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Model Checking a Logic for True Concurrency

PAOLO BALDAN and TOMMASO PADOAN, Università di Padova, Italy

We study the model-checking problem for a logic for true concurrency, whose formulae predicate about

events in computations and their causal dependencies. The logic, which represents the logical counterpart of

history-preserving bisimilarity, is naturally interpreted over event structures or any formalism that can be

given a causal semantics, like Petri nets. It includes least and greatest fixpoint operators and thus it can express

properties of infinite computations. Since the event structure associated with a system is typically infinite

(even if the system is finite state), already the decidability of model-checking is non-trivial. We first develop

a local model-checking technique based on a tableau system, for which, over a class of event structures

satisfying a suitable regularity condition, referred to as strong regularity, we prove termination, soundness,

and completeness. The tableau system allows for a clean and intuitive proof of decidability, but a direct

implementation of the procedure can be extremely inefficient. For easing the development of a more efficient

model-checking technique, we move to an automata-theoretic framework. Given a formula and a strongly

regular event structure, we show how to construct a parity tree automaton whose language is non-empty

if and only if the event structure satisfies the formula. The automaton is usually infinite. We discuss how it

can be quotiented to an equivalent finite automaton, where emptiness can be checked effectively. To show

the applicability of the approach, we discuss how it instantiates to finite safe Petri nets, providing also a

corresponding proof-of-concept model-checking tool.
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1 INTRODUCTION

When dealing with concurrent and distributed systems, a partial order approach to the semantics
can be appropriate for providing a precise account of the computational steps and of their depen-
dencies, such as causality and concurrency. This is normally referred to as the true concurrent
approach to the semantics and opposed to the so-called interleaving approach where concurrency
of actions is reduced to the non-deterministic choice among their possible sequentializations.
True concurrent models can be convenient also because, thanks to an explicit representation of
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34:2 P. Baldan and T. Padoan

concurrency, they provide some relief to the so-called state-space explosion problem in the anal-
ysis of concurrent systems, which instead occurs more severely in interleaving approaches (see,
e.g., Reference [17]). A widely used foundational model in this class is given by Winskel’s event
structures [49]. They describe the behaviour of a system in terms of events in computations and
two dependency relations: a partial order modelling causality and an additional relation modelling
conflict. A survey on the use of such causal models can be found in Reference [50]. Recently they
have been used in the study of concurrency in weak memory models [24, 40], for process mining
and differencing [15], in the study of atomicity [18], and of information flow [3] properties.

Operational models can be abstracted by considering true concurrent equivalences that range
from hereditary history-preserving bisimilarity to the coarser pomset and step equivalences (see,
e.g., Reference [47]). On the logical side, various behavioural logics have been proposed capa-
ble of expressing causal properties of computations (see, e.g., References [7, 9, 13, 33, 36, 41, 42]
just to mention a few and References [2, 19–21, 28] for some related verification techniques). The
idea of having temporal and modal logics interpreted over event structures appears in some early
work [27, 31, 32, 35], where sound and complete axiomatisations are identified for suitable sub-
classes of event structures.

Recently, the logical characterisation of true concurrent behavioural equivalences has received
a renewed interest and corresponding event-based logics have been introduced [4, 39], interpreted
over event structures. Logic formulae include variables that can be bound to events in computa-
tions and describe their dependencies. The expressiveness of such logics is sufficient to provide a
logical characterisation of the main behavioural equivalences in the true concurrent spectrum [47].
Hereditary history-preserving (hhp-)bisimilarity [7], the finest equivalence in the spectrum, cor-
responds to the full logics, i.e., two systems are hhp-bisimilar if and only if they satisfy the same
logical formulae, and fragments can be identified corresponding to coarser behavioural equiva-
lences. While the relation between operational models, behavioural equivalences, and event-based
true concurrent logics is well understood, the corresponding model-checking problem has received
limited attention.

In this article, we focus on the logic referred to as Lhp in Reference [4], corresponding to a clas-
sical equivalence in the spectrum, i.e., history-preserving (hp-)bisimilarity [8, 14, 43]. The logic
is endowed with least and greatest fixpoint operators, in mu-calculus style, to express interest-
ing properties of infinite computations. Hp-bisimilarity is known to be decidable for finite safe
Petri nets [23, 29, 48]. However, the question remains open on whether the corresponding model-
checking problem for Lhp is decidable over some interesting class of systems. Note that the decid-
ability of model-checking is non-trivial, even for finite state systems, since event structure models
are typically infinite and the possibility of expressing properties that depends on the past often
leads to undecidability [25].

The article develops an extensive study of this problem. First, relying on a tableau-based tech-
nique, we prove the decidability of model-checking for Lhp over a class of event structures satis-
fying a suitable regularity condition. Then, on the way to a concrete implementation, we devise
an automata-theoretic technique for model-checking. Finally, we discuss how such technique can
be implemented in practice on Petri net models, providing a proof-of-concept tool.

More in detail, inspired by the work in References [12, 45] for the mu-calculus, to tackle the
decidability problem for Lhp , we are naturally led to focus on local algorithms in the form of
tableau systems. For checking whether a system model satisfies a given formula, a set of proof
trees is constructed by applying a suitable set of rules that reduce the truth of a formula in a given
state to the truth of suitably generated subformulae. This “local” approach that explores the state
space “on demand” is particularly suited in our setting, characterised by the infiniteness of the
event structure model of any non-trivial system.
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The presence of fixpoint operators makes the issue of sound termination quite delicate and
non-trivial already in the original approach dealing with finite transition systems. In our setting,
where also the transition system is infinite, this is further complicated. A key choice that we take
is the restriction to a class of event structures having a finitary flavour, which we call strongly
regular event structures. Recall that regular event structures [46] are characterised by the fact
that the number of sub-structures arising as residuals of the original event structure after some
steps of computations is finite up to isomorphism. The intuition is that, after going sufficiently
in depth, the event structure starts repeating cyclically. For strongly regular event structures the
requirement is strengthened by asking the finiteness of the residuals extended with a bounded
number of events from the past. This is important in our setting, since Lhp formulae can express
history-based properties that depend not only on the future but also on events executed in the
past.

A direct implementation of the tableau-based procedure can be extremely inefficient. Roughly
speaking, the problem is that in the search of a successful tableau, branches that are, in some sense,
equivalent are explored several times.

For this reason, we also devise an automata-theoretic technique, in the style of Reference [16],
which reduces the truth of a formula in a model to the emptiness of the language accepted by
a suitable automaton. Given a formula of Lhp and a strongly regular event structure, the proce-
dure generates a parity tree automaton. Truth is reduced to emptiness in the sense that the event
structure satisfies the formula if and only if the automaton accepts a non-empty language.

The result is not directly usable for practical purposes, since the automaton is infinite for any
non-trivial event structure. However an equivalence on states can be defined such that the quo-
tiented automaton accepts the same language as the original one. Whenever such equivalence is
of finite index the quotiented automaton is finite, so satisfaction of the formula can be checked
effectively on the quotient. We show that for all strongly regular event structures a canonical
equivalence always exists that is of finite index.

The model-checking procedures are developed abstractly on event structures. A concrete algo-
rithm on some formalism requires the effectiveness of the chosen equivalences on sequents/states
and of the transition relation.

We discuss a concrete instantiation of the automata-theoretic procedure on finite safe Petri
nets. It is implemented in a tool, wishfully called True Concurrency Workbench (TCWB), written in
Haskell. Roughly, the search of an accepting run in the automaton can be seen as an optimisation
of the procedure for building a successful tableau: The graph structure underlying the automaton
helps in the reuse of the information discovered. Indeed, some tests reveal that the TCWB is way
more efficient than the direct implementation of the tableau-based procedure (which could not
manage most of the (simple) examples in the TCWB repository).

The rest of the article is structured as follows: In Section 2, we review event structures, strong
regularity, and the logic Lhp of interest in the article. In Section 3, we introduce the true concur-
rent logic Lhp and its fixpoint extension. In Section 4, we give the model-checking procedure as a
tableau system, and we prove its soundness, completeness and termination. In Section 5, we intro-
duce (infinite state) parity tree automata and we show how the model-checking problem for Lhp

on strongly regular PESs can be reduced to the non-emptiness of the language of such automata.
In Section 6, we discuss the instantiation of the approach to Petri nets. Finally, in Section 7, we dis-
cuss some related work and outline directions of future research. To streamline the presentation,
the proofs of some technical results are confined to an Appendix.

This article is a revised and extended version of the conference papers of References [5, 6]. The
results of Reference [5], originally restricted to the alternation-free fragment of Lhp , are extended
here to the full logic. Moreover, full proofs, omitted in the conference versions, are provided. In
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particular, the proofs of the results for the automata-theoretic technique have been vastly reworked
to clarify and make formal the relation with the tableau system.

2 EVENT STRUCTURES AND REGULARITY

Prime event structures [49] are awidely knownmodel of concurrency. They describe the behaviour
of a system in terms of events and dependency relations between such events. Throughout the
article, E is a fixed countable set of events from which all events are taken, Λ a finite set of labels
ranged over by a, b, c, . . . , and λ : E→ Λ a labelling function.

Definition 2.1 (Prime Event Structure). A (Λ-labelled) prime event structure (PES) is a tuple E =
〈E, ≤, #〉, where E ⊆ E is the set of events and ≤, # are binary relations on E, called causality and
conflict, respectively, such that:

(1) ≤ is a partial order and �e� = {e ′ ∈ E | e ′ ≤ e} is finite for all e ∈ E;
(2) # is irreflexive, symmetric, and hereditary with respect to ≤, i.e., for all e, e ′, e ′′ ∈ E, if

e#e ′ ≤ e ′′, then e#e ′′.

The PES E1 = 〈E1, ≤1, #1〉, E2 = 〈E2, ≤2, #2〉 are isomorphic, written E1 ∼ E2, when there is a
bijection ι : E1 → E2 such that for all e1, e

′
1 ∈ E1 it holds e1 ≤1 e

′
1 iff ι (e1) ≤2 ι (e

′
1) and e1 #1 e

′
1 iff

ι (e1) #2 ι (e
′
1) and λ(e1) = λ(ι (e1)).

In the following, we will assume that the components of an event structure E are named as in
the definition above, possibly with subscripts.

Definition 2.2 (Consistency, Concurrency). Let E be a PES. We say that e, e ′ ∈ E are consistent,
written e � e ′, if ¬(e#e ′). A subset X ⊆ E is called consistent if e � e ′ for all e, e ′ ∈ X . We say that
e and e ′ are concurrent, written e | | e ′, if e � e ′ and ¬(e ≤ e ′), ¬(e ′ ≤ e ).

Causality and concurrency will be sometimes used on set of events. Given X ⊆ E and e ∈ E, by
X < e , we mean that for all e ′ ∈ X , e ′ < e . Similarly X | | e , respectively, X � e , means that for all
e ′ ∈ X , e ′ | | e , respectively, e ′� e .

The concept of (concurrent) computation for event structures is captured by the notion of con-
figuration.

Definition 2.3 (Configuration). Let E be a PES. A configuration in E is a finite consistent subset
of events C ⊆ E closed w.r.t. causality (i.e., �e� ⊆ C for all e ∈ C). The set of finite configurations
of E is denoted by C (E).

The empty set of events ∅ is always a configuration, which can be interpreted as the initial state
of the computation. The evolution of a system can be represented by a transition system where
configurations are states.

Definition 2.4 (Transition System). Let E be a PES and let C ∈ C (E). Given e ∈ E \C such that

C ∪ {e} ∈ C (E), and X ,Y ⊆ C with X < e , Y | | e , we writeC
X ,Y < e−−−−−−→λ (e ) C ∪ {e}, possibly omitting

X , Y , or the label λ(e ).

Transitions are labelled by the executed event e . In addition, they can report its label λ(e ),
a subset of causes X , and a set of events Y ⊆ C concurrent with e . When X or Y are empty

they are normally omitted, e.g., we write C
X < e−−−−→λ (e ) C

′ for C
X ,∅ < e−−−−−−→λ (e ) C

′ and C
e−→λ (e ) C

′ for

C
∅,∅ < e−−−−−→λ (e ) C

′.

Definition 2.5 (Branching). Let E be a PES. The set of enabled events at a configuration C is

defined as en(C ) = {e ∈ E | C e−→ C ′}. We say that E is k-boundedly branching for some k ∈ N if
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Fig. 1. (a) A PES EN associated with the net N in (b) via its unfolding (c).

|en(C ) | ≤ k for all C ∈ C (E). We say that it is boundedly branching if it is k-boundedly branching
for some k ∈ N .

We already mentioned that the PES associated with a non-trivial system exhibiting a cyclic
behaviour is infinite. We next introduce a class of PESs enjoying a finitary property that we call
strong regularity.

Definition 2.6 (Residual). Let E be a PES. For a configuration C ∈ C (E), the residual of E after
C , is defined as E[C] = {e | e ∈ E \C ∧ C � e}.

The residual can be seen as a PES, endowed with the restriction of causality and conflict of E.
Intuitively, it represents the PES that remains to be executed after the computation expressed by
C .

GivenC ∈ C (E) and X ⊆ C , we denote by E[C] ∪ X the PES obtained from E[C] by adding the
events in X with the causal dependencies they had in the original PES E.

Definition 2.7 (Strong Regularity). APES E is called strongly regular when it is boundedly branch-
ing and for each k ∈ N the set {E[C] ∪ {e1, . . . , ek } | C ∈ C (E) ∧ e1, . . . , ek ∈ C} is finite up to
isomorphism of PESs.

Strong regularity is obtained from the notion of regularity in Reference [46], by replacing resid-
uals with residuals extended with a bounded number of events from the past. Roughly, the require-
ment is that the PES has a finite number of extended residuals over which the computation cycles.
Intuitively, this is important, since we are interested in history-dependent properties. Clearly, each
strongly regular PES is regular, since the property in Definition 2.7 must hold, in particular, for
k = 0. We will later show in Section 6 that the PESs associated with finite safe Petri nets, i.e., the
regular trace PESs [46], are strongly regular.

A simple PES is depicted in Figure 1(a). Graphically, curly lines represent immediate conflicts
and the causal partial order proceeds upwards along the straight lines. Events are denoted by their
labels, possibly with superscripts. For instance, in EN , the events a0 and b0, labelled by a and b,
respectively, are in conflict. Event c0 causes the events ai and it is concurrent with bi for all i ∈ N .
It is an infinite PES associated with the Petri net N in Figure 1(b) in a way that will be discussed
in Section 6.1, hence, it is strongly regular by Corollary 6.5. For instance, it has six (equivalence
classes of) residuals extended with a single event from the past EN [{c0}] ∪ {c0}, EN [{b0}] ∪ {b0},
EN [{c0, b0}] ∪ {b0}, EN [{c0, a0}] ∪ {c0}, EN [{c0, a0}] ∪ {a0}, and EN [{c0, b0, a1}] ∪ {b0}.
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3 A LOGIC FOR TRUE CONCURRENCY

In this section, we introduce the syntax and the semantics of the logic for concurrency of interest
in the article. Originally defined in Reference [4], the logic has formulae that predicate over exe-
cutability of events in computations and their dependency relations (causality and concurrency).

3.1 Syntax

Logic formulae include event variables, from a fixed denumerable set Var , denoted by x ,y, . . . . To
keep the notation simple, tuples of variables such as x1, . . . ,xn will be denoted by a corresponding
boldface letter x and, abusing the notation, tuples will be often used as sets; e.g., we will write x ∈ x

instead of x = xi for some i ∈ {1, . . . ,n}. The logic, in positive form, besides the standard propo-
sitional connectives ∧ and ∨, includes diamond and box modalities. The formula 〈|x, y < a z |〉φ
holds when in the current configuration an a-labelled event e is enabled that causally depends
on the events bound to the variables in x and is concurrent with those in y. Event e is executed
and bound to variable z, and then the formula φ must hold in the resulting configuration. Dually,
[[x, y < a z]]φ is satisfied when all a-labelled events causally dependent on x and concurrent with
y bring to a configuration where φ holds.

Fixpoint operators refer to propositional variables. To let them interact correctly with event
variables, whose values can be passed from an iteration to the next one in the recursion, we use
abstract propositions.

We fix a denumerable set of abstract propositions Xa (where the superscript “a” stands for “ab-
stract”), ranged over by X , Y , . . . , that are intended to represent formulae possibly containing
(unnamed) free event variables. Each abstract proposition has an arity ar (X ), which indicates the
number of free event variables in X . An abstract proposition X can be turn into a formula by
specifying a name for its free variables. For x such that |x| = ar (X ), we write X (x) to indicate the
abstract proposition X whose free event variables are named x. When ar (X ) = 0, we will write
X instead of X (ϵ ) omitting the trailing empty tuple of variables. We call X (x) a proposition and
denote by X the set of all propositions.

Definition 3.1 (Syntax). The syntax of Lhp over the sets of event variables Var , abstract propo-
sitions Xa , and labels Λ is defined as follows:

φ ::= X (x) | T | φ ∧ φ | 〈|x, y < a z |〉φ | (νX (x).φ) (y)

| F | φ ∨ φ | [[x, y < a z]]φ | (μX (x).φ) (y).

The free event variables of a formula φ are denoted fv (φ) and defined in the obvious way. Just
note that the modalities act as binders for the variable representing the event executed, hence
fv (〈|x, y < a z |〉φ) = fv ([[x, y < a z]]φ) = (fv (φ) \ {z}) ∪ x ∪ y. The free propositions in φ, i.e., the
propositions not bound by μ or ν , are denoted by fp(φ). Formulae (αX (x).φ) (y) for α ∈ {μ,ν },
are referred to as α-formulae and hereafter α ranges over {ν , μ}. In such formulae, we require
that the tuple x does not include multiple occurrences of the same variable and, thus, it can be
seen as a set, which must correspond exactly to the free event variables of the inner formula φ,
i.e., fv (φ) = x. Intuitively, the fixpoint part αX (x).φ defines a recursive formula X (x) whose free
variables are then instantiated with y. The formula (αX (x).φ) (x) will be abbreviated as αX (x).φ.
In References [4–6] only the simplified form of the fixpoint syntax was used. This slight extension
allows for a simpler treatment of substitutions. When both fv (φ) and fp(φ) are empty, we say that

φ is closed. When x or y are empty, they are often omitted, e.g., we write 〈|a z |〉φ for 〈|∅, ∅ < a z |〉φ.
Given a formula φ and variables x ,y ∈ Var , we denote by φ[y/x] the formula obtained from φ

via a (capture avoiding) substitution of the free occurrences of x in φ by y. A function σ mapping
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free variables of φ to variables will be called a substitution, and we will denote by φσ the formula
φ[σ (fv (φ))/fv (φ)].

When defining the substitution of formulae for propositions some care is needed in the treat-
ment of variables. In fact, when replacing the proposition Z (x) in φ with some formulaψ , actually
each occurrence Z (y) of Z must be replaced by a formula obtained from ψ by renaming its free
event variables to y. Given a propositionZ (x) ∈ X and a formulaψ such that fv (ψ ) ⊆ x, we denote
by φ[Z (x) := ψ ] the formula obtained from φ by replacing free occurrences of Z (y) byψ [y�x].

Detailed definitions of free event variables and propositions and routine results about substitu-
tions can be found in Appendix A.1.

3.2 Abbreviations and Examples

In the logic, we can easily represent the possibility of performing concurrent events, each with its
own dependencies. Borrowing the notation from Reference [4], we will write

(〈|x, y < a z |〉 ⊗ 〈|x′, y′ < b z ′|〉) φ

for the formula 〈|x, y < a z |〉〈|x′, y′, z < b z ′|〉φ, which declares the existence of two concurrent
events, labelled by a and b, respectively, such that if we execute such events and bind them to
z and z ′, respectively, then φ holds. In particular, the ability to perform a step consisting of two
concurrent events labelled by a and b is simply expressed by the formula (〈|ax |〉 ⊗ 〈|by |〉)T. This
notation can be easily generalised to the execution of any number of concurrent events. We can

dually define the formula ([[x, y < a z]] ⊗ [[x′, y′ < b z ′]])φ stating that after the execution of all
pairs of concurrent events, having the specified dependencies and labelled a and b, respectively,
the formula φ holds.

We will also use a wildcard operator to refer to an event with an arbitrary label. When the set
of labels Λ is finite, we write

〈|x, y < _ z |〉φ
to denote the formula

∨
a∈Λ〈|x, y < a z |〉φ, and dually [[x, y < _ z]]φ for

∧
a∈Λ[[x, y < a z]]φ. For in-

stance, the formula ([[_y1]] ⊗ [[_y2]] ⊗ [[_y3]])F says that in the current state there are at most two
concurrently enabled events. A formula νX .(([[_y1]] ⊗ . . . ⊗ [[_yk ]])F ∧ [[_ z]]X ) states that the
level of parallelism will never exceed k − 1.

The formula 〈|cx |〉(〈|x < ay |〉T ∧ 〈|x < b z |〉T) requires that, after the execution of a c-labelled
event, one can choose between a causally dependent a-labelled event and a concurrent b-labelled
event. This is satisfied by EN in Figure 1(a). Instead 〈|cx |〉(〈|x < ay |〉T ∧ 〈|x < b z |〉T) requiring both
events to be concurrent would be false.

As an example of property of infinite computations, consider the formula

[[bx]]νZ (x ).((〈|cw |〉 ⊗ 〈|b z |〉)T ∧ [[x < by]]Z (y)),

expressing that all non-empty causal chain of b-labelled events reach a state where it is possible
to execute two concurrent events labelled c and b, respectively. Then the formula holds in EN .
Another formula satisfied by EN is (〈|cx |〉 ⊗ 〈|by |〉)νX (x ,y).(〈|y,x < b z |〉X (x , z)) requiring the ex-
istence of an infinite causal chain of b-labelled events, concurrent with a c-labelled event.

Now consider the formula μX .(〈|_ z |〉X ∨ 〈|bx |〉〈|x < ay |〉νY .〈|_ z |〉Y ). It requires the existence of
an infinite run containing a b-labelled event immediately followed by a causally dependent a-
labelled event, and it turns out to be false in the same PES. Intuitively, this is because any a-
labelled event causally dependent on a b-labelled event is in conflict with the rest of the infinite
chain of events, and then, after its execution, the computation is guaranteed to terminate. The
formula 〈|bx |〉νX (x ). μY (x ).(〈|x < by |〉X (y) ∨ 〈|_ z |〉Y (x )) states that there exists an infinite chain of
causally related, possibly non-consecutive, b-labelled events and it is satisfied by EN in Figure 1(a).
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As a final example, consider the notion of atomicity based on causality presented in Refer-
ence [18]. The control flow of a program with threads is modelled as a Petri net that captures
the independence and interaction between threads. The causality between events in the partially
ordered executions of the Petri net is used to define the notion of causal atomicity for program
blocks. Roughly, a program block A is causally atomic if there are no events e1, e2 from A and e
outside A such that e1 < e < e2. If each event is labelled by the block it is in, the causal atomicity
property can be expressed in Lhp as

νX . ��
�
[[_w]]X ∧ [[Ax]]νY (x ). ��

�

∧
B∈Λ\{A}

[[x < By]][[y < A z]]F ∧ [[_w]]Y (x )��
�

��
�
.

