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Abstract. The problem of extending to graph grammars the unfold-
ing semantics originally developed by Winskel for (safe) Petri nets has
been faced several times along the years, both for the single-pushout and
double-pushout approaches, but only partial results were obtained. In
this paper we fully extend Winskel’s approach to single-pushout gram-
mars providing them with a categorical concurrent semantics expressed
as a coreflection between the category of graph grammars and the cate-
gory of prime algebraic domains.

Introduction

It belongs to the folklore that Graph Grammars [25] generalise Petri nets, in
that they allow for a more structured representation of system states, modelled
in terms of graphs rather than (multi)sets, and for a more general kind of state
transformation, modelling also preservation of parts of the state, besides deletion
and creation.

During the last years, a rich theory of concurrency for the algebraic ap-
proaches to graph transformation has been developed, including the generalisa-
tion of various classical Petri net concurrency models, like Goltz-Reisig process
semantics [13] and Winskel’s unfolding semantics [27].

Recall that, building on [22], the seminal work [27] gives the concurrent
semantics of (safe) nets by means of a chain of coreflections leading from the
category of safe Petri nets to the category of prime algebraic domains.

Safe
Nets U

⊥ //
Occurrence

Nets E

⊥ //

? _oo
Prime Event
Structures L

∼ //

Noo

Domains

Poo

The first step unfolds any (safe) net into an occurrence net, i.e., a branching
acyclic net making explicit causality and conflict (nondeterministic choice point)
between events in the net. The second step produces a prime event structure
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(pes) abstracting away the state and recording only the events and the relation-
ships between events. Finally, the last step maps any pes into the corresponding
prime algebraic domain of configurations.

Some important steps have been taken in the direction of developing an
analogous semantical framework for algebraic graph grammars, but a definitive
answer has not been provided yet. More precisely, a number of constructions have
been defined for algebraic, double-pushout (dpo) graph grammars [12, 9] by the
first three authors (see, e.g., [1]), as summarised by the following diagram:

DPO Graph
Grammars Ug

⊥ //
Occurrence
Grammars Eg

//
? _oo

Inhibitor Event
Structures Li

⊥ // Domains

Pioo

Even if at this level of abstraction it is not possible to see the relevant differ-
ences in the technical treatment of dpo grammars w.r.t. the much simpler case
of Petri nets, still it is worth pointing at the evident differences between this
chain of categories and the corresponding one for nets. Firstly, the category of
pes’s is replaced by that of inhibitor event structures (ies’s), which, assuming
conditional or-causality as a basic relation between events, are able to capture
both the asymmetric conflicts between events arising from the capability of pre-
serving part of the state and the inhibiting effects related to the presence of
the application conditions for rules. The category of domains can be viewed as
a coreflective subcategory of ies’s (as shown by the last step of the chain) and
thus one can also recover a semantics for dpo grammars in terms of domains and
pes’s. Secondly, the functor from the category of occurrence grammars to the
category of ies’s does not admit a left adjoint establishing a coreflection between
ies’s and occurrence grammars, and thus the whole semantic transformation is
not expressed as a coreflection.

In this paper we concentrate on the single-pushout (spo) approach [18, 11]
to graph transformation. One of the main differences with respect to the dpo
approach lies in the fact that there are no conditions on rule application, i.e.,
whenever a match is found the corresponding rule can always be applied. For spo
grammars an unfolding construction has been proposed in [24], corresponding
to the first step in the above chains of coreflections.

Building on the results briefly summarised above, we provide a coreflective
unfolding semantics for spo graph grammars, defined through the following chain
of coreflections:

SPO Graph
Grammars Us

⊥ //
Occurrence
Grammars Es

⊥ //

? _oo
Asymmetric Event

Structures La

⊥ //

Nsoo

Domains

Paoo

In particular, this construction differs from and improves that for dpo graph
grammars, discussed above, because of the following facts:

– Due to the absence of application conditions for rules, a less powerful and
more manageable kind of event structures called asymmetric event structures
(introduced to deal with contextual nets in [4]), can be used to represent the
dependency structure of spo graph grammars.
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– A novel construction, inspired by the work on contextual nets, allows to as-
sociate a canonical occurrence spo graph grammar to any asymmetric event
structure. This provides the lacking step, i.e., a left adjoint functor estab-
lishing a coreflection between the category of occurrence graph grammars
and the category of asymmetric event structures.

An existing result [4] establishes a coreflection between asymmetric event struc-
tures and domains, so that we obtain a coreflective pes and domain semantics
for spo graph grammars.

These results do not extend immediately to the dpo approach because of
the presence of application conditions for rules. However, as discussed in the
conclusions, they can give some suggestions for improving the treatment of this
more complex case.

The rest of the paper is structured as follows. In Section 1 we review the
basics of single-pushout graph grammars and we define the notion of graph
grammar morphism we shall work with. In Section 2 we discuss the kind of
dependencies arising between events in spo graph grammars and we introduce
the notion of occurrence graph grammar. In Section 3 we briefly discuss the
unfolding construction for spo graph grammars and its characterisation as a
universal construction. In Section 4 we complete the chain of coreflections from
grammars to domains, showing how any occurrence grammar can be abstracted
to an asymmetric event structure and, vice versa, how a canonical occurrence
grammar can be associated to any asymmetric event structure. Finally Section 5
draws some conclusions.

