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1 Introduction

The theory of graph grammars (or of graph rewriting systems) studies a variety
of formalisms which extend the theory of formal languages in order to deal with
structures more general than strings, like graphs and maps. A graph gram-
mar allows one to describe finitely a (possibly infinite) collection of graphs,
i.e., those graphs which can be obtained from a start graph through repeated
applications of graph productions. Each production can be applied to a graph
by replacing an occurrence of its left-hand side with its right-hand side. The
form of graph productions and the mechanisms stating how a production can
be applied to a graph and what the resulting graph is, depend on the spe-
cific graph rewriting formalism. The handbook [37] presents a comprehensive
introduction to the theory of several approaches to graph rewriting.

Since many (natural or artificial) distributed structures can be represented (at
a suitable level of abstraction) by graphs, and graph productions act on those
graphs with local transformations, it is quite obvious that graph rewriting sys-
tems are potentially interesting for the study of the concurrent transformation
of structures. In particular, it belongs to the folklore (see [13] and the refer-
ences therein) that Petri nets can be regarded as graph rewriting systems that
act on a restricted kind of graphs, namely discrete, labelled graphs (that can
be considered as sets of tokens labelled by places). Conversely, graph rewrit-
ing systems generalise Petri nets not only because they allow for arbitrary
(also non-discrete) graphs, but also because they allow for the specification
of context-dependent operations, where part of the state is read but not con-
sumed. Their greater expressiveness is also witnessed by the fact that, differ-
ently from ordinary Place/Transition Petri nets, most approaches to graph
rewriting systems (including those considered in this paper) are Turing com-
plete.

In recent years, various concurrent semantics for graph rewriting systems have
been proposed in the literature, some based on the above mentioned corre-
spondence with Petri nets, trying to generalise to graph grammars classical
models originally developed for nets, like Goltz-Reisig process semantics [20]
and Winskel’s unfolding semantics [39]. This work was mainly concerned with
the so-called algebraic approaches to graph rewriting, where graphs are viewed
as objects of a category and the notion of rewriting is defined in terms of suit-
able diagrams in that category. Such approaches include the double-pushout
(dpo) approach [19,16], where the application of a rule is modelled by two
pushout diagrams in a category of graphs and total graph morphisms, and the
single-pushout (spo) approach [27,18], where a rule application is described
instead as a single pushout in a category of graphs and partial morphisms.

Recall that, building on [33], the seminal work [39] proposes a concurrent se-
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mantics of safe Petri nets by means of a chain of coreflections leading from
the category of safe nets to the category of prime algebraic domains. Given
functors F and G, we write F " G when F is right adjoint to G. The same
symbol is used, possibly rotated, in diagrams. The symbol ↪→ indicates in-
clusion functors, while ∼ is put between functors establishing equivalences of
categories.

Safe
Nets U

⊥
Occurrence

Nets E
⊥ Prime Event

Structures L
∼

N

Domains
P

The first step unfolds any (safe) net into an occurrence net, i.e., a branch-
ing acyclic net making explicit causality and conflict (nondeterministic choice
points) between events in the net. The second step produces a prime event
structure (pes) abstracting away the state and recording only the events and
the relationships between events. Finally, the last step maps any pes into the
corresponding prime algebraic domain of configurations. In [31] it is shown
that an analogous construction works for the wider class of semi-weighted
nets, i.e., P/T nets in which the initial marking is a set and transitions can
generate at most one token in each place of their post-set.

The above semantical framework has been generalised in [8] to the category
of semi-weighted contextual nets. A contextual net is a Petri net where each
transition, besides of a pre-set and a post-set which specify the tokens which
are consumed and produced by the transition, may also have a context, i.e.,
places which must contain a token when the transition is fired. Tokens in the
context may be considered to be accessed in a read-only way by the transition
in that they are needed to enable the firing, but they are not consumed. The
chain of coreflections proposed in [8] is the following:

Semi-Weighted
Contextual

Nets Ua

⊥
Occurrence
Contextual

Nets Ea

⊥
Asymmetric

Event
Structures La

⊥
Na

Domains
Pa

The first step is analogous to the one for ordinary Petri nets. In the next step,
prime event structures are replaced by asymmetric event structures (aes’s).
This happens because the presence of contexts introduces a kind of depen-
dency between transitions, called asymmetric conflict, which cannot be de-
scribed adequately by prime event structures. Asymmetric event structures
form a proper coreflection with the category of domain, as depicted by the
last adjunction.

Coming back to graph grammars, some important steps have been taken in
the direction of developing an analogous semantical framework for algebraic
graph transformation systems, but this program could not be considered as
completed yet. More precisely, several constructions have been defined for
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algebraic dpo graph grammars by the first three authors (see [1,5,7,2]), as
summarised by the following diagram:

DPO Graph
Grammars Ug

⊥
Occurrence
Grammars Eg

Inhibitor Event
Structures Li

⊥ Domains
Pi

Even if at this level of abstraction it is not possible to see the relevant dif-
ferences in the technical treatment of dpo grammars w.r.t. the much simpler
case of Petri nets, still it is worth pointing at the evident differences between
this chain of functors and the corresponding ones for nets.

Firstly, the categories of pes’s and aes’s are replaced by that of inhibitor event
structures (ies’s), an even more general class of event structures introduced
in [2]. This is due to the fact that in dpo graph grammars, the possibility
of applying a rule to a graph is subject to an application condition, the so-
called dangling condition. By assuming a sort of conditional or-causality as a
basic relation among events, ies’s are able to model not only the asymmetric
conflicts between events arising from the capability of preserving part of the
state, but also the inhibiting effects related to the presence of the application
condition for rules. The category of domains can be viewed as a coreflective
subcategory of ies’s (as shown by the last step of the chain) and thus one can
also recover a semantics for dpo grammars in terms of domains and pes’s.

Secondly, the functor from the category of occurrence grammars to the cate-
gory of ies’s does not admit a left adjoint establishing a coreflection between
ies’s and occurrence grammars, and thus the whole semantic transformation
from dpo grammars to domains cannot be expressed as a coreflection.

In this paper we concentrate on the spo approach to graph transformation.
One of the main differences with respect to the dpo approach lies in the fact
that there are no conditions on rule application, i.e., whenever a match of
the left-hand side is found in a graph, the corresponding rule can always be
applied. Building on the results briefly summarised above, we develop a core-
flective unfolding semantics for semi-weighted spo graph grammars defined
through the following chain of coreflections:

SPO Graph
Grammars Us

⊥ Occurrence
Grammars Es

⊥

Net #

Asymmetric Event
Structures La

⊥
Ns

Na

Domains
Pa

Occurrence
Contextual

Nets

Ea

⊥
Gram

To our knowledge, this is the first time that Winskel’s chain of coreflections is
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generalised to a category of graph grammars in a completely satisfactory way.

• The first coreflection in the above chain recasts in the framework of spo
grammars the unfolding construction of dpo grammars presented in [7],
and it is conceptually close to the unfolding construction proposed in [35].

• Then, even if occurrence spo grammars and occurrence contextual nets ex-
hibit significant differences in their behaviour (the application of a rule of
an occurrence grammar deletes, as a kind of side-effect, all the edges which
would remain dangling due to the remotion of some nodes), we can for-
malise the relationship between the two classes of models as a categorical
adjunction. A functor Net which maps any occurrence grammar to a con-
textual occurrence net (by forgetting the graphical structure of the state)
is shown to admit a left-adjoint Gram (which freely generates the graphical
structure).

• The above adjunction, composed with the coreflection between occurrence
contextual nets and aes’s already proved in [8], provides the step that was
missing for dpo grammars, namely the left adjoint functor establishing a
coreflection between the category of occurrence graph grammars and the
category of asymmetric event structures.

Note that, in particular, inhibitor event structures are not needed: due
to the absence of application conditions for rules, the dependencies between
events in spo grammar computations can be expressed as causalities and
asymmetric conflicts, and thus can be faithfully represented by using aes’s.

As discussed in a concluding section, some of the results in this paper can be
extended to larger categories of graph grammars. For example, provided that
we stick to a smaller class of grammar morphisms, we can obtain a functo-
rial concurrent semantics for general, possibly non-semi-weighted spo graph
grammars. A chain of functors maps any spo grammar first to its unfolding,
then to an aes and to a domain. In this setting we can still characterise the un-
folding construction as a coreflection, but the coreflection to event structures
and domains is lost.

As far as the dpo approach is concerned, we can obtain results analogous to
those for spo grammars if we consider the subclass of dpo graph grammars
where productions never delete nodes. This class of grammars is still interest-
ing from a modelling point of view since, as observed in [3,4], one can develop
a theory of rewriting “up to isolated nodes” and in this setting the deletion of
a node can be simulated faithfully by leaving such a node isolated. However, as
discussed above, these results do not extend to general dpo graph grammars
because of the presence of the dangling application condition for rules.

The rest of the paper is structured as follows. In Section 2 we review the basics
of single-pushout graph grammars and we informally discuss their relationship
with contextual nets. In Section 3 we define the notion of graph grammar mor-
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phism we shall work with. In Section 4 we discuss the kind of dependencies
arising between events in spo graph grammars and we introduce the notion of
occurrence graph grammar. The subcategory of occurrence graph grammars is
given an alternative, more manageable characterisation, which allows also to
get a tight link, formalised as an adjunction, with the category of occurrence
contextual nets. In Section 6 we introduce the notion of a (nondeterministic)
process for spo graph grammars. Then, in Section 7, we present the unfold-
ing construction for spo graph grammars, which generates a process for the
given grammar fully describing its behaviour. The unfolding is characterised,
categorically, as a universal construction. In Section 8 we use the adjunction
of Section 4 and some existing results for contextual nets in order complete
the chain of coreflections from grammars to domains. In Section 9 we discuss
some possible generalisations of our results and the relationships with the
work on the dpo approach. Finally, some concluding remarks can be found in
Section 10.