3.3 Alternation

An order induced on propositions by the nesting of fixpoints and the notion of fixpoint alternation
in the formulae of Lhp will play a role in the article (in particular for defining the acceptance con-
dition for the automaton in Section 5.2). We adapt some definition from Reference [16]. Hereafter,
we will assume that in every formula different bound propositions have different names, so we can
refer to the fixpoint subformula quantifying an abstract proposition. This requirement can always
be fulfilled by alpha-renaming. This will help us to keep the notation simpler.

Definition 3.2 (Active Subformula). Given an α-formula φ = (αX (x).φ ′) (y), we say that a sub-
formula ψ of φ is a direct active subformula, written ψ �d φ, if X ∈ fp(ψ ). When ψ �∗

d
φ, we say

that ψ is an active subformula of φ. We denote by sf (φ) the set of subformulae of a formula φ and
by asfα (φ) the set of active α-subformulae.

Note that �d is acyclic, since it refines the subformula relation, and thus �∗
d

is a partial order.

Definition 3.3 (Alternation Depth). The alternation depth of a formula φ in Lhp , written ad(φ),
is defined, for a ν-formula φ, as ad(φ) = max{1 + ad(ψ ) | ψ ∈ asfμ (φ)} and dually, for a μ-formula
φ, as ad(φ) = max{1 + ad(ψ ) | ψ ∈ asfν (φ)}. For any other formula φ, ad(φ) = max{ad(ψ ) | ψ ∈
sf (φ) \ {φ}}.

It is intended that max ∅ = 0; e.g., by the first clause above, the alternation depth of νX (x).φ is
0 in absence of active μ-subformulae.

As an example, consider the formula 〈|bx |〉νX (x ). μY (x ).(〈|x < by |〉X (y) ∨ 〈|_ z |〉Y (x )) from Sec-
tion 3.2 and write it as 〈|bx |〉φ, where φ = νX (x ).ψ andψ = μY (x ).(〈|x < by |〉X (y) ∨ 〈|_ z |〉Y (x )). It
has alternation depth 1, sinceψ is a (direct) active subformula of φ, given the fact that X ∈ fp(ψ ).
It is not difficult to see that all other formulae in Section 3.2 have instead alternation depth 0;
e.g., μX .(〈|_z |〉X ∨ 〈|bx |〉〈|x < ay |〉νY .〈|_ z |〉Y ) has alternation depth 0 despite the nesting of a ν-
subformula into a μ-subformula, since X does not appear free in the ν-subformula.

Hereafter, if X and X ′ are abstract propositions quantified in α-subformulae (αX (x).φ) (y) and
(α ′X ′(x′).φ ′) (y′), we will write ad(X ) for ad((αX (x).φ) (y)) and X �d X ′ for (αX (x).φ) (y) �d

(α ′X ′(x′).φ ′) (y′).

3.4 Semantics

Since the logic Lhp is interpreted over PESs, the satisfaction of a formula is defined with respect
to a configurationC , representing the state of the computation and a (total) function η : Var → E,
called an environment, that binds free variables in the formula to events in C . Namely, if EnvE
denotes the set of environments, the semantics of a formula will be a set of pairs in C (E) × EnvE .
Given a set of pairs S ⊆ C (E) × EnvE and two tuples of variables x and y, with |x| = |y|, we define
S[y�x] = {(C,η′) | ∃(C,η) ∈ S ∧ η(x) = η′(y)}. The semantics of Lhp also depends on a proposi-
tion environment providing a semantic interpretation for propositions.
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Definition 3.4 (Proposition Environment). Let E be a PES. A proposition environment is a func-

tion π : X → 2C (E)×EnvE such that for all tuples of variables x, y with |x| = |y| = ar (X ) it holds
π (X (y)) = π (X (x))[y�x]. The set of proposition environments, ranged by π , is denoted PEnvE .

The condition posed on proposition environments ensures that the semantics of a formula only
depends on the events that the environment associates with its free variables and that it does not
depend on the naming of the variables.

We can now give the semantics of the logic Lhp . Given an event environment η and an event
e , we write η[x �→ e] to indicate the updated environment that maps x to e . Similarly, for a propo-
sition environment π and S ⊆ C (E) × EnvE , we write π [Z (x) �→ S] for the corresponding update
(see Appendix A.1 for the detailed definition). For a pair (C,η) ∈ C (E) × EnvE and variables x, y,
z, we define the (x, y < az)-successors of (C,η), as

Succ
x,y<az

E (C,η) = {(C ′,η[z �→ e]) | C η (x),η (y) < e−−−−−−−−−−→a C
′}.

In words, Succ
x,y<az

E (C,η) consists of the pairs (C ′,η′) where C ′ is a configuration reachable
fromC , by executing an event e satisfying the requirement expressed by x, y < az, namely, events
in η(x) are causes for e and events in η(y) are concurrent with e . The environment η′ is the update
of η where event e has been bound to variable z.

Definition 3.5 (Semantics). Let E be a PES. The denotation of a formula φ in Lhp is given by the

function {|·|}E : Lhp → PEnvE → 2C (E)×EnvE defined inductively as follows, where we write {|φ |}Eπ
instead of {|φ |}E (π ):

{|T|}Eπ = C (E) × EnvE {|F|}Eπ = ∅ {|Z (y) |}Eπ = π (Z (y))

{|φ1 ∧ φ2 |}Eπ = {|φ1 |}Eπ ∩ {|φ2 |}Eπ {|φ1 ∨ φ2 |}Eπ = {|φ1 |}Eπ ∪ {|φ2 |}Eπ
{|〈|x, y < a z |〉φ |}Eπ = {(C,η) | Succ

x,y<az

E (C,η) ∩ {|φ |}Eπ � ∅}

{|[[x, y < a z]]φ |}Eπ = {(C,η) | Succ
x,y<az

E (C,η) ⊆ {|φ |}Eπ }
{|(αZ (x).φ) (y) |}Eπ = α ( fφ,Z (x),π )[y�x]

,

where fφ,Z (x),π : 2C (E)×EnvE → 2C (E)×EnvE is the function defined by fφ,Z (x),π (S ) = {|φ |}E
π [Z (x) �→S]

,

which we refer to as the semantic function of φ, Z (x), π . Moreover, ν ( fφ,Z (x),π ) (respectively,

μ ( fφ,Z (x),π )) denotes the corresponding greatest (respectively, least) fixpoint. When (C,η) ∈ {|φ |}Eπ ,
we say that the PES E satisfies the formula φ in the configurationC and environments η,π . When
φ is closed, hence the environments η,π are irrelevant, and E satisfies the formula φ in the empty
configuration, we simply say that E satisfies φ.

The semantics of Boolean operators is as usual. The formula 〈|x, y < a z |〉φ holds in (C,η) when
from configurationC there is an enabled a-labelled event e that is causally dependent on (at least)
the events bound to the variables in x and concurrent with (at least) those bound to the variables in
y and can be executed producing a new configuration C ′ = C ∪ {e} that, paired with the environ-
ment η′ = η[z �→ e], satisfies φ. Dually, [[x, y < a z]]φ holds when all a-labelled events executable
from C , caused by x, and concurrent with y bring to a configuration where φ is satisfied.

The fixpoints corresponding to the formulae (αZ (y).φ) (y) are guaranteed to exist by Knaster-

Tarski theorem, since the set 2C (E)×EnvE ordered by subset inclusion is a complete lattice and the
functions, of which the fixpoints are calculated, are monotonic.

3.5 Pointed Configurations and Equisatisfaction

The satisfaction of a formula of Lhp in a given configuration surely depends on the future of
the configuration, i.e., on the so-called residual of the event structure after the configuration.
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Additionally, since the formula can contain free event variables that refer to past events, satisfac-
tion also depends on how such past events are related (via concurrency and causality) with the
future.

This motivates the notion of pointed configuration introduced below.

Definition 3.6 (Pointed Configuration). Let E be a PES and letV be a set. AV -pointed configuration

is a pair 〈C, ζ 〉 where C ∈ C (E) and ζ : V → C is a function.

The notion will be used in situations whereV is a set of variables free in a formula, and ζ is the
(restriction to such variables of the) environment.

We say that twoV -pointed configurations have isomorphic pointed residuals when their resid-
uals are related by a bijection ensuring that events corresponding to the same x ∈ V have the same
causal relations with the future. The formal definition follows:

Definition 3.7 (Isomorphism of Pointed Residual). Let E be a PES,V a set, and let 〈C, ζ 〉 and 〈C ′, ζ ′〉
be twoV -pointed configurations of E. We say that 〈C, ζ 〉, 〈C ′, ζ ′〉 have isomorphic residuals, writ-
ten 〈C, ζ 〉 ≈r 〈C ′, ζ ′〉, if there is an isomorphism of the residuals ι : E[C]→ E[C ′] such that for all
x ∈ V , e ∈ E[C], we have ζ (x ) ≤ e iff ζ ′(x ) ≤ ι (e ).

We will show that pointed configurations with isomorphic residuals satisfy exactly the same
formulae when free event variables correspond to the pointed events. For properly stating such
property, since we will work with formulae containing free propositional variables, we need to
restrict to proposition environments that are well-behaved in the sense formalised below with
respect to the free propositions of the formulae of interest.

Definition 3.8 (Saturated Proposition Environment). Let E be a PES. Given a formula φ and a
proposition environment π ∈ PEnvE , we say that π is saturated for φ when for all X ∈ fp(φ)
and (C,η), (C ′,η′) ∈ C (E) × EnvE , with 〈C,η |fv (φ )〉 ≈r 〈C ′,η′ |fv (φ )〉, if (C,η) ∈ π (X (y)), for some
y, then (C ′,η′) ∈ π (X (y)).

In words, to be saturated for a formula φ, a proposition environment must assign to each free
proposition in φ a semantics that respects the equivalence ≈r over fv (φ)-pointed configurations.
Then, we have the desired result.

Lemma 3.9 (Eqisatisfaction in Pointed Configurationswith Isomorphic Residuals). Let

E be a PES, let φ be a formula of Lhp , let π ∈ PEnvE be a proposition environment saturated for

φ, and let (C1,η1), (C2,η2) ∈ C (E) × EnvE . If 〈C1,η1 |fv (φ )〉 ≈r 〈C2,η2 |fv (φ )〉, then (C1,η1) ∈ {|φ |}Eπ iff

(C2,η2) ∈ {|φ |}Eπ .

We finally observe that, for strongly regular PESs, the number of equivalence classes of pointed
configurations with respect to ≈r is finite. The converse holds when the PES is boundedly branch-
ing, providing an alternative characterisation of strong regularity. This will play a basic role in the
proofs of finiteness of tableaux and automata.

Lemma 3.10 (Strong Regularity and Residuals of Pointed Configurations). A PES E is

strongly regular iff it is boundedly branching and for any fixed finite set V , the equivalence ≈r is of

finite index over V -pointed configurations of E.

4 A TABLEAU SYSTEM FOR MODEL CHECKING

In this section, we present a tableau system for testing whether a formula of the logic Lhp is
satisfied by a semantic model given in the form of an event structure. We prove that the tableau
rules are sound and complete over strongly regular event structures.
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4.1 Tableau Rules

The tableau system works on a sort of sequents C,η,Δ |=E φ, where φ is a formula, C ∈ C (E) is a
configuration, η is an environment, and Δ is a finite set of definitions of the form X (x) = ψ , with x

a tuple of (distinct) event variables and fv (ψ ) ⊆ x. The triple Γ = 〈C,η,Δ〉 is called the context andφ
the consequent. In a tableaux built starting from a closed formula, in Δ each propositionX (x) will be
defined as the fixpoint subformula αX (x).ψ where X is quantified. For technical reasons, we also
allow Δ to bind propositions to general formulae. This will be used in the proofs of soundness and
completeness, where we will need to bind propositions to suitably defined fixpoint approximants.

When X (x) = ψ is in Δ, we write X (x) ∈ dom(Δ) and we denote the formula ψ as Δ(X (x)).
We assume that for each abstract proposition there is at most one definition, i.e., if X (x) = ψ and
X (x′) = ψ ′ are in Δ, then x = x

′ andψ = ψ ′.
We denote by Δ[X (x) �→ ψ ] the updated definition set obtained from Δ by removing the previous

definition of X , if any, and adding X (x) = ψ .
We will work with a subclass of sequents where iterating the substitution of free propositions

in the formula φ with their definitions in Δ, we eventually obtain a formula without free propo-
sitions. More precisely, let C,η,Δ |=E φ be a sequent. For formulae ψ ,ψ ′ write ψ →Δ ψ ′ when
ψ ′ = ψ [X (x) := Δ(X (x))] for some X (x) ∈ dom(Δ). Then the class of sequents we will work with
can be defined as follows:

Definition 4.1 (Well-Formed Sequents). A sequentC,η,Δ |=E φ is well-formed ifφ →∗Δ ψ for some
ψ such that fp(ψ ) = ∅. In this case, we denote the formulaψ by (φ)Δ.

It is easy to realise that the formula (φ)Δ is well-defined, i.e., when it exists it is unique (up to
alpha-renaming of event variables).

The truth of a well-formed sequent can be now defined in the obvious way:

Definition 4.2 (Truth). A well-formed sequent C,η,Δ |=E φ is true if (C,η) ∈ {|(φ)Δ |}Eπ , where π
is any proposition environment.

Observe that in the definition above, the proposition environment π is irrelevant, since
C,η,Δ |=E φ is well-formed and thus the formula (φ)Δ does not include any free proposition.

The tableau rules will be of the form

C,η,Δ |=E φ

C1,η1,Δ1 |=E φ1 . . . Ck ,ηk ,Δk |=E φk

δ ,

where k > 0 and δ is a possible side condition required to hold. The intuition is that the truth of
the sequent in the premise reduces to the truth of those in the conclusion. In the following, the
index E, when clear from the context, will be dropped. Moreover, all sequents will be, sometimes
tacitly, assumed to be well-formed.

The tableau rules for the logic Lhp , are reported in Table . The rules for propositional connec-
tives are straightforward. For instance, the truth of φ ∨ψ is reduced to the truth of either φ or ψ .
The context is not altered.

Similarly, the truth of a modal formula is reduced to the truth of the subformula after the modal
operator in suitable contexts chosen according to the semantics. For the formula 〈|x, y < a z |〉φ the
rule (�) prescribes the existence of at least one transition leading to a context where φ holds. The
rule (�) for [[x, y < a z]]φ requires that all transitions lead to contexts where φ holds. Observe
that, working with strongly regular PESs, which are boundedly branching, rule (�) always has a
finite number of sequents in the conclusion.

Rule (Int) reduces the truth of a fixpoint formula (αZ (x).φ) (y) to that of the proposition Z (y)
in a context where the definition list Δ is extended by defining Z (x) as the corresponding fixpoint
subformula. We will say that the nodeC,η,Δ |= (αZ (x).φ) (y)introduces the abstract proposition Z .
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Table 1. The Tableau Rules for Logic Lhp

(∧)
C,η,Δ |= φ ∧ ψ

C,η,Δ |= φ C,η,Δ |= ψ

(∨L)
C,η,Δ |= φ ∨ ψ

C,η,Δ |= φ
(∨R)

C,η,Δ |= φ ∨ ψ

C,η,Δ |= ψ

(�)
C,η,Δ |= 〈|x, y < a z |〉φ
C ′,η[z �→ e],Δ |= φ

∃ e . C η (x),η (y) < e−−−−−−−−−−→a C
′

(�)
C,η,Δ |= [[x, y < a z]]φ

C1,η1,Δ |= φ . . . Cn ,ηn ,Δ |= φ
{(C1,η1), . . . , (Cn ,ηn )} = Succ

x,y<az

E (C,η)

(Int)
C,η,Δ |= (αZ (x).φ) (y)

C,η,Δ′ |= Z (y)
Δ′ = Δ[Z (x) �→ αZ (x).φ]

(Unfα )
C,η,Δ |= Z (z)

C,η[x �→ η(z)],Δ |= φ
¬γ and Δ(Z (x)) = αZ (x).φ

Rule (Unfα ) is applied when the consequent is a propositionZ (z): It just unfolds the proposition
according to its definition in Δ.When starting from a closed formula, the propositionwill be always
bound to a fixpoint formula. The component γ in the side condition will be described in the next
section. It is called stop condition and, as suggested by its name, it is intended to prevent the
reduction to continue unboundedly.

The tableau rules satisfy backwards soundness, i.e., we can show that the premise is true when
all the sequents in the conclusion are. This property will play a basic role in Section 4.3 for proving
the soundness of the tableau system.

Lemma 4.3 (Backwards Soundness). Every rule of the tableau system is backwards sound.

4.2 The Stop Condition

The unfolding rule (Unfα ), in absence of any countermeasure, makes the tableau construction
procedure non-terminating. To solve this problem, a side condition, called the stop condition, is
added that prevents the application of the rule when a context is reached that is equivalent, in a
suitable sense to be defined, to a context occurring in an ancestor of the current node, for the same
fixpoint formula.

The notion of equivalence between contexts has to be chosen carefully not to break the sound-
ness of the technique. Surely two contexts C,η,Δ and C ′,η′,Δ′ for a formula φ, to be considered
equivalent, must have isomorphic futures, i.e., the residuals E[C] and E[C ′] must be isomorphic
as PESs. This is not sufficient, though, since φ can express history-dependent properties that relate
the future with the past events. Hence, we additionally ask that event variables of φ are mapped to
events in C and C ′, respectively, which have the same relations (causality and concurrency) with
the corresponding futures. More formally, we ask thatC andC ′, seen as configurations pointed by
fv (φ), have isomorphic residuals (see Definition 3.7).

Given a tableau for a closed formula and a node labelled byC,η,Δ |= X (y), with X (x) = ψ in Δ,
necessarilyψ = αX (x).φ and the node has some ancestor introducing X . We will denote by Δ↑(X )
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Fig. 2. A successful tableau for 〈|bx |〉νX (x ).μY (x ).(〈|x < by |〉X (y) ∨ 〈|_ z |〉Y (x )) in EN .

the closest of such ancestors. The notation is slightly abused, since Δ↑(X ) is not determined by Δ,
still it is suggestive, since Δ↑(X ) is the node where the definition of X in Δ has been updated more
recently. More precisely, one can think that Δ↑(.) is an additional component of the sequent.

Observe that, once it has been set, the definition X (x) = ψ of a proposition remains unchanged
in the tableau and it will be referred as the definition of X in the tableau. Instead, the component
Δ↑(X ) changes at each application of rule (Int).

Definition 4.4 (Stop Condition). The stop condition γ for rule (Unfα ) in Table is as follows:

there is an ancestor of the premise C,η,Δ |= Z (z) labelled C ′,η′,Δ′ |= Z (y), such that
Δ↑(Z ) = Δ′↑(Z ) and 〈C,η[x �→ η(z)]|x〉 ≈r 〈C ′,η′[x �→ η′(y)]|x〉.

Informally, the stop condition holds when in an ancestor node in the tableau an instance of the
abstract propositionX has been unfolded in an equivalent context, and between such ancestor and
the current node,X has not been reintroduced. This intuitively means that the twoX ’s refer to the
same fixpoint instance. In this case, we can safely avoid to continue along this path. Instead, when
the stop condition fails, it makes sense to further unfold the fixpoint, since the current context is
still “different enough” from those previously encountered. Note that the equivalence of contexts is
checked after renaming the variables to those associatedwithX in the fixpoint formula quantifying
the proposition.

In References [11, 12, 45], the finiteness of the model is an essential requirement for the finite-
ness of the tableaux. In our case, as already mentioned, the PES model is commonly infinite, even
for finite-state systems. However, working with strongly regular PESs, thanks to the fact that they
are boundedly branching, only a finite part of the model is used in every step of the tableau con-
struction. Moreover after going sufficiently in depth, thanks to the strong regularity property, the
PES starts “repeating” cyclically the same structure, something that will allow us to show that the
stop condition eventually holds. These facts will allow to conclude, later in Section 4.3, that the
satisfaction of a formula can be established by checking only a finite part of the PES.

As an example, consider the formula 〈|bx |〉νX (x ). μY (x ).(〈|x < by |〉X (y) ∨ 〈|_ z |〉Y (x )) from Sec-
tion 3.2, which was claimed to be satisfied by EN in Figure 1(a). Write it as 〈|bx |〉φ, where φ =
νX (x ).ψ and ψ = μY (x ).(〈|x < by |〉X (y) ∨ 〈|_ z |〉Y (x )). A tableau for the sequent ∅,η, ∅ |= 〈|bx |〉φ
is given in Figure 2. The unfolding rule cannot be applied to the bottom sequent {b0, b1},η[x �→
b0,y �→ b1], {X (x ) = φ,Y (x ) = ψ } |= X (y) because the stop condition holds. In fact, there is an an-
cestor, namely, {b0},η[x �→ b0], {X (x ) = φ} |= X (x ), having the same introduction node for the
abstract proposition X and such that 〈{b0, b1},η[x �→ b1]|x 〉 ≈r 〈{b0},η[x �→ b0]|x 〉.
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4.3 Soundness and Completeness of the Tableau System

In this section, we show that the truth of a formula φ over a strongly regular event structure can
be reduced to the existence of a suitably defined successful tableau.

Definition 4.5 (Tableau for a Closed Formula). Let E be a PES. Given a closed formula φ in Lhp ,

a tableau for φ is a tableau for a sequent ∅,η, ∅ |=E φ, where η ∈ EnvE .

Note that the environment η can be chosen arbitrarily: It is irrelevant, since the formula has no
free event variables.

A maximal tableau is a tableau where all leaves are labelled by sequents to which no rule applies.
We first clarify when a maximal tableau is considered successful.

Definition 4.6 (Successful Tableau). A successful tableau is a finite maximal tableau where every
leaf is labelled by a sequent C,η,Δ |=E φ such that one of the following holds:

(1) φ = T

(2) φ = [[x, y < az]]ψ
(3) φ = Z (y) and Δ(Z (x)) = νZ (x).ψ .

An example of successful tableau can be found in Figure 2.
Observe that the choice of the rule to be applied at a step of the construction of a tableau is

non-deterministic in the case of 〈|x, y < a z |〉φ and φ ∨ψ . This means that there can be various
maximal tableaux for the same sequent. However, when we work on strongly regular PESs, the
fact that they are boundedly branching ensures that at each step the number of possible non-
deterministic choices is finite and bounded. This later plays a role for deducing that there can be
only a finite number of maximal tableaux for each given sequent.

