
Domains and Event Structures for Fusions
Paolo Baldan

University of Padova
Andrea Corradini, Fabio Gadducci

University of Pisa

Abstract—Stable event structures, and their duality with prime
algebraic domains (arising as partial orders of configurations),
are a landmark of concurrency theory, providing a clear char-
acterisation of causality in computations. They have been used
for defining a concurrent semantics of several formalisms, from
Petri nets to linear graph rewriting systems, which in turn lay
at the basis of many visual frameworks. Stability however is
restrictive for dealing with formalisms where a computational
step can merge parts of the state, like graph rewriting systems
with non-linear rules, which are needed to cover some relevant
applications (such as the graphical encoding of calculi with name
passing). We characterise, as a natural generalisation of prime
algebraic domains, a class of domains that is well-suited to model
the semantics of formalisms with fusions. We then identify a
corresponding class of event structures, that we call connected
event structures, via a duality result formalised as an equivalence
of categories. Connected event structures are exactly the class of
event structures the arise as the semantics of non-linear graph
rewriting systems. Interestingly, the category of general unstable
event structures coreflects into our category of domains, so that
our result provides a characterisation of the partial orders of
configurations of such event structures.

Index Terms—Event structures, fusions, graph rewriting, pro-
cess calculi.

I. INTRODUCTION

Since a long time stable/prime event structures and their
duality with prime algebraic domains have been considered
one of the landmarks of concurrency theory, providing a clear
characterisation of causality in software systems. They have
been used to provide a concurrent semantics to a wide range
of fundational formalisms, from Petri nets [1] to linear graph
rewriting systems [2]–[4] and process calculi [5]–[7]. They
are one of the standard tools for the formal treatment of (true,
i.e., non-interleaving) concurrency. See, e.g., [8] for a reasoned
survey on the use of such causal models. Recently, they
have been used in the study of concurrency in weak memory
models [9], [10] and for process mining and differencing [11]:

In order to endow a chosen formalism with an event struc-
ture semantics, a standard construction consists in viewing the
class of computations as a partial order. An elements of the
order is some sort of configuration, i.e., an execution trace
up to an equivalence that identifies traces differing only for
the order of independent steps (e.g., interchange law [12]
in term rewriting, shift equivalence [13] in graph rewriting,
permutation equivalence [14] in the lambda-calculus, . . .),
and the order relates two computations when the latter is
an extension of the former. Events are then identified with
configurations consisting of a maximal computation step (e.g.,

∅

{a} {c}
{a, b} {a, c}

{a, b, c}

Fig. 1: The domain of configurations of the process a.b | c.

a transition of a CCS process or a transition firing for a Petri
net) with all its causes. As a simple example, consider the CCS
process a.b | c. The corresponding partial order is depicted in
Fig. 1. The events correspond to configurations {a} (transition
a with empty set of causes), {a, b} (transition b caused by a)
and {c} (transition a with empty set of causes). The fact that
each event in a configuration has a uniquely determined set of
causes, a property that for event structures is called stability,
allows one to characterise such elements, order theoretically,
as the prime elements: if they are included in a join they must
be included in one of the joined elements. Each element of the
partial order of configurations can be reconstructed uniquely
as the join of the primes so that the partial order is prime
algebraic. This duality between event structures and domains
of configurations can be nicely formalised in terms of an
equivalence between the category of prime event structures
and that of prime algebraic domains [1], [15].

The set up described so far fails when moving to formalisms
where a computational step can merge parts of the state, as
it happens whenever we consider nominal calculi where as a
result of name passing the received name is identified with
a local one at the receiver [16], [17] or in the modelling of
bonding in biological/chemical processes [18]. Whenever we
think of the state of the system as some kind of graph with
the dynamics described by graph rewriting, this means that
rules are non-linear (precisely, in the so-called double pushout
approach [19], left-linear but possibly not right-linear). In
general terms, the point is that in the presence of fusions the
same event can be enabled by different minimal sets of events,
thus preventing the identification of a notion of causality.

As an example consider the graph rewriting system in Fig. 2.
Figure 2a reports the start graph Gs and the rewriting rules
pa, pb, and pc. Observe that rules py , where y can be either
a or b, delete edge ȳ and merge nodes c and ν. The possible
rewrites are reported in Fig. 2b. For instance, applying pa to
Gs we get the graph Gb. Now, pb can still be applied to Gb

ar
X

iv
:1

70
1.

02
39

4v
1

 [
cs

.L
O

]
 9

 J
an

 2
01

7

c

b̄
ā

in

ν

ν̄

c

ȳ

ν

ν̄

c, ν

ν̄
py

c, ν

in
ν̄

c, ν

ν̄
pc

(a) The start graph Gs and the rules py (y ∈ {a, b}) and pc

Gs

c, v

ā
ν̄

inGa

c, v

b̄
ν̄

in

Gb

c, ν

ν̄
in

Gab c, ν

ā
ν̄

Gac

c, ν

b̄
ν̄

Gbc

c, ν

ν̄

Gc

pa

pb
pa

pc

pb

pc

pc

pa

pb

(b) The possible rewrites

∅
{a} {b}

{a, b}
{a, c} {b, c}

{a, b, c}

(c) The domain of configurations

Fig. 2: A graph rewriting system with fusions.

matching its left-hand side non-injectively, thus getting graph
Gab. Similarly, we can apply first pb and then Ga, obtaining
again Gab. Observe that at least one between pa and pb must be
applied to enable pc, since the latter rule requires nodes c and
ν to be merged. The graph rewriting system is a (simplified)
representation of the π-calculus process (νc)(ā(c) | b̄(c) | c()).
Rules py , for y ∈ {a, b}, represent the execution of ȳ(c) that
outputs on channel y the restricted name c. The first rule that is
executed extrudes name c, while the second is just a standard
output. Only after the extrusion the name c is available outside
the scope and the input prefix c() can be consumed. Observe
that in a situation where all the three rules pa, pb, and pc are
applied, since pa and pb are independent, it is not possible
to define a proper notion of causality. We only know that at
least one between pa and pb must be applied before pc. The
corresponding domain of configurations, reported in Fig. 2c,
is naturally derived from the possible rewrites in Fig. 2b.

The impossibility of modelling these situations with stable
event structures is well-known (see, e.g., [15] for a general
discussion, [2] for graph rewriting systems or [16] for the π-
calculus). One has to drop the stability requirement and replace
causality by an enabling relation `. More precisely, in the
specific case we would have ∅ ` a, ∅ ` b, {a} ` c, {b} ` c.

The questions that we try to answer is: what can be
retained of the satisfactory duality between events structures
and domains, when dealing with formalisms with fusions?
Which are the properties of the domain of computations that
arise in this setting? What are the event structure counterparts?

The domain of configurations of the example suggests that

in this context an event is still a computation that cannot be
decomposed as the join of other computations hence, in order
theoretical terms, it is an irreducible. However, due to unsta-
bility, irreducibles are not primes: two different irreducibles
can be different minimal histories of the same event, in a way
that an irreducible can be included in a computation that is
the join of two computations without being included in any
of the two. For instance, in the example above, {a, c} is an
irreducible, corresponding to the execution of c enabled by
a, and it is included in {a} t {b, c} = {a, b, c}, although
neither {a, c} ⊆ {a} nor {a, c} ⊆ {b, c}. Uniqueness of
decomposition of an element in terms of irreducibles also fails,
e.g., {a, b, c} = {a} t {b} t {a, c} = {a} t {b} t {b, c}: the
irreducibles {a, c} and {b, c} can be used interchangeably.

Building on the previous observation, we introduce an
equivalence on irreducibles identifying those that can be
used interchangeably in the decompositions of an element
(intuitively, different minimal histories of the same event).
Based on this we give a weaker notion of primality (i.e., up
to interchangeability) such that the class of domains suited
for modelling the semantics of formalisms with fusions are
defined as the class of weak prime algebraic domains.

Given a weak prime algebraic domain, a corresponding
event structure can be obtained by taking as events the set
of irreducibles, quotiented under the (transitive closure of
the) interchangeability relation. The resulting class of event
structures is a (mild) restriction of the general unstable event
structures in [15] that we call connected event structures.
Categorically, we get an equivalence between the category
of weak prime algebraic domains and the one of connected
event structures, generalising the equivalence between prime
algebraic domains and prime event structures.

We also show that, in the same way as prime algebraic
domains/prime event structures are exactly what is needed for
Petri nets/linear graph rewriting systems, weak prime alge-
braic domains/connected event structures are exactly what is
needed for non-linear graph rewriting systems: each rewriting
system maps to a connected event structure and viceversa each
connected event structure arises as the semantics of some
rewriting system. This supports the adequateness of weak
prime algebraic domains and connected event structure as
semantics structures for formalims with fusions.

Interestingly, we can also show that the category of general
unstable event structures [15] coreflects into our category of
weak prime algebraic domains. Therefore our notion of weak
prime algebraic domain can be seen as a novel characterisation
of the partial order of configurations of such event structures
that is alternative to those based on intervals in [20], [21].
Our characterisation is a natural generalisation of the one for
prime event structures, with irreducibles (instead of primes)
having a tight connection with events. The correspondence
is established at a categorical level, as a coreflection of
categories, something that, to the best of our knowledge, had
not been done before in the literature.

The rest of the paper is structured as follows. In Section II
we recall the basics of (prime) event structures and their

correspondence with prime algebraic domains. In Section III
we introduce weak prime algebraic domains, connected event
structures and establish a duality result. In Section IV we
show the intimate connection between weak prime algebraic
domains or equivalently connected event structures, and non-
linear graph rewriting systems. Finally, in Section V we wrap
up the main contributions of the paper and we sketch further
advances and possible connections with related works.

II. BACKGROUND: DOMAINS AND EVENT STRUCTURES

This section recalls the notion of event structures, as intro-
duced in [15], and their duality with partial orders.

A. Event structures

In the paper, we focus on event structures with binary
conflict. This choice plays a role only in the relation with graph
rewriting (Section IV), while the duality results in Section III
can be easily rephrased for event strutures with non-binary
conflicts expressed by means of a consistency predicate (see
Appendix A). Given a set X we denote by 2X and 2Xfin the
powerset and the set of finite subsets of X , respectively. For
m,n ∈ N, we denote by [m,n] the set {m,m+ 1, . . . , n}.

Definition 1 (event structure) An event structure (es for
short) is a tuple 〈E,`,#〉 such that
• E is a set of events;
• `⊆ 2Efin × E is the enabling relation satisfying X ` e

and X ⊆ Y implies Y ` e;
• # ⊆ E × E is the conflict relation.

An X ⊆ E is consistent if there is no e, e′ ∈ X with (e#e′).

An es 〈E,`,#〉 is often denoted simply by E. Computa-
tions are captured by the notion of configuration.

Definition 2 (configuration, live es) A configuration of an
es E is a finite consistent C ⊆ E which is secured, i.e.,
C can be totally ordered as 〈e1, . . . , en〉 in a way that
{e1, . . . , ek−1} ` ek for all k ∈ [1, n]. The set of config-
urations of an es E is denoted by Conf (E). An es is live
if conflict is saturated, i.e., for all e, e′ ∈ E, if there is no
C ∈ Conf (E) such that {e, e′} ⊆ C then e#e′ and moreover
¬(e#e) for all e ∈ E.

Observe that when a configuration C is secured via a total
ordering 〈e1, . . . , en〉, in particular, ∅ ` e1. In this setting, two
events are concurrent when they are consistent and enabled by
the same configuration.

Remark 1 In the rest of the paper, we restrict to live es, where
conflict is saturated (this corresponds to inheritance of conflict
in prime event structures) and each event is executable. Hence
the qualification live is omitted.

Since the enabling predicate is over finite sets of events, we
can consider minimal sets of events enabling a given one.

Definition 3 (minimal enabling) Given an es 〈E,`,#〉 de-
fine C `0 e when C ∈ Conf (E), C ` e and for any other
configuration C ′ ⊆ C, if C ′ ` e then C ′ = C.

The classes of stable and prime es play an important role
in the paper.

Definition 4 (stable and prime es) An es 〈E,`,#〉 is sta-
ble if X ` e, Y ` e, and X ∪ Y ∪ {e} consistent imply
X ∩ Y ` e. It is prime if X ` e and Y ` e imply X ∩ Y ` e.

For stable es, given a configuration C and an event e ∈ C,
there is a unique minimal configuration C ′ ⊆ C such that
C ′ `0 e. The set C ′ can be seen as the set of causes of
the event e in the configuration C. This gives a well-defined
notion of causality that is local to each configuration. In a
prime es, for any event e there is a unique minimal enabling
C `0 e, thus providing a global notion of causality. In general,
in possibly unstable es, due to the presence of consistent or-
enablings, there might be distinct minimal enablings in the
same configuration.

Example 1 A simple example of unstable es is the following:
the set of events is {a, b, c}, the conflict relation # is the
empty one and the minimal enablings are ∅ `0 a, ∅ `0 b,
{a} `0 c, and {b} `0 c. Thus, event c has two minimal
enablings and these are consistent, hence {a, b} ` c. This is the
event structure discussed in the introduction, whose domain of
configurations is reported in Fig. 2c.

The class of es can be turned into a category.

Definition 5 (category of es) A morphism of es f : E1 →
E2 is a partial function f : E1 → E2 such that for all e1, e′1 ∈
E1 with f(e1), f(e′1) defined
• if f(e1)#f(e′1) then e1#e′1
• if f(e1) = f(e′1) and e1 6= e′1 then e1#e′1;
• if X1 `1 e1, for X1 ⊆ E, then f(X1) `2 f(e1).

We denote by ES the category of es and their morphisms and
by sES and pES the full subcategories of stable and prime es.

B. Domains

A preordered or partially ordered set 〈D,v〉 is often denoted
simply as D, omitting the (pre)order relation. Given an ele-
ment x ∈ D, we write ↓x to denote the set {y ∈ D | y v x}.
We denote by� the immediate predecessor relation, i.e., x � y
when x v y and for all z, if x v z v y then z ∈ {x, y}. A
subset X ⊆ D is consistent if it has an upper bound d ∈ D
(i.e., x v d for all x ∈ X). It is pairwise consistent if each
two elements subset Y of X is consistent. A subset X ⊆ D
is directed if X 6= ∅ and each pair of elements in X has an
upper bound in X . It is an ideal if it is directed and downward
closed. Given D, its ideal completion, denoted Idl(D), is the
set of ideals of D, ordered by subset inclusion. The least upper
bound and the greatest lower bound of a subset X ⊆ D (if
they exist) are denoted by

⊔
X and

d
X , respectively.

Definition 6 (domains) A partial order D is coherent if for
any pairwise consistent X ⊆ D the least upper bound

⊔
X

exists. An element d ∈ D is compact if for any directed
X ⊆ D, d v

⊔
X implies d v x for some x ∈ X .

The set of compact elements of D is denoted by K(D). A
coherent partial order D is algebraic for any x ∈ D we have

x =
⊔

(↓x∩K(D)). We say that D is finitary if for any
element a ∈ K(D) the set ↓a is finite. We refer to algebraic
finitary coherent partially ordered sets as domains.

For a domain D we can think of its elements as “pieces of
information” expressing the states of evolution of a process.
Compact elements represent states that are reached after a
finite number of steps. Thus algebraicity essentially says that
any infinite computation can be approximated with arbitrary
precision by the finite ones. More formally, when D is
algebraic it is determined by K(D), i.e., D ' Idl(K(D)).

For an es, the configurations ordered by subset inclusion
form a domain. When the es is stable, if an event with its
minimal history is in the join of different configurations, then
it belongs, with the same history, to one of such configurations.
In order-theoretic terms, minimal histories are prime elements,
representing the building blocks of computations.

Definition 7 (primes and prime algebraicity) Let D be a
domain. A prime is an element p ∈ K(D) such that, for any
pairwise consistent X ⊆ K(D), if p v

⊔
X then p v x for

some x ∈ X . The set of prime elements of D is denoted by
pr(D). The domain D is prime algebraic (or simply prime)
if for all x ∈ D we have x =

⊔
(↓x∩ pr(D)).

Prime domains are the domain theoretical counterpart of
stable and prime es. For a stable es 〈E,#,`〉, the ideal com-
pletion of 〈Conf (E),⊆〉 is a prime domain, denoted DS(E).
Viceversa, given a prime domain D, the triple 〈pr(D),#,`〉,
where p#p′ if {p, p′} is not consistent and X ` p when
(↓p∩ pr(D)) \ {p} ⊆ X , is a prime es, denoted ES(D).

This correspondence can be elegantly formulated at cate-
gorical level. We recall the notion of domain morphism [15].

Definition 8 (category of prime domains) Let D1, D2 be
prime domains. A morphism f : D1 → D2 is a total function
such that

1) d1 � d′1 implies f(d1) � f(d′1);
2) for X1 ⊆ D1 consistent, f(

⊔
X1) =

⊔
f(X1);

3) for X1 ⊆ D1 consistent, f(
d
X1) =

d
f(X1);

We denote by pDom the category of prime domains and their
morphisms.

Theorem 1 (duality) There are functors DS : sES → pDom
and ES : pDom→ sES establishing a coreflection. It restricts
to an equivalence of categories between pDom and pES.

III. WEAK PRIME DOMAINS AND CONNECTED ES

In this section we characterise a class of domains, and the
corresponding brand of es, that are suited for expressing the
semantics of computational formalisms with fusions.

A. Weak prime algebraic domains

We show that domains arising in the presence of fusions
are characterised by resorting to a weakened notion of prime
element. We start recalling the notion of irreducible element.