1 Typed graph grammars and their morphisms

In this section we summarise the basics of graph grammars in the single-pushout
(spo) approach [18], an algebraic approach to graph rewriting alternative to the
classical double-pushout (dpo) approach. The original spo approach is adapted
to deal with typed graphs [8, 19], which are, roughly, graphs labelled over a struc-
ture (the graph of types) that is itself a graph. Then some insights are provided
on the relationship between typed graph grammars and Petri nets. Finally, the
class of spo typed graph grammars is turned into a category GG by defining
a notion of grammar morphism, which recasts in this setting the morphisms for
dpo grammars introduced in [3].

1.1 Typed graph grammars

Given a partial function f : A � B we will denote by dom(f) its domain, i.e.,
the set {a ∈ A | f(a) is defined}. Let f, g : A� B be two partial functions. We
will write f ≤ g when dom(f) ⊆ dom(g) and f(x) = g(x) for all x ∈ dom(f).

For a graph G we will denote by NG and EG the sets of nodes and edges of
G, and by sG, tG : EG → NG its source and target functions.
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Definition 1 (partial graph morphism). A partial graph morphism
f : G � H is a pair of partial functions f = 〈fN : NG � NH , fE : EG � EH〉
such that (see Fig. 1.(a)):

sH ◦ fE ≤ fN ◦ sG and tH ◦ fE ≤ fN ◦ tG. (*)

We denote by PGraph the category of (directed, unlabelled) graphs and partial
graph morphisms. A morphism is called total if both components are total, and
the corresponding full subcategory of PGraph is denoted by Graph.

Notice that, according to condition (*), if f is defined over an edge then it must
be defined both on its source and target nodes: this ensures that the domain
of f is a well-formed graph. The inequalities in condition (*) ensure that any
subgraph of a graph G can be the domain of a partial morphism f : G � H.
Instead, the stronger (apparently natural) conditions sH ◦ fE = fN ◦ sG and
tH ◦ fE = fN ◦ tG would have imposed f to be defined over an edge whenever it
is defined either on its source or on its target node.

Given a graph TG, a typed graph G over TG is a graph |G|, together with a
total morphism tG : |G| → TG. A partial morphism between TG-typed graphs
f : G1 � G2 is a partial graph morphisms f : |G1|� |G2| consistent with the
typing, i.e., such that tG1

≥ tG2
◦ f (see Fig. 1.(b)). A typed graph G is called

injective if the typing morphism tG is injective. The category of TG-typed graphs
and partial typed graph morphisms is denoted by TG-PGraph.

EG

sG

��

tG

��

fE //

≥

EH

sH

��

tH

��

NG
fN

// NH

|G1|

tG1
��

f
//

≥

|G2|

tG2
��

TG

(a) (b)

Fig. 1. Diagrams for partial graph and typed graph morphisms.

Given a partial typed graph morphism f : G1 � G2, we denote by dom(f)
the domain of f typed in the obvious way.

Definition 2 (graph production and direct derivation). Fixed a graph
TG of types, a (TG-typed graph) production q is an injective partial typed graph

morphism Lq

rq
� Rq. It is called consuming if the morphism is not total. The

typed graphs Lq and Rq are called the left-hand side and the right-hand side of
the production, respectively.

Given a typed graph G and a match (i.e., a total morphism) g : Lq → G, we
say that there is a direct derivation δ from G to H using q (based on g), written
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δ : G⇒q H, if the following is a pushout square in TG-PGraph.

Lq

g
��

//
rq
// Rq
��
h��

G //
d
// H

Roughly speaking, the rewriting step removes from the graph G the image of
the items of the left-hand side which are not in the domain of rq, namely g(Lq−
dom(rq)), adding the items of the right-hand side which are not in the image of
rq, namely Rq−dom(rq). The items in the image of dom(rq) are “preserved” by
the rewriting step (intuitively, they are accessed in a “read-only” manner).

A relevant difference with respect to the dpo approach is that here there is
no dangling condition [9] preventing a rule to be applied whenever its application
would leave dangling edges. In fact, as a consequence of the way pushouts are
constructed in TG-PGraph, when a node is deleted by the application of a
rule also all the edges having such node as source or target are deleted by the
rewriting step, as a kind of side-effect. For instance, production q in the top row
of Fig. 2, which consumes node B, can be applied to the graph G in the same
figure. As a result both node B and the loop edge L are removed.

��
��
��

��
��
��

��
��
��

��
��
��

LB

Bq

G

Fig. 2. Side-effects in spo rewriting.

Even if the category PGraph has all pushouts, still we will consider a condition
which corresponds to the identification condition of the dpo approach.

Definition 3 (valid match). A match g : Lq → G is called valid when for any
x, y ∈ |Lq|, if g(x) = g(y) then x, y ∈ dom(rq).

Conceptually, a match is not valid if it requires a single resource to be consumed
twice, or to be consumed and preserved at the same time.

Definition 4 (typed graph grammar and derivation). A (TG-typed) spo
graph grammar G is a tuple 〈TG,Gs, P, π〉, where Gs is the (typed) start graph,
P is a set of production names, and π is a function which associates a production
to each name in P . A graph grammar is consuming if all the productions in the
range of π are consuming. A derivation in G is a sequence of direct derivations
beginning from the start graph ρ = {Gi−1 ⇒qi−1

Gi}i∈{1,...,n}, with G0 = Gs. A
derivation is valid if so are all the matches in its direct derivations.
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In the paper we will consider only consuming graph grammars and valid deriva-
tions. The restriction to consuming grammars is essential to obtain a meaningful
semantics combining concurrency and nondeterminism. In fact, the presence of
non-consuming productions, which can be applied without deleting any item,
would lead to an unbounded number of concurrent events with the same causal
history. This would not fit with the approach to concurrency (see, e.g., [13, 27])
where events in computations are identified with their causal history (formally,
the unfolding construction would not work). On the other hand, considering
valid derivations only, is needed to have a computational interpretation which is
resource-conscious, i.e., where a resource can be consumed only once.