We first focus on the finiteness issue and then move on to the soundness and completeness of
the technique.

4.3.1 Finiteness. We aim at proving that all tableaux for a sequent C,η,Δ |=E φ are finite. A
first basic observation is that an infinite tableau for a sequent C,η,Δ |=E φ necessarily includes a
path where the same proposition is unfolded infinitely many times without being reintroduced.
The proof relies on some properties of the order �∗

d
over propositions (see Definition 3.2).

Lemma 4.7 (Fixpoint Introduction). Let E be a PES and let τ be a tableau for a closed formula

φ. Let n be any node in the tableau labelled by C,η,Δ |= X (x) for some X (x) ∈ X.

(1) If n has a descendant n′ labelled byC ′,η′,Δ′ |= Y (y), for some Y (y) ∈ X, and Y is not intro-

duced between n and n′, then X �∗
d
Y .

(2) If n has a descendant n′ that introduces X , then there is a node n′′ between n and n′ with

consequent Y (y) such that X �d Y (hence, X �∗
d
Y and X � Y ).

We already observed that the fact that strongly regular PESs are boundedly branching implies
that also the constructed tableaux are boundedly branching. Then, by König’s lemma, an infinite
tableau necessarily includes an infinite path. Using Lemma 4.7, it is not difficult to show that such
path includes infinitely many repetitions of the same abstract proposition without introductions,
i.e., we get the following property:

Lemma 4.8 (Infinite Occurrences of Propositions in Tableaux). Let E be a finitely branch-

ing PES. An infinite tableau for a closed formula φ contains an infinite path where some abstract

proposition Z occurs (and thus is unfolded) infinitely often without being introduced.

We can finally deduce the finiteness of the tableaux for a sequent that in turn implies that the
number of tableaux is finite. This fact is essential for termination of the model-checking procedure.
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Theorem 4.9 (tableaux finiteness). For a strongly regular PES E and a closed formula φ, every

tableau for a sequent C,η,Δ |=E φ is finite. Hence, the number of tableaux for C,η,Δ |=E φ is finite.

Roughly the proof, detailed in the Appendix, proceeds as follows: An infinite tableau, by
Lemma 4.8, would contain an abstract proposition occurring infinitely often in a path, without
being reintroduced. By using Lemma 3.10, we would deduce that the proposition would occur
infinitely often within contexts with isomorphic pointed residuals. This would lead to a contra-
diction, since at the first repetition the stop condition (see Definition 4.4) would have prescribed
of terminating the branch. From the fact that all tableaux are finite and boundedly branching, we
conclude that there are finitely many of them.

4.3.2 Soundness and Completeness. We can now prove the soundness and completeness of the
tableau system. For this, we use the possibility of reducing the satisfaction of a formula to the
satisfaction of a finite approximant. While on finite models this is immediate, over event struc-
tures where the space of configurations is infinite, this does not work, in general. In fact, due to
alternation, the semantic function associated with a formula might be non-continuous, hence it is
not guaranteed that fixpoints will be reached in at most ω steps. However, here, the result can be
obtained by exploiting the finiteness of pointed configurations up to ≈r in strongly regular PESs.

Definition 4.10 (Finite Approximant). Letφ = νZ (x).ψ be a fixpoint formula. The ith approximant

φi , for i ∈ N , is inductively defined by φ0 = T and φi+1 = ψ [Z (x) := φi ]. Dually, if φ = μZ (x).ψ ,
then we define φ0 = F and φi+1 = ψ [Z (x) := φi ].

We next observe that, as anticipated, despite the fact that the state space of configurations is
infinite, for strongly regular PESs, all formulae, even those with alternation, reach the fixpoint
after a finite number of steps.

Lemma 4.11 (Finite Approximants Properties). Let E be a strongly regular PES, let π ∈ PEnvE
be a saturated proposition environment, and let φ = αZ (x).ψ be a fixpoint formula. Then there exists

i ∈ N such that {|φ |}Eπ = {|φi |}Eπ . Hence, for any configurationC ∈ C (E) and environment η ∈ EnvE :

(1) if φ = νZ (x).ψ and (C,η) � {|φ |}Eπ , then (C,η) ∈ {|φn |}Eπ \ {|φn+1 |}Eπ for some n ≤ i ;
(2) if φ = μZ (x).ψ and (C,η) ∈ {|φ |}Eπ , then (C,η) ∈ {|φn+1 |}Eπ \ {|φn |}Eπ for some n ≤ i .

We can now show that the model-checking problem reduces to the construction of a successful
tableau. We prove separately soundness and completeness by resorting to some variations of the
tableau system in Table that we call ν-pseudo-tableau and μ-pseudo-tableau systems, respectively.

Definition 4.12 (ν -pseudo-tableaux). Theν-pseudo-tableau system is obtained from that in Table ,
by working with sequents C,η,Δ |= φ where the definition list Δ contains definitions Z (x) =
(νZ (x).φ)n and inserting the new unfolding rule below:

(Unfa
ν )

C,η,Δ |= Z (z)

C,η[x �→ η(z)],Δ |= φ
¬γ and Δ(Z (x)) = (νZ (x).φ)n .

The notion of successful ν-pseudo-tableau is as in Definition 4.6, but we additionally allow a
leaf to be labelled by C,η,Δ |=E Z (z) with Δ(Z (x)) = (νZ (x).ψ )n and (C,η) ∈ {|(Z (z))Δ |}π for π ∈
PEnv.

It can be easily seen that also rule (Unfa
ν ) is backwards sound. In fact, assume that the sequent

in the conclusion is true, i.e., (C,η[x �→ η(z)]) ∈ {|(φ)Δ |}Eπ = {|(φ[Z (X ) := (νZ (x).φ)n])Δ |}Eπ =
{|(νZ (x).φ)n+1

Δ |}Eπ , for some π ∈ PEnv. Now observe that (Z (x))Δ = (νZ (x).φ)n
Δ . Hence, (C,η[x �→

η(z)]) ∈ {|(νZ (x).φ)n+1
Δ |}Eπ ⊆ {|(νZ (x).φ)n

Δ |}
E
π = {|(Z (x))Δ |}Eπ = {|Z (z) |}Eπ [x�z]. Thus, (C,η) ∈

{|Z (z) |}Eπ , which means that the sequent in the premise is true.
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Soundness will be an immediate consequence of the following technical result that implies that
there cannot be successful ν-pseudo-tableaux with false leaves, that is, leaves labelled by sequents
that are not true.

Lemma 4.13 (Shortening ν-Pseudo-Tableaux). Let E be a strongly regular PES and let τ be

a successful ν -pseudo-tableau. If τ has a false leaf and for all false leaves C,η,Δ |= X (z), the node

Δ↑(X ) is in τ , then there exists a successful ν -pseudo-tableaux τ ′, strictly smaller than τ , with a false

leaf and where for all false leaves C,η,Δ |= X (z), the node Δ↑(X ) is in τ ′.

The above lemma immediately implies that a successfulν-pseudo-tableau τ where all false leaves
C,η,Δ |= X (z) are such that Δ↑(X ) is in τ actually cannot include false leaves. Since a successful
tableau for a closed formula is a successful ν-pseudo-tableau with the above property, we conclude
that it cannot have false leaves and thus, by backwards soundness, all nodes including the rootmust
be true, i.e., we have the following:

Lemma 4.14 (Soundness). Let E be a strongly regular PES and φ be a closed formula of Lhp . If φ
has a successful ν -pseudo-tableau (hence, in particular, if it has a successful tableau), then E satisfies

φ.

For completeness, we resort to a dual variation of basic tableaux, referred to as μ-pseudo-
tableaux.

Definition 4.15 (μ-Pseudo-Tableaux). The μ-pseudo-tableau system is obtained from that in
Table , by working with sequentsC,η,Δ |= φ where Δ contains definitions Z (x) = (μZ (x).φ)n and
replacing (Unfμ ) by the new unfolding rule below:

(Unfa
μ )

C,η,Δ |= Z (z)

C,η′,Δ′ |= ψ
¬γ and Δ(Z (x)) = μZ (x).ψ or (μZ (x).ψ )n ,

where η′ = η[x �→ η(z)] and Δ′ = Δ[Z (x) �→ (μZ (x).ψ )k ] with k ∈ N such that

(C,η′) ∈ {|(μZ (x).ψ )k+1
Δ |}π \ {|(μZ (x).ψ )k

Δ |}π , (1)

for π ∈ PEnv. Moreover, if Δ(Z (x)) = (μZ (x).ψ )n , then it is required that k < n. The stop condition
γ is the usual one (see Definition 4.4).

The notion of successful μ-pseudo-tableau is exactly as in Definition 4.6.

Notice that in rule (Unfa
μ ) the requirement (1) posed on k is in fact a semantic condition. This

inclusion may seem strange in a tableau rule, however, it should not be worrisome, since μ-pseudo-
tableaux are solely devoted to prove the correctness of the method.

An easy but crucial observation is that rule (Unfa
μ ) is applicable exactly in the situations in

which the premise is true (as detailed in the Appendix). Additionally, rule (Unfa
μ ) preserves the

well-formedness of the sequents when applied to a true premise, i.e., if the premise is well-formed
and true, then the conclusion is well-formed. This immediately follows from the observation that
for k < n it holds fp((μZ (x).ψ )k ) ⊆ fp((μZ (x).ψ )n ) ⊆ fp(μZ (x).ψ ).

Theorem 4.9 can be easily extended to μ-pseudo-tableaux, i.e., we can prove that every μ-pseudo-
tableau is finite. Moreover, notice that a successful μ-pseudo-tableau can be transformed into a
successful tableau simply by replacing, in all sequents, the definition list Δ with Δ′ where each ap-
proximant is substituted by the corresponding least fixpoint. More precisely, for allX (x) ∈ dom(Δ),
we let Δ′(X ) = μX (x).ψ if Δ(X (x)) = (μX (x).ψ )n , and Δ′(X (x)) = Δ(X (x)), otherwise. Using this
fact one can prove completeness.

Lemma 4.16 (Completeness). Let E be a strongly regular PES and let φ be a closed formula of

Lhp . If E satisfies φ, then φ has a successful μ-pseudo tableau and thus a successful tableau.
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Combining the previous lemmata, we get to the desired result.

Theorem 4.17 (Soundness and Completeness of the Tableau System). Given a strongly reg-

ular PES E and a closed formula φ of Lhp , the formula φ has successful tableau if and only if E
satisfies φ.

5 AUTOMATA-BASED MODEL CHECKING

On theway to a practical implementation of amodel-checker forLhp , in this section, we develop an
automata-theoretic approach to model checking Lhp . We show how the model-checking problem
for Lhp on strongly regular PESs can be reduced to the non-emptiness of the language of suitably
generated nondeterministic parity tree automata. The automaton that naturally arises from a PES
and a formula has an infinite number of states. We discuss how it can be quotiented to a finite
automaton accepting the same language, which can thus be used for model-checking purposes.

5.1 Infinite Parity Tree Automata and Their Quotient

Automata on infinite trees are a powerful tool for various problems in the setting of branching
temporal logics. Here, we focus on nondeterministic parity tree automata [30], with some non-
standard features. We work on k-trees (rather than on binary trees), a choice that will simplify the
presentation, and we allow for possibly infinite state automata.

When automata are used for model-checking it is standard to restrict to unlabelled trees. A
k-bounded branching tree or k-tree, for short, is a subset T ⊆ [1,k]�, such that

(1) T is prefix closed, i.e., if uv ∈ T then u ∈ T
(2) u1 ∈ T for all u ∈ T
(3) for all i ∈ [2,k] if ui ∈ T then u (i − 1) ∈ T .

Elements of T are the nodes of the tree. The empty string ϵ corresponds to the root. A string of
the form ui corresponds to the ith child of node u. Hence, by (2) each branch is infinite and by (3)
the presence of the ith child implies the presence of the jth children for j ≤ i .

Definition 5.1 (Nondeterministic Parity Automaton). A k-bounded nondeterministic parity tree
automaton (NPA) is a tupleA = 〈Q,−→,q0,F 〉whereQ is a (possibly infinite) set of states, −→⊆ Q ×⋃k

i=1Q
i is the transition relation, q0 ∈ Q is the initial state, and F = (F0, . . . , Fh ) is the acceptance

condition, where F0, . . . , Fh ⊆ Q are mutually disjoint subsets of states.

Transitions are written as q −→ (q1, . . . ,qm ) instead of (q, (q1, . . . ,qm )) ∈ −→.
The acceptance conditionF = (F0, . . . , Fh ) defines the priority of states of the automaton, where

a state q ∈ Fi is assigned priority i . Sets F0, . . . , Fh are required to be mutually disjoint, since every
state can have at most one priority.

Definition 5.2 ((Accepting) Runs). Given a k-tree T , a run of A on T is a labelling of T over
the states r : T → Q consistent with the transition relation, i.e., such that r (ϵ ) = q0 and for all
u ∈ T , with m children, there is a transition r (u) −→ (r (u1), . . . , r (um)) in A. A path in the run
r is an infinite sequence of states p = (q0,q1, . . .) labelling a complete path from the root in the
tree. It is called accepting if there exists an even number l ∈ [0,h] such that the set {j | qj ∈ Fl } is
infinite and the set {j | qj ∈

⋃
l<i≤h Fi } is finite. In this case, we denote such l by F (p). The run

r is accepting if all paths in r are accepting.

In words, given a run r , a path p in r is accepting if there are indices i such that states in Fi

occur infinitely often in the path p and the largest of such indices is even. The run is accepting if
all paths in it are.
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In the sequel, we will also refer to a path in an NPA A, meaning a possibly infinite sequence
p = (q1,q2, . . .) such that for all i < |p | there is a transition qi −→ (q′1, . . . ,qi+1, . . . ,q

′
m ). Note that,

given a run r of an automaton A, each path in r is also a path in A.

Definition 5.3 (Language of an NPA). Let A be an NPA. The language of A, denoted by L(A),
consists of the trees T that admit an accepting run.

Observe that for a k-bounded NPA, the language L(A) consists of a set of k-trees.
The possibility of having an infinite number of states in an NPA and the associated acceptance

condition are non-standard. However, it is easy to see that whenever an NPA is finite, the accep-
tance condition coincides with the standard one requiring a single state with maximal even priority
to occur infinitely often in each path. In fact, for finite NPAs, all sets in the acceptance condition
F are finite and thus asking that for a path p = (q0,q1, . . .) the set {j | qj ∈ Fi } is infinite amounts
to asking that some state in Fi repeats infinitely often in the path p.

The NPA naturally associated with a formula and event structure will be infinite. To have an
effective procedure for checking the satisfaction of a formula, we will build a suitable quotient of
the NPA, with respect to an equivalence that preserves emptiness.

For this reason, we next introduce a notion of bisimulation over NPAs and observe that bisim-
ulation equivalences preserve the language of NPAs (and thus in particular language emptiness).
An analogous notion is studied in Reference [1] in the setting of nondeterministic tree automata
over finite trees.

Definition 5.4 (Bisimulation). Given an NPA A, a symmetric relation R ⊆ Q ×Q over the set of
states is a bisimulation whenever for all (q,q′) ∈ R

(1) for all i ∈ [0,h], q ∈ Fi iff q′ ∈ Fi ;
(2) if q −→ (q1, . . . ,qm ), then q′ −→ (q′1, . . . ,q

′
m ) with (qi ,q

′
i ) ∈ R for i ∈ [1,m].

Given an NPA A and an equivalence ≡ on the set of states that is a bisimulation, we define the
quotient as A/≡ = 〈Q/≡,−→/≡, [q0]≡,F/≡〉 where [q]≡−→/≡ ([q1]≡, . . . , [qm]≡) if q −→ (q1, . . . ,qm ) and
F/≡ = (F0/≡, . . . , Fh /≡). Note that by condition (1) in Definition 5.4 above, the acceptance condition
is well-defined, i.e., all Fi /≡ are pairwise-disjoint. We can show that an NPA and its quotient accept
exactly the same language.

Theorem 5.5 (Language Preservation). Let A be an NPA and let ≡ be an equivalence on the

set of states, which is a bisimulation. Then L(A/≡) = L(A).

Since NPAs are nondeterministic, different runs (possibly infinitely many) can exist for the same
input tree. Still, the non-emptiness problem, also for our k-ary variant, is decidable when the
number of states is finite (and solvable by a corresponding parity game [26]).

5.2 NPAs for Model Checking

We show how, given a PES and a closed formula of Lhp , we can build an NPA in a way that, for
strongly regular PESs, the satisfaction of φ in E reduces to the non-emptiness of the language of
the NPA. The construction is inspired by that in Reference [16] for the mu-calculus. The automaton
is typically infinite, but we discuss how an effective model-checking procedure can be obtained by
quotienting the infinite NPA to a finite one.

Definition 5.6 (NPA for a Formula). Let E be a (boundedly branching) PES and let φ be a
closed formula of Lhp . The NPA for E and φ is AE,φ = 〈Q,−→,q0,F 〉 defined as follows: The set
of states Q ⊆ C (E) × EnvE × sf (φ) is defined as Q = {(C,η,ψ ) | η(fv (ψ )) ⊆ C}. The initial state
q0 = (∅,η,φ), for some chosen environment η ∈ EnvE . The transition relation is defined, for any
state q = (C,η,ψ ) ∈ Q , by:
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• ifψ = T orψ = F, then q −→ (q)
• ifψ = ψ1 ∧ψ2, then q −→ (q1,q2) where qi = (C,η,ψi ), i ∈ {1, 2}
• ifψ = ψ1 ∨ψ2, then q −→ (q1) and q −→ (q2) where qi = (C,η,ψi ), i ∈ {1, 2}
• if ψ = [[x, y < a z]]ψ ′ and Succ

x,y<az

E (C,η) = {(C1,η1), . . . , (Cn ,ηn )} � ∅, then q −→ (q1,
. . . ,qn ) where qi = (Ci ,ηi ,ψ

′) for i ∈ [1,n], otherwise q −→ (q)

• if ψ = 〈|x, y < a z |〉ψ ′ and Succ
x,y<az

E (C,η) = {(C1,η1), . . . , (Cn ,ηn )} � ∅, then q −→ (qi )
where qi = (Ci ,ηi ,ψ

′) for i ∈ [1,n], otherwise q −→ (q)
• ifψ = (αX (x).ψ ′) (y), then q −→ (q′) where q′ = (C,η,X (y))
• if ψ = X (z) and ψ ′ ∈ sf (φ) is the unique subformula such that ψ ′ = (αX (x).ψ ′′) (y), then

q −→ (q′) where q′ = (C,η[x �→ η(z)],ψ ′′).

The acceptance condition is F = (F0, . . . , Fh ) where h = ad(φ) + 1 and the sets Fi are as follows:
Consider A0, . . . ,Ah ⊆ sf (φ) such that for i ∈ [0,h], if i is even (odd), then Ai contains exactly
all propositions quantified in ν-subformulae (μ-subformulae) with alternation depth i or i − 1.

Then F0 = (C (E) × EnvE × (A0 ∪ {T})) ∪ B where B = {(C,η, [[x, y < a z]]ψ ) | Succ
x,y<az

E (C,η) =
∅} is the set of all subformulae of φ in a context where they are trivially true, and Fi = C (E) ×
EnvE ×Ai , for i ∈ [1,h].

States ofAE,φ are triples (C,η,φ) consisting of a configurationC , an environment η, and a sub-
formulaψ of the original formulaφ. (The environmentη fixed for the initial state is irrelevant, since
formulaφ is closed.) The intuition is that a transition reduces the truth of a formula in a state to that
of subformulae in possibly updated states. It can just decompose the formula, as it happens for ∧
or ∨, check the satisfaction of a modal operator, thus changing the state consequently, or unfold a
fixpoint. Whenever q = (C,η,ψ ) withψ = (αX (x).ψ ′) (y) and thus q −→ (q′) with q′ = (C,η,X (y)),
we say that q introduces X . Ifψ = X (z) and thus q −→ (q′) where q′ = (C,η[x �→ η(z)],ψ ′′), withψ ′

the body of the fixpoint subformula quantifying X in φ, we say that qunfolds X . The automaton
AE,φ is bounded (by the branching bound of the PES) but normally infinite (whenever the PES E
is infinite and the formula φ includes some non-trivial fixpoint).

We next show that for a strongly regular PES the truth of the formula φ on the PES E reduces
to the non-emptiness of the language of AE,φ . A basic ingredient is an equivalence that can be
defined on the NPA relying on the notion of residual of pointed configuration (Definition 3.7).

Definition 5.7 (Future Equivalence). Let E be a PES, φ be a formula, and let qi = (Ci ,ηi ,ψi ), i ∈
{1, 2} be two states of the NPAAE,φ . We say that q1 and q2 are future-equivalent, written q1 ≈f q2,
if there exists a formula ψ and substitutions σi : fv (ψ ) → fv (ψi ) such that ψσi = ψi , for i ∈ {1, 2},
and the fv (ψ )-pointed configurations 〈Ci ,ηi ◦ σi 〉 have isomorphic pointed residuals.

Intuitively, two states are equivalent if they involve the same subformula (up to renaming of
the event variables) and the configurations, pointed by the free variables in the formulae, have
isomorphic residuals. Future equivalence can be shown to be a bisimulation on the NPA AE,φ in
the sense of Definition 5.4 and, whenever E is strongly regular, it is of finite index.

Lemma 5.8 (≈f is a Bisimulation). Let E be a strongly regular PES and let φ be a closed formula

of Lhp . Then the future equivalence ≈f on AE,φ is a bisimulation and it is of finite index.

As an example, consider the formula 〈|bx |〉φ from Section 3.2, where φ = νX (x ).ψ and ψ =
μY (x ).(〈|x < by |〉X (y) ∨ 〈|_ z |〉Y (x )). The automatonAEN ,〈|b x |〉φ built for model-checking such for-
mula in the PES EN of Figure 1(a) would be infinite. The automaton resulting as the quotient of
AEN ,〈|b x |〉φ with respect to the future equivalence ≈f is finite. A fragment of such automaton is
reported in Figure 3. The two curly lines represent transitions that “appear” as an effect of the
quotient operation. For instance, in the infinite NPA, state q6 would have had a single transition to
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Fig. 3. Quotient automaton obtained from the infinite automaton AEN ,〈|b x |〉φ via future equivalence.

state ({b0, b1},η[x �→ b0,y �→ b1],X (y)). Since the latter is future-equivalent to q2, in the quotient
it is merged to q2 and the transition from q6 instead loops back to the corresponding equivalence
class (represented by q2). From q7 there is also a transition, represented by a dashed line, to state
({b0, c0},η[x �→ b0, z �→ c0],Y (x )). This state is not future-equivalent to any of the previous ones,
and it would lead to the rest of the reachable states of the automaton, not shown in the figure.
However, the states displayed are already sufficient to prove that the language of the NPA is non-
empty. Indeed, the sequence of states (q0,q1, (q2,q3,q4,q5,q6)∗), where the loop q2,q3,q4,q5,q6,q2

repeats indefinitely, represents an accepting run. In fact, the state with maximal priority repeating
infinitely often is q2 and its priority is even.

