
McMillan’s Complete Prefix

for Contextual Nets⋆

Paolo Baldan1, Andrea Corradini2, Barbara König3, and Stefan Schwoon4

1 Dipartimento di Matematica Pura e Applicata, Università di Padova, Italy
2 Dipartimento di Informatica, Università di Pisa, Italy

3 Abteilung für Informatik und Angewandte Kognitionswissenschaft, Universität
Duisburg-Essen, Germany

4 Institut für Informatik (I7), Technische Universität München, Germany

Abstract. In a seminal paper, McMillan proposed a technique for con-
structing a finite complete prefix of the unfolding of bounded (i.e., finite-
state) Petri nets, which can be used for verification purposes. Contextual
nets are a generalisation of Petri nets suited to model systems with read-
only access to resources. When working with contextual nets, a finite
complete prefix can be obtained by applying McMillan’s construction
to a suitable encoding of the contextual net into an ordinary net. How-
ever, it has been observed that if the unfolding is itself a contextual net,
then the complete prefix can be significantly smaller than the one ob-
tained with the above technique. A construction for generating such a
contextual complete prefix has been proposed for a special class of nets,
called read-persistent. In this paper we propose an algorithm that works
for arbitrary semi-weighted, bounded contextual nets. The construction
explicitly takes into account the fact that, unlike in ordinary or read-
persistent nets, an event can have several different histories in general
contextual net computations.

Key words: Petri nets, read arcs, unfolding, complete finite prefix, verification.

1 Introduction

In recent years there has been a growing interest in the use of partial-order
semantics to deal with the state-explosion problem when model checking con-
current systems. In particular, a thread of research that started with the seminal
work by McMillan [11, 12] proposes the use of the unfolding semantics as a basis
for the verification of finite-state systems, modelled as Petri nets.

The unfolding of a Petri net, originally introduced in [15], is a safe, acyclic
occurrence net that completely expresses its behaviour. For non-trivial nets the
unfolding can be infinite even if the original net is bounded, i.e., it has a finite

⋆ Research partially supported by EU IST-2004-16004 SEnSOria, MIUR Project
ART, DFG project SANDS and CRUI/DAAD Vigoni “Models based on Graph
Transformation Systems: Analysis and Verification”.

76540123•

s0

��
76540123•

s1

��

t0

��

76540123•

s2

��
t1

��

76540123
s

��

t2

��
76540123

s′1

t′0
76540123

s′2
(a)

76540123•

s0

��
76540123•

s1

��

t0

��

76540123•

s2

��
t1 <<
��

76540123
s

��

~~
t2bb
��

76540123

s′1

t′0
76540123

s′2
(b)

76540123•

s0

��
76540123•

s1

��

t0

""D
DD

D

||zz
zz

76540123•

s2

��
t1 AA
��

76540123
s′

""D
DD

D

��
76540123
s′′

||zz
zz

��
t2]]
��

76540123

s′1

t′0
76540123

s′2

(c)

Fig. 1. (a) A safe contextual net; (b) its encoding by replacing read arcs with con-
sume/produce loops; (c) its concurrency-preserving PR-encoding.

number of reachable states. McMillan’s algorithm constructs a finite complete
prefix, i.e., a subnet of the unfolding such that each marking reachable in the
original net corresponds to some concurrent set of places in such a prefix.

Contextual nets [14], also called nets with test arcs [5], activator arcs [9] or
read arcs [18], extend ordinary nets with the possibility of checking for the pres-
ence of tokens without consuming them. The possibility of faithfully representing
concurrent read accesses to resources allows one to model in a natural way phe-
nomena like concurrent access to shared data (e.g., reading in a database) [17], to
provide concurrent semantics to concurrent constraint programs [13], to model
priorities [8] or to conveniently analyse asynchronous circuits [19].

When working with contextual nets, if one is interested only in reachable
markings, it is well-known that read arcs can be replaced by consume/produce
loops (see Fig. 1(a) and (b)), obtaining an ordinary net with the same reachabil-
ity graph. However, when one unfolds the net obtained by this transformation,
the number of transitions and places might explode due to the sequentialization
imposed on readers. A cleverer encoding, proposed in [19] and hereafter referred
to as the place-replication encoding (PR-encoding), consists of creating “private”
copies of the read places for each reader (see Fig. 1(c)). In this way, for safe nets
the encoding does not lead to a loss of concurrency, and thus the explosion of
the number of events and places in the unfolding can be mitigated.

A construction that applies to contextual nets and produces an unfolding
that is itself a contextual (occurrence) net has been proposed independently
by Vogler, Semenov and Yakovlev in [19] and by the first two authors with
Montanari in [3]. In particular, the (prefixes of the) unfolding obtained with this
construction can be much smaller than in both encodings mentioned above.

Unfortunately, as discussed in [19], McMillan’s construction of the finite com-
plete prefix does not extend straightforwardly to the whole class of contextual
nets. The authors of [19] propose a natural generalization of McMillan’s algo-
rithm which takes into account some specific features of contextual nets, but they
show that their approach only works for contextual nets that are read-persistent,
i.e., where there is no interference between preconditions and context conditions:

2

any two transitions t1 and t2 such that t1 consumes a token that is read by t2
cannot be enabled at the same time. Similarly, the algorithm proposed in [2],
where McMillan’s approach was generalised to graph grammars, is designed for
a restricted class of grammars, which are the graph-grammar-theoretical coun-
terpart of read-persistent nets.

The algorithms of [19] and [2] fail on non-read-persistent systems because,
in general, a transition of a contextual occurrence net can have more than one
possible causal history (or local configuration, according to [19]): this happens,
for example, when a transition consumes a token which could be read by another
transition. In this situation, McMillan’s original cut-off condition (used by the
algorithms in [19] and [2]) is not adequate anymore, because it considers a single
causal history for each event (see also the example discussed in Section 3).

In this paper we present a generalization of McMillan’s construction that ap-
plies to arbitrary bounded semi-weighted contextual nets, i.e., Place/Transition
contextual nets where the initial marking and the post-set of each transition are
sets rather than proper multisets: this class of nets strictly includes safe con-
textual nets. The proposed algorithm explicitly takes into account the possible
histories of events, and generates from a finite bounded semi-weighted contex-
tual net a finite complete prefix of its unfolding. The same constructions and
results could have been developed for general weighted contextual nets, at the
price of some technical (not conceptual) complications.

As in McMillan’s original work, the key concept here is that of a cut-off
event, which is, roughly, an event in the unfolding that, together with its causal
history, does not contribute to generating new markings. We prove that the
natural generalisation of the notion of cut-off that takes into account all the
possible histories of each event is theoretically fine, in the sense that the maximal
cut-off-free prefix of the unfolding is complete. However, this characterisation is
not constructive in general, since an event can have infinitely many histories. We
show how this problem can be solved by restricting, for each event, to a finite
subset of “useful” histories, which really contribute to generating new states.

The interest of this approach is twofold. From a theoretical point of view,
the resulting algorithm extends [19] since it applies uniformly to the full class of
contextual nets (and, for read-persistent nets, it specialises to [19]). From a prac-
tical point of view, with respect to the approach based on the construction of the
complete finite prefix of the PR-encoding, we foresee several improvements. For
safe nets the proposed technique produces a smaller unfolding prefix (once the
histories recorded for generating the prefix are disregarded) and it has a com-
parable efficiency (we conjecture that the histories considered when unfolding a
safe contextual net correspond exactly to the events obtained by unfolding its
PR-encoding). Additionally, our technique appears to be more efficient for non-
safe nets and it looks sufficiently general to be extended to other formalisms able
to model concurrent read accesses to part of the state, like graph transformation
systems, for which the encoding approach does not seem viable.

