain and a name for
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Listing 1: Format for security policies

MSD
TRANSITIVE/INTRANSITIVE
LVL n
0 name
1 name
. . .
n−1 name
POLICY
i TO j

each level. Then the security policy is given in the form of a collection of clauses i TO
j. If the policy is declared to be transitive, MultiUBIC will automatically compute the
transitive closure of its clauses, hence the user just needs to specify direct flows. The
net system have to be specified in the PEP’s ll net format [23], with one additional
constraint: transition names must be of the form name level, where level is one of the
level names specified in the policy file.

A number of options can be specified as well, most notably whether only the first or
all interferences must be found during the analysis.

Compared to “interleaving competitors”, like the Petri Net Security Checker [24] and
ANICA [25] (Automated Non-Interference Check Assistant, written in C++), based on
the work [5], MultiUBIC was expected to inherit the good performances of its ancestor
UBIC: the fact that it relies on a partial order semantics should lead to a gain of efficiency
especially for highly concurrent systems, where the state explosion problem becomes
more serious. Indeed, we experimented MultiUBIC on some batteries of tests that were
already used for UBIC in [7]. These are two-level net systems implementing various
kind of mutual exclusion protocols with a parametric number of parallel participants. In
average, UBIC and MultiUBIC have similar execution times. Thus, as it was the case for
UBIC, also MultiUBIC outperforms ANICA when the level of concurrency grows (the
tests are included in MultiUBIC distribution [14]).

Given the above, we devoted some effort to a comparison of the relative performances
of MultiUBIC and UBIC. This is particularly of interest since we showed that the ver-
ification of multi-level security policies can be also reduced to a number of checks in a
two-level setting (with a third downgrading level, in the intransitive case). In the transi-
tive case, a reduction based on a direct application of the definition of BNDC would be
unacceptably expensive, since we should consider a two-level problem for each possible
upper set in the security domain, a fact that possibly leads to a number of subproblems
exponential in the number of levels. Actually, we have shown that we can limit to a linear
number of two-level checks, one for each level (see Corollary 1). Similar considerations
apply to BINI in the intransitive case, where a quantification over all possible subsets of
levels can be replaced by a quantification over all levels (see Proposition 4). MultiUBIC,
besides allowing for a direct solution of the multilevel problem comes equipped with
facilities for performing such reduction.

Some experiments reveal that solving directly the original multi-level problem, typi-
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Figure 13: A net system where MultiUBIC behaves worse than UBIC.

cally provides a linear gain of efficiency, possibly at the price of an increase of memory
usage. The performances of MultiUBIC can degrade for net systems where a relevant
number of places have input transitions of different levels. This situation alone can,
in a worst case scenario, make the direct solution of the multilevel problem perform
definitively worse than the solution based on reduction, even when the number of levels
increases.

For instance, consider the net system in Fig. 13, with a security domain L =
{L1, . . . , Lm}, and a trivial empty policy. The system consists of n blocks of m transi-
tions in conflict, each of a different level, and all producing a token in a shared outgoing
place pjo of the block. All such places are in turn consumed by a transition t, with an
arbitrary security level in L . The complete prefix of the unfolding built by MultiUBIC
would include mn transitions for the blocks, plus mn instances of the final transition t,
one for each different enriched marking, hence mn+mn in total. The reductions method
would instead produce m prefixes, each comprising mn transitions for the blocks, but
only with 2n instances of the final transitions, hence m2n + m2n in total. If one fixes
the number of levels (m is a constant) and analyze the complexity with respect to n,
they both are exponential but, as soon as m > 2, the exponential of MultiUBIC is worse
(since the basis is larger). More importantly, even if ones fixes the number of blocks (n is
a constant) and increases the number of levels, as soon as n > 2, the complexity MultiU-
BIC Θ(mn) becomes polynomially worse than that of UBIC, which is Θ(m2). Therefore,
in this example, MultiUBIC would need to generate a number of transitions larger then
those produced with the reductions method, polynomially in m and exponentially in n.
Even under the reasonable assumption that n is much larger than m this causes a sensible
loss of performance. Several concrete experiments are presented in Appendix B, where
they are used for a detailed comparison of the direct and reduction based approaches.