Definition 9 (irreducibles) Let D a be a domain. An irre-
ducible of D is an element i ∈ K(D) such that, for any

pairwise consistent X ⊆ K(D), if i =
⊔
X then i ∈ X .

The set of irreducibles of D is denoted by ir(D) and, for
d ∈ D, we define ir(d) = ↓d∩ ir(D).

Irreducibles in domains have a simple characterisation.

Lemma 1 (unique predecessor for irreducibles) Let D be
a domain and i ∈ D. Then i ∈ ir(D) iff it has a unique
immediate predecessor, denoted p(i).

Proof: Assume that i ∈ D has a unique immediate
predecessor d ≺ i, and let X ⊆ K(D) be consistent and such
that i =

⊔
X . Hence for any x ∈ X we have x v i. Assume

by contradiction that i 6∈ X . This means that all elements
x ∈ X must be below the immediate predecessor x v d, and
therefore i =

⊔
X v d ≺ i, which is a contradiction. Hence

it must be i ∈ X , which means that i is irreducible.
Vice versa, let i be irreducible and let d1, d2 ≺ i be

immediate predecessors. Since D is a domain and {d1, d2} is
consistent, we can take d = d1td2 and we know d1 v d v i.
Since i is irreducible it cannot be d = i, therefore d = d1
and thus d1 = d2. This means that i has a unique immediate
predecessor.

We next observe that any domain is actually irreducible
algebraic, namely it can be generated by the irreducibles.

Proposition 1 (domains are irreducible algebraic) Let D
be a domain. Then for any d ∈ D it holds d =

⊔
ir(d).

Proof: We first prove that for any compact element
d ∈ K(D) it holds that d =

⊔
(↓d∩ ir(D)). The thesis then

immediately follows from algebraicity. Since D is a domain,
↓d is finite, hence we can proceed by induction on | ↓d |.
When | ↓d | = 1, we have that d = ⊥, hence ↓d∩ ir(D) = ∅
and indeed ⊥ =

⊔
∅. When | ↓d | = k > 1 consider the

immediate predecessors of d and denote them d1, . . . , dn ≺ d.
Since D is a domain and {d1, . . . , dn} is consistent, there
exists

⊔
{d1, . . . , dn} = d′ and di v d′ v d. There are two

cases

• d′ = di, for all i ∈ [1, n], i.e., d has a unique immediate
predecessor, hence it is an irreducible and thus clearly
d =

⊔
(↓d∩ ir(D)) or

• d = d′ =
⊔
{d1, . . . , dn}. Since, in turn, by inductive

hypothesis di =
⊔

(↓di ∩ ir(D)) and ↓d∩ ir(D) =⋃n
i=1(↓di ∩ ir(D)), we immediately get the thesis.

Now note that any prime is an irreducible. If D is a prime
domain then also the converse holds. i.e., the irreducibles
coincide with the primes.

Proposition 2 (irreducibles vs. primes) Let D be a domain.
Then D is a prime domain iff pr(D) = ir(D).

Proof: Let D be a prime domains. We observed that
pr(D) ⊆ ir(D) holds in general domains. For the con-
verse inclusion, let i ∈ ir(D). By prime algebraicity
i =

⊔
↓ i∩ pr(D). Since i is irreducible, there exists p ∈

↓ i∩ pr(D) such that i = p, hence i is a prime.

Vice versa, if D is a domain, by Proposition 1 we know
that D is irreducible algebraic. Hence, if pr(D) = ir(D), we
immediately conclude that D is prime.

Quite intuitively, in the domain of configurations of an es
the irreducibles are minimal histories of events. For instance,
in the domain depicted in Fig. 2c the irreducibles are {a},
{b}, {a, c}, and {b, c}. For stable es, the domain is prime and
thus, as observed above, irreducibles coincide with primes.
This fails in unstable es, as we can see in our running example:
while {a} and {b} are primes, the two minimal histories of c,
namely {a, c} and {b, c}, are not. In fact, {a, c} ⊆ {a}t{b, c},
but neither {a, c} ⊆ {a} nor {a, c} ⊆ {b, c}.

The key observation is that in general an event corresponds
to a class of irreducibles, like {a, c} and {b, c} in our
example. Additionally, two irreducibles corresponding to the
same event can be used, to a certain extent, interchangeably
for building the same configuration. For instance, {a, b, c} =
{a, b} ∪ {a, c} = {a, b} ∪ {b, c}. We next formalise this
intuition, i.e., we interpret irreducibles in a domain as minimal
histories of some event and we identify classes of irreducibles
corresponding to the same event.

We start by observing that in a prime domain any element
admits a unique decomposition in terms of irreducibles.

Lemma 2 (unique decomposition) Let D be a prime do-
main. If X,X ′ ⊆ ir(D) are downward closed sets of irre-
ducibles such that

⊔
X =

⊔
X ′ then X = X ′.

Proof: Let X,X ′ ⊆ ir(D) be downward closed sets of
irreducibles such that

⊔
X =

⊔
X ′. Take any i′ ∈ X ′. Then

i′ v x =
⊔
X . Since the domain is prime algebraic, and thus

i′ is prime, there must exist i ∈ X such that i′ v i and thus
i′ ∈ X . Therefore X ′ ⊆ X . By symmetry also the converse
inclusion holds, whence equality.

The result above no longer holds in domains arising in
the presence of fusions. For instance, in the domain in
Fig. 2c, X = {{a}, {a, c}, {b}}, X ′ = {{a}, {b}, {b, c}}
and X ′′ = {{a}, {b}, {b, c}, {a, c}} are all decompositions
for {a, b, c}. The idea is to identify irreducibles that can be
used interchangeably in a decomposition.

Definition 10 (interchangeability) Let D be a domain and
i, i′ ∈ ir(D). We write i↔ i′ if for all X ⊆ ir(D) such that
X ∪ {i} and X ∪ {i′} are downward closed and consistent
we have

⊔
(X ∪ {i}) =

⊔
(X ∪ {i′}) and for some such X it

holds
⊔
X 6=

⊔
(X ∪ {i}).

In words, i↔ i′ means that i and i′ produce the same effect
when added to a decomposition that already includes their
predecessors and there is at least one situation in which the
addition of i and i′ produces some effect. Hence, intuitively,
i and i′ correspond to the execution of the same event.

Clearly, interchangeable irreducibles need to be consistent.

Lemma 3 Let D be a domain and i, i′ ∈ ir(D) such that
i↔ i′. Then i and i′ are consistent. And if i v i′ then i = i′.

Proof: The fist part is obvious, since, by definition, there
must exist X ⊆ ir(D) such that X ∪ {i} and X ∪ {i′}

downward closed, and
⊔

(X ∪{i}) =
⊔

(X ∪{i′}). Therefore
i, i′ v

⊔
(X∪{i}) =

⊔
(X∪{i′}) and thus i, i′ are consistent.

For the second part, let i v i′. If i 6= i′ and we let
X = ir(p(i′)), it turns out that X ∪ {i} = X and X ∪ {i′}
are consistent and downward closed. Moreover

⊔
X ∪ {i} =⊔

XX = p(i′) 6=
⊔
X ∪ {i′} = i′, contradicting i↔ i′.

We now give some equivalent characterisations of inter-
changeability.

Lemma 4 (characterising ↔) Let D be a domain and i, i′ ∈
ir(D). Then the following are equivalent

1) i↔ i′;
2) i, i′ consistent and for all d ∈ K(D) such that

p(i), p(i′) v d, d t i = d t i′ and for some such d it
holds d 6= d t i;

3) i, i′ consistent and i t p(i′) = p(i) t i′ 6= p(i) t p(i′).

Proof:
(1 → 2) Assume that i ↔ i′ and let d ∈ K(D) such that

p(i), p(i′) v d. If we let X = ir(d) we have that ir(i) \{i} ⊆
X and similarly ir(i′) \{i′} ⊆ X . Therefore X ∪ {i} and
X ∪ {i′} are downward closed and consistent. Hence d t i =⊔
X t i =

⊔
(X ∪ {i}) =

⊔
(X ∪ {i′}) =

⊔
X t i′ = d t i′.

Moreover, if we consider the set X ⊆ ir(D) required by
the definition of interchangeability, such that

⊔
X 6=

⊔
(X ∪

{i}) =
⊔

(X ∪ {i′}) and define d =
⊔
X , we obtain d 6=⊔

(X ∪ {i}) =
⊔
X t i = d t i, as desired.

(2 → 3) Assume (2). Let p = p(i) t p(i′). Clearly,
p(i), p(i′) v p. Therefore i t p(i′) = i t p(i) t p(i′) =
i t p = p t i′ = p(i) t p(i′) t i′ = p(i) t i′.

Moreover, p(i) t p(i′) 6= p(i) t i′, otherwise for any d ∈
K(D) such that p(i), p(i′) v d, we would have d v d t i =
d t p(i′) t i = d t p(i) t p(i′), contradicting the second part
of condition (2).

(3 → 1) Assume (3). Let X ⊆ ir(D) be such that X ∪
{i} and X ∪ {i′} are downward closed and consistent sets
of irreducibles. This implies that ir(p(i)) ⊆ X and similarly
ir(p(i′)) ⊆ X . Hence, if we let P = (↓p(i)∪↓p(i′))∩ ir(D)

P ⊆ X and
⊔
P = p(i) t p(i′)

Therefore ⊔
(X ∪ {i}) =
= (

⊔
X \ P) t

⊔
P t i =

= (
⊔
X \ P) t p(i) t p(i′) t i =

= (
⊔
X \ P) t i t p(i′) =

= (
⊔
X \ P) t p(i) t i′ =

= (
⊔
X \ P) t p(i) t p(i′) t i′ =

= (
⊔
X \ P) t

⊔
P t i′ =

=
⊔

(X ∪ {i′})

Moreover, if we take X = ir(p(i))∪ ir(p(i′)) then X ∪ {i}
and X ∪ {i′} are downward closed and consistent. Moreover,⊔
X = p(i)t p(i′) 6= p(i)t i′ = t(X ∪ {i′}), as desired.
The interchangeability relation is reflexive and symmetric,

but not transitive: in the domain of Fig. 3, i↔ i′ and i′ ↔ i′′

⊥

p(i1) p(i2) p(i3)

i1 •
i2 •

i3

• •
>

Fig. 3: Interchangeability need not be transitive.

but not i ↔ i′′. The same holds in the domain obtained by
removing the top element. We see later that on weak prime
algebraic domains ↔ is transitive on consistent irreducibles
(see Lemma 10).

We now introduce weak primes: they weaken the property of
prime elements, requiring that it holds up to interchangeability.

Definition 11 (weak prime) Let D be a domain. A weak
prime of D is an element i ∈ ir(D) such that for any
consistent X ⊆ D, if i v

⊔
X then there exist i′ ∈ ir(D) with

i ↔ i′ and d ∈ X such that i′ v d. We denote by wpr(D)
the set of weak primes of D.

Clearly, any prime is a weak prime since interchangeability
is reflexive. Moreover, in prime domains interchangeability is
the identity and also the converse holds.

Lemma 5 (weak primes in prime domains) Let D be a
prime domain. Then ↔ is the identity and wpr(D) = pr(D).

Proof: Let i, i′ ∈ ir(D) be such that i↔ i′.
If i and i′ are comparable, i.e., i v i′ or i′ v i, by Lemma 3,

we deduce i = i′ and we are done.
Otherwise, let X = (ir(i) \{i}) ∪ (ir(i′) \{i′}). Note that

X ∪{i} and X ∪{i′} are consistent, since by Lemma 3, i and
i′ are so. Moreover X∪{i} and X∪{i′} are downward closed,
and thus, since i↔ i′, we deduce

⊔
(X∪{i}) =

⊔
(X∪{i′}).

Since D is prime, by Lemma 2, this implies that X ∪ {i} =
X ∪ {i′}. Since i and i′ are uncomparable, i, i′ 6∈ X and thus
we conclude i = i′.

We argue that the domain of configurations arising in the
presence of fusions can be characterised domain-theoretically
by asking that all irreducibles are weak primes, i.e., that the
domain is algebraic with respect to weak primes.

Definition 12 (weak prime algebraic domains) Let D be a
domain. A domain D is a weak prime algebraic domain (or
simply weak prime domain) if for any d ∈ D it holds d =⊔

(↓d∩wpr(D)).

In the same way as prime domains are domains where all
irreducibles are primes (see Proposition 2), we can provide a
characterisation of weak prime domains in terms of coinci-
dence between irreducibles and weak primes.

Proposition 3 (weak prime domains, again) Let D be a
domain. It is a weak prime domain iff all irreducibles are
weak primes.

A domain is often built as the ideal completion of its
compact elements. We next provide a characterisation of
domains and weak prime domains based on the generators.

Lemma 6 (weak prime domains from generators)
Let (P,v) be a finitary partial order such that for all
d, d′, d′′ ∈ P , if {d, d′, d′′} is pairwise consistent then d t d′
exists and is consistent with d′′. Then Idl(P) is a domain
with K(Idl(P)) = {↓d | d ∈ P} ' P .

Additionally, let ↔ be transitive on consistent irreducibles
and for all i ∈ ir(P), d, d′ ∈ P consistent, if i v d t d′ then
there is i′ ∈ ir(P), i ↔ i′ such that i′ v d or i′ v d′. Then
Idl(P) is a weak prime domain.

Proof: Let (P,v) be a finitary partial order such that for
all d, d′, d′ ∈ P ′, if {d, d′, d′′} is pairwise consistent then dtd′
exists and is consistent with d′′.

The fact that Idl(P) is a complete partial order with
K(Idl(P)) = {↓d | d ∈ P} ' P is a standard result.
Moreover, let X ⊆ Idl(P) pairwise consistent. Consider
A =

⋃
{I | I ∈ X}. Observe that for any finite Y ⊆ A there

exists
⊔
Y in P . In fact, let Y = {y1, . . . , yn}. This means

that there are I1, . . . , In such that yi ∈ Ii for each i ∈ [1, n].
Since X is pairwise consistent in Idl(P), we deduce that Y is
pairwise consistent in P . Since y1, y2 are consistent, and both
are consistent with y3, . . . , yn, by (2) there exists y1 t y2 and
it is consistent with y3, . . . , yn, i.e., {y1 t y2, y3, . . . , yn} is
again pairwise consistent. Iterating the reasoning we get the
existence of y1 t y2 t . . . t yn =

⊔
Y , as desired. Now, if

we define I ′ = {
⊔
Y | Y ⊆fin A}, then I ′ is an ideal and

I ′ =
⊔
X .

For the second part, we need to show that under the
hypotheses, if I ∈ ir(Idl(P)) and X ⊆ Idl(P) pairwise
consistent and I ⊆

⊔
X then there exists I ′ ↔ I and

A ∈ X such that I ′ ⊆ A. It is immediate to see that
ir(Idl(P)) = {↓ i | i ∈ ir(P)}. Thus let I = ir(i) for
some i ∈ ir(P). The fact that I ⊆

⊔
X =

⊔
{↓d |

d ∈
⋃
X} means that i v

⊔
{d1, . . . , dn} for some finite

subset {d1, . . . , dn} ⊆
⋃
X . Since i v d1 t

⊔
{d2, . . . , dn},

by the hypothesis there is i1 ↔ i such that i1 v d1 or
i1 v

⊔
{d2, . . . , dn} = d2 t

⊔
{d3, . . . , dn}. In the second

case, again by the hypothesis, there is i2 ↔ i1, hence by
transitivity i2 ↔ i such that i2 v d2 or i1 v

⊔
{d3, . . . , dn}.

Thus we finally get the existence of some i′ ↔ i and j ∈ [1, n]
such that i′ v dj . Recalling that dj ∈

⋃
X , there is I ∈ X

such that dj ∈ I , hence ↓ ij ⊆ ↓dj ⊆ I . Noting that i ↔ ij
implies that also in Idl(P) the irreducibles ↓ i and ↓ ij are
interchangeable, i.e., ↓ i↔ ↓ ij , we conclude.

We finally introduce a category of weak prime domains by
defining a notion of morphism.

Definition 13 (category of weak prime domains) A weak
prime domain morphism f : D1 → D2 is a total function
such that

1) d1 � d′1 implies f(d1) � f(d′1);
2) for X1 ⊆ D1 consistent, f(

⊔
X1) =

⊔
f(X1);

3) for d1, d′1 ∈ D1 consistent, if d1 u d′1 � d1 then f(d1 u
d′1) = f(d1) u f(d′1);

We denote by wDom the category of weak prime domains and
their morphisms.

Compared with the notion of morphism for prime domains
in Definition 8, taken from [15], note that we still require the
preservation of � and t of consistent sets (conditions (1) and
(2)). However, the third condition, i.e., preservation of u, is
weakened to preservation in some cases. General preservation
of meets is indeed not expected in the presence of fusions.
Consider e.g. the running example in Example 1 and another
es E′ = {c} with ∅ ` c and the morphism f : E → E′

that forgets a and b. Then f({a, c})uf({b, c}) = {c}u{c} =
{c} 6= f({a, c}u{b, c}) = f(∅) = ∅. Intuitively, the condition
d1ud′1 ≺ d1 means that d′1 includes the computation modelled
by d1 apart from a final step, hence d1 u d′1 coincides with
d1 when such final step is removed. Since domain morphisms
preserve immediate precedence (i.e., single steps), also f(d1)
differs from f(d′1) for the execution of a final step and the
meet f(d1) u f(d′1) is f(d1) without such step, and thus it
coincides with f(d1 u d′1).

