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countably based, totally disconnected compact Hausdor� spaces, arises from thefact that compact ultrametric spaces , a category of spaces widely used in metricsemantics (see [8]), are 2-Stone spaces.A natural partialization of a 2-Stone space hX; �i by a Scott domain canbe immediately obtained as the ideal completion of the collection K
ne(X)of non-empty compact open subsets of X , ordered by reverse inclusion DX1 =Idl(K
ne(X);�). Such domains are extensional in the sense that di�erent partialelements approximate di�erent sets of maximal elements. However, this class ofdomains is not closed under signi�cant domain constructors, such as lifting andPlotkin powerdomain, in that such constructors add points that are meaninglessw.r.t. the topology of the induced space.Another extensional partialization can be obtained by associating to a 2-Stone space X , the tree DX2 of closed balls of a metrization of X , ordered byreverse inclusion (as in [6, 7, 12]). In the setting of compact ultrametric spacesand non-distance increasing functions, domain constructors can be de�ned onthese trees inducing the corresponding metric constructors on the space of max-imal elements. This solution, however, is not completely satisfactory since theconstructors are quite \ad hoc".In this paper we explore the approach of [1] and consider, even non exten-sional, SFP domains. We exploit the fact that both 2-Stone spaces and SFPdomains share the �nitary property of being limits of sequences of �nite discretestructures, namely �nite discrete spaces and �nite partial orders, respectively.In fact, at the level of �nite structures, we have that:i) partial orders are closed under many domain constructors, i.e. lifting (:)?,separated sum +, product � and Plotkin powerdomain PPl;ii) the subspace of maximal elements of a partial order is a discrete space, andevery discrete space can be viewed as such a subspace, for suitable partial orders;iii) the natural functor MAX commutes in an obvious way with the domain con-structors in i).Thus, at the level of �nite structures one can de�ne compositionally natural par-tializations of discrete spaces. In this paper we generalize to the !-limit whathappens at �nite level. In particular we introduce a suitable subcategory SFPmof SFPep closed under limits as well as the above mentioned domain construc-tors. The subspace of maximal elements of an object in SFPm is a 2-Stone space,and every 2-Stone space can be viewed as such a subspace, for a suitable objectin SFPm. Since the functor MAX from SFPm to 2-Stone is !-continuous, wecan de�ne SFP domains which \partialize" solutions of a vast class of domainequations in 2-Stone, by solving the corresponding equations in SFPm.A partialization which has been extensively studied in the literature byAbramsky [3] and Mislove, Moss, Oles [15] is that of Milner's SynchronizationTrees, or equivalently the closure of the space of hereditarily �nite hypersets.This space is homeomorphic to the hyperuniverse N! of [13] and it appearsquite frequently under di�erent mathematical perspectives, e.g. as the 2-Cantorspace. In [15] the question was raised as to whether the two partializations givenin [3] and [15] are isomorphic.



An immediate application of our results shows that the solutions of the twodomain equations in SFPep introduced by Abramsky (see [2]) and Mislove et al.(see [15]) have isomorphic maximal spaces. Using the notion of rigid embedding-projection pair we give a negative answer to the open problem raised in [15].The technique based on rigid embedding-projection pairs is rather promising inthe analysis of the �ne structure of domains. Using the above results, we canshow furthermore that there is a plethora of non-isomorphic solutions of reexivedomain equations having the hyperuniverse N! as space of total elements. It isa matter of further investigation which of these (if any) is the most appropriatepartialization of the universe of hypersets.Throughout the paper we use standard notation and basic facts of DomainTheory and Topology (see [17, 11]). In Section 1 we give the basic de�nitionsand we recall useful facts about SFP domains and Stone spaces. In Section 2we discuss extensional partializations. In Section 3 we introduce the categorySFPm and show that it is closed under various domain constructors. In Section4 we relate 2-Stone spaces to SFPm domains using the functor MAX. In Section5 we discuss partialization of hyperuniverses. Finally in Section 6 we show thatthe results of sections 3-4 cannot be extended to function space constructorsand that the compactness condition is necessary. For lack of space the proofs areomitted from this extended abstract. They appear in detail in [5].This paper grew out from some initial results presented by the authors at the1994 meeting in Rennes of the EEC project MASK (Mathematical Structuresfor Concurrency). The authors are grateful to S. Abramsky, P. Di Gianantonio,M. Lenisa and to all MASK members for useful comments.1 Stone Spaces and SFP DomainsWe start by recalling de�nitions and basic facts about Stone spaces and SFP'sdomains (see [17], [11] for more details). Both kinds of objects are �nitary in thesense that they can be obtained as limits of sequences of �nite objects in thecorresponding categories.De�nition 1. A 2-Stone space is a compact topological space with a countablebasis of clopen sets.Proposition 2. Let hX; �i be a topological space. The following are equivalent:1. hX; �i is a 2-Stone space;2. hX; �i = lim hhXn; �ni; fni (Xn �nite, �n discrete topology);3. hX; �i is compact and ultrametrizable with d : X �X ! f0g [ f2�ngn.Let Top be the category of topological spaces and continuous functions. Wedenote with 2-Stone the full subcategory of Top consisting of 2-Stone spaces.Given two cpo's D and E, an embedding-projection pair (ep-pair) from D toE is any pair of continuous functions i : D ! E, j : E ! D such that i�j v IdEand j � i = IdD.