This paper elaborates on and extends the results on the concurrent semantics
of algebraic graph grammars reported in the conference papers [7,6,9]. It also
uses in an essential way the work on contextual nets in [8], for which the pos-
sible applications to graph grammars was indeed one of the main motivations.

2 Typed graph grammars

In this section we summarise the basics of graph grammars in the single-
pushout (spo) approach [27], an algebraic approach to graph rewriting alter-
native to the classical double-pushout (dpo) approach. Here we consider basic
graph grammars, without any distinction between terminal and non-terminal
symbols and without any high-level control mechanism. We remark that, even
in this basic formulation, algebraic graph grammars are Turing complete (since
they can simulate string rewriting).

The original spo approach is adapted to deal with typed graphs [15,28], which
are graphs labelled over a structure that is itself a graph, called the graph
of types. Then some insights are provided on the relationship between typed
graph grammars and Petri nets. Finally we introduce semi-weighted graph
grammars, the class of grammars we shall work with in the paper.

2.1 Typed graph grammars

Given a partial function f : A ! B we will denote by dom(f) its domain, i.e.,
the set {a ∈ A | f(a) is defined}. Furthermore we will write f← : dom(f) → A
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for the (total) inclusion of the domain of f into A and f→ : dom(f) → B
for the (total) restriction of f to dom(f). Let f, g : A ! B be two partial
functions. We will write f ≤ g when dom(f) ⊆ dom(g) and f(x) = g(x) for
all x ∈ dom(f).

Definition 1 (graphs, partial graph morphism) A (directed, unlabelled)
graph is a tuple G = 〈NG, EG, sG, tG〉, where NG and EG are the sets of nodes
and edges of G, and sG, tG : EG → NG are its source and target functions.
Graph G is discrete if EG is empty.

A partial graph morphism f : G ! H is a pair of partial functions f = 〈fN :
NG ! NH , fE : EG ! EH〉 such that (see Fig. 1.(a)):

sH ◦ fE ≤ fN ◦ sG and tH ◦ fE ≤ fN ◦ tG. (*)

We denote by PGraph the category of (directed, unlabelled) graphs and partial
graph morphisms. A morphism is called total if both components are total, and
the corresponding subcategory of PGraph is denoted by Graph.

Notice that, according to condition (*), if f is defined over an edge then it must
be defined both on its source and target nodes: this ensures that the domain
of f is a well-formed graph. The inequalities in condition (*) ensure that any
subgraph of a graph G can be the domain of a partial morphism f : G ! H .
Instead, the stronger (apparently natural) conditions sH ◦ fE = fN ◦ sG and
tH ◦ fE = fN ◦ tG would have imposed f to be defined over an edge whenever
it is defined either on its source or on its target node.

Given a graph G we will sometimes write x ∈ G to say that x is a node or
edge in G, i.e., x ∈ NG ∪ EG.

Definition 2 (typed graph) Given a graph T , a typed graph G over T is
a graph |G|, together with a total morphism tG : |G| → T . A partial morphism
between T -typed graphs f : G1 ! G2 is a partial graph morphism f : |G1| !
|G2| consistent with the typing, i.e., such that tG1 ≥ tG2 ◦ f (see Fig. 1.(b)).
A typed graph G is called injective if the typing morphism tG is injective. The
category of T -typed graphs and partial typed graph morphisms is denoted by
T -PGraph.

Given a partial typed graph morphism f : G1 ! G2, we denote by dom(f)
the domain of f typed in the obvious way. Also the notation f← and f→ is
extended to partial (typed) graph morphisms.

Definition 3 (graph production and direct derivation) Fixing a graph
T of types, a (T -typed graph) production q is an injective partial typed graph

morphism Lq

rq! Rq. It is called consuming if the morphism is not total. The
typed graphs Lq and Rq are called the left-hand side and the right-hand side
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EG

sG tG

fE

≥

EH

sH tH

NG fN
NH

|G1|

tG1

f

≥

|G2|

tG2

T

(a) (b)

Fig. 1. Diagrams for partial graph and typed graph morphisms.

B A

B L A

q

G

Fig. 2. Side-effects in spo rewriting.

of the production, respectively.

Given a typed graph G and a match, i.e., a total injective morphism g : Lq →
G, we say that there is a direct derivation δ from G to H using q (based on
g), written δ : G ⇒q H, if the following is a pushout square in T -PGraph.

Lq
g

rq Rq

h

G d H

Roughly speaking, the rewriting step removes from the graph G the image
of the items of the left-hand side which are not in the domain of rq, namely
g(Lq − dom(rq)), adding the items of the right-hand side which are not in the
image of rq, namely Rq − rq(dom(rq)). The items in the image of dom(rq) are
“preserved” by the rewriting step (intuitively, they are accessed in a “read-
only” manner).

A relevant difference with respect to the dpo approach is that here there is no
dangling condition [16] preventing a rule to be applied whenever its applica-
tion would leave dangling edges. In fact, as a consequence of the way pushouts
are constructed in T -PGraph, when a node is deleted by the application of
a rule also all the edges having such node as source or target are deleted by
the rewriting step, as a kind of side-effect. For instance, consider production
q in the top row of Fig. 2. Nodes are represented as circles, while edges are
represented as directed arrows. The production consumes node B and pro-
duces node A, i.e., the associated graph morphism is the empty one. Then,
production q can be applied to the graph G in the same figure. As a result
both node B and the loop edge L are removed.
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Notice that in the definition of direct derivation we consider injective matches
only. As discussed later in Section 9.2 this does not affect the expressiveness of
the formalism and it is technically convenient for the purposes of this paper.

Definition 4 (typed graph grammar and derivation) A (T -typed) spo
graph grammar G is a tuple 〈T, Gs, P, π〉, where Gs is the (typed) start graph,
P is a set of production names, and π is a function which associates to each
name q ∈ P a production π(q). A graph grammar is consuming if all the
productions in the range of π are consuming. A derivation in G is a sequence
of direct derivations beginning from the start graph, i.e., ρ = {Gi−1 ⇒qi−1

Gi}i∈{1,...,n}, with G0 = Gs.

In the paper we will consider consuming graph grammars only. This restric-
tion is essential to obtain a meaningful semantics combining concurrency and
nondeterminism. In fact, the presence of non-consuming productions, which
can be applied without deleting any item, would lead to an unbounded num-
ber of concurrent events with the same causal history. This would not fit with
the approach to concurrency (see, e.g., [20,39]) where events in computations
are identified with their causal history (formally, the unfolding construction
of Section 7 would not work).

For a graph grammar G we denote by Elem(G) the set NT ∪ ET ∪ P . As a
convention, for each production name q the corresponding production π(q)

will be Lq

rq! Rq. Without loss of generality, we will assume that the injec-
tive partial morphism rq is a partial inclusion (i.e., that rq(x) = x whenever
defined). Moreover we assume that the domain of rq, which is a subgraph
of both |Lq| and |Rq| is the only intersection of these two graphs, i.e., that
|Lq| ∩ |Rq| = dom(rq), componentwise. Since in this paper we work only with
typed notions, we will usually omit the qualification “typed”, and, sometimes,
we will not indicate explicitly the typing morphisms.

Example 5 As an example let us consider the grammar SR in Fig. 3. The
grammar is intended to represent a simple system where an unbounded number
of processes can be created. Processes can then establish a connection through
a communication manager in order to exchange a message.

The items of the type graph represent the entities in the system and their
possible relations. Node G is the process generator, which can produce any
number of processes, while node M is the communication manager, which
manages the connection requests coming from processes. Any process can be in
three states: idle, represented by node P , sender, represented by node S and
receiver, represented by node R. The message to be sent is represented as a self-
loop edge ms over the sender process, while a received message is represented
by a self-loop edge mr over the receiver process. The communication requests
are represented by edges snd and rcv which connect the sender and receiver
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processes to the communication manager. A sender and a receiver engaged in
a communication are connected by a c-edge.

The typing functions for the productions and the start graph are represented
by labelling any graph item with the corresponding item of the type graph.
Functions from the left-hand side to the right-hand side of productions are
partial inclusions represented by drawing the items in the domain as dashed
circles/arrows.

Let us give a more detailed description of the productions. As mentioned above,
an unbounded number of idle P -typed processes can be created by using pro-
duction (Gen), which relies on the presence of a G-typed generator node.

Any process P can connect to the communication manager, represented by a
M-typed node, to send a message ms, as expressed by production (Send). The
process changes its state, becoming an S-typed process and it connects to the
communication manager via a snd edge.

Production (Conn) establishes a connection between a sender and a receiver,
via a c-typed edge. Once a sender and a receiver are connected, the communi-
cation can take place as expressed by production (Comm) and the message is
received, as represented by the mr-typed self-loop over the receiver.

Finally, productions (EndS) and (EndR) remove a sender or a receiver, re-
spectively. Note that, by the spo rewriting mechanism, when a sender or a
receiver is removed, all edges having that node as source or target are removed
as well. Conceptually, productions (EndS) and (EndR) can be applied after
the communication has taken place, but also before a communication has been
successfully completed, and in this case they model a communication failure.

2.2 Relation with Petri nets

The reader who is familiar with Petri net theory can gain a solid intuition
about grammar morphisms and many other definitions and constructions pre-
sented in this paper by referring to the relationship between Petri nets and
(spo) graph grammars. The correspondence between these two formalisms
(see, e.g., [13] and references therein) relies on the basic observation that a
P/T Petri net is essentially a rewriting system on a restricted kind of graphs,
namely discrete, labelled graphs (that can be identified with sets of tokens la-
belled by places), with the net transitions playing the role of the productions.
As a graph production can specify that part of the state must be present
for the transformation to take place but is not consumed, an even tighter
correspondence exists between graph grammars and contextual nets [32], also
called nets with test arcs in [12], activator arcs in [22] or read arcs in [38], an
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P M

snd
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ms

S R

cms

S R

c mr

rcvsnd

S M R

ms

S M R

cms

P M

rcv

R M

(Gen) G G P

G M

snd rcv

G P

S M R

c

ms mr

Type Graph Start Graph

R

S

(EndR)

(EndS)

(Send)

(Recv)

(Comm)

(Conn)

Fig. 3. The running example grammar SR.

extension of ordinary nets with the possibility of checking for the presence of
tokens which are not consumed.

