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Dipartimento di Informatica, Università di Pisa
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Abstract. In this paper we introduce MuTACLP, a knowledge repre-
sentation language which provides facilities for modeling and handling
temporal information, together with some basic operators for combin-
ing different temporal knowledge bases. The proposed approach stems
from two separate lines of research: the general studies on meta-level
operators on logic programs introduced by Brogi et al. [7, 9] and Tem-
poral Annotated Constraint Logic Programming (TACLP) defined by
Frühwirth [15]. In MuTACLP atoms are annotated with temporal infor-
mation which are managed via a constraint theory, as in TACLP. Mecha-
nisms for structuring programs and combining separate knowledge bases
are provided through meta-level operators. The language is given two
different and equivalent semantics, a top-down semantics which exploits
meta-logic, and a bottom-up semantics based on an immediate conse-
quence operator.

1 Introduction

Interest in research concerning the handling of temporal information has been
growing steadily over the past two decades. On the one hand, much effort has
been spent in developing extensions of logic languages capable to deal with time
(see, e.g., [14, 36]). On the other hand, in the field of databases, many approaches
have been proposed to extend existing data models, such as the relational, the
object-oriented and the deductive models, to cope with temporal data (see, e.g.,
the books [46, 13] and references therein). Clearly these two strands of research
are closely related, since temporal logic languages can provide solid theoretical
foundations for temporal databases, and powerful knowledge representation and
query languages for them [11, 17, 35]. Another basic motivation for our work
is the need of mechanisms for combining pieces of knowledge which may be
separated into various knowledge bases (e.g., distributed over the web), and
thus which have to be merged together to reason with.

This paper aims at building a framework where temporal information can be
naturally represented and handled, and, at the same time, knowledge can be sep-
arated and combined by means of meta-level composition operators. Concretely,
we introduce a new language, called MuTACLP, which is based on Temporal An-
notated Constraint Logic Programming (TACLP), a powerful framework defined



by Frühwirth in [15], where temporal information and reasoning can be natu-
rally formalized. Temporal information is represented by temporal annotations
which say at what time(s) the formula to which they are attached is valid. Such
annotations make time explicit but avoid the proliferation of temporal variables
and quantifiers of the first-order approach. In this way, MuTACLP supports
quantitative temporal reasoning and allows one to represent definite, indefinite
and periodic temporal information, and to work both with time points and time
periods (time intervals). Furthermore, as a mechanism for structuring programs
and combining different knowledge sources, MuTACLP offers a set of program
composition operators in the style of Brogi et al. [7, 9].

Concerning the semantical aspects, the use of meta-logic allows us to provide
MuTACLP with a formal and, at the same time, executable top-down semantics
based on a meta-interpreter. Furthermore the language is given a bottom-up
semantics by introducing an immediate consequence operator which generalizes
the operator for ordinary constraint logic programs. The two semantics are equiv-
alent in the sense that the meta-interpreter can be proved sound and complete
with respect to the semantics based on the immediate consequence operator.

An interesting aspect of MuTACLP is the fact that it integrates modularity
and temporal reasoning, a feature which is not common to logical temporal
languages (e.g., it is lacking in [1, 2, 10, 12, 15, 16, 21, 28]). Two exceptions are
the language Temporal Datalog by Orgun [35] and the work on amalgamating
knowledge bases by Subrahmanian [45]. Temporal Datalog introduces a concept
of module, which, however, seems to be used as a means for defining new non-
standard algebraic operators, rather than as a knowledge representation tool.
On the other hand, the work on amalgamating knowledge bases offers a multi-
theory framework, based on annotated logics, where temporal information can be
handled, but only a limited interaction among the different knowledge sources is
allowed: essentially a kind of message passing mechanism allows one to delegate
the resolution of an atom to other databases.

In the database field, our approach is close to the paradigm of constraint
databases [25, 27]. In fact, in MuTACLP the use of constraints allows one to
model temporal information and to enable efficient implementations of the lan-
guage. Moreover, from a deductive database perspective, each constraint logic
program of our framework can be viewed as an enriched relational database
where relations are represented partly intensionally and partly extensionally.
The meta-level operators can then be considered as a means of constructing
views by combining different databases in various ways.

The paper is organized as follows. Section 2 briefly introduces the program
composition operators for combining logic theories of [7, 9] and their semantics.
Section 3, after reviewing the basics of constraint logic programming, introduces
the language TACLP. Section 4 defines the new language MuTACLP, which
integrates the basic ideas of TACLP with the composition operators on theo-
ries. In Section 5 the language MuTACLP is given a top-down semantics by
means of a meta-interpreter and a bottom-up semantics based on an immediate
consequence operator, and the two semantics are shown to be equivalent. Sec-



tion 6 presents some examples to clarify the use of operators on theories and
to show the expressive power and the knowledge representation capabilities of
the language. Section 7 compares MuTACLP with some related approaches in
the literature and, finally, Section 8 outlines our future research plans. Proofs of
propositions and theorems are collected in the Appendix. Due to space limita-
tions, the proofs of some technical lemmata are omitted and can be found in [4,
38]. An extended abstract of this paper has been presented at the International
Workshop on Spatio-Temporal Data Models and Languages [33].

2 Operators for combining theories

Composition operators for logic programs have been thoroughly investigated
in [7, 9], where both their meta-level and their bottom-up semantics are stud-
ied and compared. In order to illustrate the basic notions and ideas of such
an approach this section describes the meta-level definition of the operators,
which is simply obtained by adding new clauses to the well-known vanilla meta-
interpreter for logic programs. The resulting meta-interpreter combines separate
programs without actually building a new program. Its meaning is straightfor-
ward and, most importantly, the meta-logical definition shows that the multi-
theory framework can be expressed from inside logic programming itself. We con-
sider two operators to combine programs: union ∪ and intersection ∩. Then the
so-called program expressions are built by starting from a set of plain programs,
consisting of collections of clauses, and by repeatedly applying the composition
operators. Formally, the language of program expressions Exp is defined by the
following abstract syntax:

Exp ::= Pname | Exp ∪ Exp | Exp ∩ Exp

where Pname is the syntactic category of constant names for plain programs.
Following [6], the two-argument predicate demo is used to represent prov-

ability. Namely, demo(E , G) means that the formula G is provable with respect
to the program expression E .

demo(E , empty).
demo(E , (B1, B2))← demo(E , B1), demo(E , B2)

demo(E , A)← clause(E , A,B), demo(E , B)

The unit clause states that the empty goal, represented by the constant symbol
empty, is solved in any program expression E . The second clause deals with
conjunctive goals. It states that a conjunction (B1, B2) is solved in the program
expression E if B1 is solved in E and B2 is solved in E . Finally, the third clause
deals with the case of atomic goal reduction. To solve an atomic goal A, a clause
with head A is chosen from the program expression E and the body of the clause
is recursively solved in E .

We adopt the simple naming convention used in [29]. Object programs are
named by constant symbols, denoted by capital letters like P and Q. Object



level expressions are represented at the meta-level by themselves. In particular,
object level variables are denoted by meta-level variables, according to the so-
called non-ground representation. An object level program P is represented, at
the meta-level, by a set of axioms of the kind clause(P,A,B), one for each object
level clause A← B in the program P .

Each program composition operator is represented at the meta-level by a
functor, whose meaning is defined by adding new clauses to the above meta-
interpreter.

clause(E1 ∪ E2, A,B)← clause(E1, A,B)
clause(E1 ∪ E2, A,B)← clause(E2, A,B)

clause(E1 ∩ E2, A, (B1, B2))← clause(E1, A,B1),
clause(E2, A,B2)

The added clauses have a straightforward interpretation. Informally, union and
intersection mirror two forms of cooperation among program expressions. In the
case of union E1∪E2, whose meta-level implementation is defined by the first two
clauses, either expression E1 or E2 may be used to perform a computation step.
For instance, a clause A← B belongs to the meta-level representation of P ∪Q
if it belongs either to the meta-level representation of P or to the meta-level
representation of Q. In the case of intersection E1 ∩ E2, both expressions must
agree to perform a computation step. This is expressed by the third clause,
which exploits the basic unification mechanism of logic programming and the
non-ground representation of object level programs.

A program expression E can be queried by demo(E , G), where G is an object
level goal.

3 Temporal Annotated CLP

In this section we first briefly recall the basic concepts of Constraint Logic
Programming (CLP). Then we give an overview of Temporal Annotated CLP
(TACLP), an extension of CLP suited to deal with time, which will be used as a
basic language for plain programs in our multi-theory framework. The reader is
referred to the survey of Jaffar and Maher [22] for a comprehensive introduction
to the motivations, foundations, and applications of CLP languages, and to the
recent work of Jaffar et al. [23] for the formal presentation of the semantics. A
good reference for TACLP is Frühwirth’s paper [15].

3.1 Constraint Logic Programming

A CLP language is completely determined by its constraint domain. A constraint
domain C is a tuple 〈SC ,LC ,DC , TC , solvC〉, where

– SC = 〈ΣC , ΠC〉 is the constraint domain signature, comprising the function
symbols ΣC and the predicate symbols ΠC .



– LC is the class of constraints, a set of first-order SC-formulae, denoted by C,
possibly subscripted.

– DC is the domain of computation, a SC-structure which provides the intended
interpretation of the constraints. The domain (or support) of DC is denoted
by DC .

– TC is the constraint theory, a SC-theory describing the logical semantics of
the constraints.

– solvC is the constraint solver, a (computable) function which maps each
formula in LC to either true, or false, or unknown, indicating that the formula
is satisfiable, unsatisfiable or it cannot be told, respectively.

We assume that ΠC contains the predicate symbol “=”, interpreted as identity in
DC . Furthermore we assume that LC contains all atoms constructed from “=”,
the always satisfiable constraint true and the unsatisfiable constraint false,
and that LC is closed under variable renaming, existential quantification and
conjunction. A primitive constraint is an atom of the form p(t1, . . . , tn) where p
is a predicate in ΠC and t1, . . . , tn are terms on ΣC .

We assume that the solver does not take variable names into account. Also,
the domain, the theory and the solver agree in the sense that DC is a model of
TC and for every C ∈ LC :

– solvC(C) = true implies TC |= ∃C, and
– solvC(C) = false implies TC |= ¬∃C.

Example 1. (Real) The constraint domain Real has <, <=, =, >=, > as predicate
symbols, +, -, *, / as function symbols and sequences of digits (possibly with
a decimal point) as constant symbols. Examples of primitive constraints are
X + 3 <= Y * 1.1 and X/2 > 10. The domain of computation is the structure
with reals as domain, and where the predicate symbols <, <=, =, >=, > and the
function symbols +, -, *, / are interpreted as the usual relations and functions
over reals. Finally, the theory TReal is the theory of real closed fields.

A possible constraint solver is provided by the CLP(R) system [24], which
relies on Gauss-Jordan elimination to handle linear constraints. Non-linear con-
straints are not taken into account by the solver (i.e., their evaluation is delayed)
until they become linear.

Example 2. (Logic Programming) The constraint domain Term has = as
predicate symbol and strings of alphanumeric characters as function or constant
symbols. The domain of computation of Term is the set Tree of finite trees (or,
equivalently, of finite terms), while the theory TTerm is Clark’s equality theory.

The interpretation of a constant is a tree with a single node labeled by
the constant. The interpretation of an n-ary function symbol f is the function
fTree : Treen → Tree mapping the trees t1, . . . , tn to a new tree with root labeled
by f and with t1, . . . , tn as children.

A constraint solver is given by the unification algorithm. Then CLP(Term)
coincides with logic programming.