We denote by Elem(G) the set NTG∪ETG∪P . We will assume that for each

production name q the corresponding production π(q) is Lq

rq
� Rq. Without loss

of generality, we will assume that the injective partial morphism rq is a partial
inclusion (i.e., that rq(x) = x whenever defined).

1.2 Relation with Petri nets

The reader who is familiar with Petri net theory can gain a solid intuition about
grammar morphisms and many other definitions and constructions in this pa-
per, by referring to the relation between Petri nets and (spo) graph grammars.
The correspondence between these two formalisms (see, e.g., [6] and references
therein) relies on the basic observation that a P/T Petri net is essentially a
rewriting system on a restricted kind of graphs, namely discrete, labelled graphs
(that can be identified with sets of tokens labelled by places), the productions
being the net transitions.

For instance, Fig. 3 presents a Petri net transition t and the corresponding
graph production rt which consumes nodes corresponding to two tokens in s0
and one token in s1 and produces new nodes corresponding to one token in s2
and one token in s3. The domain of the rule morphism is empty, i.e., rt : L� R
is the empty function, since nothing is explicitly preserved by a net transition.

s0
2 ��

s1
1��

t
1
��

1
��

s2 s3

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

s0 s0 s1 s3s2
rt

Fig. 3. A Petri net transition and a corresponding spo production.

Note that, in this encoding of transitions into productions, the restriction
to consuming graph grammars corresponds, in the theory of Petri nets, to the
common requirement that transitions must have non-empty preconditions.
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A tighter correspondence can be established with contextual nets [21], also
called nets with test arcs in [5], activator arcs in [15] or read arcs in [26], an
extension ordinary nets with the possibility of checking for the presence of to-
kens which are not consumed. Non-directed (usually horizontal) arcs are used to
represent context conditions. For instance, transition t in the left part of Fig. 4
has place s as context, hence at least one token in s is needed for enabling t, and
the firing of t does not affect such token.

As shown in Fig. 4, the context of a transition t in a contextual net corre-
sponds to the graph dom(rt) of the corresponding spo production rt : L � R.
Thus, in general, a contextual net corresponds to an spo graph grammar still
acting on discrete graphs, but where a production may preserve some nodes, i.e.,
its domain might not be empty.

s0

2 ��

s1

1��
t

1
��

1
��

1
s

s2 s3

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

s2 s3 ss1 ss0 s0
rt

Fig. 4. A contextual Petri net transition and a corresponding spo production.

1.3 Grammar morphisms

The notion of spo grammar morphism defined in this paper recasts in the setting
of the spo approach the notion introduced for dpo grammars in [7, 3], which in
turn was a generalisation of Petri net morphisms. Recall that a Petri net mor-
phism [27] consists of two components: a multirelation between the sets of places,
and a partial function mapping transitions of the first net into transitions of the
second one. Net morphisms are required to “preserve” the algebraic structure of
a net in the sense that the pre- (post-)set of the image of a transition t must be
the image of the pre- (post-)set of t.

Recall that, given two sets A and B, a multirelation R : A↔ B is a function
R : A×B → N. Intuitively, R relates elements a ∈ A and b ∈ B with multiplicity
R(a, b). As the items of the type graph of a graph grammar can be seen as gener-
alisations of Petri net places and typed graphs as generalisations of multisets of
places, the first component of a grammar morphism will be a span of total graph
morphisms between the type graphs of the source and target grammars, arising
as a categorical generalisation of the notion of multirelation. Here we give only
some basic definitions. For an extensive discussion we refer the reader to [7, 1].

Definition 5 (spans). Let C be a category. A (concrete) span in C is a pair
of coinitial arrows f = 〈fL, fR〉 with fL : xf → a and fR : xf → b. Objects a
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and b are called the source and the target of the span, written f : a ↔ b. The
span f will be sometimes denoted as 〈fL, xf , fR〉, explicitly giving the common
source object xf .

Consider the equivalence ∼ over the set of spans with the same source and
target defined, for f, f ′ : a ↔ b, as f ∼ f ′ if there exists an isomorphism
k : xf → xf ′ such that f ′L ◦ k = fL and f ′R ◦ k = fR (see Fig. 6.(a)). The
isomorphism class of a span f is denoted by [f ] and called a semi-abstract span.

Fig. 5 gives two examples of multirelations in Set, with the corresponding
span representations.

·
--qq·a1 · b1·
11mm

·
qq

// · b2·a2
·

mm
// · b3

·a1 ·oo // · b1

·a2 ·
kk

++

· b2

·a3 · //

kk

· b3

(a) (b)

Fig. 5. The (semi-abstract) spans for the multirelations (a) R1(a1, b1) = 2, R1(a2, b2) =
1, R1(a2, b3) = 1 and (b) R2(a1, b1) = 1, R2(a1, b3) = 1, R2(a2, b3) = 1 (Pairs which
are not mentioned are mapped to 0).