In general we only have

f(
d
X1) v

d
f(X1)

In fact, for all x1 ∈ X1, we have
d
X1 v x1, hence

f(
d
X1) v f(x1) and thus f(

d
X1) v

d
f(X1). Still,

when restricted to prime domains, our notion of morphism
can be shown to boil down to the original one, i.e., the full
subcategory of wDom having prime domains as objects is
pDom.

Lemma 7 (meet preservation for prime domains) Let D1,
D2 be prime domains and f : D1 → D2 a weak prime domain
morphism. Then f(

d
X1) =

d
f(X1).

Proof: We first show that for d1, d′1 ∈ K(D1), it holds
that f(d1 u d′1) = f(d1)u f(d′1). We proceed by induction on
k = | ↓d1 ∩ pr(D) |.

When k = 0 we have d1 = ⊥. Since f preserves joins, we
have that f(⊥) = f(

⊔
∅) =

⊔
f(∅) =

⊔
∅ = ⊥. Hence

f(d1 u d′1) = f(⊥ u d′1) = f(⊥) = ⊥ = ⊥ u f(d′1) =
f(⊥) u f(d′1) = f(d1) u f(d′1).

Suppose now k > 0. We distinguish two subcases. If d1
is not prime then, recalling that in a prime domain, primes
and irreducibles coincide, d1 is not irreducible and thus d1 =
e1 t f1 with d1 6= e1, f1 6= ⊥. It is immediate to see that
| ↓e1 ∩ pr(D) | < k and | ↓f1 ∩ pr(D) | < k. Moreover, since
any prime algebraic domain is distributive we have d1 u d′1 =
(e1 t f1) u d′1 = (e1 u d′1) t (f1 u d′1). Summing up

f(d1 u d′1) =

f((e1 u d′1) t (f1 u d′1)) =

[Preservation of t]
f(e1 u d′1) t f(f1 u d′1) =

[Inductive hypothesis]
(f(e1) u f(d′1)) t (f(f1) u f(d′1)) =

[Distributivity]
(f(e1) t f(f1)) u f(d′1) =

[Preservation of t]
f(e1 t f1) u f(d′1) =

f(d1) u f(d′1)

If instead d1 is prime then note that if d1 v d′1 the thesis
is immediate: by monotonicity f(d1) v f(d′1). Thus f(d1 u
d′1) = f(d1) = f(d1) u f(d′1) as desired. Therefore, let us
assume that d1 6v d′1. In this case d1 u d′1 = p(d1)u d′1, since
the set of lower bounds of {d1, d′1} and of {p(d1), d′1} is the
same. Observe that

p(d1) = d1 u (p(d1) t d′1) (1)

In fact, by distributivity, d1 u (p(d1) t d′1) = (d1 u p(d1)) t
(d1 u d′1) = p(d1) t (p(d1) u d′1) = p(d1)

Therefore
f(d1 u d′1) =

f(p(d1) u d′1) =

[Inductive hypothesis]
f(p(d1)) u f(d′1) =

[Using (1)]
f(d1 u (p(d1) t d′1)) u f(d′1) =

[By Definition 13(3)]
f(d1) u f(p(d1) t d′1)) u f(d′1) =

[Preservation of t]
f(d1) u f(d′1)

as desired. This extends to the meet of finite sets of compacts,
by associativity of u, and to infinite sets of compacts by
observing that, given an infinite set X , by finitariness we can
identify a finite subset F ⊆ X such that

d
X =

d
F .

Proposition 4 The category of prime domains pDom is the
full subcategory of wDom having prime domains as objects.

B. Connected es

We show that, given an es, its set of configurations, ordered
by subset inclusion, is a weak prime domain. More precisely,
since configurations are finite sets, they represent the compact
elements of the domain, which is thus obtained by ideal
completion. Moreover, the correspondence can be lifted to
a functor. We also identify a subclass of es that we call
connected es and that are the exact counterpart of weak prime
domains (in the same way as prime es correspond to prime
algebraic domains).

Definition 14 (poset of configurations of an es) Let E
be an es. We denote by D(E) the ideal completion

Idl(〈Conf (E),⊆〉). Given an es morphism f : E1 → E2,
its image D(f) : D(E1) → D(E2) is defined as
D(f)(C1) = {f(e1) : e1 ∈ C1}.

We first need some technical facts, collected in the following
lemma. Recall that in the setting of unstable es we can have
distinct consistent minimal enablings for an event. When C `0
e, C ′ `0 e, and C ∪C ′ ∪{e} is consistent, we write C e

_ C ′.
We denote by e

_
∗

the transitive closure of the relation e
_.

Lemma 8 Let 〈E,`, Con〉 be an es. Then
1) D(E) is a domain, K(D(E)) = Conf (E), join is union

and C � C ′ iff C = C ′ ∪ {e} for some e ∈ E;
2) C ∈ Conf (E) is irreducible iff C = C ′ ∪{e} and C ′ `0

e; it is denoted as I = 〈C ′, e〉;
3) for C ∈ Conf (E), we have ir(C) = {〈C ′, e′〉 | e′ ∈

C ∧ C ′ ⊆ C ∧ C ′ `0 e′};
4) for 〈C1, e1〉, 〈C2, e2〉 ∈ ir(D(E)), we have 〈C1, e1〉 ↔
〈C2, e2〉 iff e = e1 = e2 and C1

e
_ C2.

Proof:
1) Observe that the poset of configurations 〈Conf (E),v
〉 is finitary since configurations are finite and given
C,C ′, C ′′ ∈ Conf (E), pairwise consistent, the join
C t C ′ is the union C t C ′, which is consistent with
C ′′. The fact that D(E) is a domain thus follows by
Lemma 6.
Concerning immediate precedence, let C,C ′ ∈ Conf (E).
If C ′ = C ∪ {e} then clearly C ≺ C ′, since the
order is subset inclusion. Vice versa, if C ≺ C ′ by
definition C ⊆ C ′ and it must be |C ′ \ C| = 1. In
fact, let C = {e1, . . . , em} with 〈e1, . . . , em〉 a secured
execution and let C ′ \ C = {em+1, . . . , en}. Since
enabling is monotone, there is a secured execution of C ′

of the kind 〈e1, . . . , em, em+1, . . . , en〉. Now, if it were
|C ′ \ C| > 1 the set C ′′ = {e1, . . . , em, em+1} would
be a configuration, with C ⊂ C ′′ ⊂ C ′, contradicting
C ≺ C ′.

2) Let C ∈ Conf (E) be a configuration and assume that
C = C ′ ∪ {e} such that C ′ `0 e. If C = C1 ∪ C2 for
C1, C2 ∈ Conf (E), then e must occur either in C1 or
in C2. If e ∈ C1, since C1 is secured, there exists C ′1 ⊆
C1 \ {e} such that C ′1 ` e. Hence, by monotonicity of
enabling, C1 \{e} ` e. Since C ′ `0 e and C1 \{e} ⊆ C ′
it follows that C1 \ {e} = C ′ and thus C1 = C ′.
Vice versa, let C ∈ Conf (E) be irreducible. Consider a
secured execution 〈e1, . . . , en〉 of configuration C. Note
that for any k ∈ [1, n− 1] it must be {e1, . . . , ek−1} 6`
en. Otherwise, if it were {e1, . . . , ek−1} ` en for some
k ∈ [1, n− 1], we would have that C ′ = {e1, . . . , ek, en}
and C ′′ = {e1, . . . , en−1} are two proper subconfig-
urations of C such that C = C ′ ∪ C ′′, violating the
fact that C is irreducible. But this means exactly that
{e1, . . . , en−1} `0 en, as desired.

3) Immediate.

4) Let Ij = 〈Cj , ej〉 ∈ ir(D(E)) for j ∈ {1, 2} be irre-
ducibles. Assume I1 ↔ I2. By Lemma 4(3), observing
that p(Ij) = Cj , we must have I1∪C2 = C1∪I2, namely
C1∪{e1}∪C2 = C1∪C2∪{e2}, from which we conclude
that it must be e1 = e2, i.e., as desired Ij = 〈Cj , e〉,
where e = e1 = e2 for j ∈ {1, 2}. Additionally, I1 and
I2 are consistent by Lemma 3, meaning that C1

e
_ C2.

For the converse, consider two irreducibles I1 = 〈C1, e〉
and I2 = 〈C2, e〉, such that C1

e
_ C2. Hence C1 `0 e,

C2 `0 e and C = C1 ∪ C2 ∪ {e} is consistent. Since
I1, I2 ⊆ C, they are consistent in D(E). Moreover,
p(I1) = C1, p(I2) = C2 and I1 ∪ C2 = I2 ∪ C1 =
C 6= C1 ∪C2. Hence by Lemma 4(3), we have I1 ↔ I2,
as desired.

Concerning point 1, observe that the meet in the domain
of configurations is C u C ′ =

⋃
{C ′′ ∈ Conf (E) | C ′′ ⊆

C ∧ C ′′ ⊆ C ′}, which is usually smaller than the intersection.
For instance, in Fig. 2, {a, c}u{b, c} = ∅ 6= {c}. Point 2 says
that irreducibles are configurations of the form C ∪ {e} that
admits a secured execution in which the event e appears as
the last one and cannot be switched with any other. In other
words, irreducibles are minimal histories of events. Point 3
characterises the irreducibles in a configuration. According to
point 4, two irreducibles are interchangeable when they are
different histories for the same event.

Proposition 5 Let E be an es. Then D(E) is a weak prime
domain. Given a morphism f : E1 → E2, its image D(f) :
D(E1)→ D(E2) is a weak prime domain morphism.

Proof: By Lemma 8 we know that D(E) is a domain.
In order to show that D(E) is a weak prime domain, we

exploit the characterisation in Proposition 3, i.e., we prove
that all irreducibles are weak primes. Consider an irreducible,
which, by Lemma 8(2), is of the shape I = 〈C, e〉 and suppose
that I ⊆

⊔
X for some X ⊆ K(D(E)). This means that, in

particular, e ∈
⊔
X and thus there is C ′ ∈ X such that e ∈ C ′.

In turn, we can consider a minimal enabling of e in C ′, i.e.,
a minimal C ′′ ⊆ C ′ such that C ′′ `0 e, and we have that
I ′′ = 〈C ′′, e〉 is an irreducible I ′′ ⊆ C ′. Since I and I ′′ are
consistent, as they are both included in

⊔
X , by Lemma 8(4),

I ↔ I ′′.

We next prove that given an es morphism f : E1 → E2,
its image D(f) : D(E1) → D(E2) is a weak prime domain
morphism.

• C1 � C ′1 implies D(f)(C1) � D(f)(C ′1)

Since D(f)(Ci) = {f(di) | di ∈ Ci} and by Lemma 8(1)
C1 � C ′1 iff C ′1 = C1 ∪ {e1} for some event e1, the
result follows immediately.

• for X1 ⊆ D(E1) consistent, D(f)(
⊔
X1) =⊔

D(f)(X1)

Since D(f) takes the image as set and
⊔

on consistent
sets is union, the result follows.

• for C1, C
′
1 ∈ D(E1) consistent such that C1 u C ′1 ≺ C1

it holds f(C1 u C ′1) = f(C1) u f(C ′1)

The condition C1 u C ′1 ≺ C1 means that C1 u C ′1 =
C1 \ {e1} for some e1 ∈ E1. Clearly e1 6∈ C ′1, otherwise
also C1 ⊆ C ′1 and thus C1 ∩ C ′1 = C1. Therefore in this
case, the meet coincides with intersection, C1 u C ′1 =
C1 ∩ C ′1 = C1 \ {e1}. Since for the events in C1 ∪ C ′1,
by definition of event structure morphism, f is injective,
we have that f(C1)∩ f(C ′1) = f(C1 ∩C ′1). As a general
fact, f(C1)uf(C ′1) ⊆ f(C1)∩f(C ′1). Therefore, putting
things together, we conclude
f(C1) u f(C ′1) ⊆ f(C1) ∩ f(C ′1) = f(C1 ∩ C ′1) =

f(C1 u C ′1)

The converse inequality holds in any domain (as observed
after Definition 13) and thus the result follows.

A special role is played by the subclass of connected es.

Definition 15 (connected es) A connected es is an es E such
that whenever C `0 e and C ′ `0 e then C e

_
∗
C ′. We denote

by cES the full subcategory of ES having connected es as
objects.

In words, different minimal enablings for the same event
must be pairwise connected by a chain of consistency. For
instance, the es in Example 1 is a connected es. Only event
c has two minimal histories {a} `0 c and {b} `0 c and
obviously {a} c

_ {b}. Clearly, prime es are also connected
es. More precisely, we have the following.

Proposition 6 (connectedness, stability, primality) Let E
be an es. Then E is prime iff E is stable and connected.

Proof: The fact that a prime es is stable and connected
follows immediately from the definitions. Conversely, let E
be stable and connected. We show that E is prime, i.e., each
e ∈ E has a unique minimal enabling. Let C,C ′ ∈ Conf (E)
be minimal enablings for e, i.e., C `0 e and C `0 e. Since
E is connected C e

_
∗
C ′. Let C e

_ C1
e
_ . . .

e
_ Cn

e
_ C ′.

Then stability we get that C = C1 = . . . = Cn = C ′.
The defining property of connected es allows one to recog-

nise that two minimal histories are relative to the same event
by only looking at the partially ordered structure and thus, as
we will see, from the domain of configurations of a connected
es we can recover an es isomorphic to the original one and
vice versa (see Theorem 2). In general, this is not possible.
For instance, consider the es E′ with events E′ = {a, b, c},
and where a#b and minimal enablings are again ∅ `0 a,
∅ `0 b, {a} `0 c, and {b} `0 c. Namely, event c has two
minimal enablings, but differently from what happens in the
running example, these are not consistent, hence {a, b} 6` c.
The domain of configurations is depicted on the left of Fig. 4.
Intuitively, it is not possible to recognise that {a, c} and {b, c}

∅
{a} {b}

{a, c} {b, c}

∅
{a} {b}

{a, c1} {b, c2}

Fig. 4: Non-connected es do not uniquely determine the
domain of configurations.

are different histories of the same event. In fact, note that we
would get an isomorphic domain of configuration for the es
E′′ with events E′′ = {a, b, c1, c2} such that a#b and minimal
enablings are again ∅ `0 a, ∅ `0 b, {a} `0 c1, and {b} `0 c2.

C. From domains to es

We show how to extract an es from a weak prime domain.
As expected, events are equivalence classes of irreducibles,
where the equivalence is (the transitive closure of) interchange-
ability.

In order to properly relate domains to the corresponding es
we need to prove some properties of irreducibles and of the
interchangeability relation in weak prime domains.

We already observed that the interchangeability relation in
general is not transitive. We show that in weak prime domains
it is transitive on consistent irreducibles. We start with a simple
technical lemma.

Lemma 9 Let D be a domain and i, i′, i′′ ∈ ir(D). If i↔ i′,
i↔ i′′, and i′ v i′′ then i′ = i′′.

Proof: Assume i ↔ i′, i ↔ i′′, and i′ v i′′ and suppose
by absurdum that i′ 6= i′′, hence i′ v p(i′′). Then we have

i v i t p(i′)

= p(i) t i′ [By i↔ i′ and Lemma 4(3)]
v p(i) t p(i′′) [Since i′ v p(i′′)]

Therefore p(i) t p(i′′) v i t p(i′′) v p(i) t p(i′′) t p(i′′) =
p(i) t p(i′′). Hence we deduce i t p(i′′) = p(i) t p(i′′), and
by Lemma 4(3) this contradicts i↔ i′′.

Lemma 10 (↔ transitive on consistent irreducibles) Let
D be a weak prime domain and i, i′, i′′ ∈ ir(D) such that
i↔ i′, i↔ i′′, and i′, i′′ consistent. Then i′ ↔ i′′.

Proof: Since i ↔ i′ and i′ ↔ i′′, by Lemma 3 i, i′ and
i′, i′′ are consistent and by Lemma 4 p(i) t i′ = i t p(i′)
and p(i′) t i′′ = i′ t p(i′′). Moreover i, i′′ is consistent by
hypothesis and thus, by coherence, i, i′, i′′ is consistent.

Therefore i v i t p(i′) t p(i′′) = p(i) t i′ t p(i′′) =
p(i)tp(i′)ti′′. Since D is a weak prime domain, irreducibles
are weak primes and there must exist i1 ↔ i such that either
i1 v p(i) or i1 v p(i′) or i1 v i′′. The first possibility
i1 v p(i) v i contradicts Lemma 3, while the second one
i1 v p(i′) v i′ contradicts Lemma 9.

Therefore it must be i1 v i′′. We also note that it cannot be
i1 v p(i′′), and thus, by Lemma 1, i′′ = i1 ↔ i, as desired.
Otherwise, if i1 v p(i2), by Lemma 4(2) we would have

i t p(i) t p(i′) t p(i′′) = i1 t p(i) t p(i′) t p(i′′)
= p(i) t p(i′) t p(i′′)

In turn, the above equality could be used to prove that

i′ v i′ t p(i) t p(i′) t p(i′′)
= i t p(i) t p(i′) t p(i′′)
= p(i) t p(i′) t p(i′′)

Again, by the fact that D is a weak prime domain, there should
exist i′1 ↔ i′ such that i′1 v p(i) or i′1 v p(i′) or i′1 v p(i′′).
Note that i′1 v p(i′) @ i′ contradicts Lemma 3. Moreover,
recalling that i′ ↔ i and i′ ↔ i′1, i′1 v p(i) @ i contradicts
Lemma 9. The same applies to the case i′1 v p(i′′) @ i′′.
Hence we conclude.