For a given constraint domain C, we denote by CLP(C) the CLP language
based on C. Our results are parametric to a language L in which all programs
and queries under consideration are included. The set of function symbols in
L, denoted by ΣL, coincides with ΣC , while the set of predicate symbols ΠL

includes ΠC .
A constraint logic program, or simply a program, is a finite set of rules of the

form:
A← C1, . . . , Cn, B1, . . . , Bm

where A and B1, . . . , Bm (m ≥ 0) are atoms (whose predicate symbols are in
ΠL but not in ΠC), and C1, . . . , Cn (n ≥ 0) are primitive constraints1 (A is
called the head of the clause and C1, . . . , Cn, B1, . . . , Bm the body of the clause).
If m = 0 then the clause is called a fact. A query is a sequence of atoms and/or
constraints.

Interpretations and Fixpoints. A C-interpretation for a CLP(C) program is
an interpretation which agrees with DC on the interpretations of the symbols in
LC . Formally, a C-interpretation I is a subset of C-baseL, i.e. of the set

{p(d1, . . . , dn) | p predicate in ΠL \ΠC , d1, . . . , dn ∈ DC}.

Note that the meaning of primitive constraints is not specified, being fixed by C.
The notions of C-model and least C-model are a natural extension of the

corresponding logic programming concepts. A valuation σ is a function that
maps variables into DC . A C-ground instance A′ of an atom A is obtained by
applying a valuation σ to the atom, thus producing a construct of the form
p(a1, . . . , an) with a1, . . . , an elements in DC . C-ground instances of queries and
clauses are defined in a similar way. We denote by groundC(P ) the set of C-ground
instances of clauses from P .

Finally the immediate consequence operator for a CLP(C) program P is a
function T CP : ℘(C-baseL)→ ℘(C-baseL) defined as follows:

T CP (I) =

{
A | A ← C1, . . . , Ck, B1, . . . , Bn,∈ groundC(P ),
{B1, . . . , Bn} ⊆ I, DC |= C1, . . . , Ck

}
The operator T CP is continuous, and therefore it has a least fixpoint which can
be computed as the least upper bound of the ω-chain {(T CP )i}i≥0 of the iterated
applications of T CP starting from the empty set, i.e., (T CP )ω =

⋃
i∈N(T CP )i.

3.2 Temporal Annotated Constraint Logic Programming

Temporal Annotated Constraint Logic Programming (TACLP), proposed by
Frühwirth in [15, 39], has been shown to be a natural and powerful framework for
formalizing temporal information and reasoning. In [15] TACLP is presented as

1 Constraints and atoms can be in any position inside the body of a clause, although,
for the sake of simplicity, we will always assume that the sequence of constraints
precedes the sequence of atoms.



an instance of annotated constraint logic (ACL) suited for reasoning about time.
ACL, which can be seen as an extension of generalized annotated programs [26,
30], generalizes basic first-order languages with a distinguished class of predi-
cates, called constraints, and a distinguished class of terms, called annotations,
used to label formulae. Moreover ACL provides inference rules for annotated
formulae and a constraint theory for handling annotations. An advantage of the
languages in the ACL framework is that their clausal fragment can be efficiently
implemented: given a logic in this framework, there is a systematic way to make
a clausal fragment executable as a constraint logic program. Both an interpreter
and a compiler can be generated and implemented in standard constraint logic
programming languages.

We next summarize the syntax and semantics of TACLP. As mentioned
above, TACLP is a constraint logic programming language where formulae can
be annotated with temporal labels and where relations between these labels can
be expressed by using constraints. In TACLP the choice of the temporal ontology
is free. In this paper, we will consider the instance of TACLP where time points
are totally ordered and labels involve convex, non-empty sets of time points.
Moreover we will assume that only atomic formulae can be annotated and that
clauses are negation free. With an abuse of notation, in the rest of the paper
such a subset of the language will be referred to simply as TACLP.

Time can be discrete or dense. Time points are totally ordered by the relation
≤. We denote by D the set of time points and we suppose to have a set of
operations (such as the binary operations +, −) to manage such points. We
assume that the time-line is left-bounded by the number 0 and open to the
future, with the symbol ∞ used to denote a time point that is later than any
other. A time period is an interval [r, s] with r, s ∈ D and 0 ≤ r ≤ s ≤ ∞, which
represents the convex, non-empty set of time points {t | r ≤ t ≤ s}2. Thus the
interval [0,∞] denotes the whole time line.

An annotated formula is of the form Aα where A is an atomic formula and
α an annotation. In TACLP, there are three kinds of annotations based on time
points and on time periods. Let t be a time point and J = [r, s] be a time period.

(at) The annotated formula A at t means that A holds at time point t.
(th) The annotated formula A th J means that A holds throughout, i.e., at every

time point in, the time period J . The definition of a th-annotated formula
in terms of at is:

A th J ⇔ ∀t (t ∈ J → A at t).

(in) The annotated formula A in J means that A holds at some time point(s) -
but we do not know exactly which - in the time period J . The definition of
an in-annotated formula in terms of at is:

A in J ⇔ ∃t (t ∈ J ∧A at t).

The in temporal annotation accounts for indefinite temporal information.

2 The results we present naturally extend to time lines that are bounded or unbounded
in other ways and to time periods that are open on one or both sides.



The set of annotations is endowed with a partial order relation v which turns it
into a lattice. Given two annotations α and β, the intuition is that α v β if α is
“less informative” than β in the sense that for all formulae A, Aβ ⇒ Aα. More
precisely, being an instance of ACL, in addition to Modus Ponens, TACLP has
two further inference rules: the rule (v) and the rule (t).

Aα γ v α
A γ rule (v) Aα Aβ γ = α t β

Aγ rule (t)

The rule (v) states that if a formula holds with some annotation, then it also
holds with all annotations that are smaller according to the lattice ordering.
The rule (t) says that if a formula holds with some annotation α and the same
formula holds with another annotation β then it holds with the least upper
bound α t β of the two annotations.

Next, we introduce the constraint theory for temporal annotations. Recall
that a constraint theory is a non-empty, consistent first order theory that ax-
iomatizes the meaning of the constraints. Besides an axiomatization of the total
order relation ≤ on the set of time points D, the constraint theory includes the
following axioms defining the partial order on temporal annotations.

(at th) at t = th [t, t]
(at in) at t = in [t, t]
(th v) th [s1, s2] v th [r1, r2]⇔ r1 ≤ s1, s1 ≤ s2, s2 ≤ r2
(in v) in [r1, r2] v in [s1, s2]⇔ r1 ≤ s1, s1 ≤ s2, s2 ≤ r2

The first two axioms state that th I and in I are equivalent to at t when the
time period I consists of a single time point t.3 Next, if a formula holds at every
element of a time period, then it holds at every element in all sub-periods of that
period ((th v) axiom). On the other hand, if a formula holds at some points of
a time period then it holds at some points in all periods that include this period
((in v) axiom). A consequence of the above axioms is

(in th v) in [s1, s2] v th [r1, r2] ⇔ s1 ≤ r2, r1 ≤ s2, s1 ≤ s2, r1 ≤ r2

i.e., an atom annotated by in holds in any time period that overlaps with a time
period where the atom holds throughout.

To summarize the above explanation, the axioms defining the partial order
relation on annotations can be arranged in the following chain, where it is as-
sumed that r1 ≤ s1, s1 ≤ s2, s2 ≤ r2:

in [r1, r2] v in [s1, s2] v in [s1, s1] = at s1 = th [s1, s1] v th [s1, s2] v th [r1, r2]

Before giving an axiomatization of the least upper bound t on temporal
annotations, let us recall that, as explained in [15], the least upper bound of two
annotations always exists but sometimes it may be “too large”. In fact, rule (t) is
correct only if the lattice order ensures Aα∧Aβ ∧ (γ = αtβ) =⇒ Aγ whereas,

3 Especially in dense time, one may disallow singleton periods and drop the two ax-
ioms. This restriction has no effects on the results we are presenting.



in general, this is not true in our case. For instance, according to the lattice,
th [1, 2] t th [4, 5] = th [1, 5], but according to the definition of th-annotated
formulae in terms of at , the conjunction A th [1, 2] ∧ A th [4, 5] does not imply
A th [1, 5], since it does not express that A at 3 holds. From a theoretical point
of view, this problem can be overcome by enriching the lattice of annotations
with expressions involving t. In practice, it suffices to consider the least upper
bound for time periods that produce another different meaningful time period.
Concretely, one restricts to th annotations with overlapping time periods that
do not include one another:

(tht) th [s1, s2] t th [r1, r2] = th [s1, r2] ⇔ s1 < r1, r1 ≤ s2, s2 < r2

Summarizing, a constraint domain for time points is fixed where the signature
includes suitable constants for time points, function symbols for operations on
time points (e.g., +,−, . . .) and the predicate symbol ≤, modeling the total order
relation on time points. Such constraint domain is extended to a constraint
domain A for handling annotations, by enriching the signature with function
symbols [·, ·], at, th, in,t and the predicate symbol v, axiomatized as described
above. Then, as for ordinary constraint logic programming, a TACLP language
is determined by fixing a constraint domain C, which is required to contain
the constraint domain A for annotations. We denote by TACLP(C) the TACLP
language based on C. To lighten the notation, in the following, the “C” will be
often omitted.

The next definition introduces the clausal fragment of TACLP that can be
used as an efficient temporal programming language.

Definition 1. A TACLP clause is of the form:

Aα← C1, . . . , Cn, B1 α1, . . . , Bm αm (n,m ≥ 0)

where A is an atom (not a constraint), α and αi are (optional) temporal anno-
tations, the Cj’s are constraints and the Bi’s are atomic formulae. Constraints
Cj cannot be annotated.

A TACLP program is a finite set of TACLP clauses.

4 Multi-theory Temporal Annotated Constraint Logic
Programming

A first attempt to extend the multi-theory framework introduced in Section 2
to handle temporal information is presented in [32]. In that paper an object
level program is a collection of annotated logic programming clauses, named by
a constant symbol. An annotated clause is of the kind A ← B1, . . . , Bn 2 [a, b]
where the annotation [a, b] represents the period of time in which the clause
holds. The handling of time is hidden at the object level and it is managed at
the meta-level by intersecting or joining the intervals associated with clauses.
However, this approach is not completely satisfactory, in that it does not offer



mechanisms for modeling indefinite temporal information and for handling pe-
riodic data. Moreover, some problems arise when we want to extract temporal
information from the intervals at the object level.

To obtain a more expressive language, where in particular the mentioned defi-
ciencies are overcome, in this paper we consider a multi-theory framework where
object level programs are taken from Temporal Annotated Constraint Logic Pro-
gramming (TACLP) and the composition operators are generalized to deal with
temporal annotated constraint logic programs. The resulting language, called
Multi-theory Temporal Annotated Constraint Logic Programming (MuTACLP
for short), thus arises as a synthesis of the work on composition operators for
logic programs and of TACLP. It can be thought of both as a language which
enriches TACLP with high-level mechanisms for structuring programs and for
combining separate knowledge bases, and as an extension of the language of
program expressions with constraints and with time-representation mechanisms
based on temporal annotations for atoms.

The language of program expressions remains formally the same as the one
in Section 2. However now plain programs, named by the constant symbols in
Pname, are TACLP programs as defined in Section 3.2.