To give the formal definition of contextual Petri nets we need some notation
for multisets and multirelations. Let A be a set. The powerset of A is denoted
by 2A. A multiset of A is a function M : A → N, where N is the set of natural
numbers. The set of multisets of A is denoted by µA. The usual operations
and relations on multisets, like multiset union + or multiset difference −, are
used. We write a ∈ M if M(a) > 0 and M ≤ M ′ if M(a) ≤ M ′(a) for all
a ∈ A. Sometimes a subset X ⊆ A will be seen as the multiset defined by
X(a) = 1 if a ∈ X and X(a) = 0, otherwise.

A multirelation R : A ↔ B is a multiset of A×B, i.e., a function R : A×B →
N. Intuitively, R relates elements a ∈ A and b ∈ B with multiplicity R(a, b).
We will limit our attention to finitary multirelations, namely multirelations
R such that the set {b ∈ B | R(a, b) > 0} is finite. The composition of
two finitary multirelations R : A ↔ B and R′ : B ↔ C is the (finitary)
multirelation R′ ◦R : A ↔ C defined as (R′ ◦R)(a, c) =

∑
b∈B R(a, b) ·R′(b, c).
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A multirelation R induces in an obvious way a (possibly partial) function
µR : µA → µB, defined as µR(

∑
a∈A na · a) =

∑
b∈B

∑
a∈A(na · R(a, b)) · b. 2

A relation R : A × B is a subset of A × B. It will be often identified with
a multirelation R : A ↔ B where multiplicities are bounded by one, namely
R(a, b) ≤ 1 for all a ∈ A and b ∈ B.

Note that the composition of multirelations is not a generalisation of standard
composition over relations, i.e., if we take two relations and we compose them
as multirelation the result usually differs from their relational composition. As
an example consider the relations r1 : {a}×{b, c} defined by r1 = {(a, b), (a, c)}
and r2 : {b, c}×{a} defined by r1 = {(b, a), (c, a)}. The relational composition
of r1 and r2 is the identity on {a}, while their composition of as multirelations
results in a proper multirelation M : {a} ↔ {a} defined by M(a, a) = 2.

Definition 6 ((contextual) Petri nets) A (marked) contextual Petri net
is a tuple N = 〈S,Tr , F, C, m〉, where

• S is a set of places;
• Tr is a set of transitions;
• F = 〈Fpre, Fpost〉 is a pair of multirelations from Tr to S;
• C is a relation between Tr and S, called the context;
• m ∈ µS is a multiset called the initial marking.

We assume, as usual, that S ∩Tr = ∅. A contextual Petri net is called a Petri
net, tout court, if the context relation C is empty. The functions from µTr to
µS induced by the multirelations Fpre and Fpost are denoted by •( ) and ( )•,
respectively. If A ∈ µTr is a multiset of transitions, •A is called its pre-set,
while A• is called its post-set. Moreover, by A we denote the context of A,
defined as A = {s ∈ S | ∃t ∈ Tr . t ∈ A ∧ C(t, s)}. Note that the context of
A, although defined as a set, will be often used as a multiset. This choice will
allow us to simplify the presentation.

An analogous notation is used to denote the functions from S to 2Tr defined
as, for s ∈ S, •s = {t ∈ Tr | Fpost(t, s) > 0}, s• = {t ∈ Tr | Fpre(t, s) > 0},
and s = {t ∈ Tr | C(t, s)}.

A finite multiset of transitions A is enabled at a marking M , if M contains
the pre-set of A and an additional set of tokens which covers the context of
A.

Definition 7 (token game) Let N be a contextual net, and let M be a mark-
ing of N , i.e., a multiset of places M ∈ µS. A finite multiset A ∈ µTr is

2 The function µR is partial since infinite coefficients are disallowed in multisets.
For instance, given the multirelation R : N ↔ {0} with R(n, 0) = 1 for all n ∈ N,
then µR is undefined on the multiset

∑
n∈N 1 · n.

12



s0

2

s1

1

t
11

1 s

s2 s3

s1 ss0 s0 ss2 s3
rt

Fig. 4. A contextual Petri net transition and a corresponding spo production.

enabled at M if •A + A ≤ M . The transition relation between markings is
defined as

M [A〉M ′ if A is enabled at M and M ′ = M − •A + A•.

Step and firing sequences, as well as reachable markings, are defined in the
usual way. Note that if two transitions share a common context place s, then
a single token in s is sufficient to enable their concurrent firing, i.e., a token
can be “read” concurrently by several transitions.

Coming back to the relationship between nets and graph grammars, observe
first that, quite obviously, a multiset M ∈ µA can be seen as a set XM

equipped with a (“labelling” or “typing”) function l : XM → A and satisfying
|f−1(a)| = M(a) for all a ∈ A (this defines XM up to isomorphism). Indeed,
this is the way a marking (i.e., a multisets of places) is usually depicted in
Petri net theory, as a set of tokens distributed among (or typed over) the
places.

Fig. 4 shows a contextual Petri net transition t and its encoding as an spo
production rt. Transition t has pre-set •t = 2 ·s0 +s1, post-set t• = s2 +s3, and
context t = s, depicted as a non-directed arc. Correspondingly, production rt

consumes two nodes typed over s0 and one node typed over s1, produces two
nodes typed over s2 and s3, respectively, and preserves one node typed over
s, the only element in dom(rt).

This encoding satisfies the basic properties which one would expect: produc-
tion rt can be applied to a discrete S-typed graph 〈Xm, l : Xm → S〉 rep-
resenting marking m, if and only if transition t is enabled at m and, in this
case, the single-pushout construction and the firing of the transition produce
equivalent resulting states.

It is worth noting that in this encoding of transitions as spo productions,
the restriction to consuming graph grammars corresponds, in the theory of
Petri nets, to the common requirement that transitions must have non-empty
pre-sets.
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2.3 Semi-weighted grammars

As recalled in the Introduction, the coreflection results have been proved for
specific subclasses of (contextual) Petri nets, namely for safe nets in [39], and
for semi-weighted (contextual) nets in [31,8]. We introduce here corresponding
classes of graph grammars: the reasons why some of the presented results
(mainly the characterisation of the semantics as a coreflection) do not hold
for more general grammars will be explained later.

Definition 8 (safe and semi-weighted nets) A contextual Petri net N =
〈S,Tr , F, C, m〉 is safe if (a.1) each marking m′ reachable from m is a set,
i.e., m′(s) ≤ 1 for all s ∈ S, and (a.2) the multi-relations Fpre, Fpost : Tr ↔ S
are relations, i.e., the pre-set and post-set of each transition are sets. 3

A net N is semi-weighted [31] if (b.1) the initial marking is a set, and (b.2)
the multi-relation Fpost : Tr ↔ S is a relation.

Since clearly (a.1) implies (b.1) and (a.2) implies (b.2), it follows that any safe
net is semi-weighted. Notice also that it can be checked statically if a net is
semi-weighted, just looking at the transitions and initial marking, while for
safety one must consider all possible computations, because of condition (a.1).

In the encoding of nets as graph grammars sketched in the previous section, a
marking is represented as a set (discrete graph) typed over the set of places.
Requiring that a marking is a set, rather than a proper multiset, is equivalent
to requiring the injectivity of the typing function. As general spo productions
act on general (possibly non-discrete) graphs, we can generalise smoothly the
above definition to grammars as follows.

Definition 9 (safe and semi-weighted SPO graph grammars) A
grammar G = 〈T, Gs, P, π〉 is safe if (a.1) for all H such that Gs ⇒∗ H, H is
injective, and (a.2) for each production q ∈ P , the left- and right-hand side
graphs Lq and Rq are injective.

Grammar G is semi-weighted if (b.1) the start graph Gs is injective, and (b.2)
for each production q ∈ P , for any x, y in |Rq| − |Lq| if tRq(x) = tRq(y) then
x = y, i.e., the right-hand side graph Rq is injective on the “produced part”
|Rq| − |Lq|.

3 Often condition (a.2) is not required, but if a safe net contains a transition t
with a proper multiset as pre-set or post-set, by (a.1) t will not be enabled in any
reachable marking. Condition (a.2) requires that N does not contain such useless
transitions.

14
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Fig. 6. Transforming a general grammar into a semi-weighted one.

Not surprisingly, it is possible to show that if we encode a Petri net N as a
grammar, as sketched in Section 2.2, then N is a semi-weighted net if and only
if the corresponding grammar is semi-weighted. An example of semi-weighted
graph grammar is given by grammar SR in Fig. 3, since all productions of SR
are injectively typed. Instead grammar SR is not safe since reachable graphs
can be non-injective.

It is worth observing that semi-weighted graph grammars are much more
expressive than safe graph grammars. In particular, it can be shown that
any graph grammar G can be “encoded” as a semi-weighted graph grammar
G′. Roughly, any production of G which generates a non-injective graph is
replaced by a production which generates the same graph, injectively typed
over temporary items. Then an additional set of productions (finite if the
right-hand sides of the productions in G are finite) retypes such items, one at
a time. For example, consider a graph grammar G containing the production q
depicted in Fig. 5, typed over the graph T in the same figure. In the encoding
we extend the type graph with a temporary type F1, thus obtaining the type
graph T ′ in Fig. 6. Production q is replaced by the productions q1 and q2 in
the same figure. When the right-hand side of a production is non-injective on
produced nodes, the transformation becomes more tricky but it is still feasible.

It is possible to show that given any T -typed graph G, we have that G is
reachable in the original grammar G if and only if it is reachable in the semi-
weighted grammar G′.
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3 Graph grammar morphisms

In this section spo graph grammars are considered as the objects of a cate-
gory GG. This is done by defining a notion of spo grammar morphism, which
recasts in this setting the morphisms for dpo grammars introduced in [14,7],
which in turn were defined as a generalisation of (contextual) Petri net mor-
phisms.

