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Abstract

Graph grammars (or graph transformation systems), originally introduced as a gen-
eralization of string grammars, can be seen as a powerful formalism for the speci-
fication of concurrent and distributed systems, which properly extends Petri nets.
The idea is that the state of a distributed system can be naturally represented (at
a suitable level of abstraction) as a graph and local state transformations can be
expressed as production applications.

With the aim of consolidating the foundations of the concurrency theory for
graph transformation systems, the thesis extends to this more general setting some
fundamental approaches to the semantics coming from Petri net theory. More specif-
ically, focusing on the so-called double pushout (dpo) algebraic approach to graph
rewriting, the thesis provides graph transformation systems with truly concurrent
semantics based on (concatenable) processes and on a Winskel’s style unfolding
construction, as well as with more abstract semantics based on event structures and
domains.

The first part of the thesis studies two generalizations of Petri nets, already
known in the literature, which reveal a close relationship with graph transformation
systems, namely contextual nets (also called nets with read, activator or test arcs)
and inhibitor nets (or nets with inhibitor arcs). Extending Winskel’s seminal work
on safe nets, the truly concurrent semantics of contextual nets is given via a chain
of coreflections leading from the category of contextual nets to the category of fini-
tary coherent prime algebraic domains. A basic role is played by asymmetric event
structures, which generalize prime event structures by allowing a non-symmetric
conflict relation. The work is then generalized to inhibitor nets, where, due to the
non-monotonicity of the enabling, the causal structure of computations is far more
complex, and a new, very general, notion of event structure, called inhibitor event
structure, is needed to faithfully describe them.

The second part of the thesis, relying on the conceptual basis drawn in the
first part, focuses on graph grammars. Inhibitor event structures turn out to be
expressive enough to model graph grammar computations, and the theory developed
for contextual and inhibitor nets, comprising the unfolding and the (concatenable)
process semantics, can be lifted to graph grammars. The developed semantics is
shown to to be consistent also with the classical theory of concurrency for dpo
graph grammars relying on shift-equivalence.
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Chapter 1

Introduction

Over the last thirty years there has been a steadily growing interest in concurrent and
distributed systems. An unbroken thread leads from the more classical ideas related
to the sharing of many computing resources among various users (multiuser systems,
databases, etc.) and the use of many distinct computing resources to obtain a greater
computational power (multiprocessor computing), to the current widespread diffu-
sion of Internet and network applications. Day by day real systems become more
complex and sophisticated, but at the same time more difficult to test and verify,
and thus possibly more unreliable. Because of this, new formal models adequate to
ease the specification, development and verification of concurrent systems are called
for.

Generally speaking, a formal model must give a representation of a system which
is abstract enough to disregard unnecessary details, and, at the same time, is suf-
ficiently rich to allow one to represent properties and aspects of the system which
may be relevant for the design and verification activities. Besides representing the
state and the architectural aspects of a system, a model typically comes equipped
with an operational semantics which formally explains how the system behaves. On
top of the concrete operational description, depending on which observations one
wants to take into account, more abstract semantics can be introduced. At this level
one can define techniques for checking the equivalence of systems with respect to
the selected observations, for verifying if a systems satisfies a given property, for
synthesizing in an efficient way a system satisfying a given property, etc.

For sequential systems it is often sufficient to consider an input/output semantics
and thus the appropriate semantic domain is usually a suitable class of functions
from the input to the output domains. When concurrent or distributed features are
involved, instead, typically more information about the actual computation of the
system has to be recorded in the semantic domain. For instance, one may want
to know which steps of computation are independent (concurrent), which steps are
causally related and which steps represent the (nondeterministic) choice points. This
information is necessary, for example, if one wants to have a compositional semantics,
allowing to reduce the complexity of the analysis of concurrent systems built from



2 Chapter 1. Introduction

smaller parts, or if one wants to allocate a computation on a distributed architecture.
Roughly speaking, nondeterminism can be represented either by collecting all the
possible different computations in a set, or by merging the different computations in
a unique branching structure where the choice points are explicitly represented. On
the other hand, concurrent aspects can be represented by using a truly concurrent
approach, where the causal dependencies among events are described directly in the
semantics using a partially ordered structure. There is some agreement in consid-
ering this choice more appropriate for the analysis of concurrent and distributed
systems than the interleaving approach, where concurrency is confused with nonde-
terminism, in the sense that the concurrent execution of events is represented as the
nondeterministic choice among the possible interleavings of such events.

Petri nets are one of the the most widely used models of concurrency, which has
attracted, since its introduction, the interest of both theoreticians and practitioners.
Along the years Petri nets have been equipped with satisfactory semantics, making
justice of their intrinsically concurrent nature and which have served as basis for
the development of a variety of modelling and verification techniques. However, the
simplicity of Petri nets, which is one of the reasons of their success, represents also a
limit in their expressiveness. If one is interested in giving a more structured descrip-
tion of the state, or if the kind of dependencies between steps of computation cannot
be reduced simply to causality and conflict, Petri nets are likely to be inadequate.

This thesis is part of a project aimed at proposing graph transformation systems
as an alternative model of concurrency, extending Petri nets. The basic intuition
underlying the use of graph transformation systems for formal specifications is to
represent the states of a system as graphs (possibly attributed with data-values) and
state transformations by means of rule-based graph transformations. Since a rule has
only a local effect on the state, it is natural to allow for the parallel application of
rules acting on different parts of the state, a fact that makes graph transformation
systems suited for the representation of concurrency.

Needless to say, the idea of representing system states by means of graphs is
pervasive in computer science. Whenever one is interested in giving an explicit rep-
resentation of the interconnections, or more generally of the relationships among the
various components of a system, a natural solutions is to use (possibly hierarchical
and attributed) graphs. The possibility of giving a suggestive pictorial representa-
tion of graphical states makes them adequate for the description of the meaning of a
system specification, even to a non-technical audience. A popular example of graph-
based specification language is given by the Unified Modeling Language (UML). In
UML the conceptual models of system states, the collection of admissible states, and,
on an higher level, the distribution of systems are represented by means of diagrams,
which are of course graphs, sometimes attributed with textual information. Recall
also the more classical Entity/Relationship (ER) approach, where graphs are used
to specify the conceptual organization of the data, or Statecharts, a specification
language suited for reactive systems, where states are organized in a hierarchical
tree-like structure. Furthermore, graphs provides a privileged representation of sys-
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tems consisting of a set of processes communicating through ports. When one is
interested in modelling the dynamic aspects of systems whose states have a graphi-
cal nature, graph transformation systems are clearly one of the most natural choices.

With the aim of consolidating the foundations of the concurrency theory of graph
transformation systems, this thesis extends to this more general setting some fun-
damental approaches to the semantics of Petri nets. More specifically, inspired by
the close relationships existing between nets and graph transformation systems, we
provide graph transformation systems with truly concurrent semantics based on de-
terministic processes and on a Winskel-like unfolding construction, as well as with
more abstract semantics based on event structures and domains.

As an intermediate step, we study two generalizations of Petri nets proposed in
the literature, which reveal a close relationship with graph transformation systems,
namely contextual nets (also called nets with read, activator or test arcs) and nets
with inhibitor arcs. Due to their relatively wide diffusion, we believe that the work
on these extended kinds of nets may be understood as an additional outcome of
the thesis, independently from its usefulness in carrying out our program on graph
transformation systems.

The rest of this introductory chapter is aimed at presenting the general frame-
work in which this thesis has been developed, the main motivations and concepts
from Petri net theory, and an overview of the results. First, in Sections 1.1 and 1.2,
we give a description of the basic models, namely ordinary Petri nets, contextual
and inhibitor nets and finally graph transformation systems, organized in an ideal
chain where each model generalizes its predecessor. Then Section 1.3 outlines the
approach to the truly concurrent semantics of ordinary Petri nets which we propose
as a paradigm. Section 1.4 gives an overview of the thesis, by explaining how the
semantical framework of ordinary nets has been lifted along the chain of models,
first to contextual and inhibitor nets and then to graph grammars. We give a flavour
of the main problems which we encountered and we outline the main achievements
of the thesis. Finally, Section 1.5 describes how the thesis is organized and explains
the origin of the chapters.

1.1 Petri nets

Petri nets, introduced by Carl Adam Petri in the early Sixties [Pet62] (see
also [Rei85]), are one of the most widely accepted models of concurrent and dis-
tributed systems, and one of the rare meeting point of theoreticians and practition-
ers. The success of Petri nets in the last thirty years can be measured by looking
not only at the uncountably many applications of nets, but also at the development
of the theoretical aspects, which range from a complete analysis of the various phe-
nomena arising in simple models to the definition of more expressive (and complex)
classes of nets.
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•

s0

•

s1

t0s2 s3

t1 t2 t3

Figure 1.1: A simple Petri net.

One of the reasons of the popularity of Petri nets is probably the simplicity of
the basic model, whose behaviour, at a fundamental level, can be understood simply
in terms of the so-called token game. The state of a net is a set of tokens distributed
among a set of places. A transition is enabled in a state if enough tokens are present
in the places in its pre-set. The firing of the transition removes some tokens and
produces new tokens in its postconditions.

Petri nets admit a very pleasant and simple graphical representation where places
are drawn as circles, transitions as rectangular boxes and arrows are used to rep-
resent the flow relation, specifying which resources are consumed and produced by
each transition. To visualize the state of the net, usually called marking, the tokens
are depicted as bullets inside the corresponding places. For instance, in the net of
Figure 1.1, the transition t0 consumes two tokens, one from s0 and one from s1, and
thus it is enabled in the represented marking. Its firing produces the new marking
where s0 and s1 are empty and a new token is produced both in s2 and s3.

The above informal description is probably sufficient to suggest the appropriate-
ness of nets as models of concurrency. The state of a net has an intrinsic distributed
nature, and a transition modifies a local part of the state, making natural to allow
the concurrent firing of transitions when they consume mutually disjoint sets of to-
kens (e.g., t2 and t3 in the state produced after the firing of t0). A situation of mutual
exclusion is naturally represented by two transitions competing for a single token,
like t1 and t2 in the figure. The nondeterministic behaviour of a net is intimately
connected with such kind of situations.

A limit in the expressiveness of Petri nets is represented by the fact that a
transition can only consume and produce tokens, and thus a net cannot express in a
natural way activities which involves non-destructive testing operations on resources.
In the following we review contextual nets and inhibitor nets, two generalizations of
classical nets aimed at overcoming this limit.



1.1. Petri nets 5

N0

• •

t0 •
s

t1

• •

t0 •
s

t1 N1

Figure 1.2: Traditional nets do not allow for concurrent read-only operations.

Contextual nets.

Contextual nets [MR95], also called nets with test arcs in [CH93], activator arcs in
[JK95] or read arcs in [Vog96], extend classical nets with the possibility of checking
for the presence of tokens which are not consumed. Concretely, besides the usual
preconditions and postconditions, a transition of a contextual net has also some
context conditions, which specify that the presence of some tokens in certain places is
necessary to enable the transition, but such tokens are not affected by the firing of the
transition. In other words, a context can be thought of as a resource which is read but
not consumed by the transition, in the same way as preconditions can be considered
being read and consumed and postconditions being simply written. Coherently with
this view, the same token can be used as context by many transitions at the same
time and with multiplicity greater than one by the same transition. For instance, the
situation of two agents, which access a shared resource in a read-only manner can be
modelled directly by the contextual net N0 of Figure 1.2, where the transitions t0 and
t1 use the place s as context. According to the informal description of the semantics
of contextual nets, in N0 the transitions t0 and t1 can fire concurrently. Notice that
in the pictorial representation of a contextual net, directed arcs represent, as usual,
preconditions and postconditions, while, following [MR95], non-directed (usually
horizontal) arcs are used to represent context conditions.

It is worth remarking that the näıve technique of representing the reading of a
token via a consume/produce cycle may cause a loss in concurrency, even if the same
markings are reachable. For instance, in the net N1 of Figure 1.2, the two transitions
t0 and t1 cannot read the shared resource s concurrently, but their accesses must be
serialized.

The ability of faithfully representing the “reading of resources” allows contextual
nets to model many concrete situations more naturally than classical nets. In re-
cent years they have been used to model the concurrent access to shared data (e.g.,
reading in a database) [Ris94, DFMR94], to provide concurrent semantics to concur-
rent constraint (CC) programs [MR94, BHMR98] where several agents may access
a common store, to model priorities [JK91] and to compare temporal efficiency in
asynchronous systems [Vog97a].

As a concrete example we hint how contextual nets allow to face the problem of
serializability of concurrent transactions in the field of databases [Ris94]. Roughly
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speaking a transaction implements an “activity” on the database by means of a
sequence of read and write operations, which, starting from a consistent state of the
database, produces a new consistent state. When several agents access a database
it is natural to allow transactions to be executed concurrently. However in this way
the operations of distinct transactions may interleave in an arbitrary way and this
may cause interferences which lead the database to an inconsistent state. To ensure
that the consistency of the state is maintained we must show that the considered
interleaving, called a scheduling of the transactions, is indeed equivalent to a serial
scheduling of the same transactions, where no interleaving is admitted.

A transaction T = t1; . . . ; tn where each ti is a read or write operation can
be represented by means of a contextual net process (formally defined later, in
Chapter 2). For instance a transaction T ′ = t1; t2; t3, given by

t1 : read(x, y);
t2 : write(z);
t3 : read(z)

is represented by the process in Figure 1.3. The places labelled by s′, in the left part
of the figure, represent the internal state of the agent performing the transaction,
which evolves step by step. The places labelled by x, y and z, in the top part of
the figure, represent the initial values of the variables. A read(x1, . . . , xn) operation
is represented by a single transition (e.g., t1 in the figure) which reads the places
corresponding to the current values of x1, . . . , xn. A write(x) operation is instead
represented by two transitions (e.g., t21 and t22 in the figure), one consuming the
previous value of x and the other producing a new value for x. The two transitions
are distinct since the write operation does not depend on the previous value of x but
only destroys it. Observe that both read and write operations consume the place
corresponding to the previous internal state of the agent and produce the new state.

Given two transactions T ′ and T ′′ and a scheduling consisting of a possible in-
terleaving of their actions, we can construct, in the same way, a corresponding
contextual net process. In [Ris94] it is shown that two such schedulings lead to the
same final state for all the possible interpretation of the transitions if and only if
the corresponding processes are isomorphic. Hence a scheduling of T ′ and T ′′ is seri-
alizable if and only if the corresponding process is isomorphic either to the process
for T ′;T ′′ or to the process for T ′′;T ′.

For example, let T ′ be the transaction defined above and let T ′′ be the transaction
consisting of the only operation

t4 : read(z)

Figure 1.4 reports the processes corresponding to the schedulings (a) t1; t4; t2; t3 and
and (b) t1; t2; t4; t3, of T ′ and T ′′. The two processes are not isomorphic, witnessing
that the two schedulings are not equivalent. Indeed observe that in the first schedul-
ing t4 read the initial value of the variable z, while in the second scheduling t4 read
the value written in z by t2.
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Figure 1.3: The contextual net process corresponding to a transaction.

s′ x y z s′′

t1 t4
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s′ x y z s′′

t1 t4

s′ s′′
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s′ z

t3

s′

(a) (b)

Figure 1.4: The contextual net processes for two possible schedulings of the trans-
actions T ′ and T ′′.
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t0 t1

Figure 1.5: Representing priorities via inhibitor arcs.

Instead, it is not difficult to realize that the serial schedulings T ′;T ′′ and T ′′;T ′

have associated exactly the processes in Figure 1.4 (a) and (b), respectively. There-
fore both the considered schedulings t1; t4; t2; t3 and t1; t2; t4; t3 of T ′ and T ′′ are
serializable.

Inhibitor nets

Inhibitor nets (or nets with inhibitor arcs) [AF73] further generalize contextual nets
with the possibility of checking not only for the presence, but also for the absence of
tokens in a place. For each transition an inhibitor set is defined and the transition
is enabled only if no token is present in the places of its inhibitor set. When a place
s is in the inhibitor set of a transition t we say that s inhibits (the firing of) t.

While, at a first glance, this could seem a minor extension, it definitely increases
the expressive power of the model. In fact, many other extensions of ordinary nets
can be simulated in a direct way by using nets with inhibitor arcs (see, e.g., [Pet81]).
For instance, this is the case for prioritized nets [Hac76, DGV93], where each tran-
sition is assigned a priority and whenever two transitions are enabled at a given
marking, then the transition with the highest priority fires. To have an informal
idea of how the encoding may proceed, two transitions t0 and t1 of a prioritized
net, with t0 having the highest priority, may be represented by simply forgetting
the priorities and adding an inhibitor arc, as depicted in Figure 1.5. Observe that
the fact that a place s inhibits a transition t is graphically represented by drawing
a dotted line from s to t, ending with an empty circle.

Indeed the crucial observation is that traditional nets can easily simulate all the
operation of RAM machines, with the exception of the zero-testing. Enriching nets
with inhibitor arcs is the simplest extension which allows to overcome this limit, thus
giving the model the computational power of Turing machines [Age74, Kel72, Kos73].

It is worth stressing that while from the point of view of expressiveness Turing
completeness is surely a desirable property, when analysis is concerned it may be-
come a problem since many properties which were known to be decidable for Petri
nets become undecidable. The thesis [Bus98] shows that this problem can be par-
tially overcome by singling out restricted, but still interesting, subclasses of inhibitor
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nets for which algorithms and techniques of classical nets may be extended.

1.2 Graph Grammars

The theory of graph grammars (or of graph transformation systems) studies a variety
of formalisms which extend the theory of formal languages in order to deal with
structures more general than strings, like graphs and maps. A graph grammar allows
one to describe finitely a (possibly infinite) collection of graphs, i.e., those graphs
which can be obtained from a start graph through repeated applications of graph
productions. A graph production is a rule of the kind p : L ; R, that specifies that,
under certain conditions, once an occurrence (a match) of the left-hand side L in a
graph G has been detected, it can be replaced by the right-hand side R. The form of
graph productions, the notion of match and in general the mechanisms stating how
a production can be applied to a graph and what the resulting graph is, depend on
the specific graph rewriting formalism.

Graph grammars have been deeply studied following the classical lines of the
theory of formal languages, namely focusing on the properties of the generated
graph languages and on their decidability; briefly, on the results of the generation
process. However, quite early, graph grammars have been recognized as a powerful
tool for the specification of concurrent and distributed systems. The basic idea is that
the state of many distributed systems can be naturally represented (at a suitable
level of abstraction) as a graph, and (local) transformations of the state can be
expressed as production applications. Thus a stream of research, mainly dealing with
the algebraic approaches, has grown, concentrating on the rewriting process itself,
seen as a representation of systems computations, studying properties of derivation
sequences, their transformations and equivalences.

Double-pushout algebraic approach

Here we follow the so-called double-pushout (dpo) algebraic approach (dpo ap-
proach, for short) [Ehr87], where the basic notions of production and direct deriva-
tion are defined in terms of constructions and diagrams in a suitable category. Con-
sequently, the resulting theory is very general and flexible, easily adaptable to a
very wide range of structures, simply by changing the underlying category. In this
thesis we will concentrate on directed (typed) graphs, but it is easy to realize that
the results immediately extends also to hypergraphs. The generalization to more
general structures and to abstract categories (e.g., to high level replacement sys-
tems [EHKPP91]) is instead less trivial and left as a matter of further investigation.

In the dpo approach a graph production consists of a left-hand side graph L, a
right-hand side graph R and a (common) interface graph K embedded both in R
and in L, as depicted in the top part of Figure 1.6. Informally, to apply such a rule to
a graph G we must find a match, namely an occurrence of its left-hand side L in G.
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Figure 1.6: A (double-pushout) graph rewriting step.

The rewriting mechanism first removes the part of the left-hand side L which is not
in the interface K producing the graph D, and then adds the part of the right-hand
side R which is not in the interface K, thus obtaining the graph H . Formally, this is
obtained by requiring the two squares in Figure 1.6 to be pushouts in the category
of graphs, hence the name of the approach. The interface graph K is “preserved”:
it is necessary to perform the rewriting step, but it is not affected by the step itself,
and as such it corresponds to the context of a transition in contextual nets. Notice
that the interface K plays a fundamental role in specifying how the right-hand
side has to be glued with the graph D. Working without contexts, which for graph
grammars would mean working with productions having an empty interface graph
K, the expressive power would drastically decrease: only disconnected subgraphs
could be added.

A basic observation belonging to the folklore (see, e.g., [Cor96]) regards the close
relationship existing between graph grammars and Petri nets. Basically a Petri net
can be viewed as a graph transformation system that acts on a restricted kind of
graphs, namely discrete, labelled graphs (that can be considered as sets of tokens
labelled by places), the productions being the transitions of the net. In this view,
general graph transformation systems are a proper extension of ordinary Petri nets
in two dimensions:

1. they allow for the specification of context-dependent rewritings, where part of
the state is required, but not affected by the rewriting step;

2. they allow for a more structured description of the state, that is an arbitrary,
possibly non-discrete, graph.

The relevance of the first capability in the representation of concurrent accesses
to shared resources has been already stressed when we have presented contextual
nets.
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Figure 1.7: A graph grammar representation of system Ring.

As for the second capability, even if multisets may be sufficient in many situa-
tions, it is easy to believe that graphs are more appropriate when one is interested
in giving an explicit representation of the interconnections among the various com-
ponents of the systems, e.g. if one wants to describe the topology of a distributed
system and the way it evolves.

Furthermore, in a graph transformation system each rewriting step is required
to preserve the consistency of the graphical structure of the state, namely each step
must produce a well-defined graph. In the dpo approach this is expressed by the so-
called application condition for productions, which, technically, ensures the existence
of the left-pushout of Figure 1.6 for the given match and thus the applicability of
the rule. The restrictions to the behaviour which are imposed by such requirement
have often a very natural interpretation in the modelled system.

Let us present an example, which even if very simple, may help the reader to
get convinced of the gain in expressiveness determined by the use of graphs in place
of multisets. Consider a system Ring consisting of a set of processes using a single
common resource which is accessed in mutual exclusion. The processes are connected
to form a ring and the right to access the resource passes from one process to its
successor in the ring.

This situation can be modelled by the graph grammar consisting of the start
graph depicted in the left part of Figure 1.7 and the production Mov. The state of
the system is naturally represented as a graph where processes are nodes labelled
by P and the connections are established by means of edges, labelled by E. The
fact that a process has the right to access the resource is represented by adding a
loop R to the corresponding node. The behaviour of the system is represented via
production Mov, which moves the loop from the node currently holding the resource
its successor in the ring, preserving their connection.
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Figure 1.8: A Petri net representation of system Ring.

One can observe that the same system can be represented also by the Petri
net of Figure 1.8, where processors are modelled as places and the right to access
the resource is given by the token moving around the ring. This representation is
surely reasonable and simple, but conceptually it seems more natural to represent
the topology of the system as part of the state and to model the moving of the
resource from a processor the its successor via a single rule (ideally applied by some
supervisor of the system).

At a more concrete level one can notice that the net representation is not very
flexible. In fact, consider a slightly different system, where processors are not always
part of the ring. The topology of the system can change dynamically, since a pro-
cessor can (ask to) be inserted and removed from the ring, with the constraint that
the processor holding the resource cannot be removed form the ring. While the net
of Figure 1.8 cannot be easily extended to deal with the new situation, the graph
grammar of Figure 1.7 can be adapted by just including the two new rules Add and
Rem for adding and removing a processor from the ring, respectively.

It is worth noting that, since the consistency of the graphical structure of the
state must be preserved, the rule Rem cannot be applied to the processor holding
the resource because after its removal the loop R would remain dangling. Therefore
the satisfaction of the constraint imposing that the processor holding the resource
cannot be removed is entailed by the basic properties of the rewriting mechanism.

The above observation leads us to another crucial remark. As shown by the
example, to ensure that after each rewriting step the new state is a well defined
graph, before applying a production q which removes a node n we must be sure that
any edge with source or target in n is removed by q as well, otherwise it would remain
dangling in the new state. This requirement, a part of the application condition called
dangling condition in the dpo approach, can be interpreted by thinking that the
edges with source or target in the node n, not removed by q, inhibits the application
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of q. This establishes a deep connection between inhibitor nets and graph grammars
which will be exploited throughout the thesis. Among other things this suggests the
appropriateness of graph grammars to model phenomena which can be expressed by
using inhibitor nets.

1.3 Truly concurrent semantics of Petri nets

In this section we describe the approaches to the semantics of Petri nets which
represent the starting point of the results presented in this thesis. Then we hint at
the possible applications of such semantics and we comment on the role of category
theory in its development.

1.3.1 Semantics of Petri nets

Along the years Petri nets have been equipped with several semantics, aimed at
describing appropriately, at the right degree of abstraction, the truly concurrent
nature of net computations. The approach that we propose as a paradigm, comprises
the semantics based on deterministic processes, whose origin dates back to an early
proposal by Petri himself [Pet77] and the semantics based on the nondeterministic
unfolding introduced in a seminal paper by Nielsen, Plotkin and Winskel [NPW81],
and shows how the two may be reconciled in a very satisfactory framework.

Deterministic process semantics

The notion of deterministic process naturally arises when trying to give a truly
concurrent description of net computations, taking explicitly into account the causal
relationships which rule the occurrences of events in single computations.

Apart from Best-Devillers processes [BD87] which do not account for causality,
the prototypical example of process for Petri nets is given by the Goltz-Reisig pro-
cesses [GR83]. A Goltz-Reisig process of a net N is a (deterministic) occurrence net
O, i.e. a (safe) finite net satisfying suitable acyclicity and conflict freeness proper-
ties, plus a mapping to the original net ϕ : O → N . The flow relation induces a
partial order on the elements of the net O, which can be naturally interpreted as
causality. The mapping essentially labels the places and transitions of O with places
and transitions of N , in such a way that places in O can be thought of as tokens in
a computation of N and transitions of O as occurrences of transition firings in such
computation.

A limitation of Goltz-Reisig processes resides in the fact that they cannot be
endowed with an operation of sequential composition, meaningful with respect to
causality. The näıve attempt of concatenating a process ϕ1 with target u with a
second one ϕ2, with source u, by merging the source and the target immediately fails.
In fact, there are in general, many ways of putting in one-to-one correspondence the
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maximal places of ϕ1 with the minimal places of ϕ2, respecting the labelling, and
they lead to different resulting processes of the net. The problem is that the places
of a process represent tokens produced in a computations, and tokens in the same
place should not be confused since they may have different (causal) histories.

Concatenable processes are defined in [DMM96] as Goltz-Reisig processes in
which minimal and maximal places carrying the same label are linearly ordered.
Such an ordering allows one to disambiguate token identities and thus an opera-
tion of concatenation can be safely defined. This brings us to the definition of a
category CP[N ] of concatenable processes, in which objects are markings (states
of the net), arrows are processes (computations) and arrow composition models the
sequential composition of computations. It turns out that such category is a symmet-
ric monoidal category, in which the tensor product represents faithfully the parallel
composition of processes.

Unfolding semantics

A deterministic process specifies only the meaning of a single, deterministic com-
putation of a net. Nondeterminism is captured only implicitly by the existence of
several different “non confluent” processes having the same source. Instead the ac-
curate description of the fine interplay between concurrency and nondeterminism is
one of the most interesting features of Petri nets.

An alternative classical approach to the semantics of Petri nets is based on an
unfolding construction, which maps each net into a single denotational structure,
representing, in an unambiguous way, all the possible events that can occur in all
the possible computations of the net and the relations existing between them. This
structure expresses not only the causal ordering between the events, but also gives
an explicit representation of the branching (choice) points of the computations.

In the seminal work of Nielsen, Plotkin and Winskel [NPW81], the denotation of
a safe net is defined as a coherent finitary prime algebraic Scott domain [Sco70], or
dI-domain [Ber78] (briefly domain), via a construction which first unfolds the net
into a (nondeterministic) occurrence net which is then abstracted to a prime event
structure. Building on such result, Winskel [Win87a] proves the existence of a chain
of coreflections (a particularly nice kind of adjunction), leading from the category
S-N of safe (marked) P/T nets to the category Dom of finitary prime algebraic
domains, through the categories O-N of occurrence nets and PES of prime event
structures.

S-N
U

⊥ O-N
E

⊥

IOcc

PES
L

∼

N

Dom
P

The first step unfolds a safe net N into a nondeterministic occurrence net U (N).
Such a net can be understood as a nondeterministic process of the net N where
each transition represents a precise firing of a transition in N , and places represent
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occurrences of tokens in the places of N . Differently from deterministic processes,
the unfolding can be infinite and can contain (forward) conflicts. In this way it can
take advantage of its branching (tree-like) structure to represent all the possible
computations of the original net N .

The subsequent step abstracts the occurrence net obtained via the unfolding
construction to a prime event structure. Recall that prime event structures (pes)
are a simple event based model of (concurrent) computations in which events are
considered as atomic, indivisible and instantaneous steps, which can appear only
once in a computation. An event can occur only after some other events (its causes)
have taken place and the execution of an event can inhibit the execution of other
events. This is formalized via two binary relations: causality, modelled by a partial
order relation ≤ and conflict, modelled by a symmetric and irreflexive relation #,
hereditary with respect to causality. The pes semantics is obtained from the unfold-
ing simply by forgetting the places, but remembering the basic relations of causality
and conflict between transitions that they induce.

The last step of Winskel’s construction shows that the category of prime event
structures is equivalent to the category of domains. An element of the domain cor-
responding to a pes is a set of events (configuration) which can be understood as a
possible computation in the pes. The order (which is simply set inclusion) represents
a computational order: if C ⊑ C ′, then C can evolve and become C ′.

In [MMS92, MMS97] it has been shown that essentially the same construction
applies to the wider category of semi-weighted nets, i.e., P/T nets in which the
initial marking is a set and transitions can generate at most one token in each
post-condition. It is worth noting that, besides being more general than safe nets,
semi-weighted nets present the advantage of being characterized by a “static con-
dition”, not involving the behaviour but just the structure of the net. Figure 1.9
shows an example of semi-weighted P/T net, which is not safe. The generalization
of Winskel’s construction to the whole category of P/T nets requires some original
technical machinery and allows one to obtain a proper adjunction rather than a
coreflection [MMS92].

Reconciling deterministic processes and unfolding

Since the unfolding of a net is essentially a nondeterministic process that completely
describes the behaviour of the net, one would expect that a relation exists between
the unfolding and the deterministic process semantics. Indeed, as shown in [MMS96],
the domain associated to a net N through the unfolding construction can be equiva-
lently characterized as the set of deterministic processes of the net starting from the
initial marking, endowed with a kind of prefix ordering. This result is stated in an
elegant categorical way. The comma category 〈m ↓ CP[N ]〉, where m is the initial
marking of the net, is shown to be a preorder (more precisely, this is true for semi-
weighted nets, while for general nets a slight variation of the notion of process has
to be considered, called decorated process). Intuitively, the elements of such preorder
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Figure 1.9: A semi-weighted P/T net, which is not safe.

are computations starting from the initial state, and if ϕ1 and ϕ2 are elements of the
preorder, we have ϕ1 � ϕ2 if ϕ1 can be extended to ϕ2 by performing appropriate
steps of computation. Finally, the ideal completion of such preorder, which can be
seen as a representation of the (finite and infinite) computations of the net, is shown
to be isomorphic to the domain associated to the unfolding.

Deterministic processes

P/T Nets Domains

Unfolding

Although not central in this thesis, we recall that there exists a third approach
to Petri net semantics which fits nicely in the above picture, called algebraic seman-
tics. Roughly speaking, the algebraic approaches to Petri net semantics, originated
from [MM90], characterize net computations as an equational term algebra, freely
generated starting from the basic elements of the net and having (suitable kinds
of) monoidal categories as models. For instance, the category of concatenable pro-
cesses can be given a purely algebraic and completely abstract characterization as
the free symmetric strict monoidal category generated by the net N , modulo some
suitable axioms [Sas96]. In particular the distributivity of tensor product and arrow
composition in monoidal categories is shown to capture the basic facts about net
computations.

1.3.2 A view on applications

The semantical framework for Petri nets illustrated before, besides being elegant
and satisfactory from a theoretical point of view, represents a basis on which the
bridge towards applications can be settled. The discussed constructions provide a
description of the behaviour of a net which is, in general, “infinite” and thus appar-
ently difficult to deal with. However, on top of them one can build more abstract
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“approximated” descriptions of the behaviour which turn out to be useful in the
verification of several properties of the modelled systems.

The deterministic process and event structure semantics represent the basis for
the definition of history preserving bisimulation [RT88, BDKP91], a bisimulation-
like observational equivalence suited to deal with concurrent systems. For instance it
is a congruence with respect to some kind of refinement operations and it preserves
the amount of autoconcurrency. History preserving bisimulation is known to be
decidable for n-safe nets, where the number of tokens in each place is bounded by n.
Algorithms for checking the bisimilarity of two nets and to get a minimal realization
in a class of bisimilar systems have been proposed in the literature [Vog91, MP98].

Furthermore, although the unfolding is infinite for non trivial nets, as observed by
McMillan in his PhD thesis [McM93], limiting attention to (n-)safe nets it is possible
to construct a finite initial part of the unfolding which contains as much information
as the unfolding itself, the so-called finite complete prefix. The advantage of complete
prefixes is that they can be much smaller of the state space of the system, when they
are generated via “clever” algorithms, and, as such, they represent a useful technique
to attack the well-known state explosion problem of model-checking techniques.
Moreover, the information about causality, concurrency and distribution contained
in the unfolding may be used to verify properties expressed in local logics, which
allow to reason on the knowledge that each component has of the global state of
the system. The unfolding technique has been applied to the verification of circuits,
telecommunication systems, distributed algorithms, etc.

1.3.3 The role of category theory

Category theory originated as an abstract theory of mathematical structures and
of the relationships between structures, aimed at giving a unified view of “similar”
results from disparate areas of mathematics.

The categorical language, with its elegance and abstractness, has been exploited
in Computer Science as a tool to give alternative systematic formulations of existing
theories, making clear their real essence and disregarding unnecessary details, and
as a guidance for the development and justification of new concepts, properties and
results. The advantages of the use of category theory in Computer Science are well
summarized in [Gog91]. Here we try to point out some aspects which are particularly
relevant to our approach.

Considering categories of systems, one is lead to introduce an appropriate notion
of morphism between systems, typically formalizing the idea of “simulation”. Then
expressing the semantics via a functor means to define the semantical transforma-
tion consistently with such notion: a morphism between two systems must yield a
morphism between their models.

Moreover, the notion of universal construction (e.g., adjunction, reflection, core-
flection) provides a formal way to justify the naturality of the semantics, by express-
ing its “optimality”. It is often the case that an obvious functor maps models back
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into the category of systems (e.g., this happens for Petri nets, where occurrence nets
are particular nets and thus such a functor is simply the inclusion). Consequently
the semantics can be defined naturally as the functor in the opposite direction, form-
ing an adjunction, which (if it exists) is unique up to natural isomorphism. In other
words, once one has decided the notion of simulation, there is a unique way to define
the semantics consistently with such notion.

Finally, several composition operations can be naturally expressed at categorical
level as limit/colimit constructions (products, sums, pushouts, pullbacks, just to cite a
few). For instance, a pushout construction can be used to compose two nets, merging
some part of them, obtaining a kind of generalized nondeterministic composition,
while synchronization of nets can be modelled as a product (see [Win87a, MMS97]).

Remarkably, since left/right adjoint functors preserve colimits/limits, a seman-
tics defined via an adjunction turns out to be compositional with respect to such
operations.

1.4 From Petri nets to graph grammars: an

overview of the thesis

Inspired by the close relationship between graph grammars and Petri nets, in or-
der to present graph grammars as a formalism for the specification of concur-
rent/distributed systems alternative to Petri nets, the thesis explores the possibility
of developing a theory of concurrency for graph transformation systems recasting
in this more general framework notions, constructions and results from Petri nets
theory. More precisely, the thesis investigates the possibility of generalizing to graph
grammars the nice semantical framework described for Petri nets in the previous
section, by endowing them with deterministic process and unfolding semantics, as
well as with more abstract semantics based on (suitable of extensions of) event
structures and domains.

Remarkably, the reason for which graph grammars represent an appealing gener-
alization of Petri nets, namely the fact that they extend nets with some non-trivial
features, makes non-trivial also such generalization. In fact, the main complications
which arise in the treatment of graph grammars are related on the one hand to the
possibility of expressing contextual rewritings, and on the other hand to the neces-
sity of preserving the consistency of the graphical structure of the state, a constraint
which leads to the described “inhibiting effects” between productions applications.

We already observed that contextual nets, where a transition can test for the
presence of a token without consuming it, share with graph grammars the ability of
specifying a “context-sensitive” firing of events. Furthermore inhibitor nets, where
the presence of a token in a place can disable a transition, allow one to model
a kind of dependency between events analogous to the one which arises in dpo
graph grammars due to the requirement of preserving the consistency of the state.
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Informally, we can organize the considered formalisms in an ideal chain leading from
Petri nets to graph transformation systems as follows

Petri
nets

Contextual
nets

Inhibitor
nets

Graph
grammars

Motivated by the idea that contextual nets and nets with inhibitor arcs can
serve as a bridge for transferring notions and results from classical nets to graph
grammars, the first part of the thesis concentrates on these intermediate models,
while the second part is devoted to the study of graph grammars.

Differently from what happens for ordinary nets, we define an unfolding seman-
tics (essentially based on nondeterministic processes) before developing a theory of
deterministic processes. To understand why we proceed in this way observe that for
traditional nets the only source of nondeterminism is the the presence of pairs of
different transitions with a common precondition, and therefore there is an obvious
notion of “deterministic net”. When considering contextual nets, inhibitor nets or
graph grammars the situation becomes much more involved: the dependencies be-
tween event occurrences cannot be described only in terms of causality and conflict,
and the deterministic systems cannot be given a purely syntactical characterization.
Consequently, a clear understanding of the structure of nondeterministic computa-
tions becomes essential to be able to single out which are the good representatives
of deterministic computations.

The core of the theory developed for each one of the considered models is the
formalization of the kind of dependencies among events in their computations and
the definition of an appropriate notion of event structure for faithfully modelling
such dependencies.

Contextual nets and asymmetric conflicts

When dealing with contextual nets, the crucial point is the fact that the presence
of context conditions leads to asymmetric conflicts or weak dependencies between
events. Consider, for instance, the net N3 of Figure 1.10, with two transitions t0
and t1 such that the same place s is a context for t0 and a precondition for t1. The
possible firing sequences are given by the firing of t0, the firing of t1 and the firing
of t0 followed by t1, denoted t0; t1, while t1; t0 is not allowed. This represents a new
situation not arising within ordinary net theory: t0 and t1 are neither in conflict nor
concurrent nor causal dependent. Simply, as for a traditional conflict, the firing of
t1 prevents t0 to be executed, so that t0 can never follow t1 in a computation. But
the converse is not true, since t1 can fire after t0. This situation can be interpreted
naturally as an asymmetric conflict between the two transitions. Equivalently, since
t0 precedes t1 in any computation where both transitions are executed, in such
computations t0 acts as a cause of t1. However, differently from a true cause, t0 is
not necessary for t1 to be fired. Therefore we can also think of the relation between
the two transitions as a weak form of causal dependency.
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Figure 1.10: Asymmetric conflict in contextual nets.

Prime event structures and in general Winskel’s event structures result inade-
quate to give a direct representation of situations of asymmetric conflict. To give a
faithful representation of the dependencies between events arising in contextual nets
we introduce asymmetric event structures (aes’s), a generalization of pes’s where
symmetric conflict is replaced by a relation ր modelling asymmetric conflict. An
aes allows us to specify the new kind of dependency described above for transitions
t0 and t1 of the net in Figure 1.10 simply as t0 ր t1.

The notion of asymmetric conflict plays an essential role both in the ordering
of the configurations of an aes, which is different from set-inclusion, and in the
definition of (deterministic) occurrence contextual nets, which are introduced as
the net-theoretical counterpart of (deterministic) aes’s. Then the entire Winskel’s
construction naturally lifts to contextual nets.

Inhibitor nets and the disabling-enabling relation

When considering inhibitor nets, the nonmonotonic features related to the presence
of inhibitor arcs (negative conditions) make the situation far more complicated. First
if a place s is in the post-set of a transition t′, in the inhibitor set of t and in the
pre-set of t0 (see the net N4 in Figure 1.11), then the execution of t′ inhibits the
firing of t, which can be enabled again by the firing of t0. Thus t can fire before or
after the “sequence” t′; t0, but not in between the two transitions. Roughly speaking
there is a sort of atomicity of the sequence t′; t0 with respect to t.

The situation can be more involved since many transitions t0, . . . , tn may have
the place s in their pre-set (see the net N5 in Figure 1.11). Therefore, after t′ has
been fired, t can be re-enabled by any of the conflicting transitions t0, . . . , tn. This
leads to a sort of or-causality. With a logical terminology we can say that t causally
depends on the implication t′ ⇒ t0 ∨ t1 ∨ . . . ∨ tn.

To face these additional complications we introduce inhibitor event structures
(ies’s), which enrich asymmetric event structures with a ternary relation, called
DE-relation (disabling-enabling relation), denoted by (·, ·, ·). Such a relation is
used to model the previously described situation as ({t′}, t, {t0, . . . , tn}). The DE-
relation is sufficient to represent both causality and asymmetric conflict and thus
concretely it is the only relation of a ies.
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Figure 1.11: Two basic nets with inhibitor arc.

Remarkably, computations of an inhibitor net (and thus configurations of an ies)
involving the same events may be different from the point of view of causality. For
instance, in the basic net N4 of Figure 1.11 there are two possible orders of execution
of transitions t, t′ and t0, namely t; t′; t0 and t′; t0; t, and while in the first case it is
natural to think of t as a cause of t′, in the second case we can imagine instead that t0
(and thus t′) causes t. To take into account correctly this further information, both
configurations of ies’s and processes of inhibitor nets are enriched with a so-called
choice relation specifying which of the possible computations we are referring to.

The unfolding construction for inhibitor nets makes an essential use of the con-
struction already developed for contextual nets. The main problem emerges in the
passage from occurrence inhibitor net to ies’s where the backward steps is impos-
sible, basically because of complications due to the complex kind of causality ex-
pressible in ies’s. More technically, the construction associating an inhibitor event
structure to an occurrence net is functorial, but does not give rise to a categorical
coreflection.

Lifting the results to graph grammars

When we finally turn our attention to graph grammars we are rewarded of the effort
spent in the first part, since basically nothing new has to be invented. Inhibitor
event structures are expressive enough to model the structure of graph grammar
computations and the theory developed for inhibitor nets smoothly lifts, at the price
of some technical complications, to grammars. Furthermore, not only the process and
the unfolding semantics proposed for a graph grammars are shown to agree, but the
theory developed in this thesis is shown to be consistent also with the classical
theory of concurrency for dpo grammar in the literature, basically relying on shift-
equivalence [Kre77, CMR+97, CEL+96b]. We hope that this can be considered a
valuable contribution to the understanding of the theory of concurrency for dpo
graph transformation.
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1.4.1 The general approach

For each one of the mentioned formalisms, namely contextual nets, inhibitor nets
and graph grammars we develop a similar theory by following a common schema
which can be described as follows:

1. We define a category of systems Sys. The morphisms, which basically origins
from an algebraic view of the systems, can be interpreted as simulations.

2. We develop an unfolding semantics, expressed as a coreflection between Sys
and a subcategory O-Sys, where objects are suitable systems exhibiting an
acyclic behaviour.

From the unfolding we extract an (appropriate kind of) event structure, the
transformation being expressed as a functor from O-Sys, to the considered
category of event structures ES.

Finally, a connection is established with domains and traditional pes by show-
ing that the category ES of generalized event structures coreflects into the
category Dom of domains.

Summing up, we obtain the following chain of functors, leading from systems
to event structures and domains

Sys ⊥ O-Sys ES ⊥ Dom ∼ PES

The last step in the chain is the equivalence between the categories Dom of
domains and PES of prime event structures, due to Winskel.

In the case of contextual nets, the step leading from O-Sys to ES is not only
a functor, but a true coreflection.

3. We define a notion of deterministic process for systems in Sys. Relying on the
work developed in the previous point, a general (possibly nondeterministic)
process of a system S is introduced as “occurrence system” in O-Sys, plus a
(suitable kind) of morphism back to the original system S (the prototypical
example of nondeterministic process being the unfolding).

Then, roughly speaking, a process is deterministic if it contains no conflict,
or, in other words, if it uniquely identifies a single configuration of the event
structure associated to the system, in such a way that it can be seen as the
representative of a single deterministic (concurrent) computation of S .

The deterministic processes of a system S are turned into a category CP[S ],
by endowing them with a notion of concatenation, modelling the sequential
composition of computations.
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4. We show that the deterministic process and the unfolding semantics can
be reconciled by proving that, as for traditional nets, the comma category
〈Initial State ↓ CP[S ]〉, is a preorder whose ideal completion is isomorphic
to the domain obtained from the unfolding, as defined at point (2).

1.4.2 Summary of the results

The main achievement of the thesis is the development of a systematic theory of
concurrency for graph grammars which contribute to close the gap existing between
graph transformation systems and Petri nets.

1. We define a Winskel’s style semantics for graph grammars. An unfolding con-
struction is presented, which associates to each graph grammar a nondeter-
ministic occurrence grammar describing its behaviour. Such a construction
establishes a coreflection between suitable categories of grammars and the
category of occurrence grammars. The unfolding is then abstracted to an in-
hibitor event structure and finally to a prime algebraic domain (or equivalently
to a prime event structure).

2. We introduce a notion of nondeterministic graph process generalizing the de-
terministic processes of [CMR96]. The notion fits nicely in our theory since a
graph process of a grammar G can be defined simply as a (special kind of)
grammar morphism from an occurrence grammar into G (while in [CMR96]
an ad hoc mapping was used).

3. We define concatenable graph processes, as a variation of (deterministic finite)
processes endowed with an operation of concatenation, consistent with the
flow of causality, which models sequential composition of computations.

The appropriateness of this notion is confirmed by the fact that the category
CP[G ] of concatenable processes of a grammar G turns out to be isomorphic
to the classical truly concurrent model of computation of a grammar based on
traces of [CMR+97, BCE+99].

4. The event structure obtained via the unfolding is shown to coincide both with
the one defined by Corradini et al. [CEL+96b] via a comma category con-
struction on the category of concatenable derivation traces, and with the one
proposed by Schied [Sch94], based on a deterministic variant of the dpo ap-
proach. These results, besides confirming the appropriateness of the proposed
unfolding construction, give an unified view of the various event structure
semantics for the dpo approach to graph transformation.

A second achievement is the development of an analogous unifying theory for two
widely diffused generalizations of Petri nets, namely contextual nets and inhibitor
nets. While a theory of deterministic processes for these kind of nets was already
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available in the literature, the Winskel-style semantics, comprising the unfolding
construction, its abstraction to a prime algebraic semantics, as well as its relation
with the deterministic process semantics are original.

Finally, we like to mention as a result also the development of a categorical theory
of two kind of generalized event structures, namely asymmetric event structures
and inhibitor event structures and of their relation with Winskel’s event structures.
In this thesis they are presented as a mean for the treatment of (extended nets
and) grammars, but the generality of the phenomena they allow to model and their
connections with other extensions of event structures in the literature makes us
convinced that their applicability goes beyond the considered examples.

1.5 Structure of the thesis

The thesis is divided into two parts. The First Part is devoted to the study of
contextual and inhibitor nets, while the Second Part, exploiting also some notions
and results from the First Part, concentrates on the theory of concurrency of dpo
graph transformation systems.

The First Part consists of three chapters. In Chapter 2 we introduce some
background material. After fixing the basic mathematical notation, we present the
notions of contextual and inhibitor net and we review some concurrent semantics
proposed in the literature for these generalized kinds of nets. Then we present the
work of Winskel on prime event structures, their equivalence with prime algebraic
domains and we present some generalizations of the basic notion of event structure
proposed in the literature.

Chapters 3 and 4 contain the original contributions of the First Part. Chap-
ter 3 proposes a truly concurrent semantics for (semi-weighted) contextual nets
by following the general approach described in the Introduction. First, we define
asymmetric event structures (aes’s) as a new event based model capable to represent
the dependencies between events in contextual net computations and we study their
relationship with pes’s and domains. Then, exploiting an unfolding construction,
the semantics of semi-weighted contextual nets is given via a chain of coreflections
leading from the category of semi-weighted contextual nets to the category of prime
algebraic domains. Finally, we prove that the unfolding and the (deterministic) pro-
cess semantics of contextual nets can be reconciled by showing that concatenable
processes allow to give an alternative characterization of the domain obtained from
the unfolding.

Chapter 4 generalizes (part of) the work in the previous chapter to the case
of inhibitor nets. This chapter has the same structure as the previous one. First, in
order to deal with the greater complexity of inhibitor net computations we introduce
a generalization of asymmetric event structures, called inhibitor event structures
(ies’s) and we study their relationship with pes’s and domains. Then we give a truly
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concurrent semantics for (semi-weighted) inhibitor nets via functorial construction
which first associates to each inhibitor net an occurrence inhibitor net. The unfolding
is mapped to an inhibitor event structure and then to a prime algebraic domain.
Finally we discuss the notion of deterministic process for inhibitor nets arising from
our theory, we define their concatenable version and we show that, as for contextual
nets, concatenable processes allow us to recover the domain semantics of an inhibitor
net as obtained via the unfolding construction.

The second part is divided into four chapters. Chapter 5 provides an introduc-
tion to the algebraic approach to graph transformation based on the double-pushout
(dpo) construction, by presenting some (partly revisited) background notions. We
first give the basic definitions of dpo graph grammar, rewriting step and deriva-
tion. Then we introduce the fundamental notions of the concurrency theory of the
dpo approach by presenting the trace semantics based on the shift equivalence. The
chapter is closed by the definition of the category of graph grammars considered in
this thesis.

The original contributions of the Second Part are presented in Chapters 6-8.
Chapter 6 defines an unfolding semantics for dpo graph transformation systems.
As for inhibitor nets, the unfolding construction is characterized as a categorical
coreflection. Then we define a functorial construction which maps the unfolding to
an inhibitor event structure, and finally, by the results in Chapter 4, to a prime
algebraic domain. This chapter uses many notions and intuitions from Chapter 4
on inhibitor nets (in particular it resorts to inhibitor event structures and to their
relationship with domains).

Chapter 7 presents the notion of concatenable process for dpo graph transfor-
mation systems, and proves that the category of concatenable processes provides a
semantics for a graph grammar which is equivalent to the classical abstract truly
model of computation, discussed in Chapter 5. We also study the relationship
between the process and the unfolding semantics of a graph grammar, by showing,
that, as for nets, concatenable graph processes allow to recover the same domain
semantics defined in Chapter 6.

Chapter 8 reviews two other event structure semantics which have been pro-
posed in the literature for dpo graph transformation systems in [CEL+96b, Sch94].
By exploiting the results in Chapters 6 and 7, these two alternative event struc-
tures are shown to coincide with the one obtained from the unfolding, which thus
can be claimed to be “the” event structure semantics of dpo graph transformation.

Both the First Part and the Second Part end with a summary of the pre-
sented results and some final remarks. The Conclusions contains a general dis-
cussion on the thesis and sketches possible future directions of research.

Finally, the Appendix collects some basic notions of category theory which are
used in the thesis.
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Origins of the chapters

The truly concurrent semantics for contextual nets presented in Chapter 3 first ap-
peared as [BCM98b], while a complete version, including full proofs and the relation
with the process semantics, appeared in [BCM99a].

The notion of nondeterministic process and the unfolding construction for graph
transformation systems described in Chapter 6 can be found in [BCM99b]. The
characterization of the unfolding as a universal construction, in the case of semi-
weighted grammars, will appear as [BCM99c].

Concatenable graph processes and their relation with the derivation trace se-
mantics, presented in Chapter 7, appeared in [BCM98a, BCE+99]. The relation
between the process and the unfolding semantics, with a different proof, has been
presented in [BCM99b].

Finally, Chapter 8 relating our event structure semantics with other proposal
in the literature has been extracted from [BCM99b].



Part I

Contextual and inhibitor nets





Chapter 2

Background

This chapter presents some background material which will be used in the First
Part. We first fix the basic mathematical notation. Then we present contextual and
inhibitor nets and we review some concurrent semantics proposed in the literature
for these generalized kinds of nets. In the last part of the chapter we review the
work by Winskel on prime event structures, their equivalence with prime algebraic
domains and we present some generalizations of the basic notion of event structure
proposed in the literature.

2.1 Basic notation

This section introduces the basic mathematical concepts and notation which are
used in the rest of the thesis. It is mainly intended to provide a list of symbols
and keywords with the aim of fixing the notation for sets, relations, functions and
multirelations.

Sets

Without referring to a formal set-theory, we resort to the intuitive notion of set as
unordered collection of elements and we use the common operations on sets. For
instance, given two sets X and X ′ we can consider their union X ∪X ′, intersection
X ∩X ′, difference X −X ′, cartesian product X ×X ′, etc. The cardinality of a set
X is denoted by |X|.

The powerset of a set X is denoted by 2X , while 2Xfin denotes the set of finite
subsets of X and 2X1 the set of subsets of X of cardinality at most one (singletons
and the empty set ∅). When Y ∈ 2Xfin we will write Y ⊆fin X. Given a set of sets
Y ⊆ 2X , the big union of Y is defined as

⋃
Y = {y | ∃Z ∈ Y. y ∈ Z}

and similarly the big intersection of Y is the set
⋂
Y = {y | ∀Z ∈ Y. y ∈ Z}. If the
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set Y is indexed, i.e., Y = {Zi : i ∈ I}, its big union and intersection are written as⋃
i∈I Zi and

⋂
i∈I Zi, respectively.

Relations

Let X and Y be sets. A (binary) relation r from X to Y is a subset of the cartesian
product of X and Y , namely r ⊆ X × Y . We often use the “infix” and “prefix”
notation for relations by writing x r y and r(x, y), respectively, in place of (x, y) ∈ r.
We denote by r−1 the inverse relation of r, namely {(y, x) | (x, y) ∈ r}. The domain
dom(r) and codomain cod(r) of the relation r are defined by

dom(r) = {x ∈ X | ∃y ∈ Y.(x, y) ∈ r} cod(r) = {y ∈ Y | ∃x ∈ X.(x, y) ∈ r}.

Given X ′ ⊆ X we sometimes write r(X ′) for the set {y | ∃x ∈ X. (x, y) ∈ r}, called
the image of X ′ through r.

The composition of two relations r1 ⊆ X × Y and r2 ⊆ Y × Z is the relation
r2 ◦ r1 ⊆ X × Z, sometimes written r1; r2, defined as follows

r2 ◦ r1 = {(x, z) | ∃y ∈ Y. (x, y) ∈ r1 ∧ (y, z) ∈ r2}

Let us turn our attention to relations r ⊆ X×X (which we call binary relations
over X). By r+ we denote the transitive closure of r, and by r∗ the reflexive and
transitive closure of r. Given X ′ ⊆ X the symbol rX′ indicates the restriction of r
to X ′ ×X ′, i.e., r ∩ (X ′ ×X ′).

We say that r is acyclic if it has no “cycles” e0 r e1 r . . . r en r e0, with ei ∈ X,
or, in other words, if r+ is irreflexive. We call r well-founded if it has no infinite
descending chains, i.e., {ei}i∈N ∈ X such that ei+1 r ei, ei 6= ei+1, for all i ∈ N. In
particular, if r is well-founded it has no (non-trivial) cycles.

The relation r is called a preorder if it is reflexive and transitive; it is a partial
order if it is also antisymmetric. The relation r is an equivalence if it is reflexive,
transitive and symmetric.

Functions

A partial function f : X → Y is a special relation f ⊆ X×Y with the property that
for any x ∈ X there is at most one y ∈ Y such that (x, y) ∈ f , namely |f({x})| ≤ 1.
In this case we write f(x) = y instead of f({x}) = {y}. Furthermore we write
f(x) = ⊥ and we say that f is undefined on x when x 6∈ dom(f), or equivalently if
f({x}) = ∅. A function f : X → Y is called total if dom(f) = X.

Multisets and Multirelations

Let A be a set. A multiset of A is a function M : A→ N. Such a multiset is denoted
sometimes as a formal sumM =

∑
a∈A na ·a, where na = M(a). The coefficients 1 are
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usually implicit and terms with a zero coefficient are omitted. The set of multisets
of A is denoted by µA.

The usual operations and relations on multisets are used. For instance, multiset
union is denoted by + and defined as (M + M ′)(a) = M(a) + M ′(a); multiset
difference (M −M ′) is defined as (M −M ′)(a) = M(a) −M ′(a) if M(a) ≥ M ′(a)
and (M − M ′)(a) = 0 otherwise. We write M ≤ M ′ if M(a) ≤ M ′(a) for all
a ∈ A. If M is a multiset of A, we denote by [[M ]] the flattening of M , namely
the multiset

∑
{a∈A|M(a)>0} 1 · a, obtained by changing all non-zero coefficients of

M to 1. Sometimes we confuse the multiset [[M ]] with the corresponding subset
{a ∈ A |M(a) > 0} of A, and use on them the usual set operations and relations.

A multirelation f : A→ B is a multiset of A× B. It induces in an obvious way
a function µf : µA→ µB, defined as

µf(
∑

a∈A

na · a) =
∑

b∈B

∑

a∈A

(na · f(a, b)) · b.

If the multirelation f satisfies f(a, b) ≤ 1 for all a ∈ A and b ∈ B then we sometimes
confuse it with the corresponding set-relation and write a f b or f(a, b) for f(a, b) =
1. We call inverse of f the multirelation f−1 : B → A, defined by f−1(b, a) = f(a, b)
for all a ∈ A, b ∈ B.

A multirelation f : A → B is called finitary if for any a in A the set {b ∈ B |
f(a, b) > 0} is finite. In the following we will consider only finitary multirelations,
and thus the qualification “finitary” will be often omitted.

The composition of two multirelations f : A → B and g : B → C is the
multirelation g ◦ f : A→ C defined as

(g ◦ f)(a, c) =
∑

b∈B

f(a, b) · g(b, c).

Observe that the above definition is well given only if the involved multirelations
are finitary (since “infinite” coefficients are not allowed). The category having sets
as objects and (finitary) multirelations as arrows is denoted by MSet.

We conclude by recalling some trivial properties of multisets which will be used
in the sequel.

Proposition 2.1
Let h : A→ B be a multirelation and let M,M ′ ∈ µA. Then

1. µh(M +M ′) = µh(M) + µh(M ′);

2. if M ≤M ′ then µh(M) ≤ µh(M ′);

3. [[µh(M)]] ≤ µh([[M ]]), for all M ∈ µA.
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2.2 Contextual and inhibitor nets

In this section we review the definition of contextual and inhibitor nets, the two
generalizations of ordinary Petri nets which are investigated in the First Part.
The adopted notions of concurrent enabling and step sequence (token game) are
compared with other proposals in the literature.

2.2.1 Contextual nets

Contextual nets extend ordinary Petri nets with the possibility of handling contexts:
in a contextual net transitions can have not only preconditions and postconditions,
but also context conditions. A transition can fire if enough tokens are present in
its preconditions and context conditions. In the firing, preconditions are consumed,
context conditions remain unchanged and new tokens are generated in the postcondi-
tions. We next introduce (marked) contextual P/T nets [Ris94, Bus98] (or c-nets for
short), that following the lines suggested in [MR95] for C/E systems, add contexts
to P/T Petri nets.

Definition 2.2 (c-net)
A (marked) contextual Petri net (c-net) is a tuple N = 〈S, T, F, C,m〉, where

• S is a set of places;

• T is a set of transitions;

• F = 〈Fpre, Fpost〉 is a pair of multirelations, from T to S.

• C is a multirelation from T to S, called the context relation;

• m is a multiset of S, called the initial marking.

We assume, without loss of generality, that S∩T = ∅. Moreover, we require that for
each transition t ∈ T , there exists at least a place s ∈ S such that Fpre(t, s) > 0.1

This is a common assumption when one is interested in having a causal semantics
for nets. In fact given a transition with empty pre-set, an unbounded number of in-
distinguishable occurrences of such transition can be fired in parallel. Consequently,
although a theory of deterministic processes could be still developed, very serious
problems arise when trying to define an unfolding and an event structure semantics,
where each event is intended to represent a uniquely determined occurrence of a
transition.

1This is a weak version of the condition of T-restrictedness that requires also Fpost(t, s) > 0,
for some s ∈ S.
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Definition 2.3 (pre-set, post-set, and context)
Let N be a c-net. As usual, the functions from µT to µS induced by the multirelations
Fpre and Fpost are denoted by •( ) and ( )•, respectively. If A ∈ µT is a multiset of
transitions, •A is called its pre-set, while A• is called its post-set. Moreover, by A
we denote the context of A, defined as A = µC(A).

An analogous notation is used to denote the functions from S to 2T defined
as, for s ∈ S, •s = {t ∈ T | Fpost(t, s) > 0}, s• = {t ∈ T | Fpre(t, s) > 0},
s = {t ∈ T | C(t, s) > 0}.

For a multiset of transitions A to be enabled by a marking M it is sufficient that
M contains the pre-set of A and at least one additional token in each place in the
context of A. This corresponds to the intuition that a token in a place can be used
as context by many transitions at the same time and with multiplicity greater than
one by the same transition.

Definition 2.4 (token game)
Let N be a c-net and let M be a marking of N , that is a multiset M ∈ µS. Given a
finite multiset of transitions A ∈ µT , we say that A is enabled by M if •A+[[A]] ≤M .
The transition relation between markings is defined as

M [A〉M ′ iff A is enabled by M and M ′ = M − •A+ A•.

We call M [A〉M ′ a step. A simple step (also called a firing) is a step involving just
one transition, i.e., M [t〉M ′.

Definition 2.5 (reachable marking)
Let N be a c-net. A marking M is called reachable if there exists a finite step
sequence

m [A0〉M1 [A1〉M2 . . . [An〉M

starting from the initial marking and leading to M .

2.2.2 Inhibitor nets

Inhibitor nets (or nets with inhibitor arcs) further generalize contextual nets with
the possibility of checking not only for the presence, but also for the absence of
tokens in a place. Concretely, inhibitor nets are contextual nets enriched with a new
relation that specifies, for each transition, which are the places that inhibit its firing.

Definition 2.6 (i-net)
A (marked) inhibitor Petri net (i-net) is a tuple N = 〈S, T, F, C, I,m〉, where
〈S, T, F, C,m〉 is a contextual net and I ⊆ T × S is a relation, called the inhibitor
relation.
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Let N be an i-net. The pre-set, post-set and context of transitions and places are
defined as for c-nets. Furthermore, for a multiset of transitions A ∈ µT we define the
inhibitor set of A, denoted by �A, as the set of places which inhibit the transitions
in A, namely �A = I([[A]]). Similarly, for a place s we define �s = {t ∈ T | I(t, s)}.

The notion of enabling changes in order to take into account also the effect of
the inhibitor arcs. As for c-nets, a finite multiset of transitions A is enabled by a
marking M , if M contains the pre-set of A and covers the context of A. In addition
no token must be present nor produced by the step in the places of the inhibitor set
of A.

Definition 2.7 (token game)
Let N be an i-net and let M ∈ µS be a marking of N . Given a finite multiset
of transitions A ∈ µT , we say that A is enabled by M if •A + [[A]] ≤ M and
[[M + A•]] ∩ �A = ∅. The transition relation between markings is defined as

M [A〉M ′ iff A is enabled by M and M ′ = M − •A+ A•.

Steps, firings and reachable markings are defined in the obvious way.

2.2.3 Alternative approaches

In the literature there is not a complete agreement on the notion of enabling for
transitions and steps of contextual and inhibitor nets. The alternative proposals, for
instance in [Vog97b] and in [JK95], allow for the execution of steps where the same
token is used both as context and as precondition, or dually of steps where a token
is generated in the inhibitor set.

The basic assumption which motivates our choice is that concurrent transitions
should be allowed to fire also in any order. In other words we require that given two
multisets of transitions A1, A2 ∈ µT , then

M [A1 + A2〉M
′ ⇒ M [A1〉M

′′ [A2〉M
′ for some M ′′.

Consequently, any marking reachable via step sequences is also reachable by firing
sequences where each step consists of a single transition.

Without getting into technical details, let us compare the different approaches by
means of simple examples. Consider the c-nets N0 and N1 in Figure 2.1. According
to our definition, the step consisting of the concurrent execution of t0 and t1 is not
legal for both nets.

The definition of [Vog97b] allows for the concurrent execution of t0 and t1 in N0

but not in N1, the idea being that the firings are not instantaneous and two actions
should be considered concurrent if their executions can overlap in time. This is the
case for t0 and t1 in N0, where the only constraint is that the firing of t0 must start
after the firing of t1 has begun. Instead, in N1 when the firing of a transition starts
the other transition is no more executable. The property that any firing sequence
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• •

t0 t1

• •

t0 t1

N0 N1

Figure 2.1: Different notions of enabling in the literature.

serializing a concurrent step must be admissible is weakened to the existence of a
possible serialization. Consequently it is still true that the markings reachable via
step sequences coincide with the markings reachable via firing sequences. According
to [JK95], instead, the concurrent execution of t0 and t1 is permitted also in N1.
Observe that the firing of one of t0 or t1 inhibits the other transition. Hence also
the weaker property of coincidence of the markings reachable via step and firing
sequences is lost.

As already pointed out in [MR95, JK95] the more liberal definitions of enabling
are suited to deal with timed systems, where action have non-zero durations, while
our approach is more appropriate when the firings are considered as instantaneous.

We conclude by observing that minor differences exist also with respect
to [Bus98], where a single transition is allowed to produce a token in its inhibitor set
and the context is a set (rather than a multiset). As for the first point, since in both
approaches a transition cannot use the same token as precondition and context, we
judge more coherent to forbid the firing also in the dual situation. Moreover, in this
way a multiset of transitions can be safely thought of as a single “composed” tran-
sition, making the treatment more uniform. Instead, the choice of viewing contexts
as multisets, allowing the firing when at least one token is present in each context
place, is taken by analogy with graph grammars: a graph production may specify a
context with multiple occurrences of the same resource, but it can be applied with
a match which is non-injective on the context. Anyway both choices are mainly a
matter of taste, and they have little influence on the developed theory

2.3 Process semantics of generalized Petri nets

The problem of providing a (deterministic) process semantics for contextual and
inhibitor nets has been faced by various authors [Vog97b, Ris94, GM98, Win98,
Bus98, JK95]. This section is aimed at giving some pointers to the related literature
and an overview of the approaches in [Ris94, GM98, Win98, Bus98] which will be
“rediscovered” in the next chapters as special cases of the developed theory. Rather
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than giving a formal introduction, the section is intended to explain the framework
in which our results have been developed.

2.3.1 Contextual nets

A theory of non-sequential processes for contextual nets has been first proposed
in [MR95], where two kind of processes for C/E contextual nets are defined. A c-
process consists of an ordinary occurrence net with a suitable mapping to the given
contextual net. A simpler notion, called cc-process is obtained by allowing for the
presence of contexts in the occurrence net underlying the process. Contextual P/T
nets and a corresponding notion of deterministic process can be found in the PhD
thesis [Ris94] and in [GM98, Win98].

The causal dependency relation for a contextual net N is obtained as the tran-
sitive and reflexive closure of the relation ≺N , defined as t ≺N t′ iff

t• ∩ ( •t′ ∪ t′) 6= ∅ ∨ t ∩ •t′ 6= ∅. (†)

A (deterministic) occurrence contextual net is defined as a c-net O where ≺N is
irreflexive, the causal dependency relation is a partial order and each place is in
the pre- and post-set of at most one transition. Then, a (deterministic) process of
a c-net N is a deterministic occurrence c-net O, with a total mapping ϕ : O → N
preserving the pre-set, post-set and the context of transitions.

Observe that since an occurrence net is intended to represent a deterministic
computation, the problem described in the Introduction, related to the presence
of asymmetric conflicts in c-nets does not arise here. Simply, as expressed by (†)
above, if t∩ •t′ 6= ∅ then transition t must precede t′ in the computation represented
by the net, exactly as it happens for causality, and thus the kind of dependency
between t and t′ can be safely assimilated to causality.

The papers [GM98, Win98] extend the theory of concatenable processes of ordi-
nary nets [DMM89] to c-nets, by showing that the concatenable processes of a c-net
N form the arrows of a symmetric monoidal category CP[N ], where the objects
are the elements of the free commutative monoid over the set of places (multisets of
places). In particular, in [GM98] a purely algebraic characterization of such category
is given.

A different approach to the process semantics of contextual nets is considered
in [Vog97b]. As explained before, there the author assumes a different notion of
enabling, allowing for the concurrent firing of two transitions also if one consumes a
token read by the other. Therefore “syntactically” the processes of [Vog97b] coincide
with those in [MR95], but they are intended to represent different step sequences.
The paper argues that a partial order is not sufficient to express the dependencies
between transitions occurrences even inside a deterministic computation. Thus a
process is associated with a relational structure consisting of two relations modelling
causality and start precedence (spc-structure) and it is shown that they allow to
recover exactly the concurrent computations represented by the process.
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2.3.2 Inhibitor nets

The deterministic processes of [MR95, Ris94] are generalized to nets with read and
inhibitor arcs in [BP96, Bus98, BP99]. An occurrence i-net is naturally defined as
an acyclic i-net where all transitions may fire. The main problem in this case is that
the informations contained in an occurrence i-net may not be sufficient to single out
a unique deterministic computation. Consider the simple net below.

•

• t′

t s

t0

As already discussed, there are two possible different executions of the net and
they cannot be reasonably identified from the point of view of causality. To get rid of
this ambiguity the occurrence i-net underlying a process is enriched by partitioning
the inhibitor arcs in two disjoint sets: the “before” arcs Ib and the “after” arcs Ia.
Intuitively, if (t, s) ∈ Ib is a “before” arc then t must be executed before the place s
is filled, while if (t, s) ∈ Ia is an “after” arc then t must be executed after the place
s has been emptied.

Processes of i-nets are shown to be appropriate, in the sense that they uniquely
determine the causal dependencies among their events, independent transitions can
fire concurrently and concurrent sets of places correspond to reachable markings.

A notion of process for elementary net systems (a kind of C/E nets) extended
with inhibitor arcs is proposed also in [JK95, JK93, JK91]. This work relies on
the more liberal notion of enabling discussed in the previous section, which per-
mits the concurrent firing of non serializable transitions. As it happens for c-nets
in [Vog97b], this choice makes partial orders insufficient to express the dependencies
between events also in a single deterministic computation. To overcome the problem
the authors introduce stratified order structures, where two different relations are
employed to represent causality and weak causality, and weak dependent events may
also happen simultaneously.