The paper is structured as follows. In Section 2 we introduce contextual nets
and their unfolding semantics. In Section 3 we characterise a finite complete

3

prefix of the unfolding for finite-state contextual nets, relying on a generalised
notion of cut-off and in Section 4 we describe an algorithm for constructing a
complete finite prefix. Finally, in Section 5 we draw some conclusions.

2 Contextual Nets and their Unfolding

In this section we introduce the basics of marked contextual P/T nets [17, 14]
and we review their unfolding semantics as defined in [19, 3].

2.1 Contextual Nets

We first recall some notation for multisets. Let A be a set; a multiset of A is a
function M : A → N. It is called finite if {a ∈ A : M(a) > 0} is finite. The set of
finite multisets of A is denoted by µ∗A. The usual operations on multisets, like
multiset union ⊕ or multiset difference ⊖, are used. We write M ≤ M ′ if M(a) ≤
M ′(a) for all a ∈ A. If M ∈ µ∗A, we denote by [[M]] the multiset defined, for all
a ∈ A, as [[M]](a) = 1 if M(a) > 0, and [[M]](a) = 0 otherwise. A multirelation
f : A ↔ B is a multiset of A × B. It is called finitary if {b ∈ B : f(a, b) > 0}
is a finite set for all a ∈ A, i.e., if any element a ∈ A is related to finitely many
elements b ∈ B. A finitary multirelation f induces in an obvious way a function
µf : µ∗A → µ∗B, defined as µf(M)(b) =

∑
a∈A M(a) · f(a, b) for M ∈ µ∗A and

b ∈ B. In the sequel we will implicitly assume that all multirelations are finitary.
A relation r : A ↔ B is a multirelation r where multiplicities are bounded by
one, namely r(a, b) ≤ 1 for all a ∈ A and b ∈ B. Sometimes we shall write simply
r(a, b) instead of r(a, b) = 1.

Definition 1 ((marked) contextual net). A (marked) contextual Petri net
(c-net) is a tuple N = 〈S, T, F, C, m〉, where

– S is a set of places and T is a set of transitions;
– F = 〈Fpre, Fpost〉 is a pair of finitary multirelations Fpre, Fpost : T ↔ S;
– C : T ↔ S is a finitary relation, called the context relation;
– m ∈ µ∗S is a finite multiset, called the initial marking.

In general, any multiset of S is called a marking. The c-net is called finite if T

and S are finite sets. Without loss of generality, we assume S∩T = ∅. Moreover,
we require that for each transition t ∈ T , there exists a place s ∈ S such that
Fpre(t, s) > 0.

In the following, when considering a c-net N , we will implicitly assume that
N = 〈S, T, F, C, m〉.

Given a finite multiset of transitions A ∈ µ∗T we write •A for its pre-set
µFpre(A) and A• for its post-set µFpost(A). Moreover, A denotes the context of A,
defined as A = [[µC(A)]]. The same notation is used to denote the functions from
S to the powerset P(T), i.e., for s ∈ S we define •s = {t ∈ T : Fpost(t, s) > 0},
s• = {t ∈ T : Fpre(t, s) > 0}, s = {t ∈ T : C(t, s)}.

4

76540123•

s0

��
t0

��

76540123•

s1

��
76540123s2

��

t1

��
t2BC@A

GF
//

76540123 s3

(a)

76540123•

s′0

��
t′0

��

76540123•

s′1

��

��

76540123s′2

��

t′1

��
t′2

��

76540123 s′3

76540123s′′0

��
t′′0
��

76540123s′′2

��

t′′1

��
t′′2

76540123 s′′3

(b)

Fig. 2. (a) A contextual net N0 and (b) its unfolding Ua(N0).

An example of a contextual net, inspired by [19], is depicted in Fig. 2(a).
Read arcs are drawn as undirected lines. For instance, referring to transition t1
we have •t1 = s1, t1

• = s3 and t1 = s2.
For a finite multiset of transitions A to be enabled at a marking M , it is

sufficient that M contains the pre-set of A and one additional token in each place
of the context of A. This corresponds to the intuition that a token in a place
(like s in Fig. 1(a)) can be used as context concurrently by many transitions;
instead, if read arcs are replaced by consume/produce loops (as in Fig. 1(b)) the
transitions needing a token in place s can fire only one at a time.

Definition 2 (enabling, step). Let N be a c-net. A finite multiset of transi-
tions A ∈ µ∗T is enabled at a marking M ∈ µ∗S if •A ⊕ A ≤ M . In this case,
the execution of A in M , called a step (or a firing when it involves just one
transition), produces the new marking M ′ = M ⊖ •A⊕A•, written as M [A〉M ′.

A marking M of a c-net N is called reachable if there is a finite sequence of
steps leading to M from the initial marking, i.e., m [A0〉M1 [A1〉M2 . . . [An〉M .

Definition 3 (bounded, safe and semi-weighted nets). A c-net N is called
n-bounded if for any reachable marking M each place contains at most n tokens,
namely M(s) ≤ n for all s ∈ S. It is called safe if it is 1-bounded and Fpre,
Fpost are relations (rather than general multirelations). A c-net N is called semi-
weighted if the initial marking m is a set and Fpost is a relation.

Observe that requiring Fpre (resp. Fpost) to be relations amounts to asking
that for any transition t ∈ T , the pre-set (resp. post-set) of t is a set, rather than
a general multiset.

5

We recall that considering semi-weighted nets is essential to characterise the
unfolding construction, in categorical terms, as a coreflection [4]. However, in
this paper, the choice of taking semi-weighted nets rather than general weighted
nets is only motivated by the need of simplifying the presentation: while the pre-
sentation extends smoothly from safe to semi-weighted nets, considering general
weighted nets would require some technical complications in the definition of the
unfolding (Definition 11), related to the fact that an occurrence of a place would
not be completely identified by its causal history.

2.2 Occurrence c-nets

Occurrence c-nets are safe c-nets satisfying certain acyclicity and well-founded-
ness requirements. To define what this means, we will next introduce the notions
of causality and asymmetric conflict.

Causality is defined as for ordinary nets, with an additional clause stating
that transition t causes t′ if it generates a token in a context place of t′.

Definition 4 (causality). Let N be a safe c-net. The causality relation in N

is the least transitive relation < on S ∪ T such that

1. if s ∈ •t then s < t;
2. if s ∈ t• then t < s;
3. if t• ∩ t′ 6= ∅ then t < t′.

Given x ∈ S ∪ T , we write ⌊x⌋ for the set of causes of x in T , defined as
⌊x⌋ = {t ∈ T : t ≤ x} ⊆ T , where ≤ is the reflexive closure of <.

For instance, in Fig. 2(a), the three cases of Definition 4 are exemplified by
s0 < t0, t0 < s2, and t0 < t1.