Also the structure of the time domain remains unchanged, whereas, to deal
with program composition, the constraint theory presented in Section 3.2 is en-
riched with the axiomatization of the greatest lower bound u of two annotations:

(thu) th [s1, s2] u th [r1, r2] = th [t1, t2] ⇔ s1 ≤ s2, r1 ≤ r2, t1 = max{s1, r1},
t2 = min{s2, r2}, t1 ≤ t2

(thu′) th [s1, s2] u th [r1, r2] = in [t2, t1] ⇔ s1 ≤ s2, r1 ≤ r2, t1 = max{s1, r1},
t2 = min{s2, r2}, t2 < t1

(th inu) th [s1, s2] u in [r1, r2] = in [r1, r2] ⇔ s1≤r2, r1≤s2, s1≤s2, r1≤r2
(th inu′) th [s1, s2] u in [r1, r2] = in [s2, r2] ⇔ s1 ≤ s2, s2 < r1, r1 ≤ r2
(th inu′′) th [s1, s2] u in [r1, r2] = in [r1, s1] ⇔ r1 ≤ r2, r2 < s1, s1 ≤ s2
(inu) in [s1, s2] u in [r1, r2] = in [t1, t2] ⇔ s1 ≤ s2, r1 ≤ r2, t1 = min{s1, r1},

t2 = max{s2, r2}

Keeping in mind that annotations deal with time periods, i.e., convex, non-
empty sets of time points, it is not difficult to verify that the axioms above
indeed define the greatest lower bound with respect to the partial order relation
v. For instance the greatest lower bound of two th annotations, th [s1, s2] and
th [r1, r2], can be:

– a th [t1, t2] annotation if [r1, r2] and [s1, s2] are overlapping intervals and
[t1, t2] is their (not empty) intersection (axiom (thu));

– an in [t1, t2] annotation, otherwise, where interval [t1, t2] is the least convex
set which intersects both [s1, s2] and [r1, r2] (axiom (thu′), see Fig. 1.(a)).

In all other cases the greatest lower bound is always an in annotation. For
instance, as expressed by axiom (th inu′), the greatest lower bound of two



annotations th [s1, s2] and in [r1, r2] with disjoint intervals is given by in [s2, r2],
where interval [s2, r2] is the least convex set containing [r1, r2] and intersecting
[s1, s2] (see Fig. 1.(b)). The greatest lower bound will play a basic role in the
definition of the intersection operation over program expressions. Notice that in
TACLP it is not needed since the problem of combining programs is not dealt
with.

s1

t1 t2

s2 r1 r2

th th

in

s1 s2 r1 r2

th

s2

in

r2

in

(a) (b)

Fig. 1. Greatest lower bound of annotations.

Finally, as in TACLP we still have, in addition to Modus Ponens, the inference
rules (v) and (t).

Example 3. In a company there are some managers and a secretary who has
to manage their meetings and appointments. During the day a manager can be
busy if she/he is on a meeting or if she/he is not present in the office. This
situation is modeled by the theory Managers.

Managers:
busy(M ) th [T1, T2] ← in-meeting(M ) th [T1, T2]
busy(M ) th [T1, T2] ← out-of -office(M ) th [T1, T2]

This theory is parametric with respect to the predicates in-meeting and
out-of -office since the schedule of managers varies daily. The schedules are col-
lected in a separate theory Today-Schedule and, to know whether a manager
is busy or not, such a theory is combined with Managers by using the union
operator.

For instance, suppose that the schedule for a given day is the following:
Mr. Smith and Mr. Jones have a meeting at 9am lasting one hour. In the after-
noon Mr. Smith goes out for lunch at 2pm and comes back at 3pm. The theory
Today-Schedule below represents such information.

Today-Schedule:
in-meeting(mrSmith) th [9am, 10am].
in-meeting(mrJones) th [9am, 10am].
out-of -office(mrSmith) th [2pm, 3pm].

To know whether Mr. Smith is busy between 9:30am and 10:30am the secretary
can ask for busy(mrSmith) in [9:30am, 10:30am]. Since Mr. Smith is in a meeting



from 9am till 10am, she will indeed obtain that Mr. Smith is busy. The considered
query exploits indefinite information, because knowing that Mr. Smith is busy in
one instant in [9:30am, 10:30am] the secretary cannot schedule an appointment
for him for that period.

Example 4. At 10pm Tom was found dead in his house. The only hint is that
the answering machine recorded some messages from 7pm up to 8pm. At a first
glance, the doctor said Tom died one to two hours before. The detective made
a further assumption: Tom did not answer the telephone so he could be already
dead.

We collect all these hints and assumptions into three programs, Hints, Doc-
tor and Detective, in order not to mix firm facts with simple hypotheses that
might change during the investigations.

Hints: found at 10pm.
ans-machine th [7pm, 8pm].

Doctor: dead in [T − 2:00, T − 1:00] ← found atT

Detective: dead in [T1, T2] ← ans-machine th [T1, T2]

If we combine the hypotheses of the doctor and those of the detective we can
extend the period of time in which Tom possibly died. The program expression
Doctor∩Detective behaves as

dead in [S1, S2] ← in [T − 2:00, T − 1:00] u in [T1, T2] = in [S1, S2],
found atT ,
ans-machine th [T1, T2]

The constraint in [T − 2:00, T − 1:00] u in [T1, T2] = in [S1, S2] determines the
annotation in [S1, S2] in which Tom possibly died: according to axiom (inu)
the resulting interval is S1 = min{T − 2:00, T1} and S2 = max{T − 1:00, T2}.
In fact, according to the semantics defined in the next section, a consequence of
the program expression

Hints∪ (Doctor∩Detective)

is just dead in [7pm, 9pm] since the annotation in [7pm, 9pm] is the greatest
lower bound of in [8pm, 9pm] and in [7pm, 8pm].

5 Semantics of MuTACLP

In this section we introduce an operational (top-down) semantics for the language
MuTACLP by means of a meta-interpreter. Then we provide MuTACLP with
a least fixpoint (bottom-up) semantics, based on the definition of an immediate
consequence operator. Finally, the meta-interpreter for MuTACLP is proved
sound and complete with respect to the least fixpoint semantics.

In the definition of the semantics, without loss of generality, we assume all
atoms to be annotated with th or in labels. In fact at t annotations can be



replaced with th [t, t] by exploiting the (at th) axiom. Moreover, each atom which
is not annotated in the object level program is intended to be true throughout the
whole temporal domain and thus it can be labelled with th [0,∞]. Constraints
remain unchanged.

5.1 Meta-interpreter

The extended meta-interpreter is defined by the following clauses.

demo(E , empty). (1)

demo(E , (B1, B2))← demo(E , B1), demo(E , B2) (2)

demo(E , A th [T1, T2])← S1 ≤ T1, T1 ≤ T2, T2 ≤ S2,
clause(E , A th [S1, S2], B), demo(E , B)

(3)

demo(E , A th [T1, T2])← S1 ≤ T1, T1 < S2, S2 < T2,
clause(E , A th [S1, S2], B), demo(E , B),

demo(E , A th [S2, T2])
(4)

demo(E , A in [T1, T2])← T1 ≤ S2, S1 ≤ T2, T1 ≤ T2,
clause(E , A th [S1, S2], B), demo(E , B)

(5)

demo(E , A in [T1, T2])← T1 ≤ S1, S2 ≤ T2,
clause(E , A in [S1, S2], B), demo(E , B)

(6)

demo(E , C)← constraint(C), C (7)

clause(E1 ∪ E2, Aα,B)← clause(E1, Aα,B) (8)

clause(E1 ∪ E2, Aα,B)← clause(E2, Aα,B) (9)

clause(E1 ∩ E2, A γ, (B1, B2))← clause(E1, Aα,B1),
clause(E2, A β,B2),

α u β = γ
(10)

A clause Aα← B of a plain program P is represented at the meta-level by

clause(P,Aα,B)← S1 ≤ S2 (11)

where α = th [S1, S2] or α = in [S1, S2].



This meta-interpreter can be written in any CLP language that provides
a suitable constraint solver for temporal annotations (see Section 3.2 for the
corresponding constraint theory). A first difference with respect to the meta-
interpreter in Section 2 is that our meta-interpreter handles constraints that can
either occur explicitly in its clauses, e.g., the constraint s1 ≤ t1, t1 ≤ t2, t2 ≤ s2
in clause (3), or can be produced by resolution steps. Constraints of the latter
kind are managed by clause (7) which passes each constraint C to be solved
directly to the constraint solver.

The second difference is that our meta-interpreter implements not only Modus
Ponens but also rule (v) and rule (t). This is the reason why the third clause
for the predicate demo of the meta-interpreter in Section 2 is now split into four
clauses. Clauses (3), (5) and (6) implement the inference rule (v): the atomic
goal to be solved is required to be labelled with an annotation which is smaller
than the one labelling the head of the clause used in the resolution step. For
instance, clause (3) states that given a clause A th [s1, s2] ← B whose body B
is solvable, we can derive the atom A annotated with any th [t1, t2] such that
th [t1, t2] v th [s1, s2], i.e., according to axiom (th v), [t1, t2] ⊆ [s1, s2], as ex-
pressed by the constraint s1 ≤ t1, t1 ≤ t2, t2 ≤ s2. Clauses (5) and (6) are built
in an analogous way by exploiting axioms (in th v) and (in v), respectively.
Rule (t) is implemented by clause (4). According to the discussion in Sec-
tion 3.2, it is applicable only to th annotations involving overlapping time pe-
riods which do not include one another. More precisely, clause (4) states that
if we can find a clause A th [s1, s2] ← B such that the body B is solvable, and
if moreover the atom A can be proved throughout the time period [s2, t2] (i.e.,
demo(E , A th [s2, t2]) is solvable) then we can derive the atom A labelled with
any annotation th [t1, t2] v th [s1, t2]. The constraints on temporal variables
ensure that the time period [t1, t2] is a new time period different from [s1, s2],
[s2, t2] and their subintervals.

Finally, in the meta-level representation of object clauses, as expressed by
clause (11), the constraint s1 ≤ s2 is added to ensure that the head of the object
clause has a well-formed, namely non-empty, annotation.

As far as the meta-level definition of the union and intersection operators
is concerned, clauses implementing the union operation remain unchanged with
respect to the original definition in Section 2, whereas in the clause implementing
the intersection operation a constraint is added, which expresses the annotation
for the derived atom. Informally, a clause Aα← B, belonging to the intersection
of two program expressions E1 and E2, is built by taking one clause instance
from each program expression E1 and E2, such that the head atoms of the two
clauses are unifiable. Let such instances of clauses be cl1 and cl2. Then B is the
conjunction of the bodies of cl1 and cl2 and A is the unified atom labelled with
the greatest lower bound of the annotations of the heads of cl1 and cl2.

The following example shows the usefulness of clause (4) to derive new tem-
poral information according to the inference rule (t).

Example 5. Consider the databases DB1 and DB2 containing information about
people working in two companies. Jim is a consultant and he works for the first



company from January 1, 1995 to April 30, 1995 and for the second company
from April 1, 1995 to September 15, 1995.

DB1:
consultant(jim) th [Jan 1 1995 ,Apr 30 1995 ].

DB2:
consultant(jim) th [Apr 1 1995 ,Sep 15 1995 ].

The period of time in which Jim works as a consultant can be obtained by
querying the union of the above theories as follows:

demo(DB1 ∪ DB2, consultant(jim) th [T1, T2]).

By using clause (4), we can derive the interval [Jan 1 1995 ,Sep 15 1995 ] (more
precisely, the constraints Jan 1 1995 ≤ T1, T1 <Apr 30 1995 ,Apr 30 1995 <T2,
T2 ≤ Sep 15 1995 are derived) that otherwise would never be generated. In fact,
by applying clause (3) alone, we can prove only that Jim is a consultant in
the intervals [Jan 1 1995 ,Apr 30 1995 ] and [Apr 1 1995 ,Sep 15 1995 ] (or in
subintervals of them) separately.

5.2 Bottom-up semantics

To give a declarative meaning to program expressions, we define a “higher-
order” semantics for MuTACLP. In fact, the results in [7] show that the least
Herbrand model semantics of logic programs does not scale smoothly to pro-
gram expressions. Fundamental properties of semantics, like compositionality
and full abstraction, are definitely lost. Intuitively, the least Herbrand model
semantics is not compositional since it identifies programs which have different
meanings when combined with others. Actually, all the programs whose least
Herbrand model is empty are identified with the empty program. For example,
the programs

{r ← s} {r ← q}

are both denoted by the empty model, though they behave quite differently when
composed with other programs (e.g., consider the union with {q.}).

Brogi et al. showed in [9] that defining as meaning of a program P the
immediate consequence operator TP itself (rather than the least fixpoint of TP ),
one obtains a semantics which is compositional with respect to several interesting
operations on programs, in particular ∪ and ∩.