We denote byCPOep the category of CPO's and embedding-projection pairs.Let hDn; pni be a sequence in CPOep and let D be its limit. For all n we denotewith in and jn the components of the ep-pair pn and with n = h�n; �ni thecanonical ep-pair from Dn into the limit.De�nition 3. A Sequence of Finite Posets (SFP) domain is a domain which isisomorphic to the direct limit of a directed sequence of �nite CPO's in CPOep.We denote by SFPep the full subcategory of CPOep consisting of SFP's.Let X be a subset of the collection K(D) of compact elements of D and letU(X) denote the set of minimal upper bounds of X . U(X) is said to be completeif for each upper bound y of X there exists x 2 U(X) such that x v y. FinallyU�(X) denotes the smallest set containing X and closed under U .Proposition4. Let (D;v) be a partial order. Then D is an SFP if and only ifD is an !-algebraic CPO and whenever X is a �nite set of �nite elements of D,then U(X) is a complete �nite set of upper bounds of X and U�(X) is �nite.If D satis�es only the �rst two of the three conditions above it is called a 2=3SFP, or equivalently a coherent !-algebraic domain.Proposition5. Let D = lim hDn; pni with Dn SFP's and pn ep-pairs. Then:1. u �fin (K(D)) , 9n: 9un �fin K(Dn) u = �n(un);2. 8n: 8un �fin K(Dn): U�(�n(un)) = �n(U�n(un)):2 Extensional PartializationsGiven a 2-Stone space hX; �i we say that a SFP domain D induces hX; �i if(Max(D);S) ' hX; �i, where S denotes the topology induced by Scott topologyon Max(D). In general, one can �nd in�nitely many SFP domains which inducea given 2-Stone space hX; �i; consider, for instance, all SFP's with a top ele-ment. The �nite elements of any such domain, however, cannot be interpreted,in general, as the open sets (properties) of the original space. In order to have\partializations" of 2-Stone spaces where �nite elements represent properties ofthe original space, it is natural to restrict attention to extensional domains.De�nition 6. An SFP domain D is extensional if for each �nite element d 2 Dd = Vfz j z 2 Max(D)\ "dg.Notice that even if we restrict attention just to extensional SFP domains,still we cannot �nd a unique domain which induces a given 2-Stone space onits subspace of maximal elements. Consider, for instance, a at domain and themeet-semilattice generated by it.We discuss briey two possible canonical constructions for embedding home-omorphically a 2-Stone space X into Max(D) for some domain D.