We already hinted at the similarity between tableau rules and transitions in the automaton asso-
ciatedwith a PES and a formula. We next formalise this relation by showing that future equivalence
can be used to prune runs of the automaton AE,φ in a way that a suitably chosen accepting run,
after pruning, will correspond to a successful tableau.

Definition 5.9 (Pruned k-tree). Let E be a PES, let φ be a closed formula of Lhp , and let r be a run
of the NPA AE,φ on a k-tree T . Given a path p = (u0,u1, . . .) in T , we call a node uj a repetition

if one of the following conditions holds:

(1) the formula in r (uj ) is of the kind T, F, or [[x, y < a z]]ψ ′, 〈|x, y < a z |〉ψ ′ with

Succ
x,y<az

E (C,η) = ∅ (hence, starting from uj the path consists of the repetition of the
state r (uj ));

(2) the formula in r (uj ) is a proposition X (x) and there is i < j such that r (ui ) ≈f r (uj ) and
X is not introduced between ui and uj .

In case (1), we let Ω(uj ) = uj , while in case (2), we let Ω(uj ) = ui where i < j is the minimal index
such that ui satisfies the condition and we call Ω(uj ) the repetition witness for uj . If r (uj ) ∈ Fl for

some l , we say that uj is a repetition of priority l . The pruned run T (r ) is the largest subtree of r
where repetitions have no successor.

The pruned run is obtained by cutting each path at the first repetition, hence in the pruned run
each leaf has a repetition witness.

An adaptation of the results developed for tableaux in Section 4.3.1 allows us to prove that the
pruning of a run is always finite. The details can be found in Appendix C.2.
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Lemma 5.10 (Pruned Runs are Finite). Let E be a strongly regular PES, let φ be a closed formula

ofLhp , and letAE,φ be the corresponding NPA. For any run r ofAE,φ on ak-treeT , the corresponding

pruned run T (r ) is finite.

Observe that by pruning an accepting run, we could still get something that does not correspond
to a successful tableau. The crux is that, even though a path is accepting, and thus it includes rep-
etitions over states of maximum priority that is even, it could also include, at the beginning, some
repetitions over least fixpoints. In this case, the pruned run will have the corresponding states, with
odd priority, at some leaves. For instance, consider the NPA in Figure 3. The run corresponding
to the sequence of states (q0,q1,q2,q3,q4,q5,q7,q4,q5,q6, (q2,q3,q4,q5,q6)∗) is accepting, since the
state q2 occurs infinitely often. However, the first repetition along this run is q4. Thus, the pruned
run would be the subsequence (q0,q1,q2,q3,q4,q5,q7,q4), and so it would terminate in q4, which
has odd priority.

To prove that whenever there is an accepting run, there is one without “useless” repetitions, we
formalise the corresponding notion:

Definition 5.11 (Noisy Repetition). Let E be a PES, let φ be a closed formula of Lhp , and letAE,φ
be the corresponding NPA. Let r be an accepting run on a k-tree T . A repetition u in r is called
noisy if it has odd or no priority and no ancestor u ′ of u is a repetition of even priority.

We show that noisy repetitions can be removed still getting a valid run. We first observe that
in an accepting run, each infinite path p includes a repetition over a state whose priority is F (p)
(hence, even; see Definition 5.2).

Lemma 5.12 (Maximal Priority Repetitions). Let E be a PES, let φ be a closed formula of Lhp ,
and let r be an accepting run of the NPA AE,φ on a k-tree T . For each infinite accepting path p =
(u0,u1, . . .) in r there exists a repetition ui of priority F (p).

The above lemma implies that an accepting run r over a k-tree T has a finite number of noisy
repetitions. In fact, it is immediate to see that each path in the run has a finite number of noisy
repetition, since they must precede the first repetition of priority F (p). We conclude by the fact
that T has branching bounded by k .

We can now show that if an automaton has an accepting run, then it has an accepting run
without noisy repetitions.

Lemma 5.13 (Avoiding Noisy Repetitions). Let E be a PES and let φ be a closed formula of Lhp .

If L(AE,φ ) � ∅, then AE,φ has an accepting run r without noisy repetitions.

We thus reach the desired conclusion, i.e., when an automaton has a non-empty language, it has
an accepting run that, once pruned, has all leaves with even priority.

Lemma 5.14 (Pruned Run with Even Leaves). Let E be a PES and let φ be a closed formula of

Lhp . If L(AE,φ ) � ∅, then AE,φ has an accepting run r on a k-tree T such that in T (r ) all leaves

have even priority.

Using the above lemma, it is easy to prove that if AE,φ has a non-empty language, then E
satisfies φ. The proof relies on the fact that an accepting run for AE,φ whose pruning has all
leaves with even priority, can be easily transformed into a successful tableau for φ, so Lemma 4.3
allows us to conclude.

Lemma 5.15 (Non-Emptiness Implies Satisfaction). Let E be a strongly regular PES and let φ̌
be a closed formula. If L(AE,φ̌ ) � ∅, then E |= φ̌.
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Conversely, given a run r whose pruning has all leaves with even priority, it could still be the
case that r is not accepting, because it does not take advantage of the possibility of cycling over
the leaves. For instance, consider again the NPA in Figure 3. The run corresponding to the se-
quence of states (q0,q1,q2,q3,q4,q5,q6,q2,q3, (q4,q5,q7)∗) is not accepting, since the only state
with a priority that occurs infinitely often is q4 and, as already observed, q4 has odd priority. How-
ever, the first repetition along this run is q2 and thus the pruned run would be the subsequence
(q0,q1,q2,q3,q4,q5,q6,q2), terminating in the stateq2, which has even priority. Indeed, recognising
the presence of the loop q2,q3,q4,q5,q6,q2, one can construct the run (q0,q1, (q2,q3,q4,q5,q6)∗),
which is accepting.

In general, we can prove that if there exists a run whose pruning has all leaves with even priority,
then there exists an accepting run.

Lemma 5.16 (Accepting Run for Pruned Runs). Let E be a PES and let φ be a closed formula

of Lhp . If there exists a run r of the NPA AE,φ on a k-tree T such that in T (r ) all leaves have even

priority, then there exists also an accepting run of AE,φ .

The above result allows us to conclude that if E satisfiesφ, thenAE,φ has a non-empty language.
Again, we rely on the results proven for tableaux. By Lemma 4.16, whenever E satisfies φ there is
a successful tableau for φ. The proof then shows that a successful tableau for φ can be viewed as
the pruning of a run where all leaves have even priority. By Lemma 5.16 this can be transformed
into an accepting run for AE,φ .

Lemma 5.17 (Satisfaction Implies Non-Emptiness). Let E be a strongly regular PES and let φ̌
be a closed formula. If E |= φ̌, then L(AE,φ̌ ) � ∅.

Joining Lemmata 5.15 and 5.17, we have that the model-checking problem of a formula φ over
a strongly regular PES E reduces to non-emptiness of the language of the automaton AE,φ .

Theorem 5.18 (Model Checking Via Non-emptiness). Let E be a strongly regular PES and let

φ be a closed formula of Lhp . Then L(AE,φ ) � ∅ iff E satisfies φ.

The above result, combined with a suitable bisimulation equivalence ≡ of finite index, can be
exploited to obtain an effective procedure for checking the satisfaction of a formula. In fact, given
a bisimulation ≡ overAE,φ of finite index, the quotient automatonAE,φ /≡ is finite and, exploiting

Theorems 5.18 and 5.5, we can verify whether E |= φ by checking the emptiness of the language
accepted byAE,φ /≡. Clearly a concrete algorithm will not first generate the infinite state NPA and

then take the quotient, but it rather performs the quotient on the fly: Whenever a new state would
be equivalent to one already generated, the transition loops back to the already existing state.

When E is strongly regular, a reference bisimulation equivalence of finite index on AE,φ is
future equivalence. An obstacle towards the use of the quotiented NPA for model checking pur-
poses is the fact that the future equivalence could be hard to compute (or even undecidable). To
make the construction effective, we need a decidable bisimulation equivalence on the NPA and the
effectiveness of the set of successors of a state. This is further discussed in the next section.

6 MODEL CHECKING PETRI NETS

We show how the abstract automata-based model-checking approach outlined in the previous
section can be instantiated on finite safe Petri nets, a classical model of concurrency and distribu-
tion [38], by identifying a suitable effective bisimulation equivalence on the NPA.

6.1 Petri Nets and Their Event Structure Semantics

A Petri net is a tupleN = (P ,T , F ,M0) where P ,T are disjoint sets of places and transitions, respec-
tively, F : (P ×T ) ∪ (T × P ) → {0, 1} is the flow function, and M0 : P → N is the initial marking,
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i.e., the initial state of the net. We assume that the set of transitions is a subset of a fixed set T
with a labelling λN : T → Λ.

Places can be seen as abstract resources. The state of a net N is thus a so-called marking, i.e., a
function M : P → N , indicating for each place the number of instances, called tokens, available in
the place. Transitions are actions that, to be executed, require some instances of resources (one for
each placep ∈ P such that F (p, t ) = 1). The execution consumes such resources and produces some
new instances (one for each p ∈ P such that F (t ,p) = 1). An example of Petri net can be found in
Figure 1(b). Graphically, places and transitions are drawn as circles and rectangles, respectively,
while the flow function is rendered by means of directed arcs connecting places and transitions.
Markings are represented by inserting tokens (black dots) in the corresponding places.

Formally, a transition t ∈ T is enabled at a marking M if M (p) ≥ F (p, t ) for all p ∈ P . In this
case it can be fired leading to a new markingM ′ defined byM ′(p) = M (p) + F (t ,p) − F (p, t ) for all
places p ∈ P . This is writtenM[t〉M ′. We denote by R (N ) the set of markings reachable inN via a
sequence of firings starting from the initial marking. We say that a marking M is coverable if there
exists M ′ ∈ R (N ) such that M ≤ M ′, pointwise. A net N is safe if for every reachable marking
M ∈ R (N ) and all p ∈ P , we have M (p) ≤ 1, i.e., each place contains at most one token. Hereafter,
we will consider only safe nets. Hence, a markingM will be often confused with the corresponding
subset of places {p | M (p) = 1} ⊆ P . For x ∈ P ∪T the pre-set and post-set are defined •x = {y ∈
P ∪T | F (y,x ) = 1} and x• = {y ∈ P ∪T | F (x ,y) = 1}, respectively.

The concurrent behaviour of a Petri net can be represented by its unfolding U (N ), defined
below as an acyclic net constructed inductively starting from the initial marking of N and then
adding, at each step, an occurrence of each enabled transition of N . In what follows, we indicate
by π1 the projection over the first component of a pair, i.e., π1 (a,b) = a.

Definition 6.1 (Net Unfolding). LetN = (P ,T , F ,M0) be a safe net. The unfolding is the least net
U (N ) = (PU ,TU , FU ,MU

0 ) such that

• MU

0 = {(p,⊥) | p ∈ M0} ⊆ PU , where ⊥ is a new element, not in P , T or F ;
• if t ∈ T and X ⊆ PU is coverable with π1 (X ) = •t , then (t ,X ) ∈ TU ;
• for any e = (t ,X ) ∈ TU , the set Z = {(p, e ) | p ∈ t•} ⊆ PU ; moreover •e = X and e• = Z .

Places and transitions in the unfolding represent instances of tokens and firing of transitions,
respectively, of the original net. The projection π1 over the first component maps places and tran-
sitions of the unfolding to the corresponding items of the original net N . The second component
records the “causal history,” i.e., for places the transition that generated the token (or ⊥ for to-
kens in the initial marking that have not been generated by any transition) and for transitions
the set of tokens used for the firing. The initial marking MU

0 consists of the set of minimal places.
For historical reasons transitions and places in the unfolding are also called events and conditions,
respectively.

One can define causality ≤N over the unfolding as the reflexive and transitive closure of the flow
relation. Explicitly, ≤N is the smallest reflexive and transitive relation such that x ≤N y whenever
x ∈ •y. Conflict is the smallest relation such that e#N e

′ if •e ∩ •e ′ � ∅ (i.e., when e and e ′ compete
for a common resource), and inherited along causality, namely, if x#Ny and y ≤N z, then x#N z.
The events TU of the unfolding of a finite safe net, endowed with causality and conflict, form a
PES.

Definition 6.2 (PES for a net). Let N = (P ,T , F ,M0) be a safe net and let U (N ) =
(PU ,TU , FU ,MU

0 ) be its unfolding. The PES associated with N is E (N ) = 〈TU , ≤N , #N 〉.
As an example, the unfoldingU (N ) of the running example netN and the corresponding PES

can be found in Figures 1(c) and 1(a), respectively.
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The transitions of a configuration C ∈ C (E (N )) can be fired in any order compatible with
causality, producing a marking C◦ = (MU

0 ∪
⋃

t ∈C t•) \ (
⋃

t ∈C
•t ) in U (N ); in turn, this corre-

sponds to a reachable marking of N given by M(C ) = π1 (C◦).

6.2 Automata Model Checking for Petri Nets

The PES associated with a finite safe Petri net is known to be regular [46]. We next prove that it is
also strongly regular and, thus, we can apply the theory developed so far for model checking Lhp

over finite safe Petri nets.
LetN = (P ,T , F ,M0) be a safe Petri net. A basic observation is that the residual of the PES E (N )

with respect to a configurationC ∈ C (E (N )) is uniquely determined by the marking produced by
C . This correspondence can be extended to pointed configurations by considering markings that
additionally record, for the events of interest in the past, the places in the marking that are caused
by such events. This motivates the definition below.

Definition 6.3 (Pointed Marking). Let N = (P ,T , F ,M0) be a safe Petri net. Given a set V , a
V -pointed marking is a pair 〈M, r 〉 where M ⊆ P is a safe marking and r : V → 2M .

A V -pointed configuration 〈C, ζ 〉 of E (N ) naturally induces a V -pointed marking M(〈C, ζ 〉) =
〈M(C ), r 〉where r (x ) = {π1 (b) | b ∈ C◦ ∧ ζ (x ) < b}. We next observe that pointed configurations
producing the same pointed marking have isomorphic pointed residuals.

Proposition 6.4 (Pointed Markings vs Residuals). Let N = (P ,T , F ,M0) be a safe Petri

net. Given a set V and two V -pointed configurations 〈C1, ζ1〉, 〈C2, ζ2〉 in E (N ), if M(〈C1, ζ1〉) =
M(〈C2, ζ2〉), then 〈C1, ζ1〉 ≈r 〈C2, ζ2〉.

By the above result the PES associated with a finite safe Petri net is strongly regular. In fact,
the number of residuals of V -pointed configurations, up to isomorphism, by Proposition 6.4, is
smaller than the number of V -pointed markings, which is clearly finite, since the net is finite and
safe. Furthermore, we already know that the PES associated with a finite safe Petri net is regular,
thus it is boundedly branching. Hence, one can conclude by using Lemma 3.10.

Corollary 6.5 (Strong Regularity). Let N be a finite safe Petri net. Then the corresponding

PES E (N ) is strongly regular.

To instantiate the model-checking framework to finite safe Petri nets, the idea is to take an
equivalence over the infinite NPA that equates states whose (pointed) configurations induce the
same pointed marking.

Definition 6.6 (Pointed-Marking Equivalence on NPA). Let N be a finite safe Petri net and let φ
be a closed formula of Lhp . Two states q1, q2 in the NPA AE (N ),φ are pointed-marking equiv-

alent, written q1 ≈m q2, if qi = (Ci ,ηi ,ψ ), i ∈ {1, 2}, for some ψ ∈ sf (φ) and M(〈C1,η1 |fv (ψ )〉) =
M(〈C2,η2 |fv (ψ )〉).

Using Proposition 6.4, we can immediately prove that ≈m refines ≈f . Moreover, we can show
that ≈m is a bisimulation in the sense of Definition 5.4.

Proposition 6.7 (Pointed Marking Eqivalence is a Bisimulation). Let N be a finite safe

Petri net and let φ be a closed formula of Lhp . The equivalence ≈m on the automaton AE (N ),φ is a

bisimulation and it is of finite index.

Relying on Propositions 6.4 and 6.7, we can provide an explicit construction of the quotient au-
tomaton AE (N ),φ /≈m

. We introduce a convenient notation for transitions between pointed mark-

ings. Given the tuples of variables x, y, a set V such that x ∪ y ⊆ V , and a V -pointed marking
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〈M, r 〉, we write 〈M, r 〉 x,y < t−−−−−→a,z 〈M ′, r ′〉 ifM[t〉M ′, λN (t ) = a, for all x ∈ x, we have r (x ) ∩ •t � ∅,
for all y ∈ y it holds r (y) ∩ •t = ∅, and r ′ is defined by r ′(z) = t• and r ′(w ) = (r (w ) ∩M ′) ∪ {s |
r (w ) ∩ •t � ∅ ∧ s ∈ t•}, forw � z. In words, from the pointed marking 〈M, r 〉, the transition t is
fired and “pointed” by variable z. Transition t is required to consume tokens caused by x and not
to consume tokens caused by y to be itself caused by x and independent from y. After the firing,
clearly, z causes t• and variables that were causes of some p ∈ •t become causes of the places in
t•.

Construction 1 (Quotient NPA). LetN be a finite safe Petri net and let φ be a closed formula

of Lhp . The quotient NPA AE (N ),φ /≈m
is defined as follows: The set of states Q = {(M, r ,ψ ) | M ∈

R (N ) ∧ r : fv (ψ ) → 2M ∧ ψ ∈ sf (φ)}. The initial state q0 = (M0, ∅,φ). The transition relation is

defined, for any state q = (M, r ,ψ ) ∈ Q , by:

• ifψ = T orψ = F, then q −→ (q)
• ifψ = ψ1 ∧ψ2, then q −→ (q1,q2) where qi = (M, r ,ψi ), i ∈ {1, 2}
• ifψ = ψ1 ∨ψ2, then q −→ (q1) and q −→ (q2) where qi = (M, r ,ψi ), i ∈ {1, 2}
• ifψ = [[x, y < a z]]ψ ′, let S = {(M ′, r ′|fv (ψ ′) ) | 〈M, r 〉

x,y < t−−−−−→a,z 〈M ′, r ′〉};
—if S = {(M1, r1), . . . , (Mn , rn )} � ∅, then q −→ (q1, . . . ,qn ) where qi = (Mi , ri ,ψ

′) for

i ∈ [1,n],
—otherwise, q −→ (q)

• ifψ = 〈|x, y < a z |〉ψ ′, let S = {(M ′, r ′|fv (ψ ′) ) | 〈M, r 〉
x,y < t−−−−−→a,z 〈M ′, r ′〉};

—if S = {(M1, r1), . . . , (Mn , rn )} � ∅, then q −→ (qi ) where qi = (Mi , ri ,ψ
′) for i ∈ [1,n],

—otherwise, q −→ (q)
• ifψ = (αX (x).ψ ′) (y), then q −→ (q′) where q′ = (M, r ,X (y))
• if ψ = X (z) and ψ ′ ∈ sf (φ) is the unique subformula such that ψ ′ = (αX (x).ψ ′′) (y), then

q −→ (q′) where q′ = (M, r [x �→ r (z)],ψ ′′).

The acceptance condition is analogous to that in Definition 5.6.

The automaton AE (N ),φ /≈m
is finite for all finite safe Petri nets N . Thus, it can be used for

model-checking a formula φ of Lhp over a finite safe Petri net by means of a language emptiness
check. This is detailed in the next section.

6.3 A Prototype Tool

The algorithm for model-checking Petri nets outlined before is implemented in a prototype tool
called TCWB (True Concurrency Workbench) [34], written in Haskell. The tool inputs a safe Petri
net N and a closed formula φ of Lhp and outputs the truth value of the formula on the initial
marking of N . The truth of the formula is reduced to the non-emptiness of the language of the
automaton AE (N ),φ /≈m

(Theorem 5.18). The algorithm builds the quotient NPA AE (N ),φ /≈m
“on

demand,” i.e., the states of the automaton are generated when they are explored in the search for
an accepting run. A path is recognised as accepting when it includes a loop where a �∗

d
-maximal

subformula (see Definition 3.2) is T, a [[ ]]-subformula or a proposition quantified in a ν-subformula.
In this way only a fragment ofAE (N ),φ /≈m

relevant to decide the satisfaction of φ is actually built.

A loop is identified when a state is encountered that is pointed-marking equivalent to an ances-
tor state. According to Definition 6.3, to be pointed-marking equivalent two states must contain
the very same subformula. It is easy to see that this requirement could be relaxed, e.g., by allowing
different names for the free event variables (as it happens in Definition 5.7). In principle, a coarser
pointed-marking equivalence could reduce the size of the quotiented automaton and thus increase
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Table 2. Results of Tests Performed on TCWB, Compared with Those of CWB

Process name Process states Formula Subformulae TCWB (CPU s) CWB (CPU s)
5 cyclers 1,024 Live 6 <1 <1
6 cyclers 4,096 Live 6 <1 1
7 cyclers 16,384 Live 6 8 5
8 cyclers 65,536 Live 6 247 28
9 cyclers 262,144 Live 6 - 570

efficiency. However, even with the advantages deriving from the reduction of size, in practice, the
cost of checking whether formulae are the same up-to variable renaming would lead to an over-
all less efficient procedure. The implementation adopts an intermediate approach, which tries to
rename event variables only in the case of propositions. Moreover, states are kept in an ordered
structure that allows for a binary search. Again, maintaining such structure has some cost, but
since the queries vastly outnumber the updates, this turns out to be convenient.

As a side remark, we tried a direct implementation of the tableau-based procedure. As antic-
ipated, it resulted to have very poor performances mainly because of the repeated exploration
of “equivalent” paths during the construction of a proof tree, which is avoided in the automata-
theoretic procedure.

Given a net N = (P ,T , F ,M0) and a formula φ, the number of states in the quotient automaton
AE (N ),φ /≈m

can be bounded as follows: Recall that a state consists of a triple (M, r ,ψ ) where

ψ ∈ sf (φ), M is a reachable marking and r : fv (ψ ) → 2M is a function. This leads to an upper
bound O ( |sf (φ) | · |R (N ) | · 2 |P | ·v ), where v = max{|fv (ψ ) | : ψ ∈ sf (φ)} is the largest number of
event variables appearing free in a subformula of φ. In turn, since |R (N ) | ≤ 2 |P | , this is bounded

by O ( |sf (φ) | · 2 |P | ·(v+1) ). The size of the automaton is thus exponential in the size of the net and
linear in the size of the formula. Moving from the interleaving fragment of the logic (wherev = 0)
to formulae capable of expressing true concurrent properties thus causes an exponential blow-up.
However, note that the worst-case scenario requires all transitions to be related by causality and
concurrency to all places in all possible ways, something that should be quite unlikely in prac-
tice. Indeed, despite the fact that the tool is very preliminary and more tweaks and optimisations
could improve its efficiency, for the practical tests we performed, the execution time seems to be
typically well below than the theoretical worst-case upper bound.