Along the same line, the semantics of a MuTACLP program expression is
taken to be the immediate consequence operator associated with it, i.e., a func-
tion from interpretations to interpretations. The immediate consequence oper-
ator of constraint logic programming is generalized to deal with temporal an-
notations by considering a kind of extended interpretations, which are basically
sets of annotated elements of C-baseL. More precisely, we first define a set of
(semantical) annotations

Ann = {th [t1, t2], in [t1, t2] | t1, t2 time points ∧ DC |= t1 ≤ t2}



where DC is the SC-structure providing the intended interpretation of the con-
straints. Then the lattice of interpretations is defined as (℘(C-baseL ×Ann),⊆)
where ⊆ is the usual set-theoretic inclusion. Finally the immediate consequence
operator TCE for a program expression E is compositionally defined in terms of
the immediate consequence operator for its sub-expressions.

Definition 2 (Bottom-up semantics). Let E be a program expression, the
function TCE : ℘(C-baseL ×Ann)→ ℘(C-baseL ×Ann) is defined as follows.

– (E is a plain program P )
TCP (I) =(A,α) |

(α = th [s1, s2] ∨ α = in [s1, s2]),
A α← C̄, B1α1, . . . , Bnαn ∈ groundC(P ),
{(B1, β1), . . . , (Bn, βn)} ⊆ I,
DC |= C̄, α1 v β1, . . . , αn v βn, s1 ≤ s2


∪(A, th [s1, r2]) |

A th [s1, s2]← C̄, B1α1, . . . , Bnαn ∈ groundC(P ),
{(B1, β1), . . . , (Bn, βn)} ⊆ I, (A, th [r1, r2]) ∈ I,
DC |= C̄, α1 v β1, . . . , αn v βn, s1 < r1, r1 ≤ s2, s2 < r2


where C̄ is a shortcut for C1, . . . , Ck.

– (E = E1 ∪ E2)
TCE1∪E2(I) = TCE1(I) ∪ TCE2(I)

– (E = E1 ∩ E2)
TCE1∩E2(I) = TCE1(I) e TCE2(I)

where I1 e I2 = {(A, γ) | (A,α) ∈ I1, (A, β) ∈ I2, DC |= α u β = γ}.

Observe that the definition above properly extends the standard definition of the
immediate consequence operator for constraint logic programs (see Section 3.1).
In fact, besides the usual Modus Ponens rule, it captures rule (t) (as expressed
by the second set in the definition of TCP ). Furthermore, also rule (v) is taken
into account to prove that an annotated atom holds in an interpretation: to
derive the head Aα of a clause it is not necessary to find in the interpretation
exactly the atoms B1 α1, . . . , Bn αn occurring in the body of the clause, but
it suffices to find atoms Bi βi which imply Bi αi, i.e., such that each βi is an
annotation stronger than αi (DC |= αi v βi). Notice that TCE(I) is not downward
closed, namely, it is not true that if (A,α) ∈ TCE(I) then for all (A, γ) such that
DC |= γ v α, we have (A, γ) ∈ TCE(I). The downward closure will be taken only
after the fixpoint of TCE is computed. We will see that, nevertheless, no deductive
capability is lost and rule (v) is completely modeled.

The set of immediate consequences of a union of program expressions is the
set-theoretic union of the immediate consequences of each program expression.
Instead, an atom A labelled by γ is an immediate consequence of the intersection
of two program expressions if A is a consequence of both program expressions,



possibly with different annotations α and β, and the label γ is the greatest lower
bound of the annotations α and β.

Let us formally define the downward closure of an interpretation.

Definition 3 (Downward closure). The downward closure of an interpreta-
tion I ⊆ C-baseL ×Ann is defined as:

↓ I = {(A,α) | (A, β) ∈ I, DC |= α v β}.

The next proposition sheds some more light on the semantics of the intersec-
tion operator, by showing that, when we apply the downward closure, the image
of an interpretation through the operator TCE1∩E2 is the set-theoretic intersec-
tion of the images of the interpretation through the operators associated with
E1 and E2, respectively. This property supports the intuition that the program
expressions have to agree at each computation step (see [9]).

Proposition 1. Let I1 and I2 be two interpretations. Then

↓ (I1 e I2) = (↓ I1) ∩ (↓ I2).

The next theorem shows the continuity of the TCE operator over the lattice of
interpretations.

Theorem 1 (Continuity). For any program expression E, the function TCE is
continuous (over (℘(C-baseL ×Ann),⊆)).

The fixpoint semantics for a program expression is now defined as the down-
ward closure of the least fixpoint of TCE which, by continuity of TCE , is determined
as
⋃

i∈N(TCE)i.

Definition 4 (Fixpoint semantics). Let E be a program expression. The fix-
point semantics of E is defined as

FC(E) =↓ (TCE)ω.

We remark that the downward closure is applied only once, after having com-
puted the fixpoint of TCE . However, it is easy to see that the closure is a continuous
operator on the lattice of interpretations ℘(C-baseL ×Ann). Thus

↓

(⋃
i∈N

(TCE)i
)

=
⋃
i∈N
↓ (TCE)i

showing that by taking the closure at each step we would have obtained the
same set of consequences. Hence, as mentioned before, rule (v) is completely
captured.



5.3 Soundness and completeness

In the spirit of [7, 34] we define the semantics of the meta-interpreter by relat-
ing the semantics of an object program to the semantics of the corresponding
vanilla meta-program (i.e., including the meta-level representation of the ob-
ject program). When stating the correspondence between the object program
and the meta-program we consider only formulae of interest, i.e., elements of
C-baseL annotated with labels from Ann, which are the semantic counterpart of
object level annotated atoms. We show that given a MuTACLP program expres-
sion E (object program) for any A ∈ C-baseL and any α ∈ Ann, demo(E , Aα) is
provable at the meta-level if and only if (A,α) is provable in the object program.

Theorem 2 (Soundness and completeness). Let E be a program expression
and let V be the meta-program containing the meta-level representation of the
object level programs occurring in E and clauses (1)-(10). For any A ∈ C-baseL

and α ∈ Ann, the following statement holds:

demo(E , Aα) ∈ (TMV )ω ⇐⇒ (A,α) ∈ FC(E),

where TMV is the standard immediate consequence operator for CLP programs.

Note that V is a CLP(M) program where M is a multi-sorted constraint do-
main, including the constraint domain Term, presented in Example 2, and the
constraint domain C. It is worth observing that if C is a C-ground instance of a
constraint then DM |= C ⇔ DC |= C.

6 Some examples

This section is devoted to present examples which illustrate the use of annota-
tions in the representation of temporal information and the structuring possibil-
ities offered by the operators. First we describe applications of our framework in
the field of legal reasoning. Then we show how the intersection operator can be
employed to define a kind of valid-timeslice operator.

6.1 Applications to legal reasoning

Laws and regulations are naturally represented in separate theories and they
are usually combined in ways that are necessarily more complex than a plain
merging. Time is another crucial ingredient in the definition of laws and regu-
lations, since, quite often, they refer to instants of time and, furthermore, their
validity is restricted to a fixed period of time. This is especially true for laws and
regulations which concern taxation and government budget related regulations
in general.



British Nationality Act. We start with a classical example in the field of
legal reasoning [41], i.e. a small piece of the British Nationality Act. Simply
partitioning the knowledge into separate programs and using the basic union
operation, one can exploit the temporal information in an orderly way. Assume
that Jan 1 1955 is the commencement date of the law. Then statement

x obtains the British Nationality at time t
if x is born in U.K. at time t and
t is after commencement and
y is parent of x and
y is a British citizen at time t

or y is a British resident at time t

is modeled by the following program.

BNA:
get-citizenship(X) atT ← T ≥ Jan 1 1955 , born(X,uk) atT ,

parent(Y,X) atT , british-citizen(Y) atT

get-citizenship(X) atT ← T ≥ Jan 1 1955 , born(X,uk) atT ,
parent(Y,X) atT , british-resident(Y) atT

Now, the data for a single person, say John, can be encoded in a separate pro-
gram.

John:
born(john,uk) atAug 10 1969 .
parent(bob,john) th [T,∞] ← born(john, ) atT
british-citizen(bob) th [Sept 6 1940 ,∞].

Then, by means of the union operator, one can inquire about the citizenship
of John, as follows

demo(BNA ∪ John, get-citizenship(john) atT )

obtaining as result T = Aug 10 1969 .

Movie tickets. Since 1997, an Italian regulation for encouraging people to go
to the cinema, states that on Wednesdays the ticket price is 8000 liras, whereas
in the rest of the week it is 12000 liras. The situation can be modeled by the
following theory BoxOff.

BoxOff:
ticket(8000 ,X ) atT ← T ≥ Jan 1 1997 ,wed atT
ticket(12000 ,X ) atT ← T ≥ Jan 1 1997 ,non wed atT

The constraint T ≥ Jan 1 1997 represents the validity of the clause, which holds
from January 1, 1997 onwards.

The predicates wed and non wed are defined in a separate theory Days,
where w is assumed to be the last Wednesday of 1996.



Days: wed atw.
wed atT + 7 ← wed atT

non wed th [w + 1, w + 6].
non wed atT + 7 ← non wed atT

Notice that, by means of recursive predicates one can easily express periodic tem-
poral information. In the example, the definition of the predicate wed expresses
the fact that a day is Wednesday if it is a date which is known to be Wednesday
or it is a day coming seven days after a day proved to be Wednesday. The pred-
icate non wed is defined in an analogous way; in this case the unit clause states
that all six consecutive days following a Wednesday are not Wednesdays.

Now, let us suppose that the owner of a cinema wants to increase the discount
for young people on Wednesdays, establishing that the ticket price for people who
are eighteen years old or younger is 6000 liras. By resorting to the intersection
operation we can build a program expression that represents exactly the desired
policy. We define three new programs Cons, Disc and Age.

Cons: ticket(8000 ,X ) atT ← Y > 18, age(X ,Y ) atT
ticket(12000 ,X ) atT .

The above theory specifies how the predicate definitions in BoxOff must change
according to the new policy. In fact to get a 8000 liras ticket now a further
constraint must be satisfied, namely the customer has to be older than eighteen
years old. On the other hand, no further requirement is imposed to buy a 12000
liras ticket.

Disc: ticket(6000 ,X ) atT ← a ≤ 18, wed atT , age(p, a) atT

The only clause in Disc states that a 6000 liras ticket can be bought on Wednes-
days by a person who is eighteen years old or younger.

The programs Cons and Disc are parametric with respect to the predicate
age, which is defined in a separate theory Age.

Age: age(X ,Y ) atT ← born(X ) atT1, year-diff(T1, T, Y )

At this point we can compose the above programs to obtain the program
expression representing the new policy, namely

(BoxOff ∩ Cons) ∪ Disc ∪ Days ∪ Age.

Finally, in order to know how much is a ticket for a given person, the above
program expression must be joined with a separate program containing the date
of birth of the person. For instance, such program could be

Tom: born(tom) atMay 7 1982 .

Then the answer to the query

demo(((BoxOff∩Cons)∪Disc ∪Days ∪Tom),
ticket(X , tom) atMay 20 1998 )

is X = 6000 since May 20 1998 is a Wednesday and Tom is sixteen years old.



Invim. Invim was an Italian law dealing with paying taxes on real estate trans-
actions. The original regulation, in force since January 1, 1950, requires time
calculations, since the amount of taxes depends on the period of ownership of
the real estate property. Furthermore, although the law has been abolished in
1992, it still applies but only for the period antecedent to 1992.

To see how our framework allows us to model the described situation let us
first consider the program Invim below, which contains a sketch of the original
body of regulations.

Invim:
due(Amount,X,Prop) th [T2,∞] ← T2 ≥ Jan 1 1950 , buys(X,Prop) at T1,

sells(X,Prop) at T2,
compute(Amount,X,Prop,T1,T2)

compute(Amount,X,Prop,T1,T2) ← . . .