Domains are irreducible algebraic, hence any element is de-
termined by the irreducibles under it. The difference between
two elements is thus somehow captured by the irreducibles that
are under one element and not under the other. This motivates
the following definition.

Definition 16 (irreducible difference) Let D be a domain
and d, d′ ∈ K(D) such that d v d′. Then we define
δ(d′, d) = ir(d′) \ ir(d).

The immediate precedence relation intuitively relates do-
main elements corresponding to configurations which differ
for the execution of a single event. We next study how this
relates to irreducibles.

Lemma 11 (immediate precedence and irreducibles/1)
Let D be a weak prime domain, d ∈ K(D), and i ∈ ir(D)
such that d, i are consistent and p(i) v d. Then

1) for all i′ ∈ δ(d t i, d) minimal, it holds i↔ i′;
2) d � d t i.

Proof:
1) First note that if d = d t i, hence ir(d t i) = ir(d) and

the property trivially holds. Assume d 6= d t i and take
i′ ∈ δ(d t i, d) minimal. Note that minimality implies
that p(i′) v d. From i′ v dt i, since D is a weak prime
domain and thus irreducibles are weak primes, there must
be i′′ ∈ ir(D), i′′ ↔ i′ such that i′′ v d or i′′ v i. We
first note that it cannot be i′′ v d, otherwise d = dti′′ =
dti′, the last equality motivated by Lemma 4(2). Thus we
would have i′ v d, contradicting the hypotheses. Hence
it must be i′′ v i. This, in turn, by the minimality of i in
δ(d t i, d) implies i = i′′, hence i = i′′ ↔ i′, as desired.

2) Consider d′ such that d ≺ d′ v d t i, and let us prove
that d′ = dt i. Since d ≺ d′, hence d 6= d′, we know that
δ(d′, d) is not empty. Take a minimal i′ ∈ δ(d′, d). Thus
i′ is minimal also in δ(d t i, d), and thus, by point (1),
i↔ i′. By minimality of i′ we deduce also that p(i′) v d.
Since also p(i) v d by hypothesis, using Lemma 4(2),
we have dt i = dt i′. Observing that dt i′ v d′ v dt i
we conclude that d′ = d t i, as desired.

Lemma 12 (immediate precedence and irreducibles/2)
Let D be a weak prime domain and d, d′ ∈ D such that

d ≺ d′. Then for any i ∈ δ(d′, d)

1) d′ = d t i;
Moreover, for all i, i′ minimal in δ(d′, d)

2) there is no i′′ ∈ ir(d) such that i↔ i′′;
3) i↔ i′.

Proof:
1) Let i ∈ δ(d′, d). Then d v d t i v d′. It follows that

either d t i = d or d t i = d′. The first possibility can
be excluded for the fact that it would imply i v d, while
we know that i 6∈ ir(d). Hence we get the thesis.

2) Let i ∈ δ(d′, d) minimal. Therefore p(i) v d. If there
were i′′ ∈ ir(d) such that i↔ i′′ then, since also p(i′′) v
d, by Lemma 4(2) we would get d = d t i′′ = d t i =
d′, the last equality following from point (1). But this
contradicts the hypothesis that d ≺ d′.

3) Let i, i′ ∈ δ(d′, d) be minimal irreducibles. By (1) we
have d′ = d t i. Therefore i′ ∈ δ(d t i, d) minimal.
Therefore i↔ i′ by Lemma 11(1).

We next show that chains of immediate precedence are gen-
erated in essentially a unique way by sequences of irreducibles.

Lemma 13 (chains) Let D be a weak prime domain, d ∈
K(D) and ir(d) = {i1, . . . , in} such that the sequence
i1, . . . , in is compatible with the order (i.e., for all h, k
if ih v ik then h ≤ k). If we let dk =

⊔k
h=1 ih for

k ∈ {1, . . . , n} we have

⊥ = d0 � d1 � . . . � dn = d

Vice versa, given a chain ⊥ = d0 ≺ d1 ≺ . . . ≺ dn and
taking ih ∈ δ(dh, dh−1) minimal for h ∈ {1, . . . , n} we have

dn =
⊔n
h=1 ih and ∀i ∈ ir(dn) . ∃h ∈ [1, n]. i↔ ih.

Therefore [{i1, . . . , in}]↔∗ = [ir(dn)]↔∗ .

Proof: For the first part, observe that for k ∈ {1, . . . , n}
we have that

p(ik) v dk−1
In fact, recalling that ir(ik) ⊆ ir(d), we have that irreducibles
in ir(p(ik)) = ir(ik) \{ik}, which are smaller than ik, must
occur before in the list hence

ir(p(ik)) = ir(ik) \{ik} ⊆ {i1, . . . , ik−1}.

Therefore p(ik) =
⊔

ir(p(ik)) v
⊔
{i1, . . . , ik−1} = dk−1.

Thus we use Lemma 11(2) to infer dk−1 � dk−1 t ik = dk.

For the second part, we proceed by induction on n.
• (n = 0) Note that d0 =

⊔
∅ = ⊥ and ir(⊥) = ∅, hence

the thesis trivially holds.
• (n > 0) By induction hypothesis

dn−1 =
⊔n−1
h=1 ih and

∀i ∈ ir(dn−1) . ∃h ∈ [1, n− 1]. i↔ ih.
Since by construction in ∈ δ(dn, dn−1), by Lemma 12(1)
we deduce

dn = in t dn−1 =
⊔

({in} ∪ ir(dn−1)).
Moreover, for all i ∈ δ(dn, dn−1) we have i v dn =
in t dn−1. By definition of weak domain domain, the
exists i′ ↔ i such that i′ v dn−1 or i′ v in. In the first
case, since i′ v dn−1, by the inductive hypothesis there
is h ∈ [1, n− 1] such that i′ ↔ ih. Since i ↔ i′ ↔ ih,
and i, i′, ih v dn are consistent, by Lemma 10 i ↔ ih,
as desired. If, instead, we are in the second case, namely
i′ v in, by minimality of in it follows that in = i′ ↔ i,
as desired.

In a prime domain an element admits a unique decomposi-
tion in terms of primes (see Lemma 2). Here the same holds
for irreducibles but only up to interchangeability.

Proposition 7 (unique decomposition up to ↔) Let D be
a weak prime domain, d ∈ K(D), and X ⊆ ir(d) downward
closed. Then d =

⊔
X iff [X]↔∗ = [ir(d)]↔∗ .

Proof: (⇒) Let d =
⊔
X . Clearly X ⊆ [ir(d)]↔∗ . Hence

we only need to prove that ir(d) ⊆ [X]↔∗ . Let i ∈ ir(d).
Hence i v d =

⊔
X . By definition of weak prime domain,

this implies that there exists i′ ↔ i and x ∈ X such that
i′ v x. Since X is downward closed, necessarily i′ ∈ X and
thus i ∈ [X]↔∗ , as desired.

(⇐) Let [X]↔∗ = [ir(d)]↔∗ . We can prove that
⊔
X = d

by induction on k = | ir(d) \X|. If k = 0 then X = ir(d)
and thus d =

⊔
X by Proposition 1. If k > 0 take a minimal

element i ∈ ir(d) \X . Therefore X ′ = X ∪ {i} is downward
closed. Since [X]↔∗ = [ir(d)]↔∗ , there is i′ ∈ X such that
i↔ i′. Therefore⊔

X ′ =
⊔
X ∪ {i} =

⊔
X ∪ {i′} =

⊔
X. (2)

Since [X ′]↔∗ = [ir(d)]↔∗ and | ir(d) \X ′| = | ir(d) \X|−
1 < k, by inductive hypothesis

⊔
X ′ = d. Hence, using (2)⊔

X = d, as desired.
We now have the tools for mapping our domains to an es.

Definition 17 (es for a weak prime domain) Let D be a
weak prime domain. The es E(D) = 〈E,#,`〉 is defined as
follows
• E = [ir(D)]↔∗

• e#e′ if there is no d ∈ K(D) such that e, e′ ∈ [ir(d)]↔∗ ;
• X ` e if there exists i ∈ e such that [ir(i) \{i}]↔∗ ⊆ X .
Given a morphism f : D1 → D2, its image E(f) :

E(D1)→ E(D2) is defined for [i1]↔∗ ∈ E as E(f)([i1]↔∗) =
[i2]↔∗ , where i2 ∈ δ(f(i1), f(p(i1))) is minimal in the set,
and E(f)([i1]↔∗) is undefined if f(p(i1)) = f(i1).

The definition above is well-given. In particular, there is no
ambiguity in the definition of the image of a morphism, since
one can show that for all i2, i′2 ∈ δ(f(i1), f(p(i1))) minimal,
i2 ↔ i′2.

We first need a technical lemma holding in any domain.

Lemma 14 Let D be a domain and a, b, c ∈ D such that
c v a and c ≺ b. Then either b v a or c = a u b.

Proof: Recall that in a domain the meet of consistent
sets exists. Since c is a lower bound for a and b, necessarily
c v a u b v b. If it were c 6= a u b then we would have
a u b = b, hence b v a, as desired.

Lemma 15 Let D be a weak prime domain. Then E(D) is
an es. Moreover, for a morphism f : D1 → D2, its image
E(f) : E(D1)→ E(D2) is an es morphism.

Proof:
We need to show that if X ` e and X ⊆ Y ∈ Con

implies Y ` e. In fact, by definition, if X ` e then there
exists i ∈ e such that [ir(i) \{i}]↔∗ ⊆ X . Hence if X ⊆ Y
it immediately follows that Y ` e. Moreover the es is live.
The fact that conflict is saturated follows immediately buy
definition of conflict and the characterisation of configurations
provided later in Lemma 16. Conflict is irreflexive since for
any e ∈ E(D), if e = [i]↔∗ then e ∈ [ir(i)]↔∗ , which is a
configuration by the same lemma.

Given a morphism f : D1 → D2, its image E(f) :
E(D1)→ E(D2) is defined for [i1]↔∗ ∈ E as E(f)([i1]↔∗) =
[i2]↔∗ , where i2 ∈ δ(f(i1), f(p(i1))) is minimal in the
set, and E(f)([i1]↔∗) = ⊥ if f(p(i1)) = f(i1). First
observe that E(f)([i1]↔∗) does not depend on the choice of
the representative. In fact, let i2, i′2 ∈ δ(f(i1), f(p(i1))) be
minimal. Since p(i1) ≺ i1, by definition of domain morphism,
f(p(i1)) ≺ f(i1). Thus, by Lemma 12(3), i2 ↔ i′2.

We next show that E(f) is an es morphism.

• If E(f)(e1)#E(f)(e′1) then e1#e′1.
We prove the contronominal, namely if e1, e′1 consistent
then E(f)(e1), E(f)(e′1) consistent.
The fact that e1, e′1 consistent means that there exists
d1 ∈ K(D1) such that e1, e′1 ∈ [ir(d1)]↔∗ . We show that
E(f)(e1), E(f)(e′1) ∈ [ir(f(d1))]↔∗ (note that f(d1) is
a compact, since f is a domain morphism).
Let us show, for instance, that E(f)(e1) ∈ [ir(f(d1))]↔∗ .
The fact that e1 ∈ [ir(d1)]↔∗ means that e1 = [i1]↔∗ for
some i1 v d1. By definition E(f)(e1) = [i2]↔∗ , where
i2 ∈ δ(f(i1), f(p(i1))) minimal (since E(f)(e1) is de-
fined the difference cannot be empty). Now, since i1 v d1
we have that f(i1) v f(d1), whence i2 v f(i1) v f(d1)
and E(f)([i1]↔∗) = [i2]↔∗ ∈ [ir(f(d1))]↔∗ , as desired.

• If E(f)(e1) = E(f)(e′1) and e1 6= e′1 then e1#e′1.
We prove the contronominal, namely if e1, e′1 consistent
and E(f)(e1) = E(f)(e′1) then e1 = e′1.
Assume e1, e′1 consistent and E(f)(e1) = E(f)(e′1). By
the first condition there must be d1 ∈ K(D1) such that
e1, e

′
1 ∈ [ir(d1)]↔∗ , namely e1 = [i1]↔∗ and e1 = [i′1]↔∗

with i1, i′1 v d1.
Moreover, E(f)([i1]↔∗) = [i2]↔∗ and E(f)([i′1]↔∗) =
[i′2]↔∗ where i2 and i′2 are minimal elements in
δ(f(i1), f(p(i1))) and δ(f(i′1), f(p(i′1))), respectively,
and [i2]↔∗ = [i′2]↔∗ , which means i2 ↔∗ i′2, and in
turn, being i2 and i′2 consistent, implies i2 ↔ i′2.
We distinguish two cases.

– If i1 and i′1 are comparable, e.g., if i1 v i′1, then
i1 = i′1 and we are done. In fact, otherwise, if i1 6= i′1
we have p(i1) ≺ i1 v p(i′1) ≺ i′1. By monotonicity
of f we have f(p(i1)) ≺ f(i1) v f(p(i′1)) ≺ f(i′1)
(where strict inequalities ≺ are motivated by the
definition of E(f), since both E(f)([i1]↔∗) and
E(f)([i′1]↔∗) are defined). Now notice that p(i2) v
i2 v f(i1) v f(p(i′i)). Hence, using the fact that
i2 ↔ i′2, by Lemma 4(2) we have
f(p(i′1)) = f(p(i′1)) t i2 = f(p(i′1)) t i′2 = f(i′1)

contradicting the fact that f(p(i′1)) ≺ f(i′1).

– Assume now that i1 and i′1 are uncomparable and
define p = p(i1)tp(i′1). We can also assume i1, i′1 6v
p. In fact, otherwise, e.g., if i1 v p, then, by the
defining property of weak prime domains, we derive
the existence of i′′1 ↔ i1 such that i′′1 v p(i1) or i′′1 v
p(i′1). The first possibility can be excluded because it
would imply i′′1 v i1, contradicting i′′1 ↔ i1. Hence
it must be i′′1 v p(i′1) v i′1. Therefore, if we take
i′′1 as representative of the equivalence class we are
back to the previous case.
Using the fact that i1, i′1 6v p and p(i1), p(i′1) v p,
by Lemma 11(2) we deduce that p ≺ p t i1 and
p ≺ p t i′1.
By Lemma 12(1), since i2 ∈ δ(f(i1), f(p(i1))) and
i′2 ∈ δ(f(i′1), f(p(i′1))), we have

f(p(i1))ti2 = f(i1) f(p(i′1))ti′2 = f(i′1) (3)

Now, observe that
f(p t i1) =
= f(p(i1) t p(i′1) t i1)
= f(p(i′1) t i1)
= f(p(i′1)) t f(i1) [preservation of t]
= f(p(i′1)) t f(p(i1)) t i2 [by (3)]
= f(p(i′1)) t f(p(i1)) t i′2 [by Lemma 4(2),

since i2 ↔ i′2]
= f(i′1) t f(p(i1)) [by (3)]
= f(p(i1) t i′1) [preservation of t]
= f(p(i1) t p(i′1) t i′1)
= f(p t i′1)

Since p ≺ p t i1 and p ≺ p t i′1, by Lemma 14
(p t i1) u (p t i′1) = p. Therefore, on the one hand
f((pti1)u(pti′1)) = f(p). On the other hand, since
the meet is an immediate predecessor, it is preserved:
f((p t i1) u (p t i′1)) = f(p t i1) u f(p t i′1) =
f(pti1) = f(pti′1). Putting things together, f(p) =
f(p t i1) = f(p t i′1), contradicting the fact that
f(p) ≺ f(p t i1).

• if X1 `1 [i1]↔∗ and E(f)([i1]↔∗) is defined then
E(f)(X1) `2 E(f)([i1]↔∗)
Recall that X1 `1 [i1]↔∗ means that [ir(i′1) \{i′1}]↔∗ =
[ir(p(i′1))]↔∗ ⊆ X1 for some i′1 ↔ i1.
By definition, E(f)([i1]↔∗) = [i2]↔∗ where i2 is a
minimal irreducible in δ(f(i′1), f(p(i′1))). We show that

E(f)(X) `2 [i2]↔∗ , namely that

[ir(i2) \{i2}]↔∗ = [ir(p(i2))]↔∗ ⊆ E(f)(X) (4)

Observe that since i2 is minimal in δ(f(i′1), f(p(i′1))), it
holds p(i2) v f(p(i′1)). Therefore, we have

ir(p(i2)) ⊆ ir(f(p(i′1)))

Hence, in order to conclude (4), it suffices to show that

[ir(f(p(i′1)))]↔∗ ⊆ E(f)(X) (5)

In order to reach this result, first note that, by Lemma 13,
if ir(p(i′1)) = {j11 , . . . , jn1 } is a sequence of irreducibles
compatible with the order, we can obtain a �-chain

⊥ = d01 � d11 � . . . � dn1 = p(i′1) ≺ i′1
We can extract a strictly increasing subsequence

⊥ = d′01 ≺ d′11 ≺ . . . ≺ d′m1 = p(i′1) ≺ i′1
and, if we take irreducibles j′11 , . . . , j

′m
1 in δ(d′i1 , d

′i−1
1),

again by Lemma 13 we know that

[ir(p(i′1))]↔∗ = [{j′11 , . . . , j′m1 }]↔∗ (6)

Since f is a domain morphism, it preserves �, namely
⊥ = f(d′01) � f(d′11) � . . . � f(d′m1) = f(p(i′1)) ≺

f(i′1)

where the last inequality is strict since E(f)([i′1]↔∗) =
[e2]↔∗ is defined. Moreover, whenever f(d′h−11) ≺
f(d′h1), then E(f)([j′h1]↔∗) = [`h2]↔∗ where `h2 is any
minimal irreducible in δ(f(d′h1), f(d′h−11)), otherwise
E(f)([j′h1]↔∗) is undefined.
Once more by Lemma 13 we know that

[ir(f(p(i′1)))]↔∗ = [{`12, . . . , `m2 }]↔∗ =
E(f)([{j′11 , . . . , j′m1 }]↔∗),

thus, using (6)

[ir(f(p(i′1)))]↔∗ = E(f)([ir(p(i′1))]↔∗). (7)

Hence, recalling that, by hypothesis, [ir(p(i′1))]↔∗ ⊆ X ,
we conclude the desired inclusion (5).