Definition 6 (category of spans). Let C be a category with pullbacks. Then
the category Span(C) has the same objects of C and semi-abstract spans on C
as arrows. More precisely, a semi-abstract span [f ] is an arrow from the source
to the target of f . The composition of two semi-abstract spans [f1] : a ↔ b and
[f2] : b ↔ c is the (equivalence class) of a span f constructed as in Fig. 6.(b)
(i.e., fL = fL1 ◦ y and fR = fR2 ◦ z), where the square is a pullback. The identity
on an object a is the equivalence class of the span 〈ida, ida〉, where ida is the
identity of a in C.

xf ′

f ′L

~~

f ′R

��
a xf

fL
oo

fR

//

k

OO

b

xf

z

!!

y

}}
a xf1

fL1

oo

fR1

// b xf2
fL2

oo

fR2

// c

(a) (b)

Fig. 6. Equivalence and composition of spans.

Relations can be identified with special multirelations R : A ↔ B where
multiplicities are bounded by one (namely R(a, b) ≤ 1 for all a ∈ A and b ∈ B).

8



The corresponding condition on a span f : A ↔ B is the existence of at most
one path between any two elements a ∈ A and b ∈ B. For instance, the span in
Fig. 5.(a) is not relational, while that in Fig. 5.(b) is relational.

Definition 7 (relational span). Let C be a category. A span f : a ↔ b in C
is called relational if 〈fL, fR〉 : xf → a× b is mono.

We can also find a categorical analogue of constructing the image of a multiset
through a multirelation. The next definition is given for graphs, but it could be
generalised to any category with pullbacks.

Definition 8 (pullback-retyping construction). Let [fT ] : TG1 ↔ TG2 be
a semi-abstract span in Graph and let G1 be a TG1-typed graph. Then G1

can be “transformed” into a TG2-typed graph as depicted in the diagram below,
by first taking a pullback (in Graph) of the arrows fLT : XfT → TG1 and
tG1 : |G1| → TG1, and then typing the pullback object over TG2 by using the
right part of the span fRT : XfT → TG2.

|G1|

tG1

��

|G2|
tG2

""

xoo

y

��

TG1 XfT
fL
T

oo

fR
T

// TG2

The TG2-typed graph G2 = 〈|G2|, fRT ◦ y〉 is determined only up to isomorphism.
Sometimes we will write fT {x, y}(G1, G2) (or simply fT (G1, G2) if we are not
interested in morphisms x and y) to express the fact that G1 and G2 are related
in this way by the pullback-retyping construction induced by [fT ].

We are now ready to define grammar morphisms. Besides the component
specifying the relation between the type graphs, a morphism from G1 to G2

includes a (partial) mapping between production names. Furthermore a third
component explicitly relates the (untyped) graphs underlying corresponding pro-
ductions of the two grammars, as well as the graphs underlying the start graphs.

Definition 9 (grammar morphism). Let Gi = 〈TGi, Gsi , Pi, πi〉 (i ∈ {1, 2})
be two graph grammars. A morphism f : G1 → G2 is a triple 〈[fT ], fP , ιf 〉 where

– [fT ] : TG1 ↔ TG2 is a semi-abstract span in Graph, called the type-span;
– fP : P1 → P2 ∪ {∅} is a total function, where ∅ is a new production name

(not in P2), with associated production ∅� ∅;4
– ιf is a family {ιf (q1) | q1 ∈ P1} ∪ {ιsf} of morphisms in Graph such that
ιsf : |Gs2 | → |Gs1 | and for each q1 ∈ P1, if fP (q1) = q2, then ιf (q1) is pair

〈ιLf (q1) : |Lq2 | → |Lq1 |, ιRf (q1) : |Rq2 | → |Rq1 |〉.

4 Considering the empty production ∅ is technically preferable to the use of a partial
mapping fP : P1 � P2.
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|Gs1 |

tGs1

��

|Gs2 |
tGs2

��

ιsf
oo

k

��

TG1 XfT
fLT

oo

fRT

// TG2

|Rq1 |

tRq1

		

|Rq2 |
ιRf (q1)

oo

kR

		

tRq2

��

|Lq1 |
≥

tLq1

��

99

rq1

99

|Lq2 | ≥
99

rq2

99

ιLf (q1)
oo

kL

��
tLq2

((
TG1 XfT

fLT

oo

fRT

// TG2

(a) (b)

Fig. 7. Diagrams for spo grammar morphisms.

such that the following conditions are satisfied:

1. Preservation of the start graph.
There exists a morphism k such that fT {ιsf , k}(Gs1 , Gs2), namely such that
the diagram in Fig. 7.(a) commutes and the square is a pullback.

2. Preservation of productions.
For each q1 ∈ P1, with q2 = fP (q1), there exist morphisms kL and kR such
that the diagram in Fig. 7.(b) commutes, and fT {ιYf (q1), kY }(Yq1 , Yq2) for
Y ∈ {L,R}.

The morphism f is called relational if the type component fT is relational.

As in [1, 7] one can show that grammar morphisms are “simulations”, namely
that every derivation ρ1 in G1 can be transformed into a derivation ρ2 in G2,
related to ρ1 by the pullback-retyping construction induced by the morphism.

2 Nondeterministic occurrence grammars

Analogously to what happens for Petri nets, occurrence grammars are “safe”
grammars, where the dependency relations between productions satisfy suit-
able acyclicity and well-foundedness requirements. Nondeterministic occurrence
grammars will be used to provide a static description of the computation of a
given graph grammar, recording the events (production applications) which can
appear in all possible derivations and the dependency relations among them.

While for nets it suffices to take into account only the causality and conflict
relations, for grammars the fact that a production application not only consumes
and produces, but also preserves a part of the state leads to a form of asymmetric
conflict between productions. Quite interestingly, instead, as we shall discuss
later there is no need of taking into account the dependencies between events
related to the side-effects of rule applications (i.e., the deletion of an edge caused
by the deletion of its source or target node).