2.4 Event structures and domains

Event structures [NPW81, Win87a] are a widely used model of concurrent compu-
tations which arose from the attempt of developing a theory of concurrency incor-
porating both the insights of C.A. Petri and D.S. Scott. In this section we introduce
the fundamental notions of prime event structure and of prime algebraic domain,
and we review the close relationship between these mathematical models explaining
how they can be seen as equivalent presentations of the same fundamental idea.
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Finally we review some generalizations of prime event structures which have been
proposed in the literature to overcome some limitations of expressiveness of prime
event structures.

2.4.1 Prime event structures

Prime event structures (pes) [NPW81] are a simple event-based model of concurrent
computations in which events are considered as atomic and instantaneous steps,
which can appear only once in a computation. An event can occur only after some
other events (its causes) have taken place and the execution of an event can inhibit
the execution of other events. This is formalized via two binary relations: causality,
modelled by a partial order relation ≤ and conflict, modelled by a symmetric and
irreflexive relation #, hereditary with respect to causality.

Definition 2.8 (prime event structures)
A prime event structure (pes) is a tuple P = 〈E,≤,#〉, where E is a set of events
and ≤, # are binary relations on E called causality relation and conflict relation
respectively, such that:

1. the relation ≤ is a partial order and ⌊e⌋ = {e′ ∈ E : e′ ≤ e} is finite for all
e ∈ E;

2. the relation # is irreflexive, symmetric and hereditary with respect to ≤, i.e.,
e#e′ ≤ e′′ implies e#e′′ for all e, e′, e′′ ∈ E;

A configuration of a pes is a set of events representing a possible computation
of the system modelled by the event structure.

Definition 2.9 (configuration)
A configuration of a pes P = 〈E,≤,#〉 is a subset of events C ⊆ E such that for
all e, e′ ∈ C

1. ¬(e#e′) (conflict-freeness)

2. ⌊e⌋ ⊆ C (left-closedness)

Given two configurations C1 ⊆ C2 if e0, . . . , en is any linearization of the events in
C2 − C1, compatible with causality, then

C1 ⊆ C1 ∪ {e0} ⊆ C1 ∪ {e0, e1} ⊆ . . . ⊆ C2

is a sequence of well-defined configurations. Therefore subset inclusion can be safely
thought of as a computational ordering on configurations.

Definition 2.10 (poset of configurations)
We denote by Conf (P ) the set of configurations of a prime event structure P , ordered
by subset inclusion.
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The class of pes is turned into a category by introducing a notion of morphism.

Definition 2.11 (category PES)
Let P0 = 〈E0,≤0,#0〉 and P1 = 〈E1,≤1,#1〉 be two pes’s. A pes-morphism
f : P0 → P1 is a partial function f : E0 → E1 such that:

1. for all e0 ∈ E0, if f(e0) 6= ⊥ then ⌊f(e0)⌋ ⊆ f(⌊e0⌋);

2. for all e0, e
′
0 ∈ E0, if f(e0) 6= ⊥ 6= f(e′0) then

(a) (f(e0) = f(e′0)) ∧ (e0 6= e′0) ⇒ e0#0e
′
0;

(b) f(e0)#1f(e′0) ⇒ e0#0e
′
0;

The category of prime event structures and pes-morphisms is denoted by PES.

It is possible to verify that pes morphisms “preserve computations”, in the sense that
the image through a pes morphism of a configuration is a configuration. Therefore
a pes morphism naturally induces a monotone mapping between the corresponding
posets of configurations.

2.4.2 Prime algebraic domains

This subsection reviews the definition of the category Dom of finitary prime alge-
braic domains as introduced in [Win87a]. The intuition behind their computational
interpretation helps in understanding the close relationship existing between do-
mains and event structures, which can be formalized, at categorical level, as an
equivalence of categories.

First we need some basic notions and notations for partial orders. A preordered
or partially ordered set 〈D,⊑〉 will be often denoted simply as D, by omitting
the (pre)order relation. Given an element x ∈ D, we write ↓ x to denote the set
{y ∈ D | y ⊑ x}. A subset X ⊆ D is compatible, written ↑ X, if there exists an
upper bound d ∈ D for X (i.e., x ⊑ d for all x ∈ X). It is pairwise compatible if
↑ {x, y} (often written x ↑ y) for all x, y ∈ X. A subset X ⊆ D is called directed if
for any x, y ∈ X there exists z ∈ X such that x ⊑ z and y ⊑ z.

Definition 2.12 ((finitary) (algebraic) complete partial order)
A partial order D is (directed) complete (cpo) if for any directed subset X ⊆ D
there exists the least upper bound

⊔
X in D. An element e ∈ D is compact if for any

directed set X ⊆ D, e ⊑
⊔
X implies e ⊑ x for some x ∈ X. The set of compact

elements of D is denoted by K(D).
A cpo D is called algebraic if for any x ∈ D, x =

⊔
(↓ x ∩ K(D)). We say that

D is finitary if for each compact element e ∈ D the set ↓ e is finite.

Given a finitary algebraic cpo D we can think of its elements as “pieces of informa-
tion” expressing the states of evolution of a process. Finite elements represent states
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which are reached after a finite number of steps. Thus algebraicity essentially says
that each infinite computation can be approximated with arbitrary precision by the
finite ones.

Winskel’s domains satisfy stronger completeness properties, which are formalized
by the following definition.

Definition 2.13 ((prime algebraic) coherent poset)
A partial order D is called coherent (pairwise complete) if for all pairwise compatible
X ⊆ D, there exists the least upper bound

⊔
X of X in D.

A complete prime of D is an element p ∈ D such that, for any compatible
X ⊆ D, if p ⊑

⊔
X then p ⊑ x for some x ∈ X. The set of complete primes of D is

denoted by Pr(D). The partial order D is called prime algebraic if for any element
d ∈ D we have d = (

⊔
↓ d ∩ Pr(D)). The set ↓ d ∩ Pr(D) of complete primes of D

below d will be denoted Pr(d).

Being not expressible as the least upper bound of other elements, the complete
primes ofD can be seen as elementary indivisible pieces of information (events). Thus
prime algebraicity expresses the fact that all the possible computations of the system
at hand can be obtained by composing these elementary blocks of information.

Notice that directed sets are pairwise compatible, and thus each coherent partial
order is a cpo. For the same reason each complete prime is a compact element,
namely Pr(D) ⊆ K(D) and thus prime algebraicity implies algebraicity. Moreover if
D is coherent then for each non empty X ⊆ D there exists the greatest lower bound
d
X, which can be expressed as

⊔
{y ∈ D | ∀x ∈ X. y ⊑ x}.

Definition 2.14 (domains)
The partial orders we shall work with are coherent, prime algebraic, finitary partial
orders, hereinafter simply referred to as (Winskel’s) domains.2

The definition of morphism between domains is based on the notion of immediate
precedence. Given a domain D and two distinct elements d 6= d′ ∈ D we say that d
is an immediate predecessor of d′, written d ≺ d′ if

d ⊑ d′ ∧ ∀d′′ ∈ D. (d ⊑ d′′ ⊑ d′ ⇒ d′′ = d ∨ d′′ = d′)

Moreover we write d � d′ if d ≺ d′ or d = d′. According to the informal interpretation
of domain elements sketched above, d � d′ intuitively means that d′ is obtained from
d by adding a quantum of information. Domain morphisms are required to preserve
such relation.

2The use of this kind of structures in semantics have been first investigated by Berry [Ber78],
where they are called dI-domains. The relation between Winskel domains and dI-domains, which are
finitary distributive consistent-complete algebraic cpo’s is established by the fact that for a finitary
algebraic consistent-complete (or coherent) cpo, prime algebraicity is equivalent to distributivity.
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Definition 2.15 (category Dom)
Let D0 and D1 be domains. A domain morphism f : D0 → D1 is a function, such
that:

• ∀x, y ∈ D0, if x � y then f(x) � f(y). (�-preserving)

• ∀X ⊆ D0, X pairwise compatible, f(
⊔
X) =

⊔
f(X); (Additive)

• ∀X ⊆ D0, X 6= ∅ and compatible, f(
d
X) =

d
f(X); (Stable)

We denote by Dom the category having domains as objects and domain morphisms
as arrows.

Relating prime event structures and domains

Both event structures and domains can be seen as models of systems where com-
putations are built out from atomic pieces. Formalizing this intuition, in [Win87a]
the category Dom is shown to be equivalent to the category PES, the equivalence
being established by two functors L : PES→ Dom and P : Dom→ PES

PES
L

∼ Dom
P

The functor L associates to each pes the poset Conf (P ) of its configurations
which can be shown to be a domain. The image via L of a pes-morphism f : P0 →
P1 is the obvious extension of f to sets of events.

The definition of the functor P, mapping domains back to pes’s requires the
introduction of the notion of prime interval.

Definition 2.16 (prime interval)
Let 〈D,⊑〉 be a domain. A prime interval is a pair [d, d′] of elements of D such that
d ≺ d′. Let us define

[c, c′] ≤ [d, d′] if (c = c′ ⊓ d) ∧ (c′ ⊔ d = d′),

and let ∼ be the equivalence obtained as the transitive and symmetric closure of (the
preorder) ≤.

The intuition that a prime interval represents a pair of elements differing only for a
“quantum” of information is confirmed by the fact that there exists a bijective cor-
respondence between ∼-classes of prime intervals and complete primes of a domain
D (see [NPW81]). More precisely, the map

[d, d′]∼ 7→ p,

where p is the unique element in Pr(d′)−Pr(d), is an isomorphism between the ∼-
classes of prime intervals of D and the complete primes Pr(D) of D, whose inverse
is the function:
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p 7→ [
⊔
{c ∈ D | c ⊏ p}, p]∼.

The above machinery allows us to give the definition of the functor P “extracting”
an event structure from a domain.

Definition 2.17 (from domains to pes’s)
The functor P : Dom→ PES is defined as follows:

• given a domain D, P(D) = 〈Pr(D),≤,#〉 where

p ≤ p′ iff p ⊑ p′ and p#p′ iff ¬(p ↑ p′);

• given a domain morphism f : D0 → D1, the morphism P(f) : P(D0) →
P(D1) is the function:

P(f)(p0) =





p1 if p0 7→ [d0, d
′
0]∼, f(d0) ≺ f(d′0)

and [f(d0), f(d′0)]∼ 7→ p1;

⊥ otherwise, i.e., if f(d0) = f(d′0).

2.4.3 Generalized event structure models

To represent in a direct way the behaviour of languages or models of computations
where the dependencies between events are not adequately described in terms of
causality and conflict, several extensions of prime event structures have been con-
sidered in the literature. Some of these extensions can be seen as special subclasses
of the more general Winskel’s event structures, while others represents orthogonal
generalizations of Winskel’s model.

Flow and bundle event structures

In a prime event structure, and more generally in a stable event structure, each event
has a uniquely determined history, namely given an event we can always identify
a unique subset of events which are necessary for the execution of e, the set of its
causes.

While in certain situations the mentioned property is appreciable since it gives to
the events a very simple operational meaning, in other cases it may be an undesirable
restriction. Consider for instance a process algebra with nondeterministic choice
“+”and sequential composition “;” operators. To give a pes semantics of a term
(a + b); c we are forced to use two different events to represent the execution of c,
one for the execution of c after a and the other for the execution of c after b.

To model nondeterministic choices, or equivalently the possibility of having mul-
tiple disjunctive and mutually exclusive causes for an event, Boudol and Castel-
lani [BC88] introduce the notion of flow event structure, where the causality relation
is replaced by an irreflexive (in general non transitive) flow relation, representing
essentially immediate causal dependency, and conflict is no more hereditary.
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e1 # e2 # e3 # e4 # e5

e

Figure 2.2: A flow event structure F such that there are no bundle event structures
with the same configurations.

Definition 2.18 (flow event structure)
A flow event structure is a triple 〈E,≺,#〉, where E is a denumerable set of events,
≺⊆ E × E is an irreflexive relation called the flow relation, and # ⊆ E × E is the
symmetric conflict relation.

A configuration is then defined as a conflict free set of events, where the flow relation
is acyclic, and given any event e in the configuration, if e′ ≺ e then the configuration
must contain e′ or another event e′′ in conflict with e′ such that e′′ ≺ e (thus one of
the disjunctive causes must be present in the configuration).

To face a similar problem in the semantics of lotos, Langerak [Lan92a, Lan92b]
defines bundle event structures, where a set of multiple disjunctive and mutually
exclusive causes for an event is called a bundle set for the event, and comes into play
as a primitive notion.

Definition 2.19 (bundle event structure)
A bundle event structure is a triple 〈E, 7→,#〉, where E is the denumerable set of
events, # ⊆ E×E is the (irreflexive) symmetric conflict relation and 7→⊆ 2Efin×E is
the bundle relation. Distinct events in the same bundle are required to be in conflict.

The explicit representation of the bundles makes bundle event structures strictly less
expressive than flow event structures. For instance, consider the flow event structure
F in Figure 2.2, where conflict is represented by dotted lines labelled by #, while
the flow relation is represented by arrows. The configurations of F are {e1, e3, e5},
{e1, e4} and {e2, e4}. Observing that the only possible bundles are pairs of conflictual
events it is not difficult to see that there are no bundle event structures having the
same set of configurations (see [Lan92b] for a wider discussion). On the other hand,
bundle event structures offer the advantage of having a simpler theory. For instance,
differently from what happens for flow event structures, non-executable events can
be removed without affecting the behaviour of the event structure.

Event automata and asymmetric conflicts

The papers [PP92, PP95] introduce the “operational” notion of event automaton,
which can be seen as a generalization of the set of configurations of an event struc-
ture. An event automaton is a triple E = 〈E, St,_〉, where E is a set of events,
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St ⊆ 2Efin is a set of states and _⊆ St × St is a relation such that if X _ Y then
the state Y is obtained from X by adjoining a single event.

A language is introduced which allows one to specify in logical terms the be-
haviour of an event automata, and an event structure can then be thought of as a
specification expressed in the language. In particular, including negation in the lan-
guage and allowing for prescriptions of the kind “¬e1 ⊢ e0”, meaning that the event
e0 is enabled in a state S if e1 6∈ S, one is naturally lead to the notion of possible
event and asymmetric conflict. In fact, if “¬e1 ⊢ e0” holds then if both events are
in the same state, necessarily e0 must have been executed first. Hence, as already
discussed, we can think that e0 is a possible cause of e1, or that an asymmetric
conflict exists between the two events.

Inspired by these considerations, the paper [PP95] extends prime and flow event
structures with possible events/flow. A prime event structure with possible events is
a tuple 〈E,Ep,≤,#〉, where 〈E,≤,#〉 is a pes and Ep ⊆ E is a set of possible events.
A configuration is then required to contain all the causes of an event in E−Ep, but
some possible causes may be absent.

Similarly, a flow event structure with possible flow is a flow event structure en-
riched with a new relation <p, called the possible flow relation. The flow and possible
flow relations must be acyclic on a configuration, but the causal closure is requested
only with respect to the flow relation. Again the precedences imposed by the possible
flow relation can be thought of as possible precedences.

To conclude, it is worth remarking that similar ideas are developed, under a
different perspective by Degano, Vigna and Gorrieri, in [DGV93, Bod98], where pri-
oritized event structures are introduced as pes enriched with a partial order relation
modelling priorities between events. Furthermore also bundle event structures have
been extended by Langerak in [Lan92b] to take into account asymmetric conflicts.



Chapter 3

Semantics of Contextual Nets

This chapter presents an event structure semantics for contextual nets, an extension
of P/T Petri nets where transitions can check for the presence of tokens without
consuming them (read-only operations). A basic role is played by asymmetric event
structures, a generalization of Winskel’s prime event structures where symmetric
conflict is replaced by a relation modelling asymmetric conflict or weak causality,
used to represent the new kind of dependency between events arising in contextual
nets. Extending Winskel’s seminal work on safe nets, the truly concurrent event
based semantics of contextual nets is given at categorical level via a chain of core-
flections leading from the category SW-CN of semi-weighted contextual nets to the
category Dom of finitary prime algebraic domains:

SW-CN
Ua

⊥ O-CN
Ea

⊥

IO

AES
La

⊥

Na

Dom
Pa

P

∼ PES
L

First an unfolding construction generates from a contextual net N a corresponding
occurrence contextual net Ua(N). The unfolding describes the behaviour of N in a
static way by making explicit the possible events in the computations of the net
and the dependency relations between them. The construction can be extended to
a functor from SW-CN to the category O-CN of occurrence contextual nets, that
is right adjoint to the inclusion functor. The transitions of an occurrence contextual
net are related by causal dependency and asymmetric conflict, and thus, the seman-
tics of semi-weighted contextual nets given in terms of occurrence contextual nets
can be naturally abstracted to an aes semantics: given an occurrence contextual
net we obtain an aes simply forgetting the places, but remembering the depen-
dency relations that they induce between transitions. Again, this transformation is
expressed, at categorical level, as a coreflection between the category AES of asym-
metric event structures and O-CN. Finally, the configurations of the asymmetric
event structure, endowed with a suitable order, are shown to form a finitary prime
algebraic domain. This last step generalizes Winskel’s equivalence between PES and
Dom to the existence of a coreflection between AES and Dom. Such a coreflection
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allows for an elegant translation of the aes semantics into a domain, and thus (via
Winskel’s equivalence) into a traditional pes semantics.

We also investigate the relation between the proposed unfolding semantics and
several deterministic process semantics for contextual nets in the literature. First
we show that the notion of deterministic process naturally arising from our theory
coincides with other common proposals in the literature. Then a tight relationship
is established between the unfolding and the deterministic process semantics, by
showing that the domain obtained via the unfolding can be characterized as the
collection of the deterministic processes of the net endowed with a kind of prefix
ordering.

The rest of the chapter is organized as follows. Section 3.1 introduces the cat-
egory AES of asymmetric event structures and describes some properties of such
structures. Section 3.2 defines the coreflection between AES and the category Dom
of finitary prime algebraic domains. Section 3.3 presents the category of contextual
nets and focuses on the subcategory SW-CN of (semi-weighted) contextual nets
which we shall work with. Section 3.4 is devoted to the definition and analysis of the
category O-CN of occurrence contextual nets. Section 3.5 describes the unfolding
construction for semi-weighted contextual nets and shows how such a construction
gives rise, at categorical level, to a coreflection between SW-CN and O-CN. Sec-
tion 3.6 completes the chain of coreflections from SW-CN to Dom, by presenting
a coreflection between O-CN and AES. Section 3.7 discusses the relation between
the unfolding and the deterministic process semantics of contextual nets.

3.1 Asymmetric conflicts and asymmetric event

structures

We stressed in the Introduction that pes’s (and in general Winskel’s event struc-
tures) are not expressive enough to model in a direct way the behaviour of models
of computation, such as string, term, graph rewriting and contextual nets, where a
rule may preserve a part of the state, in the sense that part of the state is necessary
for the application of the rule, but it is not affected by such application.

The critical situation when dealing with contextual nets is represented by the
net in Figure 3.1.(a), where the firing of t1 inhibits t0, but not vice versa. The
dependency between the two transitions can be seen either as a kind of asymmetric
conflict or as a weak form of causality, and cannot be modelled directly via a pes.

A reasonable way to encode this situation in a pes is to represent the firing of
t0 with an event e0 and the firing of t1 with two distinct mutually exclusive events:
e′1, representing the execution of t1 that prevents t0, thus mutually exclusive with
e0; and e′′1, representing the execution of t1 after t0 (thus caused by e0). Such pes is
depicted in Figure 3.1.(b), where causal dependency is represented by a plain arrow
and conflict is represented by a dotted line, labelled by #. However, this solution is
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N0

•
s0

t0 •
s

t1

e′1 # e0

e′′1

(a) (b)

Figure 3.1: A simple contextual net and a prime event structure representing its
behaviour.

not completely satisfactory with respect to the interpretation of contexts as “read-
only resources”: since t0 just reads the token in s without changing it, one would
expect the firing of t1, preceded or not by t0, to be represented by a unique event.
This encoding may lead to an explosion of the size of the pes, since whenever an
event is “duplicated” also all its consequences must be duplicated. In addition it
should be noted that the information on the new kind of dependency determined
by read-only operations is completely lost because it is “confused” with causality or
symmetric conflict.

It is worth noting that the inability of representing the asymmetric conflict be-
tween events without resorting to duplications is not specific to prime event struc-
tures, but it is basically related to the axiom of general Winskel’s event structures
(see [Win87a], Definition 1.1.1) stating that the enabling relation ⊢ is “monotone”
with respect to set inclusion:

A ⊢ e ∧ A ⊆ B ∧ B consistent ⇒ B ⊢ e.

A consequence of this axiom is that the computational order between configurations
is set inclusion, the idea being that if A and B are finite configurations such as
A ⊆ B, then starting from A we can reach B by performing the events in B − A,
whenever they become enabled. Obviously, this axiom does not hold in the presence
of asymmetric conflict.

As mentioned in the previous chapter (Section 2.4), the problem of represent-
ing asymmetric conflicts in event structures has been already faced in the litera-
ture [PP92, Lan92b]. However none of the proposed models is suited for our aims.
On the one hand, pes’s with possible events [PP92]are not sufficiently expressive
since they resort to a “global” notion of possible event. For example, the net of Fig-
ure 3.2 cannot be modelled by a pes with possible events since transition t0 should
be a “possible” cause for t1, but a “strong” cause for t2. On the other hand flow event
structures with possible flow and bundle event structures with asymmetric conflict
are expressive enough, but unnecessarily complicate for our aims due to their possi-
bility of expressing multiple disjunctive causes. Technically, as it will become clear
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in the next chapter, this greater generality would have prevented us from realizing
the step from occurrence c-nets to event structures as a coreflection. Furthermore no
categorical treatment of such models was available, and their relation with domains
and pes’s was not fully investigated.

•

t0 •

t1

t2

Figure 3.2: A contextual net for which pes’s with possible events are not adequate.

3.1.1 Asymmetric event structures

In order to provide a more direct, event based representation of the behaviour of
contextual nets this section introduces a new kind of event structure, called asym-
metric event structure (aes). An aes, besides of the usual causal relation ≤ of a
prime event structure, has a relation ր that allows us to specify the new kind of
dependency described above for transitions t0 and t1 of the net in Figure 3.1 simply
as t0 ր t1. As already remarked, the same relation has two natural interpretations:
it can be thought of either as an asymmetric version of conflict or as a weak form
of causality. We decided to call it asymmetric conflict, but the reader should keep
in mind both views, since in some situations it will be preferable to refer to the
weak causality interpretation. Informally, in an aes each event has a set of “strong”
causes (given by the causal dependency relation) and a set of weak causes (due to
the presence of the asymmetric conflict relation). To be fired, each event must be
preceded by all strong causes and by a (suitable) subset of the weak causes. There-
fore, differently from pes’s, the firing of an event can have more than one history.
However observe that aes’s still satisfy a property of stability, since a least history
always exists, coinciding with the set of strong causes.

It comes of no surprise that in this setting the symmetric binary conflict is not
anymore needed as a primitive relation, but it can be represented via “cycles” of
asymmetric conflict. For instance, if e ր e′ and e′ ր e then clearly e and e′ can
never occur in the same computation. As a consequence, pes’s can be identified with
a special subclass of asymmetric event structures, namely those where all conflicts
are actually symmetric.
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The basic ideas for the treatment of asymmetric conflict in our approach are
similar to those suggested by Pinna and Poigné in [PP92, PP95]. Apart from a
different presentation, asymmetric event structures can be seen as a generalization
of pes with possible events. Using their terminology, when e0 ր e1 we can say
that e0 is a possible cause of e1. However, differently from what happens for event
structures with possible events, where a distinct set of possible events is singled
out, our notion of possible cause is local, being induced by the asymmetric conflict
relation. The extended bundle event structures of Langerak [Lan92b] share with our
approach also the intuition that when asymmetric conflict is available, the symmetric
conflict becomes useless.

For technical reasons we first introduce pre-asymmetric event structures. Then
asymmetric event structures will be defined as special pre-asymmetric event struc-
tures satisfying a suitable condition of “saturation”.

Recall from Section 2.1 that given a relation r ⊆ X × X and a subset Y ⊆ X,
we denote by rY the restriction of r to Y , namely r ∩ (Y × Y ).

Definition 3.1 (pre-asymmetric event structure)
A pre-asymmetric event structure (pre-aes) is a tuple G = 〈E,≤,ր〉, where E is
a set of events and ≤, ր are binary relations on E called causality relation and
asymmetric conflict respectively, such that:

1. the relation ≤ is a partial order and ⌊e⌋ = {e′ ∈ E | e′ ≤ e} is finite for all
e ∈ E;

2. the relation ր satisfies, for all e, e′ ∈ E:

(a) e < e′ ⇒ eր e′;1

(b) ր⌊e⌋ is acyclic.2

If eր e′, according to the double interpretation of ր, we say that e is prevented by
e′ or e weakly causes e′. Moreover we say that e is strictly prevented by e′ (or that
e strictly weakly causes e′), written e e′, if eր e′ and ¬(e < e′).

The definition can be easily understood by giving a more precise account of the
ideas presented in the Introduction. Let FiredC(e) denote the fact that the event
e has been fired in a computation C, later formalized by the notion of configuration,
and let precC(e, e′) denote that e precedes e′ in the computation. Then

e < e′ means that ∀C. FiredC(e′) ⇒ FiredC(e) ∧ precC(e, e′)

eր e′ means that ∀C. FiredC(e) ∧ FiredC(e′) ⇒ precC(e, e′).

1With e < e′ we mean e ≤ e and e 6= e′.
2Equivalently, we can require (ր⌊e⌋)

+ irreflexive. This implies, in particular, that the relation
ր is irreflexive.
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e0 e′0

e e′

Figure 3.3: A pre-aes with two conflictual events e and e′, not related by asymmetric
conflict.

Therefore < represents a global order of execution, while ր determines an order of
execution only locally to each computation. Thus it is natural to imposeր to be an
extension of <. Moreover notice that if a set of events form a cycle of asymmetric
conflict then such events cannot appear in the same computation, otherwise the
execution of each event should precede the execution of the event itself. This explains
why we require the transitive closure ofր, restricted to the causes ⌊e⌋ of an event e,
to be acyclic (and thus well-founded, being ⌊e⌋ finite). Otherwise not all causes of e
could be executed in the same computation and thus e itself could not be executed.
The informal interpretation makes also clear that ր is not in general transitive. If
eր e′ ր e′′ it is not true that e must precede e′′ when both fire. This holds only in
a computation where also e′ fires.

The fact that a set of events in a cycle of asymmetric conflict can never occur
in the same computation can be naturally interpreted as a kind of conflict. More
formally, it is useful to associate to each pre-aes an explicit conflict relation (on sets
of events) defined in the following way:

Definition 3.2 (induced conflict relation)
Let G = 〈E,≤,ր〉 be a pre-aes. The conflict relation #a ⊆ 2Efin associated to G is
defined as:

e0 ր e1 ր . . .ր en ր e0
#a{e0, e1, . . . , en}

#a(A ∪ {e}) e ≤ e′

#a(A ∪ {e′})

where A denotes a generic finite subset of E. The superscript “a” in #a reminds that
this relation is induced by asymmetric conflict. Sometimes we use the infix notation
for the “binary version” of the conflict, i.e., we write e#ae′ for #a{e, e′}.

Notice that if #aA then ⌊A⌋ contains a cycle of asymmetric conflict, and, vice versa,
if ⌊A⌋ contains a cycle e0 ր e1 . . . en ր e0 then there exists a subset A′ ⊆ A such
that #aA′ (for instance, by choosing an event ai ∈ A such that ei ≤ ai for each
i ∈ {0, . . . , n} the set A′ can be {ai | i ∈ {0, . . . , n}}).

Clearly, by the rules above, if e ր e′ and e′ ր e then #a{e, e′}. The converse,
instead, does not hold, namely in general we can have e#ae′ and ¬(e ր e′), as in
the aes Figure 3.3, because #a is inherited along <, whileր is not. An asymmetric
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event structure is a pre-aes where each binary conflict is induced directly by an
asymmetric conflict in both directions.

Definition 3.3
An asymmetric event structure (aes) is a pre-aes G = 〈E,≤,ր〉 such that for any
e, e′ ∈ E, if e#ae′ then eր e′.

Observe that given any pre-aes G = 〈E,≤,ր〉, we can always “saturate” G in
order to obtain an aes G = 〈E,≤,ր′〉, by defining ր′ as e ր′ e′ if and only if
(eր e′) ∨ (e#ae′). Furthermore it is easy to verify that the conflict relations of G
and of G′ coincide.

3.1.2 Morphisms of asymmetric event structures

The notion of aes-morphism is a quite natural extension of that of pes-morphism.
Intuitively, it is a (possibly partial) mapping of events that “preserves computa-
tions”.

Definition 3.4 (aes-morphism)
Let G0 = 〈E0,≤0,ր0〉 and G1 = 〈E1,≤1,ր1〉 be two aes’s. An aes-morphism
f : G0 → G1 is a partial function f : E0 → E1 such that:

1. for all e0 ∈ E0, if f(e0) 6= ⊥ then ⌊f(e0)⌋ ⊆ f(⌊e0⌋);

2. for all e0, e
′
0 ∈ E0, if f(e0) 6= ⊥ 6= f(e′0) then

(a) (f(e0) = f(e′0)) ∧ (e0 6= e′0) ⇒ e0#
a
0e
′
0.

(b) f(e0)ր1 f(e′0) ⇒ e0 ր0 e
′
0;

It is easy to show that aes-morphisms are closed under composition. In fact, let
f0 : G0 → G1 and f1 : G1 → G2 be aes-morphisms. The fact that f1 ◦ f0 satisfies
conditions (1) and (2.a) of Definition 3.4 is proved as for ordinary pes’s. The validity
of condition (2.b) is straightforward.

Definition 3.5 (category AES)
We denote by AES the category having asymmetric event structures as objects and
aes-morphisms as arrows.

Notation 3.6
In the following when considering a pes P and an aes G, we implicitly assume that
P = 〈E,≤,#〉 and G = 〈E,≤,ր〉. Moreover superscripts and subscripts on the
structure name carry over the names of the involved sets, functions and relations
(e.g., Gi = 〈Ei,≤i,րi〉).
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The binary conflict in an aes is represented by asymmetric conflict in both
directions, and thus, analogously to what happens for pes’s, it is reflected by aes-
morphisms. The next lemma shows that aes-morphisms reflect also the general
(induced) conflict relation.

Lemma 3.7 (aes-morphisms reflect conflicts)
Let G0 and G1 be two aes’s and let f : G0 → G1 be an aes-morphism. Given a set
of events A ⊆fin E0, if #a

1f(A) then #a
0A
′ for some A′ ⊆ A.

Proof. Let A ⊆fin E0 and let #a
1f(A). By definition of conflict there is a ր1-cycle e′0 ր1

e′1 ր1 . . .ր1 e
′
n ր1 e

′
0 in ⌊f(A)⌋. By definition of aes-morphism, we have that ⌊f(A)⌋ ⊆ f(⌊A⌋)

and thus we can find e0, . . . , en ∈ ⌊A⌋ such that e′i = f(ei) for all i ∈ {0, . . . , n}. Consider
A′ = {a0, . . . , an} ⊆ A such that ei ≤0 ai for i ∈ {0, . . . , n}. By definition of aes-morphism,
e0 ր0 e1 ր0 . . .ր0 e0, and thus #a

0A
′. 2

3.1.3 Relating asymmetric and prime event structures

We conclude this section by formalizing the relation between aes’s and pes’s. We
show that aes’s are a proper extension of pes’s, in the sense that, as one would
expect, pes’s can be identified with the subclass of aes’s where the strict asymmetric
conflict relation is actually symmetric. The corresponding full embedding functor is
right adjoint to the forgetful functor from AES to PES.

Lemma 3.8
Let P = 〈E,≤,#〉 be a pes. Then G = 〈E,≤, < ∪#〉 is an aes, where the asym-
metric conflict relation is defined as the union of the “strict” causality and conflict
relations.

Moreover, if f : P0 → P1 is a pes-morphism then f is an aes-morphism between
the corresponding aes’s G0 and G1, and if g : G0 → G1 is an aes-morphism then
it is also a pes-morphism between the original pes’s.

Proof. Let P = 〈E,≤,#〉 be a pes. The fact that G = 〈E,≤, < ∪#〉 is an aes is a trivial
consequence of the definitions. In particular, the asymmetric conflict relation of G is acyclic on
the causes of each event since # is hereditary with respect to ≤ and irreflexive, and < is a strict
partial order (namely an irreflexive and transitive relation) in P .

Now, let f : P0 → P1 be a pes-morphism. To prove that f is also an aes-morphism between the
corresponding aes’s G0 and G1, first observe that, according the definition of ≤Gi

and րGi
, the

validity of the conditions (1) and (2.a) of Definition 3.4 follows immediately from the corresponding
conditions in the definition of pes-morphism (Definition 2.11). As for condition (2.b), if f(e0)րG1

f(e1), then, by construction, f(e0) <P1 f(e1) or f(e0)#P1f(e1) and thus, by properties of pes’s
(easily derivable from Definition 2.11), in the first case e0 <P0 e1 or e0#P0e1 whilst, in the second
case, e0#P0e1. Hence, in both cases, e0 րG0 e1.

Similar considerations allow us to conclude that, if g : G0 → G1 is an aes-morphism, then it
is also a pes-morphism between the original pes’s. 2
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By the previous lemma, there is a full embedding functor from PES into AES
that transforms each pes by replacing the symmetric conflict with an asymmetric
conflict relation given by the union of “strict” causality and conflict relation, and
that is identity on arrows.

Proposition 3.9 (from pes’s to aes’s)
The functor J : PES→ AES defined by

• J (〈E,≤,#〉) = 〈E,≤, < ∪#〉;

• J (f : P0 → P1 ) = f

is a full embedding of PES into AES.

Observe that given any aes G = 〈E,≤,ր〉 the induced binary conflict, which
can be expressed as ր ∩ ր−1, satisfies all the properties of the conflict relation of
pes’s, i.e., it is irreflexive (since ր is irreflexive), symmetric and hereditary with
respect to ≤. Therefore 〈E,≤,#〉, where # =ր ∩ ր−1, is a pes, in the following
referred to as the pes underlying the aes G.

Definition 3.10 (pes underlying an aes)
We denote by Fap : AES → PES the forgetful functor defined on objects as
Fap(G) = 〈E,≤,ր ∩ ր−1〉 and which is the identity on arrows.

The functor is well-defined, as it can be verified by showing that each aes-morphism
is a pes-morphism between the underlying pes’s. Furthermore for any pes P it is
easy to see that Fap(J (P )) = P . The functor Fap is left adjoint to J and they
establish a reflection between AES and PES, the component of the counit at a pes
P being the identity idP .

Proposition 3.11 (relating aes’s and pes’s)
Fap ⊣J .

3.2 From asymmetric event structures to domains

As shown in Section 2.4, the category PES of prime event structures is equivalent to
the category Dom of (finitary coherent) prime algebraic domains. For asymmetric
event structures this result generalizes to the existence of a coreflection between
AES and Dom. Such a coreflection allows for an elegant translation of an aes
semantics into a domain, and thus into a classical pes semantics. The pes semantics
obtained in this way represents asymmetric conflicts via symmetric conflict and
causality with a duplication of events, as described in Section 3.1 (see Figure 3.1).

The domain corresponding to an aes G is obtained by considering the config-
urations of G, suitably ordered using the asymmetric conflict relation. Vice versa,
given a domain D we obtain the corresponding aes by applying first the functor
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P : Dom → PES (see Section 2.4) and then the embedding J : PES → AES,
defined in Proposition 3.9.

3.2.1 The domain of configurations of an aes

As already explained, a configuration of an event structure is a set of events rep-
resenting a possible computation of the system modelled by the event structure.
The presence of the asymmetric conflict relation makes such definition slightly more
involved than the traditional one.

Definition 3.12 (configuration)
Let G = 〈E,≤,ր〉 be an aes. A configuration of G is a set of events C ⊆ E such
that

1. րC is well-founded;

2. {e′ ∈ C | e′ ր e} is finite for all e ∈ C;

3. C is left-closed with respect to ≤, i.e., for all e ∈ C, e′ ∈ E, e′ ≤ e implies
e′ ∈ C.

The set of all configurations of G is denoted by Conf (G).

Condition (1) first ensures that in C there are no ր-cycles, and thus excludes the
possibility of having in C a subset of events in conflict (formally, for any A ⊆fin C,
we have ¬(#aA)). Moreover it guarantees that ր has no infinite descending chains
in C, that, together with condition (2), implies that the set {e′ ∈ C | e′(րC)+e}
is finite for each event e in C; thus each event has to be preceded only by finitely
many other events of the configuration. Finally condition (3) requires that all the
causes of each event are present.

If a set of events A satisfies only the first two properties of Definition 3.12 it
is called consistent and we write co(A). Notice that, unlike for traditional event
structures, consistency is not a finitary property.3 For instance, let A = {ei | i ∈
N} ⊆ E be a set of events such that all ei’s are distinct and ei+1 ր ei for all i ∈ N.
Then A is not consistent, but each finite subset of A is.

Let us now define an order ⊑ on the configurations of an aes, aimed at formal-
izing the idea of “computational extension”, namely such that C1 ⊑ C2 if the con-
figuration C1 can evolve into C2. A remarkable difference with respect to Winskel’s
event structures (see, e.g., Definition 2.10) is that the order on configurations is
not simply set-inclusion, since a configuration C cannot be extended with an event
inhibited by some of the events already present in C.

3A property Q on the subsets of a set X is finitary if given any Y ⊆ X , from Q(Z) for all finite
subsets Z ⊆ Y it follows Q(Y ).
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Definition 3.13 (extension)
Let G = 〈E,≤,ր〉 be an aes and let A,A′ ⊆ E be sets of events. We say that A′

extends A and we write A ⊑ A′, if

1. A ⊆ A′;

2. ¬(e′ ր e) for all e ∈ A, e′ ∈ A′ − A.

Often in the sequel it will be preferable to use the following condition, equivalent
to (2):

∀e ∈ A. ∀e′ ∈ A′. e′ ր e ⇒ e′ ∈ A.

The extension relation is a partial order on the set Conf (G) of configurations
of an aes. Our aim is now to prove that 〈Conf (G),⊑〉 is a finitary prime algebraic
domain. This means that like prime event structures [Win87a], flow event structure
[Bou90], and prioritized event structures [DGV93], also asymmetric event structures
provide a concrete presentation of prime algebraic domains.

Given an aes G , in the following we will denote by Conf (G) both the set of
configurations of G and the corresponding partial order. The following proposition
presents a simple but useful property of the partial order of configurations of an
aes, strictly connected with coherence. Recall from Section 2.4 that, given a partial
order (D,⊑), two elements d, d′ ∈ D are called compatible, written d ↑ d′, if there
exists d′′ ∈ D such that d ⊑ d′′ and d′ ⊑ d′′. Furthermore, a subset X ⊆ D is called
pairwise compatible d ↑ d′ for any d, d′ ∈ X.

Lemma 3.14
Let G be an aes and let A ⊆ Conf (E) be a pairwise compatible set of configurations.
Then for all C ∈ A and e ∈ C

e′ ∈
⋃
A ∧ e′ ր e ⇒ e′ ∈ C;

Proof. Let e′ ∈
⋃
A be an event such that e′ ր e. Then there is a configuration C′ ∈ A such

that e′ ∈ C′. Being C and C′ compatible, there is C′′ ∈ Conf (G) such that C,C′ ⊑ C′′. Thus
e′ ∈ C′′ and, since C ⊑ C′′, by definition of ⊑ we conclude that e′ ∈ C. 2

The next lemma proves that for pairwise compatible sets of configurations the
least upper bound and the greatest lower bound are simply given by union and
intersection.

Lemma 3.15 (
⊔

and
d

for sets of configurations)
Let G be an aes. Then

1. if A ⊆ Conf (E) is pairwise compatible then
⊔
A =

⋃
A;

2. if C0 ↑ C1 then C0 ⊓ C1 = C0 ∩ C1.
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Proof.

1. Let A ⊆ Conf (E) be a pairwise compatible set of configurations. First notice that
⋃
A is a

configuration. In fact:

• րS

A is well-founded.
Let us suppose that there is in

⋃
A an infinite descending chain:

. . . ei+1 ր ei ր ei−1 ր . . .ր e0.

Let C ∈ A such that e0 ∈ C. Lemma 3.14, together with an inductive reasoning, ensure
that this infinite chain is entirely contained in C. But this contradicts C ∈ Conf (G).

• {e′ ∈
⋃
A | e′ ր e} is finite for all e ∈

⋃
A.

Let e ∈
⋃
A, then there exists C ∈ A such that e ∈ C. By Lemma 3.14, the set

{e′ ∈
⋃
A | e′ ր e} = {e′ ∈ C | e′ ր e}, and thus it is finite.

•
⋃
A is left-closed, since each C ∈ A is left-closed.

The configuration
⋃
A is an upper bound for A. In fact, for any C ∈ A, clearly C ⊆

⋃
A

and for all e ∈ C, e′ ∈
⋃
A, if e′ ր e then, by Lemma 3.14, e′ ∈ C. Thus C ⊑

⋃
A.

Moreover, if C0 is another upper bound for A, namely a configuration such that C ⊑ C0

for all C ∈ A, then
⋃
A ⊆ C0. Furthermore, for any e ∈

⋃
A, e′ ∈ C0 with e′ ր e, since

e ∈ C for some C ∈ A we conclude that e′ ∈ C ⊆
⋃
A. Thus

⋃
A ⊑ C0 and this shows that⋃

A is the least upper bound of A.

2. Let C0 and C1 be two compatible configurations and let C = C0 ∩C1. Then it is easily seen
that C is a configuration. Moreover C ⊑ C0. In fact C ⊆ C0 and for all e ∈ C, e′ ∈ C0,
if e′ ր e then, since e ∈ C1 and C0 ↑ C1, by Lemma 3.14, e′ ∈ C1 and thus e′ ∈ C. In
the same way C ⊑ C1, and thus C is a lower bound for C0 and C1. To show that C is
the greatest lower bound observe that if C′ ⊑ C0, C1 is another lower bound then, clearly
C′ ⊆ C. Furthermore, if e ∈ C′, e′ ∈ C with e′ ր e, since, in particular, e′ ∈ C0, we
conclude e′ ∈ C′. Hence C′ ⊑ C. 2

For prime event structures an event e uniquely determines its history, that is
the set ⌊e⌋ of its causes, independently of the configuration at hand. In the case of
asymmetric event structures, instead, an event e may have different histories, in the
sense that the set of events that must precede e in a configuration C depends on C.
Essentially, the possible histories of e are obtained inserting or not in a configuration
the weak causes of e, which thus can be seen as “possible causes”.

Definition 3.16 (possible history)
Let G be an aes and let e ∈ E. Given a configuration C ∈ Conf (G) such that e ∈ C,
the history of e in C is defined as C[[e]] = {e′ ∈ C | e′ ր∗C e}. The set of (possible)
histories of e, denoted by Hist(e), is then defined as

Hist(e) = {C[[e]] | C ∈ Conf (E) ∧ e ∈ C}.

We denote by Hist(G) the set of possible histories of all events in G, namely

Hist(G) =
⋃
{Hist(e) | e ∈ E}.
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Notice that each history is a finite set of events since, by conditions (1) and (2) in
the definition of configuration, (րC)∗ is a finitary partial order.

Let us now give some properties of the set of histories. Point (1) shows that
each history of an event e in a configuration C, is itself a configuration which is
extended by C. Point (2) essentially states that although an event e has in general
more than one history, as one would expect, the history cannot change after the
event has occurred. Point (3) asserts that different histories of the same event are
incompatible.

Lemma 3.17 (history properties)
Let G be an aes. Then in 〈Conf (G),⊑〉 we have that:

1. if C ∈ Conf (G) and e ∈ C, then C[[e]] ∈ Conf (G). Moreover C[[e]] ⊑ C;

2. if C,C ′ ∈ Conf (G), C ↑ C ′ and e ∈ C ∩ C ′ then C[[e]] = C ′[[e]]; in particular
this holds for C ⊑ C ′;

3. if e ∈ E, C0, C1 ∈ Hist(e) and C0 ↑ C1 then C0 = C1.

Proof.

1. Obviously, C[[e]] ∈ Conf (G). In fact, the requirements (1) and (2) of the definition of
configuration are trivially satisfied, while (3) follows by recalling that ր⊇<. Moreover
C[[e]] ⊆ C and if e′ ∈ C[[e]], e′′ ∈ C and e′′ ր e′, then e′′ ր e′(րC)∗e, thus e′′ ∈ C[[e]].
Therefore C[[e]] ⊑ C.

2. By Lemma 3.14, since C ↑ C′ and e ∈ C, an inductive reasoning ensures that if
e0 ր e1 ր . . . ր en ր e, with ei ∈ C ∪ C′, then each ei is in C. Therefore
C[[e]] = (C ∪ C′)[[e]] = C′[[e]].

3. Since C0 ↑ C1 and e ∈ C0 ∩ C1, by (2), we have that C0 = C0[[e]] = C1[[e]] = C1. 2

We are now able to show that the complete primes of Conf (G) are exactly the
possible histories of events in G.

Lemma 3.18 (primes)
Let G be an aes. Then

1. for all configurations C ∈ Conf (G)

C =
⊔
{C ′ ∈ Hist(G) | C ′ ⊑ C} =

⊔
{C[[e]] | e ∈ C}.

2. Pr(Conf (G)) = Hist(G) and Pr(C) = {C[[e]] | e ∈ C}.
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Proof.

1. Let C ∈ Conf (G) and let C0 =
⊔
{C′ ∈ Hist(G) | C′ ⊑ C}. Then clearly C0 ⊑ C. Moreover

for all e ∈ C, by Lemma 3.17.(1), the history C[[e]] ⊑ C and thus e ∈ C[[e]] ⊆ C0. This gives
the converse inclusion and allows us to conclude C = C0.

2. Let C[[e]] ∈ Hist(e), for some e ∈ E, be a history and let A ⊆ Conf (G) be a pairwise
compatible set of configurations. If C[[e]] ⊑

⊔
A, then e ∈

⋃
A. Thus there exists Ce ∈ A

such that e ∈ Ce. Therefore:

C[[e]]= (
⊔
A)[[e]] [by Lemma 3.17.(2), since C[[e]] ⊑

⊔
A]

= Ce[[e]] [by Lemma 3.17.(2), since Ce ⊑
⊔
A]

⊑ Ce [by Lemma 3.17.(1)]

Therefore C[[e]] is a complete prime in Conf (G).

Conversely, let C ∈ Pr(Conf (G)). Then, by point (1),

C =
⊔
{C′ ∈ Hist(G) | C′ ⊑ C}.

Being C a complete prime, there must exist C′ ∈ Hist(G), C′ ⊑ C such that C ⊑ C′ and
thus C = C′ ∈ Hist(G). 2

It is now immediate to prove that the configurations of an aes ordered by the
extension relation form a finitary prime algebraic domain.

Theorem 3.19 (configurations form a domain)
Let G be an aes. Then 〈Conf (G),⊑〉 is a (coherent finitary prime algebraic) do-
main.

Proof. By Lemma 3.15.(1), Conf (G) is a coherent partial order. By Lemma 3.18, for any con-
figuration C ∈ Conf (G)

Pr(C) = {C[[e]] | e ∈ C}

and C =
⊔
C[[e]]. Therefore Conf (G) is prime algebraic.

Finally, Conf (G) is finitary, as it immediately follows from the fact that compact elements
in Conf (G) are exactly the finite configurations. To see this, let C ∈ Conf (G) be finite and let
us consider a directed A ⊆ Conf (G) such that C ⊑

⊔
A. Then we can choose, for all e ∈ C,

Ce ∈ A such that e ∈ Ce. Being A directed and C finite, the set {Ce | e ∈ C} has an upper bound
C′ ∈ A. Then C =

⊔
e∈C C[[e]] =

⊔
e∈C Ce[[e]] ⊑ C

′ follows immediately from Lemma 3.17. Thus C
is compact. For the converse, let C ∈ Conf (G) be a compact element. Since each possible history
is finite, {

⋃
e∈Z C[[e]] | Z ⊆fin C} is a directed set of finite configurations, having C as least upper

bound. Since C is compact, we conclude that there exists Z ⊆fin C such that C ⊑
⋃
e∈Z C[[e]].

Thus C =
⋃
e∈Z C[[e]] is finite. 2

An example of aes with the corresponding domain can be found in Figure 3.7,
(a) and (b), at the end of Section 3.6 (for the moment, the reader should disregard
how the aes is obtained from the c-net N). In particular notice how asymmetric
conflict influences the order on configurations, which is different from set-inclusion.
For instance, {t0, t4} ⊆ {t0, t

′
1, t4}, but {t0, t4} 6⊑ {t0, t

′
1, t4} since t′1 ր t4.
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3.2.2 A coreflection between AES and Dom

To prove that the construction which associates to an aes the domain of its config-
urations is functorial we first give a characterization of the immediate predecessors
of a configuration. As one could expect, we pass from a configuration to one of its
immediate successors by executing a single event.

Lemma 3.20 (immediate precedence)
Let G be an aes and let C ⊑ C ′ be configurations in Conf (G). Then

C ≺ C ′ iff | C ′ − C |= 1.

where ≺ denotes the immediate precedence relation on configurations.

Proof. (⇒) Let C ≺ C′ and let e′, e′′ ∈ C′ − C. We have C ⊏ C ⊔ (C′[[e′]]) ⊑ C′ and thus, by
definition of immediate precedence, C′ = C ∪ (C′[[e′]]). In the same way C′ = C ∪ C′[[e′′]]. Hence,
by definition of history, we have e′(րC′)∗e′′(րC′)∗e′ and thus e′ = e′′ (otherwise րC′ would not
be acyclic, contradicting the definition of configuration).

(⇐) Obvious. 2

The following lemma leads to the definition of a functor from AES to Dom. First
we prove that aes-morphisms preserve configurations and then we show that the
function naturally induced by an aes-morphism between the corresponding domains
of configurations is a domain morphism.

Lemma 3.21 (aes-morphisms preserve configurations)
Let G0, G1 be two aes’s and let f : G0 → G1 be an aes-morphism. Then for each
C0 ∈ Conf (G0) the morphism f is injective on C0 and the f -image of C0 is a
configuration of G1, i.e.,

f ∗(C0) = {f(e) | e ∈ C0} ∈ Conf (G1).

Moreover f ∗ : Conf (G0)→ Conf (G1) is a domain morphism.

Proof. Let C0 ∈ Conf (G0) be a configuration. Since րC0 is well founded and thus ¬(e#ae′) for
all e, e′ ∈ C0, the conditions of the definition of aes-morphism (Definition 3.4) imply that for all
e, e′ in C0 such that f(e) 6= ⊥ 6= f(e′):

⌊f(e)⌋ ⊆ f(⌊e⌋);
f(e) = f(e′) ⇒ e = e′;
f(e)ր1 f(e′) ⇒ eր0 e

′.

Therefore f is injective on C0 (as expressed by the second condition) and we immediately conclude
that f∗(C0) is a configuration in G1.

Let us now prove that f∗ : Conf (G0) → Conf (G1) is a domain morphism. Additivity and
stability follow from Lemma 3.15. In particular for stability one should also observe that if C0 and
C1 are compatible then f is injective on C1 ∪C2 and thus f(C1∩C2) = f(C1)∩f(C2). Finally, the
fact that f∗ preserves immediate precedence can be straightforwardly derived from Lemma 3.20.

2
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Theorem 3.19 and Lemma 3.21 suggest how to define a functor from the category
AES of asymmetric event structures to the category Dom of domains. Instead, the
functor going back from Dom to AES first transforms a domain into a pes via
P : Dom → PES, introduced in Definition 2.17, and then embeds such pes into
AES via J : PES→ AES, defined in Proposition 3.9.

Definition 3.22 (from aes’s to domains and backwards)
The functor La : AES→ Dom is defined as:

• for any AES-object G,

La(G) = 〈Conf (G),⊑〉;

• for any AES-morphism f : G0 → G1,

La(f) = f ∗ : La(G0)→ La(G1).

The functor Pa : Dom→ AES is defined as J ◦P.

It is worth recalling that, concretely, given a domain 〈D,⊑〉, the pes P(D) is defined
as 〈Pr(D),⊑,#〉, where # is the incompatibility relation (i.e., p#p′ iff p and p′ do
not have a common upper bound). Then Pa(D) = J (P(D)) is the corresponding
aes, namely 〈Pr(D),⊑,⊏ ∪#〉.

The functor Pa is left adjoint to La and they establish a coreflection between
AES and Dom. The counit of the adjunction maps each history of an event e into
the event e itself. The next technical lemma shows that the function defined in this
way is indeed an aes-morphism.

Lemma 3.23
Let G be an aes. Then ǫG : Pa(La(G))→ G defined as:

ǫG(C) = e if C ∈ Hist(e),

is an aes-morphism.

Proof. Let us verify that ǫG satisfies the three conditions imposed on aes-morphisms: for all
C,C′ ∈ Hist(G), with C ∈ Hist(e), C′ ∈ Hist(e′):

• ⌊ǫG(C)⌋ ⊆ ǫG(⌊C⌋).
We have:

ǫG(⌊C⌋) =
= ǫG(Pr(C))
= ǫG({C[[e′]] | e′ ∈ C}) [by Lemma 3.18]
= C

⊇ ⌊e⌋ [since C is left-closed]
= ⌊ǫG(C)⌋
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• (ǫG(C) = ǫG(C′)) ∧ C 6= C′ ⇒ C#aC′.
Let ǫG(C) = e = e′ = ǫG(C′) and C 6= C′. Since C,C′ ∈ Hist(e), by Lemma 3.17, we have
¬(C ↑ C′) and thus C#C′ in P(La(G)) and therefore, by definition of J , C#aC′ in
Pa(La(G)).

• ǫG(C)ր ǫG(C′) ⇒ C ր C′.
Let ǫG(C) = e ր e′ = ǫG(C′). Since the relation ր is irreflexive, surely e 6= e′ and thus
C 6= C′. Now, if e 6∈ C′ then, by Lemma 3.14, surely ¬(C ↑ C′), thus C#C′ in P(La(G)) and
therefore, by definition of J , C ր C′ in Pa(La(G)). Otherwise, if e ∈ C′ we distinguish
two cases:

– C = C[[e]] = C′[[e]].
In this case, by Lemma 3.17.(1), we have that C ⊑ C′, and the relation is strict, since
C 6= C′. Thus, by definition of Pa, C ր C′ in Pa(La(G)).

– C = C[[e]] 6= C′[[e]].
In this case, by Lemma 3.17.(2), we conclude that C and C′ are not compatible,
namely ¬(C ↑ C′). Hence C#C′ in P(La(G)) and therefore C ր C′ in Pa(La(G)).

2

The next technical lemma characterizes the behaviour of the functor Pa on
morphisms having a domain of configurations as codomain.

Lemma 3.24
Let G be an aes, D a domain and let g : D → La(G) be a domain morphism. Then
for all p ∈ Pr(D), | g(p)−

⋃
g(Pr(p)− {p}) |≤ 1 and

Pa(g)(p) =

{
⊥ if g(p)−

⋃
g(Pr(p)− {p}) = ∅

g(p)[[e]] if g(p)−
⋃
g(Pr(p)− {p}) = {e}

Proof. Let p ∈ Pr (D) and let us consider the corresponding prime interval

[
⊔

(Pr (p)− {p}), p] ,

then also [
g(

⊔
(Pr (p)− {p})), g(p)

]
, (3.1)

is a prime interval in La(G), and, by definition of the functor Ea (Definition 3.22)

Pa(g)(p) =

{
⊥ if g(p) = g(

⊔
(Pr (p)− {p}))

C if Pr (g(p))− Pr(g(
⊔

(Pr (p)− {p}))) = {C}

Now, by additivity of g and Lemma 3.15.(1), g(
⊔

(Pr(p)−{p})) =
⊔
g(Pr(p)−{p}) =

⋃
g(Pr(p)−

{p}), and, since (3.1) is a prime interval, by Lemma 3.20, g(p)−
⋃
g(Pr(p)−{p}) has at most one

element. If g(p) =
⋃
g(Pr(p)−{p}) then Pa(g)(p) = ⊥. Otherwise, if g(p)−

⋃
g(Pr(p)−{p}) = {e},

then, by Lemma 3.18.(2), we have that Pr(g(p))−Pr(
⋃
g(Pr(p)− {p})) = {g(p)[[e]]} and thus we

conclude. 2

Finally we can prove the main result of this section, namely, that Pa is left
adjoint to La and they establish a coreflection between AES and Dom. Given an
aes G, the component at G of the counit of the adjunction is ǫG : Pa ◦La(G)→ G.
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Theorem 3.25 (coreflection between AES and Dom)
Pa ⊣ La.

Proof. Let G be an aes and let ǫG : Pa(La(G))→ G be the morphism defined as in Lemma 3.23.
We have to show that given any domain D and aes-morphism h : Pa(D)→ G, there is a unique
domain morphism g : D → La(G) such that the following diagram commutes:

Pa(La(G))
ǫG

G

Pa(D)

Pa(g)
h

Existence
Let g : D → La(G) be defined as:

g(d) = h∗(Pr (d)).

A straightforward checking shows that Pr(d) is a configuration in Pa(D) and thus, by Lemma 3.21,
h is injective on Pr(d) and h∗(Pr (d)) is a configuration in G, i.e., an element of La(G). Moreover
g is a domain morphism. In fact it is

• �-preserving. Let d, d′ ∈ D, with d ≺ d′. Then Pr (d′)− Pr (d) = {p} and thus

g(d′)− g(d) =
= h∗(Pr(d′))− h∗(Pr (d))
⊆ {h(p)}

Therefore |g(d′) − g(d)| ≤ 1 and, since it is easy to see that g(d) ⊑ g(d′), by Lemma 3.20
we conclude g(d) � g(d′).

• Additive. Let X ⊆ D be a pairwise compatible set. Then:

g(
⊔
X) =

= h∗(Pr(
⊔
X))

= h∗(
⋃
x∈X Pr(x)) [since Pr (

⊔
X) =

⋃
x∈X Pr(x)]

=
⋃
x∈X h

∗(Pr (x))
=

⊔
x∈X g(x)

• Stable. Let d, d′ ∈ D with d ↑ d′, then:

g(d ⊓ d′) =
= h∗(Pr(d ⊓ d′))
= h∗(Pr(d) ∩ Pr (d′)) [since Pr(d ⊓ d′) = Pr (d) ∩ Pr(d′) and

h injective on Pr(d) ∪ Pr(d′)]
= h∗(Pr(d)) ∩ h∗(Pr(d′))
= g(d) ⊓ g(d′)

The morphism g defined as above makes the diagram commute. In fact, let p ∈ Pr(D) (=
Pa(D) ) and let us use Lemma 3.24 to determine Pa(g)(p). We have:
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g(p)−
⋃
g(Pr (p)− {p}) =

= h∗(Pr(p))−
⋃
{h∗(Pr (p′)) | p′ ∈ Pr(D), p′ ⊏ p}

= h∗(Pr(p))− {h(p′′) | p′′ ∈ Pr (D), p′′ ⊏ p}
= h∗(Pr(p))− h∗(Pr (p)− {p})
= {h(p)} [since h injective on Pr(p)]

Therefore, if h(p) is undefined then Pa(g)(p) = ⊥ and thus ǫG(Pa(g)(p)) = ⊥. If h(p) = e then
Pa(g)(p) = g(p)[[e]] and thus ǫG(Pa(g)(p)) = e = h(p). Summing up we conclude

ǫG ◦Pa(g) = h.

Uniqueness
Let g′ : D → La(G) be another morphism such that

ǫG ◦Pa(g
′) = h.

By Lemma 3.24, for all p ∈ Pr(D) we have:

Pa(g
′)(p) =

{
⊥ if g′(p)−

⋃
g′(Pr(p)− {p}) = ∅

g′(p)[[e]] if g′(p)−
⋃
g′(Pr(p)− {p}) = {e}

Therefore

h(p) = ǫG(Pa(g
′)(p)) =

{
⊥ if g′(p)−

⋃
g′(Pr(p)− {p}) = ∅

e if g′(p)−
⋃
g′(Pr(p)− {p}) = {e}

(3.2)

Let us show that g′(p) = g(p) for all p ∈ Pr (D), by induction on k = |Pr (p)| (that is finite, since
D is finitary).

(k = 1) In this case g′(p) −
⋃
g′(Pr (p) − {p}) = g′(p). Thus, by (3.2) above, if h(p) = ⊥ then

g′(p) = ∅ = g(p), otherwise, g′(p) = {h(p)} = g(p).

(k→ k + 1) First notice that being g′ monotonic, for all p′ ∈ Pr(p) we have g′(p′) ⊑ g′(p), thus

g′(p) = (g′(p)− (
⋃
g′(Pr(p)− {p}))) ∪ (

⋃
g′(Pr (p)− {p})).

By inductive hypothesis,
⋃
g′(Pr (p) − {p}) =

⋃
g(Pr(p) − {p}), thus, reasoning as in the case

(k = 1) we conclude.
Being g and g′ additive, since they coincide on the complete primes of D, which is prime

algebraic, they coincide also on the whole domain D. 2

3.3 The category of contextual nets

This section introduces a notion of morphism for contextual nets, turning the class
of c-nets into a category CN. Morphisms are shown to preserve the token game in
such a way that they can be thought of as simulations of the source net into the
target net.

In the following when considering a c-net N , we implicitly assume that N =
〈S, T, F, C,m〉. Moreover superscripts and subscripts on the nets names carry over
the names of the involved sets, functions and relations (e.g., Ni = 〈Si, Ti, Fi, Ci, mi〉).

A c-net morphism between two nets maps transitions and places of the first net
into transitions and multisets of places of the second net, respectively, in such a
way that the initial marking as well as the pre- and post-sets of transitions are
“preserved”. Contexts are preserved in a weak sense.
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Definition 3.26 (c-net morphism)
Let N0 and N1 be c-nets. A morphism h : N0 → N1 is a pair h = 〈hT , hS〉, where
hT : T0 → T1 is a partial function and hS : S0 → S1 is a multirelation such that

1. µhS(m0) = m1

2. for each A ∈ µT ,

(a) µhS(
•A) = •µhT (A);

(b) µhS(A
•) = µhT (A)•;

(c) [[µhT (A)]] ≤ µhS(A) ≤ µhT (A).

We denote by CN the category having c-nets as objects and c-net morphisms as
arrows.

Conditions (1), (2.a) and (2.b) are standard for ordinary nets, but condition (2.c),
regarding contexts, deserves some comments. It can be explained by recalling that,
since in our model a single token can be used as context with multiplicity greater
than one, the firing of a transition t can use as context any multiset X satisfying

[[t]] ≤ X ≤ t.

Given any multiset of tokens that can be used as context in the firing of a transition,
its image should be a set of tokens that can be used as context by the image of the
transition. This can be formalized by requiring that [[µhT (A)]] ≤ µhS(X) ≤ µhT (A)
for any X ∈ µS0 such that [[A]] ≤ X ≤ A, which is equivalent to the above condition
(2.c). Observe that, in particular, [[µhT (A)]] = [[µhS(A)]].

It is worth remarking that if hT is undefined on a transition t0 ∈ T0, written
hT (t0) = ⊥, then, by definition of c-net morphism, the places in the pre-, post-set
and context of t0 are forced to be mapped to the empty set, i.e., µhS(

•t+ t•+ t) = ∅.
A basic result to prove (to check that the definition of morphism is “meaning-

ful”) is that the token game is preserved by c-net morphisms. As an immediate
consequence morphisms preserve reachable markings.

Proposition 3.27 (morphisms preserve the token game)
Let N0 and N1 be c-nets, and let h = 〈hT , hS〉 : N0 → N1 be a morphism. Then for
each M,M ′ ∈ µS and A ∈ µT

M [A〉M ′ ⇒ µhS(M) [µhT (A)〉µhS(M
′).

Therefore c-net morphisms preserve reachable markings, i.e., if M0 is a reachable
marking in N0 then µhS(M0) is reachable in N1.



3.4. Occurrence contextual nets 65

Proof. First notice that µhT (A) is enabled by µhS(M). In fact, since A is enabled by M , we
have M ≥ •A+ [[A]]. Thus

µhS(M)
≥ µhS( •A+ [[A]])
= µhS( •A) + µhS([[A]])
≥ µhS( •A) + [[µhS(A)]]
= •µhT (A) + [[µhT (A)]] [by def. of c-net morphism]

Moreover µhS(M ′) = µhS(M)− •µhT (A) + µhT (A)•. In fact, M ′ = M − •A+A•, therefore
we have:

µhS(M ′)
= µhS(M)− µhS( •A) + µhS(A•)
= µhS(M)− •µhT (A) + µhT (A)• [by def. of c-net morphism] 2

The seminal work by Winskel [Win87a] presents a coreflection between prime
event structures and a subclass of P/T nets, namely safe nets. In [MMS97] it is
shown that essentially the same constructions work for the larger category of “semi-
weighted nets” as well (while the generalization to the whole category of P/T nets
requires some original technical machinery and allows one to obtain a proper ad-
junction rather than a coreflection [MMS96]). In the next sections we will relate by
a coreflection (asymmetric and prime) event structures and “semi-weighted c-nets”.

Definition 3.28 (semi-weighted and safe c-nets)
A semi-weighted c-net is a c-net N such that the initial marking m is a set and
Fpost is a relation (i.e., t• is a set for all t ∈ T ). We denote by SW-CN the full
subcategory of CN having semi-weighted c-nets as objects.

A semi-weighted c-net is called safe if also Fpre and C are relations (i.e., •t and
t are sets for all t ∈ T ) and each reachable marking is a set. The full subcategory of
SW-CN containing all safe c-nets is denoted by S-CN.

Notice that the condition characterizing safe nets involves the dynamics of the net
itself, while the one defining semi-weighted nets is “syntactical” in the sense that it
can be checked statically, by looking only at structure of the net.

3.4 Occurrence contextual nets

In the previous section we gave a description of the behaviour of a c-net in a dynamic
way, by describing how the token game evolves. Occurrence c-nets are intended to
represent, via the unfolding construction, the behaviour of general c-nets in a more
static way, by expressing the events (firing of transitions) which can appear in a
computation and the dependency relations between them. Occurrence c-nets will be
defined as safe c-nets such that the dependency relations between transitions satisfy
suitable acyclicity and well-foundedness requirements. While for traditional occur-
rence nets one has to take into account the causal dependency and the (symmetric)
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conflict relations, by the presence of contexts, we have to consider an asymmetric
conflict (or weak dependency) relation as well. The conflict relation, as already seen
in the more abstract setting of aes’s, turns out to be a derived relation.

3.4.1 Dependency relations on transitions

Causal dependency is defined as for traditional safe nets, with an additional clause
stating that transition t causes t′ if it generates a token in a context place of t′.

Definition 3.29 (causal dependency)
Let N be a safe c-net. The causal dependency relation <N is the transitive closure
of the relation ≺ defined by:

1. if s ∈ •t then s ≺ t;

2. if s ∈ t• then t ≺ s;

3. if t• ∩ t′ 6= ∅ then t ≺ t′.

Given a place or transition x ∈ S ∪ T , we denote by ⌊x⌋ the set of causes of x in T ,
defined as ⌊x⌋ = {t ∈ T | t ≤N x} ⊆ T , where ≤N is the reflexive closure of <N .

Definition 3.30 (asymmetric conflict)
Let N be a safe c-net. The strict asymmetric conflict relation  N is defined as

t N t′ iff t ∩ •t′ 6= ∅ or (t 6= t′ ∧ •t ∩ •t′ 6= ∅).

The asymmetric conflict relation րN is the union of the strict asymmetric conflict
and causal dependency relations:

tրN t′ iff t <N t′ or t N t′.

In our informal interpretation, if tրN t′ then t must precede t′ in each compu-
tation in which both fire or, equivalently, t′ prevents t to be fired, namely

FiredC(t) ∧ FiredC(t′) ⇒ precC(t, t′) (†)

As noticed in the Introduction, in an acyclic safe c-net where any transition is
enabled at most once in each computation, condition (†) is surely satisfied when the
same place s appears in the context of t and in the pre-set of t′. But (†) is trivially true
(with t and t′ in interchangeable roles) when t and t′ have a common precondition,
since they never fire in the same computation. This is apparently a little tricky but
corresponds to the clear intuition that a (usual) symmetric (direct) conflict leads
to asymmetric conflict in both directions. Furthermore, since, as noticed for the
general model of aes, (†) is weaker than the condition that expresses causality, the
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N4 • • •

t1 t2 t3

Figure 3.4: An occurrence c-net with a cycle of asymmetric conflict.

condition (†) is satisfied when t causes (in the usual sense) t′.4 For technical reasons
it is convenient to distinguish the strict asymmetric conflict from causality.

In the sequel, when the net N is clear from the context, the subscripts in the
relations ≤N and րN will be omitted.

The c-net N4 in Figure 3.4 shows that, as expected, also in this setting the
relation ր is not transitive. In fact we have t1 ր t3 ր t2 ր t1, but, for instance, it
is not true that t1 ր t2.

An occurrence c-net is a safe c-net that exhibits an acyclic behaviour and such
that each transition can fire in some computation of the net. Furthermore, to allow
for the interpretation of the places as token occurrences, each place has at most one
transition in its pre-set.

Definition 3.31 (occurrence c-nets)
An occurrence c-net is a safe c-net N such that

1. each place s ∈ S is in the post-set of at most one transition, i.e., | •s| ≤ 1;

2. the reflexive closure ≤N of the causal relation <N is a partial order such that
⌊t⌋ is finite for any t ∈ T ;

3. the initial marking m coincides with the set of minimal places with respect to
≤N , i.e., m = {s ∈ S | •s = ∅};

4. (րN)⌊t⌋ is acyclic for all transitions t ∈ T .

With O-CN we denote the full subcategory of S-CN having occurrence c-nets as
objects.

Conditions (1)-(3) are the same as for ordinary occurrence nets. Condition (4) cor-
responds to the requirement of irreflexivity for the conflict relation in ordinary oc-
currence nets. In fact, if a transition t has aրN cycle in its causes then it can never
fire, since in an occurrence c-net N , the order in which transitions appear in a firing
sequence must be compatible with the transitive closure of the (restriction to the
transitions in the sequence of the) asymmetric conflict relation.