To update the regulations in order to consider the decisions taken in 1992, as in
the previous example we introduce two new theories. The first one includes a set
of constraints on the applicability of the original regulations, while the second
one is designed to embody regulations capable of handling the new situation.

Constraints:
due(Amount,X,Prop) th [Jan 1 1993 ,∞] ←

sells(X,Prop) in [Jan 1 1950 ,Dec 31 1992 ]

compute(Amount,X,Prop,T1,T2).

The first rule specifies that the relation due is computed, provided that the
selling date is antecedent to December, 31 1992. The second rule specifies that
the rules for compute, whatever number they are, and whatever complexity they
have, carry on unconstrained to the new version of the regulation. It is important
to notice that the design of the constraining theory can be done without taking
care of the details (which may be quite complicated) embodied in the original
law.

The theory which handles the case of a property bought before December
31, 1992 and sold after the first of January, 1993, is given below.

Additions:
due(Amount,X,Prop) th [T2,∞] ← T2 ≥ Jan 1 1993 , buys(X,Prop) atT1,

sells(X,Prop) atT2,
compute(Amount,X,Prop,T1,Dec 31 1992 )

Now consider a separate theory representing the transactions regarding Mary,
who bought an apartment on March 8, 1965 and sold it on July 2, 1997.

Trans1:
buys(mary,apt8) atMar 8 1965 .
sells(mary,apt8) at Jul 2 1997 .



The query

demo(Invim ∪ Trans1, due(Amount,mary,apt8) th [ , ])

yields the amount, say 32.1, that Mary has to pay when selling the apartment
according to the old regulations. On the other hand, the query

demo(((Invim ∩ Constraints) ∪ Additions) ∪ Trans1,
due(Amount,mary,apt8) th [ , ])

yields the amount, say 27.8, computed according to the new regulations. It is
smaller than the previous one because taxes are computed only for the period
from March 8, 1965 to December 31, 1992, by using the clause in the program
Additions. The clause in Invim ∩ Constraints cannot be used since the con-
dition regarding the selling date (sells(X,Prop) in [Jan 1 1950 ,Dec 31 1992 ])
does not hold.

In the transaction, represented by the program below, Paul buys the flat on
January 1, 1995.

Trans2:
buys(paul,apt9) at Jan 1 1995 .
sells(paul,apt9) atSep 12 1998 .

demo(Invim ∪ Trans2, due(Amount,paul,apt9) th [ , ])

Amount = 1.7

demo(((Invim ∩ Constraints) ∪ Additions) ∪ Trans2,
due(Amount,paul,apt9) th [ , ])

no

If we query the theory Invim ∪ Trans2 we will get that Paul must pay a certain
amount of tax, say 1.7, while, according to the updated regulation, he must not
pay the Invim tax because he bought and sold the flat after December 31, 1992.
Indeed, the answer to the query computed with respect to the theory ((Invim
∩ Constraints) ∪ Additions) ∪ Trans2 is no, i.e., no tax is due.

Summing up, the union operation can be used to obtain a larger set of clauses.
We can join a program with another one to provide it with definitions of its
undefined predicates (e.g., Age provides a definition for the predicate age not
defined in Disc and Cons) or alternatively to add new clauses for an existing
predicate (e.g., Disc contains a new definition for the predicate ticket already
defined in BoxOff). On the other hand, the intersection operator provides a
natural way of imposing constraints on existing programs (e.g., the program
Cons constrains the definition of ticket given in BoxOff). Such constraints
affect not only the computation of a particular property, like the intersection
operation defined by Brogi et al. [9], but also the temporal information in which
the property holds.



The use of TACLP programs allows us to represent and reason on tem-
poral information in a natural way. Since time is explicit, at the object level
we can directly access the temporal information associated with atoms. Peri-
odic information can be easily expressed by recursive predicates (see the pred-
icates wed and non-wed in the theory Days). Indefinite temporal information
can be represented by using in annotations. E.g., in the program Additions
the in annotation is used to specify that a certain date is within a time period
(sell(X,Prop) in [Jan 1 1950, Dec 31 1992]). This is a case in which it is not
important to know the precise date but it is sufficient to have an information
which delimits the time period in which it can occur.

6.2 Valid-timeslice operator

By exploiting the features of the intersection operator we can define an operator
which eases the selection of information holding in a certain interval.

Definition 5. Let P be a plain program. For a ground interval [t1, t2] we define

P ⇓ [t1, t2] = P ∩ 1
[t1,t2]
P

where 1
[t1,t2]
P is a program which contains a fact “p(X1, . . . , Xn)th [t1, t2].” for

all p defined in P with arity n.

Intuitively the operator ⇓ selects only the clauses belonging to P that hold in
[t1, t2] or in a subinterval of [t1, t2], and it restricts their validity time to such
an interval. Therefore ⇓ allows us to create temporal views of programs, for
instance P ⇓ [t, t] is the program P at time point t. Hence it acts as a valid-
timeslice operator in the field of databases (see the glossary in [13]).

Consider again the Invim example of the previous section. The whole history
of the regulation concerning Invim, can be represented by using the following
program expression

(Invim ⇓ [0,Dec 31 1992 ]) ∪ ((Invim ∩ Constraints) ∪ Additions)

By applying the operation ⇓, the validity of the clauses belonging to Invim is
restricted to the period from January 1, 1950 up to December 31, 1992, thus
modeling the law before January 1, 1993. On the other hand, the program ex-
pression (Invim ∩ Constraints) ∪ Additions expresses the regulation in force
since January 1, 1993, as we previously explained.

This example suggests how the operation ⇓ can be useful to model updates.
Suppose that we want to represent that Frank is a research assistant in mathe-
matics, and that, later, he is promoted becoming an assistant professor. In our
formalism we can define a program Frank that records the information associ-
ated with Frank as a research assistant.

Frank:
research assistant(maths) th [Mar 8 1993 ,∞].



On March 1996 Frank becomes an assistant professor. In order to modify the
information contained in the program Frank, we build the following program
expression:

(Frank ⇓ [0,Feb 29 1996 ]) ∪ {assistant prof(maths) th [Mar 1 1996 ,∞].}

where the second expression is an unnamed theory. Unnamed theories, which
have not been discussed so far, can be represented by the following meta-level
clause:

clause({X α← Y }, X α, Y )← T1 ≤ T2

where α = th [T1, T2] or α = in [T1, T2].

The described update resembles the addition and deletion of a ground atom.
For instance in LDL++ [47] an analogous change can be implemented by solving
the goal −research assistant(maths), +assistant prof(maths). The advantage
of our approach is that we do not change directly the clauses of a program, e.g.
Frank in the example, but we compose the old theory with a new one that
represents the current situation. Therefore the state of the database before March
1, 1996 is preserved, thus maintaining the whole history. For instance, the first
query below inquires the updated database before Frank’s promotion whereas
the second one shows how information in the database has been modified.

demo((Frank ⇓ [0,Feb 29 1996 ]) ∪
{assistant prof(maths) th [Mar 1 1996 ,∞].},
research assistant(X) atFeb 23 1994 )

X = maths

demo((Frank ⇓ [0,Feb 29 1996 ]) ∪
{assistant prof(maths) th [Mar 1 1996 ,∞].},
research assistant(X) atMar 12 1996 )

no.

7 Related Work

Event Calculus by Kowalski and Sergot [28] has been the first attempt to cast
into logic programming the rules for reasoning about time. In more details,
Event Calculus is a treatment of time, based on the notion of event, in first-
order classical logic augmented with negation as failure. It is closely related to
Allen’s interval temporal logic [3]. For example, let E1 be an event in which Bob
gives the Book to John and let E2 be an event in which John gives Mary the
Book. Assume that E2 occurs after E1. Given these event descriptions, we can
deduce that there is a period started by the event E1 in which John possesses
the book and that there is a period terminated by E1 in which Bob possesses
the book. This situation is represented pictorially as follows:



Bob has the Book John has the Book
<−−−−−−−−−−−−−−−−− ◦ −−−−−−−−−−−−−−−−−−>

E1
John has the Book Mary has the Book

<−−−−−−−−−−−−−−−−−− ◦ −−−−−−−−−−−−−−−−−−−−−>
E2

A series of axioms for deducing the existence of time periods and the Start
and End of each time period are given by using the Holds predicate.

Holds(before(e r)) if Terminates(e r)

means that the relationship r holds in the time period before(e r) that denotes a
time period terminated by the event e. Holds(after(e r)) is defined in an analo-
gous way. Event Calculus provides a natural treatment of valid time in databases,
and it was extended in [43, 44] to include the concept of transaction time.

Therefore Event Calculus exploits the deductive power of logic and the com-
putational power of logic programming as in our approach, but the modeling
of time is different: events are the granularity of time chosen in Event Calcu-
lus, whereas we use time points and time periods. Furthermore no provision for
multiple theories is given in Event Calculus.

Kifer and Subrahmanian in [26] introduce generalized annotated logic pro-
grams (GAPs), and show how Templog [1] and an interval based temporal logic
can be translated into GAPs. The annotations used there correspond to the
th annotations of MuTACLP. To implement the annotated logic language, the
paper proposes to use “reductants”, additional clauses which are derived from
existing clauses to express all possible least upper bounds. The problem is that
a finite program may generate infinitely many such reductants. Then a new kind
of resolution for annotated logic programs, called “ca-resolution”, is proposed
in [30]. The idea is to compute dynamically and incrementally the least upper
bounds by collecting partial answers. Operationally this is similar to the meta-
interpreter presented in Section 5.1 which relies on recursion to collect the partial
answers. However, in [30] the intermediate stages of the computation may not
be sound with respect to the standard CLP semantics.

The paper [26] presents also two fixpoint semantics for GAPs, defined in
terms of two different operators. The first operator, called TP , is based on inter-
pretations which associate with each element of the Herbrand Base of a program
P a set of annotations which is an ideal, i.e., a set downward closed and closed
under finite least upper bounds. For each atom A, the computed ideal is the
least one containing the annotations α of annotated atoms Aα which are heads
of (instances of) clauses whose body holds in the interpretation. The other op-
erator, RP , is based on interpretations which associate with each atom of the
Herbrand Base a single annotation, obtained as the least upper bound of the
set of annotations computed as in the previous case. Our fixpoint operator for
MuTACLP works similarly to the TP operator: at each step we take the clo-
sure with respect to (representable) finite least upper bounds, and, although we
perform the downward closure only at the end of the computation, this does



not affect the set of derivable consequences. The main difference resides in the
language: MuTACLP is an extension of CLP, which focuses on temporal aspects
and provides mechanisms for combining programs, taking from GAP the basic
ideas for handling annotations, whereas GAP is a general language with negation
and arbitrary annotations but without constraints and multiple theories.

Our temporal annotations correspond to some of the predicates proposed
by Galton in [19], which is a critical examination of Allen’s classical work on a
theory of action and time [3]. Galton accounts for both time points and time
periods in dense linear time. Assuming that the intervals I are not singletons,
Galton’s predicate holds-in(A,I) can be mapped into MuTACLP’s A in I, holds-
on(A,I) into A th I, and holds-at(A,t) into A at t, where A is an atomic formula.
From the described correspondence it becomes clear that MuTACLP can be
seen as reified FOL where annotated formulae, for example born(john)at t, cor-
respond to binary meta-relations between predicates and temporal information,
for example at(born(john), t). But also, MuTACLP can be regarded as a modal
logic, where the annotations are seen as parameterized modal operators, e.g.,
born(john) (at t).

Our temporal annotations also correspond to some temporal characteristics
in the ChronoBase data model [42]. Such a model allows for the representation
of a wide variety of temporal phenomena in a temporal database which cannot
be expressed by using only th and in annotations. However, this model is an
extension of the relational data model and, differently from our model, it is not
rule-based. An interesting line of research could be to investigate the possibility
of enriching the set of annotations in order to capture some other temporal char-
acteristics, like a property that holds in an interval but not in its subintervals,
still maintaining a simple and clear semantics.