Since in a prime domain irreducibles coincide with primes
(Proposition 2), ↔ is the identity (Lemma 5) and δ(d′, d) is
a singleton when d ≺ d′, the construction above produces the
prime es pES(D) as defined in Section II.

Given a domain D, the configurations of the es E(D)
exactly correspond to the elements in K(D). Moreover, in
such es we have a minimal enabling C `0 e when there is an
irreducible in e (recall that events are equivalence classes of
irreducibles) such that C contains all and only (the equivalence
classes of its) predecessors.

Lemma 16 (compacts vs. configurations) Let D be a weak
prime domain and C ⊆ E(D) a set of events. Then C is a
configuration in the es E(D) iff there exists a (unique) d ∈
K(D) such that C = [ir(d)]↔∗ . Moreover, for any e ∈ E(D)
we have that C `0 e iff C = [ir(i) \{i}]↔∗ for some i ∈ e.

Proof: The left to right implication follows by proving
that, given a configuration C ∈ Conf (E(D)), there exists X ⊆

ir(D) downward closed and consistent such that [X]↔∗ = C.
Hence, if we let d =

⊔
X , by Proposition 7, we have that

C = [X]↔∗ = [ir(d)]↔∗ . Moreover, d is uniquely determined,
since, by the same proposition we have that for any other
X ′ such that [X ′]↔∗ = C, since [X ′]↔∗ = C = [X]↔∗ =
[ir(d)]↔∗ , necessarily d =

⊔
X ′.

Let us prove the existence of a X ⊆ ir(D) consistent and
downward closed such that X = [C]↔∗ . We know that C is
consistent, i.e., there is d ∈ K(D) such that C ⊆ [ir(d)]↔∗ .
Then we can define X = {j ∈ ir(D) | [j]↔∗ ∈ C ∧ j v d}

The set X is clearly consistent and [X]↔∗ = C. The fact
that it is downward closed can be proved by induction on the
cardinality of C, as follows
• if |C| = 0, namely C = ∅ then X = ∅, hence the thesis

is trivial.
• if |C| > 0, since C is secured there is [i]↔∗ ∈ C such

that C ′ = C \ {[i]↔∗} ` [i]↔∗ . We can assume without
loss of generality that i ∈ X . Observe that

X ′ = X \ {i} = {j | [j]↔∗ ∈ C ′ ∧ j v d}
hence, by inductive hypothesis, X ′ is closed.
The fact that C ′ = C \ {[i]↔∗} ` [i]↔∗ means that
[ir(i) \{i}]↔∗ = [ir(p(i))]↔∗ ⊆ C ′, namely that for
some j v i, j 6= i, and j ∈ X it holds that [j]↔∗ ∈ C ′.
Since j v i v d, by construction j ∈ X ′. Recalling that
X ′ is downward closed, this is sufficient to conclude that
also X = X ′ ∪ {i} is downward closed.

For the converse, let C = [ir(d)]↔∗ . We prove by induction
on k = | ir(d) | that C ∈ Conf (E(D)). If k = 0 then
C = ∅ and we conclude. If k > 0 let ⊥ = d0 ≺ d1 ≺
. . . dn−1 ≺ dn = d be a chain of immediate precedence.
By inductive hypothesis [ir(dn−1)]↔∗ ∈ Conf (E(D)). More-
over, if we take i ∈ δ(d, dn−1) minimal, [ir(i) \{i}]↔∗ ⊆
[ir(dn−1)]↔∗ hence [ir(dn−1)]↔∗ ` [ir(i)]↔∗ . Therefore
C = [ir(dn−1)]↔∗ ∪ [ir(i)]↔∗ ∈ Conf (E(D)) and by the
second part of Lemma 13, C = [ir(d)]↔∗ .

The second part follows immediately by Definition 17.
Now we show how weak prime domains relate to connected

es.

Proposition 8 Let D be a weak prime domain. Then E(D) is
a connected es.

Proof: We have to show that if X `0 e and X ′ `0 e,
then X

e
_
∗
X ′. Note that, by Lemma 16, from X `0 e

and X ′ `0 e, we deduce that there exists i, i′ ∈ e such that
[ir(i) \{i}]↔∗ = X and [ir(i′) \{i′}]↔∗ = X ′. Since i, i′ ∈ e
we have that i ↔∗ i′, namely i = i0 ↔ i1 ↔ . . . ↔ in = i′.
We proceed by induction on n. The base case n = 0 is trivial.
If n > 0 then from i ↔ i1 ↔∗ i′, we have that i1 ∈ e and,
if we let X1 = [ir(i1) \{i1}]↔∗ , then X1 `0 e. By inductive
hypothesis, we know that X1

e
_
∗
X ′. Moreover, since i↔ i1,

by Lemma 3 i and i1 are consistent. Hence, by definition of
conflict in E(D), also X ∪X1 ∪ {e} is consistent and hence
X

e
_ X1. Therefore X e

_
∗
X ′, as desired.

D. Relating categories of models

At a categorical level, the constructions taking a weak
prime domain to an es and an es to a domain (the domain
of its configurations) establish a coreflection between the
corresponding categories. This becomes an equivalence when
it is restricted to the full subcategory of connected es.
Theorem 2 (coreflection of ES and wDom) The functors
D : ES → wDom and E : wDom → ES form a coreflection.
It restricts to an equivalence between wDom and cES.

Proof: Let E be an es. Recall that the corresponding
domain of configurations is D(E) = 〈Conf (E),⊆〉. Then,
E(D(E)) = 〈E′,#′,`′〉. The set of events is defined as

E′ = [ir(D(E))]↔∗ = {[〈C, e〉]↔∗ | C `0 e}

By Lemma 8(4), the equivalence class of an irreducible
〈C, e〉 consists of all minimal enablings of event e which are
connected. Therefore we can define a morphism

θE : E(D(E)) → E
〈C, e〉 7→ e

Observe that θE is surjective. In fact E is live and thus for
any event e ∈ E it has at least a minimal history. Take any
I = 〈C, e〉. Then [I]↔∗ ∈ E(D(E)) and θE(I) = e. This is
clearly a morphism of event structures. In fact, observe that
• for I1, I2 ∈ ir(D(E)), with [I1]↔∗ 6= [I2]↔∗ , we have

that θE([I1]↔∗) = θE([I2]↔∗) implies [I1]↔∗#
′[I2]↔∗ .

In fact, by Lemma 8(2) the irreducibles will be of the kind
I1 = 〈C1, e1〉 and I2 = 〈C2, e2〉. We show that if [I1]↔∗

and [I2]↔∗ are consistent and θE([I1]↔∗) = θE([I2]↔∗)
then [I1]↔∗ = [I2]↔∗ .
Assume θE([I1]↔∗) = θE([I2]↔∗), hence e1 = e2.
Moreover the fact that [I1]↔∗ and [I2]↔∗ are consis-
tent means that there exists k ∈ K(D(E)) such that
[I1]↔∗ , [I2]↔∗ ∈ [ir(k)]↔∗ . Since compacts in D(E) are
configurations, the condition amounts to the existence of
C ∈ Conf (E) such that [I1]↔∗ , [I2]↔∗ ∈ [ir(C)]↔∗ , i.e.,
there are are I ′1, I

′
2 with Ii ↔∗ I ′i for i ∈ {1, 2}, such

that I ′1, I
′
2 ⊆ C. Since the choice of the representative

is irrelevant, we can assume that I1 = I ′1 and I2 = I ′2.
Summing up, I1 and I2 are consistent minimal histories
of the same event, hence by Lemma 8(4), I1 ↔ I2, i.e.,
[I1]↔∗ = [I2]↔∗ , as desired.

• for I1, I2 ∈ ir(D(E)), if θE([I1]↔∗)#θE([I2]↔∗) then
[I1]↔∗#

′[I2]↔∗ .
Let I1 = 〈C1, e1〉 and I2 = 〈C2, e2〉. If θE([I1]↔∗) =
e1#e2 = θE([I2]↔∗), then there cannot be any con-
figuration C ∈ Conf (E) such that I1, I2 ⊆ C. Hence
[I1]↔∗#

′[I2]↔∗ .
• For the enabling relation, observe that according to

the definition of the functor E , it holds that X `′
[〈C, e〉]↔∗ whenever there exists i ∈ [〈C, e〉]↔∗
such that [ir(〈C, e〉) \{〈C, e〉}]↔∗ ⊆ X . Take i ∈
[〈C, e〉]↔∗ , namely i = 〈C ′, e〉 such that C ′ `0
e′. We have ir(〈C ′, e〉) \{〈C ′, e〉} = ir(C ′) =
{[〈C ′′, e′′〉]↔∗ | C ′′ ⊆ C ′ ∧ C ′′ `0 e′′}. Requiring

[ir(〈C ′, e′〉) \{〈C ′, e′〉}]↔∗ ⊆ X is equivalent to require
that C ′ ⊆ θE(X), i.e., X `′ [〈C, e〉]↔∗ if there exists C ′

such that C ′ `0 e and C ′ ⊆ θE(X). This in turn means
that

X `′ [〈C, e〉]↔∗ if θE(X) ` e.
Finally, we prove the naturality of θ by showing that the

diagram below commutes.

E(D(E1))

E(D(f))

��

θE1 // E1

f

��

E(D(E2))
θE2

// E2

Consider [〈C1, e1〉]↔∗ ∈ E(D(E1)). Recall that
E(D(f))([〈C1, e1〉]↔∗) is computed by considering the
image of the irreducible 〈C1, e1〉 and of its predecessor,
namely

D(f)(C1) = f(C1) and D(f)(〈C1, e1〉) = f(C1 ∪ {e1})

If f(e1) is defined, then f(C1) ≺ f(C1 ∪ {e1})
and E(D(f))([〈C1, e1〉]↔∗) = f(e1), otherwise
E(D(f))([〈C1, e1〉]↔∗) is undefined. This means that in
all cases, as desired

E(D(f))([〈C1, e1〉]↔∗) = f(e1) = f(ηE1
([〈C1, e1〉]↔∗)).

Vice versa, let D be a weak prime domain. Consider
E(D) = 〈E,#,`〉 defined as:
• E = [ir(D)]↔∗

• e#e′ if there is no d ∈ K(D) such that e, e′ ∈ [ir(d)]↔∗ ;
• X ` e if there exists i ∈ e such that [ir(i) \{i}]↔∗ ⊆ X .

and consider D(E(D)). Elements of K(D(E(D))) are config-
urations of C ∈ Conf (E(D)). We can define a function

ηD : K(D(E(D))) → K(D)
C 7→ d

where d ∈ K(D) is the unique element such that C = [d]↔∗ ,
given by Lemma 16. The function is monotone and bijective
with inverse η−1 : K(D)→ K(D(E(D))) given by η−1(d) =
{[i]↔∗ | i ∈ ir(D) ∧ i v d}. By algebraicity of the domains,
this function thus uniquely extends to an isomorphism ηD :
D(E(D))→ D.

Finally, we prove the naturality of η, showing that the
diagram below commutes.

E(D(D1))

E(D(f))

��

ηD1 // D1

f

��

E(D(D2))
ηD2

// D2

Let C1 ∈ K(D(E(D1))), namely C1 ∈ Conf (E(D1)), and
let ηD1

(C1) = d1 be the element such that C1 = [ir(d1)]↔∗ .
The construction offered by Lemma 13 provides a chain

d10 = ⊥ ≺ d11 ≺ d21 ≺ . . . ≺ dn1 = d1

and, by the same lemma, if we take an irreducible ih1 minimal
in δ(dh1 , d

h−1
1) for 1 ≤ h ≤ n we have that C1 = [ir(d1)]↔∗ =

[{i11, . . . , in1}]↔∗ . Therefore the image

D(E(f))(C1) = {E(f)([j1]↔∗) | [j1]↔∗ ∈ C1} =
{E(f)([ih1]↔∗) | h ∈ [1, n]}

is the set of equivalence classes of irreducibles i12, . . . , i
k
2

corresponding to

f(d01) = ⊥ ≺ f(d11) ≺ f(d21) ≺ . . . ≺ f(dn1) = f(d1)

namely ij2 minimal in δ(f(dj1), f(dj−11)), and, again, by
Lemma 13, [{i12, . . . , ik2}]↔∗ = [ir(f(d1))]↔∗ . Summing up

ηD2
(D(E(f))(C1)) = ηD2

({[ih2]↔∗ | 1 ≤ h ≤ k}}) =
f(d1) = f(ηD1

(C1))

as desired.
Now, just observe that in the proof above, when E is a

connected es, then the morphism θE defined as

θE : E(D(E)) → E
[〈C, e〉]↔∗ 7→ e

is an isomorphism. In fact, it is a bijection. We already
know that it is surjective, and it is also injective. In fact, if
θE([I]↔∗) = θE([I ′]↔∗) then I and I ′ are minimal enablings
of the same event, i.e., I = [〈C, e〉]↔∗ and I ′ = [〈C ′, e〉]↔∗ .
Since E is a weak prime domain, C e

_
∗
C ′ and thus, by

Lemma 8(4), I ↔∗ I ′, i.e., [I]↔∗ = [I ′]↔∗ . Proving that also
the inverse is an es morphism is immediate, by exploiting the
fact that the es is live.

IV. A CONNECTED ES SEMANTICS FOR GRAPH REWRITING

In this section we consider non-linear graph rewriting sys-
tems where rules are left-linear but possibly not right-linear
and thus, as an effect of a rewriting step, some items can be
merged. We argue that weak prime domains and connected
es are the right tool for providing a concurrent semantics
to this class of rewriting systems. More precisely, we show
that the domain associated with a graph rewriting system by
a generalisation of a classical construction is a weak prime
domain and vice versa that each connected es arises as the
semantics of some graph rewriting system.

A. Graph rewriting and concatenable traces

We start by reviewing the basic definitions about graph
rewriting in the double-pushout approach [19]. We recall graph
grammars and then introduce a notion of trace, providing a
representation of a sequence of rewriting steps that abstracts
from the order of independent rewrites. Traces are then turned
into a category Tr(G) of concatenable derivation traces [22].

Definition 18 A (directed, unlabelled) graph is a tuple G =
〈N,E, s, t〉, where N and E are sets of nodes and edges,
and s, t : E → N are the source and target functions. The
components of a graph G are often denoted by NG, EG, sG,
tG. A graph morphism f : G→ H is a pair of functions f =
〈fN : NG → NH , fE : EG → EH〉 such that fN ◦ s = s′ ◦ fE

c, v

ā

b̄ ν̄
in

T

c

ȳ

ν

ν̄

c ν

ν̄

c, ν

ν̄

py (y ∈ {a, b})

c, ν

in
ν̄

c, ν

ν̄

c, ν

ν̄

pc

Fig. 5: The type graph of the grammar in Fig. 2a and its rules
as spans.

L

mL ��

K
loo r //

mK��

R

mR��

G D
l∗
oo

r∗
// H

Fig. 6: A direct derivation.

and fN ◦ t = t′ ◦ fE . We denote by Graph the category of
graphs and graph morphisms

An abstract graph [G] is an isomorphism class of graphs.
We work with typed graphs, i.e., graphs which are “labelled”
over some fixed graph. Formally, given a graph T , the category
of graphs typed over T , as introduced in [23], is the slice
category (Graph ↓ T), also denoted GraphT .

Definition 19 (graph grammar) A (T -typed graph) rule is a
span (L

l← K
r→ R) in GraphT where l is mono and not epi.

The typed graphs L, K, and R are called the left-hand side,
the interface, and the right-hand side of the rule, respectively.
A (T -typed) graph grammar is a tuple G = 〈T,Gs, P, π〉,
where Gs is the start (typed) graph, P is a set of rule names,
and π maps each rule name in P into a rule.

Sometimes we write p : (L
l← K

r→ R) for denoting the
rule π(p). When clear from the context we omit the word
“typed” and the typing morphisms. Note that we consider
only consuming grammars, namely grammars where for each
rule π(p) the morphism l is not epi. This corresponds to the
requirement on non-empty preconditions for Petri nets.

An example of graph grammar has been discussed in the
introduction (see Fig. 2a). The type graph was left implicit: it
can be found in the top part of Fig. 5. The typing morphisms
for the start graph and the rules are implicitly represented by
the labelling. Also observe that for the rules only the left-hand
side L and right-hand side R were reported. The same rules
with the interface graph explicitly represented are in Fig. 5.

Definition 20 (direct derivation) Given a typed graph G, a
rule p : (L

l← K
r→ R), and a match, i.e., a typed graph

morphism g : L → G, a direct derivation δ from G to H
via p (based on g) is a diagram as in Fig. 6, where both

squares are pushouts in GraphT . We write δ : G
p/m
=⇒ H ,

where m = 〈mL,mK ,mR〉, or simply δ : G =⇒ H .