Several notions of morphisms have been considered for Petri nets. Often
they origin from an algebraic view of Petri nets which considers a Petri net
as the signature of a multisorted algebra, the sorts being the places (see,
e.g., [39,29,30]). More general classes of morphisms have been considered, e.g.,
in [10], with the aim of providing a satisfactory categorical solution to the
synthesis problem. Here we focus on the notion originally proposed in [39] for
the development of the unfolding approach, and extended to contextual nets
in [8]. It ensures the existence of products, which can be interpreted as asyn-
chronous compositions, and of some coproducts, modelling nondeterministic
choice [40].

A morphism between two contextual nets [8] maps transitions and places of the
first net into transitions and multisets of places of the second net, respectively,
in such a way that the initial marking as well as the pre-set, post-set and
context of each transition are “preserved”.

Definition 10 (contextual net morphism) Let Ni = 〈Si,Tr i, Fi, Ci, mi〉
(i ∈ {0, 1}) be contextual nets. A morphism h : N0 → N1 is a pair h =
〈hT , hS〉, where hT : Tr0 ! Tr1 is a partial function and hS : S0 ↔ S1 is a
finitary multirelation such that

(1) µhS(m0) is defined and µhS(m0) = m1;
(2) for each transition t ∈ Tr0, µhS(•t), µhS(t•) and µhS(t) are defined, and

(a) µhS(•t) = •µhT (t);
(b) µhS(t•) = µhT (t)•;
(c) µhS(t) = µhT (t).

We denote by CN the category having contextual nets as objects and contextual
net morphisms as arrows.

Note that in item (2.c) above, the context t of t, which is a set, is considered
as a multiset. Observe also that µhT (t) = hT (t) when hT (t) is defined, and
µhT (t) = ∅ otherwise. In the last case, by the definition above, the places in
the pre-set, post-set and context of t are forced to be mapped to the empty
set, i.e., µhS(•t + t• + t) = ∅.
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·
· · b2
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· · b3

·a1 · · b1

·a2 · · b2

·a3 · · b3

(a) (b)

Fig. 7. The (semi-abstract) spans for the multirelations (a) R1(a1, b1) = 2,
R1(a2, b2) = 1, R1(a2, b3) = 1 and (b) R2(a1, b1) = 1, R2(a1, b3) = 1, R2(a2, b3) = 1
(Pairs which are not mentioned are mapped to 0).

In order to extend the correspondence between graph grammars and nets dis-
cussed in Section 2.2 uniformly to morphisms, we will define grammar mor-
phisms in such a way that they essentially coincide with contextual net mor-
phisms if restricted to grammars which act on discrete graphs only. Keeping
this goal in mind, and recalling that the type graph of a graph grammar corre-
sponds conceptually to the set of places of a Petri net, in a morphism we shall
relate the type graphs of the source and target grammar by a semi-abstract
span in the category of graphs. Indeed, as shown, for example, in [11], in
the category of finite sets and functions, semi-abstract spans correspond one-
to-one with multirelations, and this correspondence lifts to span/multirelation
composition. Similarly, as discussed in [36], given a category whose morphisms
are seen as total maps, left injective (semi-abstract) spans over such category
can be interpreted as partial maps.

Definition 11 (spans) Let C be a category. A (concrete) span f : A ↔ B
in C is a pair of arrows f = 〈fL, fR〉 with fL : Xf → A and fR : Xf → B.
Objects A and B are called the source and the target of the span, Xf is the
support, and fL, fR are called the left leg and the right leg of f , respectively.
The span f will be sometimes denoted as 〈fL, Xf , fR〉, explicitly showing its
support.

Consider the equivalence ∼ over the set of spans with the same source and
target defined, for f, f ′ : A ↔ B, as f ∼ f ′ if there exists an isomorphism
k : Xf → Xf ′ such that f ′L ◦ k = fL and f ′R ◦ k = fR (see Fig. 8.(a)). The
isomorphism class of a span f is denoted by [f ] and called a semi-abstract
span.

The word “semi” in the term “semi-abstract span” reminds that only the
support of the span is taken up to isomorphism, while the source and target
objects are concrete.

Fig. 7 shows two spans in Set and the corresponding multirelations.

Definition 12 (category of spans) Let C be a category with pullbacks. The
category Span(C) has the same objects as C and semi-abstract spans in C as
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Fig. 8. Equivalence and composition of spans.

arrows. More precisely, a semi-abstract span [f ] is an arrow from the source to
the target of f . The composition of two semi-abstract spans [f1] : A ↔ B and
[f2] : B ↔ C is the (equivalence class of a) span f constructed as in Fig. 8.(b)
(i.e., fL = fL

1 ◦ y and fR = fR
2 ◦ z), where the square (1) is a pullback. The

identity on an object A is the equivalence class of the span 〈idA, idA〉, where
idA is the identity of A in C.

It can be shown that composition is well-defined, namely it does not depend
on the particular choice of the representatives, and that it is associative.

Recall that relations can be identified with multirelations R : A ↔ B where
multiplicities are bounded by one, i.e., R(a, b) ≤ 1 for all a ∈ A and b ∈
B. The corresponding condition on a span f : A ↔ B is the injectivity of
function 〈fL, fR〉 from Xf to A × B, which implies the existence of at most
one path between any two elements a ∈ A and b ∈ B. For instance, the span
in Fig. 7.(a) is not relational, while that in Fig. 7.(b) is relational. This yields
to the following definition, for a general category C:

Definition 13 (relational span) Let C be a category. A span f : A ↔ B
in C is called relational if 〈fL, fR〉 : Xf → A × B is mono.

In other words f : A ↔ B is relational if given any object C and pair of arrows
g, h : C → Xf , if fR ◦ g = fR ◦ h and fL ◦ g = fL ◦ h then g = h. Along the
paper we shall sometimes use the following equivalent condition, for a span
f : A ↔ B in Set or in Graph:

∀x, y ∈ Xf . x 7= y ⇒ fR(x) 7= fR(y) ∨ fL(x) 7= fL(y).

In general, relational spans do not compose [11], in the sense that if [f1] :
A ↔ B and [f2] : B ↔ C are two semi-abstract relational spans, then their
composition [f ] : A ↔ C, as for Definition 12, is not necessarily relational. 4

However, there are interesting classes of relational spans which do compose.
Observe in fact that a span f : A ↔ B is certainly relational when either its
left or its right leg is mono. Such spans correspond one-to-one with partial

4 The apparent inconsistency of this statement with the fact that relations do
compose, can be explained by recalling that the composition of relations, seen as
specific multirelations, does not coincide with the standard composition of relations.
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morphisms from A to B or backward. In fact, a partial morphism g : A → B
can be identified with the span

A dom(g)
g

B

and similarly a partial morphism h : B → A can be represented as the span

A dom(h)h B

where unlabelled arrows are inclusions.

We have seen that a multiset of a set A can be regarded as a set labelled on
A, and that a multirelation R : A ↔ B can be identified with a semi-abstract
span from A to B. The next definition presents a categorical analogue of
constructing the image of a multiset through a multirelation, namely of the
function µR : µA → µB. The definition is given for graphs, but it could be
generalised to any category with pullbacks.

Definition 14 (pullback-retyping relation) Let [fT ] : T1 ↔ T2 be a semi-
abstract span in Graph, let G1 be a T1-typed graph, and let G2 be a T2-typed
graph. Then G1 and G2 are related by pullback-retyping (via [fT ]) if there
exist morphisms x : |G2| → |G1| and y : |G2| → XfT such that the square in
the following diagram is a pullback:

|G1|
tG1

|G2|
tG2

x

y

T1 XfTfL
T fR

T

T2

In this case we will write fT{x, y}(G1, G2), or simply fT (G1, G2) if we are not
interested in morphisms x and y.

We are now ready to define grammar morphisms. Besides the component spec-
ifying the multirelation between the type graphs, a morphism from G1 to G2

includes a (partial) mapping between production names. Furthermore a third
component explicitly relates the (untyped) graphs underlying corresponding
productions of the two grammars, as well as the graphs underlying the start
graphs.

Definition 15 (grammar morphism) Let Gi = 〈Ti, Gsi, Pi, πi〉 (i ∈ {1, 2})
be graph grammars. A morphism f : G1 → G2 is a triple 〈[fT ], fP , ιf 〉 where

• [fT ] : T1 ↔ T2 is a semi-abstract span in Graph, called the type-span;
• fP : P1 → P2 ∪ {∅} is a total function, where ∅ is a new production name

(not in P2), with associated production ∅ ! ∅;
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Fig. 9. Diagrams for spo grammar morphisms.

• ιf is a family {ιf (q1) | q1 ∈ P1} ∪ {ιsf} of morphisms in Graph such that
ιsf : |Gs2| → |Gs1| and for each q1 ∈ P1, if fP (q1) = q2, then ιf (q1) is a pair

〈ιLf (q1) : |Lq2 | → |Lq1 |, ιRf (q1) : |Rq2| → |Rq1|〉.

such that the following conditions are satisfied:

(1) Preservation of the start graph.
There exists a morphism k such that fT{ιsf , k}(Gs1, Gs2), i.e., the diagram
in Fig. 9.(a) commutes and the square is a pullback.

(2) Preservation of productions.
For each q1 ∈ P1, with q2 = fP (q1), there exist morphisms kL and kR such
that the square (1) in Fig. 9.(b) commutes, and fT{ιYf (q1), kY }(Yq1, Yq2)
for Y ∈ {L, R}.

The morphism f is called relational if the type component fT is relational.

It is worth noticing that, for technical convenience, the partial mapping on
production names is represented as a total mapping by enriching the target
set with a distinguished element ∅, representing “undefinedness”. In this way
the condition asking the preservation of productions (Condition 2) faithfully
rephrases the condition that the pre- and post-set of a transition on which
the morphism is undefined are necessarily mapped to the empty multiset (see
after Definition 10).