As anticipated the asymmetric conflict relation induces a symmetric conflict
relation (on sets of transitions) defined in the following way:

4This is the origin of the weak causality interpretation of ր.
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Definition 3.32 (conflict)
Let N be a c-net. The conflict relation # ⊆ 2Tfin associated to N is defined as:

t0 ր t1 ր . . .ր tn ր t0
#{t0, t1, . . . , tn}

#(A ∪ {t}) t ≤ t′

#(A ∪ {t′})

where A denotes a generic finite subset of T . As for aes’s, we use the infix notation
t#t′ for #{t, t′}.

For instance, referring to Figure 3.4, we have #{t1, t2, t3}, but not #{ti, tj} for
any i, j ∈ {1, 2, 3}. Notice that, by definition, the binary conflict relation # is
symmetric. Moreover in an occurrence c-net # is irreflexive by the fourth condition
of Definition 3.31.

Finally, observe that irreflexivity of the asymmetric conflict relation րN in an
occurrence c-net N implies that the pre-set, the post-set and the context of any
transition t in N are disjoint (any possible intersection would lead to tրN t).

3.4.2 Concurrency and reachability

As for ordinary occurrence nets, a set of places M is called concurrent if there is
a reachable marking in which all the places of M contain a token. Differently from
the classical case, for the presence of contexts some places that a transition needs
to be fired (contexts) can be concurrent with the places it produces. However, the
concurrency of a set of places can still be checked locally by looking only at the
causes of such places and thus can be expressed via a “syntactical” condition. This
subsection introduces such condition and then shows that it correctly formalizes the
intuitive idea of concurrency.

Definition 3.33 (concurrency relation)
Let N be an occurrence c-net. A set of places M ⊆ S is called concurrent, written
conc(M), if

1. ∀s, s′ ∈M. ¬(s < s′);

2. ⌊M⌋ is finite, where ⌊M⌋ =
⋃
{⌊s⌋ | s ∈M};

3. ր⌊M⌋ is acyclic (and thus well-founded, since ⌊M⌋ is finite).

In particular, for each transition t in an occurrence c-net, the set of places consisting
of its pre-set and context is concurrent.

Proposition 3.34
For any transition t of an occurrence c-net, conc( •t+ t).

Proof. Since ⌊ •t+ t⌋ ∪ {t} = ⌊t⌋, by definition of occurrence c-net, conditions (2) and (3) of the
definition of concurrency are satisfied. As for the first condition, suppose that s < s′ for s, s′ ∈ •t+t.
Then there is a transition t′ such that s ∈ •t′ and t′ < s′. Now, since t′ < s′ and s′ ∈ •t + t we
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have t′ < t and, since s ∈ •t+ t and s ∈ •t′, we have also tր t′. Therefore t′ < tր t′ is aր-cycle
in ⌊t⌋, contradicting the definition of occurrence c-net. Thus, also condition (1) is satisfied. 2

The next two lemmata show that given a concurrent set of places, we can inter-
pret it as the result of a computation and perform a backward or forward step in
such a computation, still obtaining a concurrent set.

Lemma 3.35 (backward steps preserve concurrency)
Let N be an occurrence c-net and let M ⊆ S be a set of places. If conc(M) and
t ∈ ⌊M⌋ is maximal with respect to (ր⌊M⌋)

∗ then

1. ∃st ∈ S. st ∈ t
• ∩M ;

2. conc(M − t• + •t).

Proof.

1. Since t ∈ ⌊M⌋, there is st ∈ M and t′ ∈ T such that t ≤ t′ and st ∈ t
′•. But recalling that

ր implies <, by using maximality of t, we can conclude that t = t′.

2. Let M ′ = M − t• + •t. Clearly ⌊M ′⌋ = ⌊M⌋ − {t} and thus ⌊M ′⌋ is finite and ր⌊M ′⌋ is
acyclic.

Moreover, we have to show that there are no causal dependent (distinct) places in M ′. Since
conc(M − t•), by hypothesis, and conc( •t), by Proposition 3.34, the only problematic case
could be s ∈M − t• and s′ ∈ •t. But

• if s < s′ then, by transitivity of <, we have s < st;

• if s′ < s then there is a transition t′ such that s′ ∈ •t′ and t′ ≤ s. Since s′ ∈ •t ∩ •t′,
we have that tր t′ ր t is a ր-cycle in ⌊M⌋.

In both cases we reach a contradiction with the hypothesis conc(M). 2

Lemma 3.36 (forward steps preserve concurrency)
Let N be an occurrence c-net and let M ⊆ S be a set of places. If conc(M) and
M [t〉M ′ then conc(M ′).

Proof. The transition t is enabled by M , i.e., •t + t ⊆ M and thus ¬(t ր t′) for all t′ ∈ ⌊M⌋.
In fact, let t′ ∈ ⌊M⌋, that is t′ < s′ for some s′ ∈ M . Clearly it can not be t  t′, otherwise, if
s ∈ •t′∩ (•t∪ t) ⊆M then s < s′, contradicting the hypothesis conc(M). In the same way, if t < t′

then given any s ∈ •t(⊆M), we would have s < s′.
Therefore, since ⌊M ′⌋ ⊆ ⌊M⌋∪{t} (the strict inclusion holds when t• = ∅) and, by hypothesis,

ր⌊M⌋ is acyclic, we can conclude that ր⌊M ′⌋ is acyclic. Moreover, being ⌊M⌋ finite, also ⌊M ′⌋ is
finite.

Finally, we have to show that there are no (distinct) causal dependent places in M ′. Since
conc(M − •t) and conc(t•) the only problematic case could be s ∈M − •t and s′ ∈ t•. But

• if s < s′ then s < s′′ for some s′′ ∈ •t ∪ t;

• if s′ < s then, for s′′ ∈ •t, by transitivity of <, s′′ < s.
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In both cases we reach a contradiction with the hypothesis conc(M). 2

It is now quite easy to conclude that, as mentioned before, the concurrent sets
of places of a c-net indeed coincide with the (subsets of) reachable markings.

Proposition 3.37 (concurrency and reachability)
Let N be an occurrence c-net and let M ⊆ S be a set of places. Then

conc(M) iff M ⊆ M ′ for some reachable marking M ′.

Proof.
(⇒) By definition of the concurrency relation, ⌊M⌋ is finite. Moreover ր⌊M⌋ is acyclic and

therefore there is an enumeration t(1), . . . , t(k) of the transitions in ⌊M⌋ compatible with (ր⌊M⌋)
+.

Let us show by induction on k = |⌊M⌋| that

m = M (0) [t(1)〉M (1) [t(2)〉M (2) . . . [t(k)〉M (k) ⊇M .

(k = 0) In this case simply m ⊇M and thus m = M (0) ⊇M .

(k > 0) By construction, t(k) is maximal in ⌊M⌋ with respect to (ր⌊M⌋)
+. Thus, by Lemma 3.35,

if we define M ′′ = M − t(k)• + •t(k), we have conc(M ′′) and ⌊M ′′⌋ = {t(1), . . . , t(k−1)}. Therefore,
by inductive hypothesis, there is a firing sequence

m [t(1)〉M (1) . . . [t(k−1)〉M (k−1) ⊇M ′′. (3.3)

Now, by construction, •t(k) ⊆ M ′′. Moreover also t(k) ⊆ M ′′. In fact, if s ∈ t(k) then s ∈ m

or s ∈ t(h)• for some h < k. Thus a token in s is generated in the firing sequence (3.3), and no
transition t(l) can consume this token, otherwise t(k) ր t(l), contradicting the maximality of t(k).
Finally, by definition of occurrence c-net, •t(k) ∩ t(k) = ∅, being ր irreflexive. Therefore t(k) is
enabled in M ′′ so that we can extend the firing sequence (3.3) to

m [t(1)〉M (1) . . . [t(k−1)〉M (k−1) [t(k)〉M (k),

where M (k) = M (k−1) − •t(k) + t(k)• ⊇M ′′ − •t(k) + t(k)• = M .

(⇐) Let us suppose that there exists a firing sequence

m [t(1)〉M (1) [t(2)〉M (2) . . . [t(k)〉M (k) ⊇M .

and let us prove that conc(M (k)) (and thus conc(M)).
If (k = 0), then M ⊆ m and clearly conc(m). If k > 0 then an inductive reasoning that uses

Lemma 3.36 allows one to conclude. 2

As an immediate corollary we obtain that each transition of an occurrence c-net
is firable in some computation of the net.

Corollary 3.38
For any transition t of an occurrence c-net N there is a reachable marking M of N
which enables t.

Proof. By Proposition 3.34, conc( •t+ t) and thus, by Proposition 3.37, we can find a reachable
marking M of N , such that M ⊇ •t+ t, enabling t. 2
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3.4.3 Morphisms on occurrence c-nets

This subsection shows some properties of c-net morphisms between occurrence c-nets
that will be useful in the sequel. We start with a characterization of such morphisms.

Lemma 3.39 (occurrence c-nets morphisms)
Let N0 and N1 be occurrence c-nets and let h = 〈hT , hS〉 : N0 → N1 be a morphism.
Then hS is a relation and

• ∀s1 ∈ m1. ∃!s0 ∈ m0. hS(s0, s1);

• for each t0 ∈ T0, if hT (t0) = t1 then

– ∀s1 ∈
•t1. ∃!s0 ∈

•t0. hS(s0, s1);

– ∀s1 ∈ t1. ∃!s0 ∈ t0. hS(s0, s1);

– ∀s1 ∈ t1
•. ∃!s0 ∈ t0

•. hS(s0, s1);

Moreover given any s0 ∈ S0, s1 ∈ S1, t1 ∈ T1:

• s1 ∈ m1 ∧ hS(s0, s1) ⇒ s0 ∈ m0;

• s1 ∈ t1
• ∧ hS(s0, s1) ⇒ ∃!t0 ∈ T0. (s0 ∈ t0

• ∧ hT (t0) = t1).

Proof. The result is easily proved by using the structural properties of occurrence c-nets. We
treat just the first point. Let s1 ∈ m1. Since it must be µhS(m0) = m1, there exists s0 ∈ m0 such
that hS(s0, s1). Such s0 must be unique, since otherwise the initial marking of N1 should be a
proper multiset, rather than a set, contradicting the definition of occurrence c-net. 2

As an easy consequence of the results in the previous subsection, c-net morphisms
preserve the concurrency relation.

Corollary 3.40 (morphisms preserve concurrency)
Let N0 and N1 be occurrence c-nets and let h : N0 → N1 be a morphism. Given
M0 ⊆ S0, if conc(M0) then µhS(M0) is a set and conc(µhS(M0)).

Proof. Let M0 ⊆ S0, with conc(M0). Then, by Proposition 3.37, there exists a firing sequence
in N0:

m0 [t(1)〉M (1) . . . [t(n)〉M (n) ⊇M0.

By Proposition 3.27, morphisms preserve the token game and thus

m1 = µhS(m0) [hT (t(1))〉µhS(M (1)) . . . [hT (t(n))〉µhS(M (n)) ⊇ µhS(M0).

is a firing sequence in N1. Hence µhS(M0) is a set and, by Proposition 3.37, conc(µhS(M0)). 2

Notice that the corollary implicitly states that morphisms are “injective” on
concurrent sets, in the sense that if conc(M) and s 6= s′ are in M , then µhS(s),
µhS(s

′) are sets and µhS(s) ∩ µhS(s
′) = ∅ (otherwise µS(M) would be a proper

multiset).
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The next lemmata show that, more generally, morphisms preserve the “amount
of concurrency”. Let the symbol ≺ denote the immediate causal dependency between
transitions, namely t ≺ t′ if t < t′ and there does not exists t′′ such that t < t′′ < t′.
First we prove that c-net morphisms reflect ≺-chains. Then, by means of some other
technical results, we can conclude that c-net morphisms reflect causality and conflict,
while asymmetric conflict is reflected or becomes conflict.

Lemma 3.41 (morphisms reflect ≺-chains)
Let N0 and N1 be occurrence c-nets, let h : N0 → N1 be a morphism and let t

(0)
1 ≺

t
(1)
1 ≺ . . . ≺ t

(n)
1 be a chain of transitions in T1 such that t

(n)
1 = hT (t

(n)
0 ). Then

there exists a chain t
(0)
0 ≺ t

(1)
0 ≺ . . . ≺ t

(n)
0 in T0 such that t

(i)
1 = hT (t

(i)
0 ) for all

i ∈ {0, . . . , n}.

Proof. We proceed by induction on n:

(n = 0) Obvious.

(n > 0) Let t
(0)
1 ≺ t

(1)
1 ≺ . . . ≺ t

(n)
1 = hT (t

(n)
0 ). By inductive hypothesis (applied to the final part

of the chain) there is a chain t
(1)
0 ≺ . . . ≺ t

(n)
0 such that t

(i)
1 = hT (t

(i)
0 ) for i ∈ {1, . . . , n}.

Moreover, since t
(0)
1 ≺ t

(1)
1 = hT (t

(1)
0 ), two cases arise:

• t
(0)
1

• ∩ t
(1)
1 6= ∅.

Let s1 ∈ t
(0)
1

• ∩ t
(1)
1 . Since t

(1)
1 = hT (t

(1)
0 ) there is s0 ∈ t

(1)
0 such that fS(s0, s1). Moreover,

by Lemma 3.39, from s1 ∈ t
(0)
1

• we have that that ∃!t
(0)
0 ∈ T0 such that hT (t

(0)
0 ) = t

(0)
1 and

s0 ∈ t
(0)
0

•. Therefore t
(0)
0 ≺ t

(1)
0 is the transition that completes the chain.

• t
(0)
1

• ∩ •t
(1)
1 6= ∅.

Analogous to the previous case.
2

Lemma 3.42
Let N0 and N1 be occurrence c-nets and let h : N0 → N1 be a morphism. Then, for
all t0, t

′
0 ∈ T0, with hT (t0) 6= ⊥ 6= hT (t′0),

1. (hT (t0) = hT (t′0)) ∧ (t0 6= t′0) ⇒ t0#0t
′
0;

2. hT (t0) ≤1 hT (t′0) ⇒ ∃!t′′0 ∈ T0. (t′′0 ≤0 t
′
0 ∧ hT (t′′0) = hT (t0));

3. (a) hT (t0) 1 hT (t′0) ⇒ (t0  0 t
′
0) ∨ (t0#0t

′
0);

(b) hT (t0) <1 hT (t′0) ⇒ (t0 <0 t
′
0) ∨ (t0#0t

′
0);

Proof.

1. Let hT (t0) = hT (t′0) and t0 6= t′0. Consider a chain of transitions t
(0)
1 ≺ . . . ≺ t

(k)
1 = hT (t0)

such that •t
(0)
1 ⊆ m1 and t

(i)
1

• ∩ •t
(i+1)
1 6= ∅ for all i ∈ {0, . . . , k − 1} (the existence of

such a finite chain is an immediate consequence of the definition of occurrence c-net). By
Lemma 3.41, we can find in T0 two ≺-chains of transitions,
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t
(0)
0 ≺ . . . ≺ t

(k)
0 and t

′(0)
0 ≺ . . . ≺ t

′(k)
0 ,

such that, hT (t
(i)
0 ) = hT (t

′(i)
0 ) = t

(i)
1 , for all i ∈ {1, . . . , k} and t0 = t

(k)
0 , t′0 = t

′(k)
0 .

Let j be the least index such that t
(j)
0 6= t

′(j)
0 . If j = 0 (and thus •t

(j)
1 ⊆ m1) consider a

generic s1 ∈
•t

(0)
1 . By definition of morphism, there are s0 ∈

•t
(0)
0 and s′0 ∈

•t
′(0)
0 such that

hS(s0, s1) and hS(s′0, s1). By Lemma 3.39, since s1 ∈ m1, also s0 and s′0 are in the initial

marking and thus s0 = s′0. Hence t
(0)
0 ր0 t

′(0)
0 ր0 t

(0)
0 , thus t

(0)
0 #m

0 t
′(0)
0 and therefore, by

definition of #, t0#0t
′
0. If j > 0, then considering s1 ∈ t

(j−1)
1

• ∩ •t
(j)
1 , the same reasoning

applies.

2. Existence easily follows from Lemma 3.41. As for uniqueness, let t′′′0 ≤0 t
′
0 and hT (t′′′0 ) =

hT (t0). If t′′′0 6= t′′0 then, by point (1) t′′′0 #0t
′′
0 and therefore t′0#0t

′
0, contradicting the defini-

tion of occurrence c-net.

3. (a) Let hT (t0) 1 hT (t′0). Then there is a place s1 ∈ (hT (t0) ∪ •hT (t0)) ∩ •hT (t′0). Thus

there are s0 ∈ (t0 ∪
•t0) such that hS(s0, s1) and s′0 ∈

•t′0 such that hS(s′0, s1). If s1 is
in the initial marking then s0 = s′0 and thus t0  1 t

′
0. Otherwise s0 and s′0 are in the

post-sets of two transitions t
(0)
0 and t

′(0)
0 , which are mapped to the same transition in

N1 (the transition which has s1 in its post-set). By point (1), t
(0)
0 and t

′(0)
0 are identical

or in conflict: in the first case s0 = s′0 and thus t0  0 t
′
0, while in the second case

t0#0t
′
0.

(b) Let hT (t0) <1 hT (t′0). By Lemma 3.41, there exists t′′0 ∈ T0 such that t′′0 <0 t
′
0 and

hT (t′′0 ) = hT (t0). It follows from point (1) that either t′′0 = t0 and thus t0 <0 t
′
0, or

t′′0#0t0 and thus t0#0t
′
0. 2

Corollary 3.43
Let N0 and N1 be occurrence c-nets and let h : N0 → N1 be a morphism. Then, for
all t0, t

′
0 ∈ T0 with hT (t0) 6= ⊥ 6= hT (t′0),

1. ⌊hT (t0)⌋ ⊆ hT (⌊t0⌋);

2. (hT (t0) = hT (t′0)) ∧ (t0 6= t′0) ⇒ t0#0t
′
0;

3. hT (t0)ր1 hT (t′0) ⇒ (t0 ր0 t
′
0) ∨ (t0#0t

′
0);

4. #hT (A) ⇒ #A′, for some A′ ⊆ A.

It is worth observing that, since the asymmetric conflict relation defined for an
occurrence c-net does not satisfy the saturation condition required for aes’s (see
Definition 3.3) asymmetric conflict is not necessarily reflected by a c-net morphism,
but it can also become conflict.
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3.5 Unfolding: from semi-weighted to occurrence

contextual nets

This section shows how, given a semi-weighted c-net N , an unfolding construction
allows us to obtain an occurrence c-net Ua(N) that describes the behaviour of N .
As for traditional nets, each transition in Ua(N) represents an instance of a precise
firing of a transition in N , and places in Ua(N) represent occurrences of tokens
in the places of N . Each item (place or transition) of the unfolding is mapped to
the corresponding item of the original net by a c-net morphism fN : Ua(N) → N ,
called the folding morphism. The unfolding operation can be extended to a functor
Ua : SW-CN→ O-CN that is right adjoint to the inclusion functor IO : O-CN→
SW-CN and thus establishes a coreflection between SW-CN and O-CN.

We first introduce some technical notions. We say that a c-net N0 is a subnet of
N1, written N0 � N1, if S0 ⊆ S1, T0 ⊆ T1 and the inclusion 〈iT , iS〉 (with iT (t) = t,
for all t ∈ T0, and iS(s, s) = 1, for all s ∈ S0) is a c-net morphism. In words, N0 �N1

if N0 coincides with an initial segment of N1. In the following it will be useful to
consider the subnets of an occurrence c-net obtained by truncating the original net
at a given “causal depth”, where the notion of depth is defined in the natural way.

Definition 3.44 (depth)
Let N be an occurrence c-net. The function depth : S∪T → N is defined inductively
as follows:

depth(s) = 0 for s ∈ m;
depth(t) = max{depth(s) | s ∈ •t ∪ t}+ 1 for t ∈ T ;
depth(s) = depth(t) for s ∈ t•.

It is not difficult to prove that depth is a well-defined total function, since infinite
descending chains of causality are disallowed in occurrence c-nets. Moreover, given
an occurrence c-net N , the net containing only the items of depth less or equal to
k, denoted by N [k], is a well-defined occurrence c-net and it is a subnet of N . The
following simple result holds:

Proposition 3.45 (truncation)
An occurrence c-net N is the (componentwise) union of its subnets N [k], of depth k.

The unfolding of a semi-weighted c-net N can be constructed inductively by
starting from the initial marking of N , and then by adding, at each step, an instance
of each transition of N enabled by (the image of) a concurrent subset of places in
the partial unfolding currently generated. For technical reasons we prefer to give an
axiomatic definition.
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Definition 3.46 (unfolding)
Let N be a semi-weighted c-net. The unfolding Ua(N) = 〈S ′, T ′, F ′, C ′, m′〉 of the net
N and the folding morphism fN = 〈fT , fS〉 : Ua(N)→ N are the unique occurrence
c-net and c-net morphism satisfying the following equations.

m′ = {〈∅, s〉 | s ∈ m}
S ′ = m′ ∪ {〈t′, s〉 | t′ = 〈Mp,Mc, t〉 ∈ T

′ ∧ s ∈ t•}
T ′ = {〈Mp,Mc, t〉 |Mp,Mc ⊆ S ′ ∧ Mp ∩Mc = ∅ ∧ conc(Mp ∪Mc) ∧

t ∈ T ∧ µfS(Mp) = •t ∧ [[t]] ≤ µfS(Mc) ≤ t}

F ′pre(t
′, s′) iff t′ = 〈Mp,Mc, t〉 ∧ s′ ∈ Mp (t ∈ T )

C ′(t′, s′) iff t′ = 〈Mp,Mc, t〉 ∧ s′ ∈ Mc (t ∈ T )
F ′post(t

′, s′) iff s′ = 〈t′, s〉 (s ∈ S)

fT (t′) = t iff t′ = 〈Mp,Mc, t〉
fS(s

′, s) iff s′ = 〈x, s〉 (x ∈ T ′ ∪ {∅})

The existence of the unfolding can be proved by explicitly giving its inductive defi-
nition. Uniqueness follows from the fact that each item in a occurrence c-net has a
finite depth.

Places and transitions in the unfolding of a c-net represent respectively tokens
and firing of transitions in the original net. Each place in the unfolding is a pair
recording the “history” of the token and the corresponding place in the original net.
Each transition is a triple recording the pre-set and context used in the firing, and the
corresponding transition in the original net. A new place with empty history 〈∅, s〉
is generated for each place s in the initial marking of N . Moreover a new transition
t′ = 〈Mp,Mc, t〉 is inserted in the unfolding whenever we can find a concurrent set
of places that corresponds, in the original net, to a marking that enables t (Mp is
mapped to the pre-set and Mc to the context of t). For each place s in the post-set
of such t, a new place 〈t′, s〉 is generated, belonging to the post-set of t′. The folding
morphism f maps each place (transition) of the unfolding to the corresponding place
(transition) in the original net. Figure 3.5 shows a c-net N and the initial part of its

unfolding (formally, it is the subnet of the unfolding of depth 3, namely Ua(N)[3]).
The folding morphism is represented by labelling the items of the unfolding with
the names of the corresponding items of N .

Occurrence c-nets are particular semi-weighted c-nets, thus we can consider the
inclusion functor IO : O-CN → SW-CN that acts as identity on objects and
morphisms. We show now that the unfolding of a c-net Ua(N) and the folding
morphism fN are cofree over N . Therefore Ua extends to a functor that is right
adjoint to IO and thus establishes a coreflection between SW-CN and O-CN.
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•
s0

•
s1

t0 •
s2

t1
s4

t2 t3

t4
s3s5

N

•
s0

•
s1

t0 •
s2

t1
s4

t2 t3
s1

t4
s3 s3

t1
s5

s1

t1
s1

Ua(N)[3]

Figure 3.5: A c-net and (part of ) its unfolding.
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Theorem 3.47 (coreflection between SW-CN and O-CN)
IO ⊣ Ua

Proof. Let N be a semi-weighted c-net, let Ua(N) = 〈S′, T ′, F ′, C′,m′〉 be its unfolding and
let fN : Ua(N) → N be the folding morphism as in Definition 3.46. We have to show that for
any occurrence c-net N1 and for any morphism g : N1 → N there exists a unique morphism
h : N1 → Ua(N) such that the following diagram commutes:

Ua(N)
fN

N

N1

h
g

Existence
We define a sequence of morphisms h[k] : N1

[k] → Ua(N) such that, for any k,

h[k] ⊆ h[k+1] and fN ◦ h[k] = g|N1
[k] ,

then the morphism h we are looking for will be h =
⋃
k h

[k]. We give an inductive definition:

(k = 0) The c-net N1
[0] consists only of the initial marking of N1 with no transitions, i.e., N1

[0] =
〈m1, ∅, ∅, ∅,m1〉. Therefore h[0] has to be defined:

hT
[0] = ∅,

hS
[0](s1, 〈∅, s〉) ≡ gS(s1, s) for all s1 ∈ S1

[0] = m1 and s ∈ S.

(k→ k + 1) The morphism h[k+1] extends h[k] on items with depth equal to k + 1 as follows. Let
t1 ∈ T [k+1] with depth(t1) = k + 1. By definition of depth, depth(s) ≤ k for all s ∈ •t1 ∪ t1 and

thus h[k] is defined on the pre-set and on the context of t1. We must define hT on t1 and hS on its
post-set. Two cases arise:

• If gT (t1) = ⊥ then necessarily

hT
[k+1](t1) = ⊥

hS
[k+1](s1, s

′) = 0 for all s1 ∈ t1• and s′ ∈ S′.

• If gT (t1) = t then consider the sets

Mp = µhS
[k]( •t1) Mc = µhS

[k](t1).

Since N1 is an occurrence c-net, •t1∩t1 = ∅ and, by Proposition 3.34, conc( •t1 ∪ t1). Hence,
by Corollary 3.40,

Mp ∩Mc = ∅ and conc(Mp ∪Mc).

Moreover, by construction, fN ◦ h[k] = g|N1
[k] , and therefore

µfS(Mp)

= µfS(µhS
[k]( •t1))

= µgS( •t1)
= •t [by def. of morphism]
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and in the same way [[t]] ≤ µfS(Mc) ≤ t. Thus, by definition of unfolding, there exists a
transition t′ = 〈Mp,Mc, t〉 in T ′.

It is clear that, to obtain a well defined morphism that makes the diagram commute, we
have to define

hT
[k+1](t1) = t′

and, since µgS(t1
•) = t•, for all s1 ∈ t1• and s ∈ t•

hS
[k+1](s1, 〈t′, s〉) = gS(s1, s).

A routine checking allows to prove that, for each k, h[k] is a well-defined morphism and
fN ◦ h[k] = g|N1

[k] .

Uniqueness
The morphism h is clearly unique since at each step we were forced to define it as we did to ensure
commutativity. Formally, let h′ : N1 → Ua(N) be a morphism such that the diagram commutes,
i.e., fN ◦ h′ = g. Then, we show, that for all k

h′
|N1

[k] = h|N1
[k] .

We proceed by induction on k:

(k = 0) The c-net N1
[0] consists only of the initial marking of N1 and thus we have:

h′T
[0]

= ∅ = hT
[0],

h′S
[0]

(s1, 〈∅, s〉) = gS(s1, s) = hS
[0](s1, 〈∅, s〉), for all s1 ∈ S1

[0] = m1 and s ∈ S.

(k→ k + 1) For all t1 ∈ T [k+1], with depth(t1) = k + 1 we distinguish two cases:

• If gT (t1) = ⊥ then necessarily

h′T
[k+1]

(t1) = ⊥ and µhS
[k+1](t1

•) = ∅,

thus h′
[k+1]

coincides with h[k+1], on t1 and its post-set.

• If gT (t1) = t then

h′T
[k+1]

(t1) = t′ = 〈Mp,Mc, t〉 ∈ T ′,

with Mp = •t′ = µh′S( •t1) and Mc = t′ = µh′S(t1).
5 By inductive hypothesis, since

depth(s1) ≤ k for all s1 ∈
•t1 ∪ t1, we have that µhS( •t1) = Mp and µhS(t1) = Mc.

Therefore, by definition of h, hT (t1) = 〈Mp,Mc, t〉 = h′T (t1).

Moreover, for all s1 ∈ t1• and for all s ∈ t•, again by reasoning on commutativity of the
diagram, h′S(s1, 〈t′, s〉) = gS(s1, s) = hS(s1, 〈t′, s〉).

2

5Notice that here equality holds since we are working with occurrence c-nets and thus contexts
can only have multiplicity 1.
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3.6 Occurrence contextual nets and asymmetric

event structures

This section shows that the semantics of semi-weighted c-nets given in terms of oc-
currence c-nets can be abstracted to an event structure and to a domain semantics.
First the existence of a coreflection between AES and O-CN is proved, substanti-
ating the claim according to which aes’s represent a suitable model for giving event
based semantics to c-nets. Then the coreflection between AES and Dom, defined
in Section 3.1, can be exploited to complete the chain of coreflections from SW-CN
to Dom.

Given an occurrence c-net we can obtain a pre-aes by simply forgetting the
places, but remembering the dependency relations that they induce between transi-
tions, namely causality and asymmetric conflict. The corresponding (saturated) aes
has the same causal relation ≤N , while asymmetric conflict is given by the union
of asymmetric conflict րN and of the induced binary conflict #N . Furthermore a
morphism between occurrence c-nets naturally restricts to a morphism between the
corresponding aes’s.

Definition 3.48 (from occurrence c-nets to aes’s)
Let Ea : O-CN→ AES be the functor defined as:

• for each occurrence c-net N , if #N denotes the induced binary conflict in N :

Ea(N) = 〈T,≤N ,րN ∪#N〉;

• for each morphism h : N0 → N1:

Ea(h : N0 → N1) = hT .

Notice that the induced conflict relation #a in the aes Ea(N) (see Definition 3.2)
coincides with the induced conflict relation in the net N (see Definition 3.32). There-
fore in the following we will confuse the two relations and simply write # to denote
both of them.

Proposition 3.49 (well-definedness)
Ea is a well-defined functor.

Proof. Given any occurrence c-net N , Definition 3.31 and the considerations on the saturation
of pre-aes’s following Definition 3.3, immediately imply that Ea(N) is an aes. Furthermore, if
h : N0 → N1 is a c-net morphism, then, by Corollary 3.43, Ea(h) = hT is an aes-morphism.
Finally Ea obviously preserves arrow composition and identities. 2

An aes can be identified with a canonical occurrence c-net, via a free construction
that mimics Winskel’s: for each set of events related in a certain way by causality and
asymmetric conflict we generate a unique place that induces such kind of relations
on the events.
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Definition 3.50 (from aes’s to occurrence c-nets)
Let G = 〈E,≤,ր〉 be an aes. Then Na(G) is the net N = 〈S, T, F, C,m〉 defined
as follows:

• m =

{
〈∅, A,B〉 |

A,B ⊆ E, ∀a ∈ A. ∀b ∈ B. aր b,
∀b, b′ ∈ B. b 6= b′ ⇒ b#b′

}
;

• S = m ∪



〈{e}, A,B〉 |

A,B ⊆ E, e ∈ E, ∀x ∈ A ∪B. e < x,
∀a ∈ A. ∀b ∈ B. aր b,
∀b, b′ ∈ B. b 6= b′ ⇒ b#b′



;

• T = E;

• F = 〈Fpre, Fpost〉, with

Fpre = {(e, s) | s = 〈x,A,B〉 ∈ S, e ∈ B},
Fpost = {(e, s) | s = 〈{e}, A,B〉 ∈ S};

• C = {(e, s) | s = 〈x,A,B〉 ∈ S, e ∈ A}.

The transitions of Na(G) are simply the events of G, while places are triples of the
form 〈x,A,B〉, with x,A,B ⊆ E, and |x| ≤ 1. A place 〈x,A,B〉 is a precondition
for all the events in B and a context for all the events in A. Moreover, if x = {e},
such a place is a postcondition for e, otherwise if x = ∅ the place belongs to the
initial marking. Therefore each place gives rise to a conflict between each pair of
(distinct) events in B and to an asymmetric conflict between each pair of events
a ∈ A and b ∈ B. Figure 3.6 presents some examples of basic aes’s with the
corresponding c-nets. The cases of an aes with two events related, respectively, by
causality, asymmetric conflict and (immediate symmetric) conflict are considered.
Pictorially, an asymmetric conflict e0 ր e1 is represented by a dotted arrow from e0
to e1. Causality is represented, as usual, by plain arrows.

The next proposition relates the causality and asymmetric conflict relations of
an aes with the corresponding relations of the c-net Na(G). In particular it is useful
in proving that Na(G) is indeed an occurrence c-net.

Lemma 3.51
Let G = 〈E,≤,ր〉 be an aes and let Na(G) be the net N = 〈S, T, F, C,m〉. Then
for all e, e′ ∈ E:

1. e <N e′ iff e < e′;

2. e N e′ iff eր e′;

3. eրN e′ iff eր e′.
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G0

e0

e1

Na(G0)

•
〈∅,∅,{e0}〉

•〈∅,{e0},∅〉 e0 • 〈∅,{e0},{e1}〉

〈{e0},∅,∅〉

〈{e0},∅,{e1}〉 • 〈∅,{e0,e1},∅〉

•〈∅,∅,{e1}〉

•〈∅,{e1},∅〉 e1 〈{e0},{e1},∅〉

〈{e1},∅,∅〉

G1 e0 e1 Na(G1)

•

• e0 • •

• e1 •

G2 e0 e1 Na(G2)

• • • • •

• e0 • e1 •

Figure 3.6: Three simple aes’s and the corresponding occurrence c-nets produced
by the functor Na.
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Proof.

1. Let ≺N denote the immediate causality relation in N . If e ≺N e′ then there exists a place
〈{e}, A,B〉 ∈ S with e′ ∈ A ∪B and thus, by definition of Na, e < e′. Vice versa, if e < e′

then 〈{e}, ∅, {e′}〉 ∈ S and thus e ≺N e′. Since <N is the transitive closure of ≺N and < is
a transitive relation we conclude the thesis.

2. If e N e′ then there exists a place 〈x,A,B〉 ∈ S with e ∈ A∪B and e′ ∈ B and thus either
e ր e′ or e#e′. But since G is an aes, the binary conflict is included in the asymmetric
conflict and thus, also in the second case, eր e′. Vice versa, if eր e′ then 〈∅, {e}, {e′}〉 ∈ S
and thus e N e′.

3. Immediate consequence of points (1) and (2).

2

As an immediate corollary we have:

Corollary 3.52
Let G = 〈E,≤,ր〉 be an aes. Then Na(G) = N = 〈S, T, F, C,m〉 is an occurrence
c-net.

Proof. By Lemma 3.51 the causality relation ≤N=≤ and the asymmetric conflictրN=ր inherit
the necessary properties from those of G. 2

Let G = 〈E,≤,ր〉 be an aes. For e ∈ E, we define the set of consequences
⌈{e}⌉, as follows (considering the singleton {e} instead of e itself will simplify the
notation later).

⌈{e}⌉ = {e′ ∈ E | e < e′}.

This function is extended also to the empty set, by ⌈∅⌉ = E. We use the same
notation for occurrence c-nets, referring to the underlying aes.

The next technical lemma gives a property of morphisms between occurrence
c-nets which will be useful in the proof of the coreflection result.

Lemma 3.53
Let N0 and N1 be occurrence c-nets and let h : N0 → N1 be a morphism. For all
s0 ∈ S0 and s1 ∈ S1, if hS(s0, s1) then

1. hT ( •s0) = •s1;

2. s0
• = h−1

T (s1
•) ∩ ⌈ •s0⌉;

3. s0 = h−1
T (s1) ∩ ⌈

•s0⌉.
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Proof. Let s0 ∈ S0 and s1 ∈ S1 such that hS(s0, s1).

1. If •s0 = ∅, i.e., s0 ∈ m0 then s1 ∈ m1 and thus •s1 = ∅ = hT ( •s0). Otherwise, let
•s0 = {t0}.6 Therefore hT (t0) = t1 is defined (see the remark after Definition 3.26) and
s1 ∈ t1•. Thus •s1 = {t1} = hT ( •s0).

2. Let t0 ∈ s0•, i.e., s0 ∈ •t0. Since hS(s0, s1), we have that hT (t0) = t1 is defined and s1 ∈ •t1.
Thus t0 ∈ h

−1
T (s1

•) ∩ ⌈ •s0⌉.

For the converse inclusion, let t0 ∈ h
−1
T (s1

•) ∩ ⌈ •s0⌉. Then s1 ∈ •hT (t0) and thus there is
s′0 ∈

•t0 such that hS(s′0, s1). Now, reasoning as in Lemma 3.42.(1), we conclude that s′0
and s0 necessarily coincide, otherwise they would be in the post-condition of conflicting
transitions and thus, since t0 ∈ ⌈ •s0⌉, we would have t0#t0.

3. Analogous to (2). 2

Recall that, by Lemma 3.51, for any aes G = 〈E,≤,ր〉 the causality and
asymmetric conflict relations in Na(G) coincide with ≤ andր. Hence Ea(Na(G)) =
〈E,≤,ր′〉, where ր′=ր ∪# =ր, where the last equality is justified by the fact
that in an aes # ⊆ր. Hence Ea ◦Na is the identity on objects.

We next prove that Na extends to a functor from AES to O-CN, which is left
adjoint to Ea (with unit the identity idG). More precisely they establish a coreflection
from AES to O-CN.

Theorem 3.54 (coreflection between O-CN and AES)
Na ⊣ Ea

Proof. Let G = 〈E,≤,ր〉 be an aes and let Na(G) = 〈S, T, F, C,m〉 be as in Definition 3.50.
We have to show that for any occurrence c-net N0 and for any morphism g : G → Ea(N0) there
exists a unique morphism h : Na(G)→ N0, such that the following diagram commutes:

G
idG

g

Ea(Na(G)) = G

Ea(h)

Ea(N0)

The behaviour of h on transitions is determined immediately by g:

hT = g.

Therefore we only have to show that a multirelation hS : S → S0 such that 〈hT , hS〉 is a morphism
exists and is uniquely determined by hT .

Existence
Let us define hS in such a way it satisfies the conditions of Lemma 3.53, specialized to the net
Na(G), that is, for all s = 〈x,A,B〉 ∈ S and s0 ∈ S0:

6There is a unique transition generating s0, since N0 is an occurrence c-net.
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hS(s, s0) iff ((x = ∅ ∧ s0 ∈ m0) ∨ (x = {t} ∧ s0 ∈ hT (t)•))
∧ B = h−1

T (s0
•) ∩ ⌈x⌉

∧ A = h−1
T (s0) ∩ ⌈x⌉

To prove that the pair h = 〈hT , hS〉 is indeed a morphism, let us verify the conditions on the
preservation of the initial marking and of the pre-set, post-set and context of transitions.

First observe that µhS(m) = m0. In fact, if s = 〈x,A,B〉 ∈ m and hS(s, s0) then x = ∅ and
thus, by definition of hS , s0 ∈ m0. Vice versa, let s0 ∈ m0 and let

A = h−1
T (s0) and B = h−1

T (s0
•)

Since t0#t
′
0 for all t0, t

′
0 ∈ s0

• and t0 ր t′0 for all t0 ∈ s0, t′0 ∈ s0
•, by definition of aes-morphism,

t#t′ for all t, t′ ∈ B and t ր t′ for all t ∈ A and t′ ∈ B. Hence there is a place s = 〈∅, A,B〉 ∈ m
and hS(s, s0).

Now, let t ∈ T be any transition, such that hT (t) is defined. Then

• µhS( •t) = •hT (t).
In fact, let s = 〈x,A,B〉 ∈ •t, that is t ∈ B, and let hS(s, s0). Then, by definition of hS ,
hT (t) ∈ s0•, or equivalently s0 ∈ •hT (t). For the converse inclusion, let s0 ∈ •hT (t) and
let x = h−1

T ( •s0) ∩ ⌊t⌋. Since N0 is an occurrence c-net | •s0 |≤ 1 and thus | x |≤ 1 (more
precisely x = ∅ if s0 ∈ m0, otherwise, x contains the unique t′ ≤ t, such that hT (t′) = t0,
with •s0 = {t0}). Consider

A = h−1
T (s0) ∩ ⌈x⌉ and B = h−1

T (s0
•) ∩ ⌈x⌉.

Since t0#t
′
0 for all t0, t

′
0 ∈ s0

• and t0 ր t′0 for all t0 ∈ s0, t′0 ∈ s0
•, as in the previous case,

we have that s = 〈x,A,B〉 ∈ S is a place such that hS(s, s0). Clearly t ∈ ⌈x⌉, thus t ∈ B
and therefore s ∈ •t and s0 ∈ µhS( •t).

• µhS(t) = hT (t).
Analogous to the previous case.

• µhS(t•) = hT (t)•.
If s = 〈x,A,B〉 ∈ t•, that is x = {t}, and hS(s, s0), then, by definition of hS , we have
s0 ∈ hT (t)•. For the converse, let s0 ∈ hT (t)•. As above, consider

A = h−1
T (s0) ∩ ⌈{t}⌉ and B = h−1

T (s0
•) ∩ ⌈{t}⌉.

Then s = 〈{t}, A,B〉 ∈ t• and, by definition of hS, we have hS(s, s0).

Finally, if hT (t) is not defined, then the definition of hS implies that µhS(•t) = µhS(t) = µhS(t•) =
∅. This concludes the proof that h is a morphism.

Uniqueness
The multirelation hS such that 〈hT , hS〉 is a c-net morphism is unique essentially because it must
satisfy the conditions of Lemma 3.53. More precisely, if h′S : S → S0 is another multirelation, such
that 〈hT , h′S〉 is a morphism and h′S(s, s0) then necessarily by Lemma 3.53, hS(s, s0). Conversely,
let hS(s, s0), with s = 〈x,A,B〉. Then, if x = ∅, by properties of net morphisms, s0 ∈ m0.
Therefore there must be s′ ∈ m such that h′S(s′, s0). But, by Lemma 3.53 and definition of hS ,
s′ = h−1

T (s0) = A and similarly s′• = h−1
T (s0

•) = B. Therefore s′ = 〈∅, A,B〉 = s and thus
h′S(s, s0). An analogous reasoning allow us to conclude in the case x = {t}. 2
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We know by the previous theorem that Na extends to a functor from AES to
O-CN. The behaviour of Na on morphisms is suggested by the proof of the theorem.
Let h : G0 → G1, be an aes-morphism and let Na(Gi) = 〈Si, Ti, Fi, Ci, mi〉 for
i ∈ {0, 1}. Then Na(h) = 〈h, hS〉, with hS defined as follows:

• for all places 〈∅, A1, B1〉

hS(〈∅, h
−1(A1), h

−1(B1)〉, 〈∅, A1, B1〉)

• for all e0 ∈ T0 such that hT (e0) = e1 and for all places 〈{e1}, A1, B1〉

hS(〈{e0}, h
−1(A1) ∩ ⌈e0⌉, h

−1(B1) ∩ ⌈e0⌉〉, 〈{e1}, A1, B1〉)

Finally, notice that the equivalence between PES and Dom (see Section 2.4)
can be used to “translate” the domain semantics of semi-weighted c-nets into a
prime event structure semantics. This completes the following chain of coreflections
between SW-CN and PES

SW-CN
Ua

⊥ O-CN
Ea

⊥

IO

AES
La

⊥

Na

Dom
Pa

P

∼ PES
L

Figure 3.7 shows (part of) the aes, the domain and the pes associated to the c-net
of Figure 3.5. Although (for the sake of readability) not explicitly drawn, in the pes
all the “copies” of t4, namely the events tx4 are in conflict.

We remark that the pes semantics is obtained from the aes semantics by intro-
ducing an event for each possible different history of events in the aes. For instance,
the pes semantics of the net N0 in Figure 3.8 is given by P , where e′1 represents the
firing of the transition t1 by itself, with an empty history, and e′′1 the firing of the
transition t1 after t0. Obviously the aes semantics is finer than the pes semantics,
or in other words the translation from AES to PES causes a loss of information.
For example, the nets N3 and N ′3 in Figure 3.8 have the same pes semantics, but
different aes semantics.

3.7 Processes of c-nets and their relation with the

unfolding

The notion of occurrence c-net introduced in Section 3.4 naturally suggests a no-
tion of nondeterministic process for c-nets, which can be defined as an occur-
rence c-net with a morphism (mapping places into places and total on transi-
tions) to the original net. Deterministic c-net processes can then be defined as
particular nondeterministic processes such that the underlying occurrence c-net
satisfies a further conflict-freeness requirement. Interestingly, the resulting notion
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t0

t′1 t4 t2 t3

t′′1

t′′′1

t0

t′1 # t4 t2# t3#

t′4 t′′1 ## t′24 t24

t′′4 t′′′1# # t′′24

(a) Ea(Ua(N)) (c) P(La(Ea(Ua(N))))

∅

{t0} {t3}

{t0, t′1} {t0, t4} {t0, t2} {t0, t3}

{t0, t′1, t4} {t0, t′1, t
′′
1} {t0, t′1, t2} {t0, t′1, t3} {t0, t2, t4} {t0, t3, t4}

{t0, t
′
1, t

′′
1 , t4} {t0, t

′
1, t

′′
1 , t

′′′
1 } {t0, t

′
1, t3, t4} {t0, t

′
1, t

′′
1 , t2} {t0, t

′
1, t

′′
1 , t3} {t0, t

′
1, t2, t4}

. . . . . . . . . . . .

(b) La(Ea(Ua(N)))

Figure 3.7: The (a) aes (b) domain and (c) pes for the c-net N of Figure 3.5
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•

t0 •

t1

e1 e2

•

t1 t0

t′1

e′1
#

e0

e′′1

N3 G = Ea(N3) N ′3
P = Ea(N

′
3)

= P(La(Ea(N3)))

Figure 3.8: aes semantics is finer than pes semantics.

of deterministic process turns out to coincide with those proposed by other au-
thors [Vog97b, Ris94, GM98, Win98, Bus98] (see Section 2.3). It is worth recalling
that the stress on the necessity of using an additional relation of “weak-causality”
to be able to fully express the causal structure of net computations in the presence
of read or inhibitor arcs can be found already in [JK93, JK95]. However, we already
observed that a different notion of enabling allowing for the simultaneous firing of
weakly dependent transitions is used in [JK95], making difficult a complete direct
comparison. For the same reason, although “syntactically” the processes of [Vog97b]
coincide with ours, they are intended to represent the same firing sequences, but dif-
ferent step sequences.

The papers [GM98, Win98] extend the theory of concatenable processes of or-
dinary nets [DMM89] to c-nets, by showing that the concatenable processes of a
c-net N form the arrows of a symmetric monoidal category CP[N ], where objects
are the elements of the free commutative monoid over the set of places (multisets of
places). In particular, in [GM98] a purely algebraic characterization of such category
is given.

Since the category CP[N ] of concatenable processes of a net N provides a com-
putational model for N , describing its operational behaviour, we are naturally lead
to compare such semantics with the one based on the unfolding. This section, relying
on the notion of concatenable c-net process and exploiting the chain of coreflections
leading from SW-CN to Dom, establishes a close relationship between process and
unfolding semantics for c-nets. More precisely, we generalize to c-nets (in the semi-
weighted case) a result proved in [MMS96] for ordinary nets, stating that the domain
La(Ea(Ua(N))) associated to a semi-weighted net N coincides with the completion
of the preorder obtained as the comma category of CP[N ] under the initial marking.
Roughly speaking, the result says that the domain obtained via the unfolding of a
c-net can be equivalently described as the collection of the deterministic processes
of the net, ordered by prefix.
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3.7.1 Contextual nets processes

A process of a c-net N can be naturally defined as an occurrence c-net Nϕ, together
with a morphism ϕ to the original net. In fact, since morphisms preserve the token
game, ϕ maps computations of Nϕ into computations of N in such a way that the
process can be seen as a representative of a set of possible computations of N . The
occurrence c-net Nϕ makes explicit the causal structure of such computations since
each transition is fired at most once and each place is filled at most with one token
during each computation. In this way (as it happens in the unfolding) transitions
and places of Nϕ can be thought of, respectively, as instances of firing of transitions
and tokens in places of the original net. Actually, to allow for such an interpretation,
some further restrictions have to be imposed on the morphism ϕ, namely it must
map places into places (rather than into multisets of places) and it must be total on
transitions.

Besides “marked processes”, representing computations of the net starting from
the initial marking, we will introduce also “unmarked processes”, representing com-
putations starting from a generic marking. This is needed to be able to define a
meaningful notion of concatenation between processes.

Definition 3.55 ((nondeterministic) process)
A marked process of a c-net N = 〈S, T, F, C,m〉 is a mapping ϕ : Nϕ → N ,
where Nϕ is an occurrence c-net and ϕ is a strong c-net morphism, namely a c-net
morphism such that ϕT is total and ϕS maps places into places. The process is called
discrete if Nϕ has no transitions.

An unmarked process of N is defined in the same way, where the mapping ϕ is
an “unmarked morphism”, namely ϕ is not required to preserve the initial marking
(it satisfies all conditions of Definition 3.26, but (1)).

Equivalently, if we denote by CN∗ the subcategory of CN where the arrows are
strong c-net morphisms, the processes of N can be seen as objects of the comma
category 〈O-CN ↓ N〉 in CN∗. This gives also the (obvious) notion of isomorphism
between processes, which is an isomorphism between the underlying occurrence nets
“consistent” with the mappings to the original net. Analogous definitions can be
given also for the unmarked processes of a net N .7

A deterministic process represents a set of computations which differ only for
the order in which independent transitions are fired. In our setting a deterministic
process is thus defined as a process such that, in the underlying occurrence net, the
transitive closure of asymmetric conflict is a finitary partial order, in such a way

7It is worth remarking that if we want each truly concurrent computation of the net N to be
represented by at most one configuration of the nondeterministic process, an additional constraint
must be imposed on ϕ, requiring that •t1 = •t2, t1 = t2 and ϕ(t1) = ϕ(t2) implies t1 = t2, as in
[VSY98]. However, the two notions of process collapse when we restrict to deterministic processes
which are the focus of this section.
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that all transitions can be fired in a single computation of the net. Deterministic
occurrence c-nets will be always denoted by O, possibly with subscripts.

Definition 3.56 (deterministic occurrence c-net)
An occurrence c-net O is called deterministic if the asymmetric conflictրO is acyclic
and well-founded.

Equivalently, one could have asked the transitive closure of the asymmetric conflict
relation (րO)∗ to be a partial order, such that for each transition t in O, the set
{t′ | t′(րO)∗t} is finite. Alternatively, it can be easily seen that a finite occurrence
c-net is deterministic if and only if the corresponding aes is conflict free.

We denote by min(O) and max(O) the sets of minimal and maximal places of O
with respect to the partial order ≤O.

Definition 3.57 (deterministic process)
A (marked or unmarked) process ϕ is called deterministic if the occurrence c-net Oϕ

is deterministic. The process is finite if the set of transitions in Oϕ is finite. In this
case, we denote by min(ϕ) and max(ϕ) the sets min(Oϕ) and max(Oϕ), respectively.
Moreover we denote with •ϕ and ϕ• the multisets µϕS(min(ϕ)) and µϕS(max(ϕ)),
called respectively the source and the target of ϕ.

Clearly, in the case of a marked process ϕ of a c-net N , the marking •ϕ coincides
with the initial marking of N .

3.7.2 Concatenable processes

As in [GM98, Win98] a notion of concatenable process for contextual nets, endowed
with an operation of sequential (and parallel) composition, can be easily defined,
generalizing the concatenable processes of [DMM89]. Obviously a meaningful op-
eration of sequential composition can be defined only on the unmarked processes
of a c-net. In order to properly define the operation of concatenation of processes,
we need to impose a suitable ordering over the places in min(ϕ) and max(ϕ) for
each process ϕ. Such ordering allows one to distinguish among “interface” places of
Oϕ which are mapped to the same place of the original net, a capability which is
essential to make sequential composition consistent with the causal dependencies.

Definition 3.58
Let A and B be sets and let f : A → B be a function. An f -indexed ordering is a
family α = {αb | b ∈ B} of bijections αb : f−1(b) → [|f−1(b)|], where [i] denotes the
subset {1, . . . , i} of N, and f−1(b) = {a ∈ A | f(a) = b}.

The f -indexed ordering α will be often identified with the function from A to N it
naturally induces (formally defined as

⋃
b∈B αb).
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Definition 3.59 (concatenable process)
A concatenable process of a c-net N is a triple γ = 〈µ, ϕ, ν〉, where

• ϕ is a finite deterministic unmarked process of N ;

• µ is ϕ-indexed ordering of min(ϕ);

• ν is ϕ-indexed ordering of max(ϕ).

Two concatenable processes γ1 = 〈µ1, ϕ1, ν1〉 and γ2 = 〈µ2, ϕ2, ν2〉 of a c-net N
are isomorphic if there exists an isomorphism of processes f : ϕ1 → ϕ2, consistent
with the decorations, i.e., such that µ2(fS(s1)) = µ1(s1) for each s1 ∈ min(ϕ1) and
ν2(fS(s1)) = ν1(s1) for each s1 ∈ max(ϕ1). An isomorphism class of processes is
called (abstract) concatenable process and denoted by [γ], where γ is a member of
that class. In the following we will often omit the word “abstract” and write γ to
denote the corresponding equivalence class.

The operation of sequential composition on concatenable processes is defined in
the natural way. Given two concatenable processes 〈µ1, ϕ1, ν1〉 and 〈µ2, ϕ2, ν2〉, such
that ϕ1

• = •ϕ2 their concatenation is defined as the process obtained by gluing the
maximal places of ϕ1 and the minimal places of ϕ2 according to the ordering of such
places.

Definition 3.60 (sequential composition)
Let γ1 = 〈µ1, ϕ1, ν1〉 and γ2 = 〈µ2, ϕ2, ν2〉 be two concatenable processes of a c-net
N such that ϕ1

• = •ϕ2. Suppose T1 ∩ T2 = ∅ and S1 ∩ S2 = max(ϕ1) = min(ϕ2),
with ϕ1(s) = ϕ2(s) and ν1(s) = µ2(s) for each s ∈ S1 ∩ S2. In words γ1 and γ2

overlap only on max(ϕ1) = min(ϕ2), and on such places the labelling on the original
net and the ordering coincide. Then their concatenation γ1; γ2 is the concatenable
process γ = 〈µ1, ϕ, ν2〉, where the process ϕ is the (componentwise) union of ϕ1 and
ϕ2

It is easy to see that concatenation induces a well-defined operation of sequential
composition between abstract processes. In particular, if [γ1] and [γ2] are abstract
concatenable processes such that γ1

• = •γ2 then we can always find γ′2 ∈ [γ2]
such that γ1; γ

′
2 is defined. Moreover the result of the composition at abstract level,

namely [γ1; γ
′
2], does not depend on the particular choice of the representatives.

Definition 3.61 (category of concatenable processes)
Let N be a c-net. The category of (abstract) concatenable processes of N , denoted by
CP[N ], is defined as follows. Objects are multisets of places of N , namely elements
of µS. Each (abstract) concatenable process [〈µ, ϕ, ν〉] of N is an arrow from •ϕ to
ϕ•.

One could also define a tensor operation ⊗, modelling parallel composition of pro-
cesses, making the category CP[N ] a symmetric monoidal category (the symmetries
being the discrete processes). Since such operation is not relevant for our present
aim, we refer the interested reader to [GM98, Win98].
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3.7.3 Relating processes and unfolding

Let N = 〈S, T, F, C,m〉 be a c-net and consider the comma category 〈m ↓ CP[N ]〉.
The objects of such category are concatenable processes ofN starting from the initial
marking. An arrow exists from a process γ1 to γ2 if the second one can be obtained
by concatenating the first one with a third process γ. This can be interpreted as a
kind of prefix ordering.

Lemma 3.62
Let N = 〈S, T, F, C,m〉 be a c-net. Then the comma category 〈m ↓ CP[N ]〉 is a
preorder.

Proof. Let γi : m→Mi (i ∈ {1, 2}) be two objects in 〈m ↓ CP[N ]〉, and suppose there are two
arrows γ′, γ′′ : γ1 → γ2. By definition of comma category γ1; γ

′ = γ1; γ
′′ = γ2, which, by definition

of sequential composition, easily implies γ′ = γ′′. 2

In the sequel the preorder relation over 〈m ↓ CP[N ]〉 (induced by sequential
composition) will be denoted by .N or simply by ., when the net N is clear from
the context. Therefore γ1 . γ2 if there exists γ such that γ1; γ = γ2.

We provide an alternative characterization of the preorder relation .N which will
be useful in the sequel. It essentially formalizes the intuition given above, according
to which the preorder on 〈m ↓ CP[N ]〉 is a generalization of the prefix relation.
First, we need to introduce the notion of left-injection for processes.

Definition 3.63 (left injection)
Let γi : m→Mi (i ∈ {1, 2}) be two objects in 〈m ↓ CP[N ]〉, with γi = 〈µi, ϕi, νi〉. A
left injection ι : γ1 → γ2 is a morphism of marked processes ι : ϕ1 → ϕ2, such that

1. ι is consistent with the indexing of minimal places, namely µ1(s) = µ2(ι(s))
for all s ∈ min(ϕ1);

2. ι is “rigid” on transitions, namely for t′2 in Oϕ2 and t1 in Oϕ1, if t′2 ր ι(t1)
then t′2 = ι(t′1) for some t′1 in Oϕ1.

The name “injection” is justified by the fact that a morphism ι between marked
deterministic processes (being a morphism between the underlying deterministic
occurrence c-nets) is injective on places and transitions, as it can be shown easily
by using the properties of (occurrence) c-nets morphisms proved in Section 3.4. The
word “left” is instead related to the requirement of consistency with the decoration
of the minimal items. Finally, the rigidity of the morphism ensures that γ2 does not
extend γ1 with transitions inhibited in γ1.

Lemma 3.64
Let γi : m → Mi (i ∈ {1, 2}) be two objects in 〈m ↓ CP[N ]〉, with γi = 〈µi, ϕi, νi〉.
Then

γ1 . γ2 iff there exists a left injection ι : γ1 → γ2.
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Proof. (⇒) Let γ1 . γ2, namely γ2 = γ1; γ for some process γ = 〈µ, ϕ, ν〉. Without loss of
generality, we can assume that ϕ2 is obtained as the componentwise union of ϕ1 and ϕ and this
immediately gives a morphism of marked processes (the inclusion) ι : ϕ1 → ϕ2, consistent with
the indexing of minimal places. To conclude it remains only to show that ι is rigid. Suppose that
t′2 ր ι(t1) for some transitions t1 in Oϕ1 and t′2 in Oϕ2 , and thus, by Definition 3.30, either
t′2  ι(t1) or t′2 < ι(t1). To conclude that ι is rigid we must show that in both cases t′2 is in Oϕ1 .

• If t′2  ι(t1), since the process ϕ2 is deterministic, t′2 and ι(t1) cannot be in conflict and
thus it must be t′2 ∩

•ι(t1) 6= ∅. Since t′2 uses as context a place which is not maximal in
Oϕ1 , necessarily t′2 is in Oϕ1 , otherwise it could not be added by concatenating ϕ to ϕ1.

• If t′2 < ι(t1) then we can find a transition t′3 in Oϕ2 such that t′2 < t′3 and t′3
•∩(•ι(t1)∪ι(t1)).

As above, t′3 must be in Oϕ1 since it uses as postcondition a place in Oϕ1 . An inductive
reasoning based on this argument shows that also t′2 is in Oϕ1 .

(⇐) Let ι : γ1 → γ2 be a left injection. We can suppose without loss of generality that
Oϕ1 is a subnet of Oϕ2 , in such a way that ι is the inclusion and µ1 = µ2. Let Oϕ be the net
(Oϕ2 − Oϕ1) ∪max(Oϕ1), where difference and union are defined componentwise. More precisely
Oϕ = 〈S, T, F, C〉, with:

• S = (S2 − S1) ∪max(ϕ1)

• T = T2 − T1

• the relations F and C are the restrictions of F2 and C2 to T .

It is easy to see that Oϕ is a well-defined occurrence c-net and min(Oϕ) = max(Oϕ1). In particular,
the fact that F is well-defined namely that if t ∈ T then •t, t• ⊆ S immediately derives from the fact
that the inclusion ι is a morphism of deterministic occurrence c-nets. Instead the well-definedness
of C is related to the fact that the injection is rigid. In fact, let s ∈ t for t ∈ T and suppose that
s 6∈ S. Therefore s ∈ •t1, for some t1 ∈ T1 and thus t ր t1, which, by rigidity, implies t ∈ T1,
contradicting t ∈ T .

Therefore if we denote by γ the concatenable process 〈ν1, ϕ, ν2〉, then γ1; γ = γ2, and thus
γ1 . γ2. 2

We can show now that the ideal completion of the preorder 〈m ↓ CP[N ]〉
is isomorphic to the domain obtained from the unfolding of the net N , namely
La(Ea(Ua(N))). Besides exploiting the characterization of the preorder relation on
〈m ↓ CP[N ]〉 given above, the result strongly relies on the description of the un-
folding construction as chain of adjunctions.

First, it is worth recalling some definitions and results on the ideal completion
of (pre)orders.

Definition 3.65 (ideal)
Let P be a preorder. An ideal of P is a subset S ⊆ P , directed and downward closed
(namely S =

⋃
{↓ x | x ∈ S}). The set of ideals of P , ordered by subset inclusion is

denoted by Idl(P ).

Given a preorder P , the partial order Idl(P ) is an algebraic cpo, with compact
elements K(Idl(P )) = {↓ p | p ∈ P}. Moreover Idl(P ) ≃ Idl(P/≡), where P/≡ is the
partial order induced by the preorder P . Finally, recall that if D is an algebraic cpo,
then Idl(K(D)) ≃ D.
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Lemma 3.66
Let P1 and P2 be preorders and let f : P1 → P2 be a surjective function such that
p1 ⊑ p′1 iff f(p1) ⊑ f(p′1). Then the function f ∗ : Idl(P1) → Idl(P2), defined by
f ∗(I) = {f(x) | x ∈ I}, for I ∈ Idl(P1), is an isomorphism of partial orders.

Proof. The function f∗ is surjective since for every ideal I2 ∈ Idl(P2) it can be easily proved that
f−1(I2) is an ideal and f∗(f−1(I2)) = I2 by surjectivity of f . Moreover, notice that if I1, I

′
1 ∈ Idl(P1)

are two ideals then I1 ⊆ I ′1 if and only if f∗(I1) ⊆ f∗(I ′1). The right implication is obvious. For the
left one, assume f∗(I1) ⊆ f∗(I ′1). Then observe that if x ∈ I1 then f(x) ∈ f∗(I1) ⊆ f∗(I ′1). Hence
there exists x′ ∈ I ′1 such that f(x′) = f(x). Thus by hypothesis on f we have x ⊑ x′ and therefore,
by definition of ideal, x ∈ I ′1.

Then we can conclude that f∗ is also injective, thus it is a bijection, and clearly f∗ as well as
its inverse are monotone functions. 2

Notice that in particular, if P is a preorder, D is an algebraic cpo and f : P →
K(D) is a surjection such that p ⊑ p′ iff f(p) ⊑ f(p′), then Idl(P ) ≃ Idl(K(D)) ≃ D.

We can now prove the main result of this section, which establishes a tight
relationship between the unfolding and the process semantics of semi-weighted c-
nets. We show that the ideal completion of the preorder 〈m ↓ CP[N ]〉 and the
domain associated to the net N through the unfolding construction are isomorphic.
To understand which is the meaning of taking the ideal completion of the preorder
〈m ↓ CP[N ]〉, first notice that the elements of the partial order induced by the
preorder 〈m ↓ CP[N ]〉 are classes of concatenable processes with respect to an
equivalence ≡l defined by γ1 ≡l γ2 if there exist a discrete concatenable process
γ such that γ1; γ = γ2. In other words, γ1 ≡l γ2 can be read as “γ1 and γ2 left
isomorphic”, where “left” means that the isomorphism is required to be consistent
only with respect to the ordering of the minimal places. Since the net N is semi-
weighted, the equivalence ≡l turns out to coincide with the isomorphism of marked
processes. In fact, being the initial marking of N a set, only one possible ordering
function exists for the minimal places of a marked process. Finally, since processes
are finite, taking the ideal completion of the partial order induced by the preorder
〈m ↓ CP[N ]〉 (which produces the same result as taking directly the ideal completion
of 〈m ↓ CP[N ]〉) is necessary to move from finite computations to arbitrary ones.

Theorem 3.67 (unfolding vs. concatenable processes)
Let N be a semi-weighted c-net. Then the ideal completion of 〈m ↓ CP[N ]〉 is
isomorphic to the domain La(Ea(Ua(N))).

Proof. Let N = 〈S, T, F, C,m〉 be a c-net. It is worth recalling that the compact elements of the
domain La(Ea(Ua(N))), associated to N , are exactly the finite configurations of Ea(Ua(N)), as
shown in Theorem 3.19. By Lemma 3.66, to prove the thesis it suffices to show that it is possible
to define a function ξ : 〈m ↓ CP[N ]〉 → K(La(Ea(Ua(N)))) such that f is surjective, and for all
γ1, γ2 in 〈m ↓ CP[N ]〉,

γ1 . γ2 iff ξ(γ1) ⊑ ξ(γ2).

The function ξ can be defined as follows. Let γ = 〈µ, ϕ, ν〉 be a concatenable process in
〈m ↓ CP[N ]〉. Being ϕ a marked process of N (and thus a c-net morphism ϕ : Oϕ → N), by
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the universal property of coreflections, there exists a unique arrow ϕ′ : Oϕ → Ua(N), making the
diagram below commute.

Ua(N)
fN

N

Oϕ

ϕ′

ϕ

In other words, the coreflection between SW-CN and O-CN gives a one-to-one correspondence
between the (marked) processes of N and of those of its unfolding Ua(N).

Then we define ξ(γ) = ϕ′
T (Tϕ), where Tϕ is the set of transitions of Oϕ. To see that ξ is a well

defined function, just observe that it could have been written, more precisely, as Ea(Ua(ϕ))(Tϕ)
and Tϕ is a configuration of Ea(Ua(Oϕ)) = Ea(Oϕ) since Oϕ is a deterministic occurrence c-net.

• ξ is surjective
Let C ∈ K(La(Ea(Ua(N)))) be a finite configuration. Then C determines a deterministic
process ϕ′

C : Oϕ′

C
→ Ua(N) of the unfolding of N , having C as set of transitions.8 Thus

ϕ = fN ◦ ϕ′
C is a deterministic process of N , and, by the definition of ξ, we immediately

get that ξ(ϕ) = ϕ′
C(Tϕ′

C
) = C.

• ξ is monotone
Let γ1 and γ2 be processes in 〈m ↓ CP[N ]〉 and let γ1 . γ2. Then, by Lemma 3.64 there
exists a left-injection ι : γ1 → γ2. The picture below illustrates the situation, by depicting
also the processes ϕ′

1 and ϕ′
2 of the unfolding of N , induced by ϕ1 and ϕ2, respectively.

Ua(N)
fN

N

Oϕ2

ϕ′

2

ϕ2

Oϕ1

ι

ϕ′

1 ϕ1

We have that ξ(γ1) = ϕ′
1(Tϕ1) = ϕ′

2(ι(Tϕ1)) ⊆ ϕ
′
2(Tϕ2) = ξ(γ2). Therefore, to conclude that

ξ(γ1) ⊑ ξ(γ2) we must show that also the second condition of Definition 3.13 is satisfied.
Let t2 ∈ ξ(γ2) and t1 ∈ ξ(γ1), with t2 ր t1. By definition of ξ, ti = ϕi(t

′
i) with t′i in Oϕi

,
for i ∈ {1, 2} and thus:

ϕ′
2(t

′
2)ր ϕ′

1(t
′
1) = ϕ′

2(ι(t
′
1))

By properties of occurrence net morphisms (Corollary 3.43 and the fact that Oϕ2 is
deterministic), this implies t′2 ր ι(t′1) and thus, being ι a left injection, by rigidity t′2 = ι(t)
for some t in Oϕ1 . Therefore t2 = ϕ′

2(t
′
2) = ϕ′

2(ι(t)) = ϕ′
1(t) belongs to ξ(γ1), as desired.

8Essentially Oϕ′

C
is the obvious subnet of Ua(N) having C as set of transitions and ϕ′

C is an
inclusion.
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• ξ(γ1) ⊑ ξ(γ2) implies γ1 . γ2.
Let ξ(γ1) ⊑ ξ(γ2). The inclusion ξ(γ1) ⊆ ξ(γ2), immediately induces a mapping ι of the
transitions of Oϕ1 into the transitions of Oϕ2 , defined by ι(t1) = t2 if ϕ′

1(t1) = ϕ′
2(t2) (see

the picture above). This function is well-defined since processes are deterministic and thus
morphisms ϕ′

i are injective. Since the initial marking of N is a set, the mapping of min(ϕ1)
into min(ϕ2) is uniquely determined and thus ι uniquely extends to places becoming a
(marked) process morphism between ϕ1 and ϕ2. Again for the fact that N is semi-weighted
(and thus there exists a unique indexing for the minimal places of each process starting
from the initial marking) such morphism is consistent with the indexing of minimal places.
Finally, ι is rigid. In fact, let t2 ր ι(t1), for t1 in Oϕ1 and t2 in Oϕ2 . By definition of c-net
morphism (Definition 3.26), recalling that ϕ2 is total both on places and transitions, we
deduce ϕ′

2(t2)ր ϕ′
2(ι(t1)). The way ι is defined implies that ϕ′

2(ι(t1)) = ϕ′
1(t1), and thus

ϕ′
2(t2)ր ϕ′

1(t1).

Since ϕ′
i(ti) ∈ ξ(γi) for i ∈ {1, 2}, by definition of the order on configurations, we immedi-

ately have that ϕ′
2(t2) ∈ ξ(γ1), thus there is t′1 in Oϕ1 such that ϕ′

1(t
′
1) = ϕ′

2(t2), and thus
ι(t′1) = t2.

By lemma 3.64, the existence of the left injection ι : γ1 → γ2, implies γ1 . γ2.
2





Chapter 4

Semantics of Inhibitor Nets

The work developed in the previous chapter for contextual nets is extended here to
nets with contextual and inhibitor arcs, called inhibitor nets, where transitions can
check both for the presence and the absence of tokens in the places of the net. To deal
with the non-monotonic features introduced by the presence of inhibitor arcs, we de-
fine inhibitor event structures (or ies for short), a new event structure model which
properly generalizes aes’s. In such structures a relation, called disabling-enabling
relation, allows one to model, in a compact way, the presence of disjunctive conflict-
ing causes and the situations of relative atomicity of pairs of events, determined by
inhibitor arcs. The same relation permits to represent, as particular cases, also the
relations of causality and asymmetric conflict already present in asymmetric event
structures.