The notion of safe graph grammar [8] generalises the one for P/T nets which
requires that each place contains at most one token in any reachable marking.
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Definition 10 ((strongly) safe grammar). A grammar G = 〈TG,Gs, P, π〉
is (strongly) safe if, for all H such that Gs ⇒∗ H, H is injective.

In a safe grammar, each graph G reachable from the start graph is injectively
typed, and thus we can identify it with the corresponding subgraph tG(|G|) of
the type graph. With this identification, a production can only be applied to
the subgraph of the type graph which is the image via the typing morphism
of its left-hand side. Thus, according to its typing, we can safely think that
a production produces, preserves or consumes items of the type graph. Using a
net-like language, we speak of pre-set •q, context q and post-set q• of a production
q, defined in the obvious way. For instance, for grammar G in Fig. 8, •q1 = {A},
q1 = {B} and q1

• = {L}, while •B = ∅, B = {q1, q2} and B• = {q3}.
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A B CGin
LA B CTG

q1 A B LB

q2 LB B CC

q3 B

q4 C

Fig. 8. A safe spo graph grammar G.

Although the notion of causal relation is meaningful only for safe grammars,
it is technically convenient to define it for general grammars. The same holds
for the asymmetric conflict relation introduced below.

Definition 11 (causal relation). The causal relation of a grammar G is the
binary relation < over Elem(G) defined as the least transitive relation satisfying:
for any node or edge x in the type graph TG, and for productions q, q′ ∈ P

1. if x ∈ •q then x < q;
2. if x ∈ q• then q < x;
3. if q• ∩ q′ 6= ∅ then q < q′.

As usual ≤ is the reflexive closure of <. Moreover, for x ∈ Elem(G) we denote
by bxc the set of causes of x in P , namely {q ∈ P : q ≤ x}.

Notice that the fact that an item is preserved by q and consumed by q′, i.e.,
q∩•q′ 6= ∅ (e.g., item C ∈ q2∩•q4 in grammar G of Fig. 8), does not imply q < q′.
Actually, the dependency between the two productions is a kind of asymmetric
conflict (see [2, 23, 17]). The application of q′ prevents q from being applied, so
that q can never follow q′ in a derivation (or equivalently when both q and q′

occur in a derivation then q must precede q′). But the converse is not true, since
q can be applied before q′.

11



Definition 12 (asymmetric conflict). The asymmetric conflict relation of a
grammar G is the binary relation ↗ over the set of productions, defined by:

1. if q ∩ •q′ 6= ∅ then q ↗ q′;
2. if •q ∩ •q′ 6= ∅ and q 6= q′ then q ↗ q′;
3. if q < q′ then q ↗ q′.

Condition 1 is justified by the discussion above. Condition 2 essentially expresses
the fact that the ordinary symmetric conflict is encoded, in this setting, as an
asymmetric conflict in both directions. Finally, since < represents a global order
of execution, while ↗ determines an order of execution only locally to each
computation, it is natural to impose ↗ to be an extension of < (Condition 3).

As already mentioned, the side-effects of production applications can be dis-
regarded when analysing the dependency relations between events. In fact:

Causality. Assume that production q produces an edge e, and q′ deletes e as side-
effect (because it deletes its source or target). At a first glance we could think
that q′ should causally depend on q. However, although q′ consumes the resource
e produced by q, the application of q is not necessary to make q′ applicable, since
q′ does not explicitly require the presence of e. Hence q′ does not causally depend
on q. For instance, referring to grammar G in Fig. 8, the application of q3 after
q1 deletes node B and edge L as side-effect. However q3 does not depend on q1
since it can be applied already to the start graph.

Asymmetric conflict. Also asymmetric conflict (called weak conflict in [24]) can
be defined disregarding the mentioned side-effects. This is basically due to the
fact that when a production uses (consumes or preserves) an edge, it must use
necessarily the corresponding source and target nodes, and therefore dependen-
cies related to side-effects can be detected by looking only at explicitly used
items. E.g., consider again grammar G in Fig. 8. Observe that production q3
prevents q2 from being applied since it deletes, as side-effect, edge L which is
consumed by q2. However, to consume L, production q2 must preserve or con-
sume node B (actually, it consumes it) and thus the “ordinary” definition of
asymmetric conflict already tells us that q2 ↗ q3.

A nondeterministic occurrence grammar is an acyclic grammar which rep-
resents, in a branching structure, several possible computations beginning from
its start graph and using each production at most once.

Definition 13 ((nondeterministic) occurrence grammar). A (nondeter-
ministic) occurrence grammar is a grammar O = 〈TG,Gs, P, π〉 such that

1. its causal relation ≤ is a partial order, and, for any q ∈ P , the set bqc is
finite and the asymmetric conflict ↗ is acyclic on bqc;

2. the start graph Gs is the set Min(O) of minimal elements of 〈Elem(O),≤〉
(with the graphical structure inherited from TG and typed by the inclusion);

3. any item x in TG is created by at most one production in P , namely | •x |≤ 1;

12



4. for each q ∈ P , the typing tLq
is injective on the “consumed part” |Lq| −

|dom(rq)|, and tRq
is injective on the “produced part” |Rq| − rq(|dom(rq)|).

We denote by OGG the full subcategory of GG with occurrence grammars as
objects.

Since the start graph of an occurrence grammar O is determined by Min(O), we
often do not mention it explicitly. One can show that, by the defining conditions,
each occurrence grammar is safe.