We conclude this section by remarking that MultiUBIC is a promising prototype but
we think that there is room for improving its performances and usability with several
enhancements:

• The major overhead of MultiUBIC lies in having to store data structures for re-
lations δ and K as needed to deal with algorithmic intransitive markings. The
construction of the causal reduct can heavily influence this overhead. In fact, it
adds several self-looping transitions, the copies ch of each transition h possibly in-
volved in a conflict inference (see Definition 16) and in the unfolding this determines
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the duplication of the whole branch of the starting with the execution of h. Fine
grained optimizations of the construction are possible that, at the price of a more
complicated definition, could limit the construction of these duplicated branches to
the absolutely necessary ones, thus giving a sensible gain in performances.

• Along the same line, the places of the net system can be enriched with static anno-
tations that enable the verifier to discard useless information and, correspondingly,
to cut irrelevant branches of the unfolding. For instance, an immediate optimiza-
tion consists in avoiding to record the level of the places that can be statically
recognized as non-problematic, e.g. places p ∈ P such that λt λt′ for all t ∈ •p
and t′ ∈ p•.

• At least in the transitive case, it seems possible to weaken cut-off condition, thus
obtaining smaller prefixes. For example, if two histories produces the same enriched
marking, but for the fact that some token in the second history has a higher confi-
dentiality level, then the second history can be classified as a cut-off and discarded.

• Since in general MultiUBIC performs extremely better then UBIC with respect to
the CPU time required by the verification, and the problematic cases are linked
to a blow of memory consumption, MultiUBIC could benefit from a more CPU
intensive approach.

7. Conclusions

We studied non-interference properties in a multilevel setting, both for transitive
and intransitive security domains, focusing on Petri nets. Generalizing the work in [7,
13], we showed that Bisimilarity-based Non-Deducibility on Composition (BNDC) and
its intransitive extension BINI [6], admit a causal characterizations in the unfolding
semantics of safe net systems. This leads verification algorithms for BNDC and BINI on
safe net systems with multilevel policies, implemented in the tool MultiUBIC.

The use of causality for deducing the occurrence of non-observable transitions from
the occurrence of observable ones has been studied in [26], in the context of asynchronous
diagnosis of discrete event event systems. The relation between diagnosability properties
and non-interference is to be deepened, despite the fact that the former are trace-based
while the latter is bisimulation-based. In this respect, the work on intransitive non-
interference in [27], resorting to automata models and language theory for verification
could be of help.

In the setting of Petri nets, other classes of information flow properties have been
studied, like opacity properties [28] (which include non-interference) and selective non-
interference [29]. Exploring the possibility of exploiting causal semantics in this general
setting appears as an interesting and challenging venue of future research.

It would also be quite interesting to explore causal characterizations of non-interference
for formalisms different from Petri nets, including process calculi and imperative lan-
guages, possibly through encodings of these formalisms into Petri nets. This would allow
to establish a formal and possibly fruitful link between our work with the huge literature
on non-interference in these settings (see, e.g., [2] and [30] for surveys). To this extent we
are considering how the current theory would carry over classes of nets with additional
features that could ease the encoding. Examples of features we would be able to include
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are: read arcs (to improve concurrency, model readings of resources in a more efficient
way, and mitigate the negative impact on performances of self loops), unboundedness,
colored tokens (both of the latter to help cope with the encoding values).

We also plan to consider formalizations of non-interference obtained from the classical
ones, by replacing interleaving observational semantics with true-concurrent ones [31].
The higher distinguishing power of such semantics could allow to identify new forms of
interference which cannot be captured in an interleaving setting. Interesting reflections
in this directions are reported in [32].

We are currently trying to use MultiUBIC to verify explicit information flows on
choreography-based languages [33]. In the specific scenario we need to tackle, each entity
of the choreography (variable, channel or principal) needs to be considered as belonging
to a distinct security level, hence justifying the use of MultiUBIC.
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Appendix A. Locally-safe nets

The results and algorithms that in the paper we developed for safe nets can be easily
generalized to deal with a more general class of nets, named locally-safe net systems [7]
that properly includes safe net systems. We next briefly point out the of adjustments of
the theory needed for such a generalization.

Firstly, the notion of locally-safe net system itself have to be shifted to a multilevel
setting.