We performed some simple tests. Despite the absence of another tool with the same purpose to
compare with, they were useful to grasp some information. All tests were performed using Petri
nets representing processes made of a number, indicated in the process name, of parallel copies of
a cycler, which is a sequential loop always repeating the same four states.

• Absence of deadlock. This property can be expressed in the interleaving fragment of Lhp

via the formula Live = νX .(〈|_x |〉T ∧ [[_y]]X ). Hence, we can compare with a classical tool
for model-checking formulae of the mu-calculus, i.e., Edinburgh Concurrency Workbench
(CWB). The CWB exploits a game-theoretical formalisation of the model-checking problem
and search for a winning strategy for one of two players. The results are reported in Table 2.
The symbol “-” in the CPU time column indicates an execution time exceeding 1,800 sec-
onds. The CWB is faster, as expected, since it is a well-optimised tool and the greater ex-
pressiveness of Lhp requires the maintenance of more complex data structures. Still, the
fact that the efficiency is comparable suggests that the overhead deriving by the need of
setting up the data structures needed to deal with pointed markings is acceptably small.
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Table 3. Results of Tests Performed on TCWB Using True Concurrent Properties

Process name Process states Formula Subformulae TCWB (CPU s)
5 cyclers 1,024 Atom 12 <1
6 cyclers 4,096 Atom 12 5
7 cyclers 16,384 Atom 12 97
8 cyclers 65,536 Atom 12 -

• Causal atomicity [18] for a block labelled by a. We assume that every action of a process
is either labelled by a or b. Hence, the process has only one block, required to be atomic,
labelled by a; everything else is outside the block and is labelled by b. Then, as mentioned
in Section 3.2, causal atomicity can be expressed by the formula Atom = νX .([[_w]]X ∧
[[ax]]νY (x ).([[x < by]][[y < a z]]F ∧ [[_w]]Y (x ))). Note that all transitions in the cyclers
are labelled by a. While this might seem strange for the task of interest, it has been chosen
since it produces the worst-case scenario. In fact, every pair of transitions must be checked
for the absence of an atomicity violation, since all transitions are in the same atomic block.
In this case the “true concurrent” operators ofLhp are needed to express the property. Thus,
it cannot be tested on CWB. The results of the tests on TCWB are displayed in Table 3.

Interestingly, in the tests above, moving from the interleaving fragment of the logic to true
concurrent properties, the size of the automata does not grow exponentially, as the theoretical
bound would suggest. Indeed, as mentioned before, the worst case would require all transitions
to be related to all places in all possible ways, which is very unlikely in practice and surely not
happening in the processes used for the tests. In this particular case, the size of the automaton
grows by a factor n equal to the number of cyclers in the system. This is because every reachable
marking consists of n places and every transition causes exactly one of such places. Then, since the
largest number of event variables occurring free in a subformula of Atom is 1, the number of states
of the automaton up to pointed-marking equivalence grows by the factor n, with respect to the
interleaving case. So the upper bound to the size of the automaton for the true concurrent property
is justO ( |sf (Atom) | · |R (N ) | · n), whereN is the Petri net representing then cyclers process, while
in the interleaving case, the size coincides with the theoretical bound, i.e., O ( |sf (Live) | · |R (N ) |).

7 CONCLUSIONS

We studied the model-checking problem for the logic for true concurrency Lhp , representing the
logical counterpart of a classical true concurrent behavioural equivalence, i.e., history-preserving
bisimilarity. Resorting to a tableau-based technique, we showed that the problem is decidable for
the class of strongly regular PESs, which include regular trace PESs. We then devised an automata-
theoretic model-checking approach relying on parity tree automata, amenable to a more efficient
implementation. As an example of instantiation on a concrete formalism, we showed how the
technique can be implemented on finite safe Petri nets, also producing a proof-of-concept tool.

We proved that the class of regular trace PESs is included in that of strongly regular PESs, which
in turn is included in the class of regular PESs. The precise relation of strongly regular PESs with
the other two classes is still unclear and interesting in view of Reference [10], which recently
showed that regular trace PESs are strictly included in regular PESs, disproving Thiagarajan’s
conjecture.

Several other papers deal with model-checking for logics on event structures. In Reference [37] a
technique is proposed for model-checking a CTL-style logic with modalities for immediate causal-
ity and conflict on a subclass of PESs. The logic is quite different from ours, as formulae are satisfied
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by single events; the idea being that an event, with its causes, represents the local state of a compo-
nent. The procedure involves the construction of a finite representation of the PES associated with
a program that has some conceptual relation with our quotienting phase. In Reference [28] the au-
thor shows that first order logic and Monadic Trace Logic (MTL), a restricted form of Monadic
Second Order (MSO) logic are decidable on regular trace event structures. The possibility of di-
rectly observing conflicts in MTL and thus of distinguishing behaviourally equivalent PESs (e.g.,
the PESs consisting of a single or two conflicting copies of an event), and the presence in Lhp of
propositions that are non-monadic with respect to event variables, make these logics not immedi-
ate to compare. Still, a deeper investigation is worth to pursue, especially in view of the fact that,
in the propositional case, the mu-calculus corresponds to the bisimulation invariant fragment of
MSO logic [22]. Understanding which are the bisimulation invariant fragments of MSO over event
structures, with respect to the various concurrent bisimulations, is an interesting program in itself.

The work summarised in Reference [20] develops a game-theoretic approach for model-
checking a concurrent logic over partial order models. It has been observed in Reference [4]
that such logic is incomparable to Lhp . Preliminary investigations show that our model-checking
framework could be adapted to such a logic and, more generally, to a logic joining the expressive
power of the two. Moreover, further exploring the potentialities of a game-theoretic approach in
our setting represents an interesting venue of further research.

Another open issue concerns the possibility of generalising the results in this article to the
full logic L in Reference [4]. This is quite challenging: The full logic L induces a behavioural
equivalence—hhp-bisimilarity—which is undecidable already for finite state Petri nets [25]. Note
that this does not imply undecidability of the corresponding model-checking problem. On the se-
mantic side, relaxing the restriction to strongly regular PESs appears to be quite problematic unless
one is willing to deal with transfinite runs that, however, would be of very limited practical interest.

The tool is still preliminary. As suggested by its name (inspired to the Edinburgh Concurrency
Workbench [44]), we would like to bring the TCWB to a more mature stage, working on optimisa-
tions and adding an interface that gives access to a richer set of commands. In particular, the tool
is missing two main optimisations: a strategy for an efficient exploration of the automaton, and
efficient data structures and ways to maintain and update them. Both have been carefully consid-
ered in Reference [44] for CWB and shown to bring to great improvements in performances. For
instance, CWB uses so-called assumptions and decisions for choice-point during the exploration to
efficiently build the winning strategy for a player. Despite the fact that our procedure is based on
automata instead of games, we believe that similar techniques could be exploited also in the TCWB.

APPENDICES

A TECHNICALITIES AND PROOFS FOR SECTION 3

A.1 Free Variables and Substitutions

This section presents in detail some routine definitions and results about the logic, including the
notions of free event and propositional variable, the notions of substitutions and some technical
lemmata showing the independence of the semantics from the naming of the variables.

Definition A.1 (Free Variables). The free variables of a formula φ in Lhp are defined as:

fv (T) = ∅,
fv (F) = ∅,
fv (φ ∧ψ ) = fv (φ) ∪ fv (ψ ),

fv (φ ∨ψ ) = fv (φ) ∪ fv (ψ ),

fv (〈|x, y < a z |〉φ) = (fv (φ) \ {z}) ∪ x ∪ y,

fv ([[x, y < a z]]φ) = (fv (φ) \ {z}) ∪ x ∪ y,

fv (X (x)) = x,

fv ((αX (x).φ) (y)) = y α ∈ {μ,ν }.
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The fact that variables x are free in X (x), νX (x).φ and μX (x).φ is reflected in the definition of
free variable substitution. For instance, X (x)[y/x] = X (y) and (νX (x ).φ)[y/x] = νX (y).(φ[y/x]).
Formulae are considered up to α-conversion of bound variables and substitution is assumed to be
capture-free. We next define the free abstract propositions of a formula.

Definition A.2 (Free Propositions). The free abstract propositions in a formula φ, denoted by fp(φ),
are defined as:

fp(T) = ∅,
fp(F) = ∅,
fp(φ1 ∧ φ2) = fp(φ1) ∪ fp(φ2),

fp(φ1 ∨ φ2) = fp(φ1) ∪ fp(φ2),

fp(〈|x, y < a z |〉φ) = fp(φ),

fp([[x, y < a z]]φ) = fp(φ),

fp((νZ (x).φ) (y)) = fp(φ) \ {Z },
fp((αZ (x).φ) (y)) = fp(φ) \ {Z } α ∈ {μ,ν }.

Given an environment η : Var → E, a variable x ∈ Var, and an event e ∈ E, we denote by η[x �→
e] the environment defined, for y ∈ Var , by

η[x �→ e](y) =

{
e if y = x

η(y) otherwise.

Updates of a proposition environment must be properly defined to ensure that the semantics of a
formula does not depend on the naming of its free variables. For π ∈ PEnvE and S ⊆ C (E) × EnvE ,
we write π [X (x) �→ S] for the proposition environment defined by

π [X (x) �→ S](X (y)) = {(C,η′) | (C,η) ∈ S ∧ η′(y) = η(x)}
π [X (x) �→ S](Y (y)) = π (Y (y)) for Y � X .

Lemma A.3 (Renaming Variables and Propositions). Let E be a PES, let π a proposition envi-

ronments, and let φ be a formula of Lhp .

(1) Given two tuples of variables x, y with |x| = |y| and fv (ϕ) ⊆ x, then {|φ[y�x]|}Eπ =
{|φ |}Eπ [y�x], where _[y�x] is the operation defined in Section 3.4.

(2) For all formula ψ and abstract proposition Z ∈ Xa such that fv (ψ ) = z and ar (Z ) = |z|, it

holds {|φ[Z (z) := ψ ]|}Eπ = {|φ |}Eπ [Z (z) �→{|ψ |}Eπ ]
.

Proof. Both items can be proved by routine inductions on φ. �

From (1) above, it follows that the semantics of a formula φ in Lhp only depends on the events
that the environment associates with the free variables x of the formula, i.e., ifC ∈ C (E) and η,η′

are environments such that η(x) = η′(x) pointwise, then (C,η) ∈ {|φ |}E iff (C,η′) ∈ {|φ |}E . Analo-
gously, from (2), we have that the semantics of φ only depends on the value of the proposition
environment π on the free propositions of φ, while it is independent from the interpretation of
those that do not occur free in it. Point (2) also shows how substitutions of propositions in formu-
lae correspond to updates to proposition environments.

A.2 Proofs for Section 3.5

Lemma 3.9 (Eqisatisfaction in PointedConfigurations with Isomorphic Residuals). Let

E be a PES, let φ be a formula of Lhp , let π ∈ PEnvE be a proposition environment saturated for

φ, and let (C1,η1), (C2,η2) ∈ C (E) × EnvE . If 〈C1,η1 |fv (φ )〉 ≈r 〈C2,η2 |fv (φ )〉, then (C1,η1) ∈ {|φ |}Eπ iff

(C2,η2) ∈ {|φ |}Eπ .

Proof. Assume 〈C1,η1 |fv (φ )〉 ≈r 〈C2,η2 |fv (φ )〉, via an isomorphism ι : E[C1]→ E[C2]. We prove

that if (C1,η1) ∈ {|φ |}Eπ , then (C2,η2) ∈ {|φ |}Eπ . Since the isomorphism ι is bijective, the other
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implication follows by symmetry. The proof proceeds by induction on the formula φ. We discuss
only some representative cases:

• φ = X (x)
Let (C1,η1) ∈ {|X (x) |}Eπ = π (X (x)). Since π is saturated for X (x), by definition, we get

that also (C2,η2) ∈ π (X (x)), as desired.
• φ = ψ1 ∧ψ2

If (C1,η1) ∈ {|ψ1 ∧ψ2 |}Eπ , then by definition of the semantics (C1,η1) ∈ {|ψ1 |}π and
(C1,η1) ∈ {|ψ2 |}π . By inductive hypothesis, we obtain (C2,η2) ∈ {|ψ1 |}π and (C2,η2) ∈ {|ψ2 |}π
and thus (C2,η2) ∈ {|ψ1 ∧ψ2 |}π .

• φ = 〈|x, y < a z |〉ψ
Assume that (C1,η1) ∈ {|〈|x, y < a z |〉ψ |}π . By definition of the semantics there exists an

event e ∈ E[C1] such that C1
η1 (x),η1 (y) < e−−−−−−−−−−−→a C

′
1 and (C ′1,η

′
1) ∈ {|ψ |}π with η′1 = η1[z �→ e].

Since ι is an isomorphism of residuals of pointed configurations 〈C1,η1 |fv (φ )〉 ≈ 〈C2,η2 |fv (φ )〉,
we readily deduce that ι (e ) is enabled at C2 and

C2
η2 (x),η2 (y) < ι (e )−−−−−−−−−−−−−→a C

′
2. (2)

Consider the restriction of ι to E[C ′1] and call it ι′ : E[C ′1]→ E[C ′2]. Clearly ι′ is an iso-
morphism of PESs. Additionally, if we let η′2 = η2[z �→ ι (e )], then it is easy to see that
for all x ∈ fv (ψ ), e1 ∈ E[C ′1], it holds η′1 (x ) ≤ e1 iff η′2 (x ) ≤ ι′(e1). Hence, 〈C ′1,η′1 |fv (ψ )〉 ≈r

〈C ′2,η′2 |fv (ψ )〉. In fact, for all x ∈ fv (ψ ) ⊆ fv (φ) ∪ {z}:
(1) if x ∈ fv (φ), then we can observe that e1 ∈ E[C ′1] ⊆ E[C1] and ηi (x ) = η′i (x ) for i ∈
{1, 2}. Then the desired property follows from the fact that ι is an isomorphism of resid-
uals of the pointed configurations 〈C1,η1 |fv (φ )〉 and 〈C2,η2 |fv (φ )〉.

(2) if x = z, then η′1 (z) = e ∈ E[C1], η
′
2 (z) = ι (e ) ∈ E[C2]. Since ι : E[C1]→ E[C2] is an iso-

morphism of PESs, η1 (x ) ≤ e ′1 iff η2 (x ) = ι (e ) ≤ ι (e ′1).
Since 〈C ′1,η′1 |fv (ψ )〉 ≈r 〈C ′2,η′2 |fv (ψ )〉, by inductive hypothesis, (C ′2,η

′
2) ∈ {|ψ |}π . Recalling

(2), we conclude (C2,η2) ∈ {|〈|x, y < a z |〉ψ |}π , as desired.
• φ = (αX (x).ψ ) (y), for α ∈ {ν , μ}

We know that {|(αX (x).ψ ) (y) |}π = {|αX (x).ψ |}π [y�x]. Thus, it suffices to show that if
(C1,η1) ∈ {|αX (x).ψ |}π , then (C2,η2) ∈ {|αX (x).ψ |}π .

We focus on the case α = μ (the case α = ν is perfectly dual). Observe that, by definition
of the semantics, we have

{|αX (x).ψ |}π = μ ( f )

where f = fψ ,X (x),π : 2C (E)×EnvE → 2C (E)×EnvE is defined by f (S ) = {|ψ |}E
π [Z (x) �→S]

.

We know that μ ( f ) = f γ (∅) for some ordinal γ . The thesis follows by showing that
for any ordinal β , if (C1,η1) ∈ f β (∅), then (C2,η2) ∈ f β (∅). The proof is by induction
on β . The base case β = 0 is trivial, since f 0 (∅) = ∅. For a successor ordinal, if (C1,η1) ∈
f β+1 (∅) = f ( f β (∅)) = {|φ |}E

π [Z (x) �→f β (∅)]. Observe that π ′ = π [X (x) �→ f β (∅)] is saturated

for ψ , as it easily follows from the fact that π is saturated for φ and free variables of ψ are
fp(ψ ) ⊆ fp(φ) ∪ {X } and fv (φ) = fv (ψ ) = x. Thus, the only doubt could concern the propo-
sition X , but the condition is satisfied also for X , by the inner inductive hypothesis ap-
plied to f β (∅). Therefore, we can apply the outer inductive hypothesis toψ to deduce that
(C2,η2) ∈ {|φ |}E

π [Z (x) �→f β (∅)] = f β+1 (∅). The case of a limit ordinal is straightforward. �

Lemma 3.10 (Strong Regularity and Residuals of Pointed Configurations). A PES E is

strongly regular iff it is boundedly branching and for any fixed finite set V , the equivalence ≈r is of

finite index over V -pointed configurations of E.
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Proof. (⇒) Assume that E is strongly regular. Then by definition it is boundedly branching.
LetV be a finite set and let CV = {〈C, ζ 〉 | C ∈ C (E) ∧ ζ : V → C} be the set ofV -pointed config-
urations.

By strong regularity, the set {E[C] ∪ ζ (V ) | C ∈ C (E) ∧ ζ : V → C} is finite up to isomorphism
of PESs. This does not immediately imply that CV is finite up to ≈r . In fact, given two V -pointed
configurations 〈C, ζ 〉, 〈C ′, ζ ′〉, an isomorphism of PES ι : E[C] ∪ ζ (V ) → E[C ′] ∪ ζ ′(V ) is not nec-
essarily an isomorphism of the corresponding pointed residuals. This is certainly the case if addi-
tionally it holds ι (ζ (x )) = ζ ′(x ) for all x ∈ V .

Assume, by contradiction, that CV is not finite up to ≈r . Then, we can find a sequence of V -
pointed configurations 〈Ci , ζ

i 〉, i ∈ N such that the PESs E[Ci ] ∪ ζ i (V ) are all isomorphic, while
〈Ci , ζ

i 〉 are pairwise non-equivalent with respect to≈r . Let ιi : E[Ci ] ∪ ζ i (V ) → E[Ci+1] ∪ ζ i+1 (V )
be PES isomorphisms for all i ∈ N and denote by ιi, j : E[Ci ] ∪ ζ i (V ) → E[Cj ] ∪ ζ j (V ) the isomor-
phism resulting as the composition ι j−1 ◦ · · · ◦ ιi+1 ◦ ιi .

The key observations are the following: Define the causal depth of an event as depth(e ) =
max{depth(e ′) | e ′ < e}. Then

(1) the events in ζ i (V ) have causal depth bounded by |V | in the PES E[Ci ] ∪ ζ i (V );
(2) the PESs E[Ci ] ∪ ζ i (V ) have a finite number of events of causal depth bounded by |V |,

since the PES E is strongly regular (hence, b-bounded for some b ∈ N);
(3) each isomorphism of PESs ιi preserves the causal depth of events (i.e., depth(ιi (e )) =

depth(e )).

By (1)–(3) above, we deduce that there are i, j ∈ N , i ≤ j such that for all x ∈ V , we have
ι1,i (ζ 1 (x )) = ζ i (x ) and ι1, j (ζ 1 (x )) = ζ j (x ). This implies that ιi, j (ζ i (x )) = ζ j (x ) for all x ∈ V .

Therefore, it is immediate to see that ιi, j |E[Ci ] : E[Ci ]→ E[Cj ] is an isomorphism of the resid-
uals of the pointed configurations 〈Ci , ζ

i 〉 and 〈Cj , ζ
j 〉, contradicting the fact that the pointed con-

figurations in the sequence had all non-isomorphic residuals.
(⇐) Assume that E is boundedly branching and for all fixed finite setV , the equivalence ≈r is of

finite index overV -pointed configurations of E. We have to prove that E is strongly regular. Let k
be a fixed integer and letV = {v1, . . . ,vk } be a set of cardinality k . Each “extended” residual E[C] ∪
{e1, . . . , ek }, with e1, . . . , ek ∈ C can be trivially seen as the residual of a V -pointed configuration
〈C, ζ 〉 with ζ (vi ) = ei for i ∈ {1, . . . ,k }.

Again, from the fact that ≈r is of finite index over V -pointed configurations, we cannot im-
mediately conclude. In fact, consider two extended residuals E[C] ∪ {e1, . . . , ek } and E[C ′] ∪
{e ′1, . . . , e ′k } such that the corresponding V -pointed configurations 〈C, ζ 〉 and 〈C ′, ζ ′〉 are in the
same class, i.e., 〈C, ζ 〉 ≈r 〈C ′, ζ ′〉. Let ι : E[C]→ E[C ′] be the corresponding isomorphism such
that for all x ∈ V , e ∈ E[C], we have ζ (x ) ≤ e iff ζ ′(x ) ≤ ι (e ). Observe that it is not necessarily the
case that

ι[ζ (v1) �→ ζ ′(v1), . . . , ζ (vk ) �→ ζ ′(vk )] : E[C] ∪ {e1, . . . , ek } → E[C ′] ∪ {e ′1, . . . , e ′k }

is an isomorphism of PESs, since the mapping ζ (v1) �→ ζ ′(v1), . . . , ζ (vk ) �→ ζ ′(vk ) does not nec-
essarily respect causal dependencies. However, since, up to isomorphism, there are only finitely
many partial orders with k elements, and similarly only finitely many possible labelling, we con-
clude that each ≈r -class ofV -pointed configurations splits in a finite number of classes of isomor-
phic extended residuals and thus we conclude. �
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B TECHNICALITIES AND PROOFS FOR SECTION 4

B.1 Proofs for Section 4.1

Lemma B.1 (Fixed Points and Substitutions). LetC,η,Δ |=E φ be a well-formed sequent and

assume that Δ(Z (x)) = αZ (x).φ. Then {|(φ)Δ |}Eπ = {|(Z (x))Δ |}Eπ .

Proof. Let {Y1, . . . ,Yn } = fp(φ) \ {Z } and let

φ ′ = φ[Y1 (y1) := (Y1 (y1))Δ] . . . [Yn (yn ) := (Yn (yn ))Δ].