Intuitively, conditions (1)–(3) recast in the framework of graph grammars
the analogous conditions of occurrence nets (actually of occurrence contextual
nets [4]). In particular, in Condition (1), the acyclicity of asymmetric conflict
on bqc corresponds to the requirement of irreflexivity for the conflict relation in
occurrence nets. Condition (4), instead, is closely related to safety and requires
that each production consumes and produces items with multiplicity one. An
example of occurrence grammar is G in Fig. 8.

As in the case of Petri nets, reachable states can be characterised in terms
of a concurrency relation.

Definition 14 (concurrent graph). Let O = 〈TG,P, π〉 be an occurrence
grammar. A subgraph G of TG is called concurrent if

1. ↗G, the asymmetric conflict restricted to
⋃

x∈Gbxc, is acyclic and finitary;
2. ¬(x < y) for all x, y ∈ G.

It is possible to show that a subgraph G of TG is concurrent iff it is a subgraph
of a graph reachable from the start graph by means of a derivation which applies
all the productions in

⋃
x∈Gbxc exactly once in any order compatible with ↗.

3 Unfolding of graph grammars

The unfolding construction, when applied to a consuming grammar G, produces a
nondeterministic occurrence grammar Us(G) describing the behaviour of G. The
unfolding can be characterised as a universal construction for several interesting
categories of algebraic graph grammars.

Intuitively, given a graph grammar G, the construction consists of starting
from the start graph of G, then applying in all possible ways its productions to
concurrent subgraphs, and recording in the unfolding each occurrence of produc-
tion and each new graph item generated in the rewriting process, both enriched
with the corresponding causal history. Due to space limitations we skip the de-
tails of the constructions, giving only a summary of the main results.

3.1 Unfolding of semi-weighted graph grammars

As it has been done for ordinary (and other larger classes of) Petri nets [27,
20, 1], we first restrict to a full subcategory SGG of GG where objects satisfy
conditions analogous to those defining semi-weighted P/T Petri nets. A graph
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grammar is semi-weighted if the start graph is injective and the right-hand side
of each production is injective when restricted to produced items (namely, to
items which are not in the codomain of the production morphism).

Theorem 1. The unfolding construction can be expressed as a functor
Us : SGG→ OGG, which is right adjoint to the inclusion Is : OGG→ SGG.

3.2 Unfolding of general grammars

The restriction to the semi-weighted case is essential for the universal charac-
terisation of the unfolding construction when one uses general morphisms. How-
ever, suitably restricting graph grammar morphisms to still interesting subclasses
(comprising, for instance, the morphisms of [24, 14]) it is possible to regain the
categorical result for general, possibly non semi-weighted, grammars.

More specifically, the coreflection result can be obtained by limiting our at-

tention to a (non full) subcategory ĜG of GG, where objects are general graph
grammars, but all morphisms have a relational span as type component. The

naive solution of taking all relational morphisms as arrows of ĜG does not
work because they are not closed under composition. A possible appropriate
choice is instead given by the category GGR, where the arrows are grammar
morphisms such that the right component of the type span is mono. It is easy
to realize that these kinds of span corresponds to partial graph morphisms in
the opposite direction. In fact, a partial graph morphism g : TG2 � TG1 can
be identified with the span

TG1 dom(g)
g

oo � � // TG2

Theorem 2. The unfolding construction can be turned into a functor
UR

s : GGR → OGGR, having the inclusion IRs : OGGR → GGR as left
adjoint, establishing a coreflection between the two categories.

Alternatively, the result can be proved for the subcategory GGL of GG where
arrows are grammar morphisms having the left component of the type span
which is mono (corresponding to partial graph morphisms with the same source
and target of the span).

4 Event structure semantics for SPO graph grammars

In this section we show that asymmetric event structures, a generalisation of
prime event structures introduced in [4], provide a suitable setting for defining
an event structure semantics for spo graph grammars. After reviewing the ba-
sics of asymmetric event structures, we show that any occurrence spo grammar
can be mapped to an asymmetric event structure via a functorial construction.
Furthermore, a left adjoint functor, back from asymmetric event structures to oc-
currence grammars, can be defined, associating a canonical occurrence grammar
to any asymmetric event structure.
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4.1 Asymmetric event structures

Asymmetric event structures [4] are a generalisation of prime event structures
where the conflict relation is allowed to be non-symmetric. As already mentioned,
this is needed to give a faithful representation of dependencies between events
in formalisms such as string, term, graph rewriting and contextual nets, where
a rule may preserve a part of the state, in the sense that part of the state is
necessary for applying the rule, but it is not affected by the application.

For technical reasons we first introduce pre-asymmetric event structures.
Then asymmetric event structures will be defined as special pre-asymmetric
event structures satisfying a suitable condition of “saturation”.

Definition 15 (asymmetric event structure). A pre-asymmetric event
structure (pre-aes) is a tuple A = 〈E,≤,↗〉, where E is a set of events and ≤,
↗ are binary relations on E called causality and asymmetric conflict, respec-
tively, such that:

1. ≤ is a partial order and bec = {e′ ∈ E | e′ ≤ e} is finite for all e ∈ E;
2. ↗ satisfies, for all e, e′ ∈ E:

(a) e < e′ ⇒ e↗ e′, (b) ↗ is acyclic in bec,

where, as usual, e < e′ means e ≤ e′ and e 6= e′.
An asymmetric event structure (aes) is a pre-aes which satisfies:

3. for any e, e′ ∈ E, if ↗ is cyclic in bec ∪ be′c then e↗ e′.