We say that a transition t is in asymmetric conflict with t′, denoted t ր t′, if
whenever both t and t′ fire in a computation, t fires before t′. The paradigmatic
case is when transition t′ consumes a token in the context of t, i.e., when t∩•t′ 6=
∅, as for transitions t′1 and t′2 in Fig. 2(b) (see [4, 16, 10, 19]). This situation
cannot be captured adequately by the standard causality and conflict relations,
and it is the reason of the possible existence of several causal histories for an
event, the phenomenon typical of contextual nets mentioned in the introduction.

Note that the fact that whenever both t and t′ fire, t fires before t′ trivially
holds when t < t′, because t cannot follow t′ in a computation, and (with t

and t′ in interchangeable roles) also when t and t′ have a common precondition,
since they will never fire in the same computation. For technical convenience
the definition of relation ր takes into account these two situations as well, with
the consequence that an ordinary symmetric conflict amounts to an asymmetric
conflict in both directions.

Definition 5 (asymmetric conflict). Let N be a safe c-net. The asymmetric
conflict relation in N is the binary relation ր on T defined as

t ր t′ iff t ∩ •t′ 6= ∅ or (t 6= t′ ∧ •t ∩ •t′ 6= ∅) or t < t′.

6

For X ⊆ T , րX denotes the restriction of ր to X, i.e., րX=ր ∩ (X × X).

As an example, consider Fig. 2(b). There, we have t′1 ր t′2 because t′1 in
order to fire requires a token on s′2, which is consumed by t′2; moreover, t′1 ր t′′1
(and vice versa) because both transitions consume a token from s′1; and finally,
t′0 ր t′2, because the former is a causal predecessor of the latter.

An occurrence c-net is a safe c-net that exhibits an acyclic behaviour, satis-
fying suitable conflict-freeness requirements.

Definition 6 (occurrence c-nets). An occurrence c-net is a safe c-net N

such that

– each place s ∈ S is in the post-set of at most one transition, i.e. |•s| ≤ 1;
– the causal relation < is irreflexive and its reflexive closure ≤ is a partial

order, such that ⌊t⌋ is finite for any t ∈ T ;
– the initial marking is the set of ≤-minimal places, i.e., m = {s ∈ S : •s = ∅};
– ր⌊t⌋ is acyclic for all t ∈ T .

An example of an occurrence c-net can be found in Fig. 2(b). The last condi-
tion of Definition 6 corresponds to the requirement of irreflexivity for the conflict
relation in ordinary occurrence nets. In fact, if a transition t has a ր cycle in
its causes then it can never fire, since in an occurrence c-net, the order in which
transitions appear in a firing sequence must be compatible with the asymmetric
conflict relation. This intuitive interpretation of cycles of asymmetric conflict as
conflicts over sets of transitions is formalised as follows:

Definition 7 (conflict). Let N be a c-net. The conflict relation # ⊆ P(T)
associated to N is defined as follows, where A is any finite subset of T :

t0 ր t1 ր . . . ր tn ր t0

#{t0, t1, . . . , tn}

#(A ∪ {t}) t ≤ t′

#(A ∪ {t′})

In ordinary nets, only symmetric conflicts can occur: they are represented by
cycles of asymmetric conflicts of length two.

The notion of concurrency is the natural generalisation of the one for ordinary
nets. Note that, because of the presence of contexts, some places that a transition
needs in order to fire (the contexts) can be concurrent with the places it produces.

Definition 8 (concurrency relation). Let N be an occurrence c-net. A finite
set of places M ⊆ S is called concurrent, written conc(M), if

1. ∀s, s′ ∈ M. ¬(s < s′);
2. ⌊M⌋ =

⋃
{⌊s⌋ : s ∈ M} is conflict-free, i.e., ¬#A for any A ⊆ ⌊M⌋.

It can be shown that, as for ordinary occurrence nets, a set of places M is
concurrent if and only if there is some reachable marking in which all the places
of M contain one token.

From now on, consistently with the literature, we shall often call the transi-
tions of an occurrence c-net events.

7

Definition 9 (configuration). Let N be an occurrence c-net. A set of events
C ⊆ T is called a configuration if

1. րC is acyclic;
2. {t′ ∈ C : t′ ր t} is finite for all t ∈ C;
3. C is left-closed w.r.t. <, i.e. for all t ∈ C, t′ ∈ T , t′ < t implies t′ ∈ C.

We denote by Conf (N) the set of all configurations of N , equipped with the
ordering defined as C ⊑ C′, if C ⊆ C′ and ¬(t′ ր t) for all t ∈ C, t′ ∈ C′ \ C.

Furthermore two configurations C1, C2 are said to be in conflict (C1#C2)
when there is no C ∈ Conf (N) such that C1 ⊑ C and C2 ⊑ C.

The notion of configuration characterises the possible (concurrent) computations
of an occurrence c-net. It can be proved that a subset of events C is a config-
uration if and only if the events in C can all be fired, starting from the initial
marking, in any order compatible with ր. Observe that this includes also the
infinite computations, as C is not required to be finite.

The relation ⊑ is a computational order of configurations: C ⊑ C′ if C can
evolve and become C′. Remarkably, this order is not simply subset inclusion
since a configuration C cannot be extended with an event t′ if t′ ր t for some
t ∈ C, since t′ cannot fire after t in a computation. Two configurations are in
(symmetric) conflict if they do not have a common extension. More concretely
C1#C2 when there exists t1 ∈ C1 and t2 ∈ C2 \ C1 such that t2 ր t1, or the
symmetric condition holds.

To illustrate the definition, consider again Fig. 2(b). The set C1 = {t′0, t
′
2} is

a configuration because t′0 can fire first and then t′2. Also C2 = {t′0, t
′
1, t

′
2} is a

configuration; its events can fire in the order t′0, t
′
1, t

′
2. However, C1 ⊑ C2 does

not hold even though C1 ⊆ C2 because t′1 must necessarily fire before t′2 in any
computation containing both events.

Notice also that all three conditions in Definition 9 are necessary. For in-
stance, {t′1, t

′′
1} is not a configuration in Fig. 2(b) because it violates Condi-

tion 1, as it contains a conflict, and, e.g., {t′2} is not a configuration because it
violates Condition 3: it does not represent a complete computation. The need
for Condition 2 is slightly trickier to explain. Consider the (infinite) occurrence
net in Fig. 3. For each i ≥ 1, since s′ ∈ ti, we have ti ր t′. Therefore, the set
{t′} ∪ { ti | i ≥ 1 } is not a configuration: it does not represent a computation
because its elements cannot be ordered in such a way that t′ will eventually fire.

Given a configuration C and an event t ∈ C, the history of t in C is the set
of events that must precede t in the (concurrent) computation represented by
C. For ordinary nets the history of an event t coincides with the set of causes
⌊t⌋, independently of the configuration where t occurs. Instead, for c-nets, due
to the presence of asymmetric conflicts between events, an event t that occurs
in more than one configuration may have different histories. The next definition
formalises this fact.

Definition 10 (history). Let N be an occurrence net. Given a configuration
C and an event t ∈ C, the history of t in C, denoted by C[[t]], is defined as

8

76540123•s0

��

76540123• s′

��
t1

gggggggggggggg

��
t′

��
76540123s1

��

76540123 s′′

t2

wwwwwwwwwwwwwwwwwww

��
76540123s2

��
t3

�
�

�
��

�
��

�
��

�
��

�
��

�
��

�
�

��
�

Fig. 3. Occurrence net illustrating condition 2 of Definition 9.