In [10], a powerful temporal logic named MTL (tense logic extended by pa-
rameterized temporal operators) is translated into first order constraint logic.
The resulting language subsumes Templog. The parameterized temporal opera-
tors of MTL correspond to the temporal annotations of TACLP. The constraint
theory of MTL is rather complex as it involves quantified variables and implica-
tion, whose treatment goes beyond standard CLP implementations. On the other
hand, MuTACLP inherits an efficient standard constraint-based implementation
of annotations from the TACLP framework.

As far as the multi-theory setting is concerned, i.e. the possibility offered
by MuTACLP to structure and compose (temporal) knowledge, there are few
logic-based approaches providing the user with these tools. One is Temporal
Datalog [35], an extension of Datalog based on a simple temporal logic with
two temporal operators, namely first and next. Temporal Datalog introduces
a notion of module, which however does not seem to be used as a knowledge
representation tool but rather to define new non-standard algebraic operators.
In fact, to query a temporal Datalog program, Orgun proposes a “point-wise
extension” of the relational algebra upon the set of natural numbers, called TRA-
algebra. Then he provides a mechanism for specifying generic modules, called
temporal modules, which are parametric Temporal Datalog programs, with a



number of input predicates (parameters) and an output predicate. A module
can be then regarded as an operator which, given a temporal relation, returns a
temporal relation. Thus temporal modules are indeed used as operators of TRA,
through which one has access to the use of recursion, arithmetic predicates and
temporal operators.

A multi-theory framework in which temporal information can be handled,
based on annotated logics, is proposed by Subrahmanian in [45]. This is a very
general framework aimed at amalgamating multiple knowledge bases which can
also contain temporal information. The knowledge bases are GAPs [26] and
temporal information is modeled by using an appropriate lattice of annotations.
In order to integrate these programs, a so called Mediatory Database is given,
which is a GAP having clauses of the form

A0 : [m,µ]← A1 : [D1, µ1], . . . , An : [Dn, µn]

where each Di is a set of database names. Intuitively, a ground instance of a
clause in the mediator can be interpreted as follows: “If the databases in set
Di, 1 ≤ i ≤ n, (jointly) imply that the truth value of Ai is at least µi, then
the mediator will conclude that the truth value of A0 is at least µ”. Essentially
the fundamental mechanism provided to combine knowledge bases is a kind of
message passing. Roughly speaking, the resolution of an atom Ai : [Di, µi] is
delegated to different databases, specified by the set Di of database names,
and the annotation µi is obtained by considering the least upper bounds of the
annotations of each Ai computed in the distinct databases. Our approach is
quite different because the meta-level composition operators allow us to access
not only to the relation defined by a predicate but also to the definition of the
predicate. For instance P ∪Q is equivalent to a program whose clauses are the
union of the clauses of P and Q and thus the information which can be derived
from P ∪ Q is greater than the union of what we can derive from P and Q
separately.

8 Conclusion

In this paper we have introduced MuTACLP, a language which joins the advan-
tages of TACLP in handling temporal information with the ability to structure
and compose programs. The proposed framework allows one to deal with time
points and time periods and to model definite, indefinite and periodic temporal
information, which can be distributed among different theories. Representing
knowledge in separate programs naturally leads to use knowledge from different
sources; information can be stored at different sites and combined in a modular
way by employing the meta-level operators. This modular approach also favors
the reuse of the knowledge encoded in the programs for future applications.

The language MuTACLP has been given a top-down semantics by means of
a meta-interepreter and a bottom-up semantics based on an immediate conse-
quence operator. Concerning the bottom-up semantics, it would be interesting
to investigate on different definitions of the immediate consequence operator,



for instance by considering an operator similar to the function RP for general-
ized annotated programs [26]. The domain of interpretations considered in this
paper is, in a certain sense, unstructured: interpretations are general sets of an-
notated atoms and the order, which is simply subset inclusion, does not take
into account the order on annotations. Alternative solutions, based on different
notions of interpretation, may consider more abstract domains. These domains
can be obtained by endowing C-baseL×Ann with the product order (induced by
the identity relation on C-baseL and the order on Ann) and then by taking as
elements of the domain (i.e. as interpretations) only those subsets of annotated
atoms that satisfy some closure properties with respect to such an order. For
instance, one can require “downward-closedness”, which amounts to including
subsumption in the immediate consequence operator. Another possible prop-
erty is “limit-closedness”, namely the presence of the least upper bound of all
directed sets, which, from a computational point of view, amounts to consider
computations which possibly require more than ω steps.

In [15] the language TACLP is presented as an instance of annotated con-
straint logic (ACL) for reasoning about time. Similarly, we could have first intro-
duced a Multi-theory Annotated Constraint Logic (MuACL in brief), viewing
MuTACLP as an instance of MuACL. To define MuACL the constructions de-
scribed in this paper should be generalized by using, as basic language for plain
programs, the more general paradigm of ACL where atoms can be labelled by a
general class of annotations. In defining MuACL we should require that the class
of annotations forms a lattice, in order to have both upper bounds and lower
bounds (the latter are necessary for the definition of the intersection operator).
Indeed, it is not difficult to see that, under the assumption that only atoms can
be annotated and clauses are free of negation, both the meta-interpreter and
the immediate consequence operator smootly generalize to deal with general
annotations.

Another interesting topic for future investigation is the treatment of nega-
tion. In the line of Frühwirth, a possible solution consists of embodying the
“negation by default” of logic programming into MuTACLP by exploiting the
logical equalities proved in [15]:

((¬A) th I) ⇔ ¬(A in I) ((¬A) in I) ⇔ ¬(A th I)

Consequently, the meta-interpreter is extended with two clauses which use such
equalities:

demo(E , (¬A) th I)← ¬demo(E , A in I)
demo(E , (¬A) in I)← ¬demo(E , A th I)

However the interaction between negation by default and program composition
operations is still to be fully understood. Some results on the semantic inter-
actions between operations and negation by default are presented in [8], where,
nevertheless, the handling of time is not considered.

Furthermore, it is worth noticing that in this paper we have implicitly as-
sumed that the same unit for time is used in different programs, i.e. we have
not dealt with different time granularities. The ability to cope with different



granularities (e.g. seconds, days, etc.) is particularly relevant to support interop-
erability among systems. A simple way to handle this feature, is by introducing
in MuTACLP a notion of time unit and a set of conversion predicates which
transform time points into the chosen time unit (see, e.g., [5]).

We finally observe that in MuTACLP also spatial data can be naturally mod-
elled. In fact, in the style of the constraint databases approaches (see, e.g., [25,
37, 20]) spatial data can be represented by using constraints. The facilities to
handle time offered by MuTACLP allows one to easily establish spatio-temporal
correlations, for instance time-varying areas, or, more generally, moving objects,
supporting either discrete or continuous changes (see [38, 31, 40]).
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15. T. Frühwirth. Temporal Annotated Constraint Logic Programming. Journal of
Symbolic Computation, 22:555–583, 1996.

16. D. M. Gabbay. Modal and temporal logic programming. In [18], pages 197–237.
17. D.M. Gabbay and P. McBrien. Temporal Logic & Historical Databases. In Proceed-

ings of the Seventeenth International Conference on Very Large Databases, pages
423–430, 1991.

18. A. Galton, editor. Temporal Logics and Their Applications. Academic Press, 1987.
19. A. Galton. A Critical Examination of Allen’s Theory of Action and Time. Artificial

Intelligence, 42:159–188, 1990.
20. S. Grumbach, P. Rigaux, and L. Segoufin. The DEDALE system for complex

spatial queries. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD-98), pages 213–224, 1998.

21. T. Hrycej. A temporal extension of Prolog. Journal of Logic Programming, 15(1&
2):113–145, 1993.

22. J. Jaffar and M.J. Maher. Constraint Logic Programming: A Survey. Journal of
Logic Programming, 19 & 20:503–582, 1994.

23. J. Jaffar, M.J. Maher, K. Marriott, and P.J. Stuckey. The Semantics of Constraint
Logic Programs. Journal of Logic Programming, 37(1-3):1–46, 1998.

24. J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) Language and System.
ACM Transactions on Programming Languages and Systems, 14(3):339–395, 1992.

25. P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query languages. Jour-
nal of Computer and System Sciences, 51(1):26–52, 1995.

26. M. Kifer and V.S. Subrahmanian. Theory of Generalized Annotated Logic Pro-
gramming and its Applications. Journal of Logic Programming, 12:335–367, 1992.

27. M. Koubarakis. Database models for infinite and indefinite temporal information.
Information Systems, 19(2):141–173, 1994.

28. R. A. Kowalski and M.J. Sergot. A Logic-based Calculus of Events. New Genera-
tion Computing, 4(1):67–95, 1986.

29. R.A. Kowalski and J.S. Kim. A metalogic programming approach to multi-agent
knowledge and belief. In Artificial Intelligence and Mathematical Theory of Com-
putation. Academic Press, 1991.

30. S.M. Leach and J.J. Lu. Computing Annotated Logic Programs. In Proceedings
of the eleventh International Conference on Logic Programming, pages 257–271,
1994.

31. P. Mancarella, G. Nerbini, A. Raffaetà, and F. Turini. MuTACLP: A language
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Appendix: Proofs

Proposition 1 Let I1 and I2 be two interpretations. Then

↓ (I1 e I2) = ↓ I1
⋂
↓ I2.

Proof. Assume (A,α) ∈↓ (I1eI2). By definition of downward closure there exists
γ such that (A, γ) ∈ I1 e I2 and DC |= α v γ. By definition of e there exist β
and β′ such that (A, β) ∈ I1 and (A, β′) ∈ I2 and DC |= β u β′ = γ. Therefore
DC |= α v β, α v β′, by definition of downward closure we conclude (A,α) ∈↓ I1
and (A,α) ∈↓ I2, i.e., (A,α) ∈↓ I1

⋂
↓ I2.

Vice versa assume (A,α) ∈↓ I1∩ ↓ I2. By definition of set-theoretic intersec-
tion and downward closure there exist β and β′ such that DC |= α v β, α v β′

and (A, β) ∈ I1 and (A, β′) ∈ I2. By definition of e, (A, γ) ∈ I1 e I2 and
DC |= β u β′ = γ. By property of the greatest lower bound DC |= α v β u β′,
hence (A,α) ∈↓ (I1 e I2).

Theorem 1 Let E be a program expression. The function TCE is continuous (on
(℘(C-baseL ×Ann),⊆)).

Proof. Let {Ii}i∈N be a chain in (℘(C-baseL × Ann),⊆), i.e., I0 ⊆ I1 ⊆ . . . ⊆
Ii . . .. Then we have to prove

(A,α) ∈ TCE

(⋃
i∈N

Ii

)
⇐⇒ (A,α) ∈

⋃
i∈N

TCE(Ii).

The proof is by structural induction of E .

(E is a plain program P ).