Notation 4. Given a net system N, a place p ∈ P and a transition t ∈ T , we set
dt(p) = F (t, p)− F (p, t), namely dt(p) is the variation in the number of tokens in place
p determined by the firing of t. Moreover we denote by t− = {p ∈ P : dt(p) < 0} and
t+ = {p ∈ P : dt(p) > 0} the sets of places where the firing of t decreases and increases,
respectively, the number of tokens.

Definition 28 (locally-safe net system). A net system N is locally-safe when for
every l, h such that λh 6 λl, and every m ∈ [m0〉 :
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Figure A.14: A net system which is locally-safe but not safe.

• if •l ∩ h+ 6= ∅, then {p ∈ •l ∩ h+ : m(p)− dh(p) < F (p, l)} 6= ∅;

• if •l ∩ h− 6= ∅, then {p ∈ •l ∩ h− : m(p) + dh(p) < F (p, l)} 6= ∅.

In words, when •l∩h+ 6= ∅, i.e., transition h can generate tokens in a place in the pre-set
of transition l, it is always the case that some token generated by h is essential to enable
l. More precisely, in any reachable marking m there is at least one place p ∈ •l ∩ h+
such that m(p)− dh(p) < F (p, l). Similarly, whenever •l ∩ h− 6= ∅, i.e., transition h can
remove tokens in a place in the pre-set of transition l, we require that in any reachable
marking m there is at least one place p ∈ •l ∩ h− where the occurrence of h removes
from p a number of tokens sufficient to disable l.

An example of net system which is locally-safe but not safe can be found in Fig. A.14,
which also reports the associated domain L . The net is clearly not safe since, for instance,
after firing l and h a marking with two tokens in p3 is reached. However, the net is locally-
safe. In fact, the only potentially problematic situation concerns transitions h and t ,
since H 6 T and h+ ∩ •t = {p3, p4}. Observe that any reachable marking m either
m(p3) ≤ 1 or m(p4) ≤ 1. Hence, since dh(p3) = dh(p4) = 1 = F (p3, t) = F (p4, t) either
m(p3)− dh(p3) < F (p3, t) or m(p4)− dh(p4) < F (p4, t). In words, whenever t fires, it is
always using in an essential way at least a token produced by h.

By a straightforward adaptation of the argument in [7], it is possible to show that
local-safety can be reduced to coverability of a given place, a problem which is known to
be decidable [34]. It is also immediate to see that the class of locally-safe net systems
includes all safe net systems.

With the above definition, it is not difficult that the characterization of BNDC in
Sections 3.3 and 4.3, and those for BINI in Sections 3.4 and 4.4, smoothly extend to
locally-safe nets, just by replacing safe by locally-safe.

Also the algorithms for checking BNDC and BINI, respectively, in Sections 3.5 and 4.5
can be easily adapted. Only notice that in Definition 17 the function ΛC has a proper
set as value, rather than a singleton or empty set, since a place can contain more than
one token. The same apply to Definition 25 where, in addition, the fact that there can
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be multiple tokens in a place leads to define relation δC directly on the conditions of the
prefix rather than on the places of the original net

δC = {(b, b′) | b, b′ ∈ C◦ ∧ ∃e, e′ ∈ C . (b′ ∈ e′• ∧ e′ < e < b ∧ λe′  λe)}

Then we say that a prefix U of U(N) us i-complete when for any configuration C ∈
C(U(N)) there exists C ′ ∈ C(U) such that M(C) = M(C ′), ΛC = ΛC′ and there is a
bijection between the cuts ι : C◦ → C ′

◦
such that for all b, b′ ∈ C◦ it holds δC(b, b′)

iff δC′(ι(b), ι(b′)). Analogous modification are required for relation KC in Definition 26,
and the corresponding notion of completeness. Finally, note that here, since locally-safe
nets are possibly unbounded, in order to ensure that a complete prefix is finite (whence
termination of the algorithms) a boundedness hypothesis is needed.

Appendix B. Experimental results

In order to empirically compare the direct solution of a multilevel problem based on
MultiUBIC with the approach based on reduction to two- (three-) level problems, we
ran a battery of tests. More precisely, we compared MultiUBIC with a procedure whose
behavior was:

1. Read a net system N with its multilevel security domain L ;

2. For each level L ∈ L , produce a two- (or three-) level system NL;

3. Verify each NL with UBIC;

4. Declare N secure in L if and only if UBIC declares secure every NL.

The verification was carried over a set of test nets T(n, l, e), designed to be parametric
with respect to some characteristics that impact on the efficiency of the verification, in
particular, the number of potential causal interferences that determines the size of the
data structures (ai-markings) needed for the construction of the finite prefix, and the
number potential conflict interferences, that influences the size of the causal reduct.