Following the general methodology outlined in the Introduction, the truly
concurrent semantics for inhibitor nets is given via a chain of functors leading from
the category SW-IN of semi-weighted inhibitor nets to the category Dom of finitary
prime algebraic domains:

SW-IN
Ui

⊥ O-IN
Ei

IO

IES
Li

⊥ Dom

Pi

P

∼ PES
L

The unfolding and its characterization as a universal construction are “lifted” from
contextual to inhibitor nets. Roughly speaking, to construct the unfolding of an
inhibitor net N we unfold the contextual net obtained from N by forgetting the
inhibitor arcs and then we enrich the resulting occurrence contextual net by adding
again the original inhibitor arcs. In this way the unfolding remains decidable, the
price to pay being the presence of non-executable events in the resulting occurrence
inhibitor net. The unfolding can be naturally abstracted to an ies and then to a
prime algebraic domain. The main difference with respect to contextual nets is the
absence of a functor performing the backward step from ies’s to occurrence inhibitor
nets. We argue that, under reasonable assumptions on the notions of occurrence net
and of unfolding, the problem has no solutions, being basically related to the the
complex kind of causality expressible in ies’s.
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Finally, the above semantics is shown to fit nicely with some of the deterministic
process semantics proposed in the literature for inhibitor nets. We compare the two
approaches by characterizing the domain associated to the unfolding of a net as the
partial order of processes starting from its initial marking. To this aim a small gap
existing between the process semantics of ordinary and inhibitor nets has to be filled
with the introduction of an appropriate notion of concatenable process for inhibitor
nets.

The rest of the chapter is organized as follows. Section 4.1 motivates and de-
fines inhibitor event structures, by showing that they properly generalize asymmet-
ric event structures. Section 4.2 studies the relation between ies’s and domains,
which is formalized as a categorical coreflection between IES and Dom. Section 4.3
presents the category of inhibitor nets and focuses on the subcategory SW-IN of
(semi-weighted) inhibitor nets which we shall work with. Section 4.4 introduces the
category of occurrence inhibitor nets and generalizes the unfolding construction from
contextual to inhibitor nets. Section 4.5 shows how the unfolding can be abstracted
to an ies semantics. Finally Section 4.6 discusses the relation between the unfolding
and the deterministic process semantics of inhibitor nets.

4.1 Inhibitor event structures

In the previous chapter, to model in a direct way the behaviour of contextual nets,
we generalized prime event structures by replacing the symmetric conflict with an
asymmetric conflict relation. Such a feature is obviously still necessary to be able
to model the dependencies arising between events in i-nets, but, as observed in the
Introduction, the nonmonotonic features related to the presence of inhibitor arcs
(negative conditions) makes the situation far more complicated.

First if a place s is in the post-set of a transition t′, in the inhibitor set of t and in
the pre-set of t0 (see the net N0 in Figure 4.1), then the execution of t′ inhibits the
firing of t, which can be enabled again by the firing of t0. Thus t can fire before or
after the “sequence” t′; t0, but not in between the two transitions. Roughly speaking
there is a sort of atomicity of the sequence t′; t0 with respect to t. The situation can
be more involved since many transitions t0, . . . , tn may have the place s in their
pre-set (see the net N1 in Figure 4.1). Therefore, after t′ has been fired, t can be
re-enabled by any of the conflicting transitions t0, . . . , tn. This leads to a sort of
or-causality, but only when t fires after t′. With a logical terminology we can say
that t causally depends on the implication t′ ⇒ t0 ∨ t1 ∨ . . . ∨ tn.

To face these additional complications we introduce inhibitor event structures
(ies’s), which enrich asymmetric event structures with a ternary relation, called DE-
relation (disabling-enabling relation), denoted by (·, ·, ·). Such a relation is used
to model the dependency between transitions in N1 as ({t′}, t, {t0, . . . , tn}). The
first argument of the relation can be a singleton or also the empty set ∅, (∅, e, A)
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•

• t′

t s

t0

•

• t′

t s

t0 . . . tn

N0 N1

Figure 4.1: Two basic inhibitor nets.

meaning that the event e is inhibited in the initial state of the system. Equivalently
∅ can be thought of as a special event that must precede any other event of the
system. Moreover the third argument (the set of events A) can be empty ({e′}, e, ∅)
meaning that there are no events that can re-enable e′ after it has been disabled by
e. The DE-relation is sufficient to represent both causality and asymmetric conflict
and thus concretely it is the only relation of a ies.

4.1.1 Inhibitor event structures and their dependency rela-

tions

Before giving the formal definitions, let us fix some notational conventions. Recall
that the powerset of a set X is denoted by 2X , while 2Xfin denotes the set of finite
subsets of X and 2X1 the set of subsets of X of cardinality at most one (singletons
and the empty set). In the sequel generic subsets of events will be denoted by upper
case letters A,B, . . ., and singletons or empty subsets by a, b, . . .

Definition 4.1 (pre-inhibitor event structure)
A pre-inhibitor event structure (pre-ies) is a pair I = 〈E, 〉, where E is a set of
events and ⊆ 2E1 ×E×2E is a ternary relation called disabling-enabling relation
(DE-relation for short).

According to the discussion above, it is not difficult to see that the relation is
powerful enough to represent both causality and asymmetric conflict.

In fact, if (∅, e, {e′}) then the event e can be executed only after e′ has been
fired. This is exactly what happens in traditional pes’s when e′ causes e, or in
symbols when e′ < e. Notice that more generally, if (∅, e, A) then we can imagine
A as a set of disjunctive causes for e, since at least one of the events in A will
appear in every history of the event e; intuitively we can think that e causally
depends on

∨
A. This generalization of causality, restricted to the case in which the

set A is pairwise conflictual (namely all distinct events in A are in conflict), will be
represented in symbols as A < e. Notice that the under the assumption that A is
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pairwise conflictual, when A < e exactly one event in A appears in each history of
e. Therefore, in particular, for any event e′ ∈ A, if e and e′ are executed in the same
computation then surely e′ must precede e. As discussed in Chapter 2 (Section 2.4),
or-causality has been already investigated in general event structures [Win87a], flow
event structures [Bou90] and in bundle event structures [Lan92a, Lan92b]. Indeed,
if A < e in an ies then A plays exactly the role of the bundle set in bundle event
structures.

Furthermore, if ({e′}, e, ∅) then e can never follow e′ in a computation since
there are no events which can re-enable e after the execution of e′. Instead the
converse order of execution is admitted, namely e can fire before e′. This situation
is naturally interpreted as an asymmetric conflict between the two events, and by
analogy with the case of asymmetric event structures it is written eր e′. Recall that
asymmetric conflict can be also seen as a weak form of causal dependency, in the sense
that if e ր e′ then e precedes e′ in all computations containing both events. This
explains why we impose asymmetric conflict to include (also generalized) causality,
by asking that A < e implies e′ ր e for all e′ ∈ A.

Finally, as for aes’s, cycles of asymmetric conflict are used to define a notion of
conflict on sets of events. If e0 ր e1 . . . en ր e0 then not all such events can appear
in the same computation, a fact that is formalized via a conflict relation on sets of
events #{e0, e1 . . . , en}. In particular, binary (symmetric) conflict is represented by
asymmetric conflict in both directions.

The intended meaning of the relations <, ր and # is summarized below.

A < e means that in every computation where e is executed, there is exactly
one event e′ ∈ A which is executed and it precedes e;

e′ ր e means that in every computation where both e and e′ are executed, e′

precedes e;

#A means that there are no computations where all events in A are executed.

We are now ready to present the definition of the dependency relations in a
pre-ies, making precise their informal interpretation discussed above.

Definition 4.2 (dependency relations)
Let I = 〈E, 〉 be a pre-ies. The relations of (generalized) causality <⊆ 2E × E,
asymmetric conflict ր⊆ E ×E and conflict # ⊆ 2Efin are defined by the set of rules
in Table 4.1, where #pA means that the events in A are pairwise conflictual, namely
#{e, e′} for all e, e′ ∈ A with e 6= e′.

We will use the infix notation for the binary conflicts, writing e#e′ instead of
#{e, e′}. Moreover we will write e < e′ to indicate {e} < e′.

The basic rules (< 1), (ր 1) and (#1), as well as (ր 2) and (ր 3) are justified by
the discussion above.
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(∅, e, A) #pA

A < e
(< 1)

A < e ∀e′ ∈ A. Ae′ < e′ #p(∪{Ae′ | e
′ ∈ A})

(∪{Ae′ | e
′ ∈ A}) < e

(< 2)

({e′}, e, ∅)

eր e′
(ր 1) e ∈ A < e′

eր e′
(ր 2)

#{e, e′}

eր e′
(ր 3)

e0 ր . . .ր en ր e0
#{e0, . . . , en}

(#1)
A′ < e ∀e′ ∈ A′. #(A ∪ {e′})

#(A ∪ {e})
(#2)

Table 4.1: Causality, asymmetric conflict and conflict in a pre-ies.

Rule (< 2) generalizes the transitivity of the causality relation in aes’s. If A < e
and for every event e′ ∈ A we can find a set of events Ae′ such that Ae′ < e′, then
the union of all such sets, namely ∪{Ae′ | e

′ ∈ A}, can be seen as (generalized) cause
of e, provided that it is pairwise conflictual. Observe that in particular, if {e′} < e
and {e′′} < e′ then {e′′} < e.

Rule (#2) expresses a kind of hereditarity of the conflict with respect to causality,
generalizing the inductive definition of the conflict in aes’s (see Definition 3.2).
Suppose A′ < e and that any event e′ ∈ A′ is in conflict with A, namely #(A∪{e′})
for each e′ ∈ A. Since by definition of < the execution of e must be preceded by
an event in A′ we can conclude that also e is in conflict with A, i.e., #(A ∪ {e}).
In particular by taking A′ = {e′} and A = {e′′} we obtain that if {e′} < e and
#{e′, e′′} then #{e, e′′}.

Notice that, due to the greater generality of ies’s, the rules defining the depen-
dency relations are more involved than in aes’s, and it is not possible to give a
separate definition of the various relations. In fact, according to rules (< 1) and
(< 2) one can derive A′ < e only provided that the events in A′ are pairwise con-
flictual. Asymmetric conflict is in turn induced both by generalized causality (rule
(ր 2)) and by conflict (rule (ր 3)). Finally, the conflict relation is defined by using
the asymmetric conflict (rule (#1)) and it is inherited along causality (rule (#2)).

We will see in the following that, as expected, inhibitor event structures properly
generalize asymmetric event structures; moreover, when applied to (the encoding
into ies’s of) asymmetric event structures the above rules induce the usual relations
of causality and (asymmetric) conflict.

It is worth observing that in an ies we can have (∅, e, ∅), meaning that the
event e can never be executed. Indeed, observe that, by rule (< 1), we deduce ∅ < e
and thus, by rule (#2), we have #{e}, namely the event e is in conflict with itself.
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Remark 4.3
The set of rules defining the relations of (generalized) causality, asymmetric conflict
and conflict are not intended to be complete in any sense. In fact, a natural notion
of completeness would require the conflict relation to capture precisely the non-
executability of events, namely that if e is not executable in any computation then
#{e}. But the correspondence between ies’s and i-nets suggests that the problem
of establishing if an event does not appear in any computation is not semidecidable.
Thus trying to define a proof system complete with respect to the computational
properties of ies’s seems hopeless.

An inhibitor event structure is defined as a pre-ies where events related by the
DE-relation satisfy a few further requirements suggested by the intended meaning of
such relation. Furthermore the causality and asymmetric conflict relations must be
induced “directly” by the DE-relation. This will allow us to have a simpler notion
of ies-morphism.

Definition 4.4 (inhibitor event structure)
An inhibitor event structure (ies) is a pre-ies I = 〈E, 〉 satisfying, for all e ∈ E,
a ∈ 2E1 and A ⊆ E,

1. if (a, e, A) then #pA and ∀e′ ∈ a. ∀e′′ ∈ A. e′ < e′′;

2. if A < e then (∅, e, A);

3. if eր e′ then ({e′}, e, ∅).

It is easy to see that given a pre-ies I satisfying only (1) it is always possible to
“saturate” the relation in order to obtain an ies where the relations of causality
and (asymmetric) conflict are exactly the same as in I.

Proposition 4.5 (saturation of a pre-ies)
Let I = 〈E, 〉 be a pre-ies satisfying condition (1) of Definition 4.4. Then I =
〈E, ′〉, where ′ = ∪ {(∅, e, A) | A < e} ∪ {({e}, e′, ∅) | e ր e′} is a ies.
Moreover the relations of causality, asymmetric conflict and conflict in I are the
same as in I.

4.1.2 Morphisms of inhibitor event structures

The notion of ies-morphism is introduced as a generalization of aes-morphisms.
The requirement of saturation in the definition of ies allows us to formulate the
conditions on ies-morphisms in a compact way.
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Definition 4.6 (category IES)
Let I0 = 〈E0, 0〉 and I1 = 〈E1, 1〉 be two ies’s. An ies-morphism f : I0 → I1 is a
partial function f : E0 → E1 such that for all e0, e

′
0 ∈ E0, A1 ⊆ E1

1. (f(e0) = f(e′0)) ∧ (e0 6= e′0) ⇒ e0#0e
′
0;

2. A1 < f(e0) ⇒ ∃A0 ⊆ f−1(A1). A0 < e0;

3. 1({f(e′0)}, f(e0), A1) ⇒ ∃A0 ⊆ f−1(A1). ∃a0 ⊆ {e
′
0}. 0(a0, e0, A0).

where it is intended that f(e0) and f(e′0) are defined. We denote by IES the category
of inhibitor event structures and ies-morphisms.

Condition (1) is the usual condition of event structure morphisms which allows one
to confuse only conflictual branches of computations. As formally proved later in
Proposition 4.10, condition (2) can be seen as a generalization of the requirement
of preservation of causes, namely of the property ⌊f(e)⌋ ⊆ f(⌊e⌋), of pes (and
aes) morphisms. Finally, condition (3), as it commonly happens for event struc-
tures morphisms, just imposes the preservation of computations by asking, whenever
some events in the image are constrained in some way, that stronger constraints are
present in the pre-image. More precisely suppose that ({f(e′0)}, f(e0), A1). Thus
we can have a computation where f(e′0) is executed first and f(e0) can be executed
only after one of the events in A1. Otherwise the computation can start with the
execution of f(e0). According to condition (3), e0 and e′0 are subject in I0 to the
same constraint of their images or, when a0 = ∅ or A0 = ∅, to stronger constraints
selecting one of the possible orders of execution. It is worth stressing that, since
Ai < f(ei) can be equivalently expressed as (∅, f(ei), Ai), condition (2) just repre-
sents a reformulation of (3) aimed at covering the case in which the first argument
of the DE-relation is the empty set.

The next proposition proves some useful properties of ies-morphisms, which are
basically generalizations of analogous properties holding in the case of prime and
asymmetric event structures. They will help in showing that ies-morphisms are
closed under composition and thus category IES is well-defined.

Proposition 4.7
Let I0 and I1 be ies’s and let f : I0 → I1 be an ies-morphism. For any e0, e

′
0 ∈ E0,

1. if f(e0) < f(e′0) then ∃A0. e0 ∈ A0 < e′0 or e0#e
′
0;

2. if f(e0)ր f(e′0) then e0 ր e′0.

Proof.

1. Let f(e0) < f(e′0), namely {f(e0)} < f(e′0). By condition (2) in the definition of ies-
morphisms, there exists A0 ⊆ f−1({f(e0)}) such that A0 < e′0. Now, if e0 ∈ A0 the desired
property is proved. Otherwise for each e′′0 ∈ A0, e

′′
0 6= e0 and, by construction f(e′′0) = f(e0).

Hence by condition (1) in the definition of ies-morphism, it must be e0#e
′′
0 for each e′′0 ∈ A0.

Hence, by rule (#2), we conclude e0#e
′
0.
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2. Let f(e0) ր f(e′0). Then, by definition of ies, ({f(e′0)}, f(e0), ∅). By condition (3) in
the definition of ies-morphism there must exist a0 ⊆ {e′0} and A0 ⊆ f−1(∅) = ∅ such that

(a0, e0, A0). Therefore, if a0 = {e′0} then ({e′0}, e0, ∅) and thus, by rule (ր 1), we
conclude e0 ր e′0. If instead a0 = ∅ then (∅, e0, ∅) and thus, by rule (< 1), ∅ < e0. Hence,
by rule (#2), we deduce #{e0, e′0} and thus e0 ր e′0 by (ր 3). 2

Proposition 4.8
The ies-morphisms are closed under composition.

Proof. Let f0 : I0 → I1 and f1 : I1 → I2 be ies-morphisms. We want to show that their
composition f1 ◦ f0 still satisfies conditions (1)-(3) of Definition 4.6.

1. Let e0, e
′
0 ∈ E0 be events such that e0 6= e′0 and f1(f0(e0)) = f1(f0(e

′
0)). If f0(e0) = f0(e

′
0)

then, being f0 a morphism, e0#e
′
0. Otherwise, since also f1 is a morphism, f0(e0)#f0(e

′
0)

and thus, by rule (ր 3), f0(e0) ր f(e′0) ր f(e0). Hence, by Proposition 4.7.(2), it must
hold e0 ր e′0 ր e0, which in turn, by rule (#1) allows us to deduce e0#e

′
0.

2. Consider A2 ⊆ E2 and e0 ∈ E0 such that A2 < f1(f0(e0)). Since f1 is an ies-morphism there
exists A1 ⊆ f

−1
1 (A2) such that A1 < f0(e0). By using again condition (2) in the definition of

ies-morphism, applied to f0, we obtain the existence of A0 ⊆ f−1
0 (A1) satisfying A0 < e0.

We conclude observing that A0 ⊆ f
−1
0 (A1) ⊆ f

−1
0 (f−1

1 (A2)) = (f1 ◦ f0)−1(A2).

3. Let us assume ({f1(f0(e′0))}, f1(f0(e0)), A2). By definition of ies-morphism there exist
A1 ⊆ f

−1
1 (A2) and a1 ⊆ {f0(e

′
0)} such that (a1, f0(e0), A1). We can distinguish two cases

according to the form of a1.

• If a1 = ∅ and thus A1 < f0(e0), by definition of ies-morphism there will be A0 ⊆
f−1
0 (A1) such that A0 < e0. By definition of ies this implies (∅, e0, A0). Moreover
A0 ⊆ f

−1
0 (A1) ⊆ f

−1
0 (f−1

1 (A2)) and thus condition (3) is satisfied.

• If a1 = {f0(e′0)} and thus ({f0(e′0)}, f0(e0), A1) reasoning as above, but using
point (3) in the definition of morphism, we deduce the existence of A0 ⊆ f−1

0 (A1) ⊆
f−1
0 (f−1

1 (A2)) and a0 ⊆ {e0} such that (a0, e0, A0), thus satisfying condition (3).
2

We conclude this subsection with a technical lemma, which will be useful later. It
gives some sufficient conditions for a function between pre-ies’s to be a well-defined
ies-morphism between the ies’s obtained by saturating the original pre-ies’s.

Lemma 4.9
Let Ii = 〈Ei, i〉 (i ∈ {0, 1}) be pre-ies’s satisfying condition (1) of Definition 4.4,

let Ii = 〈Ei,
s
i 〉, and let <i, րi and #i be the relations of causality, asymmetric

conflict and conflict in Ii. Let f : E0 → E1 be a partial function such that for each
e0, e

′
0 ∈ E0 and A1 ⊆ E1:

1. f(e0) = f(e′0) ∧ e0 6= e′0 ⇒ e0#0e
′
0;

2. 1(∅, f(e0), A1) ⇒ ∃A0 ⊆ f−1(A1). A0 <0 e0;
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3. 1(f(e′0), f(e0), ∅) ⇒ e0 ր0 e
′
0;

4. 1({f(e′0)}, f(e0), A1)∧A1 6= ∅ ⇒ ∃A0 ⊆ f−1(A1). ∃a0 ⊆ {e
′
0}.

s
0(a0, e0, A0).

Then f : I0 → I1 is an ies-morphism.

Proof. We first show that f satisfies the following properties:

a. A1 <1 f(e0) ⇒ ∃A0 ⊆ f−1(A1). A0 <0 e0;

b. f(e0)ր1 f(e′0) ⇒ e0 ր0 e
′
0.

c. #1f(A0) ⇒ #0A0.

The three points are proved simultaneously by induction on the height of the derivation of the
judgement, involving the relations<1,ր1 and #1, which appears in the premise of each implication
and by cases on the form of the judgement.

a. Judgement A1 <1 f(e0).
We distinguish various subcases according to the last rule used in the derivation:

(< 1) Let the last rule be

1(∅, f(e0), A1) #pA1

A1 <1 f(e0)
(< 1)

In this case, since 1(∅, f(e0), A1), we immediately conclude by using point (2) in
the hypotheses.

(< 2) Let the last rule be

A1 <1 f(e0) ∀e1 ∈ A1. Ae1 <1 e1 #p(∪{Ae1 | e1 ∈ A1})

(∪{Ae1 | e1 ∈ A1}) <1 f(e0)
(< 2)

By inductive hypothesis from A1 <1 f(e0) we deduce that

∃A0 ⊆ f−1(A1). A0 <0 e0 (†)

Now, for all e′0 ∈ A0, by (†), f(e′0) ∈ A1. Therefore, by the second premise of the
rule above, Af(e′0) <1 f(e′0), and thus, by inductive hypothesis, there exists Ae′0 ⊆

f−1(Af(e′0)) such that Ae′0 <0 e
′
0. Finally, ∪{Ae′0 | e

′
0 ∈ A0} is pairwise conflictual. In

fact if e10, e
2
0 ∈ ∪{Ae′0 | e

′
0 ∈ A0} with e10 6= e20, we have f(e10), f(e20) ∈

⋃
e1∈A1

Ae1 ,

which is pairwise conflictual. Therefore f(e10) = f(e20) or f(e10)#1f(e20) and, by using
point (1) in the hypotheses in the first case, and by inductive hypothesis in the second
case, we conclude e10#0e

2
0.

By using the facts proved so far we can apply rule (< 2) as follows:

A0 <0 e0 ∀e′0 ∈ A0. Ae′0 <0 e
′
0 #p(∪{Ae′0 | e

′
0 ∈ A0})

(∪{Ae′0 | e
′
0 ∈ A0}) <0 e0

(< 2)

This concludes the proof of this case since

∪{Ae′0 | e
′
0 ∈ A0} ⊆

⊆ ∪{f−1(Af(e′0)) | e
′
0 ∈ A0}

⊆ {f−1(Ae1) | e1 ∈ A1}

= f−1(∪{Ae1 | e1 ∈ A1})
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b. Judgement f(e0)ր1 f(e′0).
We distinguish various subcases according to the last rule used in the derivation:

(ր 1) Let the last rule be

1({f(e′0)}, f(e0), ∅)

f(e0)ր1 f(e′0)
(ր 1)

From 1({f(e′0)}, f(e0), ∅), by point (3) in the hypotheses, we immediately have that
e′0 ր0 e0.

(ր 2) Let the last rule be

f(e0) ∈ A1 <1 f(e′0)

f(e0)ր1 f(e′0)
(ր 2)

By inductive hypothesis there exists A0 ⊆ f−1(A1) such that A0 <0 e
′
0.

For all e′′0 ∈ A0, we have f(e′′0) ∈ A1. Thus recalling that, since A1 <1 f(e′0), the set
A1 is pairwise conflictual, it follows that f(e′′0) = f(e0) or f(e′′0)#1f(e0). By using
point (1) of the hypotheses in the first case and the inductive hypothesis in the second
case, we can conclude that for all e′′0 ∈ A0, e0 = e′′0 or e0#0e

′′
0 .

Consequently there are two possibilities. One is that e0 = e′′0 ∈ A0 for some e′′0 ∈ A0,
which allows us to conclude since A0 <0 e′0. The other one is that e0#0e

′′
0 for all

e′′0 ∈ A0. Thus, by rule (#2), we can derive that #0{e0, e′0}, and therefore e0 ր0 e
′
0

by rule (ր 3).

(ր 3) Let the last rule be

#1{f(e0), f(e′0)}

f(e0)ր1 f(e′0)
(ր 3)

In this case by inductive hypothesis #0{e0, e′0} and therefore, by rule (ր 3), e0 ր0 e
′
0.

c. Judgement #1f(A0).
We distinguish various subcases according to the last rule used in the derivation:

(#1) Let the last rule be

f(e
(0)
0 )ր1 . . .ր1 f(e

(n)
0 )ր1 f(e

(0)
0 )

#1{f(e
(0)
0 ), . . . , f(e

(n)
0 )}

(#1)

where A0 = {e
(0)
0 , . . . , e

(n)
0 }. By inductive hypothesis e

(0)
0 ր0 . . .ր0 e

(n)
0 ր0 e

(0)
0 , and

therefore #A0.

(#2) Let the last rule be

A1 <1 f(e0) ∀e1 ∈ A1. #1(f(A′
0) ∪ {e1})

#1(f(A′
0) ∪ {f(e0)})

(#2)

where A0 = A′
0 ∪ {e0}.

By inductive hypothesis, from A1 <1 f(e0) it follows that

∃A′′
0 ⊆ f

−1(A1). A
′′
0 <0 e0 (†)

Now, for all e′0 ∈ A
′′
0 , by (†), f(e′0) ∈ A1. Therefore, by the second premise of the rule

above, #1(f(A′
0) ∪ {f(e′0)}), namely #1f(A′

0 ∪ {e
′
0}). Thus, by inductive hypothesis,

#0(A
′
0 ∪{e

′
0}) for all e′0 ∈ A

′′
0 . Recalling that A′′

0 <0 e0, by using rule (#2), we obtain
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A′′
0 <0 e0 ∀e′0 ∈ A

′′
0 . #0(A

′
0 ∪ {e

′
0})

#0(A
′
0 ∪ {e0})

(#2)

which is the desired result.

This completes the proof of the properties (a), (b) and (c).

It is now easy to conclude that f : I0 → I1 is a ies-morphism. Let Ii = 〈Ei, s
i 〉 for i ∈ {1, 2}.

Conditions (1) and (2) of the definition of ies-morphism (Definition 4.6) are clearly satisfied. In
fact, by Proposition 4.5 the relations of causality and conflict in Ii and Ii coincide, and thus the
mentioned conditions coincide with point (1) in the hypotheses and point (a) proved above.

Hence it remains to verify condition (3) of Definition 4.6, that is

s
1({f(e′0)}, f(e0), A1) ⇒ ∃A0 ⊆ f−1(A1). ∃a0 ⊆ {e′0}.

s
0(a0, e0, A0).

Suppose that s
1({f(e′0)}, f(e0), A1). If A1 6= ∅, by definition of Ii, it must be

1({f(e′0)}, f(e0), A1) and thus the thesis trivially holds by point (4) in the hypotheses. If in-
stead A1 = ∅ then, by rule (ր 1), f(e0) ր1 f(e′0). Hence, by point (b) proved above, e0 ր0 e

′
0

and therefore s
0({e

′
0}, e0, ∅), which satisfies the desired condition. 2

4.1.3 Relating asymmetric and inhibitor event structures

The category AES of asymmetric event structures can be viewed as a full sub-
category of IES. This result substantiates the claim according to which ies’s (and
constructions on them) are a proper “conservative” extension of aes’s and thus of
pes’s.

Proposition 4.10 (from aes’s to ies’s)
Let Ja : AES→ IES be the functor defined as follows. To any aes G = 〈E,≤,ր〉
the functor Ja associates the ies IG = 〈E, 〉 where

(∅, e, {e′′}) if e′′ < e and ({e′}, e, ∅) if eր e′.

and for any f : G1 → G2 its image Ja(f) is f itself. Then the functor Ja is a full
embedding of AES into IES.

Proof. We start noticing that, given an aes G = 〈E,≤,ր〉, if <IG
, րIG

and #IG
denote the

dependency relations in IG then

• A <IG
e′ iff A = {e} ∧ e < e′;

• eրIG
e′ iff eր e′; (†)

• #IG
A iff #A;

Since the causality, asymmetric conflict and conflict relations ofGi and IGi
coincide, in the following

they will be denoted by the same symbols <, ր and #.
By using the characterization (†) of the dependency relations in IG it is easy to prove that

the functor Ja is well-defined. First, given any aes G = 〈E,≤,ր〉, the structure IG satisfies the
conditions (1)-(3) of Definition 4.4, and thus IG is indeed an ies. Observing that if (a, e, A), then
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either A = ∅ or a = ∅, and A contains at most one element we see that condition (1) is trivially
satisfied. The validity of conditions (2) and (3) immediately follows from (†).

Moreover, let f : G0 → G1 be an aes-morphism. To see that f : IG0 → IG1 is an ies-
morphism first notice that condition (1) of Definition 4.6 is present also in the definition of aes-
morphism (Definition 3.4). As for condition (2), if A1 < f(e0) then, by (†) above, A1 = {e1} and
e1 < f(e0). Hence, by condition (1) in the definition of aes-morphisms, there exists e′′0 ∈ E0 such
that e′′0 < e0 and e1 = f(e′′0) (thus e′′0 ∈ f

−1(e1)). Finally, also condition (3) is satisfied. In fact, if
({f(e′0)}, f(e0), A1), according to the definition of IG1 it must be A1 = ∅. Hence f(e0)ր f(e′0)

and thus, by definition of aes-morphisms, e0 ր e′0. Thus, by construction of IG0 , it follows that
({e′0}, e0, ∅) proving (3).
To conclude it remains to show that also the converse holds, namely if f : IG0 → IG1 is an ies-

morphism then f : G0 → G1 is an aes-morphism. Let us verify the validity of the three conditions
of the definition of aes-morphism (Definition 3.4).

1. ⌊f(e0)⌋ ⊆ f(⌊e0⌋).
Let e1 ∈ ⌊f(e0)⌋, namely e1 < f(e0). Thus, by condition (2) in the definition of ies-
morphism, there exists A0 ⊆ f−1(e1) such that A0 <I e0. By the characterization (†) above
of the dependency relations in IGi

, this means that A0 = {e′0} and e′0 < e0, with f(e′0) = e1.
Hence e1 ∈ f(⌊e0⌋).

2. f(e0) = f(e′0) ∧ e0 6= e′0 ⇒ e0#e
′
0.

This condition is trivially satisfied since it is also a condition for aes-morphisms and, as
observed above, the conflict relations in Ai and IGi

coincide.

3. f(e0)ր f(e′0) ⇒ e0 ր e′0 ∨ e0#e
′
0.

Immediate by Proposition 4.7.(2). 2

Observe that by composing Ja with the full embedding J : PES → AES
(Proposition 3.9) we obtain a full embedding of PES into IES.

4.2 From inhibitor event structures to domains

This section establishes a connection between ies’s and prime algebraic domains.
The relation is expressed as a categorical coreflection between IES and Dom, which
allows one to translate each ies into the domain (or equivalently the pes) which, in
a sense, represents its best approximation. Then we study the problem of removing
the non-executable events from an ies, by investigating the relation between IES
and its subcategory IES∗, consisting of the ies’s where all events are executable.

4.2.1 The domain of configurations of an ies

As for aes’s the domain associated to an ies is obtained by considering the family
of its configurations with a suitable order. Since here computations involving the
same events may be different from the point of view of causality, a configuration is
not uniquely identified as a set of events, but some additional information has to be
added which plays a basic role also in the definition of the order on configurations.
More concretely, a configuration of an ies is a set of events endowed with a choice
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relation which chooses among the possible different orders of execution of events
constrained by the DE-relation.

Consider a set of events C of an inhibitor event structure I, suppose that
e′, e, e′′ ∈ C and assume ({e′}, e, A) for some A, with e′′ ∈ A. We already noticed
that in this case there are two possible orders of execution of the three events (either
e; e′; e′′ or e′; e′′; e), which cannot be identified from the point of view of causality.
A choice relation for C must choose one of them by specifying that e precedes e′

or that e′′ precedes e. To ease the definition of the notion of choice relation, we
first introduce, for a given set of events C, the set choices(C), a relation on C which
“collects” all the possible precedences between events induced by the DE-relation. A
choice relation for C is then defined as suitable subset of choices(C). To ensure that
all the events in the configuration are executable in the specified order, the choice
relation is also required to satisfy suitable properties of acyclicity and finitariness.

Definition 4.11
Let I = 〈E, 〉 be an ies and let C ⊆ E. We denote by choices(C) the subset of
C × C

choices(C) = {(e, e′) | C({e′}, e, A)} ∪ {(e′′, e) | C(a, e, A) ∧ e′′ ∈ A}.

where the restriction of (, , ) to C is defined by C(a, e, A) if and only if (a, e, A′),
for e ∈ C, a ⊆ C and A = A′ ∩ C.

Definition 4.12 (choice)
Let I = 〈E, 〉 be an ies and let C ⊆ E. A choice for C is a relation →֒C ⊆
choices(C) such that

1. if C(a, e, A) then ∃e′ ∈ a. e→֒Ce
′ or ∃e′′ ∈ A. e′′→֒Ce;

2. →֒C is acyclic;

3. ∀e ∈ C. {e′ ∈ C : e′→֒∗Ce} is finite.

Condition (1) intuitively requires that whenever the DE-relation permits two pos-
sible orders of execution, the relation →֒C chooses one of them. The fact that
→֒C ⊆ choices(C) ensures that →֒C does not impose more precedences than neces-
sary. Conditions (2) and (3) guarantee that the precedences specified by →֒C do not
give rise to cyclic situations and that each event must be preceded only by finitely
many others. Notice that the acyclicity of →֒C ensures that exactly one of the two
possible choices in condition (1), namely either ∃e′ ∈ a. e→֒Ce

′ or ∃e′′ ∈ A. e′′→֒Ce is
taken. It is worth observing that conditions (2) and (3) can be equivalently rephrased
by saying that →֒∗C is a finitary partial order.

Configurations of pes’s and aes’s are required to be downward closed with re-
spect to causality. The following simple proposition observes that the property of
admitting a choice implies a generalization of causal closedness.
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Proposition 4.13
Let I = 〈E, 〉 be an ies and let C ⊆ E be a subset of events such that there exists
a choice for C. For any e ∈ C, if A < e then A ∩ C 6= ∅.

Proof. Observe that if A < e, by definition of ies, (∅, e, A). Therefore, if A ∩ C = ∅ then
we would have C(∅, e, ∅). Therefore no relation over C could be a choice, since condition (1) of
Definition 4.12 could not be satisfied. 2

Another simple but important property is the fact that each choice agrees with
the asymmetric conflict relation, in the sense expressed by the following proposition.

Proposition 4.14
For every subset C of an ies I and for every choice →֒C for C, րC⊆ →֒C .

Proof. Consider C ⊆ E and e, e′ ∈ C. If eր e′ then, by definition of ies, ({e′}, e, ∅) and thus

C({e′}, e, ∅). Therefore, if →֒C is a choice for C, by condition (1) in Definition 4.12, necessarily
e→֒Ce

′. 2

It is now easy to verify that a set of events for which a choice exists cannot
contain conflicts.

Proposition 4.15
Let I = 〈E, 〉 be an ies and let C ⊆ E be a subset of events such that there exists
a choice for C. For any A ⊆ C it is not the case that #A.

Proof. Let A ⊆ C and suppose that #A. Then it is easy to show that C contains a cycle
of asymmetric conflict, and thus by Proposition 4.14, any choice for C would be cyclic as well,
contradicting the definition.

The proof of the fact that if #A for some A ⊆ C then C contains a cycle of asymmetric conflict
proceeds by induction on the height of the derivation of #A. The base case in which the the last
rule in the derivation is (#1), namely

e0 ր . . .ր en ր e0

#{e0, . . . , en}
(#1)

is trivial. Suppose instead that the last rule in the derivation is (#2), namely

A′′ < e ∀e′ ∈ A′′. #(A′ ∪ {e′})

#(A′ ∪ {e})
(#2)

In this case, by Proposition 4.13, there exists e′′ ∈ A′′ ∩ C. Since #(A′ ∪ {e′′}) by the second
premise of the rule, and A′ ∪ {e′′} ⊆ C we conclude by inductive hypothesis. 2

A configuration of an ies is now introduced as a set of events endowed with a
choice relation. The properties expressed by Propositions 4.13 - 4.15 show how this
definition generalizes the notion of aes configuration.
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Definition 4.16 (configuration)
Let I = 〈E, 〉 be an ies. A configuration of I is a pair 〈C, →֒C〉, where C ⊆ E is
a set of events and →֒C ⊆ C × C is a choice for C.

In the sequel, with abuse of notation, we will often denote a configuration and the
underlying set of events with the same symbol C, referring to the corresponding
choice relation as →֒C . We already know that the existence of a choice implies
the causal closedness and conflict freeness of configurations. Moreover, if C is a
configuration, given any e ∈ C and A < e, not only A ∩ C 6= ∅, but since by
definition of < necessarily #pA, we have that A ∩ C contains exactly one event.
More generally, for the same reason, if C is a configuration and (a, e, A) for some
e ∈ C, then A ∩ C contains at most one element, and if it is non-empty then
a ⊆ C. The last assertion is obvious if a = ∅, while if a = {e′} it follows from
Proposition 4.13, recalling that e′ < e′′ for all e′′ ∈ A.

The next technical proposition shows a kind of maximality property of the choice
relation for a configuration. It states that if a choice for C relates two events, then
any other choice for C must establish an order between such events. Consequently
two compatible choices on the same set of events must coincide.

Proposition 4.17
Let 〈Ci, →֒Ci〉 for i ∈ {1, 2} be configurations of an ies I.

1. If e, e′ ∈ C1 ∩ C2 and e→֒C1e
′ then e→֒C2e

′ or e′→֒∗C2
e.

2. If C1 = C2 and →֒∗C1
⊆ →֒∗C2

then →֒C1 = →֒C2, namely the two configurations
coincide.

Proof.

1. Let e, e′ ∈ C1 ∩ C2 with e→֒C1e
′. By definition of choice, it follows that C1({e

′}, e, A)
or C1(a, e

′, A′), with e ∈ A′. Assume that C1({e
′}, e, A) and thus ({e′}, e, A′′)

with A = A′′ ∩ C1 (the other case can be treated in a similar way). Since e, e′ ∈ C2,

C2({e
′}, e, A′′ ∩ C2), and thus, by definition of choice, also C2 must choose among the

two possible orders of executions, namely e→֒C2e
′ or e′′ →֒C2e for e′′ ∈ A′′ ∩ C2. In the

second case, since by definition of ies e′ < e′′, by Proposition 4.14, we have e′ →֒C2e
′′ and

thus e′ →֒∗
C2
e.

2. If e→֒C1e
′, by point (1), e→֒C2e

′ or e′ →֒∗
C2
e. But the second possibility cannot arise, since

e→֒C1e
′ implies e→֒∗

C1
e′ and thus e→֒∗

C2
e′. Vice versa, if e→֒C2e

′, by point (1), e→֒C1e
′

or e′ →֒∗
C1
e. Again the second possibility cannot arise, otherwise we would have e′ →֒∗

C2
e,

contradicting the acyclicity of →֒C2 .

The computational order on configurations is a generalization of the one intro-
duced in the previous chapter for aes’s.
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Definition 4.18 (extension)
Let I = 〈E, 〉 be an ies and let C and C ′ be configurations of I. We say that C ′

extends C and we write C ⊑ C ′, if

1. C ⊆ C ′;

2. ∀e ∈ C. ∀e′ ∈ C ′. e′→֒C′e ⇒ e′ ∈ C;

3. →֒C ⊆ →֒C′

The poset of all configurations of I , ordered by extension, is denoted by Conf (I ).

The basic idea is still that a configuration C cannot be extended by adding events
which are supposed to happen before the events already in C, as expressed by
condition (2). Moreover the extension relation takes into account the choice relations
of the two configurations, requiring a kind of consistency between them. Condition
(3) serves to ensure, together with (2), that the past history of events in C remains
the same in C ′. Observe that the last condition is not present in aes’s, where the
choice relation on a configuration is uniquely determined as the restriction of the
asymmetric conflict to the set of events in the configuration.

The intuition on the extension relation can be enforced by observing that, as an
easy consequence of the definition and of Proposition 4.17.(1), it can be equivalently
characterized as C ⊑ C ′ iff

• C ⊆ C ′;

• the inclusion i : 〈C, →֒∗C〉 → 〈C
′, →֒∗C′〉 is a rigid embedding, i.e., it is monotone

and for e ∈ C, e′ ∈ C ′, e′→֒∗C′e implies e′ ∈ C.

Furthermore, it is worth noticing that if C ⊑ C ′, by Proposition 4.17.(1) we imme-
diately get that →֒C = →֒C′ ∩ (C × C), and thus the inclusion of C into C ′ is also
order monic, namely for each e, e′ ∈ C, if e→֒∗C′e′ then e→֒∗Ce

′. Roughly speaking
this means that C ⊑ C ′ whenever C coincides with a “truncation” of C ′.

As in the case of aes’s, given an event in a configuration it is possible to define
the past history of the event in that configuration as a configuration itself.

Definition 4.19 (history)
Let I be an ies and let C ∈ Conf (I) be a configuration. For any e ∈ C we define the
history of e in C as the configuration 〈C[[e]], →֒C[[e]]〉, where C[[e]] = {e′ ∈ C | e′→֒∗Ce}
and →֒C[[e]] = →֒C ∩ (C[[e]] × C[[e]]).

It is not difficult to see that 〈C[[e]], →֒C[[e]]〉 is a well-defined configuration. The only
fact that is not obvious is the validity of condition (1) in the definition of choice
(Definition 4.12). Now, if C[[e]](a, e

′, A) then C(a, e′, A′) with a ⊆ C[[e]], e′ ∈ C[[e]]
and A = A′∩C[[e]]. Being C a configuration, it must be e′→֒Ce0 for e0 ∈ a or e1→֒Ce

′

for some e1 ∈ A
′. In the first case, e0 ∈ a ⊆ C[[e]] and thus e′→֒C[[e]]e0, while in the
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second case, since e′ ∈ C[[e]], by definition of history we must have e1 ∈ C[[e]], thus
e1→֒C[[e]]e

′.
It is worth recalling that by definition the reflexive and transitive closure of a

choice is a finitary partial order, and thus each history C[[e]] is a finite configuration.
Furthermore, it immediately follows from its definition that C[[e]] ⊑ C.

From now on the proof of the algebraic properties of the poset of configurations of
an ies follows closely the steps already performed in the case of aes’s. Hence we will
discuss explicitly only the points which are specific to ies’s. We start with a charac-
terization of least upper bounds and greatest lower bounds of pairwise compatible
sets of configurations.

Lemma 4.20
Let X ⊆ Conf (I) be a pairwise compatible set of configurations of an ies I and let
C1, C2 ∈ X. Then

1. if e→֒∗C1
e′ and e′ ∈ C2 then e ∈ C2 and e→֒∗C2

e′;

2. if e ∈ C1 ∩ C2 then C1[[e]] = C2[[e]];

3. C1 ⊓ C2 = C1 ∩ C2, with →֒C1∩C2 = →֒C1 ∩ →֒C2;

4. the least upper bound of X exists, and it is given by

⊔
X = 〈

⋃

C∈X

C,
⋃

C∈X

→֒C〉.

Proof.

1. Let us first suppose that e→֒C1e
′ and e′ ∈ C2. Let C ∈ X be an upper bound for C1 and C2,

which exists since X is pairwise compatible. From C1 ⊑ C, by definition of extension, we
have that e, e′ ∈ C and e→֒Ce

′. Recalling that C2 ⊑ C and e′ ∈ C2 we deduce e ∈ C2. Since
e, e′ ∈ C2 = C2 ∩ C and e→֒Ce

′, by Proposition 4.17.(1), it must be e→֒C2e
′ or e′ →֒∗

C2
e.

The second possibility cannot arise, otherwise we should have e′ →֒∗
Ce, contradicting the

acyclicity of →֒C . Hence we can conclude e→֒C2e
′.

In the general case in which e→֒∗
C1
e′ the desired property is easily derived via an inductive

reasoning using the above argument.

2. Immediate consequence of point (1).

3. To show that →֒C1∩C2 = →֒C1 ∩ →֒C2 is a choice for C1∩C2, the only non trivial point is the
proof of condition (1) of Definition 4.12. Suppose that C1∩C2(a, e, A), namely (a, e, A′)
with a ⊆ C1∩C2 and A = A′∩ (A1∩A2). Hence C1(a, e, A

′ ∩C1) and thus either e→֒C1e
′

for e′ ∈ a or e′′ →֒C1e with e′′ ∈ A′ ∩ C1. Being C1 and C2 compatible, by point (1) it must
be e→֒C2e

′, or e′′ ∈ A′ ∩C2 and e′′ →֒C2e, respectively. Therefore, as desired, e→֒C1∩C2e
′ or

e′′ ∈ A with e′′ →֒C1∩C2e.

Hence C1 ∩C2 is a configuration. Moreover, it is the greatest lower bound of C1 and C2 as
one can check via a routine verification using point (1).
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4. Let us verify that →֒S

X =
⋃
C∈X →֒C is a choice for

⋃
X . First, it is quite easy to see that

→֒S

X =
⋃
C∈X →֒C ⊆ choices(

⋃
X).

As for condition (1) of the definition of choice, suppose that S

X(a, e, A), namely
(a, e, A′) with a ⊆

⋃
X and A = A′ ∩

⋃
X . Since a, {e} ⊆

⋃
X we can find C,C′ ∈ X

such that a ⊆ C and e ∈ C′. Moreover, being X pairwise compatible, there is C′′ ∈ X ,
upper bound of C and C′, containing both a and e. Therefore C′′(a, e, A′ ∩ C′′), and thus
by definition of choice e→֒C′′e′ for e′ ∈ a or e′′ →֒C′′e for e′′ ∈ A′ ∩ C′′. It follows that, as
desired, e→֒S

Xe
′ or (e′′ ∈

⋃
X and) e′′ →֒S

Xe.

The relation →֒S

X is acyclic since point (1) implies that a cycle of →֒S

X in
⋃
X should

be entirely inside a single configuration C ∈ X . Furthermore it is easily seen that given an
event e ∈

⋃
X , (

⋃
X)[[e]] = C[[e]], for any C ∈ X such that e ∈ C. Therefore (

⋃
X)[[e]] is

surely finite.

Hence →֒S

X is a choice and thus
⊔
X is a configuration. A routine verification, using point

(1) allows one to conclude that
⋃
X is the least upper bound of X . 2

Theorem 4.21 (configurations form a domain)
Let I be an ies. Then 〈Conf (I),⊑〉 is a (finitary prime algebraic) domain. The
complete primes of Conf (I ) are the possible histories of events in I, i.e.

Pr(Conf (I )) = {C[[e]] | C ∈ Conf (I), e ∈ C}.

Proof. Let us start by showing that for each C ∈ Conf (I) and e ∈ C, the configuration C[[e]] is
a complete prime element. Suppose C[[e]] ⊑

⊔
X for X ⊆ Conf (I) pairwise compatible. Therefore

there exists C1 ∈ X such that e ∈ C1. Since C1 and C[[e]] are bounded by
⊔
X , by Lemma 4.20.(1),

C[[e]] = C1[[e]]. Observing that C1[[e]] ⊑ C1, it follows that, as desired, C[[e]] ⊑ C1.
Now, by a set-theoretical calculation exploiting the definition of history (Definition 4.19) and

the characterization of the least upper bound in Lemma 4.20, we obtain

C =
⊔

e∈C

C[[e]] =
⊔

Pr (C).

This shows that Conf (I) is prime algebraic and that Pr(Conf (I)) = {C[[e]] | C ∈ Conf (I), e ∈ C}.
The fact that Conf (I) is coherent has been proved in Lemma 4.20.(3). Finally, the finitariness

of Conf (I) follows from prime algebraicity and the fact that C[[e]] is finite for each C ∈ Conf (I)
and e ∈ C. 2

We remark that if G is an aes and I = Ja(G) is its encoding into ies’s, then for
each configuration of I the choice relation is uniquely determined as the restriction of
the asymmetric conflict to that configuration. Therefore the domain of configurations
Conf (I) defined in this section coincides with the domain Conf (G) as defined in
the previous chapter.

4.2.2 A coreflection between IES and Dom

To prove that the construction which associates to an ies its domain of configurations
lifts to a functor from IES to Dom a basic result is the fact that ies-morphisms
preserve configurations.
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Observe that since configurations are not simply sets of events it is not completely
obvious, a priori, what should be the image of a configuration through a morphism.
Let f : I0 → I1 be an ies-morphism and let C0 be a configuration of I0. According
to the intuition underlying ies (and general event structures) morphisms, we expect
that any possible execution of the events in C0 can be simulated in f(C0). But
the converse implication is not required to hold, namely the level of concurrency in
f(C0) may be higher. For instance we can map two causally related events e0 ≤ e1
to a pair of concurrent events. Hence we cannot pretend that the whole image of
the choice relation of C0 is a choice for f(C0), but just that there is a choice for
f(C0) included in such image. By the properties of choices, there is only one choice
on f(C0) included in the image of →֒C0 , which is obtained as the intersection of the
image of →֒C0 with choices(f(C0)).

Given a function f : X → Y and a relation r ⊆ X ×X, we will denote by f(r)
the relation in Y defined as f(r) = {(y, y′) | ∃(x, x′) ∈ r. f(x) = y ∧ f(x′) = y′}.

Lemma 4.22 (morphisms preserve configurations)
Let f : I0 → I1 be an ies-morphism and let 〈C0, →֒0〉 ∈ Conf (I0). Then the pair
〈C1, →֒1〉 with C1 = f(C0) and →֒1 = f(→֒0) ∩ choices(f(C0)), namely the unique
choice relation on C1 included in f(→֒C0), is a configuration in I1.

Moreover the function f ∗ : Conf (I0) → Conf (I1) which associates to each con-
figuration C0 the configuration C1 defined as above, is a domain morphism.

Proof. To prove that →֒1 is a choice for f(C0) and thus 〈f(C0), →֒1〉 is a configuration, first
observe that →֒1 ⊆ choices(C1) by definition.

Let us verify the validity of condition (1) in the definition of choice (Definition 4.12). Assume
that f(C0)(a1, f(e0), A1). This means that (a1, f(e0), A

′
1) with a1 ⊆ f(C0) and A1 = A′

1 ∩
f(C0). We distinguish two cases according to the shape of a1:

• If a1 = ∅, and thus A′
1 < f(e0), by condition (2) in the definition of ies-morphism it follows

that there exists A0 ⊆ f−1(A′
1) such that A0 < e0. Since e0 ∈ C0, by Proposition 4.13,

A0∩C0 is non-empty (precisely, it is a singleton). Take e′′0 ∈ A0∩C0. By rule (ր 2), e′′0 ր e0
and thus, by Proposition 4.14, we have e′′0 →֒0e0. Hence, by construction, f(e′′0)→֒1f(e0).
Notice that f(e′′0) ∈ A′

1 ∩ f(C0) = A1.

• If a1 = {f(e′0)}, then by condition (3) in the definition of ies-morphism we can find a0 ⊆ {e′0}
and A0 ⊆ f−1(A′

1) such that (a0, e0, A0).

If a0 = ∅ we proceed as in the previous case. If instead a0 = {e′0} then, by definition of
choice e0 →֒0e

′
0 or e′′0 →֒0e0 for e′′0 ∈ A0. Therefore f(e0)→֒1f(e′0) or f(e′′0)→֒1f(e0) (and

observe that f(e′′0) ∈ A1).

As for condition (2), to show that →֒1 is acyclic, first observe that a ies-morphism is injective
on a configuration. In fact, if e0, e

′
0 ∈ C0 and f(e0) = f(e′0) then e0 = e′0 or e0#e

′
0. But, by

Proposition 4.15, the second possibility cannot arise. Now, if there were a cycle of →֒1 then, by
the above observation and by definition of →֒1, a cycle should have been already present in →֒0,
contradicting the hypothesis that C0 is a configuration.

Finally, observe that also condition (3) holds, since by an analogous reasoning, the finitariness
of the choice in C0 implies the finitariness of the choice in f(C0).
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Let us show that f∗ : Conf (I0)→ Conf (I1) is a morphism in Dom.

• If C and C′ are compatible then f∗(C ⊓ C′) = f∗(C) ⊓ f∗(C′).
Recalling how the greatest lower bound of configurations is computed (see Lemma 4.20.(3)),
we have that

f∗(C ⊓C′) = 〈f(C ∩ C′), f(→֒C ∩ →֒C′) ∩ choices(f(C ∩ C′))〉,

while

f∗(C) ⊓ f∗(C′) =

= 〈f(C), f(→֒C) ∩ choices(f(C))〉 ⊓ 〈f(C′), f(→֒C′) ∩ choices(f(C′))〉

= 〈f(C) ∩ f(C′), f(→֒C) ∩ f(→֒C′) ∩ choices(f(C)) ∩ choices(f(C′))〉

Observe that f is injective on C ∪ C′ since C and C′ have an upper bound C′′, and, as
already observed, f is injective on configurations. By using this fact, we can deduce that
f(C) ∩ f(C′) = f(C ∩ C′), f(→֒C) ∩ f(→֒C′) = f(→֒C ∩ →֒C′). Moreover it is easy to see
that choices(C ∩C′) = choices(C) ∩ choices(C′) holds in general. Therefore we conclude
that f∗(C ⊓ C′) = f∗(C) ⊓ f∗(C′).

• f∗(
⊔
X) =

⊔
f∗(X), for X ⊆ Conf (I0) pairwise compatible.

Keeping in mind the characterization of the least upper bound given in Lemma 4.20.(4), we
obtain

⊔
f∗(X) =

= 〈
⋃
{f(C) | C ∈ X},

⋃
{f(→֒C) ∩ choices(f(C)) | C ∈ X}〉

= 〈f(
⋃
X), f(

⋃
{→֒C | C ∈ X}) ∩ choices(f(

⋃
X))〉

= f∗(〈
⋃
X,

⋃
{→֒C | C ∈ X}〉)

= f∗(
⊔
X)

To understand the second passage observe that

⋃
{f(→֒C) ∩ choices(f(C)) | C ∈ X} ⊆ [by set-theoretical properties]

⊆
⋃
{f(→֒C) | C ∈ X} ∩

⋃
{choices(f(C)) | C ∈ X} [by definition of choices ]

⊆ f(
⋃
{→֒C | C ∈ X}) ∩ choices(f(

⋃
X))

Therefore Proposition 4.17.(2) and the equality
⋃
{f(C) | C ∈ X} = f(

⋃
X) allow us to

conclude.

• C ≺ C′ implies f∗(C) � f∗(C′).
This property immediately follows form the observation that, as in the case of aes’s, C ≺ C′

iff C ⊑ C′ and |C′ − C| = 1.

2

The previous lemma implies that the construction taking an ies into its domain
of configurations can be viewed as a functor.
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Proposition 4.23
There exists a functor Li : IES→ Dom defined as:

• Li(I) = Conf (I), for each ies I;

• Li(f) = f ∗, for each ies-morphism f : I0 → I1.

A functor going back from domains to ies’s, namely Pi : Dom → IES can
be simply obtained as the composition of the functor P : Dom → PES, defined
by Winskel (see Section 2.4), with the full embedding Ja ◦J of PES into IES
discussed after Proposition 4.10, hence Pi = Ja ◦J ◦P.

We finally prove that Pi is left adjoint to Li and thus that they establish a
coreflection between IES and Dom. As for aes’s, given an ies I, the component at
I of the counit of the adjunction is the function ǫI : Pi ◦Li(I)→ I, mapping each
history of an event e into the event e itself. The next preliminary lemma proves that
such a mapping is indeed a ies-morphism.

Lemma 4.24
The function ǫI : Pi(Li(I)) → I defined as ǫI(C[[e]]) = e, for all C ∈ Conf (I) and
e ∈ C, is an ies-morphism.

Proof. Let us prove that ǫI satisfies conditions (1)-(3) of Definition 4.6.

1. ǫI(C[[e]]) = ǫI(C
′[[e′]]) ∧ C[[e]] 6= C′[[e′]] ⇒ C[[e]]#C′[[e′]].

Assume that ǫI(C[[e]]) = ǫI(C
′[[e′]]), namely e = e′, and C[[e]] 6= C′[[e′]]. By Lemma 4.20.(2)

it follows that there is no upper bound for {C,C′}. In fact, if there were an upper bound
C′′ then necessarily C[[e]] = C′′[[e]] = C′[[e]]. Hence e#e′.

2. A1 < ǫI(C[[e]]) ⇒ ∃A0 ⊆ ǫ
−1
I (A1). A0 < C[[e]].

Let us assume A1 < ǫI(C[[e]]) = e. Since e ∈ C, by Proposition 4.13, A1 ∩C = {e′} for some
e′. Moreover, since e′ ∈ A1 < e, by rule (ր 2), e′ ր e and thus, by Proposition 4.14 and
the definition of history, e′ ∈ C[[e]].

By point (2) of Lemma 4.20, one easily derives that C[[e′]] ⊑ C[[e]]. Therefore, according to
the definition of Pi, C[[e′]] < C[[e]] and since e′ ∈ A1, {C[[e′]]} ⊆ ǫ−1

I (A1).

3. ({ǫI(C′[[e′]])}, ǫI(C[[e]]), A1) ⇒ ∃A0 ⊆ ǫ
−1
I (A1). ∃a0 ⊆ {C′[[e′]]}. (a0, C[[e]], A0).

Assume ({ǫI(C′[[e′]])}, ǫI(C[[e]]), A1), namely

({e′}, e, A1).

If ¬(C[[e]] ↑ C′[[e′]]) then, by definition of Pi, C[[e]]#C′[[e′]] and thus C[[e]] ր C′[[e′]]. Hence
({C′[[e′]]}, C[[e]], ∅), which clearly satisfies the desired condition.

Suppose, instead, that C[[e]] ↑ C′[[e′]]. We distinguish two subcases:

• If e′ ∈ C[[e]] then A1∩C[[e]] 6= ∅. Indeed, being C[[e]] a configuration, A1∩C[[e]] must be
a singleton {e′′}. As above, by Lemma 4.20.(2), C[[e′′]] ⊑ C[[e]] and thus, by definition
of Pi, C[[e′′]] < C[[e]]. Therefore (∅, C[[e]], {C[[e′′]]}), which allows us to conclude,
since e′′ ∈ A1 implies {C[[e′′]]} ⊆ ǫ−1

I (A1).
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• Assume e′ 6∈ C[[e]]. Consider a configuration C′′, upper bound of C[[e]] and C′[[e′]],
which exists by assumption. Since e, e′ ∈ C′′ it must be e→֒C′′e′. In fact, otherwise
there would be e′′ ∈ C′′ ∩A1 and e′′ →֒C′′e. But then, by Lemma 4.20.(1), e′′ ∈ C[[e]],
an thus, being e′ < e′′, we would have e′ ∈ C[[e]], contradicting the hypothesis.

Therefore, by Lemma 4.20.(1), e ∈ C′[[e′]], and thus C[[e]] ⊑ C′[[e′]], implying C[[e]] <
C′[[e′]]. Hence C[[e]]ր C′[[e′]], and therefore ({C′[[e′]]}, C[[e]], ∅). 2

The main theorem relies on the following technical result. Its proof is a straight-
forward variation of the proof of the corresponding result for aes’s (Lemma 3.24).

Lemma 4.25
Let I be an ies, D a domain and let g : D → Li(I ) be a domain morphism. Then
for all p ∈ Pr(D), | g(p)−

⋃
g(Pr(p)− {p}) |≤ 1 and

Pi(g)(p) =

{
⊥ if g(p)−

⋃
g(Pr(p)− {p}) = ∅

g(p)[[e]] if g(p)−
⋃
g(Pr(p)− {p}) = {e}

Theorem 4.26 (coreflection between IES and Dom)
Pi ⊣ Li.

Proof. Let I be an ies and let ǫI : Pi(Li(I ))→ I be the morphism defined as in Lemma 4.24.
We have to show that given any domain (D,⊑) and ies-morphism h : Pi(D) → I , there is a
unique domain morphism g : D → Li(I ) such that the following diagram commutes:

Pi(Li(I ))
ǫI

I

Pi(D)

Pi(g)
h

The proof follows the same lines of that for aes’s, and thus some parts are only sketched.

Existence
The morphism g : D → Li(I ) can be defined as follows. Given d ∈ D, observe that Cd =
〈Pr(d),⊏Pr(d)〉 is a configuration of I, where ⊏Pr(d)=⊏ ∩(Pr (d)×Pr (d)). Therefore we can define

g(d) = h∗(Cd).

The fact that h∗(Cd) is a configuration in Pi(D) and thus an element of Li(I), follows from
Lemma 4.22.

Moreover g is a domain morphism. In fact it is

• �-preserving. By prime algebraicity, d, d′ ∈ D, with d ≺ d′ then Pr(d′) − Pr(d) = {p}, for
some p ∈ Pr(D). Thus

g(d′)− g(d) =
= h∗(Pr(d′))− h∗(Pr (d))
⊆ {h(p)}

Therefore |g(d′) − g(d)| ≤ 1 and, since it is easy to see that g(d) ⊑ g(d′), we conclude
g(d) � g(d′).
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• Additive. Let X ⊆ D be a pairwise compatible set. Then

g(
⊔
X) = h∗(〈CX , →֒CX

〉) = 〈h(CX), h(→֒CX
) ∩ choices(h(CX))〉

where CX = Pr (
⊔
X) =

⋃
x∈X Pr(x) and →֒CX

=⊏CX
. On the other hand

⊔
x∈X g(x) =

=
⊔
x∈X h

∗(〈Pr (x),⊏Pr(x))〉)

= 〈
⋃
x∈X h(Pr(x)),

⋃
x∈X(h(⊏Pr(x)) ∩ choices(h(Pr (x))))〉

= 〈h(CX),
⋃
x∈X(h(⊏Pr(x)) ∩ choices(h(Pr (x))))〉

Now, the choice relation of the configuration above is included in the choice of the configu-
ration g(

⊔
X), namely

⋃
x∈X(h(⊏Pr(x)) ∩ choices(h(Pr(x)))) ⊆ h(→֒CX

) ∩ choices(CX)

Thus by using Proposition 4.17.(2) we can conclude that g(
⊔
X) =

⊔
x∈X g(x).

• Stable. Let d, d′ ∈ D with d ↑ d′, then:

g(d ⊓ d′) = h∗(〈C, →֒C〉) = 〈h(C), h(→֒C) ∩ choices(h(C))〉,

where C = Pr (d ⊓ d′) = Pr(d) ∩ Pr(d′) and →֒C =⊏C . Moreover

g(d) ⊓ g(d′) =

= 〈h(Pr (d)), h(⊏Pr(d)) ∩ choices(h(Pr (d)))〉

⊓〈h(Pr (d′)), h(⊏Pr(d′)) ∩ choices(h(Pr (d′)))〉

Now, since d ↑ d′ it is easy to see that h is injective on Pr(d) ∪Pr (d′) and therefore the set
of events of g(d) ⊓ g(d′) is

h(Pr(d)) ∩ h(Pr(d′)) = h(Pr(d) ∩ Pr (d′)) = h(C),

namely it coincides with the set of events of g(d ⊓ d′).

By a similar argument, h(⊏Pr(d)) ∩ h(⊏Pr(d′)) = h(⊏Pr(d)∩Pr(d′)) = h(⊏C). Moreover,
reasoning as in the proof of Lemma 4.22, we have,

choices(h(Pr (d))) ∩ choices(h(Pr (d′)))

= choices(h(Pr (d)) ∩ h(Pr(d′))) [since choices(X ∩ Y ) = choices(X) ∩ choices(Y )]

= choices(h(Pr (d) ∩ Pr(d′))) [by injectivity of h on C]

= choices(h(C))

and we are able to conclude that also the choice relation in g(d) ⊓ g(d′) is the same as in
g(d ⊓ d′). In fact

h(⊏Pr(d)) ∩ h(⊏Pr(d′)) ∩ choices(h(Pr(d))) ∩ choices(h(Pr (d′)))

= h(⊏C) ∩ choices(h(Pr (d) ∩ Pr(d′))) [by injectivity of h on C and remark above]

= h(→֒C) ∩ choices(h(C))
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{e} # {e′}

{e, e′} {e′, e′′
0
} · · · {e′, e′′

n
}

{e, e′, e′′
0
} · · · {e, e′, e′′

n
} {e′, e0, e} · · · {e′, en, e}

Figure 4.2: The pes corresponding to the ies where ({e′}, e, {e0, . . . , en}).

The fact that the morphism g defined as above makes the diagram commute and its uniqueness
can be proved, as for aes’s, by exploiting essentially Lemma 4.25. 2

It is worth stressing that the above result, together with Winskel’s equivalence
between the category Dom of domains and the category PES of prime event struc-
tures, allow to translate an ies I into a pes P(Li(I)). The universal characterization
of the construction intuitively ensures that the pes obtained in this way is the “best
approximation” of I in the category PES. By the characterization of the complete
prime elements in the domain of configurations (see Theorem 4.21) we have that the
events in P(Li(I)) are the possible histories of the events in I. Figure 4.2 shows
the pes corresponding to a basic ies containing the events {e, e′, e0, . . . , en} related
by the DE-relation as ({e′}, e, {e0, . . . , en}). We explicitly represent history of an
event e as a set of events, where e appears in boldface style.

4.2.3 Removing non-executable events

We already observed that the non-executability of events in ies’s cannot be com-
pletely captured in a syntactic way, in the sense that there are no proof systems
singling out exactly the non-executable events. However, we can adopt a semantic
approach to rule out unused events from an ies, namely we can simply remove from
a given ies all events which do not appear in any configuration. Nicely, this can be
done functorially and the subcategory IES∗ of ies’s where all events are executable
turns out to be a coreflective subcategory of IES. Moreover, the coreflection between
IES and Dom can be easily shown to restrict to a coreflection between IES∗ and
Dom. This subsection is not essential to the remainder of the chapter, since it will
be used only for discussing a negative result. Anyway, we think it answers a very
natural question on ies’s.

We start defining the subcategory of ies’s where all events are executable.

Definition 4.27
We denote by IES∗ the full subcategory of IES consisting of the ies’s I = 〈E, 〉
such that for any e ∈ E there exists C ∈ Conf (I) with e ∈ C.
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Any ies can be turned into an object of IES∗ by forgetting the events which
do not appear in any configuration. The next definition introduces the functor Ψ :
IES→ IES∗ performing such construction.

Definition 4.28
We denote by Ψ : IES→ IES∗ the functor mapping each ies I into the IES∗ object

Ψ(I) = 〈ψ(E), ψ(E)〉, where ψ(E) is the set of executable events in I, namely

ψ(E) = {e ∈ E | ∃C ∈ Conf (I). e ∈ C}.

Moreover if f : I0 → I1 is an ies-morphism then Ψ(f) = f|ψ(E0). With Jies :
IES∗ → IES we denote the inclusion.

The fact that Ψ(I) is a IES∗ object follows easily from its definition. The well-
definedness of Ψ(f) for any ies-morphism f is basically a consequence of the fact
that, by Lemma 4.22, an ies-morphism preserves configurations and thus also exe-
cutable events.

Before formalizing the above claim, we make explicit two easy properties of the
relations of causality and asymmetric conflict in Ψ(I).

Fact 4.29
Let I be an ies. Then, for any e, e′ ∈ ψ(E) and A ⊆ E

1. eրI e
′ ⇒ eրΨ(I) e

′;

2. A <I e ⇒ (A ∩ ψ(E)) <Ψ(I) e

3. #IA ∧ A ⊆ ψ(E) ⇒ #Ψ(I)A.

Proposition 4.30
Let I0 and I1 be ies’s and let f : I0 → I1 be an ies-morphism. Then Ψ(f) : Ψ(I0)→
Ψ(I1), defined as above, is an ies-morphism.

Proof. First observe that

f(ψ(E0)) ⊆ ψ(E1) (†)

and thus the restriction f|ψ(E0) : ψ(E0) → ψ(E1) is a well-defined function. In fact, if e0 ∈ ψ(E0)
then e0 ∈ C0 for some configuration C0 ∈ Conf (I0). Hence, if defined, f(e0) ∈ f(C0) and, by
Lemma 4.22, f∗(C0) is a configuration of I1. Thus f(e0) ∈ ψ(E1).

Now, for i ∈ {0, 1}, let us denote by i, <i, րi and #i the relations in Ii, and by ψi
,

<ψi
, րψi

and #ψi
the relations in 〈ψ(Ei), ψ(Ei)〉, the pre-ies which, when saturated, gives

the ies Ψ(Ii). To show that Ψ(f) : Ψ(I0) → Ψ(I1) is an ies-morphism we verify that Ψ(f) :
〈ψ(E0), ψ(E0)〉 → 〈ψ(E1), ψ(E1)〉 satisfies conditions (1)-(4) of Lemma 4.9, namely

1. Ψ(f)(e0) = Ψ(f)(e′0) ∧ e0 6= e′0 ⇒ e0#ψ0e
′
0;

2. ψ1(∅,Ψ(f)(e0), A1) ⇒ ∃A0 ⊆ Ψ(f)−1(A1). A0 <ψ0 e0;
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3. ψ1({Ψ(f)(e′0)},Ψ(f)(e0), ∅) ⇒ e0 րψ0 e
′
0;

4. ψ1({Ψ(f)(e′0)},Ψ(f)(e0), A1) ∧ A1 6= ∅ ⇒
∃A0 ⊆ Ψ(f)−1(A1). ∃a0 ⊆ {e′0}. ψ0(a0, e0, A0).

To lighten the notation let f ′ denote Ψ(f), i.e., the restriction f|ψ(E0).

1. If f ′(e0) = f ′(e′0) and e0 6= e′0, since f : I0 → I1 is an ies-morphism, it must be e0#0e
′
0.

Hence, by Fact 4.29.(3), e0#ψ0e
′
0.

2. Assume that ψ1(∅, f
′(e0), A1). By definition of Ψ(I1), recalling that f ′(e0) = f(e0), we

have 1(∅, f(e0), A
′
1), with A1 = A′

1 ∩ ψ(E1). Since, by definition of ies, #pA
′
1, we can

apply rule (< 1), thus obtaining

1(∅, f(e0), A
′
1) #pA

′
1

A′
1 <1 f(e0)

(< 1)

By definition of morphism, there exists A′
0 ⊆ f−1(A′

1) such that A′
0 <0 e0. If we define

A0 = A′
0 ∩ ψ(E0) then, by Fact 4.29.(1), A0 <ψ0 e0 and, by the property (†) above, A0 ⊆

f ′−1(A1).