The asymmetric conflict relation ↗ determines an order of execution locally
to each computation: if e ↗ e′ and e, e′ occur in the same computation then e
must precede e′. Therefore a set of events e1 ↗ e2 ↗ . . . ↗ en ↗ e1 forming a
cycle of asymmetric conflict can never occur in the same computation, a fact that
can be naturally interpreted as a kind of conflict over sets of events. Condition (3)
above ensures that, in an aes, this kind conflict is inherited through causality,
a typical property also of pes’s.

Any pre-aes can be “saturated” to produce an aes. More precisely, given
a pre-aes A = 〈E,≤,↗〉, its saturation, denoted by A, is the aes 〈E,≤,↗′〉,
where ↗′ is defined as e↗′ e′ iff (e↗ e′) or ↗ is cyclic in bec ∪ be′c.

Definition 16 (category of AES’s). Let A0 and A1 be two aes’s. An aes-
morphism f : A0 → A1 is a partial function f : E0 � E1 such that, for all
e0, e

′
0 ∈ E0, assuming that f(e0) and f(e′0) are defined,

1. bf(e0)c ⊆ f(be0c);
2. (a) f(e0)↗1 f(e′0) ⇒ e0 ↗0 e

′
0;

(b) (f(e0) = f(e′0)) ∧ (e0 6= e′0) ⇒ e0 ↗ e′0.

We denote by AES the category having asymmetric event structures as objects
and aes-morphisms as arrows.
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The notion of configuration extends smoothly from pes’s to aes’s, the main
difference being the fact that the computational order between configurations
is not simply set-inclusion. In fact, a configuration C can be extended with an
event e′ only if for any event e ∈ C, it does not hold that e′ ↗ e (since, in
this case, e would disable e′). The set of configurations of an aes with such
a computational order is a domain. The corresponding functor from AES to
Dom, the category of finitary prime algebraic domains, has a left adjoint which
maps each domain to the corresponding prime event structure (each pes can be
seen as a special aes where conflict is symmetric). Hence Winskel’s equivalence
between PES, the category of prime event structures, and Dom generalises to
a coreflection between AES and Dom.

AES
La

⊥ // Dom
Paoo

4.2 From occurrence grammars to AES’s

Given any occurrence grammar, the corresponding asymmetric event structure
is readily obtained by taking the production names as events. Causality and
asymmetric conflict are the relations defined in Definitions 11 and 12.

Definition 17 (AES for an occurrence grammar). Let O = 〈TG,P, π〉 be
an occurrence grammar. The aes associated to O, denoted Es(O), is the satura-
tion of the pre-aes 〈P,≤,↗〉, with ≤ and ↗ as in Definitions 11 and 12.

The above construction naturally gives rise to a functor.

Proposition 1. For any morphism h : O0 → O1 between occurrence grammars,
let Es(h)(q) = hP (q) if hP (q) 6= ∅ and Es(h)(q) undefined, otherwise. Then
Es : OGG→ AES is a well-defined functor.

For instance, Fig. 9 shows the aes (and the prime algebraic domain of its config-
urations) associated to the occurrence grammar G in Fig. 8. In the aes straight
and dotted arrows represent causality and asymmetric conflict, respectively. In
any configuration the event corresponding to qi is written as “i”.

4.3 From AES’s to occurrence grammars

Any aes is identified with a canonical occurrence grammar, via a free construc-
tion that mimics Winskel’s one. Given an asymmetric event structure A, the
corresponding grammar has the events of A as production names, while the
graph items are freely generated in order to induce the right kind of dependen-
cies between events. More specifically, first the graph nodes are freely generated
according to the dependencies in A. Then for any pair of nodes, edges connecting
the two nodes are freely generated according to the dependencies in A and the
specific restrictions of the spo rewriting mechanism.
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Fig. 9. The (a) aes and (b) domain of configurations for G of Fig. 8.

Definition 18. Let A = 〈Ev,≤,↗〉 be an aes. The corresponding spo occur-
rence graph grammar, denoted by Ns(A) = 〈TG,P, π〉, is defined as follows:

– The type graph TG = 〈N,E, s, t〉 is defined as below, where A,B, . . . range
over generic sets of events and x over sets of events of cardinality at most 1
(singletons or the empty set). Moreover by x < e, if x = {e′} we mean that
e′ < e, while the relation trivially holds if x = ∅ (i.e. ∅ < e, for any event
e). Symmetrically, by e < x with x = {e′} we mean e < e′, while e < ∅ is
intended to be always false.

• Nodes:

N =

〈x,A,B〉 :
∀e ∈ A ∪B. x < e,
∀a ∈ A. ∀b ∈ B. a↗ b,
∀b, b′ ∈ B. b 6= b′ ⇒ b↗ b′

;

• Edges:

E =


〈x,A,B, n1, n2〉 :

ni = 〈xi, Ai, Bi〉 ∈ N,
∀e ∈ A ∪B. x < e,
∀a ∈ A. ∀b ∈ B. a↗ b,
∀b, b′ ∈ B. b 6= b′ ⇒ b↗ b′

xi ≤ x for i ∈ {1, 2}
A ⊆ A1 ∩A2

B ⊆ (A1 ∪B1) ∩ (A2 ∪B2)
∀ei ∈ Bi. ¬(ei ≤ xj) for i, j ∈ {1, 2}, i 6= j


;

• Source and target functions:

s(〈x,A,B, n1, n2〉) = n1 and t(〈x,A,B, n1, n2〉) = n2.