Figure B.15 helps in explaining how the test systems are built. Each system is a
sequence of n blocks, where block i (i ∈ {1, . . . , n}) consists of three conflicting transitions
(tLi

, t′L′
i

and t′′L′′
i
) competing for common input place pi−1 and producing on an output

place pi, which in turn acts as input for the next block. The parameter l determine the
number of different levels for transitions in each block. When l = 1 all levels coincide, i.e.,
Li = L′i = L′′i , when l = 2, we have Li = L′i 6= L′′i and when l = 3 the levels are pairwise
different. In words, l determines what we will refer as level clashes, i.e., the number
of possible distinct levels for the token in the output place of the block. Especially in
intransitive policies, where the history of a token is also relevant, this heavily influences
the number of enriched markings.

Each level in a block is allowed to influence the corresponding one in the next block,
i.e., Li  Li+1, L′i  L′i+1 and L′′i  L′′i+1. Other twisted “vertical” flows (e.g., from Li
to L′i+1) are illegal. The legal interactions between levels inside a block are determined
by parameter e. More precisely, the flow from each of the three levels Li, L

′
i and L′′i

to another one in a block can be either allowed or not. Hence there are six potential
flows and the parameter e ∈ {1, 2, . . . , 6} establishes how many of them are legal. This
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Figure B.15: A family of net systems used to test the tool.

influences the number of conflict places in the system. For example if l = 3 and e = 6
then there are no conflict places, while if l = 3 and e = 0 there are n conflict places. In
this way we control how many transitions are added by the causal reduction.

We tested the systems against both transitive and intransitive policies. The data
collected for both methods were: total time elapsed, memory usage, number of histories
added to the prefix. Both UBIC and MultiUBIC were asked to produce a complete prefix,
thus determining all possible interferences. Figure B.16 reports the ratio between the
elapsed times of MultiUBIC and UBIC versus the cardinality of the MSD (which is in
turn proportional to the size of the net system). Note that MultiUBIC overwhelmingly
outperforms UBIC in terms of CPU time in most cases. It is noticeable that with the
highest number of levels (l = 3), MultiUBIC gain starts to slightly decrease.

The situation changes in Fig. B.17, where we observe a reverse trend due to a combi-
nation of factors. As theoretically foresaw, an elevated number of level clashes sensibly
diminish the gain in performances of MultiUBIC, to the point that it actually decreases
with the growth of the cardinality of the security domain. But the critical factor seems
to be the number of conflict places. Mapping onto three-levels system reduces the num-
ber of conflict places, thus reducing the overhead determined by the causal reduction.
Because of the way we defined the causal reduction, if an intransitive policy is used, the
number of different algorithmic markings greatly increases with the number of conflict
places, and this overhead disrupt the advantage that MultiUBIC has over the reduction
methods. This hypothesis is supported by Fig. B.18, where we directly plot the CPU
time used by the two methods, for transitive and intransitive policies at the top and
bottom respectively.

Finally, and to further support our claim, in Fig. B.19 we can see how UBIC has
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Figure B.16: Experimental comparison of MultiUBIC and UBIC: extremely high gain in CPU time
achieved by MultiUBIC.

Figure B.17: Experimental comparison of MultiUBIC and UBIC: MultiUBIC become less efficient be-
cause of the overhead caused by algorithmic markings.
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Figure B.18: Experimental comparison: investigating the overhead of intransitive policies.
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Figure B.19: Experimental comparison: peak memory usage.

a lower peak memory usage, because the prefix generated by MultiUBIC can never be
smaller than one of those generated by UBIC. As a matter of fact it could well be
exponentially bigger than that of a single two-level problem. This could suggest that,
given a sufficient amount of memory, one could optimally solve the causal non-interference
by running several UBIC instances in parallel over two-level problems. In principle, this
is true, but it is worth observing that the number of instances to be solved in parallel
is so high that the amount of memory needed is hardly available on standard front-end
machines. Notice how the memory overhead of MultiUBIC seems to be only related to
the algorithmic marking of BINI, while for BNDC the memory consumption is aligned
with that of UBIC.
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