3. Assume that ψ1({f
′(e′0)}, f

′(e0), ∅). By definition of ψ1 and recalling that f ′ is the
restriction of f , it must be 1({f(e′0)}, f(e0), A1) with A1∩ψ(E1) = ∅. Hence, by definition
of morphism, there exist a0 ⊆ {e′0} and A0 ⊆ f−1(A1) such that 0(a0, e0, A0). Since
A1∩ψ(E1) = ∅, we deduce that A0∩ψ(E0) = ∅. Moreover, recalling that e0 ∈ ψ(E0), namely
it is executable, necessarily a0 = {e′0}. Therefore ψ0({e

′
0}, e0, ∅), and thus e0 րψ0 e

′
0.

4. Assume that ψ1({f
′(e′0)}, f

′(e0), A1) with A1 6= ∅. Then, by definition of ψ1 , we must
have

1({f(e′0)}, f
′(e0), A

′
1)

where A1 = A′
1∩ψ(E1). By definition of ies-morphism, there must exist A′

0 ⊆ f
−1(A′

1) and
a0 ⊆ {e′0} such that 0(a0, e0, A

′
0).

If we define A0 = A′
0 ∩ ψ(E0), then by definition of ψ0 , we have ψ0(a0, e0, A0) and, by

the property (†) proved above, A0 ⊆ f ′−1(A1). 2

It is easy to verify that, if I is a IES∗ object and I ′ is an arbitrary ies, then any
ies-morphism f : I → Ψ(I ′) is also a morphism f : I → I ′. This simple observation
allows us to conclude immediately that the inclusion of IES∗ into IES is left adjoint
of the functor Ψ and thus that IES∗ is a coreflective subcategory of IES.

Proposition 4.31 (relating IES and IES∗)
Ψ ⊢Jies

Finally observe that the functor Pi : Dom → IES maps each domain into the
encoding of a pes, which is clearly an object in IES∗. Therefore it is easy to prove
that the coreflection between IES and Dom restricts to a coreflection between IES∗

and Dom.

Corollary 4.32 (coreflection between IES∗ and Dom)
Let Pie : Dom → IES∗ and Lie : IES∗ → Dom denote the restrictions of the
functors Pi and Li. Then Pie ⊣ Lie .
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4.3 The category of inhibitor nets

This section defines the category IN of inhibitor nets by introducing a suitable
notion of morphism. Morphisms of i-nets are morphisms between the underlying
c-nets, satisfying a further condition which takes into account the presence of the
inhibitor arcs. In this way the category CN of contextual nets is a (full) subcategory
of IN.

Definition 4.33 (i-net morphism)
Let N0, N1 be i-nets. A i-net morphism h : N0 → N1 is a pair h = 〈hT , hS〉, where
hT : T0 → T1 is a partial function and hS : S0 → S1 is a multirelation such that

1. µhS(m0) = m1;

2. for each A ∈ µT ,

(a) µhS(
•A) = •µhT (A),

(b) µhS(A
•) = µhT (A)•,

(c) [[µhT (A)]] ≤ µhS(A) ≤ µhT (A).

(d) [[hS]]
−1( �µhT (A)) ⊆ �A.1

where [[hS ]] is the set relation underlying the multirelation hS. We denote by IN the
category having i-nets as objects and i-net morphisms as arrows.

Conditions (1), (2.a) - (2.c) are the defining conditions of c-net morphisms (see Def-
inition 3.26). Finally, condition (2.d) regarding the inhibitor arcs can be understood
if we think of morphisms as simulations. As preconditions and contexts must be pre-
served to ensure that the morphism maps computations of N0 into computations of
N1, similarly, inhibitor conditions, which are negative conditions, must be reflected.
In fact condition (2.d) can be expressed, in words, by saying that if the image of a
place s0 in N0 inhibits the image of a transition t0, then s0 must inhibit t0 (see also
the remark below).

Remark 4.34
Observe that condition (2.d) on inhibiting places can be rewritten as

s1 ∈ [[µhS(s0)]] ∧ I1(hT (t0), s1) ⇒ I0(t0, s0),

which shows more explicitly that inhibitor arcs are reflected. In particular, if hS is
a total function then

I1(hT (t0), hS(s0)) ⇒ I0(t0, s0).

1We are grateful to Nadia Busi and Michele Pinna for pointing out the appropriateness of this
condition, generalizing the one appeared in a preliminary version of the work.
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Although, to the best of our knowledge, no other categories of nets with inhibitor
arcs have been introduced in the literature, our i-net morphisms can be seen as a
generalization of the process mappings of [Bus98, BP96, BP99]. We will come back
on this point in Section 4.6, where a (deterministic) process of an i-net N will be
defined as a special morphism from a (deterministic) occurrence i-net to the net N .

Proposition 4.35 (composition of morphisms)
The class of i-net morphisms is closed under composition.

Proof. Let h0 : N0 → N1 and h1 : N1 → N2 be two i-net morphisms. Their composition
h1 ◦ h0 obviously satisfies conditions (1) and (2.a)-(2.c) of Definition 4.33, since these are exactly
the defining conditions of c-net morphisms which are known to be closed under composition.

Finally, h1 ◦ h0 satisfies also condition (2.d). In fact, for any multiset of transition A in N0:

[[h1S ◦ h0S ]]−1( �µ(h1T ◦ h0T )(A)) =

= [[h0S ]]−1([[h1S ]]−1( �µh1T (µh0T (A))))

⊆ [[h0S ]]−1( �µh0T (A)) [since h1 is a morphism]

⊆ �A [since h0 is a morphism]

Let us now verify that, as in the case of contextual nets, i-net morphisms preserve
the token game, and thus the reachability of markings.

Theorem 4.36 (morphisms preserve the token game)
Let N0 and N1 be i-nets, and let h = 〈hT , hS〉 : N0 → N1 be an i-net morphism.
Then for each M,M ′ ∈ µS and A ∈ µT

M [A〉M ′ ⇒ µhS(M) [µhT (A)〉µhS(M
′).

Therefore i-net morphisms preserve reachable markings, i.e. if M0 is a reachable
marking in N0 then µhS(M0) is reachable in N1.

Proof. Suppose that M [A〉M ′, and thus, in particular, M [A〉 , namely •A + [[A]] ≤ M and
[[M +A•]] ∩ �A = ∅.

First notice that µhT (A) is enabled by µhS(M). The proof of the fact that •µhT (A) +
[[µhT (A)]] ≤ µhS(M) is the same as for c-net. Hence let us consider the new condition for the
enabling regarding the inhibiting places. Observe that

[[µhS(M) + µhT (A)•]] ∩ �µhT (A) =

= [[µhS(M) + µhS(A•)]] ∩ �µhT (A) [by (2.b) in the definition of morphism]

= [[µhS(M +A•)]] ∩ �µhT (A)

= ∅

The last passage is justified by observing that if s1 ∈ [[µhS(M +A•)]] ∩ �µhT (A), then there is
s0 ∈ [[M +A•]] such that s1 ∈ [[µhS(s0)]] and s1 ∈ �hT (A). By condition (2.d) in the definition of
i-net morphism, this implies s0 ∈ �A and therefore s0 ∈ [[M +A•]] ∩ �A, which instead is empty
by hypothesis.

It is now immediate to conclude that µhS(M) [µhT (A)〉µhS(M ′). 2
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As in the case of contextual nets, the Winskel’s style semantics will be defined
on the subcategory of IN having semi-weighted nets as objects. The next definition
introduces semi-weighted and safe inhibitor nets by generalizing in the obvious way
the corresponding notions for contextual nets.

Definition 4.37 (semi-weighted and safe i-nets)
A semi-weighted i-net is an i-net N such that the initial marking m is a set and
Fpost is a relation (i.e., t• is a set for all t ∈ T ). We denote by SW-IN the full
subcategory of IN having semi-weighted i-nets as objects.

A semi-weighted i-net is called safe if also Fpre and C are relations (i.e., •t and
t are sets for all t ∈ T ) and each reachable marking is a set.

4.4 Occurrence i-nets and unfolding construction

Generally speaking, occurrence nets provide a static representation of the computa-
tions of general nets, in which the events (firing of transitions) and the relationships
between events are made explicit. In the previous chapter the notion of occurrence
net has been generalized from ordinary nets to nets with context conditions. Here,
the presence of the inhibitor arcs and the complex kind of dependencies they induce
on transitions makes hard to find an appropriate notion of occurrence i-net.

As a first step, consider an i-net where only forward conflicts are admitted,
namely where each place is in the post-set of at most one transition. The condition
of finiteness and acyclicity of the causes, which ensures that each transition of an
occurrence (contextual) net is firable in some computation, has no natural general-
izations in this setting. Indeed also the notion of set of causes of a transition becomes
unclear. In fact, as already observed, a transition t to be fired may require the ab-
sence of tokens in a place s, and therefore it can be seen as a (weak) cause of the
transition t′ in the pre-set of s if it fires before s is filled, or as a consequence of any
of the transitions t1, . . . , tn in the post-set of s, otherwise. One could think to have
a set of causes depending on a kind of “choice”, which specifies for any inhibitor arc
(t, s) if transition t is executed before or after the place s is filled and in the second
case which of the transitions in the pre-set •s of the inhibitor place consumes the
token. Then the firability of a transition t would amount to the existence of a choice
which is acyclic on the transitions which must be executed before t. However, relying
on this idea the notion of occurrence net would be not very easy to deal with and
furthermore the unfolding construction would produce a net which is not decidable,
in the sense the sets of transitions and places of the net are not recursive. In fact, due
to the Turing completeness of inhibitor nets (see, e.g., [Age74]) the reachability of a
marking, or equivalently the existence of a computation in which a given transition
fires, is undecidable.

We propose the following solution. Given an i-net N , we first consider the un-
derlying contextual net Nc, obtained from N by forgetting the inhibitor arcs. Then,
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SW-IN

Ric

O-IN
IO

SW-CN

Ici
Ua

O-CN
IO

Figure 4.3: Functors relating semi-weighted (occurrence) c-nets and i-nets.

disregarding the inhibitor arcs, we apply to Nc the unfolding construction for c-nets
defined in the previous chapter (Definition 3.46), which produces an occurrence c-
net. Finally, if a place s and a transition t were originally related by an inhibitor arc
in the net N , then we insert an inhibitor arc between each copy of s and each copy
of t in Ua(Nc), thus obtaining the unfolding Ui(N) of the net N .

The characterization of the unfolding as a universal construction can be easily
lifted from contextual to inhibitor nets. Furthermore, in this way the unfolding of an
inhibitor net is decidable, a fact which, besides being nice from a theoretical point of
view, may be helpful if one want to use the unfolding in practice to prove properties
of the modelled system. The price to pay is that, differently from what happens
for ordinary and contextual nets, some of the the transitions in the unfolding may
not be not firable, since they are generated without taking care of inhibitor places.
Therefore not all the transitions of the unfolding correspond to a concrete firing of
a transition of the original net, but only those which are executable.

Since our unfolding construction disregards the inhibitor arcs, we define an oc-
currence i-net as an i-net which becomes an occurrence c-net when forgetting the
inhibitor arcs. To formalize this fact it is useful to introduce two functors, the first
one mapping each i-net to the underlying c-net, and the other one embedding the
category of c-nets into the category of i-nets (see Figure 4.3).

Definition 4.38
We denote by Ric : SW-IN → SW-CN the functor which maps each i-
net to the underlying c-net obtained by forgetting the inhibitor relation, namely
Ric(〈S, T, F, C, I,m〉) = 〈S, T, F, C,m〉, and by Ici : SW-CN → SW-IN the
functor mapping each c-net into an i-net with an empty inhibitor relation, namely
Ici(〈S, T, F, C,m〉) = 〈S, T, F, C, ∅, m〉. Both functors act as the identity on mor-
phisms.

Recall that causal dependency on contextual nets is defined as the least transitive
relation < such that t < t′ if t• ∩ ( •t′ ∪ t′) 6= ∅, the only novelty with respect
to classical nets being the fact that a transition causally depends on transitions
generating tokens in its context. Asymmetric conflict ր is defined by taking tր t′

if t′ consumes a token in the context of t, namely if t ∩ •t′ 6= ∅. Moreover t ր t′

if (t 6= t′ ∧ •t ∩ •t′ 6= ∅) to capture the usual symmetric conflict, and finally,
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•

t •

•

t •

N2 Ric(N2)

Figure 4.4: Not all events of an occurrence i-net are executable.

according to the weak causality interpretation of ր, t ր t′ whenever t < t′. An
occurrence c-net is then defined as a c-net N where causality is a finitary partial
order, asymmetric conflict is acyclic on the causes of each transition, each place is
in the post-set of at most one transition and the initial marking is the minimal set
of places with respect to causality.

Definition 4.39 (occurrence i-nets)
An occurrence i-net is a safe i-net N such that Ric(N) is an occurrence c-net. The
full subcategory of SW-IN having occurrence i-nets as objects is denoted by O-IN.

We remark that, since the above definition does not take into account the inhibitor
arcs of the net, we are not ensured that each transition in an occurrence i-net can
be fired. For instance in the i-net N2 of Figure 4.4, the only transition t can never
fire, but, by looking at the underlying c-net Ric(N2) depicted aside, it is immediate
to see that N2 is an occurrence i-net.

In the previous chapter we have defined an unfolding functor Ua : SW-CN →
O-CN, mapping each semi-weighted c-net to an occurrence c-net. The functor Ua

has been shown to be right adjoint to the inclusion functor IO : O-CN→ SW-CN.
By suitably using the functors Ric and Ici we can lift both the construction and
the result to inhibitor nets.

Definition 4.40 (unfolding)
Let N = 〈S, T, F, C, I,m〉 be a semi-weighted i-net. Consider the occurrence c-net
Ua(Ric(N)) = 〈S ′, T ′, F ′, C ′, m′〉 and the folding morphism fN : Ua(Ric(N)) →
Ric(N). Define an inhibiting relation on the net Ua(Ric(N)) by taking for s′ ∈ S ′

and t′ ∈ T ′

I ′(s′, t′) iff I(fN(s′), fN(t′)).

Then the unfolding Ui(N) of the net N is the occurrence i-net 〈S ′, T ′, F ′, C ′, I ′, m′〉
and the folding morphism is given by fN seen as a function from Ui(N) into N .

The fact that Ui(N) is an occurrence i-net immediately follows from its construction.
Furthermore, since the place component of fN is a total function, according to what
observed in Remark 4.34, it immediately follows that Ui(N) can be characterized
as the least i-net which extends Ua(N) with the addition of inhibitor arcs in a way
that fN : Ui(N)→ N is a well defined i-net morphism.
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The unfolding construction is functorial, namely we can define a functor Ui :
SW-IN → O-IN, which acts on arrows as Ua ◦ Ric. In other words, given h :
N0 → N1, the arrow Ui(h) : Ui(N0) → Ui(N1) is obtained by interpreting h as a
morphism between the c-nets underlying N0 and N1, taking its image via Ua, and
then considering the map Ua(h) as an arrow from Ui(N0) to Ui(N1).

Proposition 4.41
The unfolding construction extends to a functor Ui : SW-IN → O-IN, which acts
on arrows as Ua ◦Ric.

Proof. The only thing to verify is that given an i-net morphism h : N0 → N1, the c-net morphism
h′ = Ua ◦Ric(h) : Ua(Ric(N0)) → Ua(Ric(N1)), seen as a mapping h′ : Ui(N0) → Ui(N1) is an
i-net morphism.

First notice that the following diagram, where f0 and f1 are the folding morphisms, commutes
by construction (although h′, in principle, may not be an i-net morphism).

N0
h

N1

Ui(N0)

f0

h′=Ua(h)
Ui(N1)

f1

As usual, conditions (1) and (2.a)-(2.c) are automatically verified since h′ is a c-net morphism.
Let us prove the validity of condition (2.d), as expressed by Remark 4.34, namely

s′1 ∈ [[µh′S(s′0)]] ∧ I ′1(h
′
T (t′0), s

′
1) ⇒ I ′0(t

′
0, s

′
0).

Assume s′1 ∈ [[µh′S(s′0)]] ∧ I ′1(h
′
T (t′0), s

′
1). Hence, f1S(s′1) ∈ [[µ(f1S ◦ h′S)(s′0)]] and, by definition of

the unfolding, I1(f1T (h′T (t′0)), f1S(s′1)). Therefore, by commutativity of the diagram

f1S(s′1) ∈ [[µhS(f0S(s′0))]] and I1(hT (f0T (t′0)), f1S(s′1))

Being h an i-net morphism, by condition (2.d) in Definition 4.33, we have that

I0(f0T (t′0), f0S(s′0))

and therefore, by definition of the unfolding, I ′0(t
′
0, s

′
0), which is the desired conclusion. 2

We can now state the main result of this section, establishing a coreflection be-
tween semi-weighted i-nets and occurrence i-nets. It essentially relies on the fact that
the unfolding for c-nets has been already characterized as an universal construction
(Theorem 4.42).

Theorem 4.42 (coreflection between SW-IN and O-IN)
The unfolding functor Ui : SW-IN→ O-IN is right adjoint to the obvious inclusion
functor IO : O-IN → SW-IN and thus establishes a coreflection between SW-IN
and O-IN.

The component at an object N in SW-IN of the counit of the adjunction, f :
IO ◦Ui

·
→ 1, is the folding morphism fN : Ui(N)→ N .
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Proof. Let N be a semi-weighted i-net, let Ui(N) = 〈S′, T ′, F ′, C′, I ′,m′〉 be its unfolding and
let fN : Ui(N) → N be the folding morphism as in Definition 4.40. We have to show that for
any occurrence i-net N1 and for any morphism g : N1 → N there exists a unique morphism
h : N1 → Ui(N) such that the following diagram commutes:

Ui(N)
fN

N

N1

h
g

The existence is readily proved by observing that an appropriate choice is h = Ui(g). The
commutativity of the diagram simply follows by the commutativity of the diagram involving the
underlying c-nets and c-net morphisms, namely

Ua(Ric(N))
fN

Ric(N)

Ric(N1)

h
g

With a little abuse of notation, we have denoted with the same symbol the c-net morphism and
the same mapping seen as an i-net morphism.

Also uniqueness follows easily by the universal property of the construction for c-nets. In fact
let h′ : N1 → Ui(N) be another i-net morphism such that fN ◦ h′ = g. This means that h′ is
another c-net morphism which makes commute the diagram involving the underlying c-nets. This
implies that, as desired, h and h′ coincide. 2

4.5 Inhibitor event structure semantics for i-nets

To give an event structure and a domain semantics for i-nets we investigate the
relationship between occurrence i-nets and inhibitor event structures. The kind of
dependencies arising among transitions in an occurrence i-net can be naturally rep-
resented by the DE-relation, and therefore the ies corresponding to an occurrence
i-net is obtained, as in the case of c-nets, by forgetting the places and taking the
transitions of the net as events. Furthermore morphisms between occurrence i-nets
naturally restrict to morphisms between the corresponding ies’s, and therefore the
semantics can be expressed as a functor Ei : O-IN→ IES.

The converse step, from ies’s to occurrence i-nets, instead, is shown to be very
problematic. An object level construction can be easily performed, associating to
each ies a corresponding i-net. However such a construction does not give rise to a
functor. We discuss the origin of this problem, showing that it is intimately connected
to or-causality, and we argue that it has no reasonable solutions in the considered
framework.
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4.5.1 From occurrence i-nets to ies’s

Let us introduce DE-relation naturally associated to an occurrence i-net N , denoted
with the symbol N . It will be used to define first a pre-ies and then an ies for the
net N .

Definition 4.43 (pre-ies for occurrence i-nets)
Let N be an occurrence i-net. The pre-ies associated to N is defined as IpN = 〈T, p

N 〉,
with N ⊆ 2T1 × T × 2T , given by: for t, t′ ∈ T and s ∈ S

1. if t• ∩ ( •t′ ∪ t′) 6= ∅ then p
N(∅, t′, {t})

2. if ( •t ∪ t) ∩ •t′ 6= ∅ then p
N({t′}, t, ∅);

3. if s ∈ �t then p
N( •s, t, s•).

The first two clauses of the definition encode, by means of the DE-relation, the
causal dependencies and the asymmetric conflicts induced by flow and read arcs.
The last clause fully exploits the expressiveness of the DE-relation to represent the
dependencies induced by inhibitor places.

Notice that IpN is a pre-ies, satisfying also condition (1) of the definition of ies.
Therefore, as proved in Proposition 4.5, it can be “saturated” to obtain an ies.

Definition 4.44 (ies for occurrence i-nets)
The ies associated to the occurrence i-net N , denoted by IN = 〈T, N〉, is defined

as IpN .

Recall that the causality, asymmetric conflict and conflict relations of IN and IpN
coincide. They will be denoted by <N , րN and #N , respectively.

The next proposition shows that the above construction extends to a functor,
by proving that the transition component of an i-net morphism is an ies-morphism
between the corresponding ies’s.

Proposition 4.45
Let N0 and N1 be be occurrence i-nets and let h : N0 → N1 be an i-net morphism.
Then hT : IN0 → IN1 is a ies-morphism.

Proof. For i ∈ {0, 1}, let <i, րi and #i be the relations of causality, asymmetric conflict and
conflict in the pre-ies IpNi

= 〈Ei, p〉. We show that hT : Ip0 → I
p
1 satisfies conditions (1)-(4) in the

hypotheses of Lemma 4.9 and thus hT is an ies-morphism between the corresponding “saturated”
ies’s.

1. hT (t0) = hT (t′0) ∧ t0 6= t′0 ⇒ t0#0t
′
0.

This property can be proved exactly as for c-nets. Alternatively, we can observe that if #a0

denotes the conflict relation in the c-net Ric(N0) then it is easy to see that #a0 ⊆ #0. Since
Ric(h) = h : Ric(N0)→ Ric(N1) is an c-net morphism, by resorting to Lemma 3.42 in the
previous chapter we conclude that t0#a0t

′
0 and therefore t0#0t

′
0.
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2. p
1(∅, hT (t0), A1) ⇒ ∃A0 ⊆ h

−1
T (A1). A0 <0 t0.

Let us assume p
1(∅, hT (t0), A1). By the definition of p

1 we can have

(a) A1 = {t1} and t1
• ∩ •hT (t0) 6= ∅.

Consider s1 ∈ t1• ∩ •hT (t0). By definition of i-net morphism there must exist s0 ∈ •t0 such
that hS(s0, s1), and t′0 ∈ T0 such that hT (t′0) = t1 and s0 ∈ t′0

•. By definition of p
0, if we

define A0 = {t′0}, it follows that p
0(∅, t0, A0), and thus by rule (< 1), A0 < t0. Recalling

that t′0 ∈ h
−1
T (t1) and thus A0 ⊆ h

−1
T (A1) we conclude.

(b) A1 = {t1} and t1
• ∩ hT (t′0) 6= ∅.

Analogous to case (a).

(c) ∃s1 ∈ �hT (t0).
•s1 = ∅ ∧ s1

• = A1.
Since •s1 = ∅, namely s1 is in the initial marking m1 of N1, by definition of i-net morphism,
there exists a unique s0 ∈ m0 such that hS(s0, s1). Again, by definition of i-net morphism,
from s1 ∈ �hT (t0) and hS(s0, s1) it follows that s0 ∈ �t0. Hence p

0(
•s0, t0, s0

•), namely,
recalling that s0 ∈ m0,

p
0(∅, t0, s0

•).

Therefore, by rule (< 1), we have s0
• <0 t0. Observe that, by the condition (2.a) in the

definition of i-net morphisms, hT (s0
•) ⊆ s1

• and, since hS(s0, s1), necessarily h is defined
on each t′0 ∈ s0

•. Thus s0
• ⊆ h−1

T (s1
•) concluding the proof for this case.

3. p
1({hT (t′0)}, hT (t0), ∅) ⇒ t0 ր0 t

′
0.

By definition of p
1, we can have

(a) ( •hT (t0) ∪ hT (t0)) ∩ •hT (t′0) 6= ∅.

Let s1 ∈ ( •hT (t0) ∪ hT (t0)) ∩ •hT (t′0). If s1 is in the initial marking than, by the definition
of i-net morphisms, one easily deduces that there exists a unique place s0 ∈ S0 such that
hS(s0, s1) and moreover s0 ∈ ( •t0 ∪ t0) ∩ •t′0. Therefore, by definition, p

0({t
′
0}, t0, ∅) and

thus, by rule (ր 1), t0 ր0 t
′
0.

Suppose instead that s1 6∈ m1. If ( •t0 ∪ t0)∩ •t′0 6= ∅ then we conclude as above. Otherwise,
as in the case of c-nets (Lemma 3.42), one easily deduces that t0#0t

′
0, and therefore, by rule

(ր 3), we can conclude t0 ր0 t
′
0.

(b) ∃s ∈ hT (t0)
• ∩ �hT (t′0) ∧ s0

• = ∅.
By condition (2.c) in the definition of i-net morphism (Definition 4.33), there must be
s0 ∈ t0• such that hS(s0, s1). By condition (2.d) in the same definition, s0 ∈ �t0. Observing
that necessarily s0

• = ∅, we conclude p
0({t

′
0}, t0, ∅) and thus t0 ր0 t

′
0.

4. p
1({hT (t′0)}, hT (t0), A1) ∧A1 6= ∅ ⇒ ∃A0 ⊆ h

−1
T (A1). ∃a0 ⊆ {t′0}.

p
0(a0, t0, A0).

Assume p
N1

({hT (t′0)}, hT (t0), A1) and A1 6= ∅. Thus, by definition of p
N1

there is a place
s1 ∈ �hT (t0)∩ hT (t′0)

• such that A1 = s1
•. Hence there is s0 ∈ t′0

• such that hS(s0, s1). By
condition (2.a) in the definition of i-net morphism hT (s0

•) ⊆ s1
• = A1 and necessarily hT

is defined on each t′0 ∈ s0
•. Therefore

s0
• ⊆ h−1

T (A1).

Since s0 ∈ �hT (t0) and hS(s0, s1), by condition (2.d) in the definition of i-net morphism,
s0 ∈ �t0. Hence we conclude that, as desired, N0({t

′
0}, t0, s0

•). 2
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By the above proposition we get the existence of a functor which maps each i-net
to the corresponding ies defined as in Definition 4.44 and each i-net morphism to
its transition component.

Definition 4.46
Let Ei : O-IN→ IES be the functor defined as:

• Ei(N) = IN , for each occurrence i-net N ;

• Ei(h : N0 → N1) = hT , for each morphism h : N0 → N1.

The coreflection between IES and Dom can be finally used to obtain a do-
main semantics, and, by exploiting Winskel’s equivalence, a prime event structure
semantics for semi-weighted i-nets. As explained in Section 4.2, the pes semantics is
obtained from the ies semantics by introducing an event for each possible different
history of events in the ies.

4.5.2 From ies’s to i-nets: a negative result

In [Win87a] Winskel maps each prime event structure into a canonical occurrence
net, via a free construction which generates, for each set of events related in a certain
way by the dependency relations, a unique place that induces that kind of relations
on the events. In the previous chapter this construction has been generalized to
c-nets. This section shows that the result cannot be extended to inhibitor nets and
events structures, the problem being essentially the presence of or-causality.

A natural extension of Winskel’s construction to inhibitor nets and ies’s could
be as follows.

Definition 4.47 (from occurrence i-nets to ies’s)
Let I = 〈E, 〉 be an ies. Then Ni(I) is the net N = 〈S, T, F, C, I,m〉 defined as
follows:

• m =

{
〈∅, A,B, C〉 :

A,B,C ⊆ E, ∀a ∈ A. ∀b ∈ B. aր b,
#pB ∧ ∀c ∈ C. ∃B′ ⊆ B. B′ < c

}
;

• S = m ∪



〈{e}, A,B, C〉 :

A,B,C ⊆ E, e ∈ E, ∀x ∈ A ∪ B. e < x,
∀a ∈ A. ∀b ∈ B. aր b,
#pB ∧ ∀c ∈ C. ∃B′ ⊆ B. ({e}, c, B′)



;

• T = E;

• F = 〈Fpre, Fpost〉, with

Fpre = {(e, s) : s = 〈x,A,B, C〉 ∈ S, e ∈ B},
Fpost = {(e, s) : s = 〈e, A,B, C〉 ∈ S};
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• C = {(e, s) : s = 〈x,A,B, C〉 ∈ S, e ∈ A}.

• I = {(e, s) : s = 〈x,A,B, C〉 ∈ S, e ∈ C}

As one would expect, the main difference with respect to the construction Chap-
ter 3 resides in the fact that here also inhibitor places are added. Since the same kind
of dependency among a set of transitions can be induced by connecting the tran-
sitions to a place in different ways, all the possibilities must appear in Ni(Ei(N)).
For instance a dependency e < e′ may be related to the presence of a place which
appears both in the post-set of e and in the pre-set of e′. But it may be induced also
by the presence of a place in the initial marking of the net, which inhibits e′ and is
consumed by e.

A first problem with the described construction is the fact that, in general, it
does not map IES objects into O-IN objects. The reason is essentially the fact that
in an occurrence i-net the dependencies induced by the flow and read arcs, and those
which are due to the inhibitor arcs are treated differently: the former must satisfy
the conditions characterizing occurrence c-nets, while the latter are not constrained
in any way. Instead, in an ies all kind of dependencies are represented via the
only relation . Consequently, the distinction between inhibitor and flow/read arcs
cannot be recovered from an ies and the net Ni(I) encodes the (possibly cyclic)
situations of dependency among events in all possible ways. For instance, a cycle
of causality is represented not only with inhibitor arcs but also with flow arcs. In
this way the c-net underlying Ni(I) may not be an occurrence c-net and thus, in
general, Ni(I) is not an occurrence i-net.

However this is a minor problem, since the problematic situations are clearly
related to the non executable events of an ies, i.e., to events which do not appear
in any configuration. The presence of such events leads to the generation of nets
containing cyclic or non-well founded situations, which do not satisfy the require-
ments to be an occurrence i-net. The mentioned problem disappear if we remove
the non-executable events and work with IES∗ objects. A functor from O-IN to
IES∗, mapping each occurrence i-net into an ies where all events are executable,
can be obtained simply as Ψ ◦ Ei, where Ψ : IES→ IES∗ is the functor defined in
Section 4.2 (Definition 4.27). The construction described in Definition 4.47, applied
to a IES∗ object indeed produces an occurrence i-net.

Proposition 4.48
Let I be a IES∗ object. Then Ni(I) is an occurrence i-net.

Proof. Let Ni(I) = (S, T, F, C, I,m). Then by construction, the initial marking and the pre-
set, post-set and context of any transition are sets. Moreover the net is safe since any transition
consumes a token in a place in m and thus it can be fired at most once.

Finally, if ≤ and ր are the causality and asymmetric conflict relation in the underlying c-net,
then it is easy to realize that ≤ is a partial order andր is acyclic on the causes of each transition.
In fact one can prove that such relations are included into the corresponding relations of the ies



134 Chapter 4. Semantics of Inhibitor Nets

I, and thus the presence of a non-firable transition in the net would imply the presence of a non-
executable event in I. 2

It is not difficult to verify that if I is an IES∗ object then Ei(Ni(I)) ≃ I. Hence
it is still possible to obtain a net representing a given event structure.

However a second problem exists, which instead appears hard to get rid of and
which makes impossible to turn the construction into a functor. The problem is illus-
trated by the following example. Consider two ies’s I0 and I1, obtained by saturating
the pre-ies’s 〈{e0, e

′
0, e
′′
0}, {(∅, e0, {e

′
0, e
′′
0})}〉, and 〈{e1, e

′
1}, {(∅, e1, {e

′
1})}〉. The nets

Ni(I0) and Ni(I1), are quite complicated, therefore the figure below represents only
the parts of these nets which are relevant to our argument.

•

e0 •

s0

e′0 e′′0

•

s1

e′1 •

e1

Ni(I0) Ni(I1)

It is easy to see that the ies-morphism f : I0 → I1 defined by f(e′0) = f(e′′0) = e1
and f(e0) = e′1 is well defined, but it cannot be extended to the places of the nets
above in order to obtain an i-net morphism. Formally, the problem is that there is
no place in •e0 which can be mapped to s1.

Conceptually, the problem is related to the fact that in an occurrence i-net a
situation of or-causality can be induced only by a place like s0, which inhibits a
transition and is consumed by other transitions. Instead, the or-causality induced
by a backward conflict is forbidden, while, as already observed, at the level of ies’s,
where one forgets the state, the two dependency situations become indistinguishable.
Indeed one could be tempted to generate, instead of Ni(I0) above, a different net,
where or-causality is represented also by backward conflicts (see the picture below).

•

e0 •

s0

e′0 e′′0

However, in this way the generated net is not an occurrence i-net, but, by analogy
with the flow nets of [Bou90], something which we could call a flow i-net. Unfortu-
nately the näıve solution of enlarging the category of occurrence i-net to comprise
also such kind of nets does not work, as one can easily check. Therefore, the un-
folding construction should be changed in order to generate a flow net instead of
an occurrence i-net. However this would be a drastic change, modifying the basic
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intuition underlying the unfolding. In fact transitions and places in the “ordinary”
unfolding are identified by their history, a concept which, in the presence of backward
conflicts, would become unclear.

4.6 Processes of i-nets and their relation with the

unfolding

We showed that i-nets can be given a functorial unfolding semantics which general-
izes the one defined for c-nets. Unfortunately, the results obtained for c-nets cannot
be fully extended to i-nets and the step which leads from occurrence i-nets to in-
hibitor event structures is not expressed as a coreflection. Nevertheless, the work
developed so far allows us to naturally provide i-nets with a (deterministic) process
semantics, which nicely fits with the notions already existing in the literature. Also
a notion of concatenable i-net process can be easily defined, and, as already done
for c-nets, by exploiting the characterization of the unfolding construction as a core-
flection between the categories of semi-weighted i-nets and occurrence i-nets, a tight
relationship can be established between the (concatenable) process semantics and
the unfolding semantics of an i-net.

We will concentrate only on the peculiar aspects of i-nets, referring the reader to
the previous chapter for an extensive explanation of the notions and results which
are an easy adaptation of those for c-nets.

The definition of nondeterministic process remains exactly the same. A (nonde-
terministic) process of an i-net is defined as as on occurrence i-net Oϕ with a special
kind of morphism, called strong, to the original net. A strong morphism is total on
places and transitions, and maps places into places (rather than into multisets of
places). Furthermore to correctly represent a concurrent computation of the origi-
nal net N , a strong morphism is required to preserve (and not only to reflect) the
inhibitor arcs. In this way the net underlying a process of N turns out to have the
same “structure” of the net N .

Definition 4.49 (strong i-net morphism)
An i-net morphism f : N0 → N1 is called strong if fT and fS are total functions,
and for any place s0 and transition t0 in N0, if I0(t0, s0) then I1(fT (t0), fS(s0)).

Observe that if f is a strong morphism then I0(t0, s0) iff I1(fT (t0), fS(s0)) , since
the converse implication follows from the definition of general i-net morphisms (see
Definition 4.33). Observe that, in particular, the folding morphism is a strong mor-
phism.

Definition 4.50 ((nondeterministic) process)
A marked process of an i-net N = 〈S, T, F, C, I,m〉 is a mapping ϕ : Nϕ → N ,
where Nϕ is an occurrence i-net and ϕ is a strong i-net morphism. The process is
called discrete if Nϕ has no transitions.
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An unmarked process of N is defined in the same way, where the mapping ϕ is
an “unmarked morphism”, namely ϕ is not required to preserve the initial marking
(it satisfies all conditions of Definition 4.33, but (1)).

As usual, an isomorphism between two processes of a net N is an isomorphism
between the underlying occurrence i-nets, which is consistent with the mapping
over the original net N .

A deterministic occurrence i-net is defined as an occurrence i-net where all the
events can be executed in a single computation. However, differently from what
happens for ordinary nets and c-nets, this requirement may not be sufficient to ensure
that a deterministic occurrence net is a good representative of a uniquely determined
computation. In fact, from the previous considerations on i-nets and ies’s it should
be clear that computations involving the same events may be different from the
point of view of causality. For instance, consider the basic net N0 of Figure 4.1 with
just one inhibitor arc. The transitions t, t′ and t0 may be executed in two different
orders, namely t; t′; t0 or t′; t0; t, and, while in the first case it is natural to think
of t as a cause of t′, in the second case we can imagine that instead t0 (and thus
t′) causes t. This further information is taken into account in the so-called enriched
occurrence i-nets, where a choice relation on the set of transitions specifies which of
the possible computations we are referring to.

Definition 4.51 (deterministic occurrence i-net)
A deterministic occurrence i-net is an occurrence i-net O = 〈S, T, F, C, I,m〉 such
that, if Ei(O) = 〈TO, O〉 is the corresponding ies then 〈TO, →֒TO〉 is a configuration
of Ei(O) for some choice →֒TO . In this case the pair 〈O, →֒TO〉 is called an enriched
deterministic occurrence i-net.

The notion of enriched deterministic occurrence i-net coincides, apart from the
slightly different presentation, with that in [Bus98, BP99] (see also Section 2.3).
We recall that in such papers an enriched occurrence i-net is defined as an i-net,
where the set of inhibitor arcs I is partitioned into two subsets: the “before” arcs
Ib and the “after” arcs Ia. Intuitively, if (t, s) ∈ Ib is a “before” arc then t must be
executed before the place s is filled, while if (t, s) ∈ Ia is an “after” arc then t must
be executed after the place s has been emptied. The precedence relation among
transitions induced by such a partition is required to be acyclic. A comparison of
the two definitions reveals that the only difference resides in the fact that in our case
the choice is done directly on transitions, while [Bus98, BP99] imposes requirements
on each single inhibiting arc. Therefore the two approaches are equivalent, although
we think that imposing precedences directly on transitions is slightly more natural.

Definition 4.52 (deterministic process)
A (marked or unmarked) deterministic process for an i-net N is a pair 〈ϕ, →֒ϕ〉,
where ϕ : O → N is a process of N and 〈Oϕ, →֒ϕ〉 is an enriched deterministic
occurrence i-net.
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A process is called finite if the set of transitions in Oϕ is finite. In this case, we denote
by min(ϕ) and max(ϕ) the sets of places in Oϕ which have empty pre-set and post-
set, respectively. Moreover we denote with •ϕ and ϕ• the multisets µϕS(min(ϕ))
and µϕS(max(ϕ)), called respectively the source and the target of ϕ. We will usually
denote an enriched process simply by ϕ, and use the symbol →֒ϕ to refer to the
associated choice relation.

Two enriched processes ϕ1 and ϕ2 are isomorphic if there exists a process iso-
morphism h : ϕ1 → ϕ2, whose transition component is an isomorphism of the partial
orders 〈Tϕ1, →֒

∗
ϕ1
〉 and 〈Tϕ2, →֒

∗
ϕ2
〉.

Also the notion of concatenable process can be naturally extended to i-nets. As
usual a meaningful operation of sequential composition can be defined only on the
unmarked processes and a suitable ordering over the places in min(ϕ) and max(ϕ)
is needed to distinguish different occurrences of tokens in the same place.

Definition 4.53 (concatenable process)
A concatenable process of a c-net N is a triple γ = 〈µ, ϕ, ν〉, where

• ϕ is a finite deterministic unmarked process of N ;

• µ is ϕ-indexed ordering of min(ϕ);

• ν is ϕ-indexed ordering of max(ϕ).

An isomorphism between concatenable processes is defined, as usual, as a process
isomorphism which respects the ordering of the minimal and maximal places. An
isomorphism class of processes is called an (abstract) concatenable process and de-
noted by [γ], where γ is a member of that class. In the following we will often omit
the word “abstract” and write γ to denote the corresponding equivalence class.

The operation of sequential composition of two concatenable processes γ1 =
〈µ1, ϕ1, ν1〉 and γ2 = 〈µ2, ϕ2, ν2〉 of an i-net N is defined as the process obtained
by gluing the maximal places of ϕ1 and the minimal places of ϕ2 according to the
ordering of such places. Once the two underlying nets O1 and O2 have been glued
producing a new net O, a delicate point is the definition of the inhibiting relation in
O. In fact, if a place s inhibits a transition t in the original net, then each copy of
the place s must inhibit each copy of the transition t. To achieve this result, some
inhibitor arcs must be added to O connecting places in O1 with transitions in O2,
and vice versa. Technically, the resulting net is the unique possible enrichment of O
with inhibitor arcs which makes the gluing of the two processes a process of N .

Moreover the choice relation associated to the sequential composition is given
by the union of →֒ϕ1 and →֒ϕ2, with the new dependencies arising for the fact that
the two processes are “connected”. As for c-nets some of these dependencies are
induced by the fact that places in max(ϕ1) can be used used by transitions of ϕ2.
Other dependencies are peculiar of the construction on i-nets, being related to the
newly added inhibitor arcs.
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Definition 4.54 (sequential composition)
Let γ1 = 〈µ1, ϕ1, ν1〉 and γ2 = 〈µ2, ϕ2, ν2〉 be two concatenable processes of an i-net
N such that ϕ1

• = •ϕ2. Suppose T1∩T2 = ∅ and S1∩S2 = max(ϕ1) = min(ϕ2), with
ϕ1(s) = ϕ2(s) and ν1(s) = µ2(s) for each s ∈ S1∩S2. In words γ1 and γ2 overlap only
on max(ϕ1) = min(ϕ2), and on such places their labelling on the original net and
the ordering coincide. Denote by ϕ : O → N the componentwise union of ϕ1 and ϕ2.
Then the concatenation γ1; γ2 is the concatenable process γ = 〈µ1, ϕ : O′ → N, ν2〉,
where O′ is the unique enrichment of O with new inhibitor arcs making ϕ an i-net
morphism, namely IO′ is defined as:

IO′(t′, s′) iff IN (ϕ(t), ϕ(s)).

The choice relation is defined as →֒ϕ1 ∪ →֒ϕ2 ∪ r, where

r = {(t1, t2) ∈ Tϕ1 × Tϕ2 | t1
• ∩ ( •t2 ∪ t2) 6= ∅ ∨ t1 ∩

•t2 6= ∅} ∪

{(t1, t2) ∈ Tϕ1 × Tϕ2 |
�t1 ∩ t2

• 6= ∅ ∨ •t1 ∩
�t2 6= ∅}

We remark that, as expected, the choice relation associated to the sequential com-
position takes care of the precedences induced by the flow and context relations on
the transitions connected to the “interface” places. Moreover, whenever a choice is
necessary between two transitions t1 ∈ Tϕ1 and t2 ∈ Tϕ2 because a new inhibitor
arc has been added by the construction, the transitions are ordered in the expected
way, namely t1 comes first.

It is not difficult to see that sequential composition is well-defined. The only
doubt which may arise regards the acyclicity of the relation →֒∗ϕ. But observing that
the new dependencies added by the concatenation are only of the kind (t1, t2) with
ti ∈ Tϕi for i ∈ {1, 2}, one easily realizes that a cycle should be entirely inside one
of the two original processes.

The above construction induces a well-defined operation of sequential composi-
tion between abstract processes. In particular, if [γ1] and [γ2] are abstract concaten-
able processes such that γ1

• = •γ2 then we can always find γ′2 ∈ [γ2] such that γ1; γ
′
2

is defined. Moreover the result of the composition at abstract level, namely [γ1; γ
′
2],

does not depend on the particular choice of the representatives.

Definition 4.55 (category of concatenable processes)
Let N be an i-net. The category of (abstract) concatenable processes of N , denoted
by CP[N ], is defined as follows. Objects are multisets of places of N , namely ele-
ments of µS. Each (abstract) concatenable process [〈µ, ϕ, ν〉] of N is an arrow from
•ϕ to ϕ•.

In the case of c-nets one can prove that the prime algebraic domain obtained from
the unfolding of a net can be characterized as (ideal completion of) the collection
of processes starting from the initial marking, endowed with a kind of subprocess
order. This result, which establishes a quite intuitive correspondence between the
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two kinds of semantics, still holds for i-nets. Let us outline how the approach followed
for c-nets can be extended to i-nets.

First, it is immediate to see that for any i-net N = 〈S, T, F, C, I,m〉 the comma
category 〈m ↓ CP[N ]〉 is a preorder. The objects of such category are concatenable
processes of N starting from the initial marking. An arrow exists from a process γ1

to γ2 if the second one can be obtained by concatenating the first one with a third
process γ.

Lemma 4.56
Let N = 〈S, T, F, C,m〉 be an i-net. Then, the comma category 〈m ↓ CP[N ]〉 is a
preorder.

In the sequel the preorder relation over 〈m ↓ CP[N ]〉 (induced by sequential com-
position) will be denoted by .N or simply by ., when the net N is clear from the
context. Therefore γ1 . γ2 if there exists γ such that γ1; γ = γ2.

The main result is then based on a characterization of the preorder relation .N
in terms of left injections, formalizing the intuition according to which the preorder
on 〈m ↓ CP[N ]〉 is a generalization of the prefix relation. First, we must introduce
an appropriate notion of left-injection for processes of i-nets.

Definition 4.57 (left injection)
Let γi : m → Mi (i ∈ {1, 2}) be two objects in 〈m ↓ CP[N ]〉, with γi = 〈µi, ϕi, νi〉.
A left injection ι : γ1 → γ2 is a morphism of marked i-net processes ι : ϕ1 → ϕ2,
such that

1. ι is consistent with the indexing of minimal places, namely µ1(s) = µ2(ι(s))
for all s ∈ min(ϕ1);

2. ιT : 〈Tϕ1 , →֒
∗
ϕ1
〉 → 〈Tϕ2 , →֒

∗
ϕ2
〉 is a rigid embedding.

As for c-nets, the rigidity condition ensures that γ2 does not extend γ1 with tran-
sitions which should occur before transitions already in γ1. Hence the past history
of each transition in γ1 remains the same in γ2 (and thus the inclusion is also order
monic).

Lemma 4.58
Let γi : m → Mi (i ∈ {1, 2}) be two objects in 〈m ↓ CP[N ]〉, with γi = 〈µi, ϕi, νi〉.
Then

γ1 . γ2 iff there exists a left injection ι : γ1 → γ2.

Having this lemma, the theorem which characterizes the domain semantics of a
semi-weighted i-net in term of its deterministic processes comes as an easy conse-
quence.
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Theorem 4.59 (unfolding vs. concatenable processes)
Let N be a semi-weighted i-net. Then the ideal completion of 〈m ↓ CP[N ]〉 is iso-
morphic to the domain Li(Ei(Ui(N))).

Proof (Sketch). Let N = 〈S, T, F, C, I,m〉 be an i-net and let γ = 〈µ, ϕ, ν〉 be a concatenable
process in 〈m ↓ CP[N ]〉. Being ϕ a marked process of N (and thus a i-net morphism ϕ : Oϕ → N),
by the universal property of coreflections, there exists a unique arrow ϕ′ : Oϕ → Ui(N), making
the diagram below commute.

Ui(N)
fN

N

Oϕ

ϕ′

ϕ

Obviously, also the converse holds. namely, each process ϕ′ of the unfolding can be turned in a
uniquely determined process ϕ = ϕ′; fN of the net N .

Recall that the compact elements of the domain Li(Ei(Ui(N))), associated to N are the
finite configurations of Ei(Ui(N)). Therefore we can define a function ξ : 〈m ↓ CP[N ]〉 →
K(Li(Ei(Ua(N)))) as ξ(γ) = (ϕ′

T )∗(〈Tϕ, →֒ϕ〉), where Tϕ is the set of transitions of Oϕ. The
function ξ is well defined since by definition of deterministic process 〈Tϕ, →֒ϕ〉 is a configura-
tion of Ei(Oϕ) and, by Proposition 4.45, the transition component of an i-net morphism is an
ies-morphism, which, by Lemma 4.22, maps configurations into configurations.

Proceeding as for c-nets it is possible to show that the function ξ is surjective, basically be-
cause each configuration of the ies associated to the unfolding determines a deterministic subnet
of the unfolding. The corresponding process of N , enriched with the order associated to the con-
figuration, is mapped to the original configuration. The fact that ξ is monotone and reflects the
order can be proved by exploiting Lemma 4.58. The existence of the function ξ with the above
mentioned properties, by a general result on preorders (see Lemma 3.66), allows us to conclude
that Idl(〈m ↓ CP[N ]〉) and Li(Ei(Ui(N))) are isomorphic. 2
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The main contribution of the first part of the thesis is a truly concurrent event-based
semantics for (semi-weighted) P/T nets extended with context and inhibitor arcs.

For the simpler case of contextual nets the semantics is given at categorical level
via a coreflection between the categories SW-CN of semi-weighted c-nets and Dom
of finitary coherent prime algebraic domains (or equivalently PES of prime event
structures). Such a coreflection factorizes through the following chain of coreflections:

SW-CN
Ua

⊥ O-CN
Ea

⊥

IO

AES
La

⊥

Na

Dom
Pa

P

∼ PES
L

A key role in the treatment of contextual nets is played by asymmetric event
structures, an extension of Winskel’s (prime) event structures (with binary con-
flict), introduced to deal with asymmetric conflicts. Asymmetric event structures
are closely related to other models in the literature, like pes’s with possible
events [PP95], flow event structures with possible flow [PP95] and extended bun-
dle event structures [Lan92b]. However, none of the above models was adequate for
representing the behaviour of contextual nets: pes’s with possible events are not suf-
ficiently expressive, while the other two models look too general and unnecessarily
complex for the treatment of contextual nets, due to their capability of expressing
multiple disjunctive causes for an event. More technically, as it follows form the
discussion in Section 4.5, the possibility of expressing or-causality in these models
would have prevented us from realizing the step from occurrence c-nets to event
structures as a coreflection.

Independently from the conference version of Chapter 3, appeared
as [BCM98b], an unfolding construction for contextual nets has been proposed by
Vogler, Semenov and Yakovlev in [VSY98]. The unfolding of [VSY98] is carried out
in the case of safe finite c-nets and without providing a categorical characterization
of the constructions. Anyway, apart from some matters of presentation, it is based
on ideas analogous to ours and it leads to the same result. A very interesting result
in that paper is the extension of the McMillan algorithm for the construction of a
finite prefix of the unfolding to a subclass of contextual nets, called read-persistent
contextual nets. The algorithm is then applied to the analysis of asynchronous cir-
cuits. We are confident that the result in Chapter 3, and in particular the notion
of set of possible histories of an event in a contextual net, may ease the extension
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of the technique proposed in [VSY98] to the whole class of semi-weighted c-nets
(perhaps at the price of a growth of the complexity).

The treatment of inhibitor nets requires the introduction of inhibitor event struc-
tures, a new event structure model which properly generalizes aes’s. In such struc-
tures a relation, called disabling-enabling relation, allows one to model, in a com-
pact way, the presence of disjunctive conflicting causes and the situations of relative
atomicity of pairs of events with respect to a third one, determined by inhibitor arcs.

The truly concurrent semantics for inhibitor nets is given via a chain of functo-
rial constructions leading from the category SW-IN of semi-weighted i-nets to the
category Dom of finitary prime algebraic domains:

SW-IN
Ui

⊥ O-IN
Ei

IO

IES
Li

⊥ Dom

Pi

P

∼ PES
L

The unfolding and its characterization as a universal construction are “lifted” from
contextual to inhibitor nets. Unfortunately, in this more complex case, we cannot
fully generalize Winskel’s chain of coreflections. The problem is the absence of a
functor performing the backward step from ies’s to occurrence inhibitor nets. As
shown in Section 4.5, this is essentially due to the presence of or-causality in inhibitor
event structures and, under reasonable assumptions on the notions of occurrence net
and of unfolding, the problem has no solutions.

It is worth noticing that the construction on inhibitor nets is a conservative
extension of those on contextual nets, which in turn extends Winskel’s [Win87a].
More precisely, as one can easily grasp from the discussion in the previous chapters,
the following diagram, where unnamed functors are inclusions, commutes.

S-N
U

O-N
E

PES

J
L

SW-CN
Ua

O-CN
Ea

AES

Ja

La

Dom

SW-IN
Ui

O-IN
Ei

IES

Li

The truly concurrent semantics of contextual and inhibitor nets given via the
unfolding has been shown to be closely related to various deterministic process
semantics proposed in the literature. The natural notion of deterministic process
arising from our theory coincides with the other notions in the literature (at least
with those developed assuming the same notion of enabling). A formal relationships
between the unfolding and the deterministic process semantics has been established
by showing that the domain semantics of a net, given by the above described chains
of functors, is isomorphic to the set of deterministic processes of the net starting
from the initial marking, endowed with a kind of prefix ordering.
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As mentioned above, the capability of expressing asymmetric conflicts in compu-
tations makes asymmetric event structures close to other extensions of event struc-
tures in the literature. Asymmetric event structures can be seen as a generalization
of prime event structures with possible events (ppes’s) [PP95]. While for aes’s the
asymmetric conflict relation essentially specifies for each event the set of its possible
causes, which may appear or not in the history of the events, in the case of ppes’s
there is a distinguished global set of possible events. As observed in Chapter 3,
ppes’s are strictly less expressive than aes’s.

On the other hand, an explicit asymmetric conflict relation has been consid-
ered in extended bundle event structures (ebes’s) [Lan92b], where there is also the
possibility of expressing a set of disjunctive conflictual causes for an event, called
a bundle. In turn, ebes are generalized by flow event structure with possible flow
(pfes’s) in the same way as bundle event structures (bes) [Lan92a] are generalized
by flow event structures (see Section 2.4).

Inhibitor event structures, due to their capability of expressing, by means of the
DE-relation, both asymmetric conflicts and sets of conflictual disjunctive causes,
generalize aes’s and ebes’s. The relation between ies’s and pfes is still to be
investigated, although likely the two models are not comparable.

The following diagram represents a hierarchy of expressiveness of the mentioned
event structure models.

PES PPES AES

BES EBES IES

FES PFES

Since the functor Pi : Dom → IES is obtained by composing Winskel’s functor
P : Dom → PES with the inclusion of PES into IES, it is easy to see that the
coreflection between IES and Dom proved in Theorem 4.26 restricts to a coreflection
between each model which is included in IES, and Dom.

We also observe that the construction which associates the domain of configura-
tions to an aes can be easily modified to generate an event automata [PP95] (see
Section 2.4). Given an ies I = 〈E, 〉, the corresponding event automata A (I) is
obtained by considering the domain of configurations of I and forgetting the choice
relations of configurations. More formally

A (I) = 〈E, St,_〉,

where St = {C ⊆ E | ∃→֒C . 〈C, →֒C〉 ∈ Conf (I)}, and C1 _ C2 whenever for
i ∈ {1, 2} there is a choice relation →֒i such that 〈Ci, →֒i〉 ∈ Conf (I) and 〈C1, →֒1〉 ≺
〈C2, →֒2〉. The above construction gives rise to a functor A : IES→ EvAut.
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We already mentioned that Winskel’s construction has been generalized
in [MMS96] not only to the subclass of semi-weighted P/T nets, but also to the
full class of P/T nets. In the last case, some additional effort is needed and only a
proper adjunction rather than a coreflection can be obtained. We think that also
the results on contextual and inhibitor nets can be extended to the full class of P/T
nets, by following the guidelines traced in [MMS96] and exploiting, in particular,
suitable generalizations to c-nets and i-nets of the notions of decorated occurrence
net and of family morphism introduced in that work.
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Semantics of DPO Graph
Grammars





Chapter 5

Typed Graph Grammars in the
DPO Approach

This chapter provides an introduction to the algebraic approach to graph transforma-
tion based on the double-pushout (dpo) construction [Ehr79]. We first give the basic
definitions of typed dpo graph grammar, rewriting step and derivation, formalizing
the intuitive description of the rewriting mechanism described in the Introduc-
tion. This allows us also to give a more precise account of the relationship between
dpo typed graph grammar and P/T Petri nets. Then we introduce the fundamental
notions of the concurrency theory of dpo graph transformation by presenting the
trace semantics based on the shift equivalence [Kre77, CEL+94a, CMR+97]. The
presentation slightly differs from the classical one since we adopt an equivalent,
in our opinion more convenient, approach to the sequential composition of traces,
based on canonical graphs rather than on standard isomorphisms. Finally, we intro-
duce the category of graph grammars we shall work with. Our morphisms on graph
grammars, which arise as a generalization of Winskel’s morphisms for Petri nets,
are a slight variation of the morphisms in [CEL+96a].

5.1 Basic definitions

A common element of all the algebraic approaches to graph rewriting is the use of
category theory as a basic tool: the structures on which the rewriting takes place
are turned into a category C and then the fundamental notions and constructions
are expressed via diagrams and constructions in C. As a consequence the resulting
theory turns out to be very general and flexible, easily adaptable to a wide range
of structures (from several kind of graphs to more general structures [EKT94]) just
changing the underlying category.

Originally the dpo approach to graph transformation has been defined for la-
belled graphs. Following a slightly different but well-established approach, here
we consider a generalization of basic graph grammars called typed graph gram-
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mars [CMR96], where a more sophisticated labelling technique for graphs is consid-
ered: each graph is typed on a structure that is itself a graph (called the graph of
types) and the labelling function is required to be a graph morphism, i.e., it must
preserve the graphical structure. This gives, in a sense, more control on the labelling
mechanism. From the formal side, working with typed graph grammars just means
changing the category over which the rewriting takes place, from labelled graphs to
typed graphs.

Definition 5.1 (graph)
A (directed, unlabelled) graph is a tuple G = 〈NG, EG, sG, tG〉, where NG is a set
of nodes, EG is a set of edges, and sG, tG : EG → NG are the source and target
functions. A graph is discrete if it has no edges. A graph morphism f : G→ G′ is a
pair of functions f = 〈fN : NG → NG′, fE : EG → EG′〉 which preserve sources and
targets, i.e., such that fN ◦sG = sG′ ◦fE and fN ◦ tG = tG′ ◦fE; it is an isomorphism
if both fN and fE are bijections; moreover, an abstract graph [G] is an isomorphism
class of graphs, i.e., [G] = {H | H ≃ G}. An automorphism of G is an isomorphism
h : G → G; it is non-trivial if h 6= idG. The category having graphs as objects and
graph morphisms as arrows is called Graph.

In the following it will be useful to consider graphs as unstructured sets of nodes
and edges. For a given graph G, with Items(G) we denote the disjoint union of nodes
and edges of G; for simplicity, we will assume that all involved sets are disjoint, to
be allowed to see Items(G) as a set-theoretical union. Often, when the meaning is
clear from the context, we will identify a graph G with the set Items(G), writing,
for instance, x ∈ G instead of x ∈ Items(G).

Definition 5.2 (category of typed graphs)
Given a graph TG, a typed graph G over TG (or TG-typed graph) is a graph |G|,
together with a morphism tG : |G| → TG. A morphism between TG-typed graphs
f : G1 → G2 is a graph morphism f : |G1| → |G2| consistent with the typing, i.e.,
such that tG1 = tG2 ◦f . A typed graph G is called injective if the typing morphism tG
is injective. The category of TG-typed graphs and typed graph morphisms is denoted
by TG-Graph and can be sinthetically defined as the category of graphs over TG,
i.e., 〈Graph ↓ TG〉 (see Definition A.22 in the Appendix).

In the sequel, if TG is clear from the context, TG-type graphs will be called simply
typed graphs and, similarly, morphisms of TG-typed graphs will be called typed graph
morphisms.

By general categorical arguments, the fact that TG-Graph is defined via a
comma category construction ensures us that it retains the properties of complete-
ness and cocompleteness of Graph. Limits and colimits of diagrams in TG-Graph
can be computed in Graph. Hence, to move from labelled to typed graphs we just
syntactically replace the category of labelled graphs with that of typed graphs in
all the definitions and results of the dpo approach to graph transformation. Fur-
thermore, it is worth remarking that the typing mechanism subsumes the usual
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A
b

c

B

f
f ′

C g

g′

D
h

D′

Figure 5.1: Pushout diagram.

labelling technique, where there are two label alphabets ΩN for nodes and ΩE for
edges, and, correspondingly, two labelling functions. In fact, consider the graph of
types TGΩ = 〈ΩN ,ΩE × ΩN × ΩN , s, t〉, with s(e, n1, n2) = n1 and t(e, n1, n2) = n2.
It is easily seen that there is an isomorphism between the category of labelled graphs
over 〈ΩN ,ΩE〉 and the category of TGΩ-typed graphs.

The core of the algebraic approach to graph transformation is the idea of ex-
pressing the gluing of graphs in categorical terms as a pushout construction (see
also Definition A.17 in the Appendix). We next recall the notions of pushout and
pushout complement, and the underlying intuition which will guide the definition of
the rewriting mechanism.

Definition 5.3 (pushout)
Let C be a category and let b : A → B, c : A → C be a pair of arrows of C. A
triple 〈D, f : B → D, g : C → D〉 as in Figure 5.1 is called a pushout of 〈b, c〉 if the
following conditions are satisfied:

[Commutativity]
f ◦ b = g ◦ c;

[Universal Property]
for any object D′ and arrows f ′ : B → D′ and g′ : C → D′, with f ′ ◦ b = g′ ◦ c,
there exists a unique arrow h : D → D′ such that h ◦ f = f ′ and h ◦ g = g′.

In this situation, D is called a pushout object of 〈b, c〉. Moreover, given arrows
b : A → B and f : B → D, a pushout complement of the pair 〈b, f〉 is a triple
〈C, c : A → C, g : C → D〉 such that 〈D, f, g〉 is a pushout of b and c. In this case
C is called a pushout complement object of 〈b, f〉.

In the category Set of sets and (total) functions the pushout object can be
characterized as D = (B + C)/≡, where ≡ is the least equivalence on B + C =
{〈0, x〉 | x ∈ B} ∪ {〈1, y〉 | y ∈ C} such that, for each a ∈ A, 〈0, b(a)〉 ≡ 〈1, c(a)〉, or
in words, D is the disjoint union of B and C, where the images of A through b and
c are equated. The morphisms f and g map each element of B and C, respectively,
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to the corresponding equivalence class in D. One can see that, analogously, in the
category of graphs and (total) graph morphisms the pushout object can be thought
of as the gluing of B and C, obtained by identifying the images of A through b and
c. According to this interpretation, the pushout complement object C of b and f , is
obtained by removing from D the elements of f(B) which are not images of b(A).

A typed production in the double-pushout approach is a span, i.e., a pair of typed
graph morphisms with common source. Moreover each production has an associated
name which allows one to distinguish productions with the same associated span.
Such a name plays no role when the production is applied to a graph, but it is relevant
in certain transformations of derivations and when relating different derivations.

Definition 5.4 (typed production)
A (TG-typed graph) production (L

l
← K

r
→ R) is a pair of injective typed graph

morphisms l : K → L and r : K → R, with |L|, |K| and |R| finite graphs. It is called
consuming if morphism l : K → L is not surjective. The typed graphs L, K, and R
are called the left-hand side, the interface, and the right-hand side of the production,
respectively.

Although sometimes we will consider derivations starting from a generic typed
graph, a typed graph grammar comes equipped with a start graph, playing the same
role of the initial symbol in string grammars, or of the initial marking for Petri nets.
Conceptually, it represents the initial state of the system modelled by the grammar.

Definition 5.5 (typed graph grammar)
A (TG-typed) graph grammar G is a tuple 〈TG,Gs, P, π〉, where Gs is the start
(typed) graph, P is a set of production names, and π a function mapping each
production name in P to a graph production. Sometimes to indicate that π(q) =

(L
l
← K

r
→ R) we shall write q : (L

l
← K

r
→ R). The grammar G is called

consuming if all its productions are consuming, and finite if the set of productions
P is finite.

Since here we work only with typed notions, when it is clear from the context we
will often omit the qualification “typed” and do not indicate explicitly the typing
morphisms.

Remark 5.6 (consuming grammars)
In the following we will implicitly assume that all the considered graph grammars
are consuming. As already discussed for Petri nets, this restriction becomes es-
sential only when developing a semantics based on an unfolding construction. In
fact, occurrence grammars, event structures and domains are not suited to repre-
sent computations of non-consuming grammars: in the presence of a non-consuming

production q : L
←

l K
→
r R where the set L − l(K), which can be thought of as

the pre-set of q, is empty, an unbounded number of indistinguishable copies of pro-
duction q can be applied in parallel in a derivation. Instead, at the price of some
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Figure 5.2: (a) The parallel production 〈(q1, in
1), . . . , (qk, in

k)〉 : (L
l
← K

r
→ R) and

(b) its compact representation.

technical complications, a (deterministic) process semantics can be still developed
for general grammars (see, e.g., [BCE+99]).

The application of a production produces a local transformation in the rewritten
graph; hence the idea of allowing for the concurrent application of more than one
production naturally emerges. The idea of “parallel composition” of productions is
naturally formalized in the categorical setting by the notion of parallel production.

Definition 5.7 ((typed) parallel productions)
A (typed) parallel production (of a given typed graph grammar G ) has the form

〈(q1, in
1), . . . , (qk, in

k)〉 : (L
l
← K

r
→ R) (see Figure 5.2), where k ≥ 0,

qi : (Li
li← Ki

ri→ Ri) is a production of G for each i ∈ k,1 L is a coproduct ob-
ject of the typed graphs in 〈L1, . . . , Lk〉, and similarly R and K are coproduct objects
of 〈R1, . . . , Rk〉 and 〈K1, . . . , Kk〉, respectively. Moreover, l and r are uniquely deter-
mined, using the universal property of coproducts, by the families of arrows {li}i∈k
and {ri}i∈k, respectively. Finally, for each i ∈ k, ini denotes the triple of injec-
tions 〈iniL : Li → L, iniK : Ki → K, iniR : Ri → R〉. The empty production is the
(only) parallel production with k = 0, having the empty graph ∅ (initial object in
TG-Graph) as left-hand side, right-hand side and interface, and it is denoted by ∅.

We will often denote the parallel production of Figure 5.2.(a) simply as q1 + q2 +

. . .+ qk : (L
l
← K

r
→ R); note however that the “+” operator is not assumed to be

commutative. We will also use the more compact drawing of Figure 5.2.(b) to depict
the same parallel production. Furthermore, we will freely identify a production q of
G with the parallel production 〈(q, 〈idL, idK , idR〉)〉; thus, by default, productions
will be parallel in the rest of the thesis.

1For each n ∈ N, by n we denote the set {1, 2, . . . , n} (thus 0 = ∅).
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Figure 5.3: (Parallel) direct derivation as double-pushout construction.

The rewriting procedure involves two pushout diagrams in the category of graphs,
hence the name of double-pushout approach.

Definition 5.8 ((parallel) direct derivation)
Given a typed graph G, a parallel production q = q1 + . . .+ qk : (L

l
← K

r
→ R), and

a match (i.e., a graph morphism) g : L → G, a (parallel) direct derivation δ from
G to H using q (based on g) exists if and only if the diagram in Figure 5.3 can be
constructed, where both squares are required to be pushouts in TG-Graph. In this
case, D is called the context graph, and we write δ : G⇒q H, or also δ : G⇒q,g H;

only seldom we shall write δ : G
〈g,k,h,b,d〉
=⇒q H, indicating explicitly all the morphisms

of the double-pushout. If q = ∅, i.e., if q is the empty production, then G ⇒∅ H is
called an empty direct derivation.

Example 5.9 (client-server systems)
As a running example we will use the simple typed graph grammar shown in Fig-
ure 5.4, which models the evolution of client-server systems (this is a little modi-
fication of an example from [CMR+97]). The typing morphisms from the involved
graphs to the graph of types TG are not depicted explicitly, but they are encoded
by attaching to each item its type, i.e., its image in TG, separated by a colon. We
use natural numbers for nodes, and underlined numbers for edges. For example, the
node 4 of the start graph G0 is typed over the node C of TG.

A graph typed over TG represents a possible configuration containing servers
and clients (denoted by nodes of types S and C, respectively), which can be in
various states, as indicated by edges. A loop of type job on a client means that the
client is performing some internal activity, while a loop of type req means that the
client issued a request. An edge of type busy from a client to a server means that
the server is processing a request issued by the client.

Production REQ models the issuing of a request by a client. After producing the
request, the client continues its internal activity (job), while the request is served
asynchronously; thus a request can be issued at any time, even if other requests are
pending or if the client is being served by a server. Production SER connects a client
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Figure 5.4: Productions, start graph and graph of types of the grammar C -S mod-
elling client-server systems.

that issued a request with a server through a busy edge, modelling the beginning of
the service. Since the production deletes a node of type S and creates a new one, the
dangling condition (see below) ensures that it will be applied only if the server has
no incoming edges, i.e., if it is not busy. Production REL (for release) disconnects
the client from the server (modelling the end of the service). Notice that in all rules
the graph morphisms are inclusions.

The grammar is called C -S (for client-server), and it is formally defined as
C -S = 〈TG,G0, {REQ, SER, REL}, π〉, where π maps the production names to
the corresponding production spans depicted in Figure 5.4. 2

To have an informal understanding of the notion of direct derivation, one should
recall the interpretation of the pushout as gluing of objects. According to this in-
terpretation, the rewriting procedure removes from the graph G the images via g of
the items of the left-hand side which are not in the image of the interface, namely
g(L− l(K)), producing in this way the graph D. Then the items in the right-hand
side, which are not in the image of the interface, namely R − r(K), are added to
D, obtaining the final graph H . Thus the interface K (common part of L and R)
specifies what is preserved. For what regards the applicability of a production to a
given match, it is possible to prove that the situation in the category TG-Graph
is exactly the same as in Graph, namely pushouts always exist, while for the exis-
tence of the pushout complement some conditions have to be imposed, called gluing
conditions [Ehr87], which consist of two parts:

[Dangling condition]
No edge e ∈ G− g(L) is incident to any node in g(L− l(K));

[Identification condition]
There is no x, y ∈ L, x 6= y, such that g(x) = g(y) and y 6∈ l(K).
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Nicely, the gluing conditions have a very intuitive interpretation: the dangling con-
dition avoids the deletion of a node if some edge is still pointing to it, and thus it
ensures the absence of dangling edges in D. The identification condition requires
each item of G which is deleted by the application of q, to be the image of only one
item of L. Among other things, this ensures that the application of a production
cannot specify simultaneously both the preservation and the deletion of an item and
furthermore, that a single item of G cannot be deleted “twice” by the application
of q. Notice that, instead, the identification condition does not forbid the match
to be non-injective on preserved items. Intuitively this means that preserved (read-
only) resources can be used with multiplicity greater than one (see [CMR+97] for
a broader discussion). Uniqueness of the pushout complement, up to isomorphism,
follows from the injectivity of l.