The �rst construction is suggested by Stone duality [18] and it is obtainedby considering the collection K
ne(X) of non-empty compact open subsets ofX , ordered by reverse inclusion (K
ne(X);�) and then its ideal completion,DX1 = Idl(K
ne(X);�): or equivalently the collection of non-empty compactsubsets (Kne(X);�). Clearly DX1 is an extensional !-algebraic Scott domainand (Max(DX1 );S) �= X . Moreover DX1 is \maximal", in the sense that anyother extensional SFP domain that induces X can be embedded by a continuousinjective function into DX1 . In fact SFP domains are !-algebraic and each clopenis determined by a �nite element. However, extensionality is not preserved byimportant domain constructors such as PPl. To see this it is enough to applyPPl to the extensional �nite SFP domain D = fa; bg?.Alternative extensional partializations are suggested by [19, 6, 7, 12]. Theyare based on the fact that each 2-Stone spaceX is metrizable with an ultrametricd : X �X ! f0g [ f2�ngn. Hence one can consider DX2 = Idl(f �B(x; 2�n) j n 2INg;�). DX2 is an !-algebraic CPO where incomparable elements have no upperbounds, i.e. DX2 is a (�nitely branching) tree. Maximal elements of DX2 can beidenti�ed with maximal chains in (f �B(x; 2�n) : n 2 INg;�) and the functionf : (Max(DX2 );S) ! (X;
(X)) mapping a chain (Bn)n to the sole point inTn Bn is a homeomorphism. This partialization contains only elements corre-sponding to a system of disjoint clopen sets. In [6, 7] it is shown that such trees(of formal balls), and level preserving functions, can be turned into a categoryBTree, which is equivalent to the cartesian closed category KUM of compactultrametric spaces and non expansive functions. The equivalence is establishedby a functor that associates to each tree the space of maximal elements with theinduced topology. In BTree we can de�ne domain constructors, such as lifting,product, sum, function space and powerdomain, which induce on the space ofmaximal elements the corresponding metric constructors. This partialization isnot completely satisfactory since it requires to restrict oneself to particular con-tinuous functions (i.e. non expansive functions) and to consider constructors ontrees which are quite \ad hoc".3 The Category SFPmIn view of the results of the previous section, in order to have a well behavedclass of partializations, we are led to drop the extensionality condition and tofocus on a wider class of SFP domains.In this section we de�ne a subcategory SFPm of SFPep such that everyobject in SFPm induces a 2-Stone space. Constructors over SFPm are de�nedin the standard way. We establish a connection between these constructors andthe corresponding ones over 2-Stone, using the functor Max. Then, a domainequation in 2-Stone can be translated into a domain equation in SFPm, in sucha way that the solution of the latter is a partialization of the former.We start by pointing out the \folklore" result that, if D is a 2=3 SFP thenthe Scott topology S and the Lawson topology L coincide on Max(D). Hence:



Proposition7 (Maximal elements of an SFP). Let (D;v) be a 2=3 SFP.Then (Max(D);S) is a second countable, totally disconnected space.Not all SFP domains induce a compact space on the subspace of maximalelements. Consider, for instance, IN?. A natural and su�cient, but not necessary,condition on D for compactness to hold is that there exist a direct sequencewith limit D, where projections preserve maximal elements. In order to singleout a suitable category of such SFP domains (see De�nition 12), we need somepreliminary results.De�nition 8 (M-pair). Let D and E be SFP's. An ep-pair p = hi; ji : D ! Eis called maximals preserving pair, or M-pair , if for all x 2 Max(E), j(x) 2Max(D) (i.e. j(Max(E)) � Max(D)).Notice that if p = hi; ji : D ! E is an M-pair then j(Max(E)) = Max(D).In fact, by surjectivity of j, for all x 2 Max(D) there exists y 2 E such thatj(y) = x. Hence if y0 2 Max("y) we have j(y0) = x. Moreover, composition of M-pairs is an M-pair. We denote by limm!hDn; pni the limit of a directed sequenceof �nite CPO's and M-pairs.Lemma9. Let D = limm!hDn; pnin. Then given x = (xn)n 2 Dx is maximal in D i� jn(x) = xn is maximal in Dn for all n:Continuity in Lawson topology is a stronger notion than continuity in Scotttopology, but one can easily check that projections are also Lawson continuous.This simple remark is useful in proving the following:Lemma10. Let D = limm!hDn; pnin. Then Max(D) is Lawson closed, hencecompact.Theorem11. Let D = limm!hDn; pnin. Then (Max(D);S) is a 2-Stone space.Finally we can introduce the category of SFP domains we shall work with:De�nition 12 (Category SFPm). The category SFPm has as objects thoseSFP's that are limit of directed sequences of �nite CPO's and M-pairs. Mor-phisms are M-pairs, the identity and composition are standard.We can give also an intrinsic characterization of SFPm objects. This will beinstrumental in proving some interesting properties of SFPm such as the closurewith respect to direct limits.De�nition 13 (M-condition). We say that an SFP (D;v) satis�es the M-condition if 8u �fin K(D):9v �fin K(D) such that:i) u � v,ii) Max(U�(v)) vs Max(D), where vs is Smyth preorder (i.e. u vs v i� 8y 2v:9x 2 u:x v y).