Observe that
((Z (x))Δ = (Δ(Z (x)))Δ = (αZ (x).φ)Δ = αZ (x).φ ′ (3)

and thus
(φ)Δ = (φ ′)Δ = φ ′[Z (x) := (Z (x))Δ] = φ ′[Z (x) := αZ (x).φ ′]. (4)

Putting things together, we have

{|(Z (x))Δ |}Eπ = {|αZ (x).φ ′|}Eπ [by (3)]

= {|φ ′ |}Eπ [Z (x) �→αZ (x).φ′] [by the semantics of fixpoints]

= {|φ ′[Z (x) := αZ (x).φ ′]|}Eπ [by Lemma A.3 (2)]

= {|(φ)Δ]|}Eπ [by (4)]. �

Lemma 4.3 (Backwards Soundness). Every rule of the tableau system is backwards sound.

Proof. For each rule, we have to show that if the sequents in the conclusion are true, then also
the sequent in the premise is true. The proof follows almost directly from the definition of the
semantics of the logic. We only inspect some cases:

• Consider the rule

(∧)
C,η,Δ |=E φ ∧ ψ

C,η,Δ |=E φ C,η,Δ |=E ψ
.

Assume that the sequents in the conclusion are true, i.e., that (C,η) ∈ {|(φ)Δ |}Eπ and (C,η) ∈
{|(ψ )Δ |}Eπ , for π ∈ PEnv. Just observe that (φ ∧ψ )Δ = (φ)Δ ∧ (ψ )Δ. Then, we immediately

conclude that (C,η) ∈ {|(φ ∧ψ )Δ |}Eπ , i.e., that the sequent C,η,Δ |=E φ ∧ ψ is true, as
desired.

• Consider the rule

(�)
C,η,Δ |=E 〈|x, y < a z |〉φ
C ′,η[z �→ e],Δ |=E φ

,

where e ∈ E[C] and C
η (x),η (y) < e−−−−−−−−−−→a C

′.
Assume that the sequent in the conclusion is true, i.e., that (C ′,η[z �→ e]) ∈ {|(φ)Δ |}Eπ ,

for π ∈ PEnv. Then, by definition of the semantics, we immediately deduce that (C,η) ∈
{|〈|x, y < a z |〉 (φ)Δ |}Eπ . Since (〈|x, y < a z |〉φ)Δ = 〈|x, y < a z |〉 (φ)Δ, this proves that the se-

quent C,η,Δ |=E 〈|x, y < a z |〉φ in the premise is true.
• Consider the rule:

(Int)
C,η,Δ |=E (αZ (x).φ) (y)

C,η,Δ′ |=E Z (y)
,

where Δ′ = Δ[Z (x)x �→ αZ (x).φ] and α ∈ {ν , μ}.
Assume that the sequent in the conclusion is true, i.e., (C,η) ∈ {|(Z (y))Δ′ |}Eπ , for π ∈ PEnv.

We just need to observe that (Z (y))Δ′ = ((αZ (x).φ) (y))Δ′ = ((αZ (x).φ) (y))Δ where the last
equality is motivated by the fact that Δ and Δ′ differ only on Z , which is not free in
(αZ (x).φ) (y) (and neither is it in any formulaψ such that (αZ (x).φ) (y) →∗Δ ψ ). Hence,
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{|(Z (y))Δ′ |}Eπ = {|((αZ (x).φ) (y))Δ |}Eπ .
This immediately implies that the sequentC,η,Δ |=E (αZ (x).φ) (y) in the premise is true.

• Consider the rule:

(Unfα )
C,η,Δ |=E Z (z)

C,η′,Δ |=E φ
,

where Δ(Z (x)) = αZ (x).φ, for α ∈ {ν , μ} and η′ = η[x �→ η(z)].
Assume that the sequent in the conclusion is true, i.e., (C,η′) ∈ {|(φ)Δ |}Eπ , for some π ∈

PEnv. By Lemma B.1, {|(φ)Δ |}Eπ = {|(Z (x))Δ |}Eπ . Thus, we have

(C,η′) =

(C,η[x �→ η(z)]) ∈ {|(Z (x))Δ |}Eπ
= {|(Z (z)[x�z])Δ |}Eπ
= {|(Z (z))Δ[x�z]|}Eπ
= {|(Z (z))Δ |}Eπ [x�z].

Thus, (C,η) ∈ {|(Z (z))Δ |}Eπ , which means that the sequent in the premise is true. �

B.2 Proofs for Section 4.3

B.2.1 Finiteness.

Lemma 4.7 (Fixpoint Introduction). Let E be a PES and let τ be a tableau for a closed formula

φ. Let n be any node in the tableau labelled by C,η,Δ |= X (x) for some X (x) ∈ X.

(1) If n has a descendant n′ labelled byC ′,η′,Δ′ |= Y (y), for some Y (y) ∈ X, and Y is not intro-

duced between n and n′, then X �∗
d
Y .

(2) If n has a descendant n′ that introduces X , then there is a node n′′ between n and n′ with

consequent Y (y) such that X �d Y (hence, X �∗
d
Y and X � Y ).

Proof.

(1) We prove the property by induction on the number of sequents between n and n′ labelled
by a proposition. Let ni be such nodes, labelled by Ci ,ηi ,Δi |= Zi (zi ) with i ∈ {1, . . . ,k }.
Moreover, let αX (x′).ψ be the definition of X in the tableau.

(k = 0) The only rule applicable to node n is (Unfα ); hence, the successor of n will
haveψ as consequent. Since between n and n′ there are no propositions and thus no other
applications of (Unfα ) andY is not introduced, necessarilyY ∈ fp(ψ ). Hence, eitherY = X
or X �d Y . In any case, X �∗

d
Y .

(k > 0) Consider node n1 labelled by the sequent C1,η1,Δ1 |= Z1 (z1). By inductive hy-
pothesis

Z1 �∗d Y . (5)

Since between n and n1 there are no propositions and thus no applications of the (Unfα )
rule, there are two possibilities: either Z1 ∈ fp(ψ ) or Z1 is introduced between n and n1. In
the first case, by inductive hypothesisX �∗

d
Z1 and thus, recalling (5), we concludeX �∗

d
Y .

In the second case, if φ1 is the definition of Z1 in the tableau, then φ1 is a subformula ofψ ,
a fact that together with (5), again, implies X �∗

d
Y .

(2) Let αX (x′).ψ be the definition of X in the tableau. The only rule applicable to node n is
(Unfα ), hence the successor of n will haveψ as consequent. Since all rules except (Unfα )
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reduce the size of the formula, there must be between n and n′ an occurrence of the un-
folding rule applied to some Y ∈ fp(αX (x′).ψ ). By definition X �d Y as desired (hence,
X �∗

d
Y and, clearly, X � Y , since �d is irreflexive). �

Lemma 4.8 (Infinite Occurrences of Propositions in Tableaux). Let E be a finitely branch-

ing PES. An infinite tableau for a closed formula φ contains an infinite path where some abstract

proposition Z occurs (and thus is unfolded) infinitely often without being introduced.

Proof. Let E be a finitely branching PES and let τ be a an infinite tableau for φ. Since the
transition system of the PES is finitely branching, also the tableau τ is finitely branching. Hence,
by Köenig’s lemma, it includes an infinite path p. Since all tableau rules (see Figure 1) apart from
(Unfα ) reduce the size of the consequent, path p must include infinitely many applications of
(Unfα ) and thus infinitely many sequents having a proposition as consequent.

Since the only abstract propositions that can appear are those in φ, which are finitely many,
there are abstract propositions that occur infinitely often (possibly with different event variables).

Denote by P the set of such abstract propositions and consider the suffix p ′ of p, where only
abstract propositions in P occur.

Let X ∈ P be maximal with respect to �∗
d

and let p ′′ be a suffix of p ′ starting with an occurrence
of X . Then X is not introduced in p ′′, otherwise, by Lemma 4.7(2), there would be a node n′ in p ′′

with consequent Y (y) such that X �∗
d
Y and X � Y , contradicting the maximality of X . �

Theorem 4.9 (Tableaux Finiteness). For a strongly regular PES E and a closed formula φ, every

tableau for a sequent C,η,Δ |=E φ is finite. Hence, the number of tableaux for C,η,Δ |=E φ is finite.

Proof. The proof is by contradiction. Suppose that there is an infinite tableau τ for the sequent
C,η,Δ |=E φ. By Lemma 4.8, in τ there is an infinite path π where a propositionX occurs infinitely
many times without being introduced. Let X (x) = αX (x).ψ be the definition of X in the tableau.

By Lemma 3.10 the set of x-pointed configurations of E is finite up to ≈r . Since the proposition
X is unfolded infinitely many times along π without being introduced, there are infinitely many
sequents C ′,η′,Δ′ |=E X (x′) for which X ↑(Δ′) is the same node. Hence, the stop condition γ is
necessarily satisfied at some point of the path, contradicting its infiniteness.

We next prove that also the number of tableaux is finite. Consider a tree where nodes are
tableaux rootedC,η,Δ |=E φ and where the successors of each tableau τ are the tableaux obtained
by extending τ with the application of a rule. Since E is strongly regular, the tree is finitely branch-
ing. If it were infinite, there would be an infinite path and thus there would be an infinite sequence
of tableaux (τi )i ∈ω , such that τi+1 extends τi . This in turn implies the existence of an infinite tableau,
which contradicts the first part. �

B.2.2 Soundness and Completeness. The main result about soundness and completeness of the
tableau system requires a technical lemma about fixpoints interpreted as approximants. First, we
need to observe how the instantiation of a formula interact with the approximants.

Lemma B.2 (Grounding, Substitutions, and Approximants). LetC,η,Δ |= φ be a well-formed

sequent whereφ = αZ (x).ψ is a fixpoint formula. Then (a) (φ)Δ is a fixpoint formula, (b) (φ)Δ[y�x] =
(φ[y�x])Δ, and (c) for any n ∈ N , it holds ((φ)Δ)n = (φn )Δ.

Proof. Concerning point (a), reasoning as in the proof of Lemma B.1, it is easy to see that (φ)Δ

is a fixpoint formula. In fact, let {Y1, . . . ,Yn } = fp(ψ ) \ {Z } and let

ψ ′ = ψ [Y1 (y1) := (Y1 (y1))Δ] . . . [Yn (yn ) := (Yn (yn ))Δ].
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Then, observe that
(φ)Δ = (αZ (x).ψ )Δ = αZ (x).ψ ′.

We now prove point (b) (φ[y�x])Δ = (φ)Δ[y�x]. Using the fact that αZ (x).ψ = (αZ (x).ψ ) (x), this
is also almost immediate. In fact:

(φ[y�x])Δ = ((αZ (x).ψ ) (x)[y�x])Δ = ((αZ (x).ψ ) (y))Δ

= (αZ (x).ψ ′) (y) = (αZ (x).ψ ′) (x)[y�x] = (φ)Δ[y�x].

Finally, we prove point (c), i.e., for any n ∈ N , (φn )Δ = ((φ)Δ)n , by induction on n. We focus on the
case α = ν (the proof is completely analogous when α = μ).

(n = 0) Immediate, since (φ0)Δ = (T)Δ = T = ((φ)Δ)0.
(n > 0) Observe that

(φn )Δ = (ψ [Z (x) := φn−1])Δ = ψ
′[Z (x) := (φn−1)Δ],

where the last equality holds, since fp(φn−1) ⊆ fp(ψ [Z (x) := φn−1]) ⊆ fp(ψ ) \ {Z }, and

((φ)Δ)n = (αZ (x).ψ ′)n = ψ ′[Z (x) := ((φ)Δ)n−1].

Thus, we can conclude, since, by inductive hypothesis, we know that (φn−1)Δ = ((φ)Δ)n−1. �

In words, the result above shows that the instantiation of the approximants of a fixed point
formula φ coincides with the approximants of the instantiation of φ. For this reason, in the sequel,
we will abuse the notation and write (φ)n

Δ for ((φ)Δ)n = (φn )Δ.

Lemma 4.11 (Finite Approximants Properties). Let E be a strongly regular PES, let π ∈ PEnvE
be a saturated proposition environment, and let φ = αZ (x).ψ be a fixpoint formula. Then there exists

i ∈ N such that {|φ |}Eπ = {|φi |}Eπ . Hence, for any configurationC ∈ C (E) and environment η ∈ EnvE :

(1) if φ = νZ (x).ψ and (C,η) � {|φ |}Eπ , then (C,η) ∈ {|φn |}Eπ \ {|φn+1 |}Eπ for some n ≤ i ;
(2) if φ = μZ (x).ψ and (C,η) ∈ {|φ |}Eπ , then (C,η) ∈ {|φn+1 |}Eπ \ {|φn |}Eπ for some n ≤ i .

Proof. Let us first focus on the case φ = νZ (x).ψ . Clearly, for all i ∈ N , {|φ |}Eπ ⊆ {|φi |}Eπ . Assume

by contradiction that the inclusion is always strict, i.e., {|φ |}Eπ � {|φi |}Eπ for all i ∈ N . This implies

that {|φi+1 |}Eπ � {|φi |}Eπ for all i ∈ N .
Therefore, there is an infinite sequence of pairs (Ci ,ηi ) ∈ C (E) × EnvE , for i ∈ N , such that

(Ci ,ηi ) ∈ {|φi |}Eπ \ {|φi+1 |}Eπ . We deduce that for each i , we have (Ci ,ηi ) ∈ {|φi |}Eπ and (Cj ,ηj ) �
{|φi |}Eπ for all j < i . Then, by Lemma 3.9, we would have that 〈Cj ,ηj |fv (φi )〉 �r 〈Ci ,ηi |fv (φi )〉 for
all i ∈ N and j < i . This would mean that there are infinitely many different equivalence classes of
fv (φi )-pointed configurations with respect to ≈r . Since |fv (φi ) | ≤ |fv (φ) | = |x| and E is strongly
regular, this fact contradicts Lemma 3.10. Therefore, there must exist i ∈ N such that {|φ |}Eπ =
{|φi |}Eπ . Point (1) then immediately follows.

If φ = μZ (x).ψ , then a dual reasoning proves that there is i ∈ N such that {|φi |}Eπ = {|φi+1 |}Eπ and

thus {|φ |}Eπ = {|φi |}Eπ and, again, point (2) immediately follows. �

Lemma 4.13 (Shortening ν-Pseudo-Tableaux). Let E be a strongly regular PES and let τ be

a successful ν -pseudo-tableau. If τ has a false leaf and for all false leaves C,η,Δ |= X (z), the node

Δ↑(X ) is in τ , then there exists a successful ν -pseudo-tableaux τ ′, strictly smaller than τ , with a false

leaf and where for all false leaves C,η,Δ |= X (z), the node Δ↑(X ) is in τ ′.

Proof. Since τ is successful its leaves are labelled by sequentsC,η,Δ |= φ, where φ is T, [[x, y <
a z]]ψ or a proposition X (y) defined in τ as a largest fixpoint or as some ν-approximant. If φ = T,
then clearly the sequent is true. If φ = [[x, y < a z]]ψ , then the definition requires that the set

Succ
x,y<az

E (C,η) is empty, and thus, observing that (φ)Δ = [[x, y < a z]] (ψ )Δ, we deduce that the
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leaf is vacuously true. Also leaves labelled by a proposition, defined as a ν-approximant are true
by definition of successful tableau.

Therefore, the only possibly false leavesmust have as consequent some propositionX (y) defined
as a largest fixpoint νX (x).ψ . Amongst such false leaves choose one, labelled C,η, Σ |= X (y), say,
such that there is no other false leaf labelled C ′,η′, Σ′ |= X ′(y′) with Σ′↑(X ′) above Σ↑(X ) in τ .

Call w the node Σ↑(X ). By definition of tableau the node w is labelled by a sequent with
consequent (νX (x).ψ ) (y′). Let τw be the subtableau of τ rooted in the successor of w , labelled

C̃, η̃, Δ̃ |= X (ỹ), say.
Consider the other leaves in τw labelled by false sequents involving the same introduction of the

abstract propositionX , i.e., whose consequent is of the kindC,η, Σ |= X (y′′) for suitableC ,η, Σ, y
′′,

with Σ↑(X ) = w . For each such leaf, the fact that the sequent is false means (C,η) � {|(X (y′′))Δ |}E
for π ∈ PEnv. Observe that by Lemma B.2(b)

(X (y′′))Δ = (Δ(X (x))[y
′′
�x])Δ = (νX (x).ψ [y

′′
�x])Δ = (νX (x).ψ )Δ[y

′′
�x].

Hence (C,η) � {|(νX (x).ψ )Δ[y
′′
�x]|}E = {|(νX (x).ψ )Δ |}E[y

′′
�x], by Lemma A.3(1), and thus, we

have (C,η[x �→ η(y′′)]) � {|(νX (x).ψ )Δ |}E . In turn, by applying first Lemma B.2(a) and then
Lemma 4.11(1), this implies that there is n ∈ N such that (C,η[x �→ η(y′′)]) ∈ {|(νX (x).ψ )n

Δ |}π \
{|((νX (x).ψ )n+1

Δ |}π .
Take one of such leaves l such that the corresponding n is as small as possible. Let l be la-

belled with the sequent C,η, Σ |= X (z). Since l is a leaf, the stop condition must be satisfied,
i.e., there is an ancestor k of l labelled C ′,η′, Σ′ |= X (z′) such that Σ↑(X ) = Σ′↑(X ) = w (hence,
k in τw ) and 〈C,η[x �→ η(z)]|x〉 ≈r 〈C ′,η′[x �→ η′(z′)]|x〉. Furthermore, since (C,η[x �→ η(z)]) �
{|(νX (x).ψ )n+1

Δ |}π and fv ((νX (x).ψ )n+1
Δ ) ⊆ x, by Lemma 3.9, we have

(C ′,η′[x �→ η′(z′)]) � {|νX (x).(ψ )n+1
Δ |}π . (6)

Now transform the tableau τw into a new tableau τ ′w by replacing each definition list Δ in a
sequent of τw with Δ′ defined as follows:

• if Δ↑(X ) = w , then Δ′ = Δ[X �→ (νX (x).ψ )n],
• otherwise Δ′ = Δ.

Clearly τ ′w is a well-defined ν-pseudo-tableau. Moreover, τ ′w is successful. The only doubt

could concern leaves that in τw were labelled C ′,η′,Δ′ |= X (y′) with Δ′↑(X ) = w and thus in
τ ′w become C ′,η′,Δ′′ |= X (y′) with Δ′′ = Δ′[X (x) �→ (νX (x).ψ )n]. However, these leaves are
true in τ ′w . In fact, otherwise, we would have that (C ′,η′) � {|(X (y′))Δ′′ |}π = {|(Δ′′(X (y′)))Δ′ |}π =
{|(νX (x).ψ )n

Δ′ |}π = {|(νX (x).ψ )n
Δ |}π , where the last equality follows from the fact that X �

fp((νX (x).ψ )n ). Therefore, (C ′′,η′′[x �→ η′′(y′)]) � {|(νX (x)).ψ )n |}π , which means that there
would bem < n such that (C ′′,η′′[x �→ η′′(y′)]) ∈ {|(νX (x).ψ )m

Δ |}π \ {|(νX (x).ψ )m+1
Δ |}π , contradict-

ing the choice of n.
Additionally, after the transformation, the successor of the node k defined above is la-

belled C ′,η′[x �→ η′(z′)], Σ′′ |= ψ where Σ′′ = Σ′[X �→ (νX (x).ψ )n]. It is easy to see that (ψ )Δ′′ =

(νX (x).ψ )n+1
Δ′′ = (νX (x).ψ )n+1

Δ where the last equality is motivated by the fact that X does not

occur free in (νX (x).ψ )n+1. Jointly with (6) this gives (C ′,η′[x �→ η′(z′)]) � {|νX (x).(ψ )n+1
Δ |}π =

{|(ψ )Δ′′ |}π , namely, the sequent C ′,η′[x �→ η′(z′)], Σ′′ |= ψ is false, since (C ′,η′[x �→ η′(z′)]) �
{|ψ |}π ′ . Therefore, by backwards soundness, some leaf of τ ′w must be labelled by a false sequent.

Consider any such false leaf and the corresponding sequent C ′′,η′′,Δ′ |= Y (y′). If the cor-
responding leaf of τw is labelled C ′′,η′′,Δ |= Y (y′), we can have Δ′ = Δ[X �→ (νX (x).ψ )n] if
Δ↑(X ) = w , Δ′ = Δ otherwise. We analyse the two cases separately:
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• if Δ′ = Δ[X �→ (νX (x).ψ )n], thenY � X , because otherwise, by construction, the leaf would
be true, as observed above. Moreover, Δ′↑(Y ) = Δ′↑(Y ) = w ′must be in τ ′w , i.e., a descendant
ofw , otherwise, it would contradict the choice ofw .

• if Δ′ = Δ, and thus Δ′↑(Y ) = Δ′↑(Y ) = w ′ � w , then again w ′ must be after w , hence in τ ′w ,
otherwise, it would contradict the choice ofw .

Therefore, we reduced to a strictly smaller subtableau τ ′w of τ , which is successful, with a false
leaf and where all false leaves involve propositions introduced in τ ′w , as desired. �

Lemma 4.14 (Soundness). Let E be a strongly regular PES and φ be a closed formula of Lhp . If φ
has a successful ν -pseudo-tableau (hence, in particular, if it has a successful tableau), then E satisfies

φ.

Proof. Assume that the sequentC,η, ∅ |=E φ has a successful tableau τ . Then τ is a successfulν-
pseudo-tableau. For all leaves (and thus for all false leaves)C,η,Δ |= X (z), Δ↑(X ) is in τ . Therefore,
if it had a false leaf, by Lemma 4.13, we could continue building strictly smaller ν-pseudo-tableau
with the same properties, contradicting the finiteness of τ . Hence, all the sequents labelling the
leaves of τ must be true, a fact that, by Lemma 4.3, implies that all the nodes of τ are true and thus,
in particular, the sequent C,η, ∅ |=E φ labelling the root is true, as desired. �

Lemma B.3 (Unfolding μ-fixpoints). Let C,η,Δ |= Z (z) be a sequent such that Δ(Z (x)) =
μZ (x).ψ or Δ(Z (x)) = (μZ (x).ψ )n . If C,η,Δ |= Z (z) is true and the stop condition γ does not
hold, then rule (Unfa

μ ) is applicable and the conclusion is true.

Proof. Assume that the stop condition γ does not hold. If the sequent C,η,Δ |= Z (z) is
true, i.e., (C,η) ∈ {|(Z (z))Δ |}π for π ∈ PEnv, then, by Lemma A.3(1), (C,η′) ∈ {|(Z (x))Δ |}π and,
since (Z (x))Δ = (Δ(Z (x)))Δ, then (C,η′) ∈ {|(Δ(Z (x)))Δ |}π . When Δ(Z (x)) = μZ (x).ψ some k ∈
N such that condition (1) holds is guaranteed to exist by applying first Lemma B.2(a) and
then Lemma 4.11(2). When instead, Δ(Z (x)) = (μZ (x).ψ )n , we need only Lemma B.2(c). More-
over, in this case, we have k < n, since (C,η′) ∈ {|(μZ (x).ψ )n

Δ |}π and (C,η′) ∈ {|(μZ (x).ψ )k+1
Δ |}π \

{|(μZ (x).ψ )k
Δ |}π .