Remark 5.10
If G

〈g,k,h,b,d〉
⇒∅ H is an empty direct derivation, then morphisms g, k, and h are

necessarily the only morphisms from the empty (typed) graph (since 〈∅, ∅〉 is initial
in TG-Graph), while b and d must be isomorphisms. Morphism d ◦ b−1 : G→ H is
called the isomorphism induced by the empty direct derivation. Moreover, for any

pair of isomorphic graphs G ≃ H , there is an empty direct derivation G
〈∅,∅,∅,b,d〉
⇒∅ H

for each triple 〈D, b : D → G, d : D → H〉, where b and d are isomorphisms. An

empty direct derivation G
〈∅,∅,∅,b,d〉
⇒∅ H will be also briefly denoted as G

〈b,d〉
⇒∅ H . 2

A parallel derivation can be seen as a sequence of single steps of the system, each
one consisting of the concurrent execution of a set of independent basic actions of
the system, analogously to step sequences of Petri nets.

Definition 5.11 ((parallel) derivation)
A (parallel) derivation (over G ) is either a graph G (called an identity derivation,
and denoted by G : G ⇒∗ G), or a sequence of (parallel) direct derivations ρ =
{Gi−1 ⇒qi Gi}i∈n such that qi = qi1 + . . .+ qiki is a (parallel) production over G for
all i ∈ n (as in Figure 5.6). In the last case, the derivation is written ρ : G0 ⇒

∗
G Gn

or simply ρ : G0 ⇒
∗ Gn. If ρ : G ⇒∗ H is a (possibly identity) derivation, then the

graphs G and H, called the source and target graphs of ρ, are denoted by σ(ρ) and
τ(ρ), respectively. The length of a derivation ρ, denoted by |ρ|, is the number of direct
derivations in ρ (hence |ρ| = 0 if ρ is an identity derivation). The order of ρ, denoted
by #ρ, is the total number of elementary productions used in ρ, i.e., #ρ =

∑n

r=1 kr;
moreover, prod(ρ) : #ρ → P is the function returning for each j the name of the

j-th production applied in ρ—formally, prod(ρ)(j) = qis if j =
(∑i

r=1 kr

)
+ s.

The sequential composition of two derivations ρ and ρ′ is defined if and only if
τ(ρ) = σ(ρ′); in this case it is denoted ρ ; ρ′ : σ(ρ) ⇒∗ τ(ρ′), and it is the diagram
obtained by identifying τ(ρ) with σ(ρ′) (thus if ρ : G⇒∗ H, then G ; ρ = ρ = ρ ; H,
where G and H are the identity derivations).
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Figure 5.5: A derivation of grammar C -S starting from graph G0.
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Figure 5.6: A (parallel) derivation, with explicit drawing of the s-th production of
the i-th direct derivation.

Example 5.12 (derivation)
Figure 5.5 shows a derivation ρ using grammar C -S and starting from the start
graph G0. The derivation models the situation where a request is issued by the client,
and while it is handled by the server, a new request is issued. All the horizontal
morphisms are inclusions, while the vertical ones are annotated by the relation on
graph items they induce. 2

5.1.1 Relation with Petri nets

The basic notions introduced so far allow us to give a more precise account of the
relation between Petri nets and graph grammars in the double pushout approach.

Being Petri nets one of the most widely accepted models for the representa-
tion of concurrent and distributed systems, people working on the concurrency
theory of graph grammars have been naturally led to compare their formalisms
with nets. Therefore various encodings of nets into graph graph grammars have
been proposed along the years, all allowing to have some correspondences between
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Figure 5.7: Firing of a transition and corresponding dpo derivation.

net-related notions and graph-grammars ones. Some encodings involving the dpo
approach can be found in [Kre81, KW86, Sch93] (for a complete survey the reader
can consult [Cor96]). All these papers represent a net as a grammar by explicitly
encoding in the start graph the topological structure of the net as well as its initial
marking.

Here we refer to a slightly simpler modelling (see, e.g., [Cor96]), which can help
in understanding how the theory developed in the First Part for contextual and
inhibitor nets can be generalized to graph grammars. It is based on the simple
observation that a Petri net is essentially a rewriting system on multisets, and that,
given a set A, a multiset of A can be represented as a discrete graph typed over A.
In this view a P/T Petri net can be seen as a graph grammar acting on discrete
graphs typed over the set of places, the productions being (some encoding of) the
net transitions: a marking is represented by a set of nodes (tokens) labelled by
the place where they are, and, for example, the unique transition t of the net in
Figure 5.7.(a) is represented by the graph production in the top row of Figure 5.7.(b):
such production consumes nodes corresponding to two tokens in A and one token
in B and produces new nodes corresponding to one token in C and one token in
D. The interface is empty since nothing is explicitly preserved by a net transition.
Notice that in this encoding the topological structure of the net is not represented
at all: it is only recorded in the productions corresponding to the transitions.

It is easy to check that this representation satisfies the properties one would
expect: a production can be applied to a given marking if and only if the corre-
sponding transition is enabled, and the double pushout construction produces the
same marking as the firing of the transition. For instance, the firing of transition t,
leading from the marking 3A+ 2B to the marking A+B +C +D in Figure 5.7.(a)
becomes the double pushout diagram of Figure 5.7.(b).

The considered encoding of nets into graph grammars enlightens the dimensions
in which graph grammars properly extends nets. First, graph grammars allow for
a more structured description of the state, that is a general, possibly non-discrete,
graph. Furthermore they allow for productions where the interface graph may not
be empty, thus specifying a “context” consisting of items that have to be present for
the productions to be applied, but are not affected by the application. We already
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observed that, due to their capability of expressing steps which “preserve” part of
the state, contextual nets can be seen as an intermediate model between ordinary
Petri nets and graph grammars. Indeed, the above encoding of ordinary Petri nets
into graph grammars can be straightforwardly extended to P/T contextual nets.
They are represented by graph grammars still acting on discrete graphs, but where
productions are allowed to have a non-empty interface. Furthermore, we will see in
the next chapter that the graphical structure of the state and the dangling condition
which prevents the application of a production when it would leave some dangling
edge, has a very natural interpretation in the setting of inhibitor nets.

To conclude, let us stress that a gap of abstraction exists between graph gram-
mars and nets. The problem resides in the fact that graphs are more concrete than
markings: the nodes of a graph, although carrying the same label, have a precise
identity, while tokens in the same place of a net are indistinguishable. Formally, the
exact counterpart of a marking (multiset) is an isomorphism class of discrete graphs.
Therefore suitable equivalences have to be imposed on graphs and derivations if we
want to obtain a precise correspondence with net computations.

5.2 Derivation trace semantics

Historically, the first truly concurrent semantics for graph transformation systems
proposed in the literature has been the derivation trace semantics. It is based on
the idea of defining suitable equivalences on concrete derivations, equating those
derivations which should be considered undistinguishable according to the following
two criteria:

• irrelevance of representation details, namely of the concrete identity of the
items in the graphs involved in a derivation, and

• true concurrency, namely irrelevance of the order in which independent pro-
ductions are applied in a derivation.

The corresponding equivalences, called respectively abstraction equivalence and shift
equivalence, are presented below. Concatenable derivation traces are then defined
as equivalence classes of concrete derivations with respect to the least equivalence
containing both the abstraction and the shift equivalences. Due to an appropriate
choice of the abstraction equivalence, the obvious notion of sequential composition
of concrete derivations induces an operation of sequential composition at the ab-
stract level. Thus, as suggested by their name, concatenable derivation traces can
be sequentially composed and therefore they can be seen as arrows of a category.
Such category, called here the category of concatenable derivation traces, coincides
with the abstract truly concurrent model of computation of a grammar presented in
[CMR+97], namely the most abstract model in a hierarchy of models of computation
for a graph grammar.
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5.2.1 Abstraction equivalence and abstract derivations

Almost invariably, two isomorphic graphs are considered as representing the same
system state, which is determined only by the topological structure of the graph and
by the typing. This is extremely natural in the algebraic approach to graph transfor-
mation, where the result of the rewriting procedure is defined in terms of categorical
constructions and thus determined only up to isomorphism.2 A natural solution to
reason in terms of abstract graphs and abstract derivations consists of considering
two derivations as equivalent if the corresponding diagrams are isomorphic. Unfortu-
nately, if one wants to have a meaningful notion of sequential composition between
abstract derivations this approach does not work. For an extensive treatment of this
problem we refer the reader to [CEL+94b, CEL+94a]. Roughly speaking, the diffi-
culty can be described as follows. Two isomorphic graphs, in general, are related by
more than one isomorphism, but if we want to concatenate derivations keeping track
of the flow of causality we must specify in some way how the items of two isomor-
phic graphs have to be identified. The problem is treated in [CEL+94b, CEL+94a],
which propose a solution based on the choice of a uniquely determined isomorphism,
named standard isomorphism, relating each pair of isomorphic graphs.

Here we adopt an equivalent, but slightly different solution which is inspired
by the theory of Petri nets, and in particular by the notion of concatenable net
process [DMM96], and which borrows a technique from [MSW96]. We choose for
each class of isomorphic typed graphs a specific graph, called canonical graph, and
we decorate the source and target graphs of a derivation with a pair of isomorphisms
from the corresponding canonical graphs to such graphs. In such a way we are able to
distinguish “equivalent”3 elements in the source and target graphs of derivations and
we can safely define their sequential composition. The advantage of our solution is
that the notion of equivalence between derivations does not depend on representation
details, i.e., on the real identity of the items of the graphs involved in the derivation.
For instance, given a derivation, we can change uniformly the name of a node in all
the involved graphs and relations, obtaining a new derivation which is equivalent to
the original one. We refer to [BCE+99] for a more detailed comparison of the two
approaches.

Definition 5.13 (canonical graphs)
We denote by Can a fixed operation that associates to each (TG-typed) graph a
so-called canonical graph, satisfying the following properties:

1. Can(G) ≃ G;

2. if G ≃ G′ then Can(G) = Can(G′).

2At the concrete level, the fact that the pushout and pushout complement constructions are
defined only up to isomorphism generates an undesirable and scarcely intuitive unbounded nonde-
terminism for each production application.

3With “equivalent” we mean here two items related by an automorphism of the graph, that are,
in absence of further information, indistinguishable.
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The construction of the canonical graph can be performed by adapting to our slightly
different framework the ideas of [MSW96] and a similar technique can be used to
single out a class of standard isomorphisms in the sense of [CEL+94b, CEL+94a].
Working with finite graphs the constructions are effective.

Definition 5.14 (decorated derivation)
A decorated derivation ψ : G0 ⇒

∗ Gn is a triple 〈m, ρ,M〉, where ρ : G0 ⇒
∗ Gn is

a derivation, while m : Can(G0)→ G0 and M : Can(Gn)→ Gn are isomorphisms.
If ρ is an identity derivation then ψ is called discrete.

In the following we will denote the components of a decorated derivation ψ by mψ,
ρψ and Mψ. For a decorated derivation ψ, we write σ(ψ), τ(ψ), #ψ, |ψ|, prod(ψ) to
refer to the results of the same operations applied to the underlying derivation ρψ.

Definition 5.15 (sequential composition)
Let ψ and ψ′ be two decorated derivations such that τ(ψ) = σ(ψ′) and Mψ = mψ′ .
Their sequential composition, denoted by ψ ; ψ′, is defined as follows:

〈mψ, ρψ ; ρψ′ ,Mψ′〉.

One could have expected sequential composition of decorated derivations ψ and
ψ′ to be defined whenever τ(ψ) ≃ σ(ψ′), regardless of the concrete identity of the
items in the two graphs. We decided to adopt a more concrete notion of concate-
nation since it is technically simpler and it induces, like the more general one, the
desired notion of sequential composition at the abstract level.

The abstraction equivalence identifies derivations that differ only for represen-
tation details. As announced it is a suitable refinement of the natural notion of
diagram isomorphism.

Definition 5.16 (abstraction equivalence)
Let ψ and ψ′ be two decorated derivations, with ρψ : G0 ⇒

∗ Gn and ρψ′ : G′0 ⇒
∗ G′n′

(whose ith steps are depicted in the low rows of Figure 5.8). Suppose that qi =
qi1 + . . . + qiki for each i ∈ n, and q′j = q′j1 + . . . + q′jk′j

for each j ∈ n′. Then they

are abstraction equivalent, written ψ ≡abs ψ′, if

1. n = n′, i.e., they have the same length;

2. for each i ∈ n, ki = k′i and for all s ∈ ki, qis = q′is; i.e., the productions applied
in parallel at each direct derivation are the same and they are composed in the
same order; in particular #ψ = #ψ′;

3. there exists a family of isomorphisms

{θXi : Xi → X ′i | X ∈ {L,K,R,G,D}, i ∈ n} ∪ {θG0}

between corresponding graphs appearing in the two derivations such that
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Figure 5.8: Abstraction equivalence of decorated derivations (the arrows in produc-
tions spans are not labelled).

(a) the isomorphisms relating the source and target graphs commute with the
decorations, i.e., θG0 ◦m = m′ and θGn ◦M = M ′;

(b) the resulting diagram commutes (the middle part of Figure 5.8 represents
the portion of the diagram relative to step i, indicating only the sth of the
ki productions applied in parallel with the corresponding injections).4

Notice that two derivations are abstraction equivalent if, not only they have the
same length and apply the same productions in the same order, but also, in a sense,
productions are applied to “corresponding” items (condition (3)). In other words
abstraction equivalence identifies two decorated derivations if one can be obtained
from the other by uniformly renaming the items appearing in the involved graphs.

Relation ≡abs is clearly an equivalence relation. Equivalence classes of decorated
derivations with respect to ≡abs are called abstract derivations and are denoted by
[ψ]abs, where ψ is an element of the class.

It is easy to prove that if ψ ≡abs ψ′ and ψ1 ≡
abs ψ′1 then, if defined, ψ;ψ1 ≡

abs

ψ′;ψ′1. Therefore sequential composition of decorated derivations lifts to composition
of abstract derivations.

Definition 5.17 (category of abstract derivations)
The category of abstract derivations of a grammar G , denoted by Abs[G ], has
abstract graphs as objects, and abstract derivations as arrows. In particular, if
ψ : G ⇒∗ H, then [ψ]abs is an arrow from [G] to [H ]. The identity arrow on [G]
is the abs-equivalence class of a discrete derivation 〈i, G, i〉, where i : Can(G)→ G
is any isomorphism, and the composition of arrows [ψ]abs : [G] → [H ] and

4Notice that the isomorphisms θXi
for X ∈ {L,K,R}, relating corresponding parallel produc-

tions, are uniquely determined by the properties of coproducts.
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[ψ′]abs : [H ] → [X] is defined as [ψ ; ψ′′]abs : [G] → [X], where ψ′′ ∈ [ψ′]abs is
such that the composition is defined.

It is worth stressing that, whenever τ(ψ) ≃ σ(ψ′), we can always rename the
items in the graphs of ψ′, in order to obtain a derivation ψ′′, abs-equivalent to ψ′

and composable with ψ, namely such that τ(ψ) = σ(ψ′′) and Mψ = mψ′′ . Basically,
it suffices to substitute in the derivation ψ′ each item x in σ(ψ′) with Mψ(m−1

ψ′ (x)).

5.2.2 Shift equivalence and derivation traces

From a truly concurrent perspective two derivations should be considered as equiv-
alent when they apply the same productions to the “same” subgraph of a certain
graph, even if the order in which the productions are applied may be different. The
basic idea of equating derivations which differ only for the order of independent
production applications is formalized in the literature through the notion of shift
equivalence [Kre77, Kre87, Ehr87]. The shift equivalence is based on the possibil-
ity of sequentializing a parallel direct derivation (analysis construction) and on the
inverse construction (synthesis construction), which is possible only in the case of
sequential independence. The union of the shift and abstraction equivalences will
yield the (concatenable) truly concurrent equivalence, whose equivalence classes are
the (concatenable) derivation traces.

Let us start by defining the key notion of sequential independence. Intuitively,
two consecutive direct derivations G ⇒q′ X and X ⇒q′′ H , as in Figure 5.9, are
sequentially independent if they may be swapped, i.e., if q′′ can be applied to G,
and q′ to the resulting graph, without changing in an “essential way” the matches.
Therefore q′′ cannot delete anything that has been explicitly preserved by the ap-
plication of q′ at match g1 and, moreover, it cannot use (neither consuming nor
preserving it) any element generated by q′; this is ensured if the overlapping of R1

and L2 in X is included in the intersection of the images of the interface graphs K1

and K2 in X.

Definition 5.18 (sequential independence)
Consider a derivation δ1; δ2, consisting of two direct derivations δ1 : G⇒q′,g1 X and
δ2 : X ⇒q′′,g2 H (as in Figure 5.9). The derivations δ1 and δ2 are called sequentially
independent if g2(L2)∩h1(R1) ⊆ g2(l2(K2))∩h1(r1(K1)); in words, if the images in
X of the left-hand side of q′′ and of the right-hand side of q′ overlap only on items
that are preserved by both derivation steps. In categorical terms, this condition can
be expressed by requiring the existence of two arrows s : L2 → D1 and u : R1 → D2

such that d1 ◦ s = g2 and b2 ◦ u = h1.

Notice that, differently from what happens for other formalisms, such as ordinary
Petri nets or term rewriting, two rewriting steps δ1 and δ2 do not need to be applied
at completely disjoint matches to be independent. The graphs to which δ1 and δ2
are applied can indeed overlap on something that is preserved by both rewriting
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Figure 5.9: Sequential independent derivations.

steps. As in the case of contextual nets, according to the interpretation of preserved
items as read-only resources, we can explain this fact by saying that graph rewriting
allows for the concurrent access to read resources.

Example 5.19 (sequential independence)
Consider the derivation of Figure 5.5. The first two direct derivations are not se-
quential independent; in fact, the edge 3 : req of graph G1 is in the image of both
the right-hand side of the first production and the left-hand side of the second one,
but it is in the context of neither the first nor the second direct derivation. On the
contrary, in the same figure, both the derivations from G1 to G3 and those from G2

to G4 consists of two sequentially independent steps.
2

The next well-known result states that every parallel direct derivation can be se-
quentialized in an arbitrary way as the sequential application of the component pro-
ductions, and, conversely, that every pair of sequentially independent direct deriva-
tions can be transformed into a parallel direct derivation. This result represents
the basis of the theory of concurrency of the double pushout approach to graph
rewriting.

Theorem 5.20 (parallelism theorem)
Given (possibly parallel) productions q′ and q′′, the following statements are equiva-
lent (see Figure 5.10):

1. There is a parallel direct derivation G⇒q′+q′′ H

2. There are sequentially independent derivations G⇒q′ H1 ⇒q′′ H.

3. There are sequentially independent derivations G⇒q′′ H2 ⇒q′ H. 2

The proof of the theorem is given by providing two constructions. The first
one, called analysis, given a parallel direct derivation G ⇒q′+q′′ H , transforms it
into a derivation consisting of two steps G ⇒q′ X ⇒q′′ X (with same source and
target graphs) which, moreover, is proved to be sequentially independent. The second
one, called synthesis, applied to any sequentially independent two-step derivation,
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Figure 5.10: Local confluence of independent direct derivations.

transforms it into a parallel direct derivation between the same source and target
graphs. These constructions, in general nondeterministic, are used to define suitable
relations among derivations (see, e.g., [Kre77, EHKPP91, CMR+97]).

Unlike the original definition of analysis and synthesis, following [CEL+96b], we
explicitly keep track of the permutation of the applied productions induced by the
constructions. Therefore we first introduce some notation for permutations.

Definition 5.21 (permutation)
A permutation on the set n = {1, 2, . . . , n} is a bijective mapping Π : n → n. The
identity permutation on n is denoted by Πn

id. The composition of two permutations
Π1 and Π2 on n, denoted by Π1 ◦ Π2, is their composition as functions, while the
concatenation of two permutations Π1 on n1 and Π2 on n2, denoted by Π1 | Π2, is
the permutation on n1 + n2 defined as

Π1 | Π2(x) =

{
Π1(x) if 1 ≤ x ≤ n1

Π2(x− n1) + n1 if n1 < x ≤ n2

Concatenation and composition of permutations are clearly associative.

Proposition 5.22 (analysis and synthesis)
Let ρ : G⇒q H be a parallel direct derivation using q = q1+. . .+qk : (L

l
← K

r
→ R).

Then for each partition 〈I = {i1, . . . , in}, J = {j1, . . . , jm}〉 of k (i.e., I ∪ J = k
and I ∩ J = ∅) there is a constructive way—in general nondeterministic—to obtain
a sequential independent derivation ρ′ : G ⇒q′ X ⇒q′′ H, called an analysis of ρ,
where q′ = qi1 + . . .+ qin, and q′′ = qj1 + . . .+ qjm (see Figure 5.9). If ρ and ρ′ are as
above, we shall write ρ ≡anΠ ρ′, where Π is the permutation on k defined as Π(ix) = x
for x ∈ n, and Π(jx) = n+ x for x ∈ m.

Conversely, let ρ : G ⇒q′ X ⇒q′′ H be a pair of sequentially independent
derivations. Then there is a constructive way to obtain a parallel direct derivation
ρ′ = G ⇒q′+q′′ H, called a synthesis of ρ. In this case, we shall write ρ ≡synΠ ρ′,

where Π = Π#ρ
id . 2

Informally, two derivations are shift equivalent if one can be obtained from the
other by repeatedly applying the analysis and synthesis constructions. The next defi-
nition emphasizes the fact that the sets of productions applied in two shift equivalent
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derivations are related by a permutation which is constructed inductively starting
from the permutations introduced by analysis and synthesis.

Definition 5.23 (shift equivalence)
Derivations ρ and ρ′ are shift equivalent via permutation Π, written ρ ≡shΠ ρ′, if this
can be deduced by the following inference rules:

(SH−id)
ρ ≡sh

Π#ρ
id

ρ
(SH−∅)

d ◦ b−1 = idG

G ≡sh∅ G
〈∅,∅,∅,b,d〉
⇒∅ G

(SH−an)
ρ ≡anΠ ρ′

ρ ≡shΠ ρ′

(SH−syn)
ρ ≡synΠ ρ′

ρ ≡shΠ ρ′
(SH−sym)

ρ ≡shΠ ρ′

ρ′ ≡shΠ−1 ρ
(SH−trans)

ρ ≡shΠ ρ′, ρ′ ≡shΠ′ ρ′′

ρ ≡shΠ′◦Π ρ
′′

(SH−comp)
ρ1 ≡

sh
Π1
ρ′1, ρ2 ≡

sh
Π2
ρ′2, τ(ρ1) = σ(ρ2)

ρ1 ; ρ2 ≡
sh
Π1|Π2

ρ′1 ; ρ′2

Note that by (SH− ∅) an empty direct derivation is shift equivalent to the iden-
tity derivation G if and only if the induced isomorphism is the identity. The shift
equivalence is the equivalence relation ≡sh defined as ρ ≡sh ρ′ iff ρ ≡shΠ ρ′ for some
permutation Π.

It is worth stressing that the shift equivalence abstracts both from the order in
which productions are composed inside a single direct parallel step and from the
order in which independent productions are applied at different direct derivations.

Example 5.24 (shift equivalence)
Figure 5.11 shows a derivation ρ′ which is shift equivalent to derivation ρ of Figure
5.6. It is obtained by applying the synthesis construction to the sub-derivation of ρ
from G1 to G3. 2

Despite the unusual definition, it is easy to check that the shift equivalence just
introduced is the same as in [Kre77, Ehr87, CEL+94a]. From the definitions of the
shift equivalence and of the analysis and synthesis constructions, it follows that
ρ ≡sh ρ′ implies that ρ and ρ′ have the same order and the same source and target
graphs (i.e., #ρ = #ρ′, σ(ρ) = σ(ρ′), and τ(ρ) = τ(ρ′); by the way, this guarantees
that rules (SH− comp) and (SH− trans) are well-defined. The shift equivalence can
be extended in a natural way to decorated derivations.

Definition 5.25
The shift equivalence on decorated derivations, denoted with the same symbol ≡sh,
is defined by 〈m, ρ,M〉 ≡sh 〈m, ρ′,M〉 if ρ ≡sh ρ′.
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Figure 5.11: A derivation ρ′ in grammar C -S , shift-equivalent to derivation ρ of
Figure 5.6.

Equivalence ≡sh does not subsume abstraction equivalence, since, for example, it
cannot relate derivations starting from different but isomorphic graphs.

We introduce a further equivalence on decorated derivations, obtained simply as
the union of ≡abs and ≡sh. It is called truly-concurrent (or tc-) equivalence, since it
equates all derivations which are not distinguishable from a true concurrency per-
spective, at an adequate degree of abstraction from representation details. A small
variation of this equivalence is introduced as well, called ctc-equivalence, where the
first “c” stays for “concatenable”. Equivalence classes of (c)tc-equivalent decorated
derivations are called (concatenable) derivation traces.

Definition 5.26 (truly-concurrent equivalences and traces)
Two decorated derivations ψ and ψ′ are ctc-equivalent via permutation Π, written
ψ ≡cΠ ψ

′, if this can be deduced by the following inference rules:

(CTC−abs)
ψ ≡abs ψ′

ψ ≡c
Π#ψ
id

ψ′
(CTC−sh)

ψ ≡shΠ ψ′

ψ ≡cΠ ψ′
(CTC−trans)

ψ ≡cΠ ψ
′ ψ′ ≡cΠ′ ψ′′

ψ ≡cΠ′◦Π ψ
′′

Equivalence ≡c, defined as ψ ≡c ψ′ iff ψ ≡cΠ ψ
′ for some permutation Π, is called the

concatenable truly concurrent (ctc-) equivalence. Equivalence classes of derivations
with respect to ≡c are denoted as [ψ]c and are called concatenable derivation traces.
A derivation trace is an equivalence class of derivations with respect to the truly-
concurrent (tc-) equivalence ≡ defined by the following rules:

(TC−ctc)
ψ ≡cΠ ψ

′

ψ≡Πψ
′

(TC−iso)
ψ≡Πψ

′ α discrete decor. deriv. s.t. ψ′ ; α is defined

ψ≡Πψ
′ ; α

Equivalently, the tc-equivalence could have been defined as ψ ≡Π ψ′ if and only if
ψ ≡cΠ 〈mψ′ , ρψ′ ,M ′〉, for some isomorphism M ′ : Can(τ(ψ′)) → τ(ψ′). Informally,
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differently from ctc-equivalence, tc-equivalence does not take into account the dec-
orations of the target graphs of derivations, that is their ending interface, and this
is the reason why derivation traces are not concatenable.

Concatenable derivation traces, instead, are naturally equipped with an opera-
tion of sequential composition, inherited from concrete decorated derivations, which
allows us to see them as arrows of a category having abstract graphs as objects.
Such category is called the category of concatenable derivation traces (or the ab-
stract truly concurrent model of computation) of the grammar.

Definition 5.27 (category of concatenable derivation traces)
The category of concatenable derivation traces of a grammar G , denoted by Tr[G ],
is the category having abstract graphs as objects, and concatenable derivation traces
as arrows. In particular, if ψ : G⇒∗G H then [ψ]c is an arrow from [G] to [H ]. The
identity arrow on [G] is the ctc-equivalence class of a discrete derivation 〈i, G, i〉,
where i is any isomorphism from Can(G) to G. The composition of arrows [ψ]c :
[G]→ [H ] and [ψ′]c : [H ]→ [X] is defined as [ψ ; ψ′′]c : [G]→ [X], where ψ′′ ∈ [ψ′]c
is a decorated derivation such that ψ ; ψ′′ is defined.

Category Tr[G ] is well-defined because so is the sequential composition of arrows:
in fact, if ψ1 ≡

c ψ2 and ψ′1 ≡
c ψ′2 then (if defined) ψ1 ; ψ′1 ≡

c ψ2 ; ψ′2 (hence the
attribution “concatenable”). Moreover, for abstract derivations, whenever τ(ψ) ≃
σ(ψ′), it is always possible to concatenate the corresponding traces, namely one can
always find a derivation ψ′′ ∈ [ψ′]c such that ψ ; ψ′′ is defined.

5.3 A category of typed graph grammars

Various notions of morphism for graph grammars have been introduced in the lit-
erature (see, e.g., [CEL+96a, HCEL96, Rib96, BC96]), most of them influenced by
Winskel’s notion of Petri net morphism [Win87a, Win87b] through the close rela-
tionship existing between typed graph grammars and P/T Petri nets.

Relying on the proposals in [CEL+96a, BC96], this section defines the category
of graph grammars which will be used in the thesis. We explain how graph grammars
morphisms arise as a generalization of Petri net morphisms, and we show that, as for
Petri nets, graph grammars morphisms preserve the behaviour, namely they allow
to “translate” each derivation of the source grammar into a derivation of the target
grammar.

5.3.1 From multirelations to spans

Multisets and multirelations play an essential role in the definition of morphisms
of (generalized) Petri nets. We next provide a categorical view of such concepts, by
showing that a tight relationship exists between the category of multirelations and
the category of spans over Set. These considerations will be helpful to understand
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the notion of grammar morphism as a generalization of Petri net morphisms. The
material is elaborated partly from [CEL+96a], where the first notion of grammar
morphism have been introduced and partly from [BC96, BG00].

The category of spans

We start by reviewing the definition of the category of semi-abstract spans over a
given category [BC96].

Definition 5.28 (span)
Let C be a category. A (concrete) span in C is a pair of coinitial arrows f = 〈fL, fR〉
with fL : xf → a and fR : xf → b. Objects a and b are called the source an the
target of the span and we write f : a↔ b. The span f will be sometimes written as
〈fL, xf , f

R〉, explicitly giving the object xf .

Consider the relation ∼ over the set of spans of a category, defined as follows:
given two spans with the same source and target f, f ′ : a ↔ b, put f ∼ f ′ if there
exists an isomorphism k : xf → xf ′ such that f ′L ◦ k = fL and f ′R ◦ k = fR (see
Figure 5.12.(a)). It is immediate to see that ∼ is an equivalence relation, which
intuitively abstracts out from the particular choice of the object xf in a concrete
span f . The ∼-equivalence class of a concrete span f will be denoted by [f ] and
called a semi-abstract span.

Definition 5.29 (composition of spans)
Let f1 and f2 be spans in a category C. A composition of f1 and f2, denoted by f1; f2

is a span f constructed as in Figure 5.12.(b) (i.e., fL = fL1 ◦ y and fR = fR2 ◦ z),
where the square is a pullback.

The composition of spans is defined only up to equivalence, since the pullback, if it
exists, is unique only up to isomorphism. To obtain a categorical structure we must
work with semi-abstract spans, in a category with pullbacks.

Definition 5.30 (category of spans)
Let C be a category with pullbacks. Then the category Span(C) has the same objects
of C and semi-abstract spans on C as arrows. More precisely, a semi-abstract span
[f ] is an arrow from the source to the target of f . The composition of two semi-
abstract spans [f1] : a↔ b and [f2] : b↔ c is defined as [f1; f2], where f1; f2 denotes
any composition of the concrete spans f1 and f2. The identity on an object a is the
equivalence class of the span 〈ida, ida〉, where ida is the identity of a in C.

By exploiting the properties of pullbacks it can be shown that Span(C) is a well-
defined category, namely that composition is associative and that identities behave
correctly.
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xf ′
f ′L f ′R

a xf
fL fR

k
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zy

a xf1
fL1 fR1

b xf2
fL2 fR2

c

(a) (b)

Figure 5.12: Equivalence and composition of spans.
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Figure 5.13: The spans f1 (left diagram) and f2 (right diagram) in Set.

Multirelations and Span(Set)

Let us restrict our attention to the category Span(Set) of spans over the category
Set of sets and total functions. We will see that a deep connection exists between
Span(Set) and the category MSet of sets and (finitary) multirelations.

Given two sets A and B, consider a semi-abstract span [f ] : A ↔ B. We can
give a graphical representation of a span by tracing an arrow between the elements
x ∈ Xf and a ∈ A whenever fL(x) = a and, similarly, between x ∈ Xf and
b ∈ B whenever fR(x) = b. The left diagram in Figure 5.13 represents the span
[f1] : A ↔ B, where A = {a1, a2}, B = {b1, b2, b3}, Xf = {x1, x2, x3} and fR1 =
{(x1, a1), (x2, a2), (x3, a2)}, f

L
1 = {(x1, b1), (x2, b2), (x3, b3)}. The fact that the set Xf

is fixed only up to isomorphism means that we can disregard the concrete identities
of its elements.

Intuitively the span is completely characterized by the way in which elements of
A are connected to elements of B. Furthermore observe that not only the existence
of a path between two elements a and b is important, but also the number of such
paths. For instance the spans f1 and f2 of Figure 5.13 are not equivalent since in f1

the element a1 is connected to b1 via just one path, while in f2 there are two paths.
The above discussion suggests that semi-abstract spans in Set can be seen as

an alternative presentation of multirelations, in the sense that one can think of
[f ] : A↔ B as specifying for all pairs of elements a ∈ A and b ∈ B, “how many times
they are related”. For example, the span [f1] can be identified with the multirelation
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(a1, b1) + (a2, b2) + (a2, b3), while [f2] can be seen as a representation of 2 · (a1, b1) +
(a2, b2) + (a2, b3).

This intuitive correspondence can be made very formal. The category MSet of
sets and multirelations can be embedded into Span(Set). The embedding functor is
the identity on objects, and maps any multirelation F : A→ B, which is a function
F : A×B → N, to the span [F̂ ] with

XF̂ = {((a, b), n) | (a, b) ∈ A× B ∧ n < F (a, b)}

and F̂R((a, b), n)) = a, F̂L((a, b), n)) = b, for all ((a, b), n) ∈ XF̂ .

Proposition 5.31
There is an embedding of the category MSet of (finitary) multirelations into the
category Span(Set) of semi-abstract spans over Set.

The two categories are not isomorphic essentially because Span(Set) extends
MSet by adding also multirelations which are not finitary. Say that a span
[f ] : A↔ B is finitary if each element of A has a finite counterimage in Xf , namely

fR
−1

(a) is finite for all a ∈ A. Then it is possible to prove that the functor described
above restricts to an isomorphism between FSpan(Set), the lluf subcategory (Def-
inition A.4) of Span(Set) having finitary spans as arrows, and MSet [BG00].

Multisets and multirelation application

Let 1 denote the initial object in Set, namely the set with just one element. Observe
that a multiset M of a set A can be seen as a multirelation of 1×A, and therefore it
can be represented as a semi-abstract span [M̂ ] : 1↔ A. Equivalently, since there is
a unique arrow from XM̂ to 1, the multiset can be identified with the isomorphism

class of the mapping M̂L : XM̂ → A (in the comma category 〈Set ↓ A〉). This
observation confirms that (abstract) typed graphs are the natural generalization of
multisets when moving from sets to graphs.

Furthermore, given a multirelation F : A→ B and a multiset M of A, it is im-
mediate to verify that the image of M through F , namely µF (M) can be computed
simply as the composition of the corresponding spans, i.e. as M̂ ; F̂ , as depicted in
the left part of Figure 5.14, where the square is a pullback. The arrow towards the
initial object is dotted to stress that we can think of the construction as working
on typed sets. Referring to the figure, we can say that the construction maps the
“A-typed set” M̂R : XM̂ → A to the the “B-typed set” z; F̂R : XM̂ → A

As an example, the right part of Figure 5.14 shows how the construction can be
used to apply the multirelation F1 = 2 ·(a1, b1)+(a2, b2)+(a2, b3), represented by the
span f2 of Figure 5.13, to the multiset a1 + a2. The result is correctly 2 · b1 + b2 + b3.
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Figure 5.14: Computing the image of a multiset.

Relations and functions

Relations can be identified with special multirelations R : A → B where multi-
plicities are bounded by one (namely R(a, b) ≤ 1 for all a ∈ A and b ∈ B). The
corresponding condition on a span f : A ↔ B is the existence of at most one
path between any two elements a ∈ A and b ∈ B. The next definition provides a
categorical formalization of this concept.

Definition 5.32
Let C be a category. A span f : a↔ b in C is called relational if 〈fL, fR〉 : xf → a×b
is mono.

In other words f : a ↔ b is relational if given any object c and pair of arrows
g, h : c → xf , if g; fR = h; fR and g; fL = h; fL then g = h. It is easy to verify
that if f : A ↔ B is a span in Set then the above condition can be equivalently
expressed as

∀x, y ∈ Xf . f
R(x) 6= fR(y) ∨ fL(x) 6= fL(y)

which indeed corresponds exactly to the intuition of having at most one path between
any two elements. For example, the span f1 of Figure 5.13 is relational, while f2 is
not.

Observe that, in particular, a span f : A ↔ B is relational when either its
left or right component is injective. It is easy to realize that these kinds of span
corresponds to the partial functions from A to B and backward. In fact, a partial
function g : A→ B can be identified with the span

A dom(g)
g

B

and similarly a partial function h : B → A can be represented as the span

A dom(h)h
B

where unlabelled arrows are inclusions.
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5.3.2 Graph grammar morphisms

Recall that a Petri net morphism [Win87a, Win87b] consists of two components,
namely a multirelation between the sets of places and a partial function mapping
transitions of the first net into transitions of the second one. Net morphisms are
required to “preserve” the pre-set and post-set of transitions, in the sense that the
pre- (post-)set of the image of a transition t must be the image of the pre- (post-)set
of t.

Since the items of the graph of types of a grammar can be seen as a generalization
of Petri net places, the first component of a grammar morphism from G1 to G2 will
be a semi-abstract span between the type graphs of G1 and G2, which, as explained
in the previous subsection, generalizes the notion of multirelation. The idea of using
graph grammar morphisms based on spans has been first introduced in [CEL+96a],
while the introduction of semi-abstract spans is due to [BC96]. Different notions
of morphism for graph grammars use a (partial) function from the type graph of
G1 to the type graph of G2 [HCEL96] or in the converse direction [Rib96]. Since
partial functions can be represented as (relational) spans, these notions can be seen
as instances of the more general definition based on spans (with the advantage of
allowing a simpler composition, not requiring the use of pullbacks).

Let G1 and G2 be two graph grammars and let [fT ] : TG1 ↔ TG2 be a
semi-abstract span between the corresponding type graphs, namely an arrow in
Span(Graph). By extending to graphs the construction presented in the previ-
ous section for sets (see Figure 5.14), [fT ] allows us to relate TG1-typed graphs
to TG2-typed graphs. Let G1 be in TG1-Graph. The graph G1 is transformed, as
depicted in the diagram below, by first taking a pullback (in Graph) of the arrows
fLT : XfT → TG1 and tG1 : |G1| → TG1, and then typing the pullback object over
TG2 by using the right part of the span fRT : XfT → TG2.

|G1|

tG1

|G2|
tG2

x

y

TG1 XfT
fL
T

fR
T

TG2

The TG2-typed graph G2 = 〈|G2|, f
R
T ◦ y〉 obtained with this construction, later

referred to as pullback-retyping construction induced by [fT ], is determined only up
to isomorphism. Sometimes we will write fT{x, y}(G1, G2) (or simply fT (G1, G2) if
we are not interested in morphisms x and y) to express the fact that G1 and G2 are
related in this way by the pullback-retyping construction induced by [fT ].

We are now ready to define grammar morphisms. Besides the component spec-
ifying the relation between the type graphs, a morphism from G1 to G2 contains a
(partial) mapping between production names. Furthermore a third component ex-
plicitly relates the (untyped) graphs underlying corresponding productions of the
two grammars, as well as the graphs underlying the start graphs.
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Definition 5.33 (typed graph grammar morphism)
Let Gi = 〈TGi, Gsi, Pi, πi〉 (i ∈ {1, 2}) be two graph grammars. A (typed graph
grammar) morphism f : G1 → G2 is a triple 〈[fT ], fP , ιf 〉 where

• [fT ] : TG1 → TG2 is a semi-abstract span in Graph, called the type-span;

• fP : P1 → P2 ∪ {∅} is a total function, where ∅ is a new production name
(not in P2), with associated production ∅ ← ∅ → ∅, referred to as the empty
production;

• ιf is a family {ιf(q1) | q1 ∈ P1} ∪ {ι
s
f} such that ιsf : |Gs2| → |Gs1| and for

each q1 ∈ P1, if fP (q1) = q2, then ιf (q1) is a triple of morphisms

〈ιLf (q1) : |Lq2 | → |Lq1|, ι
K
f (q1) : |Kq2| → |Kq1|, ι

R
f (q1) : |Rq2| → |Rq1|〉.

such that the following conditions are satisfied:

1. Preservation of the start graph.
There exists a morphism k such that fT{ι

s
f , k}(Gs1, Gs2), namely such that the

following diagram commutes (where the square is required to be a pullback).

|Gs1|

tGs1

|Gs2|
tGs2

ιs
f

k

TG1 XfT
fL
T

fR
T

TG2

2. Preservation of productions.
For each q1 ∈ P1, with q2 = fP (q1), there exist morphisms kL, kK and kR

such that the diagram below commutes, and fT{ι
X
f (q1), k

X}(Xq1, Xq2) for X ∈
{L,K,R}.

|Rq1|

tRq1

|Rq2|
ιR
f

(q1)

kR
tRq2

|Kq1|

tKq1

|Kq2|
ιK
f

(q1)

kK
tKq2

|Lq1|

tLq1

|Lq2 |
ιL
f
(q1)

kL tLq2

TG1 XfT
fLT fRT

TG2
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The grammar morphisms in [CEL+96a] rely on the assumption of having a fixed
choice of pullbacks. Consequently the pullback-retyping construction is deterministic
and morphisms are required to preserve the start graphs and the productions “on
the nose”, namely the construction applied to the start graph of G1 must result
exactly in the start graph of G2. Similarly, each production in G1 must be mapped
exactly to the corresponding production in G2. Notice that this requirement is very
strict and it may imply the absence of a morphism between two grammars having
start graph and productions which are the same up to isomorphism. Our notion of
morphism is, in a sense, more liberal: we avoid a global choice of pullbacks and we
fix “locally”, for each morphism f , only part of the pullback diagrams, namely the
morphisms in the family ιf . The presence of such component in the morphism is
intuitively motivated by the fact that graph grammars are more concrete than Petri
nets. In fact, in a graph grammar the start graph and the productions are specified
by means of concrete graphs, while the initial marking and the transitions of a
Petri net are defined in terms of multisets which corresponds to abstract (discrete)
graphs. Therefore when a grammar G1 simulates another grammar G2 it is important
to specify not only that a production q1 of G1 is mapped to a production q2 of G2,
but also the correspondence between the concrete items of the graphs in the two
productions q1 and q2.

It is worth noticing that, for technical convenience, the partial mapping on pro-
duction names is represented as a total mapping by enriching the target set with a
distinguished point ∅, representing “undefinedness”. In this way the condition ask-
ing the preservation of productions (condition (2)) faithfully rephrases the situation
of net theory where the pre- and post-set of a transition on which the morphism is
undefined are necessarily mapped to the empty multiset.

Definition 5.34 (category GG)
Graph grammars and graph grammar morphisms form a category GG.

The identities and the composition of morphisms in GG are defined in the obvious
way. Given a grammar G , the identity on G is the grammar morphism 〈[idTG], idP , ι〉,
where [idTG] is the identity span on TG, idP is the identity function on P and all
the components of ι are identities on the corresponding graphs.

Given two morphisms f0 : G0 → G1 and f1 : G1 → G2, the composition f1 ◦ f0 :
G0 → G2 is the morphism 〈[f1T ] ◦ [f0T ], f1P ◦ f0P , ι〉, where for any q0 ∈ P0 and any
X ∈ {L,K,R}, we have ιX(q0) = ιXf0(q0) ◦ ι

X
f1

(f0P (q0))

5.3.3 Preservation of the behaviour

As in [CEL+96a] it is possible to show that morphisms preserve the behaviour of
graph grammars, in the sense that given a morphism f : G1 → G2, for every deriva-
tion ρ1 in G1 there is a corresponding derivation ρ2 in G2, related to ρ1 by the
pullback-retyping construction induced by the type component [fT ] of the morphism.
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First, we need to review some results expressing properties of pullbacks and
pushouts in Graph. The properties are stated for the category Set of sets and total
functions, since the constructions of pullback and pushout can be lifted from Set to
Graph, where limits and colimits are constructed “componentwise”. A proof can
be found in [CEL+96a].

Proposition 5.35
Consider the following commuting diagram in Set

A B

C

PB

PB

D

E F

If the two internal squares, marked by PB are pullbacks, then the outer square with
vertices A, B, E and F is a pullback as well.

Proposition 5.36 (3-cube lemma)
Consider the following commuting diagram in Set

A B

E

PB

PB PO

F

G

PB

H

PB

C D

If the small internal squares, marked by PB and PO are pullbacks and pushouts,
respectively, then the outer square with vertices A, B, C and D is a pushout.

We are now ready to prove that graph grammar morphisms preserve derivations.
As a consequence of the partial arbitrariness in the choice of the pullback com-
ponents, such correspondence is not “functional”, but it establishes just a relation
between concrete derivations of the source and target grammars of the morphism.

Lemma 5.37
Let f : G1 → G2 be a graph grammar morphism, and let δ1 : G1 ⇒

∗
q1
H1 be a direct

derivation in G1. Then there exists a corresponding direct derivation δ2 : G2 ⇒
∗
fP (q1)

H2 in G2, such that fT (G1, G2) and fT (H1, H2).

Proof. The proof is extremely technical and follows the same outline as in [CEL+96a]. Here we
give only a sketch, singling out some relevant passages.

Assume that the derivation δ1 in G1 has the following shape:
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L1q1 :

g1

K1

k1

R1

h1

G1 D1
b1 d1

H1

The same derivation is depicted also in the left part of Figure 5.15. The right part of the top layer
represents the production q2 = fP (q1). Observe that the figure is not complete. First, for each
graph appearing in the top layer we should have indicated the corresponding typing morphism.
Furthermore, by definition of grammar morphism, the two productions q1 and q2 are related by a
pullback-retyping construction as expressed by condition (3) in Definition 5.33, and thus a mor-
phism κY : |Y2| → X should appear for Y ∈ {L,K,R}. For the sake of clearness only the typing
morphisms of L1 and and the morphism kL : |L2| → X of the pullback-retyping construction are
explicitly represented.

Consider any three graphs G2, D2 and H2, obtained from G2, D2 and H2, respectively, by ap-
plying the pullback-retyping construction. Such graphs, with the corresponding pullback-retyping
diagrams are represented in the bottom part of Figure 5.15. Now, recall that the square with ver-
tices |G1|, |G2|, TG1, X is a pullback, and the square with vertices |L1|, |L2|, TG1, X commutes.
Hence the match g2 : |L2| → |G2| is uniquely determined by the universal property of pullbacks.
Similarly, observing that the square |D1|, |D2|, TG1, X , commutes we uniquely determine a mor-
phism b2 : |D2| → |G2|. With an analogous reasoning we can complete the whole diagram of
Figure 5.15.

By using Proposition 5.35 it is not difficult to realize that all the squares with vertices

• |L1|, |L2|, |G1|, |G2| • |D1|, |D2|, |K1|, |K2|
• |G1|, |G2|, |D1|, |D2| • |K1|, |K2|, |L1|, |L2|

are pullbacks, while the square |K1|, |L1|, |G1|, |D1| is a pushout, by construction. By the 3-cube
lemma (Proposition 5.36) we deduce that the square |K2|, |L2|, |G2|, |D2| is a pushout. Since, by
symmetry also |K2|, |D2|, |H2|, |R2| is a pushout, this concludes the construction of the desired
direct derivation δ2.

2

The result can straightforwardly be extended to general derivations involving an
arbitrary number of (possibly parallel) direct derivation.

Recall that in [CEL+96a], where the more concrete notion of morphism based on
a choice of pullbacks is adopted, the relation between derivations induced by a mor-
phism is indeed a function. Furthermore the result above is extended to show that the
concrete model of computation of the grammar (not considering abstraction equiv-
alence) can be obtained via a functorial construction, establishing an adjunction
between the category of graph grammars and the category of concrete derivations.
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Figure 5.15: Graph grammars morphisms preserve derivations.



Chapter 6

Unfolding and Event Structure
Semantics

This chapter introduces a truly concurrent semantics for dpo graph grammars based
on a Winskel-style unfolding construction. The work developed in the First Part
for contextual and inhibitor nets represents both an intuitive guide and a formal basis
for the treatment of graph grammars. In fact, as in contextual nets, the possibility
of specifying rewriting steps which preserve part of the state leads to asymmetric
conflicts between productions. Furthermore the dangling condition, a part of the
application condition which prevents the application of a production when it would
leave dangling edges, has a natural encoding in the setting of inhibitor nets: the edges
whose presence prevents the application of a production can be seen as inhibitor
places for that production.

First, nondeterministic occurrence grammars, which generalize the (determin-
istic) occurrence grammars of [CMR96], are defined as safe grammars satisfying
suitable acyclicity and well-foundedness conditions. As occurrence inhibitor nets are
defined without considering the inhibitor arcs, the requirements on occurrence gram-
mars disregard the constraints imposed by the dangling condition. Consequently not
all the productions of an occurrence grammar are really executable. The possible
deterministic computations of an occurrence grammar are captured by considering
the configurations of the grammar which are later shown to be closely related to the
configurations of the corresponding event structure.

An unfolding construction is proposed, which associates to each (consuming)
graph grammar a nondeterministic occurrence grammar representing its behaviour.
As for nets, the idea consists of starting from the start graph of the grammar,
applying in all possible ways the productions of the grammar, and recording in the
unfolding each occurrence of production and each new graph item generated by the
rewriting process, both enriched with the corresponding causal history. Consistently
with the notion of occurrence grammar, in the construction of the unfolding the
productions are applied without considering the dangling condition.
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The “object level” unfolding construction naturally works on the whole class
of graph grammars essentially because graph grammars are strictly more concrete
than Petri nets. Hence, exploiting the additional information given by the concrete
identity of the items in a grammar, one can avoid the kind of confusion arising in
Petri nets related to the presence of several causally indistinguishable items.

Then we face the problem of turning the unfolding construction into a functor
establishing a coreflection between the category of graph grammars and that of
occurrence grammars. We first restrict to those grammars where the start graph
and the items produced by each production are injectively typed. Such grammars,
by analogy with the corresponding subclass of Petri nets, are called semi-weighted
grammars, and the corresponding full subcategory of GG is denoted by SW-GG.
We show that indeed in this case the unfolding extends to a functor Ug : SW-GG→
O-GG which is right adjoint of the inclusion IO : O-GG → SW-GG, and thus
establishes a coreflection between the two categories.

It is also shown that the restriction to semi-weighted graph grammars is essential
for the above categorical construction. However, suitably restricting graph grammars
morphisms to still interesting subclasses (comprising, for instance, the morphisms
of [Rib96, HCEL96]) it is possible to regain the categorical semantics for general,
possibly non semi-weighted, grammars.

Finally, from the unfolding we can easily extract an event structure and a do-
main semantics. As suggested by the correspondence between occurrence inhibitor
nets and graph grammars, inhibitor event structures, the extension of prime event
structures introduced in Chapter 4, are expressive enough to represent the struc-
ture of graph grammar computations. Thus an ies can be naturally associated to
each occurrence grammar via a functorial construction. Then, the results of Chap-
ter 4 relating IES and Dom allow us to obtain a domain and prime event structure
semantics.

SW-GG
Ug

⊥ O-GG
Eg

IO

IES
Li

Dom

Pi

P

∼ PES
L

The notions of nondeterministic occurrence grammar and of grammar morphism
suggest a notion of nondeterministic graph process, the prototypical example of non-
deterministic process being the unfolding. Analogously to what happens in Petri net
theory, a nondeterministic process of a grammar G consists of a (suitable) grammar
morphism from an occurrence grammar to the grammar G . Nicely, as we will see in
the next chapter, our nondeterministic graph processes are a consistent generaliza-
tions of the graph processes of [CMR96, BCM98a], namely in the deterministic case
they reduce to the same notion.

To conclude, it is worth stressing that an unfolding construction for a different
approach to graph transformation, called single-pushout (spo) approach, has been
proposed by Ribeiro in her doctoral thesis [Rib96]. Although conceptually such
construction is close to ours, we will see that, concretely, the differences between the
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two settings, like the absence of the application condition in the spo approach, a
different notion of “enabling” allowing for the concurrent application of productions
related by asymmetric conflict and a different choice of grammar morphisms, makes
difficult a direct comparison.

The rest of the chapter is organized as follows. Section 6.1 introduces the no-
tion of nondeterministic occurrence grammar and gives some more insights on the
relation between graph grammars and inhibitor nets. Relying on the notion of occur-
rence grammar, Section 6.2 introduces nondeterministic graph processes. Section 6.3
describes the unfolding construction for graph grammars, whose categorical proper-
ties are then investigated in Section 6.4. Then Section 6.5 shows how an ies can be
extracted from an occurrence grammar, thus providing, through the unfolding con-
struction, an event structure semantics for graph grammars. Finally, in Section 6.6
we compare the unfolding construction in this chapter with that proposed in [Rib96]
for the spo approach.

6.1 Nondeterministic occurrence grammars

A first step towards the definition of nondeterministic occurrence grammars is a
suitable notion of safeness for grammars [CMR96], generalizing that for P/T nets,
which requires that each place contains at most one token in any reachable marking.

Definition 6.1 ((strongly) safe grammar)
A grammar G = 〈TG,Gs, P, π〉 is (strongly) safe if, for all H such that Gs ⇒

∗ H,
H has an injective typing morphism.

The definition can be understood by thinking of nodes and edges of the type graph
as a generalization of places in Petri nets. In this view the number of different items
of a graph which are typed on a given item of the type graph corresponds to the
number of tokens contained in a place, and thus the condition of safeness for a
marking is generalized to typed graphs by the injectivity of the typing morphism.

Strongly safe graph grammars (hereinafter called just safe grammars) admit a
natural net-like pictorial representation, where items of the type graph and pro-
ductions play, respectively, the role of places and transitions of Petri nets. The
basic observation is that typed graphs having an injective typing morphism can be
safely identified with the corresponding subgraphs of the type graph (just thinking
of injective morphisms as inclusions). Therefore, in particular, each graph 〈|G|, tG〉
reachable in a safe grammar can be identified with the subgraph tG(|G|) of the type
graph TG, and thus it can be represented by suitably decorating the nodes and
edges of TG. Concretely, a node is drawn as a filled circle if it belongs to tG(|G|)
and as an empty circle otherwise, while an edge is drawn as a continuous line if it is
in tG(|G|) and as a dashed line otherwise (see Figure 6.1). This is analogous to the
usual technique of representing the marking of a safe net by putting a token in each
place which belongs to the marking.
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With the above identification, in each derivation of a safe grammar starting from
the start graph a production can be applied only to the subgraph of the type graph
which is the image via the typing morphism of its left-hand side. Therefore according
to its typing, we can think that a production produces, preserves and consumes items
of the type graph. This is expressed by drawing productions as arrow-shaped boxes,
connected to the consumed and produced resources by incoming and outcoming
arrows, respectively, and to the preserved resources by undirected lines. Figure 6.1
presents two examples of safe grammars, with their pictorial representation. Notice
that the typing morphisms for the start graph and the productions are represented
by suitably labelling the involved graphs with items of the type graph.

Using a net-like language, we speak of pre-set •q, context q and post-set q• of
a production q. The notions of pre-set, post-set and context of a production have
a clear interpretation only for safe grammars. However for technical reasons it is
preferable to define them for general graph grammars.

Definition 6.2 (pre-set, post-set, context)
Let G be a graph grammar. For any q ∈ P we define

•q = tLq(|Lq| − lq(|Kq|)) q• = tRq(|Rq| − rq(|Kq|))

q = tKq(|Kq|)

seen as sets of nodes and edges, and we say that q consumes, creates and preserves
items in •q, q• and q, respectively. Similarly for a node or an edge x in TG we write
•x, x and x• to denote the sets of productions which produce, preserve and consume
x, respectively.

For instance, for grammar G2 in Figure 6.1, the pre-set, context and post-set of
production q1 are •q1 = {C}, q1 = {B} and q1

• = {A,L}, while for the node B,
•B = ∅, B = {q1, q2, q3} and B• = {q4}.

Observe now that because of the dangling condition, a production q which con-
sumes a node n can be applied only if there are no edges with source or target in n
which remain dangling after the application of q. In other words, if n ∈ •q, e 6∈ •q
and n ∈ {s(e), t(e)} then the application of q is inhibited by the presence of e. By
analogy with inhibitor nets we introduce the inhibitor set of a production.

Definition 6.3 (inhibitor set)
Let G be a graph grammar. The inhibitor set of a production q ∈ P is defined by

�q = {e ∈ ETG | ∃n ∈
•q. n ∈ {s(e), t(e)} ∧ e 6∈ •q}

Similarly, for an edge e ∈ ETG we define the inhibitor set of e as the set of produc-
tions inhibited by e, namely �e = {q ∈ P | e ∈ �q}.

For instance, in the grammar G2 of Figure 6.1 the inhibitor set of q4 is �q4 = {L},
while for the edge L we have �L = {q4}.
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Figure 6.1: Two safe grammars and their net-like representation.

Note that with the above definition, a production q of a safe grammar G satisfies
the dangling condition (when using its typing as match) in a subgraph G of the type
graph TG if and only if �q ∩G = ∅.

The correspondence between safe grammars and inhibitor nets can be made more
explicit by observing that we can associate to any safe grammar G = 〈Gs, TG, P, π〉
an inhibitor net NG having the items of TG as places, Gs as initial marking, P as
set of transitions with pre-set, post-set, context and inhibitor set of each transition
defined exactly as in the grammar. Figure 6.2 shows the inhibitor nets corresponding
to the safe grammars G1 and G2 in Figure 6.1. It is possible to show that the gram-
mar G and the net NG have essentially the same behaviour in the sense that each
derivation in G corresponds to a step sequence in NG using the same productions and
leading to the same state, and vice versa. Although this fact is not used in a formal
way, the proposed translation can help in understanding how the work on contextual
and inhibitor nets influences the treatment of graph grammars in this chapter. It
is important to observe that the inhibitor net associated to a safe graph grammar
by the described translation has a very particular shape, as expressed below.
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•

A

q3 •

L

q1 •

B

q2

•

C

q1
L

A
q3 •

B

q2 q4

Figure 6.2: The inhibitor nets corresponding to the grammars G1 and G2 in Fig-
ure 6.1.

Remark 6.4
Let G be a safe grammar and let q, q′ ∈ P be two productions of G . Observe that
whenever q• ∩ �q′ 6= ∅ then necessarily q ր q′. In fact let e ∈ q• ∩ �q′. By definition
of �q′ the production q′ consumes a node n which is the source or the target of e.
Since, by definition of q•, the production q produces the edge e, it must produce or
preserve the node n. Consequently n ∈ (q• ∪ q) ∩ •q′ and thus q ր q′. For similar
reasons, if �q′ ∩ •q′′ 6= ∅ then q′′ ր q′.

Hence, differently from what happens in general inhibitor nets, if a production q
can inhibit a production q′ then q cannot be applied after q′. For instance, consider
the net NG2 in the right part of Figure 6.2. The production q1 can inhibit q4 since it
produces a token in L and indeed it must precede q4, since B ∈ q1 ∩

•q4. Similarly
q3 re-enables q4 and q3 ր q4. This means that, in a sense, (safe) graph grammars
computations are simpler than (safe) inhibitor nets computations.

Following the approach adopted for inhibitor nets, the causal and asymmetric
conflict relations for a graph grammar are defined without taking into account the
inhibitor sets, namely disregarding the dangling condition.

Definition 6.5 (causal relation)
The causal relation of a grammar G is the binary relation < over Elem(G ) defined
as the least transitive relation satisfying: for any node or edge x in the type graph
TG and for productions q1, q2 ∈ P

1. if x ∈ •q1 then x < q1;

2. if x ∈ q1
• then q1 < x;

3. if q1
• ∩ q2 6= ∅ then q1 < q2.

As usual ≤ denotes the reflexive closure of <. Moreover, for x ∈ Elem(G ) we write
⌊x⌋ for the set of causes of x in P , namely {q ∈ P | q ≤ x}.
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Definition 6.6 (asymmetric conflict)
The asymmetric conflict relation of a grammar G is the binary relation ր over the
set P of productions, defined by:

1. if q1 ∩
•q2 6= ∅ then q1 ր q2;

2. if •q1 ∩
•q2 6= ∅ and q1 6= q2 then q1 ր q2;

3. if q1 < q2 then q1 ր q2.

A nondeterministic occurrence grammar is an acyclic grammar which represents,
in a branching structure, several possible computations starting from its start graph
and using each production at most once. Again the dangling condition is not con-
sidered in the definition.

Definition 6.7 ((nondeterministic) occurrence grammar)
A (nondeterministic) occurrence grammar is a graph grammar O = 〈TG,Gs, P, π〉
such that

1. the causal relation ≤ is a partial order, and for any q ∈ P the set ⌊q⌋ is finite
and the asymmetric conflict ր is acyclic on ⌊q⌋;

2. the start graph Gs coincides with the set Min(O) of the items of the type graph
TG which are minimal with respect to causality ≤ (with the graphical structure
inherited from TG and typed by the inclusion);

3. each edge or node x in TG is created by at most one production in P , namely
| •x| ≤ 1;

4. for each production q : Lq
lq
← Kq

rq
→ Rq, the typing tLq is injective on the

“consumed part” |Lq|− lq(|Kq|), and similarly tRq is injective on the “produced
part” |Rq| − rq(|Kq|).

We denote by O-GG the full subcategory of GG having occurrence grammars as
objects.

Since the start graph of an occurrence grammar O is determined by Min(O), we
often do not mention it explicitly.

Intuitively, conditions (1)–(3) recast in the framework of graph grammars the
analogous conditions of occurrence contextual nets. Condition (4), is closely related
to safeness and requires that each production consumes and produces items with
“multiplicity” one. Observe that, together with acyclicity of ր, it disallows the
presence of some productions which surely could never be applied, because they fail
to satisfy the identification condition with respect to the typing morphism.
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The next proposition shows that, by the defining conditions, each occurrence
grammar is safe.

Proposition 6.8 (occurrence and safe grammars)
Each occurrence grammar O is safe.

Proof. Let O = 〈TG,P, π〉 be an occurrence grammar and let ρ : Gs ⇒∗ Gn be a derivation in O.
Since the grammar is consuming, namely each production has a non empty pre-set, and causality
≤ is a partial order (there are no “cycles”), every derivation in the grammar starting from the
start graph can apply each production at most once. Without any loss of generality we can assume
that each direct derivation of ρ applies a single production.

We show by induction on the order n of the derivation that the graph Gn is injective. For n = 0
just recall that Gs is a subgraph of TG, typed by the inclusion. If n > 0, by inductive hypothesis,
Gn−1 is injective. Moreover the typing of qn is injective on |Rqn

| − rqn
(|Kqn

|). This observation,
together with the fact that the items of the start graph have empty pre-set (they are minimal
with respect to causality) and each item of the type graph is produced by at most one production
implies that the graph Gn, which is obtained from Gn−1 by first “removing” Lqn

− lqn
(Kqn

) and
then “adding” Rqn

− rqn
(Kqn

), is injective. 2

Disregarding the dangling condition in the definition of occurrence grammar has
as a consequence the fact that, analogously to what happens for inhibitor nets, we
are not guaranteed that every production of an occurrence grammar is applicable
at least in one derivation starting from the start graph. The restrictions to the
behaviour imposed by the dangling condition are taken into account when defining
the configurations of an occurrence grammar, which represent exactly, in a sense
formalized later, all the possible deterministic runs of the grammar.

Definition 6.9 (configuration)
A configuration of an occurrence grammar O = 〈TG, P, π〉 is a subset C ⊆ P such
that

1. if րC denotes the restriction of the asymmetric conflict relation to C, then
(րC)∗ is a finitary partial order on C;

2. C is left-closed with respect to ≤, i.e. for all q ∈ C, q′ ∈ P , q′ ≤ q implies
q′ ∈ C;

3. for all e ∈ TG, if �e ∩ C 6= ∅ and •e ⊆ C then e• ∩ C 6= ∅.

If C satisfies conditions (1) and (2), then it is called a pre-configuration. The set of
all configurations of the grammar O is denoted by Conf (O).

Condition (1) ensures that in C there are no ր-cycles and thus it excludes the
possibility of having in C a subset of productions in conflict. Furthermore it guar-
antees that each production has to be preceded only by finitely many other pro-
ductions in the computation represented by the configuration. Condition (2) re-
quires the presence of all the causes of each production. Condition (3) considers
the dangling condition: for any edge e in the type graph, if the configuration con-
tains a production q inhibited by e and a production q′ producing such an edge
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then some production q′′ consuming e must be present as well, otherwise, due to
the dangling condition, q could not be executed. This requirement is better un-
derstood recalling that, as observed in Remark 6.4, in this situation, i.e., when
e ∈ q′• ∩ �q 6= ∅, necessarily q′ ր q, namely q′ must be applied before q in the com-
putation. Similar considerations apply if the edge e is present in the start graph,
i.e., •e = ∅. For example the set of configurations of the grammar G2 in Fig-
ure 6.1 is Conf (G2) = {∅, {q1}, {q1, q2}, {q1, q3}, {q1, q2, q4}, {q1, q3, q4}, {q4}}. The
set S = {q1, q4}, is instead only a pre-configuration, since for the edge L we have
q4 ∈

�L, •L = {q1} ⊆ S, but the intersection of S with L• = {q2, q3} is empty.
The notion is reminiscent of that of configuration of an inhibitor event structure.

Indeed we will prove later that the configurations of an occurrence grammar are
exactly the configurations of the ies associated to the grammar. The fact that an
occurrence grammar configuration does not include an explicit choice relation can
be understood, for the moment, by recalling Remark 6.4 which implies that the
productions in a configuration implicitly determine their order of application.

The claim that configurations represent all and only the deterministic runs of an
occurrence grammar is formalized by the following result. We first need the notion of
reachable graph associated to a configuration, which extends an analogous concept
introduced in [CMR96], in the case of deterministic occurrence grammars.

Definition 6.10 (reachable graphs)
Let O = 〈TG, P, π〉 be an occurrence grammar. For any C ⊆ P , finite configuration
of O, the reachable set associated to C is the set of nodes and edges reach(C) ⊆
Items(TG) defined as

reach(C) = (Min(O) ∪
⋃
q∈C q

•)−
⋃
q∈C

•q.

Proposition 6.11 (configurations and derivations)
Let C be any configuration of an occurrence grammar O. Then reach(C) is a well-
defined subgraph of the type graph TG and, moreover, Min(O) ⇒∗C reach(C) with
a derivation which applies exactly once every production in C, in any order con-
sistent with (րC)∗. Vice versa for each derivation Min(O) ⇒∗S G in O, the set of
productions S it applies is a configuration and G = reach(S).

Proof. Let C ∈ Conf (O) be any finite configuration of O. The fact that reach(C) is a well-defined
subgraph of the type graph TG and Min(O)⇒∗

C reach(C) can be proved by induction on |C|. The
base case in which |C| = 0, namely C = ∅, is trivial since, by definition, Min(O) = reach(∅). If
instead |C| > 0 consider any production q ∈ C, maximal with respect to (րC)∗ (such a production
exists since (րC)∗ is a partial order and C is finite). It is easy to see that C−{q} is a configuration
and therefore, by inductive hypothesis,

Min(O)⇒∗
C−{q} G

where G = reach(C − {q}). By point (1) in the definition of configuration, entailing that րC is
acyclic, and by point (2) we immediately get that •q∪ q ⊆ G. Furthermore, by point (3), �q∩G =
∅ and thus q satisfies also the dangling condition. Recalling that q satisfies the identification
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condition by definition of occurrence grammar, we deduce that q is applicable to G and thus
G⇒q (G− •q) ∪ q•. Since in an occurrence grammar the post-sets of productions are all disjoint
we conclude that (G− •q) ∪ q• = reach(C) and thus

Min(O)⇒∗
C reach(C)

The second part of the proposition can be proved essentially by reversing the above steps. 2

As an immediate consequence of the previous result, a production which does
not satisfy the dangling condition in any graph reachable from the start graph (and
thus which is never applicable) is not part of any configuration. For example, q3 does
not appear in the set of configurations of G1, Conf (G1) = {∅, {q1}, {q2}, {q1, q2}}.

6.2 Nondeterministic graph processes

In the theory of Petri nets the notion of occurrence net is strictly related to that
of process. A (non)deterministic net process is a (non)deterministic occurrence net
with a suitable morphism to the original net. Similarly, nondeterministic occurrence
grammars can be used to define a notion of nondeterministic graph processes, gener-
alizing the deterministic graph processes of [CMR96, BCM98a]. Then, the unfolding
of a grammar, as introduced in the next section, can be seen as a “complete” non-
deterministic process of the grammar, expressing all the possible computations of
the grammar.

A nondeterministic graph process is aimed at representing in a unique “branch-
ing” structure several possible computations of a grammar. The underlying occur-
rence grammar makes explicit the causal structure of such computations since each
production can be applied at most once and each item of the type graph can be
“filled” at most once. Via the morphism to the original grammar, productions and
items of the type graph in the occurrence grammar can be thought of, respectively,
as instances of applications of productions and instances of items generated in the
original grammar by such applications. Actually, to allow for such an interpretation,
some further restrictions have to be imposed on the process morphism. Recall that
process morphisms in Petri net theory must map places to places (rather than to
multisets of places) and must be total on transitions. Similarly, for graph process
morphisms the left component of the type-span is required to be an isomorphism in
such a way that the type-span can be thought of simply as a total graph morphism.
Furthermore a process morphism cannot map a production to the empty production,
a requirement corresponding to totality.

Definition 6.12 (strong morphism)
A grammar morphism f : G1 → G2 is called strong if

1. fLT : XfT → TG1 is an isomorphism;

2. fP (q1) 6= ∅, for any q1 ∈ P1.
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Figure 6.3: Graph processes.

In the following, without any loss of generality, we will always choose as concrete
representative of the type-span of a strong grammar morphism f , a span fT such
that the left component fLT is the identity idTG1.

Definition 6.13 (graph process)
Let G be a graph grammar. A (marked) graph process of G is a strong grammar
morphism ϕ : Oϕ → G , where Oϕ is an occurrence grammar. We will denote by
TGϕ, Gsϕ, Pϕ and πϕ the components of the occurrence grammar Oϕ underlying a
process ϕ.

Alternatively, if GG∗ indicates the subcategory of GG having the same objects and
strong grammar morphisms as arrows, then the category of processes of a grammar
G can be simply defined as the comma category 〈O-GG ↓ G 〉 in GG∗.