C[[t]] = {t′ ∈ C : t′(րC)∗t}.

The set of all histories of an event t, namely {C[[t]] : C ∈ Conf (N) ∧ t ∈ C} is
denoted by Hist(t).

For instance, in Fig. 2(b), we have t′0 ր t′2 and t′1 ր t′2. There are several
configurations containing t′2, such as C1 = {t′0, t

′
2}, C2 = {t′0, t

′
1, t

′
2}, and C3 =

{t′0, t
′
2, t

′′
0}, and t′2 has two histories: H1 = C1[[t

′
2]] = C3[[t

′
2]] = {t′0, t

′
2}, and

H2 = C2[[t
′
2]] = {t′0, t

′
1, t

′
2}. In history H2 event t′1 fires, using the token on s′2 in

its context, while in H1 t′1 did not fire.

2.3 Unfolding

Given a semi-weighted c-net N , an unfolding construction allows one to obtain
an occurrence c-net Ua(N) that describes the behaviour of N [3, 19]. As for
ordinary nets, each event in Ua(N) represents a particular firing of a transition
in N , and places in Ua(N) represent occurrences of tokens in the places of N .
The unfolding is equipped with a mapping to the original net N , relating each
place (event) of the unfolding to the corresponding place (transition) in N .

The unfolding, which is abstractly characterised as the maximal branching
process of a net [6], can be constructed inductively by starting from the initial
marking of N and then by adding, at each step, an occurrence of each transition
of N that is enabled by (the image of) a concurrent subset of the places already
generated.

Intuitively, our definition gives each place and event a “canonical” name.
Each place in the unfolding is a pair whose second element points to the place of
the original net it corresponds to. In order to distinguish different occurrences
of tokens, the first component records the “history” of the token, i.e., the event
that generates it. Similarly, each event is a triple recording the precondition and
context used in the firing, and the corresponding transition in the original net.

9

s ∈ m

s′ = 〈∅, s〉 ∈ S′ s′ ∈ m′ fS(s′) = s

t ∈ T Mp, Mc ⊆ S′ µfS(Mp) = •t µfS(Mc) = t conc(Mp ∪ Mc)

t′ = 〈Mp, Mc, t〉 ∈ T ′ •t′ = Mp t′ = Mc fT (t′) = t

t′ = 〈Mp, Mc, t〉 ∈ T ′ t• = {s1, . . . , sn}

s′i = 〈t′, si〉 ∈ S′ t′• = {s′1, . . . , s
′
n} fS(s′i) = si

Fig. 4. The inductive rules defining the unfolding of a c-net.

Definition 11 (unfolding). Let N = 〈S, T, F, C, m〉 be a semi-weighted c-net.
The unfolding Ua(N) = 〈S′, T ′, F ′, C′, m′〉 of the net N is the (minimal) occur-
rence c-net defined by the inductive rules in Fig. 4. The rules define also the
folding morphism fN = 〈fT , fS〉 : Ua(N) → N consisting of a pair of functions
fT : T ′ → T and fS : S′ → S mapping the unfolding to the original net.

As said before, places and events in the unfolding of a c-net represent tokens
and firings of transitions in the original net, respectively. Initially, a new place
with empty history 〈∅, s〉 is generated for each place s in the initial marking.
Moreover, a new event t′ = 〈Mp, Mc, t〉 is inserted in the unfolding whenever
we can find a concurrent set of places (precondition Mp and context Mc) that
corresponds, in the original net, to a marking that enables t. For each place si in
the post-set of such t, a new place 〈t′, si〉 is generated, belonging to the post-set
of t′. The folding morphism f maps each place (event) of the unfolding to the
corresponding place (transition) in the original net.

An initial part of the unfolding of the net N0 in Fig. 2(a) is represented in
Fig. 2(b). The folding morphism from Ua(N0) to N0 is implicitly represented by
the name of the items in the unfolding.

The unfolding is complete with respect to the behaviour of the original net
in the following sense.

Proposition 1 (completeness of the unfolding). Let N be a c-net and let
Ua(N) = 〈S′, T ′, F ′, C′, m′〉 be its unfolding. A marking M ∈ µ∗S is coverable
in N iff there exists a concurrent subset X ⊆ S′ such that M = µfS(X).

The above notion of completeness, which will be used in the rest of the paper,
is slightly weaker than that of [11, 19], for example. In fact, the notion of com-
pleteness for unfolding prefixes considered in the mentioned papers imposes, not
only that every marking reachable in the original net N is represented in the pre-
fix, but also that every transition firable in N has a representative in the prefix.
The results could be easily adapted to this stronger notion of completeness.

3 Defining a Complete Finite Prefix

To obtain a finite prefix of the unfolding that is still complete in the sense of
Proposition 1, the idea is to avoid including “useless” events in the unfolding,

10

76540123•

s′0

��
t′0

��

76540123•

s′1

��
76540123s′2

��

t′1

��
t′2

76540123 s′3

(a)

76540123•

s′0

��
t′0

��

{{t′
0
}} 76540123•

s′1

��
76540123s′2

��

t′1 {{t′
0
,t′

1
}}

��
t′2{{t′

0
,t′

1
,t′

2
}}

��

76540123 s′3

76540123 s′′0
��

t′′0

(b)

Fig. 5. (a) An incomplete and (b) a complete enriched prefix for the net in Fig. 2.

where useless means events that do not contribute to generating new markings.
To this aim McMillan introduced the notion of “cut-off” for ordinary nets, which
is roughly an event whose history does not generate a new marking. Then the
complete finite prefix is the greatest prefix without cut-offs. This definition of cut-
off event has to be adapted to the present framework, since for contextual nets
an event may have different histories, or, using McMillan terminology, different
local configurations.

Considering only the minimal history of an event, i.e., its set of causes, in
the definition of cut-off leads to a finite but not necessarily complete prefix,
as observed in [19]. For instance, consider net N0 in Fig. 2(a). According to
the ordinary definition of cut-off, in its unfolding Ua(N0) shown in Fig. 2(b)
the event t′2 would be a cut-off since its minimal history {t′0, t

′
2} generates a

marking corresponding to the initial marking. Graphically, cut-offs are marked
by using double lines. Thus the largest prefix without cut-offs would be the net
O0 in Fig. 5(a), which is not complete since it does not “represent” the marking
s0 ⊕ s3, reachable in N0.

Considering instead all the possible histories of an event leads to a charac-
terisation of a prefix which is finite and complete, even if this characterisation is
not constructive since there can be infinitely many possible histories for a single
event (see [2] or the net depicted in Fig. 3). In the present paper we suggest to
record for each event only a subset of histories which are considered “useful to
produce new markings”.

To formalise this fact we introduce a notion of occurrence net decorated with
possible histories for the involved events.

11

76540123•s0

�� WWWWWWWWWWWWWW 76540123• s′

��
t1

��
{{t1},{t′,t1}} t′

��
{{t′}}

76540123s1

��

76540123 s′′

t2

��
{{t1,t2}}

76540123s2

Fig. 6. Occurrence net illustrating Definition 12.

Definition 12 (enriched occurrence net). An enriched occurrence net is a
pair E = 〈N, χ〉, where N is an occurrence net and χ : T → P(P(T)) is a
function such that for any t ∈ T , ∅ 6= χ(t) ⊆ Hist(t).