Since pushouts are defined only up to isomorphism, given

an isomorphisms κ : G′ → G and ν : H → H ′, also G′
p/m′

=⇒
H with m′ = 〈κ−1 ◦ mL,mK ,mR〉 and G′

p/m′′

=⇒ H ′ with
m′′ = 〈mL,mK , ν◦mR〉 are direct derivations, that we denote
respectively by κ · δ and δ · ν. Informally, the rewriting step
removes (the image of) the left-hand side from the graph G
and replaces it by (the image of) the right-hand side R. The
interface K (the common part of L and R) specifies what is
preserved. For example, the transitions in Fig. 2b are all direct
derivations.

Definition 21 (derivations) Let G = 〈T,Gs, P, π〉 be a graph
grammar. A derivation over G is a sequence of direct deriva-
tions ρ = {Gi−1

qi−1
=⇒ Gi}i∈[1,n] where pi ∈ P for i ∈ [1, n].

The derivation is written ρ : G0 =⇒∗G Gn or simply
ρ : G0 =⇒∗ Gn. The graphs G0 and Gn are called the
source and the target of ρ, and denoted by s(ρ) and t(ρ),
respectively. The length of ρ is |ρ| = n. Given two derivations
ρ and ρ′ such that t(ρ) = s(ρ′), their sequential composition
ρ ; ρ′ : s(ρ) =⇒∗ t(ρ′) is defined in the obvious way.

If ρ : G =⇒∗ H is a derivation, with |ρ| > 0, and κ : G′ → G,
ν : H → H ′ are graph isomorphisms, then κ · ρ : G′ =⇒∗ H
and ρ · ν : G =⇒ H ′ are defined in the expected way.

In the double pushout approach to graph rewriting, it is
natural to consider graphs and derivations up to isomorphism.
However some structure must be imposed on the start and end
graph of an abstract derivation in order to have a meaningful
notion of sequential composition. In fact, isomorphic graphs
are, in general, related by several isomorphisms, while in
order to concatenate derivations keeping track of the flow of
causality one must specify how the items of the source and
target isomorphic graphs should be identified. We follow [2],
inspired by the theory of Petri nets [24]: we choose for each
class of isomorphic typed graphs a specific graph, named
the canonical graph, and we decorate the source and target
graphs of a derivation with a pair of isomorphisms from the
corresponding canonical graphs to such graphs.

Let C denote the operation that associates to each (T -typed)
graph its canonical graph, thus satisfying C(G) ' G and if
G ' G′ then C(G) = C(G′).

Definition 22 (decorated derivation) A decorated deriva-
tion ψ : G0 =⇒∗ Gn is a triple 〈α, ρ, ω〉, where ρ : G0 =⇒∗
Gn is a derivation and α : C(G0) → G0, ω : C(Gn) → Gn
are isomorphisms. We define s(ψ) = C(s(ρ)), t(ψ) = C(t(ρ))
and |ψ| = |ρ|. The derivation is called proper if |ψ| > 0.

Definition 23 (sequential composition) Let ψ = 〈α, ρ, ω〉,
ψ′ = 〈α′, ρ′, ω′〉 be decorated derivations such that t(ψ) =
s(ψ′). Their sequential composition ψ;ψ′ is defined, if ψ and
ψ′ are proper, as 〈α, (ρ · ω−1); (α′ · ρ′), ω′〉. Otherwise, if
|ψ| = 0 then ψ;ψ′ = 〈α′ ◦ ω−1 ◦ α, ρ′, ω′〉, and similarly,
if |ψ′| = 0 then ψ;ψ′ = 〈α, ρ, ω ◦ α′ ◦ ω−1〉.

pi : Li

mLi

m′Li
��

Ki
lioo

ri //

mKi

m′Ki

��

Ri

mRi

		

m′Ri

��

G′0 G′i D′i
l′∗ioo

r′∗i // G′i+1 G′n

C(G0)

α′
44

α %%

C(Gn)

ω′ee

ωss
G0

θG0

@@

Gi

θGi

==

Di
l∗i

oo
r∗i

//

θDi

;;

Gi+1

θGi+1

;;

Gn

θGn

??

Fig. 7: Abstraction equivalence of decorated derivations.

L1

mL1

��

K1

l1oo
r1 //

mK1

��

R1

mR1

�� !!

L2

mL2

��}}

K2

l2oo
r2 //

mK2

��

R2

mR2

��
G D1

l∗1

oo
r∗1

// H D2
l∗2

oo
r∗2

// M

Fig. 8: Sequential independence for ρ = G
p1/m1
=⇒ H

p2/m2
=⇒ M .

We next define an abstraction equivalence that identifies
derivations that differ only in representation details.

Definition 24 (abstraction equivalence) Let ψ = 〈α, ρ, ω〉,
ψ′ = 〈α′, ρ′, ω′〉 be decorated derivations with ρ : G0 =⇒∗
Gn and ρ′ : G′0 =⇒∗ G′n′ (whose ith step is depicted in the
lower rows of Fig. 7). They are abstraction equivalent, written
ψ ≡a ψ′, if n = n′, qi−1 = q′i−1 for all i ∈ [1, n], and there
exists a family of isomorphisms {θXi : Xi → X ′i | X ∈
{G,D}, i ∈ [1, n]}∪ {θG0

} between corresponding graphs in
the two derivations such that (1) the isomorphisms relating the
source and target commute with the decorations, i.e., θG0

◦α =
α′ and θGn ◦ ω = ω′; and (2) the resulting diagram (whose
ith step is represented in Fig. 7) commutes.

Equivalence classes of decorated derivations with respect to
≡a are called abstract derivations and denoted by [ψ]a, where
ψ is an element of the class.

From a concurrent perspective, derivations that only differ
for the order in which two independent direct derivations are
applied should not be distinguished. This is formalised by the
classical shift equivalence on derivations.

Definition 25 (sequential independence) Let G
p1/m1
=⇒

H
p2/m2
=⇒ M be a derivation as in Fig. 8. Then, its components

are sequentially independent if there exists an independence
pair among them, i.e., two graph morphisms i1 : R1 → D2

and i2 : L2 → D1 such that l∗2 ◦ i1 = mL2
, r∗1 ◦ i2 = mR1

.

Proposition 9 (interchange operator) Let ρ = G
p1/m1
=⇒

H
p2/m2
=⇒ M be a derivation whose components are se-

quentially independent via an independence pair ξ. Then, a

derivation ICξ(ρ) = G
p2/m

∗
2=⇒ H∗

p1/m
∗
1=⇒ M can be uniquely

chosen, such that its components are sequentially independent
via a canonical independence pair ξ∗.

The interchange operator can be used to formalise a notion
of shift equivalence [13], identifying (as for the analogous per-
mutation equivalence of λ-calculus) those derivations which

differ only for the scheduling of independent steps.

Definition 26 (shift equivalence) Two derivations ρ and ρ′

are shift equivalent, written ρ ≡sh ρ′, if ρ′ can be obtained
from ρ by repeatedly applying the interchange operator.

For instance, in Fig. 2b it is easy to see that the derivations ρ =
Gs

pa
=⇒ Gb

pb
=⇒ Gab consists of sequential independent direct

derivations. It is shift equivalent to ρ′ = Gs
pb

=⇒ Ga
pa

=⇒ Gab.
Two decorated derivations are said to be shift equiva-

lent when the underlying derivations are, i.e., 〈α, ρ, ω〉 ≡sh
〈α, ρ′, ω〉 if ρ ≡sh ρ′. Then the equivalence of interest arises
by joining abstraction and shift equivalence.

Definition 27 (concatenable traces) We denote by ≡c the
equivalence on decorated derivations arising as the transitive
closure of the union of the relations ≡a and ≡sh. Equivalence
classes of decorated derivations with respect to ≡c are denoted
as [ψ]c and are called concatenable (derivation) traces.

Several proofs concerning concatenable traces exploit a
characterization of equivalence ≡c presented in [2, Sec. 3.5],
that we summarize and adapt here to our framework.

If ψ and ψ′ are decorated derivations, then a consistent
permutation between their steps relates two direct derivations
if they consume and produce the same items, up to an
isomorphism that is consistent with the decorations.

Definition 28 (consistent permutation) Given a decorated
derivation ψ = 〈α, ρ, ω〉 : G0 =⇒∗ Gn, we denote by col(ψ)
the colimit of the corresponding diagram in category GraphT ,
and by inXcol(ψ) the injection of X into the colimit, for any
graph X in ρ. Given two such decorated derivations ψ and ψ′

of equal length n, a consistent permutation σ from ψ to ψ′ is
a permutation σ on [0, n− 1] such that

1) there exists an isomorphism ξ : col(ψ)→ col(ψ′);
2) for each i ∈ [0, n− 1] the direct derivations δi of ψ and

δσ(i) of ψ′ use the same rule;
3) for each i ∈ [0, n− 1], let p : (L

l← K
r→ R) be the

rule used by direct derivations δi : Gi
p/m
=⇒ Gi+1 and

δ′σ(i) : G′σ(i)
p/m′

=⇒ G′σ(i)+1; then

• ξ ◦ inGicol(ψ) ◦m
L = in

Gσ(i)
col(ψ′) ◦m

′L, and

• ξ ◦ inGi+1

col(ψ) ◦m
R = in

Gσ(i)+1

col(ψ′) ◦m
′R;

4) [α-consistency] ξ ◦ inG0

col(φ) ◦ α = in
G′0
col(φ′) ◦ α

′;

5) [ω-consistency] ξ ◦ inGncol(φ) ◦ ω = in
G′n
col(φ′) ◦ ω

′;
A permutation σ from ψ to ψ′ is called left-consistent if it
satisfies conditions (1)-(4), but possibly not ω-consistency. It
is easy to show, by induction on the length of derivations, that
the isomorphism ξ : col(ψ)→ col(ψ′) is uniquely determined
by conditions (2)-(4), if it exists.

The next result shows that consistent permutations charac-
terize equivalence ≡c in a strong sense.

Lemma 17 Let ψ, ψ′ be decorated derivations.
1) ψ ≡c ψ′ iff |ψ| = |ψ′| and there is a consistent

permutation σ on [0, |ψ| − 1] between them. We write

ψ ≡cσ ψ′ in this case.
2) If ψ;ψ1 ≡cσ ψ′;ψ′1 and ψ ≡cσ0

ψ′, then σ0 is the
restriction of σ to [0, |ψ| − 1]. In this case it also holds
ψ1 ≡cσ1

ψ′1, with σ1(i) = σ(i+ |ψ|)− |ψ|.
3) If ψ ≡c ψ′, then there is a unique consistent permutation

σ such that ψ ≡cσ ψ′.

Proof: [sketch]
1) This holds by [2, Thm. 3.5.3], which does not use

linearity of rules.
2) Suppose by absurd that j be the smallest index in

[0, |ψ1| − 1] such that σ(j) 6= σ1(j). Let p : (L
l←

K
r→ R) be the rule used in δj and let x ∈ L \ l(K)

be an item consumed by it, which exists because all
rules are consuming. By Definition 28 we deduce that
both direct derivations δ′σ(j) and δ′σ1(j)

of ψ′1;ψ2 use the
same rule p (say, with matches m′ and m′′), and that the
items m′L(x) ∈ G′σ(j) and m′′L(x) ∈ G′σ1(j)

which are
consumed by δ′σ(j) and δ′σ1(j)

, respectively, are identified
in the colimit col(ψ′1;ψ′2) (actually, from ψ1 ≡cσ1

ψ′1 we
know that there is a morphism G′σ(j) → col(ψ′1), but we
can compose it with the obvious (possibly not injective)
morphism col(ψ′1) → col(ψ′1;ψ′2)). But given the shape
of the derivation diagram determined by the left-linearity
of rules, and the properties of colimits in Graph, this
is not possible, because there is no undirected path of
morphisms relating the images of element x ∈ L in
G′σ(j) and G′σ1(j)

respectively. Therefore σ and σ1 must
coincide on [0, |ψ1| − 1].
For the second part, by the fact just proved clearly
σ2 is a well-defined permutation on [0, |ψ2| − 1]. For
consistency, most conditions of Definition 28 follow from
the fact that it is a projection of σ: only α-consistency is
not obvious, but it follows from ω-consistency of σ1 and
from Definition 23. Therefore ψ2 ≡cσ2

ψ′2 by point (1).
3) Direct consequence of the previous point, considering

zero-length decorated derivations ψ′1 and ψ′2.

The sequential composition of decorated derivations lifts to
composition of derivation traces so that we can consider the
corresponding category.

Definition 29 (category of concatenable traces) Let G be a
graph grammar. The category of concatenable traces of G,
denoted by Tr(G), has abstract graphs as objects and con-
catenable traces as arrows.

B. A weak prime domain for a grammar

Given a grammar G we can obtain a partially ordered
representation of the derivations in G starting from the initial
graph by considering the concatenable traces ordered by prefix.
Formally, as already done in [2], [3] for linear grammars, we
first consider the structure of the category ([Gs] ↓ Tr(G)),
which, by definition of sequential composition between traces,
can be easily shown to be a preorder.

Proposition 10 Let G be a graph grammar. Then the category
([Gs] ↓ Tr(G)) is a preorder.

Proof: Let [ψ] : [Gs] → [G], [ψ′] : [Gs] → [G′] be
concatenable traces and let [ψ1], [ψ2] : [ψ] → [ψ′] be arrows
in the slice category. Spelled out, this means that ψ1, ψ2 :
G→ G′ are such that ψ;ψ1 ≡c ψ;ψ2 ≡c ψ′. By point (2) of
Lemma 17, using the fact that ψ ≡c ψ we can conclude that
ψ1 ≡c ψ2, as desired.

Explicitly, elements of the preorder are concatenable traces
[ψ]c : [Gs] → [G] and, for [ψ′]c : [Gs] → [G′], we have
[ψ]c v [ψ′]c if there is ψ′′ : G → G′ such that ψ;ψ′′ ≡c ψ′.
Therefore, given two concatenable traces [ψ]c : [Gs] → [G]
and [ψ′]c : [Gs] → [G′], if [ψ]c v [ψ′]c v [ψ]c then ψ
can be obtained from ψ′ by composing it with a zero-length
trace. Hence the elements of the partial order induced by
([Gs] ↓ Tr(G)) intuitively consist of classes of concatenable
traces whose decorated derivations are related by an isomor-
phism that has to be consistent with the decoration of the
source. This construction, applied to the grammar in Fig. 2a
produces a domain isomorphic to that in Fig. 2c.

Lemma 18 Let G be a graph grammar. The partial order
induced by ([Gs] ↓ Tr(G)), denoted P(G), has as elements
〈ψ〉c = {[ψ · ν]c | ν : t(ψ)

∼→ t(ψ)} and 〈ψ〉c v 〈ψ′〉c if
ψ;ψ′′ ≡c ψ′ for some decorated derivation ψ′′.

Proof: Immediate.

Lemma 19 Let G be a graph grammar and 〈ψ〉c ∈ P(G).
Then [ψ′]c, [ψ

′′]c ∈ 〈ψ〉c iff there is a left-consistent permuta-
tion from ψ′ to ψ′′.

Proof: Immediate.
The domain of interest is then obtained by completion of

the preorder ([Gs] ↓ Tr(G)), with the elements in P(G) as
compact elements. In order to prove this, we need a prelim-
inary technical lemma that essentially provides existence and
shape of the least upper bounds in the domain of traces.

Lemma 20 (properties of ≡c) 1) Let ψ,ψ′ be decorated
derivations, and ψ1, ψ

′
1 such that ψ;ψ1 ≡cσ ψ′;ψ′1 and

n = |{j ∈ [|ψ|, |ψ;ψ1| − 1] | σ(j) < |ψ′|}|. Then for all
φ2, φ

′
2 such that ψ;φ2 ≡c ψ′;φ′2 it holds |φ2| ≥ n and

there are ψ2, ψ
′
2, ψ3 such that

• ψ;ψ1 ≡c ψ;ψ2;ψ3

• ψ;ψ2 ≡c ψ′;ψ′2
• |ψ2| = n

2) Let ψ,ψ′ be derivation traces and ψ1, ψ
′
1, ψ2, ψ

′
2 such

that ψ;ψ1 ≡cσ1
ψ′;ψ′1 and ψ;ψ2 ≡cσ2

ψ′;ψ′2 with ψ1, ψ2

of minimal length. Then ψ1 ≡cσ ψ2 ·ν, where ν : t(ψ2)→
t(ψ2) is some iso and σ(j) = σ−12 (σ1(j+ |ψ|))−|ψ| for
j ∈ [0, |ψ1| − 1].