(A,α) ∈ TCP (
⋃

i∈N Ii)
⇐⇒{definition of TCP }

((α = th [s1, s2] ∨ α = in [s1, s2]) ∧
A α← C1, . . . , Ck, B1α1, . . . , Bnαn ∈ groundC(P ) ∧
{(B1, β1), . . . , (Bn, βn)} ⊆

⋃
i∈N Ii ∧

DC |= C1, . . . , Ck, α1 v β1, . . . , αn v βn, s1 ≤ s2) ∨
(α = th [s1, r2] ∧ A th [s1, s2]← C1, . . . , Ck, B1α1, . . . , Bnαn ∈ groundC(P ) ∧
{(B1, β1), . . . , (Bn, βn)} ⊆

⋃
i∈N Ii ∧ (A, th [r1, r2]) ∈

⋃
i∈N Ii ∧

DC |= C1, . . . , Ck, α1 v β1, . . . , αn v βn, s1 < r1, r1 ≤ s2, s2 < r2)
⇐⇒{property of set-theoretic union and {Ii}i∈N is a chain. Notice that for

(=⇒) j can be any element of the set {k | (Bi, βi) ∈ Ik, i = 1, . . . , n}
which is clearly not empty}

((α = th [s1, s2] ∨ in [s1, s2]) ∧
A α← C1, . . . , Ck, B1α1, . . . , Bnαn ∈ groundC(P ) ∧
{(B1, β1), . . . , (Bn, βn)} ⊆ Ij ∧
DC |= C1, . . . , Ck, α1 v β1, . . . , αn v βn, s1 ≤ s2) ∨



(α = th [s1, r2] ∧ A th [s1, s2]← C1, . . . , Ck, B1α1, . . . , Bnαn ∈ groundC(P )
∧ {(B1, β1), . . . , (Bn, βn)} ⊆ Ij ∧ (A, th [r1, r2]) ∈ Ij ∧
DC |= C1, . . . , Ck, α1 v β1, . . . , αn v βn, s1 < r1, r1 ≤ s2, s2 < r2)
⇐⇒{definition of TCP }

(A,α) ∈ TCP (Ij)
⇐⇒{set-theoretic union}

(A,α) ∈
⋃

i∈N TCP (Ii)

(E = Q∪R).

(A,α) ∈ TCQ∪R(
⋃

i∈N Ii)
⇐⇒{definition of TCQ∪R}

(A,α) ∈ TCQ(
⋃

i∈N Ii) ∪ TCR(
⋃

i∈N Ii)
⇐⇒{inductive hypothesis}

(A,α) ∈
(⋃

i∈N TCQ(Ii)
)
∪
(⋃

i∈N TCR(Ii)
)

⇐⇒{properties of union}
(A,α) ∈

⋃
i∈N
(
TCQ(Ii) ∪ TCR(Ii)

)
⇐⇒{definition of TCQ∪R}

(A,α) ∈
⋃

i∈N TCQ∪R(Ii)

(E = Q∩R).

(A,α) ∈ TCQ∩R(
⋃

i∈N Ii)
⇐⇒{definition of TCQ∩R}

(A,α) ∈ TCQ(
⋃

i∈N Ii) e TCR(
⋃

i∈N Ii)
⇐⇒{inductive hypothesis}

(A,α) ∈
(⋃

i∈N TCQ(Ii)
)
e
(⋃

i∈N TCR(Ii)
)

⇐⇒{definition of e and monotonicity of TC}
(A,α) ∈

⋃
i∈N
(
TCQ(Ii) e TCR(Ii)

)
⇐⇒{definition of TCQ∩R}

(A,α) ∈
⋃

i∈N TCQ∩R(Ii)

Soundness and completeness

This section presents the proofs of the soundness and completeness results for
MuTACLP meta-interpreter. Due to space limitations, the proofs of the technical
lemmata are omitted and can be found in [4, 38]. We first fix some notational
conventions. In the following we will denote by E , N , R and Q generic program
expressions, and by C the fixed constraint domain where the constraints of object
programs are interpreted. Let M be the fixed constraint domain, where the
constraints of the meta-interpreter defined in Section 5.1 are interpreted. We
denote by A, B elements of C-baseL, with α, β, γ annotations in Ann and by
C a C-ground instance of a constraint. All symbols may have subscripts. In the
following for simplicity we will drop the reference to C andM in the name of the
immediate consequence operators. Moreover we refer to the program containing
the meta-level representation of object level programs and clauses (1)-(10) as
“the meta-program V corresponding to a program expression”.



We will say that an interpretation I ⊆ C-baseL×Ann satisfies the body of a
C-ground instance Aα← C1, . . . , Ck, B1α1, . . . , Bnαn of a clause, or in symbols
I |= C1, . . . , Ck, B1α1, . . . , Bnαn, if

1. DC |= C1, . . . , Ck and
2. there are annotations β1, . . . , βn such that {(B1, β1), . . . , (Bn, βn)} ⊆ I and
DC |= α1 v β1, . . . , αn v βn.

Furthermore, will often denote a sequence C1, . . . , Ck of C-ground instances
of constraints by C̄, while a sequence B1α1, . . . , Bnαn of annotated atoms in
C-baseL×Ann will be denoted by B̄. For example, with this convention a clause of
the kind Aα← C1, . . . , Ck, B1α1, . . . , Bnαn will be written as Aα← C̄, B̄, and,
similarly, in the meta-level representation, we will write clause(E , Aα, (C̄, B̄))
in place of clause(E , Aα, (C1, . . . , Ck, B1α1, . . . , Bnαn)).

Soundness. In order to show the soundness of the meta-interpreter (restricted
to the atoms of interest), we present the following easy lemma, stating that if a
conjunctive goal is provable at the meta-level then also its atomic conjuncts are
provable at the meta-level.

Lemma 1. Let E be a program expression and let V be the corresponding meta-
interpreter. For any B1 α1, . . . , Bn αn with Bi ∈ C-baseL and αi ∈ Ann and for
any C1, . . . , Ck, with Ci a C-ground instance of a constraint, we have:

For all h demo(E , (C1, . . . , Ck, B1 α1, . . . , Bn αn)) ∈ Th
V

=⇒ {demo(E , B1 α1), . . . , demo(E , Bn αn)} ⊆ Th
V ∧ DC |= C1, . . . , Ck.

The next two lemmata relate the clauses computed from a program expression E
at the meta-level, called “virtual clauses”, with the set of consequences of E . The
first lemma states that whenever we can find a virtual clause computed from E
whose body is satisfied by I, the head Aα of the clause is a consequence of the
program expression E . The second one shows how the head of a virtual clause
can be “joined” with an already existing annotated atom in order to obtain an
atom with a larger th annotation.

Lemma 2 (Virtual Clauses Lemma 1). Let E be a program expression and V
be the corresponding meta-interpreter. For any sequence C̄ of C-ground instances
of constraints, for any Aα, B̄ in C-baseL × Ann and any interpretation I ⊆
C-baseL ×Ann, we have:

clause(E , Aα, (C̄, B̄)) ∈ Tω
V ∧ I |= C̄, B̄ =⇒ (A,α) ∈ TE(I).

Lemma 3 (Virtual Clauses Lemma 2). Let E be a program expression and
V be the corresponding meta-program. For any A th [s1, s2], A th [r1, r2], B̄ in
C-baseL × Ann, for any sequence C̄ of C-ground instances of constraints, and
any interpretation I ⊆ C-baseL ×Ann, the following statement holds:

clause(E , A th [s1, s2], (C̄, B̄)) ∈ Tω
V ∧ I |= C̄, B̄ ∧

(A, th [r1, r2]) ∈ I ∧ DC |= s1 < r1, r1 ≤ s2, s2 < r2
=⇒ (A, th [s1, r2]) ∈ TE(I).



Now, the soundness of the meta-interpreter can be proved by showing that if
an annotated atom Aα is provable at the meta-level from the program expression
E then Aγ is a consequence of E for some γ such that Aγ ⇒ Aα, i.e., the
annotation α is less or equal to γ.

Theorem 3 (soundness). Let E be a program expression and let V be the
corresponding meta-program. For any Aα with A ∈ C-baseL and α ∈ Ann, the
following statement holds:

demo(E , Aα) ∈ Tω
V =⇒ (A,α) ∈ FC(E).

Proof. We first show that for all h

demo(E , Aα) ∈ Th
V =⇒ ∃γ : (A, γ) ∈ Tω

E ∧ DC |= α v γ. (12)

The proof is by induction on h.

(Base case). Trivial since T 0
V = ∅.

(Inductive case). Assume that

demo(E , Aα) ∈ Th
V =⇒ ∃γ : (A, γ) ∈ Tω

E ∧ DC |= α v γ.

Then:

demo(E , Aα) ∈ Th+1
V

⇐⇒{definition of T i
V }

demo(E , Aα) ∈ TV (Th
V )

We have four cases corresponding to clauses (3), (4), (5) and (6). We only show
the cases related to clause (3) and (4) since the others are proved in an analogous
way.

(clause (3)) {α = th [t1, t2], definition of TV and clause (3)}
{clause(E , A th [s1, s2], (C̄, B̄)), demo(E , (C̄, B̄))} ⊆ Th

V ∧
DC |= s1 ≤ t1, t2 ≤ s2, t1 ≤ t2

=⇒{Lemma 1 and (C̄, B̄) = (C1, . . . , Ck, B1 α1, . . . , Bn αn)}
clause(E , A th [s1, s2], (C1, . . . , Ck, B1 α1, . . . , Bn αn)) ∈ Th

V ∧
{demo(E , B1 α1), . . . , demo(E , Bn αn)} ⊆ Th

V ∧
DC |= C1, . . . , Ck ∧ DC |= s1 ≤ t1, t2 ≤ s2, t1 ≤ t2

=⇒{inductive hypothesis}
∃β1, . . . , βn : clause(E , A th [s1, s2], (C1, . . . , Ck, B1 α1, . . . , Bn αn)) ∈ Th

V ∧
{(B1, β1), . . . , (Bn, βn)} ⊆ Tω

E ∧ DC |= α1 v β1, . . . , αn v βn ∧
DC |= C1, . . . , Ck ∧ DC |= s1 ≤ t1, t2 ≤ s2, t1 ≤ t2

=⇒{Tω
V =

⋃
i∈N T

i
V }

clause(E , A th [s1, s2], (C1, . . . , Ck, B1 α1, . . . , Bn αn)) ∈ Tω
V ∧

{(B1, β1), . . . , (Bn, βn)} ⊆ Tω
E ∧ DC |= α1 v β1, . . . , αn v βn ∧

DC |= C1, . . . , Ck ∧ DC |= s1 ≤ t1, t2 ≤ s2, t1 ≤ t2



=⇒{Lemma 2}
(A, th [s1, s2]) ∈ TE(Tω

E ) ∧ DC |= s1 ≤ t1, t2 ≤ s2, t1 ≤ t2
=⇒{Tω

E is a fixpoint of TE and DC |= s1 ≤ t1, t2 ≤ s2, t1 ≤ t2}
(A, th [s1, s2]) ∈ Tω

E ∧ DC |= th [t1, t2] v th [s1, s2]

(clause (4)) {α = th [t1, t2], definition of TV and clause (4)}
{clause(E , A th [s1, s2], (C̄, B̄)), demo(E , (C̄, B̄)), demo(E , A th [s2, t2])} ⊆ Th

V

∧ DC |= s1 ≤ t1, t1 < s2, s2 < t2
=⇒{Lemma 1 and (C̄, B̄) = (C1, . . . , Ck, B1 α1, . . . , Bn αn)}

clause(E , A th [s1, s2], (C1, . . . , Ck, B1 α1, . . . , Bn αn)) ∈ Th
V ∧

{demo(E , B1 α1), . . . , demo(E , Bn αn), demo(E , A th [s2, t2])} ⊆ Th
V ∧

DC |= C1, . . . , Ck ∧ DC |= s1 ≤ t1, t1 < s2, s2 < t2
=⇒{inductive hypothesis}
∃β, β1, . . . , βn : clause(E , A th [s1, s2], (C1, . . . , Ck, B1 α1, . . . , Bn αn)) ∈ Th

V ∧
{(B1, β1), . . . , (Bn, βn), (A, β)} ⊆ Tω

E ∧
DC |= α1 v β1, . . . , αn v βn, th [s2, t2] v β ∧
DC |= C1, . . . , Ck ∧ DC |= s1 ≤ t1, t1 < s2, s2 < t2.

Since DC |= th [s2, t2] v β then β = th [w1, w2] with DC |= w1 ≤ s2, t2 ≤ w2.
Hence we distinguish two cases according to the relation between w1 and s1.

– DC |= w1 ≤ s1.
In this case we immediately conclude because DC |= th [t1, t2] v th [w1, w2],
and thus (A, th [w1, w2]) ∈ Tω

E ∧ DC |= th [t1, t2] v th [w1, w2].
– DC |= s1 < w1.