The enriched occurrence net E is called closed if for all t, t′ ∈ T , for any
C ∈ χ(t) if t′ ∈ C then C[[t′]] ∈ χ(t′).

A configuration of E is a configuration C ∈ Conf (N) such that C[[t]] ∈ χ(t)
for all t ∈ C. The set of configurations of E is denoted by Conf (E).

As an example, consider the enriched occurrence net in Fig. 6, where for any
event t the set of histories χ(t) is indicated next to the event. Note that this net
is closed. Instead, removing the history {t1} from χ(t1) would result in a net
that is not closed. In fact, since {t1, t2} ∈ χ(t2), transition t2 can be fired in a
computation after firing only t1. Thus t1 must be firable alone. This would be
in contradiction with the fact that the only remaining history of t1 is {t′, t1},
which says that transition t1 can be fired only after t′. Concerning the notion
of configuration, note that for the net in Fig. 6, {t′, t1} is a configuration while
{t′, t1, t2} is not.

Often, given an enriched occurrence net E we will denote its components by
NE and χE . If the enriched net is Ei, we will denote its components Ni and χi.

From now on, N = 〈S, T, F, C, m〉 is a fixed semi-weighted c-net, Ua(N) =
〈S′, T ′, F ′, C′, m′〉 is its unfolding, and fN : Ua(N) → N is the folding morphism.

Definition 13 (enriched event, enriched prefix). An enriched event of the
unfolding is a pair 〈t, Ht〉, where t ∈ T ′ is an event of the unfolding, and Ht ∈
Hist(t) is one of its histories. An enriched prefix of the unfolding Ua(N) is
any closed enriched occurrence net E such that NE is a prefix of Ua(N). We
will say that the enriched prefix E contains an enriched event 〈t, Ht〉 and write
〈t, Ht〉 ∈ E if t ∈ TE and Ht ∈ χE(t).

An example of an enriched prefix of Ua(N0) in Fig. 2(b) is given in Fig. 5(b).

A generalisation of the natural prefix ordering over occurrence nets can be
defined on enriched occurrence nets.

12

Definition 14 (prefix ordering). Given two enriched occurrence nets E1 and
E2, we say that E1 is a prefix of E2, written E1 � E2, if N1 is a prefix of N2,
and for any t ∈ T1, χ1(t) ⊆ χ2(t).

Lemma 1 (enriched prefixes form a lattice). The set of closed enriched
prefixes of Ua(N) endowed with the prefix ordering � is a complete lattice.

Proof. Let {Ei}i∈I be a set of enriched prefixes of Ua(N). Then, we claim that
their least upper bound

⊔
i∈I Ei is E = 〈NE , χE〉, where NE is the component-

wise union of the nets Ni, and, for any event t in N , χE(t) =
⋃

{i∈I:t∈Ni}
χi(t).

Clearly, E is a well-defined enriched prefix. We only need to show that E is
closed. Then the fact that it is the greatest lower bound for {Ei}i∈I is obvious.
Let t be an event in N , let C ∈ χE(t) and take a t′ ∈ C[[t]]. We have to prove
that C[[t′]] ∈ χE(t′). Now, since χE(t) =

⋃
{i∈I:t∈Ni}

χi(t), clearly C ∈ χEj
(t)

for some j ∈ I. Since Ej is closed, this implies C[[t′]] ∈ χEj
(t′) and therefore,

C[[t′]] ∈
⋃

{i∈I:t∈Ni}
χi(t

′) = χE(t′). ⊓⊔

Additionally, it is easy to prove that given two enriched prefixes E1 and E2

E1 � E2 iff Conf (E1) ⊆ Conf (E2).

A configuration of Ua(N) represents a computation in the unfolding itself,
which in turn maps, via the folding morphism, to a computation of N . Hence
we can define the marking of N after a finite configuration of the unfolding.

Definition 15 (marking after a configuration). Let C ∈ Conf (Ua(N)) be a
finite configuration. We denote by mark(C) the marking of N after C, defined as
µfS(m′ ⊕

⊕
t∈C t• ⊖

⊕
t∈C

•t).

The notion of cut-off is now defined for enriched events, thus taking histories
explicitly into account.

Definition 16 (cut-off). An enriched event 〈t, Ht〉 of the unfolding Ua(N) is
called a cut-off if mark(Ht) = m, the initial marking of N , or there is another
enriched event 〈t′, Ht′〉 of Ua(N) satisfying

(1) mark (Ht) = mark (Ht′) and
(2) |Ht′ | < |Ht|.

Let E be an enriched prefix of the unfolding. We say that E contains a cut-off
if some enriched event 〈t, Ht〉 ∈ E is a cut-off in the full unfolding Ua(N). The
enriched event 〈t, Ht〉 ∈ E is called a local cut-off in E if mark (Ht) = m or
there is an enriched event 〈t′, Ht′〉 ∈ E satisfying (1) and (2) above.

A different notion of cut-off which refines the one originally proposed by
McMillan by using adequate orders over configurations has been introduced
in [7]. We are confident that this improvement can be integrated seamlessly
into our framework.

13

Note that the notion of cut-off is based on a quantification over all the en-
riched events of the full unfolding and as such it is not effective. For an enriched
event, being a cut-off is a global property, independent of the specific prefix of
the unfolding we are considering. Clearly, every local cut-off in an enriched pre-
fix E is also a cut-off. This simple observation will be used several times in the
sequel.

Definition 17 (truncation). The truncation Ta(N) of the unfolding is an en-
riched occurrence net defined as the greatest enriched prefix (w.r.t. prefix ordering
�) of the unfolding which does not contain cut-offs.

The above definition is well-given thanks to the lattice structure of the set of
enriched prefixes ordered by �. However, it is not yet constructive. In Section 4
we will present an algorithm for computing a complete finite prefix, possibly
larger than the truncation, using the notion of local cut-off.

We say that a configuration C of the unfolding includes a cut-off if for some
t ∈ C, the enriched event 〈t, C[[t]]〉 is a cut-off. The next fundamental lemma
shows that configurations of the unfolding containing cut-offs can be disregarded
without losing information about the reachable markings.

Lemma 2 (cut-off elimination). Let C ∈ Conf (Ua(N)) be a finite configura-
tion. There exists a finite configuration C′ without cut-offs such that mark(C) =
mark(C′).

Proof. We show that if C contains a cut-off then we can obtain a configuration
C′ such that mark (C) = mark (C′) and |C′| < |C|. Then the desired result
immediately follows.

In fact, let t ∈ C be an event such that 〈t, C[[t]]〉 is a cut-off. According
to Definition 16 there are two possibilities: (a) mark (C[[t]]) = m or (b) there
exists an event t′ in the unfolding and Ht′ ∈ Hist(t′) such that mark(C[[t]]) =
mark(Ht′) and |Ht′ | < |C[[t]]|.

Let us define H = ∅ in case (a) and H = Ht′ in case (b). Hence in both cases

mark (C[[t]]) = mark(H) and |H | < |C[[t]]|. (1)

We show by induction on k = |C| − |C[[t]]| that we can find a configuration
C′, with H ⊑ C′, such that mark (C) = mark (C′) and |C′| − |H | = |C| − |C[[t]]|,
thus, by (1), |C′| < |C|.