In order to show that SFPm objects are exactly those SFP's which satisfythe M-condition we proceed as follows. First we prove that the limit, taken inSFPep, of a sequence hDn; pni in SFPm is a limit in SFPm. Then we show thatthe M-condition is preserved under limits. Using these facts and that every �niteCPO satis�es the M-condition, we can easily prove the desired result.Lemma14. Let D = lim!hDn; pni, with hDn; pni directed sequence in SFPm.Then x = (xn)n 2 Max(D) i� xn 2 Max(Dn) for all n.Lemma15. Let D = lim!hDn; pni, with hDn; pni directed sequence in SFPm.If each Dn satis�es the M-condition then also D satis�es M-condition.Theorem16 (Internal characterization of SFPm objects). Let (D;v) bean SFP. Then D is an SFPm object i� D satis�es the M-condition.Corollary 17. The category SFPm is closed under direct limits.Notice that given a 2-Stone space X the domains DX1 and DX2 de�ned insection 1 are both SFP objects which satisfy the the M-condition. As we men-tioned earlier, however, the category SFPm does not contain all SFP's thatinduce 2-Stone spaces, i.e. the M-condition is only su�cient, but not necessaryfor the compactness of the induced space. Consider for instance the functor +�over SFPep de�ned as follows:D +� E =def (f(d; 0) j d 2 Dg [ f(e; 1) j e 2 Eg [ f?; �g;v�), where for eachx; y 6= �, x v� y if and only if x vD+E y and (?D; 0) v� �, (?E ; 1) v� �.Given two strict functions f : D ! D0, g : E ! E0, f +� g coincides withf + g on all the elements di�erent from � and it maps �D+�E to �D0+�E0 . Theaction of +� over M-pairs is hi; ji+� hh; ki = hi+� h; j +� ki:It is easy to prove that the initial solution of the domain equationX ' X+�Xis not in SFPm but that the space of its maximal elements is 2-Stone.We show now that several domain constructors over SFPep, namely lifting(:)?, separated sum +, product � and Plotkin powerdomain PPl, are functorialover SFPm. The coalesced sum� is functorial only on SFPm0 , the subcategory ofSFPm consisting of non-trivial SFP domains. From now on it will be understoodthat the application of the � functor is con�ned to (objects in) SFPm0 . Thefunction space constructor is very problematic, see Section 6 for a brief discussionof this issue.We shall use the characterization of Plotkin powerdomain PPl(D) as theset fX � D j X non-empty, convex and Lawson closedg, with the Egli-Milnerordering. Con(X) denotes the least convex set that contains X . Cl denotes theclosure operator in Lawson topology. If f : D ! E is a continuous functionthen PPl(f) : PPl(D) ! PPl(E) is de�ned as PPl(f)(X) = Con(Cl(f(X))). Inparticular if f is a projection then PPl(f)(X) = f(X). In fact a projection isLawson continuous, hence f(X) is closed. Moreover f(X) is convex.The next lemma gives a characterization ofMax(PPl(D)) for an SFPm objectD. It states that only maximal elements of D play an essential role in formingmaximal elements of the Plotkin powerdomain. It will be used to show that PPl



is functorial on SFPm and corresponds, in a sense formalized in Section 4 to theconstructor Pnco of 2-Stone.Lemma18. Let D be an SFPm object. Then Max(PPl(D)) = fX 2 PPl(D) jX � Max(D)g.Since each subset of Max(D) is clearly convex we have Max(PPl(D)) = fX �Max(D) j X Lawson closedg:Lemma19. Let D;E;Di; Ei(i = 1; 2) be SFPm objects and let p : D ! E,pi : Di ! Ei be M-pairs. Then:1. p? : D? ! E?;2. p1 + p2 : D1 +D2 ! E1 +E2;3. p1 � p2 : D1 �D2 ! E1 �E2 (if jD1j; jD2j > 1);4. p1 � p2 : D1 �D2 ! E1 �E2;5. PPl(p) : PPl(D)! PPl(E) are M-pairs.Notice that if D1 or D2 is a one-point CPO then p1 � p2 can fail to be anM-pair. Hence, as remarked, � is not functorial on SFPm.Closure of SFPm with respect to all constructors de�ned above easily followsfrom a general result.Lemma20. Let F : (SFPep)n ! SFPep be a locally continuous functor thatpreserves M-pairs. If D1; : : : ; Dn are SFPm objects then F (D1; : : : ; Dn) is anSFPm object.Corollary 21. Let D;D1; D2 be SFPm objects. Then D?, D1 +D2, D1 �D2,D1 �D2 and PPl(D) are SFPm objects.Corollary 22 (Domain constructors in SFPm). The constructors (:)?, +,� and PPl are functorial over SFPm. The constuctor � is functorial over thecategory SFPm0 .4 Relation between SFPm and 2-StoneIn this section we relate the categories SFPm and 2-Stone. First of all we showthat it is possible to de�ne an !-continuous functor MAX : SFPm ! 2-Stone.Then we prove that the functor MAX is compositional with respect to the con-structors considered in the previous section, in the sense that MAX(F (D)) 'F (MAX(D)), where F is the functor over 2-Stone corresponding to F . In thisway equations in 2-Stone and their solutions can be described by means ofequations and solutions in SFPm.De�nition 23. The contravariant functor MAX : SFPm ! 2-Stone is de�nedas follows. For each SFPm object D, MAX(D) = (Max(D);S). For each M-pairp = hi; ji : D ! E, MAX(p) = jjMax(E) : MAX(E)! MAX(D).