Definition 16 (category of graph grammars) We denote by GG the
category where objects are spo graph grammars and arrows are graph gram-
mar morphisms. By SGG we denote the full subcategory of GG having semi-
weighted graph grammars as objects.

As in [35,1,14] one can show that grammar morphisms are “simulations”,
namely that if f : G1 → G2 is a graph grammar morphism, then every deriva-
tion ρ1 in G1 is related by pullback-retyping via [fT ] to a derivation ρ2 in G2.
As already observed, as a consequence of the partial arbitrariness in the choice
of the pullback components, such correspondence, differently from [14], is not
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“functional”.

Lemma 17 Let f : G1 → G2 be a graph grammar morphism, and let
δ1 : G1 ⇒q1 H1 be a direct derivation in G1. Then there exists a correspond-
ing direct derivation δ2 : G2 ⇒fP (q1) H2 in G2, such that fT (G1, G2) and
fT (H1, H2).

The proof follows the same outline of that for the corresponding result for the
dpo approach (Lemma 5.37 in [1]) and thus it is omitted.

4 Occurrence graph grammars and their morphisms

In this section we introduce occurrence grammars. Through the unfolding
construction, they will be used to provide a static description of the com-
putations of a given graph grammar, recording the events (production ap-
plications) which can appear in all possible derivations and the dependency
relations among them. Next, the full subcategory of GG including all occur-
rence graph grammars is given an alternative, simpler characterisation. This
will be used, in particular, in the next section to formalise the connection
between occurrence grammars and occurrence contextual nets

4.1 Occurrence grammars

Analogously to what happens for Petri nets, occurrence grammars are safe
grammars, where the dependency relations between productions satisfy suit-
able acyclicity and well-foundedness requirements. While for nets it suffices to
take into account only the causality and conflict relations, for grammars the
fact that a production application not only consumes and produces, but also
preserves a part of the state leads to a form of asymmetric conflict between
productions. Quite interestingly, as we shall discuss later, there is no need of
taking into account the dependencies between events related to the side-effects
of rule applications, i.e., the deletion of an edge caused by the deletion of its
source or target node.

Recall that in a safe grammar (Definition 9) each graph G reachable from
the start graph is injectively typed, and thus we can identify it with the
corresponding subgraph tG(|G|) of the type graph. With this identification, a
production can only be applied to the subgraph of the type graph which is
the image via the typing morphism of its left-hand side. Thus, according to
its typing, we can think that a production produces, preserves or consumes
items of the type graph, and using a net-like language, we speak of pre-set,

21



B

L

C B C C

BB

L

A B

Gs

q4

q3

B

L

A C BA C

q2

T

q1

Fig. 10. A safe spo graph grammar G.

context and post-set of a production, correspondingly. Actually, it is worth
mentioning that the next definition captures the intuition just sketched only
for safe grammars, but for technical reasons we state it for arbitrary graph
grammars.

Definition 18 (pre-set, post-set and context of a production) Let
G = 〈T, Gs, P, π〉 be a graph grammar. For any production q ∈ P we define its
pre-set •q, context q and post-set q• as the following subsets of ET ∪ NT :

•q = tLq(|Lq| − |dom(rq)|) q = tLq(|dom(rq)|)
q• = tRq(|Rq| − rq(|dom(rq)|)).

Symmetrically, for each item x ∈ T we define the following subsets of P :
•x = {q ∈ P | x ∈ q•}, x• = {q ∈ P | x ∈ •q}, x = {q ∈ P | x ∈ q}.

In order to illustrate these concepts, let us consider the simple grammar G in
Fig. 10, which can be easily seen to be safe. Then •q1 = {A}, q1 = {B} and
q1

• = {L}, while •B = ∅, B = {q1, q2} and B• = {q3}.

Also the causality and the asymmetric conflict relations defined below are
meaningful only for safe grammars, but it is technically convenient to introduce
them for arbitrary graph grammars.

Definition 19 (causality relation) The causality relation of a grammar G
is the binary relation < over Elem(G) defined as the least transitive relation
satisfying: for any node or edge x ∈ T , and for productions q, q′ ∈ P

(1) if x ∈ •q then x < q;
(2) if x ∈ q• then q < x;
(3) if q• ∩ q′ 7= ∅ then q < q′.

As usual ≤ is the reflexive closure of <. Moreover, for x ∈ Elem(G) we denote
by 9x: the set of causes of x in P , namely {q ∈ P : q ≤ x}.
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The first two clauses of the definition of relation < are obvious. The third one
formalises the fact that if an item is generated by q and it is preserved by q′,
then q′, to be applied, requires that q had already been applied.

Notice that the fact that an item is preserved by q and consumed by q′, i.e.,
q ∩ •q′ 7= ∅ (e.g., item C ∈ q2 ∩ •q4 in grammar G of Fig. 10), does not imply
q < q′. Actually, the dependency between the two productions is a kind of
asymmetric conflict (see [8,34,25]). The application of q′ prevents q from being
applied, so that q can never follow q′ in a derivation. However, the converse
is not true, since q can be applied before q′. Equivalently, when both q and q′

occur in a derivation then q must precede q′.

Definition 20 (asymmetric conflict) The asymmetric conflict relation of
a grammar G is the binary relation ↗ over the set of productions, defined by:

(1) if q ∩ •q′ 7= ∅ then q ↗ q′;
(2) if •q ∩ •q′ 7= ∅ and q 7= q′ then q ↗ q′;
(3) if q < q′ then q ↗ q′.

Condition 1 is justified by the discussion above. Condition 2 essentially ex-
presses the fact that the ordinary symmetric conflict is encoded, in this set-
ting, as an asymmetric conflict in both directions. Finally, since < represents
a global order of execution, while ↗ determines an order of execution only
locally to each computation, it is natural to impose ↗ to be an extension of
< (Condition 3).

Notice that if a set of productions forms a cycle of asymmetric conflicts q0 ↗
q1 ↗ . . . ↗ qn ↗ q0, then such productions cannot appear in the same
computation, otherwise the application of each production should precede the
application of the production itself; this fact can be naturally interpreted as
a form of n-ary conflict.

Definition 21 (conflict) The conflict relation # ⊆ 2P associated to a gram-
mar G is defined as:

q0 ↗ q1 ↗ . . . ↗ qn ↗ q0

#{q0, q1, . . . , qn}
#(A ∪ {q}) q ≤ q′

#(A ∪ {q′})

where A denotes a generic finite subset of P . We use the infix notation q#q′

for #{q, q′}.

As already mentioned, the side-effects of production applications can be dis-
regarded when analysing the dependency relations between events. This fact,
which is later formalised by showing the tight relation between concurrency
and reachability (see Proposition 35) can be intuitively understood as follows:
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Causality. Assume that production q produces an edge e, and q′ deletes e
as side-effect (because it deletes its source or its target). At a first glance we
could think that q′ should causally depend on q. However, even if q′ consumes
the resource e produced by q, the application of q is not necessary to make q′

applicable, since q′ does not explicitly require the presence of e. Hence q′ does
not causally depend on q. For instance, referring to grammar G in Fig. 10, the
application of q3 after q1 deletes node B and edge L as side-effect. However q3

does not depend on q1 since it can be applied already to the start graph.

Asymmetric conflict. Also asymmetric conflict (called weak conflict
in [35]) can be defined disregarding the mentioned side-effects. This is ba-
sically due to the fact that when a production uses (consumes or preserves)
an edge, it must use necessarily the corresponding source and target nodes as
well, and therefore dependencies related to side-effects are subsumed by those
induced by explicitly used items. E.g., consider again grammar G in Fig. 10.
Observe that, after the application of q1 to the start graph, production q3

prevents q2 from being applied since it deletes, as side-effect, edge L which is
needed by q2. However, to consume L, production q2 must preserve or con-
sume node B (actually, it preserves it) and thus the “ordinary” definition of
asymmetric conflict already tells us that q2 ↗ q3.

An occurrence grammar is an acyclic grammar which represents, in a branch-
ing structure, several possible computations beginning from its start graph
and using each production at most once. Recall that a relation R ⊆ X ×X is
finitary if for any x ∈ X, the set {y ∈ X | R(y, x)} is finite.

Definition 22 (occurrence grammar) An occurrence grammar is a safe
grammar
O = 〈T, Gs, P, π〉 such that

(1) the causality relation < is irreflexive, its reflexive closure ≤ is a partial
order, and, for any q ∈ P , the set 9q: is finite and the asymmetric conflict
↗ is acyclic on 9q:;

(2) the start graph Gs is the set Min(O) of minimal elements of 〈Elem(O),≤
〉 5 (with the graphical structure inherited from T and typed by the inclu-
sion);

(3) any item x in T is created by at most one production in P , i.e., |•x| ≤ 1;

An occurrence grammar is deterministic if relation ↗+, the transitive closure
of ↗, is finitary and irreflexive.

5 Notice that Min(O) ⊆ NT ∪ ET , i.e., it does not contain productions, since the
grammar is consuming.
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We denote by OGG the full subcategory of GG with occurrence grammars as
objects.

Since the start graph of an occurrence grammar O is determined by Min(O),
we often do not mention it explicitly. One can show that, given a grammar G
where all productions are injectively typed, if G satisfies (1)-(3) above then it
is safe, and thus it is an occurrence grammar.

Intuitively, conditions (1)–(3) recast in the framework of graph grammars the
analogous conditions of occurrence nets (actually of occurrence contextual
nets [8]). In particular, in Condition (1), the acyclicity of asymmetric conflict
on 9q: corresponds to the requirement of irreflexivity for the conflict relation in
occurrence nets. A simple example of occurrence grammar is given by grammar
G in Fig. 10. A more complex example can be found in Fig. 11 (for the moment,
ignore how this grammar is related to grammar SR in Fig. 3).

As in the case of Petri nets, reachable states can be characterised in terms of
a concurrency relation.

Definition 23 (concurrent graph) Let O = 〈T, P, π〉 be an occurrence
grammar. A subgraph G of T is called concurrent, written conc(G), if

(1) ↗G, the asymmetric conflict restricted to
⋃

x∈G9x:, is acyclic and fini-
tary;

(2) ¬(x < y) for all x, y ∈ G.