In this case clause(E , Ath [s1, s2], (C1, . . . , Ck, B1α1, . . . , Bnαn)) ∈ Tω
V , since

Tω
V =

⋃
i∈N T

i
V . Moreover, from DC |= s1 < w1, w1 ≤ s2, s2 < t2, t2 ≤ w2,

by Lemma 3 we obtain (A, th [s1, w2]) ∈ TE(Tω
E ). Since Tω

E is a fixpoint of
TE and DC |= s1 ≤ t1, t2 ≤ w2 we can conclude (A, th [s1, w2]) ∈ Tω

E and
DC |= th [t1, t2] v th [s1, w2].

We are finally able to prove the soundness of the meta-interpreter with re-
spect to the least fixpoint semantics.

demo(E , Aα) ∈ Tω
V

=⇒ {Tω
V =

⋃
i∈N T

i
V }

∃h : demo(E , Aα) ∈ Th
V

=⇒ {Statement (12)}
∃β : (A, β) ∈ Tω

E ∧ DC |= α v β
=⇒ {definition of FC}
(A,α) ∈ FC(E).

Completeness. We first need a lemma stating that if an annotated atom Aα
is provable at the meta-level in a program expression E then we can prove at the
meta-level the same atom A with any other “weaker” annotation (namely Aγ,
with γ v α).



Lemma 4. Let E be a program expression and V be the corresponding meta-
program. For any A ∈ C-baseL and α ∈ Ann, the following statement holds:

demo(E , Aα) ∈ Tω
V =⇒ {demo(E , A γ) | γ ∈ Ann,DC |= γ v α} ⊆ Tω

V .

Now the completeness result for MuTACLP meta-interpreter basically relies
on two technical lemmata (Lemma 7 and Lemma 8). Roughly speaking they as-
sert that when th and in annotated atoms are derivable from an interpretation
I by using the TE operator then we can find corresponding virtual clauses in the
program expression E which permit to derive the same or greater information.

Let us first introduce some preliminary notions and results.

Definition 6 (covering). A covering for a th -annotation th [t1, t2] is a se-
quence of annotations {th [ti1, t

i
2]}i∈{1,...,n}, such that DC |= th [t1, t2] v th [t11, t

2
n]

and for any i ∈ {1, . . . , n}

DC |= ti1 ≤ ti2, ti+1
1 ≤ ti2, ti1 < ti+1

1 .

In words, a covering of a th annotation th [t1, t2] is a sequence of annotations
{th [ti1, t

i
2]}i∈{1,...,n} such that each of the intervals overlaps with its successor,

and the union of such intervals includes [t1, t2]. The next simple lemma observes
that, given two annotations and a covering for each of them, we can always build
a covering for their greatest lower bound.

Lemma 5. Let th [t1, t2] and th [s1, s2] be annotations and th [w1, w2] =
th [t1, t2] u th [s1, s2]. Let {th [ti1, t

i
2]}i∈{1,...,n} and {th [sj1, s

j
2]}j∈{1,...,m} be cov-

erings for th [t1, t2] and th [s1, s2], respectively. Then a covering for th [w1, w2]
can be extracted from

{th [ti1, t
i
2] u th [sj1, s

j
2] | i ∈ {1, . . . n} ∧ j ∈ {1, . . . ,m}}.

In the hypothesis of the previous lemma [w1, w2] = [t1, t2]∩ [s1, s2]. Thus the
result of the lemma is simply a consequence of the distributivity of set-theoretical
intersection with respect to union.

Definition 7. Let E be a program expression, let V be the corresponding meta-
program and let I ⊆ C-baseL × Ann be an interpretation. Given an annotated
atom (A, th [t1, t2]) ∈ C-baseL ×Ann, an (E , I)-set for (A, th [t1, t2]) is a set

{clause(E , A th [ti1, t
i
2], (C̄i, B̄i))}i∈{1,...,n} ⊆ Tω

V

such that

1. {th [ti1, t
i
2]}i∈{1,...,n} is a covering of th [t1, t2], and

2. for i ∈ {1, . . . , n}, I |= C̄i, B̄i.

An interpretation I ⊆ C-baseL × Ann is called th -closed with respect to
E (or E-closed, for short) if there is an (E , I)-set for every annotated atom
(A, th [t1, t2]) ∈ I.



The next lemma presents some properties of the notion of E-closedness, which
essentially state that the property of being E-closed is invariant with respect to
some obvious algebraic transformations of the program expression E .

Lemma 6. Let E, R and N be program expressions and let I be an interpreta-
tion. Then the following properties hold, where op ∈ {∪,∩}

1. I is (E op E)-closed iff I is E-closed;
2. I is (E opR)-closed iff I is (R op E)-closed;
3. I is ((E opR) opN )-closed iff I is E op (R opN )-closed;
4. if I is E-closed then I is (E ∪ R)-closed;
5. if I is (E ∩ R)-closed then I is E-closed;
6. I is ((E ∩ R) ∪N )-closed iff I is ((E ∪ N ) ∩ (R∪N ))-closed.

We next show that if we apply the TE operator to an E-closed interpretation,
then for any derived th -annotated atom there exists an (E , I)-set (see Defini-
tion 7). This result represents a basic step towards the completeness proof. In
fact, it tells us that starting from the empty interpretation, which is obviously
E-closed, and iterating the TE then we get, step after step, th -annotated atoms
which can be also derived from the virtual clauses of the program expression
at hand. For technical reasons, to make the induction work, we need a slightly
stronger property.

Lemma 7. Let E and Q be program expressions, let V be the corresponding
meta-program4 and let I ⊆ C-baseL × Ann be an (E ∪ Q)-closed interpretation.
Then for any atom (A, th [t1, t2]) ∈ TE(I) there exists an (E ∪ Q, I)-set.

Corollary 1. Let E be any program expression and let V be the corresponding
meta-program. Then for any h ∈ N the interpretation Th

E is E-closed. Therefore
Tω
E is E-closed.

Another technical lemma is needed for dealing with the in annotations,
which comes in pair with Lemma 7.

Lemma 8. Let E be a program expression, let V be the corresponding meta-
program and let I be any E-closed interpretation. For any atom (A, in [t1, t2]) ∈
TE(I) we have

clause(E , Aα, (C̄, B̄)) ∈ Tω
V ∧ I |= C̄, B̄ ∧ DC |= in [t1, t2] v α.

Now we can prove the completeness of the meta-interpreter with respect to
the least fixpoint semantics.

Theorem 4 (Completeness). Let E be a program expression and V be the
corresponding meta-program. For any A ∈ C-baseL and α ∈ Ann the following
statement holds:

(A,α) ∈ FC(E) =⇒ demo(E , Aα) ∈ Tω
V .

4 The meta-program contains the meta-level representation of the plain programs in
E and Q.



Proof. We first show that for all h

(A,α) ∈ Th
E =⇒ demo(E , Aα) ∈ Tω

V . (13)

The proof is by induction on h.

(Base case). Trivial since T0
E = ∅.

(Inductive case). Assume that

(A,α) ∈ Th
E =⇒ demo(E , Aα) ∈ Tω

V .

Observe that, under the above assumption,

Th
E |= C̄, B̄ ⇒ demo(E , (C̄, B̄)) ∈ Tω

V . (14)

In fact let C̄ = C1, . . . , Ck and B̄ = B1α1, . . . , Bnαn. Then the notation Th
E |= C̄

amounts to say that for each i,DC |= Ci and thus demo(E , Ci) ∈ Tω
V , by definition

of TV and clause (7). Furthermore Th
E |= B̄ means that for each i, (Bi, βi) ∈ Th

E
and DC |= αi v βi. Hence by inductive hypothesis demo(E , Bi βi) ∈ Tω

V and
thus, by Lemma 4, demo(E , Bi αi) ∈ Tω

V . By several applications of clause (2) in
the meta-interpreter we finally deduce demo(E , (B̄, C̄)) ∈ Tω

V .
It is convenient to treat separately the cases of th and in annotations. If we

assume that α = th [t1, t2], then

(A, th [t1, t2]) ∈ Th+1
E

⇐⇒{definition of Ti
E}

(A, th [t1, t2]) ∈ TE(Th
E)

=⇒ {Lemma 7 and Th
E is E-closed by Corollary 1}

{clause(E , A th [ti1, t
i
2], (C̄i, B̄i))}i∈{1,...,n} ⊆ Tω

V ∧
Th
E |= C̄i, B̄i for i ∈ {1, . . . , n} ∧
{th [ti1, t

i
2]}i∈{1,...,n} covering of th [t1, t2]

=⇒ {previous remark (14)}
{clause(E , A th [ti1, t

i
2], (C̄i, B̄i))}i∈{1,...,n} ⊆ Tω

V ∧
demo(E , (C̄i, B̄i)) ∈ Tω

V for i ∈ {1, . . . , n} ∧
{th [ti1, t

i
2]}i∈{1,...,n} covering of th [t1, t2]

=⇒ {definition of TV , clause (3) and Tω
V is a fixpoint of TV }

demo(E , A th [tn1 , t
n
2 ]) ∈ Tω

V ∧
{clause(E , A th [ti1, t

i
2], (C̄i, B̄i))}i∈{1,...,n−1} ⊆ Tω

V ∧
demo(E , (C̄i, B̄i)) ∈ Tω

V for i ∈ {1, . . . , n− 1} ∧
{th [ti1, t

i
2]}i∈{1,...,n} covering of th [t1, t2]

=⇒ {definition of TV , clause (4), Lemma 4 and Tω
V is a fixpoint of TV }

demo(E , A th [tn−11 , tn2 ]) ∧ {clause(E , A th [ti1, t
i
2], (C̄i, B̄i))}i∈{1,...,n−2} ⊆ Tω

V

∧ demo(E , (C̄i, B̄i)) ∈ Tω
V for i ∈ {1, . . . , n− 2} ∧

{th [ti1, t
i
2]}i∈{1,...,n} covering of th [t1, t2]

=⇒ {by exploiting several times clause (4) as above}
demo(E , A th [t11, t

n
2 ]) ∧ {th [ti1, t

i
2]}i∈{1,...,n} covering of th [t1, t2]

=⇒ {by definition of covering DC |= th [t1, t2] v th [t11, t
n
2 ] and Lemma 4}

demo(E , A th [t1, t2]) ∈ Tω
V



Instead, if α = in [t1, t2], then

(A, in [t1, t2]) ∈ Th+1
E

⇐⇒{definition of Ti
E}

(A, in [t1, t2]) ∈ TE(Th
E)

=⇒ {Lemma 8}
clause(E , A β, (C̄, B̄)) ∈ Tω

V ∧ Th
E |= C̄, B̄ ∧ DC |= in [t1, t2] v β

=⇒ {previous remark (14)}
clause(E , A β, (C̄, B̄)) ∈ Tω

V ∧ demo(E , (C̄, B̄)) ∈ Tω
V ∧ DC |= in [t1, t2] v β

=⇒ {clause (3) or (6), and Tω
V is a fixpoint of TV }

demo(E , A β) ∈ Tω
V ∧ DC |= in [t1, t2] v β

=⇒ {Lemma 4}
demo(E , A in [t1, t2]) ∈ Tω

V

We now prove the completeness of the meta-interpreter of the program expres-
sions with respect to the least fixpoint semantics.

(A,α) ∈ FC(E)
=⇒ {definition of FC(E)}
∃γ ∈ Ann : (A, γ) ∈ Tω

E ∧ DC |= α v γ
=⇒ {Tω

E =
⋃

i∈N Ti
E}

∃h : (A, γ) ∈ Th
E ∧ DC |= α v γ

=⇒ {statement (13)}
demo(E , A γ) ∈ Tω

V ∧ DC |= α v γ
=⇒ {Lemma 4}

demo(E , Aα) ∈ Tω
V