Proof:
1) We first observe that if ψ,ψ′ are derivation traces and

ψ1, ψ
′
1 are such that ψ;ψ1 ≡cσ ψ′;ψ′1, with |ψ| = k,

|ψ′| = k′, |ψ;ψ1| = |ψ′;ψ′1| = h then there is a φ1 such
that ψ;ψ1 ≡c ψ;φ1 ≡cσ1

ψ′;ψ′1 and

for i, j ∈ [|ψ|, h− 1], i ≤ j implies σ1(i) ≤ σ1(j). (†)
In order to prove this, we can proceed by induction on
the number of inversions x = |{(i, j) ∈ [|ψ|, h− 1] |
i ≤ j ∧ σ(i) > σ(j)}|, i.e., on the number of
pairs (i, j) in the interval of interest that do not re-
spect the monotonicity condition. When x = 0 the
thesis immediately holds. Assume that x > 0. Then
there are certainly indices j ∈ [|ψ|, h− 2] such that
σ(j) > σ(j + 1). Among these, take the index i such
that σ(i+1) is minimal. Then it can be shown that direct
derivations at position i and i + 1 in ψ1 are sequential
independent, and thus they can be switched, i.e., there
is φ2 such that ψ;φ2 ≡cid[i 7→i+1,i+17→i] ψ;ψ1. Therefore
ψ;φ2 ≡cσ◦id[i7→i+1,i+17→i] ψ

′;ψ′1. This reduces the num-
ber of inversions and thus the inductive hypothesis allows
us to conclude.
In the same way, we can prove that there is a φ′1 such
that ψ;φ1 ≡cσ2

ψ′;φ′1 ≡c ψ′;ψ′1 and

for i, j ∈ [|ψ′|, h−1], if i ≤ j then σ−12 (i) ≤ σ−12 (j) (‡)
Putting conditions (†) and (‡) together we derive that
ψ;ψ1 ≡c ψ;φ1 ≡cσ′= ψ′;φ′1 ≡c ψ′;ψ′1. Now let y ∈
[|ψ|, h− 1] be the largest index such that σ′(y) < |ψ′| (or
y = |ψ| if it does not exist), let l3 = h− y and consider
decorated derivations ψ2, ψ3, ψ

′
2, ψ
′
3 such that |ψ3| =

|ψ′3| = l3 and ψ;ψ2;ψ3 = ψ;φ1 ≡cσ′ ψ′;φ′1 = ψ′;ψ′2;ψ′3.
By construction we obtain that |ψ2| = n and that σ′

restricts to a permutation σ′2 on [0, |ψ;ψ2| − 1] which
can be made consistent, if necessary, by changing the ω
decoration of ψ2, affecting only the α decoration of ψ3.
Thus by Lemma 17(1) we conclude that ψ;ψ2 ≡c ψ′;ψ′2.
Finally, notice that by the definition of y and the
properties of σ′, it follows that σ′(j) < |ψ′| for all
j ∈ [|ψ|, |ψ;ψ2| − 1] and σ′(j) ≥ |ψ′| for all j ∈
[|ψ;ψ2|, h− 1]. That is, the direct derivations in ψ2 match
all direct derivations of ψ′ that are not matched in ψ. This
implies that there cannot exist a derivation φ2 shorter than
n such that ψ;φ2 ≡c ψ′;φ′2 for some φ′2.

2) Let n = |ψ| and m = |ψ1| = |ψ2|, which must have the
same length. By the last part of the proof of the previous
point, since both ψ1 and ψ2 are of minimal length, we
have that for all j ∈ [n, n+m− 1] it holds σ1(j) < |ψ′|
and σ2(j) < |ψ′|. Furthermore, σ1([n, n+m− 1]) =
σ2([n, n+m− 1]), because both ψ1 and ψ2 consist of
direct derivation that match those of ψ′ which are not
matched in ψ Thus σ(j) = σ−12 (σ1(j + |ψ|)) − |ψ| is a
well-defined permutation on [0, |ψ1| − 1] from ψ1 to ψ2.
Conditions (1)-(3) of Definition 28 are guaranteed by the
corresponding properties of σ1 and σ2, and α-consistency
holds because both ψ1 to ψ2 start from the same graph
(t(ψ)). Therefore σ is a left-consistent permutation from
ψ1 to ψ2.

Relying on the results above we can easily prove that the
ideal completion of the partial order of traces is a domain.

Proposition 11 (domain of traces) Let G be a graph gram-
mar. Then D(G) = Idl(P(G)) is a domain.

Proof: By Lemma 6 it is sufficient to prove (1) that
↓〈ψ〉c is finite for every 〈ψ〉c ∈ P(G), and (2) that if
{〈ψ1〉c, 〈ψ2〉c, 〈ψ3〉c} is pairwise consistent then 〈ψ1〉ct〈ψ2〉c
exists and is consistent with 〈ψ3〉c.

1) Let 〈ψ′〉c v 〈ψ〉c. By Lemma 18 and by Lemma 17(1) we
know that ψ′;ψ′′ ≡cσ ψ for some decorated derivation ψ′′

and a consistent permutation σ. Now suppose that ψ′1 and
ψ′2 are decorated derivations such that ψ′1;ψ′′1 ≡cσ1

ψ and
ψ′2;ψ′′2 ≡cσ2

ψ for some ψ′′1 , ψ′′2 , and that σ1([0, |ψ′1|]) =
σ2([0, |ψ′2|]) ⊆ [0, |ψ|]. Then σ−12 ◦σ1 is a permutation on
[0, |ψ′1|] from ψ′1 to ψ′2 which satisfies conditions (1)-(4)
of Definition 28. Therefore by Lemma 19 〈ψ′1〉c = 〈ψ′2〉c.
As a consequence, the cardinality of ↓〈ψ〉c is bound by
2|ψ|.

2) Given two consistent elements 〈ψ1〉c and 〈ψ2〉c of P(G),
there exists 〈ψ〉c = 〈ψ1〉c t 〈ψ2〉c, where ψ is the
minimal common extension of ψ1 and ψ2, provided by
Lemma 20(1). Uniqueness of 〈ψ〉c follows by Lem-
mas 20(2) and 19 because minimal common extensions
are unique, up to left-consistent permutations. Suppose
further that 〈ψ3〉c is compatible with both 〈ψ1〉c and
〈ψ2〉c: we have to show that it is compatible with 〈ψ〉c.
Let 〈ψ′〉c = 〈ψ2〉ct〈ψ3〉c. Then there exist φ1, φ and φ′

such that ψ1;φ1 ≡cσ1
ψ2;φ ≡cσ ψ and ψ2;φ′ ≡cσ′ ψ′ for

consistent permutations σ1, σ and σ′.
We conclude by showing that either 〈ψ〉c and 〈ψ′〉c are
compatible, or 〈ψ1〉c t 〈ψ3〉c and 〈ψ′〉c are compatible,
both of which are equivalent and imply the thesis. We
proceed by induction on k = |ψ1| + |ψ3|. If |ψ1| = 0,
i.e. ψ1 is a zero-length decorated derivation, hence, by
Lemma 20, also φ is so and thus 〈ψ〉c = 〈ψ2〉c, and the
latter is compatible with 〈ψ′〉c. If |ψ3| = 0 we conclude
analogously. If k > 0, let δ be the last derivation step
in ψ1, i.e., ψ1 = ψ′1; δ. If σ1(|ψ1| − 1) < |ψ2|, namely
if step δ is already in ψ2, then by Lemma 20 we get
that 〈ψ〉c = 〈ψ′1〉c t 〈ψ2〉c. Since |ψ′1| < k we conclude
by inductive hypothesis that ψ and ψ′ are compatible. If
instead, σ1(|ψ1| − 1) ≥ |ψ2| then, again by Lemma 20,
we can write ψ as ψ ≡cσ′′ ψ2;φ′′; δ′, where 〈ψ2;φ′′〉c =
〈ψ′1〉ct〈ψ2〉c and σ′′(|ψ1|−1) = |ψ|−1, i.e., δ is mapped
to δ′. Hence, by inductive hypothesis ψ2;φ′′ and ψ′ are
compatible.
Now, since 〈ψ1〉c and 〈ψ3〉c are compatible (thus
ψ1;φ′1 ≡cσ3

ψ3;φ′3 for suitable derivations φ′1, φ
′
3 and

permutation σ3), either step δ is already in ψ3 (thus
σ3(|ψ1|−1) < |ψ3|), or it isn’t, and σ3(|ψ1|−1) ≥ |ψ3|.
In the first case δ is related to a step in ψ′, and it
follows that 〈ψ′〉c t 〈ψ2;φ′′〉c = 〈ψ′〉c t 〈ψ2;φ′′; δ′〉c
and we conclude. If instead δ is not a step in ψ3, we can
write ψ3;φ′3 as ψ3;φ′′3 ; δ′′, where step δ′′ matches step
δ of ψ1. By inductive hypothesis we have that ψ3;φ′′3
and ψ′ are compatible, and we get 〈ψ3;φ′′3〉c t 〈ψ′〉c =
〈ψ2;φ′′〉c t 〈ψ′〉c. Since both steps δ′ and δ′′ are related

by consistent permutations to step δ of ψ1, we can extend
uniformly the two derivations preserving consistency,
obtaining 〈ψ3;φ′′3 ; δ′′〉c t 〈ψ′〉c = 〈ψ2;φ′′; δ′〉c t 〈ψ′〉c =
〈ψ〉c t 〈ψ′〉c, as desired.

We can show that D(G) is a weak prime domain. The proof
relies on the fact that irreducibles are elements of the form
〈ε〉c, where ε = ψ; δ is a decorated derivation such that its
last direct derivation δ cannot be switched back, i.e., minimal
traces enabling some direct derivation. These are called pre-
events in the work of [2], [3], where graph grammars are linear
and thus, consistently with Lemma 2, such elements provides
the primes of the domain. Two irreducibles 〈ε〉c and 〈ε′〉c are
interchangeable when they are different minimal traces for the
same direct derivation.

Theorem 3 (weak prime domain from a graph grammar)
Let G be a graph grammar. Then D(G) is a weak prime
domain.

Proof: We know by Proposition 11 that D(G) is a domain.
Hence, recalling Definition 12, we have to show that D(G) is
weak prime algebraic.

We will exploit the characterisation in Lemma 6. First
provide a characterisation of irreducibles and of the inter-
changeability relation among them. As usual, we confuse
compact elements of D(G) with the corresponding generators
in P(G).

As mentioned above, irreducibles in D(G) are, in the
terminology of [2], [3], pre-events, namely elements of the
form 〈ε〉c, where ε = ψ; δ is a decorated derivation such that
its last direct derivation δ cannot be switched back. Formally,
〈ε〉c is a pre-event if letting n = |ε| then for all ε = ψ; δ ≡cσ ψ′
it holds σ(n) = n.

In fact, assume that 〈ε〉c = 〈ψ1〉c t 〈ψ2〉c, and let ε ≡cσ
ψ1;ψ′1 ≡cσ′ ψ2;ψ′2 for suitable ψ′1, ψ

′
2 of minimal length. Since

ε is a pre-event, we have that if n = |ψ; δ| = |ψ1;ψ′1| =
|ψ2;ψ′2|, then σ′(n) = n. This implies that |ψ′1| = 0 (and thus
〈ε〉c = 〈ψ1〉c) or |ψ′2| = 0 (and thus 〈ε〉c = 〈ψ2〉c), as desired.

Two irreducibles 〈ε〉c and 〈ε′〉c are interchangeable iff the
corresponding traces are compatible and whenever ε;ψ1 ≡cσ
ε′;ψ′1 with ψ1, ψ

′
1 of minimal length (thus 〈ε;ψ1〉c =

〈ε′;ψ′1〉c = 〈ε〉c t 〈ε′〉c), then σ(|ε|) = |ε′|.
In fact, assume that 〈ε〉c = 〈ψ; δ〉c and 〈ε′〉c = 〈ψ′; δ′〉c

are interchangeable, and ε;ψ1 ≡cσ ε′;ψ′1 with ψ1, ψ
′
1 of

minimal length. By the proof of Lemma 20(1) we have that
σ maps steps in ψ1 to ε′ and, analogously, σ−1 maps steps
in ψ′1 to ε (formally, σ(j) < |ε′| for j ≥ |ε| and, dually,
if σ(j) ≥ |ε′| then j < |ε|). By Lemma 4(3) we have
that 〈ε〉c t 〈ε′〉c = 〈ψ〉c t 〈ε′〉c = 〈ε〉c t 〈ψ′〉c. Hence we
can view the previous equivalence of decorated derivations
as ψ; (δ;ψ1) ≡cσ (ψ′; δ′);ψ′1, with δ;ψ1 and ψ′1 of minimal
length. This means that σ maps steps in δ;ψ1 to ε′ and, with
a dual argument, steps in δ′;ψ′1 to ε. Putting all this together
we get that necessarily σ(|ε|) = |ε′|, as desired.

For the converse, assume that 〈ε〉c, 〈ε′〉c are compatible,
that 〈ψ〉c = 〈ε〉c t 〈ε′〉c, and that ψ ≡c ε;ψ1 ≡cσ ε′;ψ′1 where
σ(|ε|) = |ε′|. Then, reverting the reasoning above, we get that
〈ψ〉ct〈ε′〉c = 〈ε〉ct〈ψ′〉c, and thus we conclude that 〈ε〉c, 〈ε′〉c
are interchangeable by Lemma 4(3).

We conclude that D(G) is a weak prime domain, relying
on Lemma 6. Let 〈ε〉c with ε = ψ; δ be an irreducible, and
〈ε〉c v 〈ψ1〉c t 〈ψ2〉c. Let ψ′1 and ψ′2 be decorated derivations
of minimal length such that ε;ψ ≡cσ ψ1;ψ′1 ≡cσ1

ψ2;ψ′2 for
some ψ. If σ(|ε|) ∈ [0, |ψ1| − 1] then consider φ1 such that
ψ1;ψ′1 ≡cσ′ φ1;ψ′1 and σ′(σ(|ε|)) is minimal. Then 〈φ1〉c
is an irreducible, 〈φ1〉c and 〈ε〉c are interchangeable, and
clearly 〈φ1〉c v 〈ψ1〉c. If instead σ(|ε|) ≥ |ψ1| we have that
σ1(σ(|ε|)) < |ψ2|, and we can conclude, in the same way, the
existence of 〈φ2〉c v 〈ψ2〉c irreducible and interchangeable
with 〈ε〉c.

Note that when the rules are right-linear the domain and
es semantics specialises to the usual prime event structure
semantics (see [2]–[4]), since the construction of the domain
in the present paper is formally the same as in [2].

C. Any connected es is generated by some grammar

By Theorem 3, given any graph grammar G the domain
D(G) is a weak prime domain. We next show that also the
converse holds, i.e., any weak prime domain is generated by
a suitable graph grammar. This shows that connected es are
precisely what is needed to capture the concurrent semantics
of non-linear graph grammars, and thus strengthen our claim
that they represent the right structure for modelling formalisms
with fusions.
Construction (graph grammar for a connected es) Let
〈E,#,`〉 be a connected es. The grammar GE = 〈T, P, π,Gs〉
is defined as follows.

First, for any e ∈ E, we define the following graphs, which
are then used as basic building blocks
• Ie and Se as in Fig. 9(a) and Fig. 9(b);
• let Ue denote the set-theoretical product of the minimal

enablings of e, i.e., Ue = Π{X ⊆ E | X `0 e}; for any
tuple u ∈ Ue we define the graph Lu,e as in Fig. 9(c).

Moreover, for any pair of events e, e′ ∈ E such that e#e′, we
define a graph Ce,e′ as in Fig. 9(d).

The set of productions is P = E, i.e., we add a rule for
each event. For e ∈ E, we define the corresponding rule in a
way that
• it deletes Ie and Ce,e′ .
• it preserves the graph Se ∪

⋃
u∈Ue Lu,e

• for all e′ ∈ E, for all graphs Lu,e′ such that e occurs in
u, it merges the corresponding nodes into one.

The graph Se ∪
⋃
u∈Ue Lu,e arises from Se and Lu,e, u ∈ Ue

by merging all the nodes (we use
⋃

and
⊎

to denote union
and disjoint union, respectively, with a meaning illustrated in
Figs. 9(f) and (g).) Hence, there is a match for the rule e only
if Se and all Lu,e for u ∈ Ue have been merged and this
happens if and only if at least a minimal enabling of e have
been executed. The deletion of the graphs Ce,e′ establishes

the needed conflicts. The rule is consuming since it deletes
the node of graph Ie. Formally, the rule for e has as left-hand
side the graph

Ie∪(
⋃
e′∈E
e#e′

Ce,e′)∪(
⋃
e′∈E

(Se′]
⊎
u′∈Ue′
e∈u

Lu′,e′))∪(Se∪
⋃
u∈Ue

Lu,e)

while the right-hand side is

(Se ∪
⋃
u∈Ue

Lu,e) ∪ (
⋃
e′∈E

(Se′ ∪
⋃
u′∈Ue′
e∈u

Lu′,e′))

The rule is schematised in Fig. 9(e), where it is intended that
e occurs in u1j , . . . , u

nj
j for uij ∈ Uej , j ∈ [1, k], i ∈ [1, nk].

Moreover e′1, . . . , e
′
h are the events in conflict with e and,

finally, Ue = {u1, . . . , un}.
The start graph is just the disjoint union of all the basic

graphs introduced above

Gs = (
⋃
e#e′

Ce,e′) ∪
⋃
e∈E

(Ie ∪ Se]
⊎
u∈Ue

Lu,e)

Then the type graph is

T = (
⋃
e#e′

Ce,e′) ∪
⋃
e∈E

(Ie ∪ Se ∪
⋃
u∈Ue

Lu,e)

It is not difficult to show that the grammar GE generates
exactly the es E.

Theorem 4 Let 〈E,#,`〉 be a connected es. Then, E and
E(D(GE)) are isomorphic connected es.

Proof: First observe that each rule in GE is executed at
most once in a derivation since it consumes an item (the node
of graph Ie) which is not generated by any other rule. If we
consider D(GE), then the irreducibles are minimal 〈ε〉c with
ε = ψ; δ. By the shape of rule e, the derivation ψ must contain
occurrences of a minimal set of rules e′ such that the graphs Se
and Lu,e for u ∈ Ue are merged along the common node. By
construction, in order to merge all such graphs, if we denote by
Xψ the set of rules applied in ψ, it must be Xψ ⊇ C for some
C ∈ Conf (E) such that C `0 e. Therefore by minimality we
conclude that Xψ `0 e. Relying on this observation, a routine
induction on the |C| shows that minimal enablings C `0 e in
E are in one to one correspondence with irreducibles 〈ε〉c in
D(GE). Recalling, that, in turn, irreducibles in D(E) are again
minimal enablings, i.e., 〈C, e〉 with C ∈ Conf (E) such that
C `0 e we obtain a bijection between irreducibles in D(GE)
and D(E).