We will see later that a subgraph G of T is concurrent if and only if it is
a subgraph of a graph reachable from the start graph by means of a deriva-
tion which applies all the productions in

⋃
x∈G9x: exactly once in any order

compatible with ↗.

4.2 An alternative characterisation of occurrence grammar morphisms

We next provide an alternative, much simpler characterisation of morphisms
between occurrence grammars which will be useful in the sequel.

We first prove a basic property, which will be also pivotal for expressing the
unfolding as a universal construction (Theorem 45). This is a key point where
the restriction to semi-weighted grammars plays a role, since the lemma fails
to hold for arbitrary grammars (see Section 9.1).

Lemma 24 Let G = 〈T, Gs, P, π〉 be a semi-weighted grammar, let O =
〈T ′, G′

s, P
′, π′〉 be an occurrence grammar and let f : O → G be a grammar

morphism. Then the type span [fT ] of the morphism is relational.
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PROOF. Recall (Definition 13) that the span fT : T ′ ↔ T is relational if
〈fL

T , fR
T 〉 : XfT → T × T ′ is mono. In turn, in the categories Set and Graph

this amounts to say

∀x, y ∈ XfT . x 7= y ⇒ fR
T (x) 7= fR

T (y) ∨ fL
T (x) 7= fL

T (y).

We proceed by contraposition. Consider x, y ∈ XfT such that fL
T (x) = fL

T (y) =
z′ and fR

T (x) = fR
T (y) = z. Since O is an occurrence grammar, necessarily z′

is in the start graph or in the post-set of some production. Let us assume that
z′ ∈ Min(O). By definition of grammar morphism, there exists a morphism
k : |Gs| → XfT such that the following diagram commutes and the square is
a pullback, where the unlabelled arrow is an inclusion:

Min(O) |Gs|
tGs

ιsf

k

T ′ XfTfL
T fR

T
T

The fact that fL
T (x) = fL

T (y) = z′ and z′ ∈ Min(O) implies that there are
x′′, y′′ ∈ |Gs| such that k(x′′) = x and k(y′′) = y. Recalling that the triangle
on the right commutes we have

tGs(x
′′) = fR

T (k(x′′)) = fR
T (x) = fR

T (y) = fR
T (k(y′′)) = tGs(y

′′).

Since the graph Gs is injectively typed, we conclude that x′′ = y′′, and thus we
deduce the desired equality x = k(x′′) = k(y′′) = y. Similar reasoning applies
if the item z belong the post-set of some production, since the grammar is
semi-weighted and thus the right-hand sides of the productions are injectively
typed on produced items. !

Observe that, as an immediate consequence of the above lemma, if f : O → G
is a grammar morphism, where G is a semi-weighted grammar and O is an
occurrence grammar, then the morphism k, such that fT{ιsf , k}(Gs, Gs′) (see
Definition 15, condition (1)) is uniquely determined. Similarly, for each q ∈ P ,
with q′ = fP (q), the morphisms kL and kR such that fT{ιXf (q), kX}(Xq, Xq′)
for X ∈ {L, R} (see Definition 15, condition (2)) are uniquely determined.

Let O1 and O2 be occurrence grammars and let f : O1 → O2 be a morphism.
By Lemma 24, [fT ] is relational. Therefore we can safely replace the span and
the ι components of the morphism with the corresponding relation between
the items of T1 and T2, namely with

{(x1, x2) | ∃x ∈ XfT . fL
T (x) = x1 ∧ fR

T (x) = x2}
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This intuition, which is formalised in the rest of this section, will allow us
to present an equivalent but more manageable notion of morphisms between
occurrence grammars. First we introduce the notion of relation between graph-
ical structures.

Definition 25 (graph relation) A graph relation τ over graphs G1 =
〈N1, E1, s1, t1〉 and G2 = 〈N2, E2, s2, t2〉, written τ : G1 × G2, is a subgraph
τ ⊆ G1 ×G2 of the cartesian product of G1 and G2. Thus τ = 〈Nτ , Eτ , sτ , tτ 〉,
where Nτ ⊆ N1 × N2, Eτ ⊆ E1 × E2, sτ (〈e1, e2〉) = 〈s1(e1), s2(e2)〉, and sim-
ilarly for tτ . For x1 ∈ N1 ∪ E1 and x2 ∈ N2 ∪ E2, we write τ(x1, x2) if
〈x1, x2〉 ∈ Nτ ∪ Eτ .

Quite obviously, graph relations are one-to-one with relational morphisms in
Span(Graph). The isomorphism is defined as follows:

• Given a graph relation τ : G1 × G2, let Span(τ) be the relational span
Span(τ) = G1

π1← [τ ]
π2→ G2, where π1 and π2 are the projections on the first

and second component, respectively.

• Given a relational span f : G1
fL

← [Xf ]
fR

→ G2, let Rel(f) : G1 × G2 be
the graph relation such that Rel(f)(x1, x2) if there exists x ∈ Xf such that
fL(x) = x1 and fR(x) = x2, for x1 ∈ G1, x2 ∈ G2.

It is immediate to see that Span(·) and Rel(·) are well-defined and inverse
to each other. A graph relation over G1 and G2 naturally induces a relation
between sets of items of G1 and G2, as given in the next definition. Interest-
ingly, this relation coincides with the pullback-retyping relation induced by
the corresponding relational span.

Definition 26 (injective image through a graph relation) Let τ : G1×
G2 be a graph relation. Given two subsets Xi of items (edges and nodes) of Gi

(i ∈ {1, 2}), we write τ(X1, X2) and we say that X2 is the injective image of
X1 through τ , if

(1) for any x1 ∈ X1 and x2 ∈ G2, if τ(x1, x2) then x2 ∈ X2;
(2) for any x2 ∈ X2 there exists a unique x1 ∈ X1 such that τ(x1, x2).

Similarly, given two subgraphs G′
i of Gi (for i ∈ {1, 2}) we will write τ(G′

1, G
′
2)

whenever τ(N1 ∪ E1, N2 ∪ E2).

The relation τ is said to be injective on G′
1 if for any x1, y1 ∈ G′

1, if τ(x1, z)
and τ(y1, z) then x1 = y1.

Observe that the notation used for the the injective image through a graph
relation is the same as that for the pullback-retyping relation in Definition 14.
This abuse of notation is motivated by the result below.
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Lemma 27 (injective image is pullback-retyping) Given a relational
span f : G1 ↔ G2 and two subgraphs G′

1 and G′
2 of G1 and G2 respectively, we

have that f(G′
1, G

′
2) (with G′

i seen as graphs typed over Gi by the inclusion) if
and only if Rel(f)(G′

1, G
′
2).

PROOF. (⇒) Let f : G1 ↔ G2 be a relational span, and G′
1, G

′
2 be subgraphs

of G1 and G2, respectively. If f{ιf , k}(G′
1, G

′
2) for some morphisms ιf and k,

we know that the following diagram can be constructed

G′
1 G′

2
ιf

k

G1 Xf
fL fR G2

where the square is a pullback. Exploiting the fact that, by Lemma 24, the mor-
phism k is uniquely determined, we can easily conclude that Rel(f)(G′

1, G
′
2).

(⇐) Suppose that τ : G1 × G2 is a graph relation and that τ(G′
1, G

′
2). To

simplify the notation, let fτ denote the corresponding relational span Span(τ) :
G1 ↔ G2 and let us show that fτ (G′

1, G
′
2). By Definition 25, we know that

for any item x2 ∈ G′
2 there exists a unique x1 ∈ G′

1 such that τ(x1, x2): this
defines a mapping ιfτ : G′

2 → G′
1 which is easily shown to be a well-defined

graph morphism. Next, define k : G′
2 → Xfτ (= τ) as k(x2) = 〈ιfτ (x2), x2〉 for

all x2 ∈ G′
2. Then a straight calculation allows to deduce that the diagram

below is a pullback.

G′
1 G′

2
ιfτ

k

G1 XfτfL
τ fR

τ
G2

Coming back to the desired implication, assume that Rel(f)(G′
1, G

′
2). By

the above consideration we have that Span(Rel(f))(G′
1, G

′
2). Recalling that

Span(Rel(f)) = f , we conclude f(G′
1, G

′
2). !

We are now ready to present the equivalent formulation of the category of
occurrence grammars.

Definition 28 (Occurrence grammars and relational morphisms)
Let OGGRel be the category where objects are occurrence grammars and
morphisms are pairs f = 〈fP , fτ 〉 : O1 → O2 where fP : P1 → P2 is a function
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and fτ : T1 × T2 is a graph relation, such that

(1) fτ (|Gs2|, |Gs1|)
(2) for any q1 ∈ P1, if fP (q1) = q2 then

(a) fτ (•q1, •q2);
(b) fτ (q1, q2);
(c) fτ (q1

•, q2
•)

Theorem 29 The categories OGG and OGGRel are isomorphic.

PROOF. Let F : OGG → OGGRel and G : OGGRel → OGG be the
functors defined as follows:

• both F and G are the identity on objects;
• given a morphism f : O1 → O2 in OGG, f = 〈fP : P1 → P2, fT : T1 ↔

T2, ιf 〉, then F (f) = 〈fP : P1 → P2,Rel(fT ) : T1 × T2〉;
• given a morphism h : O1 → O2 in OGGRel, h = 〈hP : P1 → P2, hτ :

T1 × T2〉 then G(h) = 〈hP : P1 → P2, Span(hτ ) : T1 ↔ T2, ι}, where
the components of ι on the start graph and on the left- and right-hand
sides of the productions are uniquely determined, as in the proof of (⇐) in
Lemma 27, by exploiting conditions (1) and (2) of Definition 28.

The well-definedness of F and G can be proved easily by exploiting Lemma 27.
The fact that they are inverse to each other follows immediately because so
are Rel(·) and Span(·). !