(k = 0) Obvious, since C = C[[t]] one can just choose C′ = H .
(k → k + 1) In this case C \C[[t]] 6= ∅. Let t1 ∈ C \C[[t]], maximal w.r.t. (րC)∗.

Therefore C1 = C \{t1} is a configuration and C1[[t]] = C[[t]], by the choice of
t1. Thus by induction hypothesis there exists a configuration C′

1 s.t. H ⊑ C′
1

and

mark (C1) = mark(C′
1) and |C′

1| − |H | = |C1| − |C1[[t]]|.

Since mark(C′
1) = mark (C1), the event fN(t1), executable in mark (C1), is

still executable in mark(C′
1) and thus C′

1 can be extended with an event t′1
in such a way that C′ = C′

1 ∪ {t′1} satisfies all the requirements. ⊓⊔

14

Using the lemma above we can show that the truncation is a complete prefix
of the unfolding.

Theorem 1 (completeness). The truncation Ta(N) is a complete prefix of the
unfolding, i.e., for any reachable marking M of N there is a finite configuration
C of Ta(N) such that mark(C) = M .

Proof. From the completeness of the (full) unfolding (see Proposition 1) it follows
that we can find a finite configuration C ∈ Conf (Ua(N)) such that mark (C) =
M . By Lemma 2, there exists a finite configuration C′ in Conf (Ua(N)) such that
mark(C′) = mark (C), which does not contain cut-offs. Such a configuration must
be a configuration of Ta(N). Otherwise we could construct a cut-off-free prefix
of the unfolding greater than Ta(N). In fact, C′ itself can be seen as an enriched
prefix E of Ua(N), where NE is the subnet of the unfolding including the events
in C′ and χE(t) = {C′[[t]]} for any t ∈ C′. Thus, if C′ were not a configuration
of Ta(N), the enriched prefix Ta(N) ⊔ E would be larger than Ta(N) and still
without cut-offs, contradicting the definition of Ta(N). ⊓⊔

For finite n-bounded nets the number of reachable states of the net is finite
and thus one can prove that the truncation of its unfolding is finite. We get this
as a corollary of a more general result which will be also useful in proving the
termination of the algorithm for the complete prefix.

Theorem 2 (finiteness). Let N be a finite n-bounded c-net and let E be an
enriched prefix of the unfolding free of local cut-offs. Then E is finite.

Proof. For any event t in E let us fix a history Ht ∈ χP (t). By definition E is
local cut-off free and thus for any t

for any t′ in TE , if mark(Ht) = mark(Ht′) then |Ht′ | ≥ |Ht|.

Let µnS be the set of n-bounded markings and consider the function τ :
TE → µnS, defined by τ(t) = mark(Ht). By the condition above, it is easy to
see that τ(t1) = τ(t2) implies |Ht1 | = |Ht2 |. Since the codomain of τ is finite, we
can take the maximum k of the cardinalities |Ht| for t in E.

Now, notice that for any event t clearly depth(t) ≤ |Ht| ≤ k. Hence E is
included in the prefix of Ua(N) of depth k, which in turn is finite (since the
initial marking is finite). ⊓⊔

Recalling that any local cut-off is a cut-off and thus that Ta(N) is free from
local cut-offs we have the following.

Corollary 1. Let N be a finite n-bounded net. The truncation Ta(N) is finite.

For instance, consider the net N0 and its unfolding Ua(N0) in Fig. 2. The
truncation Ta(N0) is the enriched prefix depicted in Fig. 5(b). Note that it in-
cludes the event t′2. In fact t′2 has two possible histories: the minimal history
H2 = ⌊t′2⌋ = {t′0, t

′
2} and H ′

2 = {t′0, t
′
1, t

′
2}. While 〈t′2, H2〉 is a cut-off, the pair

〈t′2, H
′
2〉 is not, and thus it is included in the truncation.

15

t2

��
t1

��

76540123
s2

��

76540123
s3

||zz
zz

t3

76540123s1 t

Fig. 7. Predecessors w.r.t. asymmetric conflict of an event t.

4 Computing the Prefix

In this section we describe how to construct a prefix, possibly larger than Ta(N),
but still finite and complete. The construction builds incrementally a finite pre-
fix of the full unfolding of a semi-weighted c-net N by starting from the initial
marking and by iteratively adding new events representing occurrences of tran-
sitions of N . During the construction, for each event t in Fin , the currently built
part of the prefix, we also record a current set of histories χFin(t), thus making
the prefix under construction an enriched occurrence net. We record in a set pe
the enriched events which are candidates for being included in Fin, i.e., the pairs
〈t, H〉 where t is an event enabled in Fin and H is one of its current possible
histories.

Let us first illustrate how the histories of an event t in a given enriched prefix
E can be obtained from the histories of the events that are in direct asymmetric
conflict with t. Consider a situation as in Fig. 7, which illustrates a part of the
closed prefix E. A direct predecessor of t w.r.t. asymmetric conflict is either a
cause (such as t1, which produces a token that is read, or t2, which produces a
token that is consumed by t) or an event as t3 that reads a token consumed by t.

The histories for t can be constructed as follows: for every direct cause ti
of t choose any history Hi of ti, while for every transition tj that is in direct
asymmetric conflict with t (but not a cause) optionally take any history Hj .
Whenever such histories are pairwise not in conflict (see Definition 9) then the
set H = {t} ∪

⋃
i Hi, the union of all such histories (and t), is called a history

for t consistent with E.

Note that H ∈ Hist(t) and furthermore adding H to E keeps the prefix
closed, since for every transition t′ ∈ H the history H [[t′]] is already contained
in E. This is a consequence of the fact that for any ti we have H [[ti]] = Hi since
no two histories in the union are in conflict.

The algorithm proceeds as follows. Again we use the notation of Definition 11.

Initialization: Start with Fin := m′ and let χFin be the empty function. An
event t = 〈Mp, Mc, t̂〉 is enabled in Fin whenever conc(Mp ∪ Mc). Now let
pe be the set of all pairs of the form 〈t, Ht〉, where t is an event enabled in
Fin and Ht is a history of t consistent with Fin . Initially the only history of
t is {t}.

16

Loop: While pe 6= ∅ do: Choose a pair 〈t, Ht〉 ∈ pe such that |Ht| is minimal.
Remove this pair from pe and consider the prefix Fin ′ obtained by inserting
〈t, Ht〉 in Fin , i.e.,
– if t is already present in Fin then add the history Ht to χFin(t);
– otherwise add t to Fin and set χFin ′(t) := {Ht}.

Then

– If 〈t, Ht〉 is a local cut-off in Fin ′, do nothing and leave Fin unchanged.
– If 〈t, Ht〉 is not a local cut-off, set Fin := Fin ′.

Consider all events t′ contained either in Fin or in pe: Whenever t′ has
a new history Ht′ consistent with the updated prefix Fin , arising from
the insertion of Ht, then add 〈t′, Ht′〉 to pe. (Note that a propagation
phase is necessary to obtain all new histories.)
If a new transition has been added to Fin, update pe by adding all events
t which have become enabled in Fin in the last step together with all
their histories consistent with Fin.

Note that whenever a new pair 〈t′, Ht′〉 is added to pe, the size of Ht′ is
larger than the size of the history Ht under consideration. This is due to the
fact that these newly generated histories must include Ht. Observe also that all
pairs 〈t, H〉 with H ∈ Hist(t) are considered at some point, unless there exists a
local cut-off 〈t′, H ′〉 such that t′ ∈ H and H ′ = H [[t′]].