The fact that the correspondence preserves and reflects the
order is, again, almost immediate by construction. In fact,
consider two irreducibles 〈ε〉c and 〈ε′〉c in D(GE) and the
corresponding irreducibles 〈C, e〉 and 〈C ′, e′〉 in D(E). If
〈C, e〉 ⊆ 〈C ′, e′〉, take X = 〈C ′, e′〉 \ 〈C, e〉. Then ε can be
extended with the rules corresponding to the events in X , thus
showing the existence of a derivation ψ such that ε;ψ ≡c ε′. In
fact, if this were not possible, there would be an event e′′ ∈ X
such that the corresponding rule compete for deleting some

ie

(a) Ie

e

e

(b) Se

e

u

(c) Lu,e

e#e′

(d) Ce,e′

ie e#e′1 e#e′h ee

u1 un

e1

e1

e1

u11

e1

un1
1

ek

ek

ek

u1k

ek

unkk

ee

u1 un

e1
e1

u11 un1
1

ek
ek

u1k unkk

e

(e) rule e

e e

u1

e

u2

(f) Se] Lu1,e] Lu2,e

e

u1 u2

(g) Se ∪Lu1,e ∪Lu2,e

Fig. 9: Some graphs illustrating the construction of GE .

item of the start graph with a rule e1 in ε, hence e1 ∈ 〈C, e〉.
By construction, the only possibility is that the common item
is Ce′′,e1 . But this would mean that e′′#e1. This contradicts
the fact that {e1, e′′} ⊆ 〈C ′, e′〉. The converse, i.e., the fact
that if 〈ε〉c v 〈ε′〉c then 〈C, e〉 ⊆ 〈C ′, e′〉 is immediate.

Recalling that domains are irreducible algebraic (Proposi-
tion 1), we conclude that D(E(GE)) and D(E) are isomorphic.
Therefore, by Theorem 2, since E is a weak prime domain,
also E(GE) and E are isomorphic, as desired.

Example 2 Consider the running example es, from Exam-
ple 1, with set of events is {a, b, c}, empty conflict relation
and minimal enablings {a} `0 c and {b} `0 c. The associated
grammar is depicted in Fig. 10.

As a further example, consider an es E1 with events
{a, b, c, d, e}. The conflict relation # is given by e#d and
minimal enablings ∅ `0 a, ∅ `0 b, ∅ `0 e, {a, b} `0 d and
{c} `0 d. The grammar is in Fig. 11.

V. CONCLUSIONS AND RELATED WORK

In the paper we provided a characterisation of a class
of domains, referred to as weak prime algebraic domains,
appropriate for describing the concurrent semantics of those
formalisms where a computational step can merge parts of
the state. We established a categorical equivalence between
weak prime algebraic domains and a suitably defined class of
connected event structures. We also proved that the category
of Winskel’s general event structures coreflects in the category
of weak prime algebraic domains. The appropriateness of the
class of weak prime domains is witnessed by the results in the
second part of the paper that show that weak prime algebraic
domains are precisely those arising from left-linear graph

a

a

b

b

c

c (a, b)

ia ib ic

T

a

a

b

b

c

c

c

(a, b)

ia ib ic

Gs

ia a

a

c

c

c

(a, b)

a

a

c

c (a, b)
a

ib b

b

c

c

c

(a, b)

b

b

c

c (a, b)
b

ic c

c (a, b)

c

c (a, b)
c

Fig. 10: The grammar associated to our running example.

rewriting systems, i.e., those systems where rules besides
generating and deleting can also merge graph items.

Technically, the starting point is the relaxation of the stabil-
ity condition for event structures. As already noted by Winskel
in [5] “[t]he stability axiom would go if one wished to model
processes which had an event which could be caused in several
compatible ways [. . .]; then I expect complete irreducibles
would play a similar role to complete primes here”. Indeed, the
correspondence between irreducibles and weak primes, based
on the notion of interchangeability, is the ingenuous step that
allowed us to obtain a smooth extension of the classical duality
between prime event structures and prime algebraic domains.

The coreflection between the category of general event
structures and the one of weak prime algebraic domains says
that the latter are exactly the partial orders of configurations
of general event structures (with binary conflict). Such class
of domains has been studied originally in [20] where, gener-
alising the work on concrete domains and sequentiality [25], a
characterisation is given in terms of a set of axioms expressing
properties of prime intervals. A similar characterisation for
non-binary conflict is in [21]. We consider our simple char-
acterisation of this class of domains, where weak primes give
an intuitive account of events in computation, as a valuable
contribution of the paper. We plan to provide an in depth
comparison with these previous results in the full version of
the paper.

a

a

b

b

c

c

d

d

(a, c)
(b, c)

e

e

d#e

T

a

a

b

b

c

c

d

d

d

(a, c)

d

(b, c)

e

e

d#e

ia ib ic id ie

Gs

ia a

a

d

d

d

(a, c)

a

a

d

d (a, c)
a

ib b

b

d

d

d

(b, c)

b

b

d

d (b, c)
b

ic c

c

d

d

d

(a, c)

d

(b, c)

c

c

d

d

(a, c)
(b, c)c

id d

d

(a, c)
(b, c)

d#e d

d

(a, c)
(b, c)d

ie e

e

d#e e

e
e

Fig. 11: The grammar for the es in example 2.

The paper [26] study a characterisation of the partial order
of configurations associated with a variety of classes of
event structures in terms of axiomatisability of the associated
propositional theories. Despite the fact that the focus is here
mainly on event structures that genereralise Winskel’s ones,
we believe that this work can provide interesting suggestions
for further development.

The need of resorting to unstable event structures for mod-
elling the concurrent computations of name passing process
calculi has been observed by several authors. In particular,
in [16] an event structure semantics for the pi-calculus is
defined by relying on a notion of such structure that is tailored
for parallel extrusions. These are labelled unstable event
structures with the constraint that two minimal enablings can
differ only for one event (intuitively, the extruder). They fail
to be connected event structure since non-connected minimal
enablings are admitted (roughly, because identical events in
disconnected minimal enabling are identified via the labelling).

We finally remark that a possibility for recovering a notion
of causality based on prime event structures also for rule-based
formalisms with fusions is to introduce suitable restrictions
on the concurrent applicability of rules. Indeed, the lack
of stability seems to arise essentially from considering as
concurrent those fusions that act on common items. Prevent-
ing fusions to act on already merged items, one may lose
some concurrency, yet gaining a definite notion of causality.
Technically, a prime event structure can be obtained for left-
linear grammars by restricting the applicability condition: the
match must be such that the pair 〈l;mL, r〉 of Fig. 6 is jointly
mono. This essentially means that those items that have been
already fused, should not be fused again. This is indeed the
proposal advanced in [27]. Concerning our running example,
this requirement would forbid the reachability of graphs Gab
and Gc in Fig. 2(b), and in turn this would imply that the
domain of configurations is the one depicted in Fig. 4, with
the limits concerning expressiveness that we already remarked
there.

REFERENCES

[1] M. Nielsen, G. Plotkin, and G. Winskel, “Petri Nets, Event Structures
and Domains, Part 1,” Theoretical Computer Science, vol. 13, pp. 85–
108, 1981.

[2] P. Baldan, A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi,
“Concurrent semantics of algebraic graph transformation systems,” in
Handbook of Graph Grammars and Computing by Graph Transforma-
tion, G. Rozenberg, Ed. World Scientific, 1999, vol. III: Concurrency,
pp. 107–187.

[3] P. Baldan, “Modelling concurrent computations: from contextual Petri
nets to graph grammars,” Ph.D. dissertation, University of Pisa, 2000.

[4] G. Schied, “On relating rewriting systems and graph grammars to event
structures,” in Dagstuhl Seminar 9301 on Graph Transformations in
Computer Science, ser. LNCS, H.-J. Schneider and H. Ehrig, Eds., vol.
776. Springer, 1994, pp. 326–340.

[5] G. Winskel, “Event structure semantics for CCS and related languages,”
University of Aarhus, Tech. Rep. DAIMI PB-159, 1983.

[6] D. Varacca and N. Yoshida, “Typed event structures and the linear pi-
calculus,” Theoretical Computer Science, vol. 411, no. 19, pp. 1949–
1973, 2010.

[7] R. Bruni, H. C. Melgratti, and U. Montanari, “Event structure semantics
for nominal calculi,” in CONCUR 2006, ser. LNCS, C. Baier and
H. Hermanns, Eds., vol. 4137. Springer, 2006, pp. 295–309.

[8] G. Winskel, “Events, causality and symmetry,” Computer Journal,
vol. 54, no. 1, pp. 42–57, 2011.

[9] J. Pichon-Pharabod and P. Sewell, “A concurrency semantics for relaxed
atomics that permits optimisation and avoids thin-air executions,” in
POPL 2016, R. Bodı́k and R. Majumdar, Eds. ACM, 2016, pp. 622–
633.

[10] A. Jeffrey and J. Riely, “On thin air reads towards an event structures
model of relaxed memory,” in LICS 2016, M. Grohe, E. Koskinen, and
N. Shankar, Eds. ACM, 2016, pp. 759–767.

[11] M. Dumas and L. Garcı́a-Bañuelos, “Process mining reloaded: Event
structures as a unified representation of process models and event logs,”
in Petri Nets 2015, ser. LNCS, R. R. Devillers and A. Valmari, Eds.,
vol. 9115. Springer, 2015, pp. 33–48.

[12] J. Meseguer, “Conditional rewriting logic as a unified model of con-
currency,” Theoretical Computer Science, vol. 96, no. 1, pp. 73–155,
1992.

[13] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe,
“Algebraic approaches to graph transformation I: Basic concepts and
double pushout approach,” in Handbook of Graph Grammars and Com-
puting by Graph Transformation. Volume 1: Foundations., G. Rozenberg,
Ed. World Scientific, 1997.

[14] J. Lévy, “Optimal reductions in the lambda-calculus,” in To H.B.
Curry, Essays on Combinatory Logic, Lambda Calculus and Formalism,
J. Seldin and J. Hindley, Eds. Academic Press, 1980, pp. 159–191.

[15] G. Winskel, “Event Structures,” in Petri Nets: Applications and Relation-
ships to Other Models of Concurrency, ser. LNCS, vol. 255. Springer,
1987, pp. 325–392.

[16] S. Crafa, D. Varacca, and N. Yoshida, “Event structure semantics of
parallel extrusion in the π-calculus,” in FoSSaCS 2012, ser. LNCS,
L. Birkedal, Ed., vol. 7213. Springer, 2012, pp. 225–239.

[17] F. Gadducci, “Graph rewriting and the π-calculus,” Mathematical Struc-
tures in Computer Science, vol. 17, no. 3, pp. 1–31, 2007.

[18] I. Phillips, I. Ulidowski, and S. Yuen, “Modelling of bonding with
processes and events,” in RC 2013, ser. LNCS, G. W. Dueck and D. M.
Miller, Eds., vol. 7948. Springer, 2013, pp. 141–154.

[19] H. Ehrig, “Tutorial introduction to the algebraic approach of graph-
grammars,” in TAGT 1986, ser. LNCS, H. Ehrig, M. Nagl, G. Rozenberg,
and A. Rosenfeld, Eds., vol. 291. Springer, 1987, pp. 3–14.

[20] G. Winskel, “Events in computation,” Ph.D. dissertation, University of
Edinburgh, 1980.

[21] M. Droste, “Event structures and domains,” Theoretical Computer
Science, vol. 68, no. 1, pp. 37–47, 1989.

[22] A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi, “An event
structure semantics for graph grammars with parallel productions,” in
TAGT 1994, ser. LNCS, J. Cuny, H. Ehrig, G. Engels, and G. Rozenberg,
Eds., vol. 1073. Springer, 1996.

[23] A. Corradini, U. Montanari, and F. Rossi, “Graph processes,” Funda-
menta Informaticae, vol. 26, no. 3/4, pp. 241–265, 1996.

[24] P. Degano, J. Meseguer, and U. Montanari, “Axiomatizing the algebra
of net computations and processes,” Acta Informatica, vol. 33, no. 7,
pp. 641–647, 1996.

[25] G. Kahn and G. Plotkin, “Concrete domains,” Theoretical Computer
Science, vol. 121, no. 1, pp. 187–277, 1993, based on [28].

[26] R. van Glabbeek and G. Plotkin, “Configuration structures, event struc-
tures and Petri nets,” Theoretical Computer Science, vol. 410, no. 41,
pp. 4111–4159, 2009.

[27] P. Baldan, F. Gadducci, and U. Montanari, “Concurrent rewriting for
graphs with equivalences,” in CONCUR 2006, ser. LNCS, C. Baier and
H. Hermanns, Eds., vol. 4137. Springer, 2006, pp. 279–294.

[28] G. Kahn and G. Plotkin, “Domaines concretes,” INRIA Paris, Tech. Rep.
336, 1978.

APPENDIX

A. Es with non-binary conflict

In the literature also es with non-binary conflict have been
considered, where the binary conflict relation is replaced by a
consistency predicate. The duality results of Section III easily
adapt to this case.

Definition 30 (es with non-binary conflict) An es with non-
binary conflict (esn for short) is a tuple 〈E,`, Con〉 such that

• E is a set of events
• Con ⊆ 2Efin is the consistency predicate, satisfying X ∈
Con and Y ⊆ X implies Y ∈ Con

• `⊆ Con × E is the enabling relation, satisfying X ` e
and X ⊆ Y ∈ Con implies Y ` e.

The esn E is stable if whenever X ` e, Y ` e, X∪Y ∪{e} ∈
Con then X ∩ Y ` e.

The definition of the category of esn is changed accordingly.

Definition 31 (category of esn) A morphism of esn f :
E1 → E2 is a partial function f : E1 → E2 such that
• if X1 ∈ Con1 then f(X) ∈ Con2;
• if {e1, e′1} ∈ Con1 and f(e1) = f(e′1) then e1 = e′1;
• if X1 `1 e1 and f(e1) defined then f(X1). `2 f(e1)

We denote by cESn the category of esn and esn morphisms.

Then in the definition of domains (Definition 6), the exis-
tence of joins is required only for consistent subsets (not for
pairwise consistent).

Definition 32 (b-domains) A bounded complete domain (b-
domain) is an algebraic finitary partial order such that any
X ⊆ D consistent admits a joint

⊔
X . B-domain morphisms

are as in Definition 13. We denote by Domb the corresponding
category.

Note that any domain is a b-domain.
Lemma 10 that shows a form of transitivity for inter-

changeability ceases to hold in the current formulation (an
counterexample can be found in Fig. 12), but it suffices to
strengthen the hypotheses by asking that i, i′, i′′ are consistent
and the proof goes through again. The definition of weak
prime algebraic domain remains formally the same, but the
underlying partial order is required to be a b-domain.

Definition 33 (weak prime algebraic b-domain) A weak
prime algebraic b-domain (or simply weak prime b-domain)
is a b-domain D which is weak prime algebraic. We denote
by Domb the corresponding category.

The proof of the fact that, given an esn E, the ideal
completion of the partial order of configurations D(E) =
Idl(〈Conf (E),⊆〉) is a weak prime b-domain, is unchanged.
The same holds for the fact that if f : D1 → D2 is a weak
prime b-domain morphism then D(f) : D(E1)→ D(E2) is a
weak prime b-domain morphism.

Vice versa the esn associated with a weak prime b-domain
is defined as follows.

Definition 34 (esn for a weak prime b-domain) Let D be
a weak prime domain. The corresponding event structure
E(D) = 〈E,Con,`〉 is defined as follows
• E = [ir(D)]↔∗ ;
• Con = {X | ∃d ∈ K(D) . X ⊆ [ir(d)]↔∗};
• X ` e when there is i ∈ e such that [ir(i)−{i}]↔∗ ⊆ X .
Given a morphism f : D1 → D2, its image E(f) :
E(D1) → E(D2) is defined as follows: for [i1]↔∗ ∈
E, if f(p(i1)) = f(i1), then E(f)([i1]↔∗) = ⊥, else

•

• •

p1 t p3

i1 t i2 i2 t i3

i1 p1 t p2 i2 p2 t p3 i3

p1 p2 p3

⊥

Fig. 12: A counterexample to Lemma 10: a weak prime
algebraic domains where i1 ↔ i2, i2 ↔ i3, and i2, i3 are
consistent but i2 6↔ i3.

E(f)([i1]↔∗) = [i2]↔∗ , where i2 ∈ δ(f(i1), f(p(i1))) is
minimal in the set.

We then get a result corresponding to Theorem 1 for es with
non-binary conflict and weak prime b-domains.

Theorem 5 (corecflection of ESn and wDomb) The func-
tors D : ESn → wDomb and E : wDomb → ESn form a
coreflection. It restricts to an equivalence between wDomb

and cESn.

	I Introduction
	II Background: domains and event structures
	II-A Event structures
	II-B Domains

	III Weak prime domains and connected es
	III-A Weak prime algebraic domains
	III-B Connected es
	III-C From domains to es
	III-D Relating categories of models

	IV A connected es semantics for graph rewriting
	IV-A Graph rewriting and concatenable traces
	IV-B A weak prime domain for a grammar
	IV-C Any connected es is generated by some grammar

	V Conclusions and related work
	References
	Appendix
	A Es with non-binary conflict