5 Relating occurrence grammars and occurrence contextual nets

In this section we show that the relationship between graph grammars and
contextual nets sketched in Section 2 can be made much more tight if we
restrict to occurrence grammars and occurrence contextual nets. Formally, we
show that there exists an adjunction between the corresponding categories.
This is one of the key steps of the paper, since it will allow to exploit some
results in [8] for completing the chain of coreflections from the category of
grammars to the category of domains.

5.1 Occurrence contextual nets

Recall from [8] that in a contextual net N causality <N and asymmetric
conflict ↗N are defined exactly as for graph grammars (see Definitions 19
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and 20).

Definition 30 (occurrence contextual net) An occurrence contextual
net is a safe contextual net N = 〈S,Tr , F, C, m〉 such that

(1) the causality relation <N is irreflexive, its reflexive closure ≤N is a partial
order, and, for any t ∈ Tr, the set 9t: is finite and the asymmetric conflict
↗N is acyclic on 9t:;

(2) the initial marking m is the set of minimal places w.r.t. ≤N , i.e., m =
{s ∈ S : •s = ∅};

(3) each place s ∈ S is in the post-set of at most one transition, i.e., |•s| ≤ 1.

An occurrence contextual net is deterministic if relation ↗+
N , the transitive

closure of ↗N , is finitary and irreflexive.

As in the case of graph grammars, since the initial marking of an occurrence
contextual net is determined by its structure we will often omit to mention it.

Occurrence contextual nets determine a full subcategory of the category CN
of contextual nets. The morphisms in this subcategory can be described in a
slightly simpler way than general contextual net morphisms (Definition 10),
essentially because the multirelation among places can be shown to be a proper
relation [8].

Definition 31 (category of occurrence nets) Given two occurrence con-
textual nets N0 and N1, a morphism h : N0 → N1 is a pair h = 〈hT , hS〉,
where hT : Tr 0 ! Tr1 is a partial function and hS : S0 ×S1 is a relation such
that

(1) hS(m0, m1) and
(2) for each t ∈ Tr,

(i) hS(•t, •hT (t)), (ii) hS(t•, hT (t)•) (iii) hS(t, hT (t))

where the image of a set through a relation is defined as for graphs (see Defini-
tion 26). We denote by OCN the category of occurrence contextual nets with
the above morphisms.

5.2 From occurrence grammars to occurrence contextual nets

We next define a functor Net that maps each occurrence graph grammar to an
occurrence contextual net. This is done by forgetting the graphical structure
of the state, i.e., by considering each graph as an unstructured collection of
nodes and edges. Although in the transformation the graphical structure is
lost, due to the specific properties of occurrence graph grammars we will still
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get a tight relationship between the reachable states in the two models. In the
next section we will prove indeed that functor Net has a left adjoint.

Definition 32 (from occurrence grammars to contextual nets) Let
Net : OGGRel → OCN be the functor defined as follows:

• for any occurrence grammar O = 〈T, P, π〉, define Net(O) = 〈NT ∪
ET , P, •(.), (.), (.)•〉

• for any occurrence grammar morphism f : O1 → O2 in OGGRel, with
f = 〈fP : P1 → P2, fτ : T1 × T2〉, define Net(f) = 〈fP , Nfτ ∪ Efτ 〉.

In words, the net associated to a grammar has nodes and edges of the type
graph as places, and productions as transitions, with the pre-, context and
post-set functions defined exactly as for the grammar. Since the defining con-
ditions of occurrence grammars and of their morphisms are analogous, it is
straightforward to check that the functor Net is well-defined. Also, since causal-
ity, asymmetric conflict and concurrency are defined in O and in Net(O) exactly
in the same way, and thus a subgraph of the type graph in O is concurrent
iff the corresponding set of places in Net(O) is concurrent, several results for
graph grammars can be inherited from contextual nets.

Corollary 33 Let O1 and O2 be occurrence grammars and let f : O1 → O2 be
a grammar morphism. Then

(1) Morphisms preserve concurrency (Corollary 5.2 in [8])
If Gi is a subgraph of Ti for i ∈ {1, 2}, conc(G1) and fτ (G1, G2) implies
conc(G2). Furthermore concurrent items cannot be identified by a mor-
phism, i.e., for all concurrent items x, y ∈ T1, if fτ (x, z) and fτ (y, z) for
some z ∈ T2, then x = y.

(2) Pre-sets and contexts are concurrent (Proposition 5.1 in [8])
For any production q ∈ P1, conc(•q ∪ q).

(3) Morphisms properties (Theorem 5.1 in [8])
For any q1, q′1 ∈ P1 such that fP (q1) 7= ∅ 7= fP (q′1)
(a) 9fP (q1): ⊆ fP (9q1:);
(b) (fP (q1) = fP (q′1)) ∧ (q1 7= q′1) ⇒ q1#1q′1;
(c) fP (q1) ↗2 fP (q′1) ⇒ (q1 ↗1 q′1) ∨ (q1#1q′1).

We can also establish a tight connection between derivations in an occurrence
grammar O and firing sequences in the corresponding occurrence contextual
net Net(O). Given a marking m of Net(O), i.e., a set of items (nodes or edges)
in the type graph T of O, let us denote by graph(m) the greatest subgraph of T
which includes all the nodes in m and a subset of the edges in m, i.e., graph(m)
is obtained by viewing m as a graph, removing the dangling edges. Formally,
graph(m) = 〈N, E, s, t〉 where N = m∩NT , E = m∩{e ∈ ET | s(e), t(e) ∈ N}
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and the source and target functions are s = sT |E and t = tT |E.

Lemma 34 Let O be an occurrence grammar. Consider a firing sequence in
the corresponding contextual net Net(O), m0 [q0〉m1 [q1〉 . . . [qn〉mn, where m0

is the set of minimal places (edges and nodes of the start graph of O). Then
there is a derivation in O

min(O) →q0 . . . . . . →qn−1 graph(mn).

PROOF. The proof proceeds by induction on n.

(n = 0) Trivial.

(n → n + 1) Let m0 [q0〉m1 [q1〉 . . . [qn〉mn [qn+1〉mn+1 be a firing sequence of
Net(O). By inductive hypothesis there is

min(O) →q0 . . . . . . →qn−1 graph(mn).

To deduce that the production qn+1 can be applied to graph(mn) we only
need to show that the firing mn [qn+1〉mn+1 does not use (consume or read)
any edge e ∈ mn which does not belong graph(mn). In fact, to use (read or
consume) an edge e ∈ mn, production qn+1 must also use its source and target
nodes s(e) and t(e), which therefore must belong to mn: this ensures, by the
above definition, that e belongs to graph(mn).

Therefore production qn+1 can be applied to graph(mn), and it produces a new
graph, which is the structure defined as graph(mn)− •qn+1 ∪qn+1

• (componen-
twise), where, furthermore, all dangling edges are removed. Since Net(O) is
acyclic, it is easy to conclude that this structure is exactly graph(mn+1). !

From the above result and the fact that in an occurrence contextual net a
subset of places is concurrent if and only if it is a subset of a reachable marking
(Proposition 5.2 in [8]) we deduce that the following holds.

Proposition 35 Let O = 〈T, P, π〉 be any occurrence grammar. A subgraph
of T is concurrent if and only if it is the subgraph of a reachable graph.

Notice that, differently from Petri nets, it is not always the case that a concur-
rent subset of items is coverable, i.e. that it can be extended to a well-defined
reachable state (graph). Given an occurrence grammar, we only know that
any well-defined subgraph of the type graph whose items are concurrent is
the subgraph of a reachable graph. For instance, consider a simple grammar
having only the production q in the top of Fig. 2. The graphs are supposed
to be typed over the graph T of Fig. 10. Then the set {A, L} is concurrent,
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but it is not coverable: there is no reachable graph including both the items
A and L.

5.3 From occurrence contextual nets to occurrence grammars

In this section we prove that functor Net admits a left adjoint. This will be
a key result for completing the chain of coreflections from the category of
grammars to the category of domains.

Definition 36 (from occurrence contextual nets to grammars) Let
Gram : OCN → OGGRel be the functor defined as follows.

Let N = 〈S,Tr , F, C〉 be an occurrence contextual net. The corresponding spo
occurrence graph grammar is Gram(O) = 〈T, P, π〉, where:

• T = 〈N, E, s, t〉 is the type graph, with:
· N = S;

· E =




(s, s1, s2) ∈ S3 |
|•si| ≤ |•s| and •s 7= •si ⇒ •s ⊆ si for i ∈ {1, 2}

s ⊆ s1 ∩ s2, s• ⊆ (s1 ∪ s1
•) ∩ (s2 ∪ s2

•)




;

· s(s, s1, s2) = s1 and t(s, s1, s2) = s2.
• P = Tr is the set of production names, and for any t ∈ P the corresponding

production π(t) = Lt ! Rt is defined as follows:
· |Lt| = 〈•t ∪ t, {(s, s1, s2) | s ∈ •t ∪ t}, s, t〉
· |Rt| = 〈t• ∪ t, {(s, s1, s2) | s ∈ t• ∪ t}, s, t〉
with the graphical structure inherited from T , i.e., the source and the target
of an edge (s, s1, s2) are s1 and s2 respectively. The typing is the inclusion
and the (partial) inclusion of Lt in Rt is the obvious one.

Given an occurrence contextual net morphism f = 〈fT , fS〉 : N1 → N2, its
image is Gram(f) = 〈fT , fτ〉 : Gram(N1) → Gram(N2) with fτ : T1 ×T2 defined
by

• (fτ )N = fS;
• (fτ )E = {((s, s1, s2), (s′, s′1, s

′
2)) | (s, s′), (s1, s′1), (s2, s′2) ∈ fS}.