It is not difficult to verify that, if f : G1 → G2 is a strong morphism then, by con-
dition (1) in the definition of grammar morphism (Definition 5.33), ιsf : |Gs2| → |Gs1|
is an isomorphism. Similarly, by condition (2), for each production q1 ∈ P1, ιf (q1) is
a triple of isomorphisms, namely each production of G1 is mapped to a production of
G2 with associated isomorphic (untyped) span. Furthermore the pullback-retyping
construction induced by fT becomes extremely simple: when applied to graph G1

typed over TG1 it produces (up to isomorphism) the graph 〈|G1|, tTG1; f
R
T 〉 obtained

by composing the typing morphism of G1 with fRT .
In this situation the conditions on a process ϕ requiring the preservation of

the start graph and of the productions spans, can be expressed by simply asking
the commutativity of the diagrams in Figure 6.3, the right one for any production
q′ ∈ Pϕ. Moreover, since the left-component of ϕT is assumed to be the identity, to
lighten the notation we will sometimes omit the superscript R when denoting the
right component ϕRT .

To understand when two graph processes ϕ1 and ϕ2 are isomorphic as objects
of 〈O-GG ↓ G 〉 in GG∗, first consider a generic morphism f : ϕ1 → ϕ2 in such a
category. According to the definition of comma category, f : O1 → O2 is a grammar
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morphism such that ϕ2 ◦ f = ϕ1, as shown below

O1
f

ϕ1

O2

ϕ2

G

Since ϕ1 and ϕ2 are strong morphisms, it immediately follows that the left com-
ponent of the type span fT must be an isomorphism (although f is not necessarily
strong since fP may map some productions to the empty one). Moreover the compo-
nent ιf of the morphism must be a collection of isomorphisms, which are completely
determined by the ι components of ϕ1 and ϕ2. Exploiting these observations we
conclude the following characterization of the isomorphism between processes which
essentially states that the isomorphism is completely determined by the right com-
ponent of the type span and by the production component.

Proposition 6.14 (isomorphism of graph processes)
Let ϕ1 and ϕ2 be two processes of the grammar G . Then ϕ1 and ϕ2 are isomorphic
if and only if there exists a pair 〈fT , fP 〉, where

1. fT : 〈TGϕ1, ϕ1T 〉 → 〈TGϕ2, ϕ2T 〉 is an isomorphism (of TG-typed graphs);

2. fP : Pϕ1 → Pϕ2 is a bijection such that ϕ1P = ϕ2P ◦ fP ;

3. the left diagram in Figure 6.4 commutes;

4. for each q1 : (L1 ← K1 → R1) in Pϕ1, q2 = fp(q1) : (L2 ← K2 → R2) in
Pϕ2, if q = ϕ1P (q1) = ϕ2P (q2) : (L ← K → R) in P , the right diagram in
Figure 6.4 commutes.

To indicate that ϕ1 and ϕ2 are isomorphic we write ϕ1
∼= ϕ2.

In the sequel when speaking of an isomorphism of processes we will always refer to
the pair 〈fT , fP 〉 rather than to the entire morphism.

In the next chapter we will restrict to deterministic processes and define an
operation of sequential composition on them. As in the case of nets, to have a
meaningful notion of composition, one must consider “unmarked” processes, starting
from any graph instead that from the start graph of the grammar.

Definition 6.15 (unmarked graph process)
An unmarked strong grammar morphism is a grammar morphism satisfying all the
conditions of Definition 6.12, but the preservation of the start graph.

An unmarked graph process of a graph grammar G is an unmarked strong gram-
mar morphism ϕ : Oϕ → G , where Oϕ is an occurrence grammar.

All the definitions and results introduced in this section can be easily adapted to
unmarked processes simply by forgetting the conditions on the start graph.
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Figure 6.4: Graph process isomorphism.

6.3 Unfolding construction

This section introduces the unfolding construction which, when applied to a consum-
ing grammar G , produces a nondeterministic occurrence grammar Ug(G ) describing
the behaviour of G . The unfolding is equipped with a strong grammar morphism
ϕG to the original grammar G , making it a process of G .

The unfolding is constructed by starting from the start graph of the grammar,
then applying in all possible ways its productions, and recording in the unfolding
each occurrence of production and each new graph item generated in the rewrit-
ing process, both enriched with the corresponding causal history. According to the
discussion in the previous section, in the unfolding procedure, productions are ap-
plied without considering the dangling condition. Moreover we adopt a notion of
concurrency which is “approximated”, again in the sense that it does not take care
of the precedences between productions induced by the dangling condition. In the
analogy between graph grammars and inhibitor nets, this corresponds to applying
the unfolding construction to the contextual net obtained by forgetting the inhibitor
arcs. Recall that in the case of inhibitor nets, the net obtained by unfolding the un-
derlying contextual net is finally “enriched” by inserting again the inhibitor arcs.
Since for a graph grammar the inhibitor set of a production is implicitly given by
the typing of the production, the result of the unfolding construction needs not to
be further modified.

Definition 6.16 (quasi-concurrent graph)
Let O = 〈TG, P, π〉 be an occurrence grammar. A subgraph G of TG is called quasi-
concurrent if

1.
⋃
x∈G⌊x⌋ is a pre-configuration;

2. ¬(x < y) for all x, y ∈ G.
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Another basic ingredient for the unfolding is the gluing operation. It can be
interpreted as a “partial application” of a rule to a given match, in the sense that
it generates the new items as specified by the production (i.e., items of right-hand
side not in the interface), but items that should have been deleted are not affected:
intuitively, this is because such items may still be used by another production in the
nondeterministic unfolding.

Definition 6.17 (gluing)
Let q be a TG-typed production, G a TG-typed graph and m : Lq → G a graph
morphism. We define, for any symbol ∗, the gluing of G and Rq along Kq, according
to m and marked by ∗, denoted by glue∗(q,m,G), as the graph 〈N,E, s, t〉, where:

N = NG ∪m∗(NRq) E = EG ∪m∗(ERq)

with m∗ defined by: m∗(x) = m(x) if x ∈ Kq and m∗(x) = 〈x, ∗〉 otherwise. The
source and target functions s and t, and the typing are inherited from G and Rq.

The gluing operation keeps unchanged the identity of the items already in G, and
records in each newly added item from Rq the given symbol ∗. Notice that the gluing,
as just defined, is a concrete deterministic definition of the pushout of the arrows

G
m
← Lq

lq
←֓ Kq and Kq

rq
→֒ Rq.

As described below, the unfolding of a graph grammar is obtained as the limit
of a chain of occurrence grammars, which approximate the unfolding up to a certain
causal depth. The next definition formally introduces the notion of depth.

Definition 6.18 (depth)
Let O = 〈TG, P, π〉 be an occurrence grammar. The function depth : Elem(O)→ N

is defined inductively as follows:

depth(x) = 0 for x ∈ |Gs| = Min(O);
depth(q) = max{depth(x) | x ∈ •q ∪ q}+ 1 for q ∈ P ;
depth(x) = depth(q) for x ∈ q•.

It is not difficult to prove that depth is a well-defined total function, since infinite
descending chains of causality are disallowed in occurrence grammars. Moreover,
given an occurrence grammar O , the grammar containing only the items of depth
less or equal to n, denoted by O [n], is a well-defined occurrence grammar. As expected
the following result holds.

Proposition 6.19
An occurrence grammar O is the (componentwise) union of its subgrammars O [n],
of depth n.

Moreover it is not difficult to see that if g : O → G is a grammar morphism, then for
any n ∈ N, g restricts to a morphism g[n] : O [n] → G . In particular, if TG[n] denotes
the type graph of O [n], then the type-span of g[n] will be the equivalence class of
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TG[n] X [n]

gR
T

[n]
gL
T

[n]
TGG

where X [n] = {x ∈ Xg | g
L
T (x) ∈ TG[n]}. Vice versa each morphism g : O → G is

uniquely determined by its truncations at finite depths.
We are now ready to present the unfolding construction.

Definition 6.20 (unfolding)
Let G = 〈TG,Gs, P, π〉 be a (consuming) graph grammar. We inductively define,

for each n, an occurrence grammar Ug(G )[n] = 〈TG[n], P [n], π[n]〉 and a morphism

ϕ[n] = 〈ϕT
[n], ϕP

[n], ι[n]〉 : Ug(G )[n] → G . Then the unfolding Ug(G ) and the fold-
ing morphism ϕG : Ug(G ) → G are the occurrence grammar and strong grammar

morphism defined as the componentwise union of Ug(G )[n] and ϕ[n], respectively.
Since each morphism ϕ[n] is strong, assuming that the left component of the

type-span ϕT
[n] is the identity on TG[n], we only need to define the right component

ϕRT
[n]

: TG[n] → TG, which, by the way, makes 〈TG[n], ϕRT
[n]
〉 a TG-typed graph.

(n = 0) The components of the grammar Ug(G )[0] are TG[0] = |Gs|, P
[0] = π[0] = ∅,

while morphism ϕ[0] : Ug(G )[0] → G is defined by ϕRT
[0]

= tGs, ϕP
[0] = ∅, and

ι[0]
s

= id|Gs|.

(n→ n + 1) Given Ug(G )[n], the occurrence grammar Ug(G )[n+1] is obtained by ex-
tending it with all the possible production applications to quasi-concurrent subgraphs
of the type graph of Ug(G )[n]. More precisely, let M [n] be the set of pairs 〈q,m〉 such

that q ∈ P is a production in G and m : Lq → 〈TG
[n], ϕRT

[n]
〉 is a match satisfying

the identification condition, with m(|Lq|) quasi-concurrent subgraph of TG[n]. Then

Ug(G )[n+1] is the occurrence grammar resulting after performing the following steps
for each 〈q,m〉 ∈M [n].

• Add to P [n] the pair 〈q,m〉 as a new production name and extend ϕP
[n] so that

ϕP
[n](〈q,m〉) = q. Intuitively, 〈q,m〉 represents an occurrence of q, where the

match m is needed to record the “history”.

• Extend the type graph TG[n] by adding to it a copy of each item generated by
the application q, marked by 〈q,m〉 (in order to keep trace of the history). The

morphism ϕRT
[n]

is extended consequently. More formally, the TG-typed graph

〈TG[n], ϕRT
[n]
〉 is replaced by glue〈q,m〉(q,m, 〈TG

[n], ϕRT
[n]
〉).

• The production π[n](〈q,m〉) has the same untyped span of π(q) and the mor-
phisms ι[n](〈q,m〉) are identities, that is ι(〈q,m〉) = 〈id|Lq|, id|Kq|, id|Rq|〉. The
typing of the left-hand side and of the interface is determined by m, and each
item x of the right-hand side which is not in the interface is typed over the
corresponding new item 〈x, 〈q,m〉〉 of the type graph.
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It is not difficult to verify that for each n, Ug(G )[n] is a (finite depth) nondetermin-

istic occurrence grammar, and Ug(G )[n] ⊆ Ug(G )[n+1], componentwise. Therefore
Ug(G ) is a well-defined occurrence grammar. Similarly for each n ∈ N we have

that ϕ[n] is a well-defined morphism from Ug(G )[n] to G , which is the restriction to

Ug(G )[n] of ϕ[n+1]. This induces a unique morphism ϕG : Ug(G )→ G .

The deterministic gluing construction ensures that, at each step, the order in
which productions are applied does not influence the final result of the step. Moreover
if a production is applied twice at the same match (even if in different steps), the
generated items are always the same and thus they appear only once in the unfolding.

It is possible to show that the unfolding construction applied to an occurrence
grammar yields a grammar which is isomorphic to the original one. This is essentially
a consequence of the fact that for each production q of an occurrence grammar the
(image via the typing morphism of the) left-hand side of q is always quasi-concurrent
and the typing morphism tLq satisfies the identification condition, as it can easily
derived from Definition 6.1.

6.4 The unfolding as a universal construction

The unfolding construction has been defined, up to now, only at “object level”. This
section faces the problem of characterizing the unfolding as a coreflection between
suitable categories of graph grammars and of occurrence grammars. As in the case
of contextual and inhibitor nets, we first restrict to a full subcategory SW-GG
of GG where objects satisfy conditions analogous to those defining semi-weighted
P/T Petri nets. Then we show that the unfolding construction can be extended to
a functor Ug : SW-GG → O-GG that is right adjoint to the inclusion functor
IO : O-GG→ SW-GG.

The restriction to the semi-weighted case is essential for the above categorical
construction when one uses general morphisms. However, suitably restricting graph
grammars morphisms to still interesting subclasses (comprising, for instance, the
morphisms of [Rib96, HCEL96]) it is possible to regain the categorical semantics for
general, possibly non semi-weighted, grammars.

6.4.1 Unfolding of semi-weighted graph grammars

A graph grammar is semi-weighted if the start graph is injective and the right-hand
side of each production is injective when restricted to produced items (namely, to
the items which are not in the interface). It is possible to show that, if we encode a
Petri net N as a grammar GN , according to the translation sketched in Section 5.1.1,
then N is a semi-weighted net if and only if GN is a semi-weighted grammar.
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Definition 6.21 (semi-weighted grammars)
A TG-typed production L ← K → R is called semi-weighted if tR is injective on
the “produced part” of R, namely on |R| − r(|K|). A grammar G is called semi-
weighted if the start graph Gs is injectively typed and for any q ∈ P the production
π(q) is semi-weighted. We denote by SW-GG the full subcategory of GG having
semi-weighted grammars as objects.

The coreflection result strongly relies on the technical property which is stated
in the next lemma. It is important to notice that this is a key point where the
restriction to semi-weighted grammars plays a role, since, as we will see, the lemma
fails to hold for arbitrary grammars.

Lemma 6.22
Let G = 〈TG,Gs, P, π〉 be a semi-weighted grammar, let O = 〈TG′, G′s, P

′, π′〉 be an
occurrence grammar and let f : O → G be a grammar morphism. Then the type
span [fT ] of the morphism is relational.

Proof. Recall from Section 5.3 (Definition 5.32) that the span fT : TG′ ↔ TG is relational if
〈fLT , f

R
T 〉 : XfT

→ TG× TG′ is mono. In turn, in the categories Set and Graph this amounts to
say

∀x, y ∈ XfT
. fRT (x) 6= fRT (y) ∨ fLT (x) 6= fLT (y)

We proceed by contraposition. Consider x, y ∈ XfT
such that fLT (x) = fLT (y) = z′ and fRT (x) =

fRT (y) = z. Since O is an occurrence grammar, necessarily z′ is in the start graph or in the post-set
of some production. Let us assume that z′ ∈Min(O). By definition of grammar morphism, there
exists a morphism k : |Gs| → XfT

such that the following diagram commutes and the square is a
pullback, where the unlabelled arrow is an inclusion:

Min(O) |Gs|
tGs

ιsf

k

TG′ XfT
fL

T fR
T

TG

The fact that fLT (x) = fLT (y) = z and z ∈ Min(O) implies that there are x′′, y′′ ∈ |Gs| such that
k(x′′) = x and k(y′′) = y. Recalling that the triangle on the right commutes we have

tGs
(x′′) = fLT (k(x′′)) = fLT (x) = fLT (y) = fLT (k(y′′)) = tGs

(y′′)

Since the graph Gs is injectively typed, we conclude that x′′ = y′′, and thus x = k(x′′) = k(y′′) = y

that is what we wanted to prove. A similar reasoning applies if the item z belong the post-set of
some production, since the grammar is semi-weighted and thus productions are injectively typed
on the produced part. 2

Observe that, as an immediate consequence of the above lemma, if f : O → G is
a grammar morphism, where G is a semi-weighted grammar and O is an occurrence
grammar, then the morphism k, such that fT{ι

s
f , k}(Gs, Gs′) (see Definition 5.33,

condition (1)) is uniquely determined. Similarly, for each q ∈ P , with q′ = fP (q),
the morphisms kL, kK and kR such that fT{ι

X
f (q), kX}(Xq, Xq′) for X ∈ {L,K,R}

(see Definition 5.33, condition (2)) are uniquely determined.
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Figure 6.5: The construction mapping safe grammars into i-nets is not functorial.

Some considerations on morphisms between occurrence grammars are now in
order. Let f : O1 → O2 be a grammar morphism, where O1 and O2 are occurrence
grammars. Since, by Lemma 6.22, [fT ] is relational we will sometimes confuse it with
the corresponding relation between the items of TG1 and TG2, namely with

{(x1, x2) | ∃x ∈ XfT . f
L
T (x) = x1 ∧ fRT (x) = x2}

and we will write fT (x1, x2) to mean that there exists x ∈ XfT such that fLT (x) = x1

and fRT (x) = x2. By definition of grammar morphism such relation preserves the
start graph and pre-set, post-set and context of productions of O1.

Incidentally, observe that, instead, condition (2.d) in the definition of i-net mor-
phism (Definition 4.33) in general does not hold for grammar morphisms. Therefore
the construction, described in Section 6.1, which associates to each safe grammar
an inhibitor net is not functorial. An example of occurrence grammar morphism not
meeting the mentioned condition is reported in Figure 6.5. The morphism relates
items (production names or graph items) of the first grammar to items of the second
grammar with the same name, (possibly) without “primes”. It is not difficult to see
that this is a legal grammar morphism, but the inhibitor set of q2 is not reflected
since L ∈ �q2, L

′ and L′′ are mapped to L, but �q′2 contains only L′′ (while to
satisfy condition (2.d) it should have been �q′2 = {L′, L′′}). The fact that graph
grammar morphisms are more liberal than inhibitor net morphisms is intuitively
justified by the particular properties of the inhibitor set of productions in graph
grammars observed in Remark 6.4.

An important property of morphisms between occurrence grammars, which will
play a central role in the proof of the coreflection, is the fact that they “preserve”
quasi-concurrency. Furthermore quasi-concurrent items cannot be identified by a
morphism. This lemma can be proved along the same lines of an analogous result
which hold for morphisms of contextual Petri nets. In fact, the notion of quasi-
concurrency disregards the dangling condition, taking into account only causality
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and asymmetric conflict, two kind of dependencies whose treatment is basically the
same for grammars and contextual nets.

Lemma 6.23 (preservation of concurrency)
Let O1 and O2 be occurrence grammars, let f : O1 → O2 be a grammar morphism,
and consider, for i ∈ {1, 2}, a TGi-typed graph Gi. If fT (G1, G2) and tG1(|G1|) is a
quasi-concurrent subgraph of TG1 then tG2(|G2|) is a quasi-concurrent subgraph of
TG2. Furthermore for all x, y ∈ tG1(|G1|) and z ∈ tG2(|G2|), if fT (x, z) and fT (y, z)
then x = y.

Occurrence grammars are particular semi-weighted grammars, thus we can con-
sider the inclusion functor IO : O-GG → SW-GG. The next theorem shows that
the unfolding of a grammar Ug(G ) and the folding morphism ϕG are cofree over G .
Therefore Ug extends to a functor that is right adjoint of IO and thus establishes
a coreflection between SW-GG and O-GG.

Theorem 6.24 (coreflection between SW-GG and O-GG)
Let G be a semi-weighted grammar, let Ug(G ) be its unfolding and let ϕ : Ug(G )→ G
be the folding morphism as in Definition 6.20. Then for any occurrence grammar O
and for any morphism g : O → G there exists a unique morphism h : O → Ug(G )
such that the following diagram commutes:

Ug(G )
ϕ

G

O

h g

Therefore IO ⊣ Ug.

Proof (Sketch). To avoid a cumbersome notation, let us fix the names of the compo-
nents of the various grammars. Let G = 〈TG,Gs, P, π〉, Ug(G ) = 〈TG′, G′

s, P
′, π′〉, and let

O = 〈TGo, Gso
, Po, πo〉.

According to Definition 5.33, a morphism h : O → Ug(G ) is determined by a semi-abstract
span [hT ] : TGo → TG′, a function hP : Po → P ′, and a family of morphisms ιh = {ιh(qo) | qo ∈
Po} ∪ {ι

s
h} satisfying suitable requirements.

As a first step, we show that both the left component of [hT ] and the family ιh are uniquely
determined by the condition ϕ ◦ h = g and by the properties of the folding morphism ϕ. In fact,
let in the following diagram 〈gLT , XgT

, gRT 〉 : TGo → TG be an arbitrary but fixed representative of
[gT ], and let 〈id, TG′, ϕRT 〉 : TG

′ → TG be a representative of [ϕT ] (where, being ϕ strong, we can
choose the identity of TG′ as left component).

XgT

hR
Tid

gL
T gR

T

TGo XgT
gL

T hR
T

TG′ TG′
id ϕR

T

TG

Then it is easily shown that for any semi-abstract span [hT ] : TGo → TG′ such that [ϕT ] ◦ [hT ] =
[gT ] we can choose a representative of the form 〈gLT , XgT

, hRT 〉 for some hRT , because the inner square
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becomes a pullback. This shows that, without any loss of generality, we can assume that the left
components of [hT ] and [gT ] coincide.

As far as the family of morphisms ιh is concerned, recall that morphism ιsϕ : |Gs| → |G
′
s|

is the identity by Definition 6.20; thus, since ϕ ◦ h = g implies ιsh ◦ ι
s
ϕ = ιsg, we deduce that

ιsh = ιsg. The same holds for the components of ιh(qo) for any production qo ∈ Po, by observing
that ιh(qo)◦ ιϕ(hP (qo)) = ιg(qo) must hold, and that ιϕ(q′) is a triple of identities for each q′ ∈ P ′.

Existence

We will show inductively that for each n ∈ N we can find a morphism h[n] such that the diagram

Ug(G )
ϕ

G

O [n]

h[n]

g[n]

commutes, and such that h[n+1] extends h[n]. Then the morphism h we are looking for will be the
componentwise union of the chain of morphisms {h[n]}n∈N.

(k = 0) By definition, the occurrence grammar O [0] consists of the start graph of O only, typed
identically on the type graph, with no productions, i.e., O [0] = 〈|Gso

|, ∅, ∅〉. By the considerations
above, to determine morphism h[0] : O [0] → Ug(G ) we only have to provide the right component

hRT
[0]

: XgT

[0] → TG′ of [hT
[0]]. Moreover, to be a well defined grammar morphism, h[0] must

preserve the start graph. By condition (1) of Definition 5.33 applied to g[0] : O [0] → G , there

is a morphism k : |Gs| → XgT

[0] such that the diagram below commutes, and the square is a
pullback. Furthermore, by the pullback properties k is an isomorphism, and, being G a semi-
weighted grammar, by Lemma 6.22, k is uniquely determined.

|Gso
|

id

|Gs|

tGs

ιsg

k

|Gso
| XgT

[0]

gL
T

[0]
gR

T

[0]
TG

Now we define hRT
[0]

= tGs
◦ k−1, completing the definition of h[0]. The next diagram shows that

h[0] satisfies the requirement of preservation of the start graph. The fact that g[0] = ϕ ◦ h[0] easily
follows by construction.

|Gso
|

id

|Gs|
tG′

s

ιsg

k

|Gso
| XgT

[0]

gL
T

[0]
hR

T

[0]
=tG′

s
◦k−1

TG′

(n → n+1) We have to define morphism h[n+1] : O [n+1] → Ug(G ) by extending h[n] to the items
of TGo ∪ Po of depth equal to n+ 1. Without any loss of generality we assume that there is just
one production qo in O [n+1] with depth(qo) = n + 1 (the general case can be carried out in a

completely analogous way). To ensure ϕP ◦ hP
[n+1] = gP

[n+1], the production qo must be mapped
to a production q′ in Ug(G ), which is an occurrence of the production q = gP (qo) of G . In other
words, q′ will be 〈q,m〉, with m : Lq → 〈TG′, ϕRT 〉 a match satisfying suitable conditions.
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The defining conditions of grammar morphisms, applied to g[n] : O [n] → G , ensure the existence
of a morphism kL, such that the diagram below commutes, where the square is a pullback.

|Lqo
|

tLqo

|Lq|
tLq

ιLg (qo)

kL

TGo
[n] XgT

[n]

gL
T

[n]
gR

T

[n]
TG

Moreover, being G a semi-weighted grammar, by Lemma 6.22 gT is relational and thus the arrow
kL is uniquely determined. By Definition 6.18, depth(x) ≤ n for all x ∈ tLqo

(|Lqo
|) = •qo ∪ qo,

and thus h[n] is defined on the pre-set and on the context of qo. Therefore we can construct the
following diagram.

|Lqo
|

tLqo

|Lq|

m=hR
T

[n]
◦kL

ιLg (qo)

kL

TGo
[n] XgT

[n]

gL
T

[n]
hR

T

[n]
TG′

Notice that m = hRT
[n]
◦ kL can be seen as a TG-typed graph morphism from Lq to 〈TG′, ϕRT 〉.

In fact, it satisfies ϕRT ◦ m = ϕRT ◦ h
R
T

[n]
◦ kL = gRT

[n]
◦ kL = tLq

. Moreover, recalling that

hT
[n] = 〈gLT

[n]
, hRT

[n]
〉, by the diagram above we have that hT

[n](Lqo
, 〈|Lq|,m〉). Since by definition

of occurrence grammar tLqo
(|Lqo

|) is a quasi-concurrent subgraph of TGo, by using Lemma 6.23,
we can conclude that m(|Lq|) is a quasi-concurrent subgraph of TG′. Let us prove that, in addition,
the mapping m satisfies the identification condition. First observe that for x, y ∈ |Lq|

m(x) = m(y) ⇒ kL(x) = kL(y). (†)

In fact, assume that m(x) = m(y), let x′ = kL(x) and y′ = kL(y) and suppose x′ 6= y′. From

the fact that m(x) = m(y) we deduce hRT
[n]

(x′) = hRT
[n]

(y′), and therefore, since h[n] is rela-

tional, gLT
[n]

(x′) 6= gLT
[n]

(y′). Now observe that, by commutativity of the square in the diagram

above, gLT
[n]

(x′), gLT
[n]

(y′) ∈ tLqo
(|Lqo

|) and moreover hT
[n](gLT

[n]
(x′), z), hT

[n](gLT
[n]

(y′), z), where
z = m(x) = m(y). But according to Lemma 6.23 this would imply that tLqo

(|Lqo
|) is not quasi-

concurrent, contradicting the definition of occurrence grammar. Hence, as desired, it must be
kL(x) = kL(y). We can now conclude that m satisfies the identification condition, namely that for
x, y ∈ |Lq|

m(x) = m(y) ⇒ x, y ∈ |Kq|.

In fact, suppose that m(x) = m(y). By (†) above we have that kL(x) = kL(y), hence, by general
pullback properties, ιLg (q0)(x) 6= ιLg (q0)(y) and, by commutativity of the square in the diagram

above, tLqo
(ιLg (q0)(x)) = tLqo

(ιLg (q0)(y)). Recalling that tLqo
satisfies the identification condition

we get that ιLg (q0)(x) and ιLg (q0)(y) must be in |Kqo
|, and thus x, y ∈ |Kq|.

Since m : Lq → 〈TG′, ϕRT 〉 is a match satisfying the identification condition and m(|Lq|)
is quasi-concurrent, by definition of unfolding q′ = 〈q,m〉 is a production name in P ′. Then

the production component hP
[n+1] of the morphism h[n] can be defined by extending hP

[n] with
hP

[n+1](qo) = q′. The diagram above shows that, with this extension, the left-hand side of the
production is preserved. Now, it can be seen that there is a unique way of extending the type-span
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hT
[n] to take into account also the right-hand side of production q′. In fact, consider the diagram

below expressing, for morphism g[n+1], the preservation of the right-hand side of qo.

|Rqo
|

tRqo

|Rq|
tRq

ιRg (qo)

kR

TGo
[n+1] XgT

[n+1]

gL
T

[n+1]
gR

T

[n+1]
TG

To complete the definition of h[n] we must define the right component hRT
[n+1]

: XgT

[n+1] → TG′,

extending hRT
[n]

on the items which are in X = XgT

[n+1] − XgT

[n]. Now one can verify that kR

establishes an isomorphism between X and |Rq| − rq(|Kq|). Then the condition requiring that

hT
[n+1] preserves the right-hand side of qo forces us to define, for each x ∈ X , hRT

[n+1]
(x) =

tLq′
(kR

−1
(x)).

The fact that g[n] = ϕ ◦ h[n] easily follows by construction.

Uniqueness
Uniqueness essentially follows from the fact that at each step we are forced to define the morphism
h as we have done to ensure commutativity. 2

6.4.2 Unfolding of general grammars

A natural question regards the possibility of extending the universal characteriza-
tion of the unfolding construction to the whole category GG of graph grammars.
It should be noticed that the proof of the uniqueness of the morphism h in Theo-
rem 6.24 strongly relies on Lemma 6.22 which in turn requires the grammar G to be
semi-weighted. Unfortunately the problem does not reside in our proof technique:
the cofreeness of the unfolding of Ug(G ) and of the folding morphism ϕG over G
may really fail to hold if the grammar G is not semi-weighted.

For instance, consider grammars G1 and G2 in Figure 6.6, where typed graphs
are represented by decorating their items with pairs “concrete identity:type”. The
grammar G2 is not semi-weighted since the start graph is not injectively typed,
while G1 is clearly an occurrence grammar. The unfolding Ug(G2) of the grammar
G2, according to Definition 6.20, is defined as follows. The start graph and type
graph of Ug(G2) coincide with |Gs2|. Furthermore, Ug(G2) contains two productions
q′2 = 〈q2, m

′〉 and q′′2 = 〈q2, m
′′〉, which are two occurrences of q2 corresponding to

the two possible different matches m′, m′′ : Lq2 → Gs2 (the identity and the swap).
Observe that there exists a morphism g : G1 → G2 which is not relational, i.e., the

property in Lemma 6.22 fails to hold. The component gP on productions is defined by
gP (q1) = q2, while the type span gT is defined as follows: XgT is a discrete graph with
two nodes x and y, gLT (x) = gLT (y) = A and gLT (x) = gLT (y) = B (see the bottom row
of the diagram in Figure 6.6). Consider the pullback-retyping diagram in Figure 6.6,
expressing the preservation of the start graph for morphism g (condition (1) of
Definition 5.33). Notice that there are two possible different morphisms k and k′
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|Gin2 ||Gin1 |

Grammar G 1 Grammar G 2

q1

1

x

TG1 XgT
TG2

B

q2

A

1 2

y

A 2:BB1:A 1:B
TG1 = Gin2 =TG2 =Gin1 =

2:B1:A 1:B

Figure 6.6: The grammars G1 and G2, and the pullback-retyping diagram for their
start graphs.

from |Gs2| to XgT (represented via plain and dotted arrows, respectively) making
the diagram commutes and the square a pullback. Now, it is not difficult to see
that, correspondingly, we can construct two different morphisms hi : G1 → Ug(G2)
(i ∈ {1, 2}), such that ϕG2 ◦ hi = g, the first one mapping production q1 into q′2 and
the second one mapping q1 into q′′2 . An immediate consequence of this fact is the
impossibility of extending Ug on morphisms, in order to obtain a functor which is
right adjoint to the inclusion I : O-GG→ GG.

The above considerations, besides giving a negative result, also suggest a way
to overcome the problem. An inspection of the proof of Theorem 6.24 reveals that
the only difficulty which prevents us to extend the result is the non uniqueness of
the morphisms k, kL, kK and kR in the pullback-retyping constructions. In other
words, if we consider any morphism g : O → G such that [gT ] is relational then we
can prove, as in Theorem 6.24, the existence of a unique morphism h : O → Ug(G )
making the following diagram commute:

Ug(G )
ϕ

G

O

h
g

Hence the coreflection result can be regained by limiting our attention to a (non

full) subcategory ĜG of GG, where objects are general graph grammars, but all
morphisms have a relational span as type component. Then, the only thing to prove
is that the unique morphism h constructed in the proof of Theorem 6.24 is indeed
an arrow in ĜG.
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The näıve solution of taking all relational morphisms as arrows of ĜG does not
work because they are not closed under composition. A possible appropriate choice
is instead given by the category GGR, where the arrows are grammar morphisms f
such that the left component fLT of the type span is mono.

Definition 6.25 (Category GGR)
We denote by GGR the lluf subcategory of GG, where for any arrow f the left

component fLT of the type span is mono. Furthermore we denote by O-GGR the full
subcategory of GGR having occurrence grammars as objects.

By the properties of pullbacks, the arrows in GGR are closed under composition
and thus GGR is a well-defined subcategory of GG.

Theorem 6.26 (unfolding as coreflection - reprise)
The unfolding construction can be turned into a functor U R

g : GGR → O-GGR,

having the inclusion I R
O : O-GGR → GGR as left adjoint, establishing a coreflec-

tion between the two categories.

Proof. By the considerations above, the only thing to prove is that the morphism h constructed
as in the proof of Theorem 6.24 is an arrow in O-GGR. But this is obvious since, by construction
hLT = gLT and thus hLT is mono. 2

Alternatively, the result can be proved for the subcategory GGL of GG where
arrows are grammar morphisms having the right component of the type span which
is mono. Clearly this is a well defined subcategory, while proving that the morphism
constructed in the proof of Theorem 6.24 is an arrow in O-GGL requires some
additional effort.

Observe that although not completely general, the above results regard a re-
markable class of grammar morphisms. In particular they comprise the morphisms
adopted in [HCEL96, Rib96] where the type component of an arrow from G1 to G2

is a partial graph morphism from TG1 to TG2, and from TG2 to TG1, respectively.
Finally, it is worth remarking that strong grammar morphisms are arrows in

GGR, a fact that, in the next chapter, will allow us to fruitfully use Theorem 6.26
to establish a relation between the unfolding and the deterministic process semantics
of a grammar (see Section 7.4).

6.5 From occurrence grammars to event struc-

tures

Starting from the semantics of graph grammars given in terms of occurrence gram-
mars, the aim of this section is to provide a more abstract semantics based on
(suitable kind of) event structures and domains, following the guidelines traced in
the First Part for contextual and inhibitor nets. Due to the similarity between
grammars and inhibitor nets, it comes as no surprise that inhibitor event structures,
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the generalization of Winskel’s event structures introduced in Chapter 4, are ex-
pressive enough to encode the causal structure of grammar computations. The ies
associated to an occurrence grammar is obtained by forgetting the state, and remem-
bering the productions of the grammar and the relationship among them. Recalling
the encoding of safe grammars into i-nets, the formal definition is a straightforward
generalization of the construction taking an occurrence i-net into the corresponding
ies. By using the results in Chapter 4 the ies semantics can be finally “translated”
into a domain and pes semantics.

The configurations of the ies associated to an occurrence grammar O can be
shown to coincide with the configurations of the grammar O , as defined in Sec-
tion 6.1. Furthermore the extension ordering on the configurations of such ies can
be characterized by using only the relations of causality and asymmetric conflict
defined directly on the grammar, thus providing a simpler characterization of the
domain semantics.

6.5.1 An IES semantics for graph grammars

We next introduce the DE-relation naturally associated to an occurrence grammar
O , which is is used to define first a pre-ies and then an ies for the grammar O .

Definition 6.27 (pre-ies for an occurrence grammar)
Let O = 〈TG, P, π〉 be an occurrence grammar. The pre-ies associated to O is defined
as IpO = 〈P, p

O〉, with O ⊆ 2P1 ×P ×2P , given by: for q, q′ ∈ P and x ∈ Items(TG)

• if q• ∩ ( •q′ ∪ q′) 6= ∅ then p
O(∅, q′, {q})

• if ( •q ∪ q) ∩ •q′ 6= ∅ then p
O({q′}, q, ∅);

• if x ∈ �q (and thus x is an edge in the type graph TG) then p
O( •s, q, s•).

As for inhibitor nets, IpO is a pre-ies satisfying also condition (1) of the definition
of ies. Therefore, as discussed in Proposition 4.5, it can be “saturated” in order to
obtain an ies.

Definition 6.28 (ies for an occurrence grammar)
The ies associated to an occurrence grammar O, denoted by IO = 〈P, O〉, is defined

as IpO .

Recall that the causality, asymmetric conflict and conflict relations of IO and IpO
coincide. They will be denoted by <i

O , րi
O and #i

O , respectively. The superscript
“i” is used to distinguish these relations from the relations <O and րO , associated
directly to the occurrence grammar in Section 6.1.

We now prove that the construction which maps an occurrence grammar into
the corresponding ies IO can be turn into a functor. This is not completely obvious,
since, as observed in Section 6.4, grammar morphisms are more liberal than i-net
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morphisms because, in general, they do not reflect the inhibitor set of productions.
In the proof we will exploit the fact that, as explained in Section 6.4, the type
component of a morphism between occurrence grammars can be thought of as a
relation, preserving the start graph as well as the pre-set, post-set and context of
productions.

Proposition 6.29
Let O0 and O1 be occurrence grammars and let h : O0 → O1 be a grammar morphism.
Then hP : IO0 → IO1 is an ies morphism.

Proof (Sketch). For k ∈ {0, 1}, let <k, րk and #k be the relations of causality, asymmetric
conflict and conflict in the pre-ies Ipk = 〈Pk,

p
k〉 associated to the grammar Ok. As in the case of

i-nets, we show that hP : Ip0 → I
p
1 satisfies conditions (1)-(4) in the hypotheses of Lemma 4.9 and

thus that hP is an ies morphism between the corresponding “saturated” ies’s.

Relying on the analogy between occurrence grammar and i-nets morphisms, most of the prop-
erties can be proved exactly as for i-nets. We will treat explicitly only only some cases which
involve the inhibitor set of productions, since, as observed before, grammar morphisms impose on
the inhibitor set of productions requirements which are weaker than those of i-nets morphisms.

1. hP (q0) = hP (q′0) ∧ q0 6= q′0 ⇒ q0#0q
′
0.

Treated as for i-nets.

2. p
1(∅, hP (q0), A1) ⇒ ∃A0 ⊆ h

−1
P (A1). A0 <0 q0.

Let us assume p
1(∅, hP (q0), A1). By definition of p

1 one of the following holds:

(a) A1 = {q1} and q1
• ∩ •h(q0) 6= ∅

(b) A1 = {q1} and q1
• ∩ h(q′0) 6= ∅

(c) ∃x1 ∈ �h(q0).
•x1 = ∅ ∧ x1

• = A1,

The first two cases are treated as for i-nets. In case (c), observe that x1 is necessarily an
edge in the start graph of O1, with source or target in a node n1 which must be in the
start graph of O1 as well. By the properties of occurrence grammar morphisms, there are a
unique node n0 and a unique edge x0 such that hT (n0, n1) and hT (x0, x1). Then n0 ∈ •q0,
x0

• <0 t0 and x0
• ⊆ h−1

P (A1).

3. p
1(hP (q′0), hP (q0), ∅) ⇒ q0 ր0 q

′
0.

Treated as for i-nets.

4. p
1({hP (q′0)}, hP (q0), A1) ∧A1 6= ∅ ⇒ ∃a0 ⊆ {q′0}. ∃A0 ⊆ h

−1
P (A1). 0(a0, q0, A0).

Assume p
1({hP (q′0)}, hP (q0), A1) and A1 6= ∅. Thus, by definition of p

1 there must be
an edge x1 ∈ �hP (q0) ∩ hP (q′0)

• such that A1 = •x1. The figure below gives a graphical
representation of the situation, in which the set of productions A1 is depicted as a single
box.
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Now, two possibilities arise: if n0 = n′
0 then we immediately conclude that p

0({q
′
0}, q0, x0

•)
and clearly x0

• ⊆ h−1
P (A1).

If instead n0 6= n′
0, first observe that n0 and n′

0 are not in the start graph. In fact, suppose
that n0 is in the start graph. Then, by definition of grammar morphism, also n1 is in the
start graph and therefore one can easily conclude that also n′

0 is in the start graph. Hence
{n0, n

′
0} is quasi concurrent, but hT (n0, n1) and hT (n′

0, n1), which is a contradiction by
Lemma 6.23.

Now, considering q′′0 ∈
•n0 and q′′′0 ∈

•n′
0, we have q′′0 #0q

′′′
0 . Since q′0 produces the edge

x0, necessarily n0 ∈ q′0
• ∪ q′0 and therefore q′′0 ≤0 q

′
0. Furthermore, q′′′0 ≤0 q0 and therefore

q0#0q
′
0, which implies q0 ր0 q

′
0. Recalling how a pre-ies is saturated to give rise to an ies

(see Proposition 4.5) we finally conclude 0({q′0}, q0, ∅). 2

By the above proposition the functor which maps each occurrence grammar to
the corresponding ies defined as in Definition 6.28 and each grammar morphism to
its production component is well-defined.
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Definition 6.30 (from occurrence grammars to ies’s)
Let Eg : O-GG→ IES be the functor defined as:

• Eg(O) = IO , for each occurrence grammar O;

• Eg(h : O0 → O1) = hP , for each morphism h : O0 → O1.

Now, by using the functor Li : IES → Dom defined in Chapter 4, mapping
each ies into its domain of configurations we can obtain a domain and then a pes
semantics for grammars.

6.5.2 A simpler characterization of the domain semantics

In Section 6.1 we have introduced the configurations of nondeterministic occurrence
grammars as a mean to capture the possible deterministic computations of such
grammars. We next show that they coincide with the configurations of the associ-
ated inhibitor event structure, thus allowing for a simpler characterization of the
corresponding domain.

We first observe a property of the ies associated to an occurrence grammar, which
generalizes the observation in Remark 6.4. Recall that in general ies’s when, for
instance, ({q′}, q, {q′′}), if the three events q, q′, q′′ appear in the same computation
then there are two possible orders of execution, namely q; q′; q′′ and q′; q′′; q. Instead,
in the case of occurrence grammars O , if O({q′}, q, {q′′}) then by definition of O ,
q′• ∩ �q 6= ∅. Therefore, as observed in Remark 6.4, necessarily q′ must precede q,
i.e., q′ ր q, since q′ produces or preserves a node which is consumed by q. Hence,
in this case, the only possible order of execution is q′; q′′; q. As a consequence, for
each configuration C the associated choice relation →֒C is uniquely determined by
the events of the configuration and coincides with the asymmetric conflict.

Proposition 6.31
Let O = 〈TG, P, π〉 be an occurrence grammar and let Ei(O) = 〈P, O〉 be the
corresponding ies. Then

• O({q′}, q, A) ⇒ q′ րi q ∧ ∀q′′ ∈ A. q′′ րi q;

• 〈C, →֒〉 ∈ Conf (I) ⇒ →֒ =րi
C.

It is easy to realize that the relations <O andրO , which do not take into account
the dependencies induced by the dangling condition, are included in the correspond-
ing relations <i

O andրi
O . The above proposition entails that the transitive closures

of the two asymmetric conflict relations coincide, namely

(րO)∗ = (րi
O)∗

and thus, when restricted to a configuration, they express essentially the same prece-
dences. This observation allows one to prove that the configurations of an occur-
rence grammar are exactly the configurations of the associated ies. Furthermore
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the extension order on the ies’s configurations can be characterized by using only
the asymmetric conflict relation րO associated to the grammar. Besides providing
a simpler characterization of the domain semantics of a grammar, this result en-
forces our confidence in the appropriateness of the ies associated to an occurrence
grammar, since, as we already observed, the configurations of an occurrence gram-
mar correctly represents all the different possible deterministic computations of the
grammar.

Proposition 6.32 (domain for an occurrence grammar)
Let O be an occurrence grammar and let Eg(O) be the corresponding ies. Then
C ∈ Conf (O) iff C ∈ Eg(O). Moreover the order relation over the prime algebraic
domain Li(Eg(O)) can be characterized as

C ⊑ C ′ iff C ⊆ C ′ and ∀q ∈ C. ∀q′ ∈ C ′. q′ րO q ⇒ q′ ∈ C.

Notice that, formally, the order on configuration is the same as for contextual nets: a
configuration C cannot be extended with a production inhibited by some of the pro-
ductions already present in C. However recall from Definition 6.9, that the asymmet-
ric conflict by itself, without any additional information on the dangling condition,
is not sufficient to define which subsets of events are configurations.

Hereafter we will always use the above characterization of the domain semantics
of a grammar. Consequently we will never refer to the asymmetric conflict, conflict
and causality relations of the ies IO , using instead the relations defined directly on
the grammar O .

Recall that the pes associated to the domain Li(Eg(O)), namely P(Li(Eg(O)))),
consists of the set of prime elements of the domain (with the induced partial order
as causality and the inconsistency relation as conflict), i.e., the unique (up to iso-
morphisms) pes having Li(Eg(O)) as domain of configurations.

As already seen for contextual and inhibitor nets, there is not a one to one corre-
spondence between events of P(Li(Eg(O))) and productions in O : a different event
is generated for any possible “history” of each production in O . This phenomenon
of “duplication of events” is related to the fact that the pes represents the depen-
dencies arising between productions in graph grammar computations by means of
causality and symmetric conflict. A situation of asymmetric conflict like q1 ր q2 in
grammar G1 of Figure 6.1, is encoded in the pes by the insertion of a single event
e1 corresponding to q1, and two “copies” e′2 ad e′′2 of q2, the first one in conflict with
e1 and the second one caused by e1 (see Figure 6.7.(a)). For what concerns the dan-
gling condition, consider the grammar G2 in Figure 6.1. In this case three conflicting
events are generated corresponding to q4: e4 representing the execution of q4 from
the start graph, which inhibits all other productions, and e′4, e

′′
4 representing the

execution of q4 after q2 and q3, respectively.
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e′2 # e1

≤

e′′2

e1
≤ ≤

# e4

e2

≤

# e3

≤

e′4 e′′4

Figure 6.7: Encoding asymmetric conflict and dangling condition in prime event
structures.

6.6 A related approach: unfolding semantics of

SPO graph grammars

An unfolding construction for graph grammars in the single-pushout (spo) approach
has been proposed by Ribeiro in her doctoral thesis [Rib96]. She defines an unfolding
functor from a category of spo graph grammars to a category of (abstract) occur-
rence grammars, showing that it is a right adjoint to a suitable folding functor .
In this section we discuss the relation between the construction introduced in this
chapter and the one in [Rib96]. Although the two constructions rely on similar basic
ideas, concretely, the differences between the two settings makes hard a formal direct
comparison. Therefore we will mainly try to point out some conceptual differences
and analogies.

First of all in the spo approach there are no application conditions. Without
getting into technical details, if a production specifies both the preservation and the
deletion of an item, then such an item is removed by the application of the produc-
tion. Furthermore, an edge which should remain dangling after the application of a
production because its source (or target) node is deleted, is automatically deleted as
well. For the presence of these “side-effects” the pre-set of a production, intended as
the set of items which are “consumed” by the production, depends also on the con-
sidered match, and the application of a production may remove items which are not
mentioned explicitly in the production itself. Consequently, the notion of causality
for spo graph grammars is less intuitive if compared with the dpo case, and the
correspondence between the theory of spo grammars and the theory of Petri nets
becomes looser. For instance, if a production q1 produces and edge e, and q2 deletes
e as side effect, we may wonder whether q2 should causally depend on q1 or not. If
we assume that causality is induced by the flow of data in the system, the answer
should be that q1 ≤ q2 since q2 consumes something which is produces by q1. On
the other hand, the application of q1 is not necessary to make q2 applicable, since
q2 does not explicitly require the presence of resources generated by q1. Thus, if
q1 ≤ q2 means that the application of q1 precedes q2 in each computation where q2
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is applied, then there should be no causal relationship between q1 and q2.
Although the above question is not completely trivial, the more reasonable choice

seems the latter. In this case, the notions of causality and of asymmetric conflict
(called weak conflict in [Rib96]) can be defined disregarding the mentioned side-
effects. This is basically due to the fact that when a production uses (consumes
or preserves) an edge, it must use necessarily the corresponding source and target
nodes, and therefore dependencies related to side-effects can be detected by looking
only at explicitly used items.

A relevant difference with our work resides in the notion of occurrence grammars.
The thesis [Rib96] introduces the so-called doubly typed occurrence grammars, where
the type graph is itself typed over another graph of types. Intuitively, a doubly typed
occurrence grammar is a sort of process where only the “type component” of the
process morphism is specified. This essentially means that each production of such a
grammar can be thought of as an instance of a production of another grammar, for
which the match is already specified. Because of the double typing, the category of
occurrence grammars considered in [Rib96] is not a subcategory of the category of
graph grammars, and the left adjoint of the unfolding functor is not the inclusion,
but a folding functor which basically forgets the intermediate typing.

The grammar which is obtained from a doubly-typed occurrence grammar by
forgetting the intermediate typing satisfies conditions which are similar to those
imposed on our occurrence grammars. However, again the theory necessarily diverges
because of the absence of the application condition in the spo approach. When a
single rule requires both the preservation and the deletion of an item, according
to our definition it should be in asymmetric conflict with itself, and thus never
applicable. As mentioned above, instead in the spo approach such kind of rule can
be applied and the “conflictual requirement” is resolved in favor of deletion.

The final difference which must be taken into account regards the kind of mor-
phisms on graph grammars. In [Rib96] the type component of a morphism from a
grammar G1 to G2 is a partial function from TG2 to TG1. Since such partial function
can be seen as a span where the right component is injective, in this respect the
morphisms of [Rib96] are less general than ours. On the other hand, to character-
ize the parallel composition of graph grammars as a categorical limit, the image
under a morphism of a production in G1 is required only to be a sub-production
of the corresponding production in G2. When moving to occurrence grammars, also
the morphisms of [Rib96] must preserve the components of a production. However
preservation is required only up to isomorphism and this seems the reason why, at
a first glance, the unfolding cannot be turned into a functor. The problem is solved
by considering a category of abstract occurrence grammars, where objects are iso-
morphisms classes of grammars. Then the unfolding can be expressed as a functor
which establishes an adjunction between the category of graph grammars and such
category of abstract occurrence grammars.

Summing up, many analogies exist between the two constructions, but the subtle
differences deeply connected with the diversity of the spo and dpo approaches,
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makes us skeptical about the possibility of establishing a formal link between the
two results. A possibility still not explored could be to resort to the formulation
of the dpo approach in term of spo approach (with application conditions) to see
if a common theory can be developed, although in the past such an approach has
revealed some limits.



Chapter 7

Concatenable Graph Processes

This chapter introduces a semantics for dpo graph grammars based on concaten-
able graph processes. Conceptually, concatenable graph processes are very close to
derivation traces in that they are aimed at representing the deterministic (truly
concurrent) computations of a grammar. However, differently from traces they pro-
vide an explicit characterization of the events occurring in computations and of the
dependency relationships among them.

Relying on the theory developed in the previous chapter, first a deterministic
graph process is naturally defined as a special graph process such that the whole set
of productions of the underlying occurrence grammar is a configuration, and thus
all the productions of the process can be applied in a single computation. Given a
deterministic process ϕ : O → G , the morphism ϕ can be used to map derivations
in the underlying occurrence grammar O to corresponding derivations in G . The
basic property of a graph process is that the derivations in G which are in the range
of such mapping constitute a full class of shift-equivalent derivations. Therefore the
process can be regarded as an abstract representation of such a class and plays a rôle
similar to a canonical derivation [Kre77]. Although obtained by following a different
path, the above notion of deterministic process can be seen easily to coincide with
the previous proposals in [CMR96, BCM98a].

Graph processes are not naturally endowed with a notion of sequential compo-
sition, essentially because of the same problem described for abstract derivations: if
the target graph of a process is isomorphic to the source graph of a second process,
the näıve idea of composing the two processes by gluing the two graphs according
to an isomorphism does not work. In fact, in general we can find several distinct
isomorphisms relating two graphs, which may induce sequential compositions of the
two processes which substantially differ from the point of view of causality. Using the
same technique adopted for derivations, concatenable graph processes are defined as
graph processes enriched with the additional information (a decoration of the source
and target graphs) needed to concatenate them.

Then the claim that deterministic processes and derivation traces give conceptu-
ally equivalent descriptions of the system is formalized by showing that the category
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Tr[G ] of concatenable (parallel) derivation traces (Definition 5.27) is isomorphic to
the category of concatenable (abstract) processes CP[G ].

Finally, we show that the unfolding and the deterministic process semantics can
be reconciled by following the approach described in the Introduction. As already
done for generalized nets, we prove that the domain associated to a grammar via
the unfolding construction can be characterized as the collection of deterministic
processes starting from the initial graph, endowed with a kind of prefix order.

The rest of the chapter is structured as follows. Section 7.1 introduces determin-
istic graph processes as special nondeterministic processes, giving evidence of their
relation with the previous notions in the literature. Section 7.2 presents the cate-
gory CP[G ] of concatenable processes for a grammar G . The equivalence between
the concatenable trace semantics (introduced in Section 5.2) and the concatenable
process semantics is proved in Section 7.3. Finally, Section 7.4 provides a connection
between the unfolding and the deterministic process semantics of a grammar.

7.1 Deterministic graph processes

A nondeterministic graph process (Definition 6.13) represents a class of derivations
of a grammar G by means of a nondeterministic occurrence grammar O . A (special
kind of) grammar morphism from O to the given grammar G allows one to map
computations in O to computations in G .

To obtain a deterministic graph process, namely an appropriate representative
of a single concurrent computation in G we must restrict our attention to occur-
rence grammars where all productions can be applied in a single computation. By
Proposition 6.11 we know that this is the case when the whole set of productions of
O is a configuration of O itself.

Definition 7.1 (deterministic occurrence grammar)
An occurrence grammar O = 〈TG, P, π〉 is called deterministic if the set P of its
productions is a configuration of O. For a deterministic occurrence grammar O we
denote by Max(O) the set of items of the type graph TG which are maximal with
respect to causality.

Recalling the notion of configuration of an occurrence grammar (Definition 6.9),
we see that an occurrence grammar is deterministic if the transitive closure of the
asymmetric conflict relation is a finitary partial order. Furthermore whenever a
production consumes a node in the type graph, then productions removing the
edges with source or target in that node must be present as well. Observe that the
first condition implies the absence of forward conflicts, namely each item of the type
graph can be consumed by at most one production, i.e., |x•| ≤ 1 for each item x
of the type graph (while in general general occurrence grammars only backward
conflicts are forbidden).
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In the case of finite grammars the above conditions can be expressed in a simpler
way. Since there are only finitely many productions, the first condition amounts
to the acyclicity of asymmetric conflict. Assuming the first condition, and thus
the absence of forward conflicts, the second condition can be expressed by simply
requiring Max(O) to be a well-defined graph.

Proposition 7.2 (finite deterministic occurrence grammar)
A finite occurrence grammar O is deterministic iff

1. րO is acyclic;

2. Max(O) is a well-defined subgraph of the type graph.

Proof. Let O be an occurrence grammar satisfying (1) and (2) above. We must show that its set
of productions P is a configuration of O. The fact that (րO)∗ is a finitary partial order immediately
follows from the acyclicity of րO and the fact that P is finite. Trivially P is closed with respect
to causality. It remains to prove the last condition in the definition of configuration, namely that
given any edge e ∈ TG, if �e ∩ P 6= ∅ and •e ⊆ P then e• ∩ P 6= ∅. Suppose that q ∈ �e ∩ P for
some edge e (clearly •e ⊆ P since P contains all productions of O). Hence there is a node n ∈ •q

which is the source or target of e. Therefore n ≤ q and thus n 6∈ Max(O). Since Max(O) is a
well-defined graph, necessarily e 6∈Max(O) and thus there must exist q′ ∈ P such that e ∈ •q′, or
equivalently q′ ∈ e•.

The converse implication is proved in an analogous way. 2

The above proposition, besides giving an alternative simpler characterization of
deterministic occurrence grammars, shows that they coincide with the occurrence
grammars of [CMR96, BCM98a, BCE+99]. It is worth remarking that in such papers,
which are concerned only with deterministic computations, the causality relation is
used to represent the order of execution within the specific concurrent computation,
and as such it plays the role which is played here by the transitive closure of the
asymmetric conflict relation. We apologize if the reader may get a bit confused by
this change in terminology, but we hope she will agree that in this general context
the terminology we adopted is more appropriate.

Let O be a deterministic occurrence grammar. Recall that, by Proposition 6.11,
for any finite configuration C of O , there is a derivation Min(O) ⇒∗C reach(C)
applying all the productions of C in any order compatible with the asymmetric
conflict. In particular, if the grammar is finite, we can take as C the full set P of
productions of O . It is easy to verify that reach(P ) = Max(O) and therefore

Min(O)⇒∗P Max(O)

using all productions in P exactly once, in any order consistent with րO .
This helps in understanding why a deterministic graph process of a grammar

G , that we are going to define simply as a graph process having a deterministic
underlying occurrence grammar, can be seen as representative of a set of derivations
of G where independent steps may be switched.

Observe that a deterministic occurrence grammar is a fully fledged graph gram-
mar and thus one may “execute” it by considering any possible derivation beginning
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Figure 7.1: A graph process of the grammar C -S .

from the start graph Min(O). However, the discussion above stresses that, if we are
interested in using a deterministic occurrence grammar to represent a deterministic
computation, it is natural to consider only those derivations which are consistent
with the asymmetric conflict.

Definition 7.3 (deterministic graph process)
Let G be a graph grammar. A graph process ϕ : Oϕ → G of G is called (finite)
deterministic if the the occurrence grammar Oϕ is (finite) deterministic.

As for general nondeterministic processes, we can assume that the left component of
the type span ϕT is the identity; furthermore to simplify the notation we will simply
write ϕT to denote the right component ϕRT of the type span. We will denote by
Min(ϕ) and Max(ϕ) the subgraphs Min(Oϕ) and Max(Oϕ) of TGϕ. Moreover, by
analogy with the case of nets, the graphs Min(Oϕ) and Max(Oϕ) typed over TGG

by (the suitable restrictions of) ϕT will be denoted by •ϕ and ϕ• respectively, and
called the source and target graphs of the process.

Example 7.4 (deterministic process)
Figure 7.1 shows a deterministic process for grammar C -S of Example 5.9. The
typing morphisms from the productions of the process to TGϕ are inclusions, and
the start graph is the subgraph of TGϕ containing the items 5 : S, 0 : job and 4 : C
(thus exactly the start graph G0 of C -S ), because these are the only items which
are not generated by any production.

The morphism ϕT : TGϕ → TG is represented, as usual, by labelling the items
of TGϕ with their image in TG, and the mapping ϕP from the productions of the
process to those of C -S is the obvious one. 2
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7.2 Concatenable graph processes

Since deterministic processes represent (concurrent) computations and express ex-
plicitly the dependencies between single rewriting steps, it is very natural to require
a notion of processes composition “consistent” with such dependencies. To define
such notion we have to face the same problem described for traces, namely given
two processes ϕ1 and ϕ2 such that ϕ1

• ≃ •ϕ2, the näıve idea of composing the two
processes by gluing the target of ϕ1 with the source of ϕ2 does not work, since there
might be several different isomorphisms between the graphs ϕ1

• and •ϕ2, which may
lead to different results. The problem is solved as for traces, by decorating the source
•ϕ and the target ϕ• of each process ϕ. A concatenable graph process is defined as a
graph process equipped with two isomorphisms relating its source and target graphs
to the corresponding canonical graphs. The two isomorphisms allow us to define a
deterministic operation of sequential composition of processes consistent with causal
dependencies, which is then exploited to define a category CP[G ] having abstract
graphs as objects and (abstract) concatenable processes as arrows. Clearly the no-
tion of sequential composition is meaningful only for unmarked processes whose
source is a generic graph (see Definition 6.15).

Definition 7.5 (concatenable graph process)
Let G = 〈TG,Gs, P, π〉 be a typed graph grammar. A concatenable graph process for
G is a triple

γ = 〈m,ϕ,M〉

where ϕ is an unmarked deterministic process of G and m : Can(•ϕ) → •ϕ, M :
Can(ϕ•)→ ϕ• are isomorphisms (of TG-typed graphs).

It should be noted that the two isomorphisms to the source and target graphs
of a process play the same role of the ordering on minimal and maximal places
of concatenable processes in Petri net theory [DMM96]. From this point of view,
concatenable graph processes are related to deterministic graph processes in the
same way as the concatenable processes of [DMM96] are related to the classical
Goltz-Reisig processes for P/T nets [GR83].

The notion of isomorphism between concatenable processes is the natural gen-
eralization of that of graph process isomorphism (see Proposition 6.14). In this case
the mapping between the type graphs of the two processes is also required to be
“consistent” with the decorations.

Definition 7.6 (isomorphism of concatenable processes)
Let γ1 = 〈m1, ϕ1,M1〉 and γ2 = 〈m2, ϕ2,M2〉 be two concatenable processes of a
grammar G . An isomorphism between γ1 and γ2 is an isomorphism of processes
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〈fT , fP 〉 : ϕ1 → ϕ2 such that the following diagrams commute:

•ϕ1

fT

Can(•ϕ1)
‖

Can(•ϕ2)

m1

m2 •ϕ2

ϕ1
•

fT

Can(ϕ1
•)

‖
Can(ϕ2

•)

M1

M2
ϕ2
•

where fT : •ϕ1 →
•ϕ2 and fT : ϕ1

• → ϕ2
• denote the restrictions of fT to the

corresponding graphs. If there exists an isomorphism f : γ1 → γ2 we say that γ1 and
γ2 are isomorphic and we write γ1

∼= γ2.

Definition 7.7 (abstract concatenable process)
An abstract concatenable process is an isomorphism class of concatenable processes.
It is denoted by [γ], where γ is a member of that class.

As usual, a particular role is played by processes based on grammars with empty
set of productions.

Definition 7.8 (discrete process)
A discrete concatenable process is a concatenable process γ = 〈m,ϕ,M〉 such
that the corresponding occurrence grammar Oϕ has an empty set of productions.
In this case •ϕ = ϕ• = 〈TGϕ, ϕT 〉 and the concatenable process is denoted by
SymG (m,G,M), where G = •ϕ = ϕ•.

Notice that two discrete concatenable processes SymG (mj , Gj,Mj) (j ∈ {1, 2})
of a grammar G are isomorphic if and only if m−1

1 ◦M1 = m−1
2 ◦M2. Therefore, an

abstract discrete concatenable process [SymG (m,G,M)] can be characterized as:

{SymG (m′, G′,M ′) | G ≃ G′ ∧ m′−1 ◦M ′ = m−1 ◦M}.

The isomorphism m−1 ◦M is called the automorphism on Can(G) induced by the
(abstract) discrete concatenable process.

Given two concatenable processes γ1 and γ2 such that the target graph of the first
one and the source graph of the second one, as well as the corresponding decorations,
coincide, we can concatenate them by gluing the type graphs along the common part.

Definition 7.9 (sequential composition)
Let G = 〈TG,Gs, P, π〉 be a typed graph grammar and let γ1 = 〈m1, ϕ1,M1〉 and
γ2 = 〈m2, ϕ2,M2〉 be two concatenable processes for G , such that ϕ1

• = •ϕ2 and
M1 = m2. Suppose moreover that the type graphs of γ1 and γ2 overlap only on
Max(ϕ1) = Min(ϕ2) and suppose also Pϕ1 and Pϕ2 disjoint. Then the concrete
sequential composition of γ1 and γ2, denoted by γ1 ; γ2, is defined as

γ = 〈m1, ϕ,M2〉,
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where ϕ is the (componentwise) union of the processes ϕ1 and ϕ2. More precisely
the type graph TGϕ is

TGϕ = 〈NTGϕ1
∪NTGϕ2

, ETGϕ1
∪ETGϕ2

, s1 ∪ s2, t1 ∪ t2〉,

where si and ti are the source and target functions of the graph TGϕi for i ∈ {1, 2},
and analogously the typing morphism ϕT = ϕ1T ∪ ϕ2T . Similarly Pϕ = Pϕ1 ∪ Pϕ2,
πϕ = πϕ1 ∪ πϕ2, ϕP = ϕ1P ∪ ϕ2P and ιϕ = ιϕ1 ∪ ιϕ2. Finally, the start graph is
G′s = •ϕ1.

It is not difficult to check that the sequential composition γ1 ; γ2 is a well-defined
concatenable process. In particular observe that TGϕ1 and TGϕ2 overlap only on
Max(ϕ1) = Min(ϕ2) and therefore the asymmetric conflict relation րϕ on Oϕ can
be expressed as the union of the asymmetric conflict relations of the two processes
with a “connection relation” rc, suitably relating productions of γ1 which use items
in ϕ1

• with productions of γ2 using corresponding items in •ϕ2. Formally,րϕ=րϕ1

∪ րϕ2 ∪ rc, where relation rc ⊆ Pϕ1 × Pϕ2 is defined by

rc = {〈q1, q2〉 | ∃x ∈Max(ϕ1) = Min(ϕ2). x ∈ (q1
• ∩ ( •q2 ∪ q2)) ∪ (q1 ∩

•q2)}.

The above characterization makes clear that the relation րϕ is acyclic. Now, a
routine checking allows us to conclude that Oϕ satisfies conditions (1)-(4) of the
definition of occurrence grammar (Definition 6.7). Furthermore the fact that Oϕ is
deterministic follows immediately from Proposition 7.2, since Oϕ is finite, asymmet-
ric conflict is acyclic and Max(Oϕ) = Max(Oϕ2) is a well-defined graph.

The reader could be surprised and somehow displeased by the restrictiveness
of the conditions which have to be satisfied in order to be able to compose two
concrete processes. To understand our restrictions one should keep in mind that, as
in the case of nets, the notion of sequential composition on concrete processes is not
interesting in itself, but it is just introduced to be lifted to a meaningful notion of
sequential composition on abstract processes. The given definition fulfills this aim
since, as in the case of derivations, processes can be considered up to renaming
of the items in their components. Thus, if ϕ1

• ≃ •ϕ2, we can always rename the
items of γ2 to make the sequential composition defined. Hence we found it better
to avoid a technically more involved (although more general) definition, leading to
a nondeterministic result.

Proposition 7.10
Let G = 〈TG,Gs, P, π〉 be a typed graph grammar and let γ1

∼= γ′1 and γ2
∼= γ′2 be

concatenable processes for G . Then (if defined) γ1 ; γ2
∼= γ′1 ; γ′2.

Proof. Just notice that if fj = 〈fjT , fjP 〉 : γj → γ′j (j = 1, 2) are concatenable process isomor-
phisms, then the isomorphism between γ1 ; γ2 and γ′1 ; γ′2 can be obtained as 〈f1T ∪f2T , f1P ∪f2P 〉.

2
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The previous proposition entails that we can lift the concrete operation of se-
quential composition of concatenable processes to abstract processes, by defining

[γ1] ; [γ2] = [γ′1 ; γ′2]

for γ′1 ∈ [γ1] and γ′2 ∈ [γ2] such that the concrete composition is defined.

Definition 7.11 (category of concatenable processes)
Let G = 〈TG,Gs, P, π〉 be a typed graph grammar. We denote by CP[G ] the cate-
gory of (abstract) concatenable processes having abstract graphs typed over TG as
objects and abstract concatenable processes as arrows. An abstract concatenable pro-
cess [〈m,ϕ,M〉] is an arrow from [•ϕ] to [ϕ•]. The identity on an abstract graph [G]
is the discrete concatenable process [SymG (i, G, i)] (where i : Can(G) → G is any
isomorphism), whose induced automorphism is the identity.

A routine checking proves that the operation of sequential composition on con-
catenable processes is associative and that [SymG (i, G, i)] satisfies the identity ax-
ioms.

7.3 Relating derivation traces and processes

Although based on the same fundamental ideas, namely abstraction from represen-
tation details and true concurrency, processes and derivation traces have concretely
a rather different nature. Derivation traces provide a semantics for grammars where
the independence of events is represented implicitly by collecting in the same trace
derivations in which the events appear in different orders. Processes, instead, pro-
vide a partial order semantics which represents explicitly the events and their re-
lationships. In this section we show that there exists a close relationship between
the trace and the process semantics introduced in the last two sections. More pre-
cisely we prove that the category Tr[G ] of concatenable (parallel) derivation traces
(Definition 5.27) is isomorphic to the category of concatenable (abstract) processes
CP[G ].

7.3.1 Characterization of the ctc-equivalence

The isomorphism result uses a characterization of the ctc-equivalence on decorated
derivations which essentially expresses the invariant of a derivation trace. Roughly
speaking, such characterization formalizes the intuition that two derivations are
(c)tc-equivalent whenever it is possible to establish a correspondence between the
productions that they apply and between the graph items in the two derivations, in
such a way that “corresponding” productions consume and produce “corresponding”
graph items. The correspondence between the graph items has to be compatible with
the decorations on the source (and target) graphs.
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The characterization is adapted from [CEL+96b], where it has been used for
the definition of an event structure semantics for graph grammars. The only slight
difference is that in the paper [CEL+96b] a different approach, based on standard
isomorphisms (instead of canonical graphs), is followed to deal with the issue of
trace concatenation.

The basic notions used in the characterization result presented below are those
of consistent four-tuple and five-tuple.

Definition 7.12 (consistent four-tuples and five-tuples)
Let ρ : G0 ⇒

∗ Gn be the derivation depicted in Figure 5.6 and let ≈ρ be the smallest
equivalence relation on

⋃n

i=0 Items(Gi) such that

x ≈ρ y if ∃r ∈ n . x ∈ Items(Gr−1) ∧ y ∈ Items(Gr)∧
∧∃z ∈ Items(Dr) . br(z) = x ∧ dr(z) = y.

Denote by Items(ρ) the set of equivalence classes of ≈ρ, and by [x]ρ the class con-
taining item x.1 For a decorated derivation ψ, we will often write Items(ψ) to denote
Items(ρψ).

A four-tuple 〈ρ, hσ, f, ρ
′〉 is called consistent if ρ and ρ′ are derivations, hσ :

σ(ρ) → σ(ρ′) is a graph isomorphism between their source graphs, f : #ρ → #ρ′

is an injective function such that prod(ρ) = prod(ρ′) ◦ f , and there exists a total
function ξ : Items(ρ)→ Items(ρ′) satisfying the following conditions:

• ∀x ∈ Items(σ(ρ)) . ξ([x]ρ) = [hσ(x)]ρ′, i.e., ξ must be consistent with isomor-
phism hσ;

• for each j ∈ #ρ, let i and s be determined by j =
(∑i

r=1 kr

)
+ s (i.e., the

j-th production of ρ is the s-th production of its i-th parallel direct derivation),

and similarly let s′ and i′ satisfy f(j) =
(∑i′

r=1 k
′
r

)
+ s′. Then for each item x

“consumed” by production prod(ρ)(j) :
(
L

l
← K

r
→ R

)
, i.e., x ∈ L − l(K), it

must hold ξ([gi(in
s
L(x))]ρ) = [g′i′(in

s′

L (x))]ρ′. In words, ξ must relate the items
consumed by corresponding production applications (according to f);

• a similar condition must hold for the items “created” by corresponding pro-
duction applications. Using the above notations, for each x ∈ R − r(K),
ξ([hi(in

s
R(x))]ρ) = [h′i′(in

s′

R(x))]ρ′.