Since Z � fp((μZ (x).ψ )k ) and Δ and the definition lists Δ′ differ only on Z , we have that (ψ )Δ′ =

(ψ [Z (x) := (μZ (x).ψ )k
Δ])Δ = (μZ (x).ψ )k+1

Δ and thus (C,η′) ∈ {|(ψ )Δ′ |}π , i.e., the successor sequent
C,η′,Δ′ |= ψ is true. �

Lemma 4.16 (Completeness). Let E be a strongly regular PES and let φ be a closed formula of

Lhp . If E satisfies φ, then φ has a successful μ-pseudo tableau and thus a successful tableau.

Proof. We prove that each true sequent C,η,Δ |= φ admits a successful μ-pseudo-tableau. We
first construct the tableau inductively, showingwhich rule to apply and arguing that the conclusion
of the rule is again a true sequent. Then, we will show that it is successful. We distinguish various
cases according to the shape of φ:

• φ = T

The node has no successors.
• φ = ψ1 ∧ψ2

We apply rule (∧), which produces two successors labelledC,η,Δ |= ψ1 andC,η,Δ |= ψ2.
Clearly (φ)Δ = (ψ1)Δ ∧ (ψ2)Δ, and, since (C,η) ∈ {|(φ)Δ |}π , by definition of the semantics
both sequents are true.

• φ = ψ1 ∨ψ2

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 34. Publication date: October 2020.



34:38 P. Baldan and T. Padoan

Since (C,η) ∈ {|(φ)Δ |}π and clearly (φ)Δ = (ψ1)Δ ∨ (ψ2)Δ, then by definition of the seman-
tics (C,η) ∈ {|(ψi )Δ |}π , for some i ∈ {1, 2}. We apply rule (∨L) or (∨R), accordingly, produc-
ing a single true successor labelled C,η,Δ |= ψi .

• φ = 〈|x, y < a z |〉ψ
Since (C,η) ∈ {|(φ)Δ |}π and (φ)Δ = 〈|x, y < a z |〉 (ψ )Δ, by definition of the semantics there

exists an event e ∈ E[C] such thatC
η (x),η (y) < e−−−−−−−−−−→a C

′, η′ = η[z �→ e] and (C ′,η′) ∈ {|(ψ )Δ |}π .
Then, we can apply rule (�) producing a single true successor labelled C ′,η′,Δ |= ψ .

• φ = [[x, y < a z]]ψ

Let the set of successor be Succ
x,y<az

E (C,η) = {(C1,η1), . . . , (Cn ,ηn )}. Note that succes-

sors Succ
x,y<az

E (C,η) are finite, since the PES E is strongly regular and thus finitely branch-
ing.

If Succ
x,y<az

E (C,η) is not empty, since (C,η) ∈ {|(φ)Δ |}π and (φ)Δ = [[x, y < a z]] (ψ )Δ,
by definition of the semantics, then we have that (Ci ,ηi ) ∈ {|(ψ )Δ |}π for all i ∈ [1,n]. Then
rule (�) can be applied producing n true successors labelled Ci ,ηi ,Δ |= ψ , for i ∈ [1,n].

Otherwise, if Succ
x,y<az

E (C,η) is empty, the node has no successor.
• φ = (αZ (x).ψ ) (z)

We apply rule (Fix) that produces a single successor labelledC,η,Δ′ |= Z (z) where Δ′ =
Δ[Z (x) �→ αZ (x).ψ ].

We show that the sequent C,η,Δ′ |= Z (z) is true, i.e., (C,η) ∈ {|(Z (z))Δ′ |}π for π ∈
PEnv. First note that (φ)Δ = (φ)Δ′ , since Z � fp(φ) and Δ and Δ′ coincide on all propo-
sitions except Z . Therefore (Z (z))Δ′ = (Δ′(Z (z)))Δ′ = (φ)Δ′ = (φ)Δ. Since (C,η) ∈ {|(φ)Δ |}π ,
we have that (C,η) ∈ {|(Z (z))Δ′ |}π , as desired.

• φ = Z (z)
We know that the sequent C,η,Δ |= φ is true, i.e., (C,η) ∈ {|(Z (z))Δ |}π for π ∈ PEnv. If γ

holds, then the node has no successors. Otherwise, if γ is false, we distinguish two cases
depending on the definition of Z in Δ:
(1) Δ(Z (x)) = νZ (x).ψ

Since (C,η) ∈ {|(Z (z))Δ |}π , we have that (C,η′) ∈ {|(Z (x))Δ |}π where η′ = η[x �→
η(z)]. By Lemma B.1{|(Z (x))Δ |}π = {|(ψ )Δ |}π and thus (C,η′) ∈ {|(ψ )Δ |}π . Therefore, by
using rule (Unfν ), we produce a single true successor labelled C,η′,Δ |= ψ .

(2) Δ(Z (x)) = μZ (x).ψ or (μZ (x).ψ )n

By Lemma B.3, since the sequent C,η,Δ |= φ is true, we can apply rule (Unfa
μ ), thus

producing a true successor labelled

C,η′,Δ |= ψ ,

where η′ = η[x �→ η(z)] and Δ′ = Δ[Z (x) �→ (μZ (x).ψ )k ], for some k ∈ N such that
(C,η′) ∈ {|(μZ (x).ψ )k+1

Δ |}π \ {|(μZ (x).ψ )k
Δ |}π , which is ensured to exist.

Note that we do not need to consider the case φ = F, since the sequent C,η,Δ |= φ would be
false.

The inductive construction produces a μ-pseudo-tableau where all sequents are true. The only
reason why it might not be successful could be the presence of a leaf labelledC,η,Δ |= X (z) where
Δ(X (x)) = (μX (x).ψ )k . We next show that this would imply that C,η,Δ |= X (z) is false, hence it
is not possible.

Assume that there is a leaf l labelled C,η,Δ |= X (z) where Δ(X (x)) = (μX (x).ψ )k . We
prove that C,η,Δ |= X (z) is false, namely, that (C,η) � {|(X (z))Δ |}π for π ∈ PEnv. Observe that
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(X (z))Δ = ((μX (x).ψ )k [z�x])Δ = (μX (x).ψ )k
Δ[z�x], hence, by Lemma A.3(1), we can conclude by

proving that

(C,η[x �→ η(z)]) � (μX (x).ψ )k
Δ . (7)

Since l is a leaf, it must satisfy the stop condition, i.e., it must have an ancestor v labelled
C ′,η′,Δ′ |= X (z′) such that Δ↑(X ) = Δ′↑(X ) and 〈C,η[x �→ η(z)]|x〉 ≈r 〈C ′,η′[x �→ η′(z′)]|x〉. By
construction, the successor of v must be labelled C ′,η′[x �→ η′(z′)],Δ′′ |= ψ , where Δ′′ =
Δ′[X (x) �→ (μX (x).ψ )n] for some n ∈ N such that (C ′,η′[x �→ η′(z′)]) ∈ {|(μX (x).ψ )n+1

Δ′ |}π \
{|((μX (x).ψ )n+1

Δ′ |}π , for π ∈ PEnv. Recall that each time a proposition is unfolded using rule (Unfa
μ ),

the index of the approximant strictly decreases, hence k ≤ n. Then, we have that (C ′,η′[x �→
η′(z′)]) � {|(μX (x).ψ )k

Δ′ |}π , since {|(μX (x).ψ )k
Δ′ |}π ⊆ {|(μX (x).ψ )n

Δ′ |}π . Therefore, by Lemma 3.9, we
deduce

(C,η[x �→ η(z)]) � {|(μX (x).ψ )k
Δ′ |}π ,

since π is vacuously saturated for (μX (x).ψ )k
Δ′ that has no free propositions.

We then reach the desired conclusion (7) by showing that (μX (x).ψ )k
Δ′ = (μX (x).ψ )k

Δ. Note that,

since Δ↑(X ) = Δ′↑(X ), no proposition Y ∈ fp(ψ ) \ {X } can be unfolded or introduced along the
path from v to l . Otherwise, if φX and φY are the fixpoint formula binding X and Y , respectively,
then we would have φY �∗d φY �∗d φX , while �∗

d
is a partial order. Thus, since the definition list is

updated onlywhen a proposition is unfolded or introduced, Δ and Δ′ coincide on all propositions in
fp((μX (x).ψ )k ) ⊆ fp(ψ ) \ {X }. Clearly this implies that (μX (x).ψ )k

Δ′ = ((μX (x).ψ )k )Δ, as desired.
All in all, we can conclude that there is a successful μ-pseudo-tableau (hence, a successful tableau)
for each true sequent. �

Theorem 4.17 (Soundness and Completeness of the Tableau System). Given a strongly reg-

ular PES E and a closed formula φ of Lhp , the formula φ has successful tableau if and only if E
satisfies φ.

Proof. Corollary of Lemmata 4.14 and 4.16. �

C TECHNICALITIES AND PROOFS FOR SECTION 5

C.1 Proofs for Section 5.1

Theorem 5.5 (language preservation). LetA be an NPA and let ≡ be an equivalence on the set

of states, which is a bisimulation. Then L(A/≡) = L(A).

Proof. Let A = (Q,q0,→, F ) be an NPA and let ≡ be an equivalence on Q , which is a bisimu-
lation. We prove the two inclusions separately.

Let us first show that L(A) ⊆ L(A/≡). Let T ∈ L(A) be a tree. Then there exists an accepting
run r : T → Q . It is easy to show that r ′ : T → Q/≡ defined by r ′(u) = [r (u)]≡ for all u ∈ T is an
accepting run for T in A/≡.

In fact, it is a run on T , since r ′(ϵ ) = [q0]≡, which is the initial state of A/≡. Moreover,
for all u ∈ T , if u1, . . . ,un are its children, then r (u) → (r (u1), . . . , r (un)) in A, hence r ′(u) =
[r (u)]≡→/≡ ([r (u1)]≡, . . . , [r (un)]≡) = (r ′(u1), . . . , r ′(un)), as desired.

Finally, r ′ is accepting, since any path ([q0]≡, [q1]≡, [q2]≡, . . .) in r ′ arises from a path
(q0,q1,q2, . . .) in r , which is accepting, and by construction [q]≡ ∈ F/≡ iff q ∈ F .

For the converse inclusion L(A/≡) ⊆ L(A), letT ∈ L(A/≡) be a tree. Then there exists an accept-
ing run r ′ : T → Q/≡. We can define a corresponding run r : T → Q inA as follows: For any node
u ∈ T , we inductively define r (w ) ∈ Q in a way that r ′(u) = [r (u)]≡. For the root r (ϵ ) = q0. For
any each node u ∈ T with children u1, . . . ,un, we know that there is a transition in the quotient
r ′(u)→/≡ (r

′(u1), . . . , r ′(un)). By construction this means that there is a transitionq → (q1, . . . ,qn )
in A such that r ′(u) = [q]≡ and r ′(ui ) = [qi ]≡ for i ∈ [1,n]. By induction, we have r (u) ∈ Q such
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that r ′(u) = [r (u)]≡, hence r (u) ≡ q. Since ≡ is a bisimulation, there are q′1, . . . ,q
′
n ∈ Q such that

r ′(u) → (q′1, . . . ,q
′
n ) andqi ≡ q′i for i ∈ [1,n]. Therefore, for i ∈ [1,n], we can define r (ui ) = q′i and

obtain [r (ui )]≡ = [qi ]≡ = r
′(ui ), as desired.

Run r is accepting, as it follows from the fact that r ′ is so and the way F/≡ is defined from F . �

C.2 Proofs for Section 5.2

Lemma 5.8 (≈f is a Bisimulation). Let E be a strongly regular PES and let φ be a closed formula

of Lhp . Then the future equivalence ≈f on AE,φ is a bisimulation and it is of finite index.

Proof. Let q1 = (C1,η1,ψ1),q2 = (C2,η2,ψ2) ∈ Q be states of AE (N ),φ such that q1 ≈m q2.
Thus,

(i) there are a formula ψ and substitutions σi : fv (ψ ) → fv (ψi ), i ∈ {1, 2}, such that ψσ = ψi

and
(ii) the fv (ψ )-pointed configurations 〈C1,η1 ◦ σ1〉, 〈C2,η2 ◦ σ2〉 have isomorphic pointed resid-

uals via some isomorphism ι : E[C1]→ E[C2].

The first observation is that (i) and (ii) above imply that q1 ∈ Fi iff q2 ∈ Fi , for i ∈ [0,h], i.e.,
condition (1) of the definition of bisimulation (Definition 5.4).

In fact, by item (i), ψ1 and ψ2 differ at most for the name of the event variables, hence
they have the same outer most operator and the same alternation depth. Moreover, if ψ1

and hence ψ2 are modal formulae, e.g., ψ1 = 〈|x1, y1 < a z1 |〉ψ ′1 and ψ2 = 〈|x2, y2 < a z2 |〉ψ ′2, then

Succ
x1,y1<az1

E (C1,η1) = ∅ iff Succ
x2,y2<az2

E (C2,η2) = ∅. This follows from the more general obser-
vation that

C1,
η (x1 ),η (y1 ) < e1−−−−−−−−−−−−→a C

′
1 iff C2,

η (x2 ),η (y2 ) < ι (e1 )−−−−−−−−−−−−−−→a C
′
2. (8)

In fact, letC1,
η (x1 ),η (y1 ) < e1−−−−−−−−−−−−→a C

′
1 for some event e1. Since e1 is enabled in E[C1] and ι is an isomor-

phism of E[C1] and E[C2], the image ι (e1) is enabled in E[C2]. Moreover, for all x1 ∈ x1,η1 (x1) < e1
and for all y1 ∈ y1, ¬(η1 (y1) < e1). Sinceψσ1 = ψ1, we get that for all x ∈ x, η1 ◦ σ1 (x ) < e1 and for
all y ∈ y, ¬(η1 ◦ σ1 (y) < e1). Using the fact that ι is an isomorphism of residuals of pointed con-
figurations, we deduce that for all x ∈ x, η2 ◦ σ2 (x ) < ι (e1) and for all y ∈ y, ¬(η2 ◦ σ2 (y) < ι (e1)).
Thus, we get that for all x2 ∈ x2, η2 (x2) < ι (e1) and for all y2 ∈ y2, ¬(η2 (y2) < ι (e1)), which means

C2,
η (x2 ),η (y2 ) < ι (e1 )−−−−−−−−−−−−−−→a C

′
2, as desired. The converse implication is immediate by symmetry.

From the above, recalling that the priority of a formula depends on the shape, the alterna-
tion depth, and for modal formulae, on the successor configurations, we conclude that condition
(1) holds.

Now, let us focus on the condition (2). We proceed by cases, on the form of the formula ψ1

(which, as observed, is of the same shape as ψ2) and we show only that all transitions of q1 are
simulated by q2, since the other direction follows by symmetry.

• ψ1 = T orψ1 = F

Trivial, since the only transitions of q1 and q2are q1 −→ (q1) and q2 −→ (q2), and q1 ≈f q2.
• ψ1 = ψ

′
1 ∧ψ ′′1

The only transition of q1 is q1 −→ (q′1,q
′′
1 ) where q′1 = (C,η,ψ ′1 ) and q′′1 = (C,η,ψ ′′1 ). By

item (i), we immediately get thatψ = ψ ′ ∧ψ ′′ andψ2 = ψ
′
2 ∧ψ ′′2 , withψ ′σi = ψ

′
i andψ ′′σi =

ψ ′′i for i ∈ {1, 2}.
We can thus consider the only transition of q2, i.e., q2 −→ (q′2,q

′′
2 ) where

q′2 = (C2,η2,ψ
′
2 ) and q′′2 = (C2,η2,ψ

′′
2 ). Since we already knew that 〈C1, (η1 ◦

σ1) |fv (ψ )〉 ≈r 〈C2, (η2 ◦ σ2) |fv (ψ )〉, just observing that fv (ψ ′), fv (ψ ′′) ⊆ fv (ψ ), we deduce
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〈C1, (η1 ◦ σ1) |fv (ψ ′)〉 ≈r 〈C2, (η2 ◦ σ2) |fv (ψ ′)〉 and 〈C1, (η1 ◦ σ1) |fv (ψ ′′)〉 ≈r 〈C2, (η2 ◦ σ2) |fv (ψ ′′)〉.
Thus, we conclude that q′1 ≈f q′2 and q′′1 ≈f q′′2 , as desired.

• ψ1 = ψ
′
1 ∨ψ ′′1 ,ψ1 = (αX1 (x1).ψ ′1 ) (y), andψ1 = X1 (x1).

Analogous to the previous case.
• ψ1 = 〈|x1, y1 < a z1 |〉ψ ′1

There are two possibilities. If Succ
x1,y1<az1

E (C1,η1) = ∅, then the only transition of q1 is q1 −→
(q1). We already observed that in this case also Succ

x2,y2<az2

E (C2,η2) = ∅. and thus, we can
take the only transition of q2 i.e., q2 −→ (q2) and conclude, since q1 ≈f q2.

If instead Succ
x1,y1<az1

E (C1,η1) = ∅, then the transitions of q1 are q1 −→ (q′1) with

q′1 = (C ′1,η[z1 �→ e1],ψ
′
1 ) for C1,

η (x1 ),η (y1 ) < e1−−−−−−−−−−−−→a C
′
1. We observed that, in this case

C2
η2 (x),η2 (y) < ι (e )−−−−−−−−−−−−−→a C

′
2 and thus for q2, we can take the transition q2 −→ (q′2) with

q′2 = (C ′2,η2[z2 �→ ι (e1)],ψ ′2 ). Since ei ∈ E[Ci ], i ∈ {1, 2}, and ι is an isomorphism, for all
e ′1 ∈ E[C1], e1 < e ′1 iff ι (e1) < ι (e ′1). Moreover, by (i), we get that ψ = 〈|x, y < a z |〉ψ ′
and observing that fv (ψ ′i ) ⊆ fv (ψi ) ∪ {zi } and fv (ψ ′) ⊆ fv (ψ ) ∪ {z}, we have that
ψ ′σi [z �→ zi ] = ψ

′
i for i ∈ {1, 2}. Putting together the previous facts, we obtain

also that the pointed configurations 〈C ′1, (η[z1 �→ e1] ◦ σ1[z �→ z1]) |fv (ψ ′)〉 and
〈C ′2, (η2[z2 �→ ι (e ′1)] ◦ σ2[z �→ z2]) |fv (ψ ′)〉 have isomorphic pointed residuals, with an
isomorphism, which is the restriction of ι to E[C ′1]. Hence, we conclude that q′1 ≈f q′2.

• ψ = [[x, y < a z]]ψ1

Analogous to the previous case.

To show that ≈f is of finite index, observe that for a fixed subformulaψ ∈ sf (φ), there is a finite
number of ≈r -equivalence classes of fv (ψ )-pointed configurations. Since the number of subformu-
lae in sf (φ) is itself finite, we conclude. �

We next observe some properties of paths in automata in relation to fixpoint formulae. These
are easy adaptations of similar results already proved for tableaux (Section 4.3).

Lemma C.1 (Fixpoint Introduction). Let E be a PES, let φ be a closed formula in Lhp , and let

AE,φ be the corresponding automaton. For any path p in AE,φ and state q with formula X (�x )

(1) if there exists a state q′ after q, with formula Y (y) and Y is not introduced between q and q′,
then X �∗

d
Y ;

(2) if there exists a state q′ after q that introduces X , then there is a state between q and q′ with

formula Y (x) with X �∗
d
Y .

Proof. Straightforward adaptation of the proof of Lemma 4.7. �

Lemma C.2 (Properties of Infinite Paths). Let E be a PES, let φ be a closed formula in Lhp ,
and letAE,φ be the corresponding NPA. Each infinite path inAE,φ has a suffix p = (q0,q1, . . .) such

that one the following properties holds:

(1) for all j, qj = (C,η,ψ ), with ψ of the kind T, F, or [[x, y < a z]]ψ ′, 〈|x, y < az |〉ψ ′ with

Succ
x,y<az

E (C,η) = ∅;
(2) the set of abstract propositions that occur infinitely often has a �∗

d
-largest element X (which

thus has the largest alternation depth) and X is never introduced in p.

Proof. Consider an infinite path in the automaton AE,φ . If from some point on qj = (C,η,ψ ),

whereψ of the kind T, F[[x, y < a z]]ψ ′ or 〈|x, y < a z |〉ψ ′ with Succ
x,y<az

E (C,η) = ∅, we are done.
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Otherwise, inspecting Definition 5.6, we see that the remaining transitions reduce the size of the
formula associated with the state, the only exceptions being the unfolding transition. Therefore,
infinitely many transitions must be unfoldings, meaning that there are infinitely many states with
a proposition as formula.

Consider a suffix p = (q0,q1, . . .) of the path such that all propositions occur infinitely often and
letX one of these proposition that is�∗

d
-maximal. Consider a suffixp ′ = (q�,q�+1, . . .) startingwith

a stateq� having an occurrence ofX as formula. Reasoning exactly as in Lemma 4.7, we can deduce
that X is never introduced in p ′.

Moreover,X is a �∗
d
-maximum. In fact, let Y be another maximal abstract proposition occurring

infinitely often in p ′. Then, we can consider states qi = (Ci ,ηi ,X (xi )), qj = (Cj ,ηj ,Y (yj )), and
qi = (Ck ,ηk ,X (xk )). If Y is not introduced between qi and qj then, by Lemma C.1(1), X �∗

d
Y ,

hence, by maximality, X = Y . Similarly, if X is not introduced between qj and qk then Y �∗
d
X ,

hence, by maximality,X = Y . Otherwise, it is easy to see that ifψX andψY are the fixpoint formulae
binding X and Y , respectively, ψY should be a strict subformula of ψX that, in turn, should be a
strict subformula ofψY , leading to a contradiction. �

Lemma 5.10 (Pruned Runs are Finite). Let E be a strongly regular PES, let φ be a closed formula

ofLhp , and letAE,φ be the corresponding NPA. For any run r ofAE,φ on ak-treeT , the corresponding

pruned run T (r ) is finite.

Proof. We proceed by contradiction. We assume that T (r ) is infinite and we prove that it in-

cludes a repetition, in contrast with its definition. Since T (r ) is boundedly branching, by König’s

lemma, there is an infinite path p = (u0,u1, . . .) in T (r ) . Hence, by Lemma C.2, there is a suffix
p ′ = (uh ,uh+1, . . .) such that one of the following properties hold and in both cases we conclude.