It is straightforward to check that MAX is well-de�ned and !-continuous:Theorem24. Let D = lim!hDn; pni, with hDn; pni a direct sequence in SFPm,or SFPm0 . Then MAX(D) ' lim hMAX(Dn);MAX(jn)i:The correspondence between constructors in SFPm and in 2-Stone is for-malized as follows:De�nition 25. Two functors F : (2-Stone)n ! 2-Stone and G : (SFPm)n !SFPm are called associated functors if there exists a natural isomorphism � :F � (MAX; : : : ;MAX)! MAX �G.We now show that (:)?, +, � and PPl in SFPm are associated to the cor-responding constructors Id (identity), �[ (disjoint union), � (product), and Pnco(hyperspace of non-empty compact subsets) in 2-Stone.2 Moreover, in SFPm0 ,the constructor � is associated to �[.Lemma26. Let D, D1 and D2 be SFPm objects. Then1. MAX(D1 +D2) ' MAX(D1)�[MAX(D2);2. MAX(D?) ' MAX(D);3. MAX(D1 �D2) ' MAX(D1)�MAX(D2);4. MAX(PPl(D)) ' Pnco(MAX(D));5. MAX(D1 �D2) ' MAX(D1)�[MAX(D2).Theorem27. The following functors on SFPm and 2-Stone are associated:(:)? with Id, � with �, + with �[ and PPl with Pnco. Moreover � over SFPm0 isassociated to �[ over 2-Stone. Finally composition of associated functors is thefunctor associated to the composition.5 Domain Equations for Non Well Founded SetsIn this section we apply the theory developed in the previous section to the studyof the initial solutions of two important domain equations in SFPm, namely:X ' (2�PPl(X?)) (Eq1)X ' 1 + Ppl(X) (Eq2)The initial solution D of (Eq1) was introduced by Abramsky in [3] in order topartialize Milner's Synchronization Trees. The initial solution E of (Eq2) wasintroduced by Mislove Moss and Oles in [15] in order to partialize the closure ofthe space of hereditarily �nite hypersets. This space of hypersets is homeomor-phic in 2-Stone to Milner's Synchronization Trees, as can be seen, for instance,by an immediate application of Theorem 27 and Theorem 24. In [15] the questionwas raised as to whether the two initial solutions in SFP are isomorphic.2 The space Pnco(X) is de�ned as the set fK � X j K non-empty and compactgendowed with the Vietoris topology, i.e. the topology having as subbasis: VA =fK 2 Pnco(X) j K � Ag and ZA = fK 2 Pnco(X) j K \A 6= ;g for A 2 
(X).