Similarly, say that the five-tuple 〈ρ, hσ, f, hτ , ρ
′〉 is consistent if the “underlying”

four-tuple 〈ρ, hσ, f, ρ
′〉 is consistent, f is a bijection, hτ : τ(ρ) → τ(ρ′) is an iso-

morphism relating the target graphs, and the function ξ is an isomorphism that is
consistent with hτ as well (i.e., for each item x ∈ τ(ρ), ξ([x]ρ) = [hτ (x)]ρ′).

1Without loss of generality we assume here that the sets of items of the involved graphs are
pairwise disjoint.
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The next theorem provides a characterization of (c)tc-equivalence in terms of
consistent four- (five-)tuples. We first recall some easy but useful composition prop-
erties of consistent five-tuples.

Proposition 7.13
1. If 〈ρ1, hσ, f, h, ρ

′
1〉 and 〈ρ2, h, f

′, h′τ , ρ2〉 are consistent five-tuples, such that
ρ1 ; ρ2 and ρ′1 ; ρ′2 are defined, then 〈ρ1 ; ρ2, hσ, f |f

′, h′τ , ρ
′
1 ; ρ′2〉 is consistent

as well.

2. If 〈ρ, hσ, f, hτ , ρ
′〉 and 〈ρ′, h′σ, f

′, h′τ , ρ
′′〉 are consistent five-tuples then the five-

tuple 〈ρ, h′σ ◦ hσ, f
′ ◦ f, h′τ ◦ hτ , ρ

′′〉 is consistent as well. 2

Theorem 7.14 (characterization of ctc- and tc-equivalence)
Let G be any graph grammar (also non-consuming) and let ψ, ψ′ be decorated deriva-
tions of G . Then

1. ψ and ψ′ are ctc-equivalent if and only if there is a permutation Π such that
the five-tuple 〈ρψ, mψ′ ◦m−1

ψ ,Π,Mψ′ ◦M−1
ψ , ρψ′〉 is consistent;

2. similarly, ψ and ψ′ are tc-equivalent if and only if there is a permutation Π
such that the four-tuple 〈ρψ, mψ′ ◦m−1

ψ ,Π, ρψ′〉 is consistent.

Proof. Only if part of (1):
We show by induction that if two derivations are ctc-equivalent, i.e., ψ ≡cΠ ψ′ for some permutation
Π, then the five-tuple 〈ρψ ,mψ′ ◦m−1

ψ ,Π,Mψ′ ◦M−1
ψ , ρψ′〉 is consistent. By Definition 5.26, we have

to consider the following cases:

(CTC− abs) If ψ ≡abs ψ′ then consistency of 〈ρψ,mψ′ ◦m−1
ψ ,Π#ψ

id ,Mψ′ ◦M−1
ψ , ρψ′〉 follows directly

by the conditions of Definition 5.16.

(CTC− sh) Since ψ ≡shΠ ψ′ we have mψ = mψ′ , Mψ = Mψ′ and ρψ ≡shΠ ρψ′ . Therefore this case
reduces to the proof that ρ ≡shΠ ρ′ implies the consistency of 〈ρ, idσ(ρ),Π, idτ(ρ), ρ

′〉. Accord-
ing to the rules of Definition 5.23, introducing shift equivalence on parallel derivations, we
distinguish various cases:

(SH− id) The five-tuple 〈ρ, idσ(ρ),Π
#ρ
id , idτ(ρ), ρ〉 is trivially consistent.

(SH− ∅) The five-tuple 〈G, idG, ∅, idG, ρ : G ⇒∅ G〉 is consistent, since the isomorphism
induced by ρ is idG.

(SH− an) If ρ ≡anΠ ρ′, then the consistency of 〈ρ, idσ(ρ),Π, idτ(ρ), ρ
′〉 can be grasped from

the drawing of ρ′ in Figure 5.9. Consider for example production qj1 in q′′: any item x it
consumes in graphX must be in the same ≈ρ′ -equivalence class of an item of G (by the
existence of morphism s), which is exactly the item consumed by the j1-th production
of ρ. To prove this formally one would need an explicit analysis construction.

(SH− syn) If ρ ≡synΠ ρ′, the consistency of 〈ρ, idσ(ρ),Π, idτ(ρ), ρ
′〉 follows as in the previous

case.

(SH− sym) The consistency of 〈ρ′, idσ(ρ′),Π
−1, idτ(ρ′), ρ〉 follows immediately from the con-

sistency of 〈ρ, idσ(ρ),Π, idτ(ρ), ρ
′〉, since all mappings relating ρ and ρ′ are invertible.
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(SH− comp) By the induction hypothesis 〈ρ1, idσ(ρ1),Π1, idτ(ρ1), ρ
′
1〉 and

〈ρ2, idσ(ρ2),Π2, idτ(ρ2), ρ
′
2〉 are consistent. Therefore, since τ(ρ1) = σ(ρ2), the

consistency of 〈ρ1 ; ρ2, idσ(ρ1),Π1 | Π2, idτ(ρ2), ρ
′
1 ; ρ′2〉 follows from Proposi-

tion 7.13.(1).

(SH− trans) The consistency of 〈ρ, idσ(ρ),Π
′ ◦Π, idτ(ρ), ρ

′′〉 follows by Proposition 7.13.(2),
from the consistency of 〈ρ, idσ(ρ),Π, idτ(ρ), ρ

′〉 and of 〈ρ′, idσ(ρ′),Π
′, idτ(ρ′), ρ

′′〉, which
hold by inductive hypothesis.

(CTC− trans) By induction hypothesis the tuples 〈ρψ,mψ′ ◦ m−1
ψ ,Π,Mψ′ ◦ M−1

ψ , ρψ′〉 and

〈ρψ′ ,mψ′′ ◦ m−1
ψ′ ,Π′,Mψ′′ ◦ M−1

ψ′ , ρψ′′〉 are consistent. Thus, by Proposition 7.13.(2),

〈ρψ ,mψ′′ ◦m−1
ψ ,Π′ ◦Π,Mψ′′ ◦M−1

ψ , ρψ′′〉 is consistent as well.

Only if part of (2):
This implication follows from the statement just proved and from the rules (TC− ctc) and
(TC− iso) defining equivalence ≡, since they do not affect the consistency of the underlying four-
tuple.

If part of (1):
Suppose that the five-tuple 〈ρψ,mψ′ ◦m−1

ψ ,Π,Mψ′◦M−1
ψ , ρψ′〉 is consistent and that Π : #ψ → #ψ′

is a bijection (thus ψ and ψ′ have the same order). By repeated applications of the analysis con-
struction, ψ and ψ′ can be transformed into equivalent, sequential derivations (i.e., such that at each
direct derivation only one production is applied) ψ1 and ψ′

1, such that ψ ≡shΠ1
ψ1 and ψ′ ≡shΠ2

ψ′
1,

for suitable permutations Π1 and Π2. By the only if part, five-tuples 〈ρψ1 , idσ(ψ1),Π
−1
1 , idτ(ψ1), ρψ〉

and 〈ρψ′ , idσ(ψ′),Π2, idτ(ψ′), ρψ′

1
〉 are consistent, thus 〈ρψ1 ,mψ′

1
◦m−1

ψ1
,Π2◦Π◦Π

−1
1 ,Mψ′

1
◦M−1

ψ1
, ρψ′

1
〉

is consistent as well. Now there are two cases.

1. Suppose that Π2 ◦ Π ◦ Π−1
1 is the identity permutation. In this case it is possible to build

a family of isomorphisms between the graphs of derivations ρψ1 and ρψ′

1
, starting from

mψ′

1
◦ m−1

ψ1
, and then continuing inductively by exploiting the function ξ : Items(ρψ1) →

Items(ρψ′

1
) of Definition 7.12. This family of isomorphisms satisfies all the conditions of

Definition 5.16: thus it provides a proof that ψ1 ≡abs ψ′
1, and therefore we have ψ ≡sh

ψ1 ≡abs ψ′
1 ≡

sh ψ′, showing that ψ ≡c ψ′.

2. If Π̂
def
= Π2 ◦ Π ◦ Π−1

1 is not the identity permutation, let ı̂ = min{i ∈ #ψ1 | Π̂(i) 6= i}.

Then it can be shown that the Π̂(̂ı)-th direct derivation in ψ′
1 is sequential independent from

the preceding one, essentially because it can not consume any item produced or explicitly
preserved after the ı̂-th step. By applying the synthesis and the analysis constructions the
two direct derivations can be exchanged, and this procedure can be iterated producing
eventually a derivation ψ2 such that ψ′

1 ≡
sh
Π3

ψ2 for some permutation Π3, and such that

Π3 ◦ Π̂ is the identity permutation. Thus we are reduced to the previous case.

If part of (2):
Let 〈ρψ,mψ′ ◦ m−1

ψ ,Π, ρψ′〉 be a consistent four-tuple, where Π is a permutation. By exploiting

isomorphisms mψ′ ◦ m−1
ψ , Π and ξ : Items(ρψ) → Items(ρψ′), it can be proved that the target

graphs of ρψ and ρψ′ are isomorphic, and that there exists a unique isomorphism hτ : τ(ψ) →
τ(ψ′) such that 〈ρψ,mψ′ ◦ m−1

ψ ,Π, hτ , ρψ′〉 is a consistent five-tuple. Now, let α be the discrete
decorated derivation 〈Mψ′ , τ(ψ′), hτ ◦Mψ〉. Then ψ′;α = 〈mψ′ , ρψ′ , hτ ◦Mψ〉. Clearly, the five-tuple
〈ρψ ,mψ′ ◦m−1

ψ ,Π, hτ ◦Mψ ◦M
−1
ψ , ρψ′〉 is consistent, and by if part of (1) we get ψ ≡c ψ′ ; α. Then

ψ ≡ ψ′ follows by rule (CTC− iso). 2
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7.3.2 From processes to traces and backwards

We are now ready to prove that for any grammar G the categories Tr[G ] and CP[G ]
are isomorphic. We introduce two functions, the first one mapping each trace into a
process and the second one performing the converse transformation. Then we show
that such functions extend to functors from Tr[G ] to CP[G ] and backward, which
are inverse to each other.

Given an abstract concatenable process [γ], we construct a concatenable deriva-
tion trace by first taking the derivation which applies all the productions of γ in any
order compatible with asymmetric conflict and then considering the corresponding
ctc-equivalence class.

Definition 7.15 (linearization)
Let γ = 〈m,ϕ,M〉 be a concatenable process. A linearization of the set Pϕ of produc-
tions of the process is any bijection e : |Pϕ| → Pϕ, such that the corresponding linear

order, defined by q0 ⊑ q1 iff e−1(q0) ≤ e−1(q1), is compatible with the asymmetric
conflict relation in ϕ, i.e., q0 րϕ q1 implies q0 ⊑ q1.

Definition 7.16 (from processes to traces)
Let G = 〈TG,Gs, P, π〉 be a typed graph grammar and let [γ] be an abstract con-
catenable process of G , where γ = 〈m, p,M〉. Consider any linearization e of Pϕ and
define the decorated derivation ψ(γ, e) as follows:

ψ(γ, e) = 〈m, ρ,M〉, where ρ = {Gj−1 ⇒qj,gj Gj}j∈|Pϕ|

such that G0 = •ϕ, G|Pϕ| = ϕ•, and for each j ∈ |Pϕ|

• qj = ϕP (e(j));

• Gj = 〈|Gj|, tGj〉, where |Gj| = reach({e(1), . . . , e(j)}), i.e., |Gj | is the sub-
graph of the type graph TGp of the process determined as the reachable set
reach({e(1), . . . , e(j)}), and tGj is the corresponding restriction of ϕT ;

• each derivation step Gj−1 ⇒qj ,gj Gj is as in Figure 7.2.(a), where unlabelled
arrows represent inclusions, and the typing morphisms are not reported.

Finally, we associate to the abstract process [γ] the concatenable derivation trace
DA([γ]) = [ψ(γ, e)]c.

By using Theorem 6.11, it is not difficult to prove that ψ(γ, e) is a legal decorated
derivation in G . The proof can be carried out by adapting the argument in [CMR96],
Theorem 29. The only differences, here, are the fact that the source graph of the
derivation is not, in general, the start graph of the grammar, and the presence of the
decorations. Incidentally, observe that the construction above can be seen also as an
instance of the pullback-retyping construction (see Section 5.3), which transforms a
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|Lj |qj :

ιLϕ(e(j))

|Kj |
lj rj

ιKϕ (e(j))

|Rj |

ιRϕ (e(j))

|L′j |e(j) :

tL′
j

|K ′j |
l′j r′j

tK′
j

|R′j |

tR′
j

|Gj−1| |Dj | |Gj |

Liqi :

gi

Ki
li ri

ki

Ri

hi

Gi−1

cgi−1

Di
bi di

cdi

Gi

cgi

〈TGϕ, ϕT 〉

(a) (b)

Figure 7.2: From abstract concatenable processes to concatenable derivation traces
and backward.

derivation in Oϕ (depicted in the low row of Figure 7.2.(a)) to a derivation in G , by
using the process morphism ϕ : Oϕ → G .

The following lemma shows that the mapping DA can be lifted to a well-defined
functor from the category of abstract concatenable processes to the category of
derivation traces, which acts as identity on objects.

Lemma 7.17 (functoriality of DA)
Let G be a typed graph grammar, and let γ1 and γ2 be concatenable processes of G .
Then

1. (DA is a well-defined mapping from abstract concatenable processes to traces)

if γ1
∼= γ2 then ψ(γ1, e1) ≡

c ψ(γ2, e2), for any choice of the linearizations e1
and e2;

2. (DA preserves sequential composition)

if defined, ψ(γ1 ; γ2, e) ≡
c ψ(γ1, e1) ; ψ(γ2, e2), for any choice of the lineariza-

tions e1, e2 and e;

3. (DA maps discrete processes to discrete derivation traces, and, in particular,
it preserves identities)

ψ(SymG (m,G,M), e) ≡c 〈m,G,M〉, for any choice of the linearization e.

Hence DA : CP[G ] → Tr[G ], extended as the identity on objects, is a well-defined
functor.

Proof. 1. Let γ1
∼= γ2 be two isomorphic concatenable processes of G , with γi = 〈mi, ϕi,Mi〉

for i ∈ {1, 2}. Let f = 〈fT , fP 〉 : γ1 → γ2 be an isomorphism, and let e1 and e2 be linearizations of
Pϕ1 and Pϕ2 , respectively. We show that the two decorated derivations ψ1 = ψ(γ1, e1) and ψ2 =
ψ(γ2, e2) are ctc-equivalent by exhibiting a consistent five-tuple 〈ρψ1 ,mψ2◦m

−1
ψ1
,Π,Mψ2◦M

−1
ψ1
, ρψ2〉.
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First, it is quite easy to recognize that Items(ψi) (see Definition 7.12) is isomorphic to
Items(TGϕi

), for i ∈ {1, 2} and thus fT : TGϕ1 → TGϕ2 induces, in an obvious way, an iso-
morphism ξ : Items(ψ1)→ Items(ψ2).

Since the restrictions of fT to the source and target graphs of the processes are isomorphisms,
we can take

hσ = fT |•ϕ1
: •ϕ1 → •ϕ2 and hτ = fT |ϕ1

• : ϕ1
• → ϕ2

•,

which are compatible with mψ2 ◦m
−1
ψ1

and Mψ2 ◦M
−1
ψ1

, by definition of isomorphism of concatenable
processes (and obviously compatible with ξ). Finally we can define the permutation Π : #ψ1 → #ψ2

as Π = e−1
2 ◦ fP ◦ e1.

Now, it is not difficult to check that 〈ρψ1 ,mψ2 ◦m
−1
ψ1
,Π,Mψ2 ◦M

−1
ψ1
, ρψ2〉 is a consistent five-

tuple. Thus, by Theorem 7.14.(1), we conclude that ψ1 ≡c ψ2.

2. Let γ1 = 〈m1, ϕ1,M1〉 and γ2 = 〈m2, ϕ2,M2〉 be two concatenable processes such that their
sequential composition is defined, i.e., ϕ1

• = •ϕ2, M1 = m2 and all other items in γ1 and γ2 are
distinct. Let γ = 〈m1, ϕ,M2〉 be their sequential composition. Let us fix linearizations e1, e2 and
e of Pϕ1 , Pϕ2 and Pϕ, respectively, and let ψ1 = ψ(γ1, e1), ψ2 = ψ(γ2, e2) and ψ = ψ(γ, e).

Observe that σ(ψ) = σ(ψ1) = σ(ψ1 ; ψ2) and similarly τ(ψ) = τ(ψ2) = τ(ψ1 ; ψ2). Further-
more, we have that Items(ψ) and Items(ψ1;ψ2) are (isomorphic to) Items(TGϕ) = Items(TGϕ1)
∪ Items(TGϕ2). Therefore one can verify that the five-tuple 〈ρψ, idσ(ψ),Π, idτ(ψ), ρψ1 ;ψ2〉, where
Π = (e1 ∪ e2)−1 ◦ e is consistent (the function ξ being identity on classes). This fact, together with
the observation that mψ = mψ1 = mψ1;ψ2 and Mψ = Mψ2 = Mψ1;ψ2 , allows us to conclude, by
Theorem 7.14.(1), that ψ ≡c ψ1;ψ2.

3. Obvious. 2

The backward step, from concatenable derivation traces to processes, is per-
formed via a colimit construction that, applied to a decorated derivation ψ, essen-
tially constructs the type graph as a copy of the source graph plus the items created
during the rewriting process. Productions are instances of production applications.

Definition 7.18 (from traces to processes)
Let G = 〈TG,Gs, P, π〉 be a typed graph grammar and let ψ = 〈m, ρ,M〉 be a
decorated derivation, with #ψ = n. We associate to ψ a concatenable process cp(ψ) =
〈m′, ϕ,M ′〉, defined as follows:

• 〈TGϕ, ϕT 〉 is a colimit object (in category TG-Graph) of the diagram rep-
resenting derivation ψ, as depicted (for a single derivation step) in Fig-
ure 7.2.(b);

• Pϕ = {〈prod(ψ)(j), j〉 | j ∈ n}. For all j ∈ n, if prod(ψ)(j) = qis (in
the notation of Definition 5.11, Figure 5.6), then πϕ(〈prod(ψ)(j), j〉) is es-
sentially production qis, but typed over TGϕ (see Figure 7.2.(b)). Formally
πϕ(〈prod(ψ)(j), j〉) is the production

〈|Lqis|, cgi−1 ◦ gi ◦ in
L
is〉

lqis← 〈|Kqis|, cdi ◦ ki ◦ in
K
qis
〉
rqis→ 〈|Rqis|, cgi ◦ hi ◦ in

R
qis
〉
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and ϕP (〈prod(ψ)(j), j〉) = prod(ψ)(j). Finally the “ι component” is given by
ιϕ(〈prod(ψ)(j), j〉) = 〈id|Lqis |, id|Kqis |, id|Rqis |〉.

Note that for j1 6= j2 we may have prod(ψ)(j1) = prod(ψ)(j2); instead, the
productions in Pϕ are all distinct, as they can be considered occurrences of
production of G ;

• notice that •ϕ = cg0(G0) and ϕ• = cgn(Gn) (and the cgi’s are injective, because
so are the horizontal arrows) so that we can define m′ = cg0 ◦m and M ′ =
cgn ◦M .

Finally we define the image of the trace [ψ]c as CA([ψ]c) = [cp(ψ)].

As an example, the process of Figure 7.1 can be obtained (up to isomorphism) by
applying the construction just described to either the derivation of Figure 5.6 or
that of Figure 5.11.

Notice that it is quite easy to have a concrete characterization of the colimit graph
TGϕ. Since all the squares in the diagram representing derivation ψ : G0 ⇒

∗ Gn

commute (they are pushouts), TGϕ can be regarded equivalently as the colimit of

the bottom line of the derivation, G0
b1← D1

d1→ G1
b2← · · ·Dn

dn→ Gn. Thus TGϕ can be
characterized explicitly as the graph having as items Items(ρψ) (see Definition 7.12),
and where source and target functions are determined in the obvious way. The
injections cxi (x ∈ {g, d}) simply map every item into its equivalence class.

Lemma 7.19 (CA is well-defined)
Let G = 〈TG,Gs, P, π〉 be a typed graph grammar and let ψ1 ≡

c ψ2 be two decorated
derivations of G . Then cp(ψ1) ∼= cp(ψ2).

Proof. Let ψ1 and ψ2 be ctc-equivalent decorated derivations of G . Then, by Theorem 7.14 there
exists a five-tuple 〈ρψ1 ,mψ2 ◦m

−1
ψ1
,Π,Mψ2 ◦M

−1
ψ1
, ρψ2〉 with a function ξ : Items(ψ1)→ Items(ψ2)

witnessing its consistence.
Let cp(ψ1) = γ1 = 〈m1, ϕ1,M1〉 and cp(ψ2) = γ2 = 〈m2, ϕ2,M2〉. First notice that Items(ψi)

is isomorphic to the set of items of the corresponding type graph TGϕi
(i ∈ {1, 2}), and thus ξ

induces readily a function fT : TGϕ1 → TGϕ2, which, by definition of consistent five-tuple, is
consistent with the decorations of the processes. Moreover the permutation Π induces a bijection
fP : Pϕ1 → Pϕ2 , defined as fP (〈prod(ψ1)(j), j〉) = 〈prod(ψ2)(Π(j)),Π(j)〉, for j ∈ |Pϕ1 |.

From the definition of consistent five-tuple it follows easily that 〈fT , fP 〉 : γ1 → γ2 is an
isomorphism of concatenable processes. 2

The next lemma shows that the constructions performed by CA and DA are, at
abstract level, “inverse” to each other.

Lemma 7.20 (relating CA and DA)
Let G be a graph grammar. Then:

1. CA(DA([γ])) = [γ], for any concatenable process γ;

2. DA(CA([ψ]c)) = [ψ]c, for any decorated derivation ψ.
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Proof. 1. Let γ = 〈m, p,M〉 be a concatenable process of G and let e : |Pϕ| → Pϕ be a
linearization of Pϕ. Consider the decorated derivation:

ψ(γ, e) = 〈m, {Gi−1 ⇒e(i) Gi}i∈|Pϕ|,M〉

as in Definition 7.16.
Let us now construct the process γ1 = cp(ψ) = 〈m1, ϕ1,M1〉 as in Definition 7.18, with the

type graph TGϕ1 obtained as colimit of the diagram:

Liqi :

ιLϕ(e(i))

Ki

ιKϕ (e(i))

Ri

ιRϕ (e(i))

L′ie(i) :

tli

K ′i

tki

R′i

tri

Gi−1

cgi−1

Di
bi di

cdi

Gi

cgi

TGϕ1

Observe that a possible concrete choice for TGϕ1 is TGϕ, with all cgi’s defined as inclusions.
If we define fP : Pϕ1 → Pϕ as fP (〈prod(ψ)(i), i〉) = e(i), for i ∈ #ψ, then it is easy to prove

that f = 〈idTGϕ
, fP 〉 : γ1 → γ is a concatenable process isomorphism.

2. First of all, if ψ is a discrete decorated derivation, the result is obvious. Otherwise we can
suppose ψ = 〈m, {Gi−1 ⇒qi

Gi}i∈n,M〉 to be a derivation using a single production at each step
(recall that, by Lemma 7.19, we can apply the concrete construction to any derivation in the trace
and that in [ψ]c a derivation of this shape can always be found).

Let γ = cp(ψ) = 〈m, p,M〉 be the concatenable process built as in Definition 7.18. In particular,

the type graph TGϕ is defined as the colimit of the diagram:

Liqi :

gi

Ki
li ri

ki

Ri

hi

Gi−1

cgi−1

Di
bi di

cdi

Gi

cgi

TGϕ

The set of productions is Pϕ = {q′i = 〈qi, i〉 | i ∈ n}, with πϕ(q′i) = 〈|Li|, cgi−1 ◦ gi〉
li←

〈|Ki|, cdi ◦ ki〉
ri→ 〈|Ri|, cgi ◦ ri〉. Moreover m = cg0 ◦mψ and M = cgn ◦Mψ. Remember that all

cgi’s are injections and cg0 : G0 → •ϕ, cgn : Gn → ϕ• are isomorphisms.
Now it is not difficult to verify that prod(ψ) is a linearization of Pϕ and ψ′ = ψ(γ, prod(ψ)) is

the derivation whose ith step is depicted below.

Liq′i :

cgi−1◦gi

Ki

cdi◦ki

Ri

cgi◦hi

cgi−1(Gi−1) cdi(Di) cgi(Gi)

The family of isomorphism {θXi
: Xi → X ′

i | X ∈ {G,D}, i ∈ n}∪{θG0} between corresponding
graphs in the two (linear) derivations defined as:
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θDi
= cdi and θGi

= cgi

satisfies the conditions of Definition 5.16 and thus we have that ψ′ ≡abs ψ. Therefore [ψ]c = [ψ′]c =
DA([γ]) = DA(CA([ψ]c). 2

The previous lemma, together with functoriality of DA, allows us to conclude
that CA : Tr[G ]→ CP[G ], defined as identity on objects and as CA([ψ]c) = [cp(ψ)]
on morphisms, is a well-defined functor. In fact, given two decorated derivations ψ1

and ψ2, we have

CA([ψ1]c ; [ψ2]c) = [by Lemma 7.20.(2)]

= CA(DA(CA([ψ1]c)) ; DA(CA([ψ2]c))) = [by functoriality of DA]

= CA(DA(CA([ψ1]c) ; CA([ψ2]c))) = [by Lemma 7.20.(1)]

= CA([ψ1]c) ; CA([ψ2]c)

Similarly one proves also that CA preserves identities. Moreover, again by
Lemma 7.20, functors DA and CA are inverse to each other, thus implying the main
result of this section.

Theorem 7.21 (relating processes and traces)
Let G be a graph grammar. Then DA : CP[G ] → Tr[G ] and CA : Tr[G ] → CP[G ]
are inverse to each other, establishing an isomorphism of categories. 2

7.4 Relating unfolding and deterministic pro-

cesses

This section is aimed at reconciling the unfolding semantics of a graph grammar,
which basically relies on the notion of nondeterministic graph process, with the
semantics defined in terms of (concatenable) deterministic graph processes. The
general pattern is the same we already followed in the case of nets. We show that
the domain extracted from the unfolding of a grammar can be characterized as the
set of deterministic processes with source in the start graph of the grammar and
ordered by prefix, or, formally, that Idl(〈[Gs] ↓ CP[G ]〉) is isomorphic to the domain
Li(Eg(Ug(G ))) (see Sections 6.3-6.5 in the previous chapter).

The result can be proved for general (consuming) graph grammars, and not
only for the subclass of semi-weighted graph grammars. In fact, as usual, a central
role in the proof is played by the characterization of the unfolding as a universal
construction. We know from the previous chapter (Section 6.4) that, when consid-
ering general morphisms, such a characterization only holds for the subcategory of
semi-weighted grammars. However, limiting our attention to the (lluf) subcategories
GGR and O-GGR where the left component of the type span of any morphism is
mono (see Definition 6.25), the result generalizes to general (consuming) grammars.
Simply observing that strong grammars morphisms (see Definition 6.12), which are
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used to define graph processes, are particular morphisms in GGR, it results clear
that the proof schema followed in the First Part for nets can be easily adapted
here to reach the desired result for general grammars.

The first observation regards the structure of the category 〈[Gs] ↓ CP[G ]〉, which,
by definition of sequential composition between processes, can be easily shown to
be a preorder.

Proposition 7.22
Let G be a consuming grammar. Then the category 〈[Gs] ↓ CP[G ]〉 is a preorder.

Let . be the preorder relation in 〈[Gs] ↓ CP[G ]〉. As in the case of nets, given
two concatenable processes γ : [Gs] → [G] and γ′ : [Gs] → [G′], if γ . γ′ . γ,
then γ can be obtained from γ′ simply by composing it with a discrete process.
Hence the partial order induced by 〈[Gs] ↓ CP[G ]〉 intuitively consists of classes
of processes which are “left-isomorphic”, in the sense that they are related by a
process isomorphism which is required to be consistent only with the decoration of
the source.

The above considerations provide some intuition on the transformation defined
below, which associates to each concatenable process γ a (non concatenable) marked
process γ̂ by forgetting the decoration of the target and using the decoration of the
source to construct the “ι” component for the start graph.

Definition 7.23 (from concatenable processes to marked processes)
Let G = 〈TG,Gs, P, π〉 be a graph grammar and let φ : Gs → Can(Gs) be a fixed
isomorphism. For any (abstract) concatenable process γ = 〈m,ϕ,M〉 : [Gs] → [G]
let γ̂ be the marked process ϕ̂ obtained from the unmarked process ϕ by adding as
component ιsϕ̂ the isomorphism m ◦ φ.

One can show that, for a fixed isomorphism φ, the above function establishes a
bijective correspondence between the elements of the partial order induced by the
preorder 〈[Gs] ↓ CP[G ]〉 and (finite) abstract marked processes.

Recall that the domain semantics of a graph grammar G , as defined in the
previous chapter, is obtained by taking the domain of configurations of the event
structure associated to the unfolding Ug(G ) of the grammar. In symbols the domain
is Li(Ea(Ug(G ))). We next prove the announced result, characterizing the domain
semantics in terms of the concatenable processes of a grammar.

Theorem 7.24 (unfolding vs. concatenable processes)
Let G be a (consuming) graph grammar. Then the ideal completion of 〈[Gs] ↓ CP[G ]〉
is isomorphic to the domain Li(Eg(Ug(G ))).

Proof (Sketch). Let G = 〈TG,P, π,Gs〉 be a graph grammar. As in the proof of the analogous
result for nets (see, e.g., Theorem 3.67), we exploit Lemma 3.66, which ensures that the thesis
follows form the existence of a surjective function ξ : 〈[Gs] ↓ CP[G ]〉 → K(Li(Eg(Ug(G )))) such
that ξ is monotone and monic, namely for all γ1, γ2 in 〈[Gs] ↓ CP[G ]〉,

γ1 . γ2 iff ξ(γ1) ⊑ ξ(γ2).
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Recalling that the compact elements of the domain Li(Eg(Ug(G ))), associated to G , are exactly
the finite configurations of Eg(Ug(G )), we can define the function ξ as follows. Let γ = 〈m,ϕ,M〉 be
a concatenable process in 〈[Gs] ↓ CP[G ]〉 and consider the marked process γ̂ as in Definition 7.23.

By definition of graph process, γ̂ : Oγ̂ → G is a (marked) strong morphism. Therefore, by
Theorem 6.26, there exists a unique arrow ϕ′ : Oγ̂ → Ua(N), making the diagram below commute.

Ug(G )
ϕG

G

Oγ̂

ϕ′

γ̂

Then the configuration associated to γ can be defined as ξ(γ) = ϕ′
P (Pγ̂). The proof that ξ is a

well-defined surjective, monotone and monic function is routine. 2

The above result can be informally interpreted by saying that the elements of
the domain associated to a graph grammar corresponds to the marked processes of
the grammar, namely to the deterministic computations starting form the initial
state. Performing a further step, we can consider the pes associated to the above
domain by Winskel’s equivalence, namely P(Li(Eg(Ug(G )))). The events of such
pes are special configurations which represent the possible histories of events in the
ies Eg(Ug(G )). Hence they correspond to processes where there is a production q
which is maximum with respect to ր∗, namely computations where there is a “last
applied” production q which cannot be shifted backward.





Chapter 8

Relating Some Event Structure
Semantics for DPO Graph
Transformation

This chapter briefly reviews two other prime event structure semantics which have
been proposed in the literature for dpo graph transformation systems. The first one
[CEL+96b] is built on top of the “abstract truly concurrent model of computation”
of a grammar, i.e., the category of concatenable derivation traces. The other one
[Sch94] is based on a deterministic variation of the dpo approach. By the results in
Chapters 6 and 7, these two alternative event structures can be shown to coincide
with the one obtained from the unfolding, which thus can be claimed to be “the”
event structure semantics of dpo graph transformation.

8.1 Event structure from concatenable traces

The construction of a prime event structure for a (consuming) graph grammar
proposed by Corradini et al. in the paper [CEL+96b], relies on the category
Tr[G ] of (concatenable) derivation traces (see Section 5.2). More precisely the au-
thors consider the category of objects of Tr[G ] under the start graph Gs, namely
〈[Gs] ↓ Tr[G ]〉, thought of as a synthetic representation of all the possible concurrent
computations of the grammar beginning from the start graph. For consuming gram-
mars, the partial order Dom[G ] obtained as the ideal completion of the preorder cat-
egory 〈[Gs] ↓ Tr[G ]〉 is shown to have the desired algebraic structure, namely to be a
prime algebraic, coherent and finitary partial order. Then, by Winskel’s results pre-
sented in Section 2.4, Dom[G ] indirectly determines a pes, ES[G ] = P(Dom[G ]),
which is assumed to give the concurrent semantics of G .

By the results in the previous chapter it is quite easy to recognize that ES[G ]
coincides with the prime event structure extracted from the unfolding, namely
P(Li(Eg(Ug(G )))). In fact, by Theorem 7.21, for any grammar G , the category
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of concatenable processes CP[G ] and that of concatenable derivation traces Tr[G ]
are isomorphic, and thus also the corresponding comma categories 〈[Gs] ↓ Tr[G ]〉
and 〈[Gs] ↓ CP[G ]〉 are isomorphic. Therefore Theorem 7.24 immediately entails
the desired result.

In [CEL+96b] the algebraic properties of the domain Dom[G ] are proved by
presenting an explicit construction of the prime event structure ES[G ] associated to
a graph grammar and then by showing that the finite configurations of ES[G ] are
one-to-one with the finite elements of the domain Dom[G ]. We briefly outline the
construction of ES[G ], since we think that it is an interesting complement to the
construction in Chapter 6. In fact, it provides an equivalent trace-based description
of the prime event structure associated to a grammar, which, in our opinion, can be
helpful to get a clearer understanding of the meaning of the events in such pes.

Definition 8.1 (pes from traces)
Let G = 〈TG,Gs, P, π〉 be a graph grammar. A pre-event for G is a pair 〈ψ, α〉,
where ψ is a decorated derivation starting from a graph isomorphic to Gs, and α is
a direct derivation which applies a single production in P (namely #α = 1) such
that

1. ψ ; α is defined (i.e., τ(ψ) = σ(α), and Mψ = mα) and

2. ψ ; α ≡cΠ ψ
′ implies Π(#ψ + 1) = #ψ + 1.

If 〈ψ, α〉 is a pre-event, we denote by εψα the corresponding derivation trace, namely
εψα = [ψ ; α].
An event ε for G is then defined as a derivation trace ε = εψα for some pre-event
〈ψ, α〉. For each event ε let Der(ε) denote the set of derivations containing such
event, formally defined as:

Der(ε) =
⋃
{δ | ∃δε ⊆ ε. ∃δ′. δε; δ

′ = δ}.

Notice that, in particular, ε ⊆ Der(ε), since each concatenable derivation trace
δε ⊆ ε can be concatenated with (the concatenable trace corresponding to) a discrete
derivation. Then the prime event structure of grammar G , denoted by ES[G ], is
the triple ES[G ] = 〈E,≤,#〉, where E is the set of all events for G , ε ≤ ε′ if
Der(ε′) ⊆ Der(ε), and ε#ε′ if Der(ε) ∩Der(ε′) = ∅.

Conceptually, an event εψα of a grammar G is determined by the application of
a production to a graph reachable from the start graph of G (i.e., by the direct
derivation α), together with the history that generated the graph items needed by
that production application (i.e., the derivation ψ). The fact that in the pre-event
〈ψ, α〉 the last step α cannot be shifted backward (requirement (2) for pre-events)
guarantees that α is not independent from all the previous steps in ψ. It is worth
stressing that the same requirement implies that if ψ ; α ≡cΠ ψ

′ then ψ′ = ψ′′ ; α′ with
ψ ≡cΠ|#ψ

ψ′′ and α ≡abs α′. Clearly, isomorphic production applications or different



8.1. Event structure from concatenable traces 231

linearizations of the same history should determine the same event. Therefore an
event is defined as a set of equivalent derivations in G , more precisely as a trace
including all the derivations having (a copy of) α as last step and containing the
corresponding history.

Given this notion of event, the causality and conflict relations are easily de-
fined. In fact, considering for each event ε the set Der(ε) of all the derivations that
performed ε at some point, we have that two events are in conflict if there is no
derivation that can perform both of them, and they are causally related if each
derivation that performs one also performs the other.

Example 8.2 (event structure of grammar C -S )
Figure 8.1 depicts part of the event structure of the graph grammar C -S of Example
5.9. Continuous arrows form the Hasse diagram of the causality relation, while dotted
lines connect events in direct conflict (inherited conflicts are not drawn explicitly).

Recalling that, intuitively, an event of a grammar corresponds to a specific ap-
plication of a production together with its “history”, a careful analysis of grammar
C -S allows us to conclude that its event structure contains the following events:

E = {req(n) | n ∈ N} ∪ {ser(w), rel(w) | w ∈ N
⊗},

where N
⊗ denotes the set of non-empty sequences of distinct natural numbers.

In fact, an application of production REQ only depends on previous applications
of the same production (because it consumes a job edge, and only REQ can pro-
duce such edges). Therefore a natural number is sufficient to represent its history:
conceptually, req(n) is the event corresponding to the n-th application of REQ. An
application of production SER, instead, depends both on a specific application of
REQ (because it consumes a req edge), and, because of the S node it consumes
and produces, either on the start graph or on a previous application of SER itself
followed by REL (SER cannot be applied in presence of a busy edge connected to
node S because of the dangling condition). It is not difficult to check that such an
event is uniquely determined by a non empty sequence of distinct natural numbers:
ser(n1n2 · · ·nk) is the event corresponding to the application of SER which serves
the nk-th REQuest, after requests n1, . . . , nk−1 have been served in this order. In
turn, an application of production REL only depends on a previous application of
SER (because of the busy edge), and we denote by rel(w) the event caused directly
by ser(w).

This informal description should be sufficient to understand the part of the pes
ES[C -S ] shown in Figure 8.1, including only the events which are caused by the
first three requests and the relationships among them. The causality and conflict
relations of ES[C -S ] are defined as follows:

• req(n) ≤ req(m) iff n ≤ m;

• req(n) ≤ ser(w) iff n ∈ w, that is, an application of SER only depends on the
request it serves and on those served in its history;
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req(1) req(2) req(3)

ser(1) #

#

ser(2) # ser(3)

rel(1) rel(2) rel(3)

ser(12) # ser(13) ser(21) # ser(23) ser(31) # ser(32)

rel(12) rel(13) rel(21) rel(23) rel(31) rel(32)

ser(123) ser(132) ser(213) ser(231) ser(312) ser(321)

rel(123) rel(132) rel(213) rel(231) rel(312) rel(321)

Figure 8.1: Event structure of the grammar C -S .

• ser(w) ≤ ser(w′) iff w ⊑ w′, where ⊑ is the prefix ordering (the application
of SER depends only on applications of SER in its history);

• ser(w) ≤ rel(w′) iff w ⊑ w′;

• rel(w) ≤ ser(w′) iff w ⊏ w′;

• for x, y ∈ {rel, ser}, x(w)#y(w′) iff w and w′ are incomparable with respect
to the prefix ordering. 2

8.2 Event structure semantics from deterministic

derivations

Schied in [Sch94] proposes a construction for defining an event structure semantics
for distributed rewriting systems, an abstract unified model where several kinds of
rewriting systems, such as graph grammars and term rewriting systems, naturally fit.
He shows that, given a distributed rewriting system R, a domain DR can be obtained
as the quotient, with respect to shift equivalence, of the collection of derivations
starting from the initial state, ordered by the prefix relation. To prove the algebraic
properties of DR he constructs, as an intermediate step, a trace language based on
the shift equivalence, and applies general results from [Bed88] to extract a prime
event structure ER from the trace language. Finally he shows that DR is isomorphic
to the domain of configurations of ER .



8.2. Event structure semantics from deterministic derivations 233

The main interest in Schied’s paper is for the application to graph grammars. Let
us sketch how, according to Schied, the above construction instantiates to the case
of graph grammars. Graph grammars are modelled as distributed rewriting systems
by considering a deterministic variation of the dpo approach, where at each direct
derivation the derived graph is uniquely determined by the rewritten graph, the
applied production and the match. The idea consists of working on concrete graphs,
where each item records his causal history. Formally the definition of deterministic
direct derivation is as follows.

Definition 8.3 (deterministic derivation)
Let q : Lq ← Kq → Rq be a production and let m : Lq → G be a match. Then a
deterministic direct derivation G ;q,m H exists if m satisfies the gluing conditions
and

H = glue〈q,m〉(q,m,G)−m(Lq − l(Kq)).

Let G = 〈TG,Gs, P, π〉 be a typed graph grammar. A deterministic derivation in G is
a sequence of deterministic direct derivations Gs ;q1,m1 G1 ;q2,m2 . . . ;qn,mn Gn,
starting from the start graph and applying productions of G .

Actually the above definition instantiates the ideas of Schied to our setting which
is slightly different, in that we work with typed graph grammars. Moreover in the
original definition of Schied, since productions are nameless, the new items in H
are marked only with the morphism m. Here we have to add also to name of the
production.

Let G1 ;q1,m1 G2 ;q2,m2 G3 be sequentially independent deterministic deriva-
tions. A basic observation is that we can shift the applications of the two produc-
tions without changing the matches, thus obtaining a new deterministic derivation
G1 ;q2,m2 G

′
2 ;q1,m1 G3. The construction of the domain of a grammar is then based

on the partial order of deterministic derivations endowed with the prefix relation,
and on shift equivalence.

Definition 8.4 (Schied’s domain)
The Schied’s domain for a consuming grammar G , denoted by DG , is defined as
the quotient, with respect to shift equivalence, of the partial order of deterministic
derivations of a grammar G endowed with the prefix relation.

Now it is not difficult to prove that the (ideal completion of) Schied’s do-
main coincides with the domain semantics for a grammar G , as defined in Chap-
ter 6. More precisely, the domain of configurations of the unfolding of a grammar
Conf (Ug(G )) (or equivalently the domain of configurations of the ies associated to
G , i.e., Li(Eg(Ug(G )))) is isomorphic to Idl(DG ).

Theorem 8.5
For any (consuming) graph grammar G , the ideal completion of DG and the domain
Conf (Ug(G )) are isomorphic.
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Proof. Consider the function η : DG → Conf (Ug(G )), defined as

η([d]sh) = {〈qi,mi〉 | i ∈ n} if d : Gs ;q1,m1 G1 ;q2,m2 . . . ;qn,mn
Gn.

Notice that the definition is independent from the particular choice of the representative d, since
the shift construction does not change the pairs 〈qi,mi〉 in the derivation.

Vice versa given a configuration C ∈ Conf (Ug(G )), consider any linearization of C, compatible
with the asymmetric conflict relation ր of the unfolding. Let q′1, . . . , q

′
n such a linearization, and

suppose q′i = 〈qi,mi〉 for i ∈ n. Then (by correspondence between unfolding and deterministic
processes, and by properties of deterministic processes) we can construct a derivation

dC : Gs ;q1,m1 G1 ;q2,m2 . . . ;qn,mn
Gn.

and different linearizations lead to shift equivalent derivations. Thus we can define a function
γ : Conf (Ug(G ))→ DG as γ(C) = [dC ]sh, for any configuration C.

Finally, it is not difficult to verify that the two functions are monotonic and that they are
inverse each other, establishing an isomorphism between the two domains. 2



Final Remarks on Part II

The notions and results developed in the First Part for contextual and inhibitor
nets have been fruitfully exploited to provide dpo graph transformation systems
with a systematic theory of concurrency which reduces the gap existing between
Petri nets and graph grammars.

The intuitive relationship between graph grammars and inhibitor nets, and the
observation that safe graph grammars can be encoded by means of inhibitor nets
have guided us in the definition of a Winskel’s semantics for graph grammars. The
notion of occurrence grammar and the unfolding construction, which can be ex-
pressed as a categorical coreflection between suitable categories of graph grammars
and occurrence grammars, are introduced by following closely the approach used for
inhibitor nets. Then, not surprisingly, inhibitor event structures turn out to be suf-
ficiently expressive to represent the dependencies between events in graph grammar
computations, and thus the unfolding can be naturally abstracted to an inhibitor
event structure and finally, by using the results in Chapter 4, to a prime algebraic
domain.

SW-GG
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⊥ O-GG
Eg

IO

IES
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Dom
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P
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L

As in the case of inhibitor nets, Winskel’s construction has not been fully extended
to graph grammars since the passage from occurrence grammars to inhibitor event
structures is not expressed as a coreflection.

The notion of nondeterministic graph process which arises from our theory (the
prototypical example of process being the unfolding), turns out to be a generalization
of the deterministic processes of [CMR96].

Furthermore concatenable graph processes have been defined as a variation of the
(deterministic finite) graph processes endowed with an operation of sequential com-
position, and have been shown to provide a semantics for graph grammars which is
equivalent to the classical truly concurrent semantics based on the shift-equivalence.
More precisely, we proved that the category CP[G ] of concatenable processes of
a grammar G is isomorphic to the abstract truly concurrent model of computation
based on traces Tr[G ] [CMR+97, CEL+96b, BCE+99]. As already done for the other
formalisms in the First Part, we have also proved that the process semantics is
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strictly related to the unfolding semantics, in the sense that concatenable processes
allow to recover the same domain extracted from the unfolding.

As a last result, we showed that the prime event structure extracted from the
unfolding coincides both with the one in [CEL+96b], obtained via a comma category
construction on the category of concatenable derivation traces, and with the one
in [Sch94], based on a deterministic variant of the dpo approach. Nicely, this result
gives a unified view of the various event structure semantics for the dpo approach
to graph transformation in the literature.



Chapter 9

Conclusions

In this thesis we singled out a general approach, inspired by the theory of ordinary
Petri nets, for the development of a truly concurrent semantics of a class of systems.
The semantics describes the concurrent behaviour of the systems through several
mathematical structures at various levels of abstraction. The approach has been
applied to contextual and inhibitor nets, two generalization of Petri nets in the
literature, and finally to graph transformation systems.

The core of the approach is an unfolding construction which, when applied to a
system, produces a single structure describing all the possible computations of the
given system starting from its initial state. A more abstract representation of the
behaviour of the system is obtained from the unfolding by abstracting from the na-
ture of the states and recording only the events and the dependencies among events.
This leads to a semantics based on suitable event structure models (asymmetric and
inhibitor event structures), extending Winskel’s prime event structure in order to
allow for a faithful representation of the dependencies between events, without re-
ducing them simply to causality and symmetric conflict. We developed a general
theory of the mentioned event structure models, which allows one to recover, finally,
a semantics in terms of more classical structures for concurrency like prime alge-
braic domains or equivalently prime event structures. The approach also includes
a notion of deterministic process which captures the deterministic computations of
the system. Deterministic processes, endowed with a suitable a notion of sequential
composition, form a category which can be seen as a model of computation for the
system at hand. The two approaches to the semantics based on the unfolding and
on deterministic processes can be finally reconciled by showing that both allow to
recover the same event structure for the system.

Besides the concrete results and constructions proposed for each single model,
we think that an “informal” achievement of the thesis is the presentation and the
treatment of (generalized) Petri nets and graph grammars in a unified framework,
where also graph grammars are seen as a kind of enriched nets. This allowed us to
use net-theoretical concepts to reason on graph transformation systems, a possibility
which has been useful in extending constructions and results from nets to graph
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grammars. We believe that the mentioned uniform presentation of nets and graph
grammars can help net-theorists to get closer to graph grammars and thus can
contribute, in the next future, to transfer to graph grammars some of the verification
and modelling techniques existing for Petri nets.

A technical problem which remains open regards the possibility of fully extend-
ing Winskel’s construction also to inhibitor nets and graph grammars, by expressing
as a coreflection the whole semantical transformation leading from the category of
systems to the category of domains. In fact, while the results on contextual nets
can be considered completely satisfactory, in the case of inhibitor nets and graph
grammars the absence of a coreflection with the category of inhibitor event struc-
tures suggests that the construction should still be improved. We observed that this
problem cannot be overcome easily. A possible solution could be to look for a quite
different unfolding construction, producing, for instance, in the case of nets, a flow
net [Bou90] rather than an occurrence net.

An aspect which has not been considered in the thesis is the abstract algebraic
characterization of the model of computation of a system. Well established results
exist for ordinary Petri nets, whose computations have been characterized in terms
of monoidal categories [MM90, Sas96]. In the case of contextual nets a partial an-
swer to the question is given in [GM98], where it is shown that the category CP[N ]
of concatenable processes of a contextual net N can characterized as a (non full)
subcategory of a free dgs-monoidal category (a variation of monoidal categories with
non-natural duplicator and co-duplicator) constructed over the net. For graph trans-
formation systems the PhD thesis [Hec98] provides a characterization of the model
of computation of a grammar based on a pseudo-free construction in the setting of
double categories with finite horizontal colimits. The result relies on the interesting
assumption that, while the state of a Petri net is naturally characterized as a free
commutative monoid, colimits are the right constructions for generating and com-
posing graphs. A different solution has been proposed in [GHL99], where the concrete
model of computation of a dpo grammar is axiomatized via the construction of a
free dgs-monoidal bicategory. However the problem of giving an axiomatization of
the abstract model of computation of a grammar as a true free construction is still
unsolved and represents an interesting topic of future research.

We mentioned in the Introduction that a (concrete) truly concurrent seman-
tics for a system represents the basis for defining more abstract observational seman-
tics. For instance, history preserving bisimulation (HP-bisimulation) on P/T Petri
nets [vGG89] is based on the notion of process and of deterministic event structure
Ev(ϕ) associated to a process ϕ. Roughly speaking, two nets N0 and N1 are HP-
bisimilar if, for any process ϕ0 of N0 we can find a process ϕ1 of N1 such that the
underlying deterministic pes’s are isomorphic. Moreover whenever ϕ0 can perform
an action becoming a process ϕ′0, then also ϕ1 must be able to perform the same
action becoming ϕ′1 and vice versa; the isomorphism between Ev(ϕ0) and Ev(ϕ1) is
required to be extensible to an isomorphism between Ev(ϕ′0) and Ev(ϕ′1). Informally
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this means that each event of a net can be simulated by an event of the other net
with the same causal history. Relying on the process semantics and on the proposed
event structure models we can easily define notions of history preserving bisimulation
for generalized nets and for graph transformation systems. According to the chosen
class of event structure models one obtains various notions of HP-bisimulation which
“observe” a system at different levels of abstraction. Some preliminary results for
contextual nets are illustrated in [BCM00], where it is shown that the decidability
result for HP-bisimulation of ordinary nets extends also to contextual nets.

Furthermore, once an unfolding construction has been defined, a natural question
suggested by the work initiated in [McM93] regards the possibility of extracting from
the (possibly infinite) unfolding of a system a finite fragment which is still useful to
study some relevant properties of the system. For a subclass of contextual nets, called
read persistent nets, a generalization of McMillan’s algorithm has been proposed
in [VSY98]. We are confident on the possibility of further extending such result to
the whole class of semi-weighted contextual nets by relying on the notion of “possible
history” of a transition introduced in Chapter 3. However this extension could not
be relevant for concrete applications since the need of considering different histories
for the same event could significantly increase the complexity of the algorithm.

Finally, as already mentioned, although in this thesis we have concentrated only
on basic graph rewriting acting on directed (typed) graphs, it would be interesting to
understand if the presented constructions and results can extended to more general
structures. While the generalization to hypergraphs is trivial, developing a similar
theory for more general structures and for abstract categories (e.g., high level re-
placement systems [EHKPP91]) is not immediate and represents an interesting topic
of further investigation.





Appendix A

Basic Category Theory

This appendix collects some basic notions of category theory which are used in
the thesis. For a comprehensive introduction to the subject we refer the reader
to [ML71, BW90]. The notion of category represents a formalization of the intuitive
idea of a collection of objects with common structure, related by mappings which
preserve such structure.

Definition A.1 (category)
A category C consists of a collection OC of objects (ranged over by a, b,...) and a
collection AC of arrows (ranged over by f , g,...) with the following structure:

• Each arrow has a domain dom(f) and a codomain cod(f) (also called source
and target, respectively) that are objects. We write

f : a→ b or also a
f
−→ b

if a is the domain of f and b is the codomain of f .

• Given two arrows f and g such that cod(f) = dom(g), the composition of f
and g, written f ; g, is an arrow with domain dom(f) and codomain cod(g):

a
f
−→ b

g
−→ c = a

f ;g
−→ c.

• The composition operator is associative, i.e.,

f ; (g; h) = (f ; g); h

whenever f , g and h can be composed.

• For every object a there is an identity arrow ida : a → a, such that for any
arrow f : a→ b

ida; f = f = f ; idb.
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The collection of arrows from an object a to an object b in C, called homset, is
denoted by C[a, b].

As usual, we write either f ∈ AC or just f ∈ C to say that f is an arrow in C, and
similarly for objects.

Example A.2 (category Set)
We denote by Set the category whose objects are sets and whose arrows are total
functions, with the ordinary composition of functions as arrow composition and the
identity function idX as identity for each set X.

Example A.3 (categories and preorders)
Recall that a preorder is a set X together with a binary relation ≤ which is reflexive
and transitive. A preorder (X,≤) can be seen as a category X where the objects are
the elements of X, and for any x, y ∈ X the homset X[x, y] is a singleton if x ≤ y
and the empty set otherwise.

Conversely, a category A where there is at most one arrow between any two
objects is called a preorder category or simply a preorder. It will be often identified
with the underlying preordered set (AO,≤), with a ≤ b iff |A[a, b]| = 1.

Other examples are the empty category 0, the category 1 with one object • and
one arrow id•, and the category of sets and relations. A category is called discrete
if every arrow is the identity of some object. For example, 1 is a discrete category.

Definition A.4 (subcategory)
Given two categories A and B, we say that A is a subcategory of B, if

• OA ⊆ OB,

• for all a, b ∈ OA, A[a, b] ⊆ B[a, b],

• composition and identities in A coincide with those in B.

The subcategory A is called full if A[a, b] = B[a, b], for all a, b ∈ OA. The subcategory
A is called lluf if it has the same objects of A, namely if OA = OB.

In category theory, it is common practice to express properties or requirements
by means of commutative diagrams. A diagram is made up of objects and arrows,
and we say that it commutes if picking any two objects in the diagram and tracing
any path of arrows from one object to the other, the composition of the arrows
yields always the same result. For example, the associativity of composition can
be equivalently expressed by saying that the diagram (i) in Figure A.1 commutes.
Similarly, the identities are characterized by the commutativity of the diagram (ii)
in Figure A.1.
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Figure A.1: Associativity and identity diagrams for arrow composition.

Definition A.5 (inverse)
An arrow f : a → b in a category C is called an isomorphism if there is an arrow
g : b→ a such that f ; g = ida and g; f = idb. In this case, g is called the inverse of f
(and vice versa) and it is denoted by f−1 (it is immediate to prove that the inverse,
if it exists, is unique).

The set-theoretic notions of injective and surjective function are captured by the
categorical concepts of mono and epi morphism.

Definition A.6 (mono and epi morphisms)
An arrow m : b→ c in a category C is called a monomorphism, or simply mono, if
for any pair of morphisms f, g : a→ b, f ;m = g;m implies f = g.

Conversely, e : a→ b is called an epimorphism, or simply epi, if for any pair of
morphisms f, g : b→ c, e; f = e; g implies f = g.

A.1 Functors

Functors are essentially morphisms between categories, in the sense that they are
mappings which “preserve” the relevant structure of categories.

Definition A.7 (functor)
Given two categories A and B, a functor F : A→ B consists of a pair of mappings
(FO, FA) such that:

• FO : OA → OB,

• FA : AA → AB,

• if f : a→ b ∈ A then FA(f) : FO(a)→ FO(b) (but usually we omit subscripts
and write F (f) : F (a)→ F (b)),

• F (f ; g) = F (f);F (g) for each f : a→ b and g : b→ c ∈ A,

• F (ida) = idF (a) for each object a ∈ A.
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A notion of composition for functors is naturally defined via the composition
of their object and arrow components, seen as functions. It is easy to see that this
operation is associative and admits identities, namely the (endo)functors IdA : A→
A whose components are the identities on the sets of objects and arrows of A. This
yields the category Cat of all categories, whose objects are categories and whose
arrows are functors. Consequently a notion of isomorphism of categories (as objects
of Cat) naturally arises:

Definition A.8 (isomorphism of categories)
Two categories A and B are isomorphic if there are two functors F : A → B and
G : B→ A such that G ◦ F = IdA and F ◦G = IdB.

Any functor F : A→ B induces a set mapping A[a, b]→ B[F (a), F (b)]. Accord-
ing to the properties of such mapping, the next definition identifies special classes
of functors.

Definition A.9 (faithful, full and embedding functors)
A functor F : A→ B is called

• faithful if the induced mapping F : A[a, b] → B[F (a), F (b)] is injective for
every pair of objects a, b in A;

• full if the induced mapping F : A[a, b]→ B[F (a), F (b)] is surjective for every
pair of objects a, b in A;

• an embedding if FA : AA → AB is injective.

Observe that an embedding is always injective on objects and faithful. Moreover,
if it is also full it establishes an isomorphisms between A and the full subcategory
F (A) of B.

A.2 Natural transformations

Natural transformations can be thought of as morphisms between functors. A natural
transformation from a functor F to a functor G respects the structure of the functors
in the sense that it provides a uniform way to translate images of objects and arrows
through F to images through G.

Definition A.10 (natural transformation)
Let F,G : A→ B be two functors. A natural transformation η : F

·
−→ G : A→ B

consists of a family of arrows in B indexed by the objects of A,

η = {ηa : F (a)→ G(a) ∈ AB}a∈OA

such that the diagram in Figure A.2 commutes for every arrow f : a → b ∈ A,
expressing the naturality of the transformation η. The arrow ηa is called the com-
ponent at a of the natural transformation η.
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a

f

F (a)
ηa

F (f)

G(a)

G(f)

b F (b) ηb
G(b)

Figure A.2: Naturality square of the transformation η : F
·
−→ G : A → B for the

arrow f ∈ A.

Two natural transformations η : F
·
−→ G and ν : G

·
−→ H can be composed

elementwise, obtaining a natural transformation η ∗ ν : F
·
−→ H , with (η ∗ ν)a =

ηa; νa. Moreover, for each functor F : A → B there exists the obvious identity
transformation 1F : F

·
−→ F given by 1F = {idF (a)}a∈OA

. This allows us to view the
collection of functors between two categories A and B as the objects of a category,
where arrows are natural transformations, usually denoted BA and called functor
category.

The notion of equivalence of categories allows one to express the fact that two
categories are “essentially the same”. Informally, two categories are equivalent if
they only differ for the fact that isomorphic objects are “counted more than once”.
Say that category C is skeletal two objects in C are isomorphic only if they are
identical, and call a skeleton of C a maximal skeletal full subcategory of C. It is
possible to prove that each category C has a skeleton and that any two skeletons of
C are isomorphic. Then two categories are called equivalent if they have isomorphic
skeletons.

An alternative, more handy definition of equivalence can be given by using nat-
ural transformations.

Definition A.11 (equivalence)
Two categories A and B are equivalent if there are functors F : A → B and
G : B → A, and two natural isomorphisms IdA ≃ F ;G and G;F ≃ IdB (where ≃
denotes the natural isomorphism between functors).

A.3 Universal properties, limits and colimits

In category theory, several notions are often stated by means of universal properties,
namely by requiring the existence of a unique arrow that verifies certain properties.

A very commonly used construction is that of product, generalizing the set-
theoretical cartesian product.

Definition A.12 (product)
We say that C has binary products if for any pair of objects a, b ∈ C there exists
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c
f

〈f,g〉
g

a a× b
Πa Πb

b

a

f

ina
a+ b

[f,g]

b
inb

g

c

(i) (ii)

Figure A.3: The diagrams for (i) products and (ii) coproducts.

an object a × b together with two projections Πa : a × b → a and Πb : a× b → b
satisfying the following condition:

for each object c and arrows f : c → a and g : c → b in C there exists
a unique arrow 〈f, g〉 : c → a× b such that f = 〈f, g〉; Πa and g =
〈f, g〉; Πb, i.e., there exists a unique arrow 〈f, g〉 : c → a× b such that
the diagram (i) in Figure A.3 commutes (the fact that 〈f, g〉 is depicted
as a dotted arrow expresses its universal property, i.e., that it exists and
is unique).

The dual notion of product is called coproduct, and it generalizes the set-
theoretical construction of disjoint sum.

Definition A.13 (coproduct)
We say that C has binary coproducts if for any pair of objects a, b ∈ C there exists
an object a + b together with two injections ina : a → a + b and inb : b → a + b
satisfying the following condition:

for each object c and arrows f : a→ c and g : b→ c in C there exists a
unique arrow [f, g] : a+ b→ c such that ina; [f, g] = f and inb; [f, g] = g,
i.e., there exists a unique arrow [f, g] : a+ b→ c such that the diagram
(ii) in Figure A.3 commutes.

The product (resp. coproduct) of two objects a and b is often denoted simply by
a× b (resp. a+ b), but notice that it is unique only up to isomorphism, and that it
is uniquely determined only specifying also its projections (resp. injections).

Products and coproducts, as well as other useful notions like pullbacks, pushouts,
equalizers, coequalizers, are all instances of the more general concept of limit and
of its dual notion of colimit.

Given a category C, a diagram D in C can be thought of as a graph G where
each node a is labelled by an object D(a) of C, and each edge e with source a and
target b is labelled by an arrow D(e) : D(a)→ D(b). More precisely the diagram can
be seen as a graph morphism D : G→ C, where C stands for the graph underlying
the category C. In this case we say that the diagram D has shape G.
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c
pa pb

D(a)
D(g)

D(b)

Figure A.4: Commutative cone.

c′

h

p′a c

pa

D(a)

Figure A.5: An arrow h from the cone p′ to p.

Definition A.14 (cone)
Let C be a category and let D : G → C be a diagram in C with shape G. A cone
over the diagram D is an object c of C together with a family {pa}a∈G of arrows of
C indexed by the nodes of G, such that pa : c → D(a) for each node a of G. The
arrow pa is called the component of the cone at object a. We indicate the cone by
writing p : c→ D.

A cone is called commutative if for any arrow g : a → b ∈ G, the diagram in
Figure A.4 commutes.1 If p′ : c′ → D and p : c → D are cones, an arrow from the
first to the second is an arrow h : c′ → c such that for each node a ∈ G, the diagram
in Figure A.5 commutes.

Definition A.15 (Limit)
A commutative cone over the diagram D is called universal if every commutative
cone over the same diagram has a unique arrow to it. A universal cone, if such
exists, is called a limit of the diagram D.

Example A.16
A limit of the diagram (ca, cb) (i.e., a pair of objects), which is associated to the
discrete graph with only two nodes a and b, is an object u, together with two arrows
p1 : u→ ca and p2 : u→ cb, such that for any other cone (u′, p′1 : u′ → ca, p

′
2 : u′ →

cb) there exists a unique arrow h : u′ → u with p′1 = h; p1 and p′2 = h; p2. Notice that

1We remark that the diagram D is not assumed to commute.
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h′1

d
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(i) (ii)

Figure A.6: Diagrams for (i) pullback and (ii) pushout.

this is just the definition of product of ca and cb. Dually, the colimit of the diagram
(ca, cb) defines the coproduct of ca and cb (if it exists).

A very commonly used kind of (co)limit is given by pullbacks and pushouts.

Definition A.17 (pullback and pushout)
Let G be the graph • • • . A diagram of this shape in a category C is given
by three objects a, b and c, and two morphisms f : a→ c and g : b→ c. A cone for
such diagram is an object d together with three arrows h1 : d → a, h2 : d → b and
h3 : d→ c, such that h3 = h1; f and h3 = h2; g. Hence, h1; f = h2; g and the cone is
equivalently expressed by (d, h1, h2), because h3 is uniquely determined by h1 and by
h2. The cone is universal if for any other cone (d′, h′1, h

′
2) of the same diagram there

exists a unique arrow h : d′ → d making the diagram in Figure A.6.(i) commute. A
limit for this diagram (if it exists) is called a pullback of f and g.

The dual notion is called pushout. It can be defined as the colimit for the diagram
(a, b, c, f : c → a, g : c → b), which is associated to the graph • • • .
Figure A.6.(ii) represents the corresponding diagram.

An interesting property of pullbacks is the preservation of monomorphisms: if
the arrow g in Figure A.6 is mono then also h1 is mono. Dually, pushouts preserve
epimorphisms.

A.4 Adjunctions

Adjunctions are extensively used in the thesis to characterize constructions by means
of universal properties. There are several equivalent definitions of adjunction. We
think that the more “intuitive” one relies on the scenario consisting of two categories
A and B and a functor F : A→ B, where given an object b in B we want to find an
object u in F (A), i.e. u = F (Gb) for some object Gb in A, that better approximates
b. The intuitive idea of approximation is formalized by the existence of an arrow
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ǫb
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F (a)

F (f)
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Figure A.7: The left adjoint F .
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F (Gb′)
ǫb′

b′

F (Gb) ǫb

ǫb;f
F (h)

b

f

Figure A.8: The definition of the right adjoint to F .

from F (Gb) to b. The fact that this approximation is better than the others means
that any other arrow f : F (a) → b for some a in A factorizes through the better
approximation of b via the image of a morphism in A, in a unique way.

Definition A.18 (adjunction)
Given two categories A and B and a functor F : A → B, we say that F is a
left adjoint if for each object b in B there exists an object Gb in A and an arrow
ǫb : F (Gb)→ b in B such that for any object a ∈ A and for any arrow g : F (a)→ b
there exists a unique arrow f : a→ Gb ∈ A such that g = F (f); ǫb (see Figure A.7).

An immediate consequence of the fact that F is left adjoint is the existence of
a functor from B to A that maps each object b into its approximation Gb, i.e., the
mapping G extends to a functor. This point can be proved by noticing that, given
an arrow f : b→ b′ in B, the arrow ǫb; f : F (Gb)→ b′ factorizes through ǫb′ and the
image of a unique arrow h from Gb to Gb′ . Therefore the functor G can be defined
by taking G(f) = h (see Figure A.8). The functor G is called the right adjoint to F ,
and we write F ⊣ G. The collection ǫ = {ǫb}b∈B is called the counit of the adjunction
and defines a natural transformation from G;F to 1B.

Remark A.19
Adjoints are unique up to natural isomorphism. This is the reason why we are
allowed to speak of the right adjoint to F .

We could have employed an equivalent dual approach to the definition of adjoints,
by starting with the functor G and defining the “least upper” approximation Fa for
each object a. This construction yields the unit η = {ηa : a → G(Fa)}a∈A of the
adjunction (see Figure A.9).
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G(b)

a

f

ηa
G(Fa)

G(g)

b

Fa

g

Figure A.9: The right adjoint G.

An important property of adjunctions is the preservation of universal construc-
tions: left adjoints preserve colimits and right adjoints preserve limits.

Theorem A.20 (adjoints and (co)limits)
Let F : A→ B be a right adjoint functor, let D : G→ A be a diagram in A and let
p : c → D be the limit of D. Then F (p) : F (c) → F (D) is the limit of the diagram
F (D) (defined as F (D)(x) = F (D(x)) for any x in G) in B.

A dual result holds for colimits and left adjoints.
A typical example of adjunction consists of a forgetful functor U : S → C,

from a category S of certain structures and structure-preserving functions (e.g.,
the category Mon of monoids and monoid homomorphisms) to a category C with
less structure (e.g., Set). Forgetful functors have often a left adjoint that adds the
structure missing in C by means of a free construction.

Reflections and coreflections are two particularly important kinds of adjunction,
where respectively the counit and the unit are natural isomorphisms. For instance,
in the case of a coreflection, referring to the introductory discussion, we have that
B is equivalent to a full subcategory of A. Thus we can think that G gives the
best approximation of an object of A inside such a subcategory. Observe that an
equivalence is an adjunction which is both a reflection and a coreflection.

A.5 Comma category constructions

Given two functors F : A → C and G : B → C, with a common target C we can
consider the comma category 〈F ↓ G〉. This is a standard categorical construction
which makes (a selected subset) of the arrows of C be objects of a new category. More
precisely, the objects of 〈F ↓ G〉 are arrows of the kind x : F (a)→ G(b) in C, and an
arrow h : (x : F (a) → G(b)) → (y : F (a′) → G(b′)) is a pair (f : a→ a′, g : b → b′)
of arrows in A and B, respectively, such that the diagram of Figure A.10 commutes.

Clearly, by varying the choice of F and G we obtain several different “comma
constructions”. Next we give an explicit definition of two relevant instances of comma
construction. First if A is 1, then F just selects an object c in C. If moreover B = C
and G = IdC then 〈F ↓ G〉, denoted in this case by 〈c ↓ C〉, is the comma category
of objects of C under c.
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F (f)
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G(b)
G(g)

G(b)

Figure A.10: Arrows in the comma category 〈F ↓ G〉.
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Figure A.11: Category of objects under/over a given object.

Definition A.21 (category of objects under a given object)
Let C be a category and let c be an object of C. The category of objects (of C) under
c, denoted 〈c ↓ C〉, has arrows like x : c → c′ as objects. Furthermore f : (x : c →
c′)→ (y : c→ c′′) is an arrow of 〈c ↓ C〉 if f : c′ → c′′ is an arrow of C and x; f = y
(see Figure A.11.(i)).

Dually, when F = IdC, B = 1 and G is the constant c, we obtain the category
of objects over a given object.

Definition A.22 (category of objects over a given object)
Let C be a category and let c be an object of C. The category of objects (of C) over
c, denoted 〈C ↓ c〉, has arrows like x : c′ → c as objects. Furthermore f : (x : c′ →
c)→ (y : c′′ → c) is an arrow of 〈C ↓ c〉 if f : c′ → c′′ is an arrow of C and x = f ; y
(see Figure A.11.(ii)).

Interestingly, to obtain limits and colimits in the category 〈C ↓ c〉 one can consider
the corresponding diagram in C and compute the limit there. Hence 〈C ↓ c〉 inherits
from C the properties of being complete and cocomplete.
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[CEL+96a] A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and J. Padberg. The
category of typed graph grammars and its adjunctions with categories
of derivations. In J. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, ed-
itors, Proceedings of the 5th International Workshop on Graph Gram-
mars and their Application to Computer Science, volume 1073 of LNCS.
Springer Verlag, 1996.
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