– The set of productions P = Ev, and for any event e ∈ Ev the corresponding
production π(e) = Le � Re is defined as follows:

• |Le| = {n = 〈x,A,B〉, l = 〈x,A,B, n1, n2〉 | e ∈ A ∪B}
• |Re| = {n = 〈x,A,B〉, l = 〈x,A,B, n1, n2〉 | e ∈ x ∪A}

The typing and the (partial) inclusion of Le in Re are the obvious ones.
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A node in the type graph TG is a triple n = 〈x,A,B〉. The set x might
contain the event which generates the node n or might be empty if the node is
in the start graph, A is the set of events which preserve the node n and B is the
set of events which consume n. Clearly, the event in x, if any, must be a cause
for every event in A ∪ B, the events in A must be in asymmetric conflict with
the events in B, and the events in B must be pairwise in conflict (represented
as an asymmetric conflict in both directions, i.e., b↗ b′ and b′ ↗ b).

An edge in the type graph is a tuple l = 〈x,A,B, n1, n2〉. The meaning of
x, A, B is the same as for nodes. The components n1 and n2 are intended to
represent the source and target nodes of edge l. They are subject to requirements
which arise from the specific features of the spo rewriting mechanism. First,
xi ≤ x since the event which produces an edge must produce or preserve the
source/target nodes. Any event which preserves the edge must also preserve the
source/target, hence A ⊆ A1 ∩ A2. Any event which consumes the edge must
preserve or consume the source/target nodes, hence B ⊆ (A1 ∪B1)∩ (A2 ∪B2).

Finally the nodes n1 and n2 must be allowed to coexist: the requirement
xi ≤ x already ensures that n1 and n2 are not in conflict. Moreover each node
is asked not to causally depend on the events which consume the other one.

We conclude with the main result, stating that the construction of the occur-
rence grammar associated to an aes is functorial and left adjoint to Es, estab-
lishing a coreflection between OGG and AES. For any aes A, Es(Ns(A)) = A

and the component at A of the unit of the adjunction is the identity.

Theorem 3 (coreflection between OGG and AES). The construction Ns

extends to a functor that is left adjoint to Es.

Roughly speaking, the proof shows that, given any aes A and occurrence graph
grammar O, all aes-morphisms f : A→ Es(O) uniquely extends to graph gram-

mar morphisms f̂ : Ns(A) → O. The type span component of morphism f̂ is

TGNs(A)
fT← TGO

id→ TGO, where fT maps any item in TGO to the only item in
TGNs(A) which induces analogous dependencies among the events.

Summing up, Theorem 1 and Theorem 3 above give a chain of coreflections
from the category SGG of semi-weighted spo graph grammars to AES and
Dom. The result can be extended to GGR, the category of general spo gram-
mars with restricted morphisms (having the right component in the type span
which is mono), by exploiting Theorem 2 and observing that Ns restricts to a
well-defined functor NR

s : AES → OGGR. The possibility of generalising the
result to other categories of grammars with relational morphisms is still open.

SGG
Us

⊥ // OGG
? _oo

Es

⊥

)) AES

Ns

ii

NR
s

uu
La

⊥ // Dom
Paoo

GGR

UR
s

⊥ // OGGR
� ?

OO

? _oo ER
s

⊥
55
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5 Conclusions

We have defined a functorial concurrent semantics for spo graph grammars, ex-
pressed as a chain of coreflections leading from various categories of spo gram-
mars to the categories of aes’s and domains. The approach originally proposed
by Winskel in the setting of Petri nets has been fully extended to spo graph
grammars, improving the previous proposals where some steps of the construc-
tion were lacking, notably, in the case of the dpo approach, the functor from
event structures to occurrence grammars.

A natural question regards the possibility of using these results for the dpo
approach. We have already mentioned that for dpo graph grammars, due to the
presence of application conditions for rules, a more complex kind of event struc-
tures, called inhibitor event structures [1] was introduced to obtain a functorial
semantics. In this way a functor mapping any occurrence dpo grammar to an
ies can be defined, which, however it does not admit a left adjoint. Still an idea
could be to view asymmetric event structures as a coreflective subcategory of
inhibitor event structures and then to devise a construction which associates a
canonical dpo grammar to any asymmetric event structure.

The theory developed in this paper naturally suggests a notion of graph
process for spo grammars, which can be defined as a deterministic occurrence
grammar with a morphism to the original grammar. We conjecture that these
processes correspond exactly to the concurrent derivations of [16], which in turn
were characterised as special classes of graph grammars in [24].

The analogies between the first steps of the constructions for the spo and
dpo approaches (the proper unfolding constructions) suggest the possibility of
developing a general theory of unfolding in abstract categories (e.g., high level
replacement systems [10]). Some parts of the construction are rather concrete
and not easy to recast in an abstract categorical setting, but still this represents
a challenging topic of further investigation.
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23. G. M. Pinna and A. Poigné. On the nature of events: another perspective in

concurrency. Theoretical Computer Science, 138(2):425–454, 1995.
24. L. Ribeiro. Parallel Composition and Unfolding Semantics of Graph Grammars.

PhD thesis, Technische Universität Berlin, 1996.
25. Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by

Graph Transformation. Vol. 1: Foundations. World Scientific, 1997.
26. W. Vogler. Efficiency of asynchronous systems and read arcs in Petri nets. In Proc.

of ICALP’97, vol. 1256 of LNCS, pp. 538–548. Springer, 1997.
27. G. Winskel. Event Structures. In Petri Nets: Applications and Relationships to

Other Models of Concurrency, vol. 255 of LNCS, pp. 325–392. Springer, 1987.

20