(1) r (ui ) = q = (C,η,ψ ) for all i ≥ h, withψ is of the kind T, F, or 〈|x, y < a z |〉ψ ′, [[x, y < a z]]ψ ′

with Succ
x,y<az

E (C,η) = ∅. Hence, ui is a repetition.
(2) There is an abstract proposition X that occurs infinitely often and X is never introduced

in p ′. Since X occurs infinitely often in p ′ and, by Lemma 5.8, the equivalence ≈f is of
finite index, there are two nodes ui ,uj in p ′ with formulae X (xi ) and X (xj ), respectively,
such that r (ui ) ≈f r (uj ). Therefore, uj is a repetition. �

Lemma 5.12 (Maximal Priority Repetitions). Let E be a PES, let φ be a closed formula of Lhp ,
and let r be an accepting run of the NPA AE,φ on a k-tree T . For each infinite accepting path p =
(u0,u1, . . .) in r there exists a repetition ui of priority F (p).

Proof. Let p = (u0,u1, . . .) be an infinite accepting path in r . By Lemma C.2, there is a suffix
p ′ = (uh ,uh+1, . . .) of p such that one of the following properties hold.

(1) r (ui ) = q = (C,η,ψ ) for all i ≥ h, with ψ the kind T, F, or 〈|x, y < a z |〉ψ ′, [[x, y < a z]]ψ ′

with Succ
x,y<az

E (C,η) = ∅. The fact that the run and thus the path are accepting reduces

the possible shapes of ψ to T and [[x, y < a z]]ψ ′ with Succ
x,y<az

E (C,η) = ∅. Hence, ui is a
repetition. Moreover, F (q) = 0 and, since, r (uh ) = r (ui ) = q ∈ F0 for h ≥ i , this is the only
priority repeating infinitely often, hence the largest.

(2) The set of abstract proposition that occurs infinitely often in p ′ has a �∗
d
-largest element

X (which thus has the largest alternation depth) and X is never introduced in p ′. Since
X occurs infinitely often in p ′ and, by Lemma 5.8, the equivalence ≈f is of finite index,
there are two nodes ui ,uj in p ′ with formulae X (xi ) and X (xj ), respectively, such that
r (ui ) ≈f r (uj ). We next observe that r (ui ), r (uj ) ∈ Fl with l = F (p). In fact, recall that
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ad(X ) is maximal among the propositions occurring infinitely often. Thus, if there were
l ′ > l such that r (ui ) ∈ Fl ′ infinitely often, there should be some Y such that
• Y is quantified in a ν-subformula and ad(Y ) > ad(X ), contradicting the maximality of

ad(X );
• Y is quantified in a μ-subformula and ad(Y ) ≥ ad(X ), contradicting the fact that the run

r is accepting.
Summing up, r (ui ) ≈f r (uj ), state r (ui ) has a proposition X (xi ) as a formula, and X is

not introduced between ui and uj , hence uj is the desired repetition. �

Lemma 5.13 (Avoiding Noisy Repetitions). Let E be a PES and let φ be a closed formula of Lhp .

If L(AE,φ ) � ∅, then AE,φ has an accepting run r without noisy repetitions.

Proof. Assume by contradiction that L(AE,φ ) � ∅ but all accepting runs contain noisy repe-
titions. Let r be an accepting run on a k-tree T that has a minimal number of repetitions (this is
finite, as already observed).

Letu be a noisy repetition in r . Since the run is accepting, the only possibility is that the formula
of r (u) is a proposition, say, X (x) quantified in a least fixpoint. Let u ′ = Ω(u), i.e., u ′ is the closest
ancestor of u such that r (u) ≈f r (u ′) and X is not introduced between u ′ and u, and let Tu and Tu′
be the subtrees of T rooted in u and u ′, respectively.

Since r (u) ≈f r (u ′) and ≈f is an NPA bisimulation (see Lemma 5.8), we can replace Tu′ by Tu
and get a new valid run r ′. It is accepting, since all paths in r ′ are obtained from paths in r by
removing finitely many nodes.

We argue r ′ has strictly less repetitions than r , contradicting its minimality. In fact,u is no longer
a repetition.Moreover, no new noisy repetitions are created. In fact, nodes that were not repetitions
cannot become repetitions. Still, we could doubt that repetitions that were not noisy become so.
For repetitions that were not in Tu′ , the ancestors are unchanged, hence they are noisy after the
transformation if and only if they were before. Repetitions in Tu′ but not in Tu are removed. Let us
thus focus on repetitions in Tu . Letv be one of such repetitions. Assume thatu has odd priority and
it is not noisy due to the presence of an ancestorw that is a repetition of even priority. Clearly,w
cannot be an ancestor ofu, otherwiseu would not be noisy. Hence, it must be betweenu andv . Still,
we could think that after the transformationu could become noisy, becausew ′ = Ω(w ) is between
u ′ and u, hence it is removed and w ceases to be a repetition. However, if this were the case let
Y (y) and Y (y′) be the formulae associated with w and w ′, respectively. Since X is not introduced
between u ′ and u, hence between w ′ and u, by Lemma 4.7(1), Y �∗

d
X . Since Y is not introduced

betweenw ′ = Ω(w ) andw , hence between u andw , again by Lemma 4.7(1), X �∗
d
Y . Thus, X = Y ,

but this is absurd, since X and Y are quantified in a least and greatest fixpoint, respectively. �

Lemma C.3 (Pruned Run Without Noise). Let E be a PES, φ be a closed formula of Lhp , and

let r be a run of the NPAAE,φ on a k-tree T . If r is without noisy repetitions, then all leaves in T (r )

have even priority.

Proof. ByDefinition 5.9, the leaves inT (r ) are all repetitions.We conclude by observing that, in
an accepting run, non-noisy repetitions have necessarily even priority. In fact, let u be a repetition
in a certain path p and assume that u has no or odd priority. Since by Lemma 5.12 there is a
repetition in p of largest priority F (p), which is even, then u would be noisy. �

Lemma 5.14 (Pruned Run with Even Leaves). Let E be a PES and let φ be a closed formula of

Lhp . If L(AE,φ ) � ∅, then AE,φ has an accepting run r on a k-tree T such that in T (r ) all leaves

have even priority.

Proof. Immediate corollary of Lemmata 5.13 and C.3. �
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Lemma 5.16 (Accepting Run for Pruned Runs). Let E be a PES and let φ be a closed formula

of Lhp . If there exists a run r of the NPA AE,φ on a k-tree T such that in T (r ) all leaves have even

priority, then there exists also an accepting run of AE,φ .

Proof. Let r be a run such that all leaves in T (r ) have even priority. Consider the directed graph

obtained by adding to every leaf w of T (r ) a “back arc” in the following way: If r (w ) = (C,η,ψ )
where ψ is T or [[x, y < a z]]ψ ′, then add a self-loop. Otherwise, ψ must be a proposition Z (z)
quantified in a ν-subformula, since all leaves have even priority. In this case the arc goes from l to
the successor of its repetition witness Ω(l ).

Unfold such a directed graph, starting from the root ϵ of T (r ) , thus obtaining a k-tree T ′
(different from T , in general). More formally, T ′ is the tree whose nodes are finite paths v =
(u0,u1, . . . ,un ) in the graph and where each node v = (u0,u1, . . . ,un ) has v ′ = (u0,u1, . . . ,un−1)
as parent. Clearly, all complete paths in T ′ are infinite, since every node of the graph has a suc-
cessor. Moreover, paths in T ′ will be sometimes confused with the corresponding paths in the
graph.

We show that r can be used to build an accepting run r ′ of the quotient AE,φ /≈f
over T ′. For

each node v = (u0,u1, . . . ,un ), define r ′(v ) = [r (un )]≈f
. Since for each node u of the original run,

r (u) ≈f r (Ω(u)), it is not difficult to realise that r ′ is a well-defined run of AE,φ /≈f
on T ′.

We argue that the run r ′ is accepting, that is, for any complete path p = (v0,v1, . . .) in r ′, if we
consider the set of priorities that repeat infinitely often

I (p) = {l ∈ [0,h] | {i | r ′(vi ) ∈ Fl } is infinite},

then I (P ) is non-empty and its maximum is even.

Since p is infinite, T (r ) is finite (by Lemma 5.10), and the back arcs have been added only to

the leaves, by construction some leaf w of T (r ) must repeat infinitely many times in p (or, more
precisely, vi = vi−1w infinitely often). Sincew has even priority, there are two possibilities:

• r (w ) is T or [[x, y < a z]]ψ ′ with Succ
x,y<az

E (C,η) = ∅, or
• r (w ) is a proposition quantified in a ν-subformula.

In the first case, from some point on, vi = vi−1w and r (w ), hence r ′(vi ), have priority 0 and this
is the only priority repeating infinitely often. Hence, we are done.

In the second case, we know that I (p) � ∅. To conclude that the maximum is even, we proceed
as follows: We show that for any proposition X quantified in a μ-subformula such that X appears
infinitely many times along p, there is a proposition Y quantified in a ν-subformula such that
ad(Y ) > ad(X ) and Y appears infinitely many times along p. Recalling how the priority is defined
based on the alternation depth, it is easy to see that this implies that for any node of odd priority
there is a descendant node of larger even priority, whence the desired property.

Thus, assume that the formulaX (x), withX quantified in a μ-subformula, occurs infinitely often

in p. Since T (r ) is finite, this implies that there is a node u of T (r ) such that the formula of r (u) is

X (x) and u is traversed infinitely often in p. Moreover, since all leaves of T (r ) have even priority,
u must be an inner node.

Now, letvi ,vj be two consecutive occurrences ofu inp, i.e.,vi = vi−1u andvj = vj−1u with i < j.

Note that, since u is an inner node of T (r ) and there is a path from vi to vj , i.e., from u to u in the

graph, there must be an index k with i < k < j such that uk corresponds to a leaf w of T (r ) , and

its repetition witness Ω(w ) is above u in T (r ) . Assume that k is the smallest such index. Thenw is

a descendant of u in T (r ) (otherwise there should be an “earlier” leaf of index uk ′ , with i < k ′ < k
whose witness is a common ancestor of u and w , contradicting the minimality of k). Therefore,
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u is between Ω(w ) and w in T (r ) . Let Y (y) be the formula in r (w ). Note that Y is quantified in
a ν-subformula, since v is a leaf. By definition of repetition witness, Y is not introduced Ω(w )
and w . Thus, by Lemma C.1,(1) we have that X �∗

d
Y . Moreover X � Y , since X is quantified in a

μ-subformula and Y in a ν-subformula. Hence, by definition of alternation depth, ad(X ) < ad(Y ).
We proved that between any two consecutive occurrences of u there is a node with a formula

Y (y), quantified in a ν-subformula, such that ad(X ) < ad(Y ). Since u occurs infinitely often in p,
the variable Y will be the same in infinitely many cases. This is what we aimed at.

Summing up, every complete path of r ′ is accepting and thus the run r ′ on the k-tree T ′ is an
accepting run for AE,φ /≈f

on T ′, thus L(AE,φ /≈f
) � ∅. Since ≈f is a bisimulation on AE,φ , by

Theorem 5.5, L(AE,φ /≈f
) = L(AE,φ ), hence, we conclude. �

Lemma 5.15 (Non-Emptiness Implies Satisfaction). Let E be a strongly regular PES and let φ̌
be a closed formula. If L(AE,φ̌ ) � ∅, then E |= φ̌.

Proof. Let E be a strongly regular PES, let φ̌ in Lhp be a closed formula, and let AE,φ̌ be the
corresponding automaton. Assume that L(AE,φ̌ ) � ∅. By Lemma 5.14, for AE,φ̌ there exists an

accepting run r on a k-tree T , such that all leaves of T (r ) have even priority. We show that T (r )

can be easily transformed into a successful tableau for the sequent ∅, η̌, ∅ |= φ̌.

First, all nodes of T (r ) can be labelled with sequents as follows: Recall that r maps each to node
u to a state r (u) = (C,η,ψ ). This is transformed into a sequent C,η,Δu |= ψ , with the definition
list Δu defined inductively as follows: For the root ϵ , we let Δu = ∅. For non-root nodes ui , if
r (u) = (C,η,ψ ) withψ = (αX (x).ψ ′) (y), i.e., r (u) introducesX , then Δui = Δu [X (x) �→ αX (x).ψ ′].
In all other cases, Δui = Δu .

Since the leaves l of T (r ) have even priority, the corresponding formulae are either:

(1) T or [[x, y < a z]]ψ ′ with Succ
x,y<az

E (C,η) = ∅ or
(2) X (x) with X bound in a ν-subformula.

In the first case, by definition of the transition relation and of pruned k-tree, the predecessor
u of the leaf l is such that r (u) = r (l ) and l = u1 is its only successor. Call τ the tree obtained by
removing such leaves.

Inspecting the automaton transitions and the tableau rules, it is immediate to realise that the
sequents labelling each internal node of τ and its successors are the premise and the conclusions,
respectively, of a tableau rule. The stop condition γ (see Definition 4.4) is not satisfied by inter-
nal nodes, since they are not repetitions. Moreover, no tableau rule applies to the sequents la-
belling the leaves of τ . This is clearly the case for leaves in item (1) above. For the leaves in
item (2), the rule (Unfν ) cannot be applied, since the stop condition γ is guaranteed to hold by
Definition 5.9.

Therefore, τ is a tableau, and it is clearly successful, since, as already observed, every leaf is as
required in Definition 4.6. �

Lemma 5.17 (Satisfaction Implies Non-Emptiness). Let E be a strongly regular PES and let φ̌
be a closed formula. If E |= φ̌, then L(AE,φ̌ ) � ∅.

Proof. Letq0 = (∅, η̌, φ̌) be the initial state ofAE,φ̌ . Let τ be a successful tableau for the formula
φ̌, which is guaranteed to exist by Lemma 4.16.

The tableau τ can be transformed into a run r of AE,φ̌ in the following way: A prefix of r
corresponds exactly to the tableau τ : each sequentC,η,Δ |= φ is transformed into a state (C,η,φ).
In particular, the root of τ , labelled by the sequent ∅, η̌, ∅ |= φ̌, corresponds to the initial state
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q0 = (∅, η̌, φ̌). By an inspection of the tableau rules and the automaton transitions it is immediate
to realise that this is indeed an incomplete run of AE,φ̌ starting from the initial state q0.

Now, since by definition ofAE,φ̌ , every state has a successor, clearly r can be extended to a full
correct run r of AE,φ̌ on some k-tree T .

Note that r might not be accepting. Still, the prefix of r , corresponding to τ , does not contain
repetitions except for those associated with the leaves of τ (in particular, the stop condition γ
never holds in the inner nodes of τ ). Since τ is successful (Definition 4.6) leaves w are labelled by

proposition quantified in a ν-subformula, T, or [[x, y < a z]]ψ with Succ
x,y<az

E (C,η) = ∅. In the last
two cases, a path in r reachingw will cycle on indefinitely on the same formula. In the first case, a
path in r throughw could possibly include repetitions afterw , but these will not be noisy, thanks
to the presence of w . Hence, r has no noisy repetitions and thus, by Lemmata C.3 and 5.16, there
exists a run r ′ of AE,φ̌ , which is accepting. Therefore, L (AE,φ̌ ) � ∅. �

Theorem 5.18 (Model Checking via Non-emptiness). Let E be a strongly regular PES and let

φ be a closed formula of Lhp . Then L(AE,φ ) � ∅ iff E satisfies φ.

Proof. Corollary of Lemmata 5.15 and 5.17. �

C.3 Proofs for Section 6

Definition C.4 (Residual of the Unfolding). Let N = (P ,T , F ,M0) be a safe Petri net and let
U (N ) = (PU ,TU , FU ,MU

0 ) be its unfolding. Given a configuration C ∈ C (U (N )), we define the
residual ofU (N ) afterC asU (N )[C] = (PU

c ,T
U
c , F

U
c ,C

◦), where PU
c = {b ′ ∈ PU | ∃b ∈ C◦. b ≤ b ′},

TU
c = {e ∈ TU | ∃ b ∈ C◦. b ≤ e}, and FU

c is the restriction of FU to (PU
c ×TU

c ) ∪ (TU
c × PU

c ).

The residualU (N )[C] is isomorphic to the unfolding ofN with M(C ) as initial marking. More-
over, the PES underlyingU (N )[C] is isomorphic to the residual E (N )[C].

Proposition 6.4 (Pointed Markings vs Residuals). Let N = (P ,T , F ,M0) be a safe Petri

net. Given a set V and two V -pointed configurations 〈C1, ζ1〉, 〈C2, ζ2〉 in E (N ), if M(〈C1, ζ1〉) =
M(〈C2, ζ2〉), then 〈C1, ζ1〉 ≈r 〈C2, ζ2〉.

Proof. Let N = (P ,T , F ,M0) be a safe Petri net, consider its unfolding U (N ) =
(PU ,TU , FU ,MU

0 ) and two V -pointed configurations 〈C1, ζ1〉, 〈C2, ζ2〉 such that M(〈C1, ζ1〉) =
M(〈C2, ζ2〉).

First note that, since, in particular, M(C1) = M(C2), the residualsU (N )[C1] andU (N )[C2] are
isomorphic. Let ι : U (N )[C1]→U (N )[C2] be the corresponding net isomorphism. Its restriction
to the underlying PESs, abusing the notation, is still denoted by ι and it establishes an isomorphism
of the residuals E (N )[C1] and E (N )[C2]. We next prove that ι is also an isomorphism of residuals
of the pointed configurations 〈C1,д1〉 and 〈C2,д2〉, i.e., that for all x ∈ V and let e1 ∈ E (N )[C1], we
have д1 (x ) ≤ e1 iff д2 (x ) ≤ ι (e1).

Let x ∈ V and let e1 ∈ E (N )[C1]. If д1 (x ) ≤ e1, then there is b1 ∈ C1
◦ such that д1 (x ) ≤ b1 ≤ e1.

Thus, π1 (b1) ∈∈ r1 (x ) = r2 (x ). Therefore, there is b2 ∈ C2
◦ such that π1 (b2) = π1 (b1) and д2 (x ) ≤

b2.
Now, since the net is safe the isomorphism ι must map b1 to b2. Therefore, д2 (x ) ≤ b2 = ι (b1) ≤

ι (e1), where the last step is motivated by the fact that the isomorphism preserves causality. Hence,
д2 (x ) ≤ ι (e1), as desired.

Conversely, if д2 (x ) ≤ ι (e1), we can deduce that д1 (x ) ≤ e1 in an analogous way. �

Proposition 6.7 (Pointed Marking Eqivalence is a Bisimulation). Let N be a finite safe

Petri net and let φ be a closed formula of Lhp . The equivalence ≈m on the automaton AE (N ),φ is a

bisimulation and it is of finite index.
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Proof. Let q = (C,η,ψ ),q′ = (C ′,η′,ψ ′) ∈ Q be states of AE (N ),φ such that q ≈m q′. This
means that M(〈C1,η1 |fv (ψ )〉) = M(〈C2,η2 |fv (ψ )〉) = 〈M, r 〉.

Concerning condition (1) of Definition 5.4, the fact that for all i ∈ [0,h], q ∈ Fi iff q′ ∈ Fi imme-
diately follows from Lemma 5.8, recalling that ≈m refines future equivalence ≈f .

Let us focus on condition (2). Assume q −→ (q1, . . . ,qn ). To prove that q′ −→ (q′1, . . . ,q
′
n ) with

qi ≈m q′i for i ∈ [1,n], we distinguish various cases according to the shape ofψ .

• ψ = T orψ = F

Trivial, since the only transitions of q and q′ are q −→ (q) and q′ −→ (q′).
• ψ = ψ1 ∧ψ2

The only transition of q is q −→ (q1,q2) where qi = (C,η,ψi ), i ∈ {1, 2}. By construction also
q′ −→ (q′1,q

′
2) where q′i = (C ′,η′,ψi ), i ∈ {1, 2}. To conclude that qi ≈m q1i , for i ∈ {1, 2}, just

observe that fv (ψi ) ⊆ fv (ψ ) and thus such states are associated with the same pointed mark-
ing 〈M, r |fv (ψi )〉.

• ψ = ψ1 ∨ψ2,ψ = (αX (x).ψ ′) (y), orψ = X (y)
These cases are analogous to the previous one.

• ψ = 〈|x, y < a z |〉ψ1

in this case, if Succ
x,y<az

E (C,η) � ∅, then q −→ (q1) where q1 = (C1,η1,ψ1) with (C1,η1) ∈

Succ
x,y<az

E (C,η), which means that C
η (x),η (y)<e
−−−−−−−−−→a C1 and η1 = η[z �→ e].

Let t = π1 (e ) be the transition in N corresponding to the event e of U (N ). For each x in
x, since η(x ) < e , there must be a condition bx ∈ •e such that η(x ) < bx and thus, in the
associated pointed marking 〈M, r 〉, we have •t ∩ r (x ) � ∅. Dually, for each y in y, since
it is not the case that η(y) < e , for all conditions b ∈ •e , we have ¬(η(y) < b) and thus
•t ∩ r (y) = ∅.
Since, by hypothesis, q′ is associated with the same pointed marking 〈M, r 〉 as q, there
is an event e ′ such that π1 (e ′) = t and e ′ ∈ en(C ′). Moreover, for all variables w ∈ fv (ψ ),
we have η′(w ) < e ′ iff η′(w ) ∩ •e ′ � ∅ iff r (w ) ∩ •t � ∅. Therefore, by the considerations
above, for each x in x, η′(x ) < e ′ and for no y in y, η′(y) < e ′. This means that if we let

η′1 = η
′[z �→ e ′], then there exists (C ′1,η

′
1) ∈ Succ

x,y<az

E (C ′,η′) and thus q′ −→ (q′1) where
q′1 = (C ′1,η

′
1,ψ1). Finally, q1 ≈m q′1, i.e., they are associated with the same fv (ψ1)-pointed

marking 〈M ′, r ′〉 where M ′ = (M \ •t ) ∪ t•. Moreover, fv (ψ1) ⊆ fv (ψ ) ∪ {z} and for each
variable w ∈ fv (ψ1) \ {z}, we have r ′(w ) = (r (w ) ∩M ′) ∪ {s | s ∈ t• ∧ r (w ) ∩ •t � ∅} and
r ′(z) = t•.

If instead Succ
x,y<az

E (C,η) = ∅, then q −→ (q). From the fact that q and q′ are associated
with the same pointed marking, reasoning as in the previous case, we deduce that also

Succ
x,y<az

E (C ′,η′) = ∅ and thus q′ −→ (q′). Hence, we conclude
• ψ = [[x, y < a z]]ψ1

Analogous to the previous case.

The fact that ≈m is of finite index immediately follows from the observation that the number
of fv (ψ )-pointed markings ofN , whereψ ∈ sf (φ), is finite. In fact both sf (φ) and R (N ) are finite.
Moreover, for each fixed subformula ψ ∈ sf (φ) and marking M ∈ R (N ), the number of fv (ψ )-
pointed markings 〈M, r 〉, with r : fv (ψ ) → 2M is clearly finite. �
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