We give a negative answer to this open problem by showing that D and Eare non-isomorphic. Our proof is based on the notion of rigid ep-pair.Using the above results, we can show furthermore that there is a plethora ofnon-isomorphic solutions of reexive domain equations having the hyperuniverseN! as space of total elements. In general, for any SFP domain D0 such thatU = MAX(D0) is a �nite discrete space, the initial solutions of the equationsX ' (D0 + PPl(X)) and (if D0 has at least two points) X ' (D0 � PPl(X?))induce the hyperuniverse N!(U) ([13]).The proof of the fact that D and E are not isomorphic is done through ananalysis of the �ne structure of Plotkin powerdomain constructor. This allowsto show that D contains some points in a particular relation with the maximalelements of D which do not exist in E.We work in SFPep. First we introduce the notion of rigid ep-pair and listsome of its most important properties:De�nition 28 (Rigid ep-pair). Let D and E be SFP's. An ep-pair p = hi; ji :D ! E is called rigid if 8x 2 D and y 2 E with y v i(x), there exists x0 2 Dsuch that x0 v x and i(x0) = y.Proposition29. Let D and E be SFP's and let p = hi; ji : D ! E be an ep-pair. Then the following statements are equivalent:1. p is rigid;2. for all x 2 D and y 2 E, if y v i(x) then i � j(y) = y;3. for all x; x0 2 D, y 2 E with i(x) v y v i(x0), there exists x00 2 D such thatx v x00 v x0 and y = i(x00).Lemma30. Composition of rigid ep-pairs is a rigid ep-pair.Lemma31. Let D, D0, E, E0 be SFP's and let p = hi; ji : D ! E, p0 = hi0; j0i :D0 ! E0 be rigid ep-pairs. Then1. p? : D? ! E?,2. p� p0 : D �D0 ! E �E0,3. p+ p0 : D +D0 ! E +E0,4. p� p0 : D �D0 ! E �E0,5. Ppl(p) : Ppl(D)! Ppl(E)are rigid ep-pairs.Lemma32. Let hDn; pni be a directed sequence of SFP's and ep-pairs. Let D =lim!Dn be the direct limit of the sequence. If every pn is rigid then the canonicalep-pairs h�n; �ni : Dn ! D are rigid.Finally we are able to state the property satis�ed by D but not by E. Thetwo results below are proved using essentially the fact that both D and E arelimits of sequences with rigid ep-pairs. Hence the property is shown to hold (fail)in the limit by testing it at each �nite level.Lemma33. There exists a; b 2 K(D), with a < b such that1. 8x 2 D: a v x v b ) x = a _ x = b,



2. 8x 2 D: ? v x v a ) x = ? _ x = a,3. Max("a) = Max("b).Lemma34. There are no elements a; b 2 K(E), with a < b such that1. 8x 2 E: a v x v b ) x = a _ x = b;2. 8x 2 E: ? v x v a ) x = ? _ x = a;3. Max("a) = Max("b).Theorem35. The initial solutions of (Eq1) and (Eq2) are not isomorphic.6 Final remarks1. Given an SFP domain D, the space MAX(D) is a space with a countable basisof clopen sets. One can ask whether Theorem 27 can be extended to SFPep andQStone, the category of totally disconnected separable Hausdor� spaces andcontinuous functions. The answer is negative, since there is no associated functorto Plotkin powerdomain constructor when we drop the compactness condition.Let D1 = IN?, D2 = IN? + IN?. Both Max(D1) and Max(D2) coincide withIN endowed with the discrete topology. But Max(Ppl(D1)) is not homeomorphicto Max(Ppl(D2)) since the former has only one limit point, while the latter hasmore than one. In fact, in Max(Ppl(D1)) there is a unique in�nite set, namelyD1 itself, while Max(Ppl(D2)) contains more than one in�nite element.2. It would be interesting to extend the results of Section 4 so as to comprise alsothe function space constructor. Unfortunately 2-Stone is not cartesian closed,in that the space of continuous functions between two 2-Stone spaces endowedwith the compact open topology is not compact, in general. One could then tryto look at least for the existence of some functor over 2-Stone associated to thefunction space constructor over SFP. But even this is hopeless.First of all maximal functions between SFP objects do not map maximalelements into maximal elements, and thus they do not induce in a natural wayfunctions between the spaces of maximal points. Consider, for instance, D =Nlazy, Bool = ftt;�g? and take the continuous function parity : D ! Bool(de�ned in the obvious way). It is a maximal element in [D ! Bool], but it doesnot map the maximal point ! 2 D in a maximal element of Bool.But furthermore, function spaces of SFP objects, with the same space ofmaximal elements, can be non-homeomorphic. Consider, for instance,E = fa; b;?g[ fci j i 2 Ng;ordered as follows: for all i, ci v a; b, and for all x, ? v x.Then Max(Bool) and Max(E) are the same discrete space, but the maximalelements of the function spaces Max([Bool ! Bool]) and Max([Bool ! E])are di�erent. In fact Max([Bool ! Bool]) is a �nite discrete space containingonly four functions, while Max([Bool ! E]) contains in�nitely many functions.Namely, the functions fi(tt) = a, fi(�) = b, fi(?) = ci, for i 2 IN , and theconstant functions. All these functions are isolated points in a topological sense
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