An efficient computation of the prefix should be based on suitable data struc-
tures. As observed above, a set of direct predecessors is needed for each event in
order to update its histories. Furthermore, histories should not be stored explic-
itly, but via pointer structures containing references back to the histories they
originated from. In addition, causality and conflict of histories can be computed
incrementally.

It can be shown that at every iteration of the algorithm the prefix Fin does
not contain local cut-offs. This can be used to prove the correctness and termi-
nation of the algorithm.

Lemma 3. At every iteration of the algorithm Fin does not contain local cut-
offs.

Proof. (sketch) First observe that no local cut-off is inserted in Fin. Moreover,
it cannot be the case that the history Ht′ of an event t′ added to Fin at a
certain step n later becomes a cut-off due to the insertion of other histories of
events in the subsequent steps, since for each Ht′′ inserted at step n+ k we have
|Ht′ | ≤ |Ht′′ | (see also the remark above). ⊓⊔

Theorem 3. If the net N is finite and n-bounded the algorithm terminates and
the prefix Fin it produces is complete.

Proof. Termination is an immediate consequence of Lemma 3 and of Theorem 2.
Completeness follows by Theorem 1, using the fact that

Conf (Ta(N)) ⊆ Conf (Fin)

17

which is equivalent to Ta(N) � Fin , since both prefixes are closed. In fact,
assume, by contradiction that there exists C ∈ Conf (Ta(N)) such that C 6∈
Conf (Fin). Let k(C) denote the set of events in C such that the enriched event
〈t, C[[t]]〉 is not in Fin :

k(C) = {t | t ∈ C ∧ 〈t, C[[t]]〉 6∈ Fin}.

By hypothesis C 6= ∅. Let t ∈ k(C) be minimal in k(C) with respect to րC and
let Ht = C[[t]].

As in the proof of Theorem 1 we can see Ht as an enriched prefix Et of the
unfolding containing only the events in Ht, each one with its history in Ht.

Now, by construction, C′ = Ht \ {t} ∈ Conf (Fin) and Ht 6∈ Conf (Fin).
Therefore, by the way we defined the algorithm and from the construction proce-
dure for new histories, we know that Ht must have been a history for t consistent
with the prefix constructed up to a certain point. Thus, the only possible reason
why Ht has not been included in Fin is that 〈t, Ht〉 was a local cut-off in the
partial prefix. More formally, we know that 〈t, Ht〉 is a local cut-off in Fin ⊔Ht.

Since any local cut-off is a cut-off, the enriched event 〈t, Ht〉, which is con-
tained in Ta(N), would be a cut-off. But this contradicts the fact that Ta(N) is
cut-off free. ⊓⊔

The complete prefix of a c-net can be much smaller than the complete prefix
(constructed using McMillan’s algorithm) for the net where read arcs are re-
placed by consume/produce loops. In fact, consider a net Nn

1 analogous to the
net in Fig. 1(a) but with n readers t1, . . . , tn. Let Nn

2 be obtained encoding Nn
1

as an ordinary net by simply replacing read arcs with a consume/produce loops,
as in Fig. 1(b). The unfolding of net Nn

2 includes kn = n + n(n − 1) + . . . + n!
events corresponding to the readers, since each event does not only record the
occurrence of a transition, but also its entire history, i.e., the sequence of all
events occurring before. Similarly, there are kn + 1 copies of event t′0. Note that
none of these events is a cut-off (according to McMillan’s definition), since any
two events generating the same marking have histories of equal size. Therefore
the complete prefix computed for Nn

2 is the unfolding itself. Instead, the com-
plete enriched prefix obtained from Nn

1 is the net Nn
1 itself, thus it has n + 2

transitions only; among them, t0, t1, . . . , tn have one history each, while t′0 has
2n histories. Even if still of exponential size, this prefix is much smaller than
the complete prefix of Nn

2 , essentially because the order in which the readers
occurred does not need to be recorded. Moreover, the underlying net obtained
by disregarding the histories is dramatically smaller in this case.

Now let Nn
3 be the PR-encoding of Nn

1 , as shown in Fig. 1(c). The unfolding of
Nn

3 has one occurrence for each of the transitions t0, t1, . . . , tn and 2n occurrences
of t′0, none of which is a cut-off (hence, also in this case, the complete prefix is the
full unfolding). Thus there is a one-to-one correspondence between the histories
in the enriched prefix of Nn

1 and the events of the unfolding of Nn
3 . Still, the size

of the prefix of Nn
3 is exponential in n while the size of the prefix of Nn

1 , once
the histories are disregarded, is linear.

18

We conjecture that what happens for Nn
1 and Nn

3 is a completely general
fact, i.e., the histories of the complete enriched prefix of a safe c-net N are in
one-to-one correspondence with the events of the complete finite prefix of the
PR-encoding of N . In the case of non-safe nets, instead, the number of histories of
the complete enriched prefix of N can be much smaller than the number of events
of the complete finite prefix of the PR-encoding of N . As an example consider
the net N4 in Fig. 8(a). Its truncation has two occurrences of transition t0 (either
t0 is caused by t1 or by t2), each with four histories (which specify whether r1 or
r2, or both, or none has been fired before). So in total we have eight histories.

76540123•

��

76540123•

��
76540123•

��

t1

""E
EE

EE
t2

||yyy
yy

76540123•

��
r1

76540123
s

��

r2

t0

(a)

76540123•

��

76540123•

��
76540123•

��

t1

��))RRRRRRRRR t2

��uulllllllll
76540123•

��
r1

��
76540123

s1 ##G
GG

G\\
76540123

s2{{ww
ww

��
r2^^

t0

(b)

Fig. 8. A c-net N4 and its PR-encoding.

Now consider the PR-encoding of N4 in Fig. 8(b). Unfolding the PR-encoding
we obtain four occurrences of place s1 (after firing t1 or t1, r1 or t2 or t2, r1) and
analogously four occurrences of place s2. All pairs of such places (one represent-
ing s1 and the other s2) are concurrent. Hence we obtain 4 · 4 = 16 occurrences
of transition t0. An intuitive interpretation is as follows: the token in s is split
into two half-tokens in s1 and s2. Then some of the transitions in the unfolding
of the encoded net consume “half a token” produced by t1 and “half a token”
produced by t2.

More generally, consider a net N
(h,k)
4 like N4 one above, but with h writers

t1, . . . , th and k readers r1, . . . , rk. The truncation of N
(h,k)
4 has h occurrences

of t0 with a total number of histories h · 2k, since t0 can consume the token
produced by any of the h writers, after it has been read by any subset of the

k readers. Instead, the unfolding of the PR-encoding of N
(h,k)
4 includes (h · 2)k

occurrences of t0, since each occurrence of t0 consumes k tokens, and each of
these tokens can be produced by any of the h writers and it could have possibly
been produced/consumed by the corresponding reader.

We finally remark that histories are auxiliary information needed to build
the prefix, but they can safely be disregarded at the end of the construction.
For instance, histories are not needed for checking the coverability of a marking
m′ in a contextual prefix. Here, m′ is coverable iff the set of causes ⌊m′⌋ is a
configuration, which amounts to checking for the absence of asymmetric-conflict

19

cycles in ⌊m′⌋. This can be done efficiently (linear in the size of the asymmetric-
conflict relation) with topological sorting. Note that this can be an important
advantage when a prefix is used for checking the coverability of a marking m of
the original net N . It is well-known that m is coverable iff the complete prefix
contains a marking m′ such that (i) µfS(m′) = m and (ii) m′ is coverable. When
a contextual prefix contains one marking m′ with property (i), a non-contextual
prefix of the corresponding PR-encoding may contain a large set of them, one
for each history. An algorithm for coverability that works on contextual prefix
just needs to consider m′ whereas methods using non-contextual prefixes have
the burden of dealing with the whole set.

5 Conclusions

We have presented an approach for computing finite complete prefixes of gen-
eral contextual nets, which extends the approach proposed for the class of read-
persistent nets in [19] and provides an alternative to the technique based on
the PR-encoding of contextual nets as ordinary nets. Our work relies on the
idea of dealing explicitly with the multiple histories that events can have in con-
textual net computations, due to the presence of asymmetric conflicts. Subsets
of “useful” histories for events are recorded in the prefix during the construc-
tion and, correspondingly, a new notion of cut-off is considered. In the case of
read-persistent nets every transition has a single history and hence our approach
coincides with the one introduced in [19].

Our work shares some basic ideas with [20], where however the definition of
cut-off is non-constructive, since it depends on all the possible histories that an
event may have. In order to avoid this problem we introduced the (constructive)
notion of local cut-off. Apart from that, the notion of cut-off in [20] is stronger
than ours, which might lead to larger prefixes.

As witnessed by some examples in the paper, the complete prefix of a contex-
tual net can be significantly smaller than that of an equivalent net where read
arcs are replaced by consume/produce loops. The ability to generate smaller
unfoldings comes with a price, i.e., during the construction of the prefix we have
to record and evaluate additional information such as histories and asymmetric
conflict. Still, we conjecture that the algorithm will never require more space
or time than the ordinary algorithm applied to the PR-encoding of the net.
More precisely, for safe nets, as discussed in Section 4, the histories in the prefix
should correspond exactly to the events in the unfolding of the PR-encoding, and
causality and conflict on histories should be the exact match to causality and
conflict for transitions. Furthermore we expect our technique to be strictly more
efficient for non-safe nets as indicated by the example in the previous section.

From a more methodological perspective, let us stress that our approach can
build a complete finite prefix for a large class of c-nets directly, without the
need of resorting to an encoding. We think that this feature makes our approach
more suitable than others to be extended to other classes of systems exhibiting

20

concurrent read-only accesses, for which an encoding could either not be feasible
or could cause a significant loss of concurrency.

In particular, we are interested in graph transformation systems (GTSs),
a quite expressive formalism where reading and preserving part of the system
state, in this case a graph, is an integral part of the model. We believe that our
direct approach will be useful to generalise McMillan’s approach to the full class
of GTSs, while currently only its read-persistent subclass is dealt with in [2].
We are also interested in nets with inhibitor arcs. In this case, an encoding as
c-nets would be feasible but it would cause (at least in the non-safe case) a loss
of concurrency, and thus a direct approach could be preferable.

We plan to implement and test the algorithm for contextual nets in the
framework of the Mole unfolder [1] that currently deals with ordinary nets. At
present, with the limited goal of analyzing the size of the produced prefix, we
implemented a prototype which given a safe c-net, converts the read arcs into
consume/produce loops, builds its finite prefix, and then merges the occurrences
of the same context places. A complete implementation of our algorithm is cur-
rently in progress. We expect that in order to obtain satisfactory experimental
results about the complexity (in time and in space) of our algorithm, in compar-
ison with others, firstly we will need to be able to deal with more refined notions
of cut-offs based on adequate orders [7], and secondly we will have to design and
implement efficient data structures for recording the sets of histories of an event
during the construction of the prefix.

Acknoledgements. We are grateful to the the anonymous referees for their in-
sightful comments and suggestions on the submitted version of this paper.

References

1. The Mole unfolder. http://www.fmi.uni-stuttgart.de/szs/tools/mole.

2. P. Baldan, A. Corradini, and B. König. Verifying finite-state graph grammars: an
unfolding-based approach. In P. Gardner and N. Yoshida, editors, Proceedings of

CONCUR 2004, volume 3170 of LNCS, pages 83–98. Springer Verlag, 2004.

3. P. Baldan, A. Corradini, and U. Montanari. An event structure semantics for P/T
contextual nets: Asymmetric event structures. In M. Nivat, editor, Proceedings of

FoSSaCS ’98, volume 1378 of LNCS, pages 63–80. Springer Verlag, 1998.

4. P. Baldan, A. Corradini, and U. Montanari. Contextual Petri nets, asymmetric
event structures and processes. Information and Computation, 171(1):1–49, 2001.

5. S. Christensen and N. D. Hansen. Coloured Petri nets extended with place capac-
ities, test arcs and inhibitor arcs. In M. Ajmone-Marsan, editor, Applications and

Theory of Petri Nets, volume 691 of LNCS, pages 186–205. Springer Verlag, 1993.

6. J. Engelfriet. Branching processes of Petri nets. Acta Informatica, 28:575–591,
1991.

7. J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm. Formal Methods in System Design, 20:285–310, 2002.

8. R. Janicki and M. Koutny. Invariant semantics of nets with inhibitor arcs. In
Proceedings of CONCUR ’91, volume 527 of LNCS. Springer Verlag, 1991.

21

9. R. Janicki and M. Koutny. Semantics of inhibitor nets. Information and Compu-

tation, 123:1–16, 1995.
10. R. Langerak. Transformation and Semantics for LOTOS. PhD thesis, Department

of Computer Science, University of Twente, 1992.
11. K.L. McMillan. Using unfoldings to avoid the state explosion problem in the

verification of asynchronous circuits. In Proceedings of CAV ’92, Fourth Workshop

on Computer-Aided Verification, volume 663 of LNCS, pages 164–174. Springer
Verlag, 1992.

12. K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.
13. U. Montanari and F. Rossi. Contextual occurrence nets and concurrent constraint

programming. In H.-J. Schneider and H. Ehrig, editors, Proceedings of the Dagstuhl

Seminar 9301 on Graph Transformations in Computer Science, volume 776 of
LNCS. Springer Verlag, 1994.

14. U. Montanari and F. Rossi. Contextual nets. Acta Informatica, 32(6):545–596,
1995.

15. M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains,
Part 1. Theoretical Computer Science, 13:85–108, 1981.

16. G. M. Pinna and A. Poigné. On the nature of events: another perspective in
concurrency. Theoretical Computer Science, 138(2):425–454, 1995.

17. G. Ristori. Modelling Systems with Shared Resources via Petri Nets. PhD thesis,
Department of Computer Science - University of Pisa, 1994.

18. W. Vogler. Efficiency of asynchronous systems and read arcs in Petri nets. In
Proceedings of ICALP’97, volume 1256 of LNCS, pages 538–548. Springer Verlag,
1997.

19. W. Vogler, A. Semenov, and A. Yakovlev. Unfolding and finite prefix for nets with
read arcs. In Proceedings of CONCUR’98, volume 1466 of LNCS, pages 501–516.
Springer Verlag, 1998.

20. J. Winkowski. Reachability in contextual nets. Fundamenta Informaticae,
51(1):235–250, 2002.

22