Intuitively, the image of an occurrence net N is a graph grammar where tran-
sitions become productions, and any place can be both a node and an edge
connecting two nodes. More precisely, the set of nodes in the type graph T
coincides with the set of places of N . An edge in the type graph is a triple
e = (s, s1, s2), which arises by viewing s as an edge connecting nodes s1 and
s2. The presence of such edges is subject to requirements which arise from the
specific features of the spo rewriting mechanism. First, if edge e is in the start
graph then also the source and target nodes must be in the start graph. Hence
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the requirement |•si| ≤ |•s|, from which if •s = ∅ then •si = ∅. Moreover, either
•si = •s or •s ⊆ si, since the production which generates an edge must generate
or preserve the source/target nodes. Any production which preserves an edge
must also preserve its source/target nodes, hence s ⊆ s1 ∩ s2. Any production
which consumes the edge must preserve or consume the source/target nodes,
hence s ⊆ (s1 ∪ •s1) ∩ (s2 ∪ •s2).

The production π(t) consumes (reads or produces, respectively) a node s or
an edge (s, s1, s2) if transition t consumes (reads or produces, respectively)
place s.

The following proposition states some simple, but useful properties of
Gram(N). They are exploited, in particular, to show that Gram is a well-
defined functor.

Lemma 37 (Properties of Gram(N)) For any occurrence contextual net N
the following holds:

(1) The structure Gram(N) is a well-defined spo grammar.
(2) For any s ∈ S, the sets •s, s and s• in Gram(N) are the same as •s, s

and s• in N . Similarly, if e = (s, s1, s2) is an edge in the type graph of
Gram(N) then •e, e and e• in Gram(N) are the same as •s, s and s• in
N .

(3) Causality and asymmetric conflict in Gram(N) and in N coincide.

PROOF.

1. The fact that Gram(N) is a well-defined grammar is almost obvious. We
only explicitly note that, by construction, for any production t in Gram(N)
the left- and right-hand side graphs Lt and Rt are well-defined. For instance,
let us prove that Lt is a well-defined graph. Let e = (s, s1, s2) be an edge in
Lt and let us show that its source s1 and target s2 are in Lt as well. Since
e ∈ Lt, by construction we have s ∈ •t∪ t, or, equivalently, t ∈ s∪s•. From the
definition of edges, we have that s ⊆ s1 ∩ s2 and s• ⊆ (s1 ∪ s1

•) ∩ (s2 ∪ s2
•).

Hence s ∪ s• ⊆ (s1 ∪ s1
•) ∩ (s2 ∪ s2

•) and thus t ∈ si ∪ si
• for i ∈ {1, 2}.

Therefore s1, s2 ∈ Lt. In a similar way, if e ∈ Rt we can show that s1, s2 ∈ Rt,
and thus Rt is a well-defined graph.

2, 3. Immediate by construction. !

Proposition 38 (Well-definedness of Gram) Gram : OCN → OGGRel
is a well-defined functor.
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PROOF. Let N be an occurrence contextual net. The fact that Gram(N)
satisfies properties (1)-(3) of Definition 22 easily follows by items (2) and (3)
of Lemma 37.

Given an occurrence contextual net morphism f = 〈fT , fS〉 : N → N ′, let
us show that Gram(f) = 〈fT , fτ 〉 : Gram(N) → Gram(N ′) is a well-defined
relational grammar morphism.

Let us show, for instance, that fτ (|Gs|, |Gs
′|). For nodes this is trivial, since

Lemma 37(2) implies that the set of nodes in the start graph coincides with
the initial marking of the original net and, by construction, the component of
fτ on nodes is fS. Hence it remains to show that

• given edges e ∈ |Gs| and e′ ∈ T ′ such that fτ (e, e′) we have e′ ∈ |G′
s|;

• given an edge e′ ∈ |G′
s| there exists a unique e ∈ |Gs| such that fτ (e, e′).

For the first part, let e = (s, s1, s2) in |Gs| and e′ = (s′, s′1, s
′
2) ∈ T ′ such

that fτ (e, e′). This means that fS(s, s′), fS(s1, s′1) and fS(s2, s′2). Note that by
construction s, s1 and s2 are in the initial marking of N . Thus s′, s′1 and s′2
are in the initial marking of N ′ and therefore (s′, s′1, s

′
2) is in the start graph

of Gram(N ′).

For the second part, let e′ = (s′, s′1, s
′
2) in |G′

s|. This means that s′, s′1, s′2 are
in the initial marking of N ′. Hence, by Condition 1 in Definition 31, there are
unique s, s1 and s2 in the initial marking of N such that fS(s, s′), fS(s1, s′1)
and fS(s2, s′2) and therefore there is a unique edge e = (s, s1, s2) ∈ |Gs| such
that fτ (e, e′). !

We finally show that functor Gram is left-adjoint to functor Net.

Theorem 39 (adjunction between OGGRel and OCN) The functor
Gram is left adjoint to Net. The component at N of the unit of the adjunction
ηN : N → Net(Gram(N)) is defined as ηN = 〈idTr , ηS〉, where:

ηS = {(s, s) | s ∈ S} ∪ {(s, (s, s1, s2)) | s ∈ S, (s, s1, s2) ∈ TGram(N)}

PROOF. Consider an occurrence contextual net N = 〈S, Tr, F, C〉. Then let
Gram(N) = 〈T, P, π〉 be the occurrence graph grammar as defined in Defini-
tion 36.

First observe that ηN : N → Net(Gram(N)), as defined above, is a well-
defined occurrence contextual net morphism. In fact, it is easy to see that, if
mN denotes the intial marking of net N (determined as the set of minimal
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places with respect to ≤N ), then

mNet(Gram(N)) = m ∪ {(s, s1, s2) ∈ TGram(N) | s ∈ m}.

Using this fact it is immediate to prove that ηN preserves the initial marking,
i.e., that ηS(mN , mNet(Gram(N))). Similarly, for any transition t we have

•ηT (t) = •t ∪ {(s, s1, s2) | s ∈ •t} ηT (t) = t ∪ {(s, s1, s2) | s ∈ t}
ηT (t)• = t• ∪ {(s, s1, s2) | s ∈ t•}

which imply ηs(•t, •ηT (t)), ηs(t, ηT (t)) and ηs(t•, ηT (t)•), as desired.

In order to conclude, we must show the that for any occurrence grammar
O0 = 〈T0, P0, π0〉 and for any morphism g : N → Net(O0) there exists a unique
morphism h : Gram(N) → O0, such that the following diagram commutes:

N
ηN

g

Net(Gram(N))

Net(h)

Net(O0)

Let h be defined as follows:

• The component on production is hP = gT ;
• The graph relation hτ is
· on nodes: hτ (s, n) if hS(s, n)
· on edges: hτ ((s, s1, s2), e) if hS(s, n), hS(s1, s(e)) and hS(s2, t(e)).

It is easy to see that morphism h, if it exists, must be defined as above. More-
over a long but straightforward calculation, mainly based on Lemma 37, allows
to show that h is actually a well-defined relational morphism for occurrence
grammars. !

6 Graph processes

In the theory of Petri nets the notion of occurrence net is strictly related to
that of process. A (deterministic) net process is a (deterministic) occurrence
net with a suitable morphism to the original net. Similarly, in this paper, as
it happens for the dpo approach [7], occurrence grammars are the basis for
defining a notion of graph process for spo grammars.

A (nondeterministic) graph process is aimed at representing in a unique
“branching” structure several possible computations of a grammar. The un-
derlying occurrence grammar makes explicit the causal structure of such com-
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putations since each production can be applied at most once and each items of
the type graph can be “filled” at most once. Via the morphism to the original
grammar, productions and items of the type graph in the occurrence gram-
mar can be thought of, respectively, as instances of applications of productions
and instances of items generated in the original grammar by such applications.
Actually, to allow for such an interpretation, some further restrictions must
be imposed on the process morphism. Recall that process morphisms in Petri
net theory must map places into places (rather than into multisets of places)
and must be total on transitions [20]. Similarly, for graph process morphisms
the left leg of the type-span is required to be an isomorphism in such a way
that the type-span can be thought of simply as a graph morphism. Further-
more a process morphism cannot map a production to the empty production,
a requirement corresponding to totality.

Definition 40 (strong morphism) A grammar morphism f : G1 → G2 is
called strong if fL

T : Xf → T1 is an isomorphism and fP (q1) 7= ∅, for any
q1 ∈ P1.

Hereafter we will always choose as concrete representative of the type-span of
a strong grammar morphism f , a span fT such that the left component fL

T is
the identity idT1 .

It is not difficult to verify that, if f is a strong morphism then, by Condition
1 of the definition of grammar morphism (Definition 15), ιsf : |Gs2| → |Gs1| is
an isomorphism. Similarly, by Condition 2, for each production q1 ∈ P1, ιf (q1)
is a pair of isomorphisms, namely each production q1 of G1 is mapped to a
production q2 of G2 whose untyped components are isomorphic.

Definition 41 (graph process) Let G be a graph grammar. A graph process
of G is a strong grammar morphism χ : Oχ → G, where Oχ is an occurrence
grammar. A graph process is deterministic if so is the underlying occurrence
grammar.

We will denote by Tχ, Gsχ, Pχ and πχ the components of the occurrence
grammar Oχ underlying a process χ.

In a deterministic process, the requirement that ↗+ is a finitary and irreflexive
ensures that all the productions of O can be applied in a single (possibly
infinite) derivation starting from Min(O), in any order compatible with ↗.
In particular, if O has a finite number of productions, let Max(O) denote the
graph obtained by taking the set of maximal items of Elem(O) and removing
all the edges which would be dangling. Then any derivation in O applying all
productions leads from Min(O) to Max(O).

Our notion of process can be shown to be compatible with the basic theory
of concurrency for the spo approach to graph grammars and, in particular,
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with the notion of shift-equivalence for derivations [18] and with the con-
current derivations of [23,35]. More precisely, starting from the above con-
siderations, it can be shown that, working up to isomorphism, deterministic
finite processes are in bijective correspondence with shift-equivalent classes
of derivations. Roughly, a deterministic process χ corresponds to a full class
of shift-equivalent derivations, starting from the graph Min(Oχ) and ending
into the graph Max(Oχ), typed by the restrictions of χT . This result can be
proved by adapting the analogous result for the dpo approach relating graph
processes and derivation traces ([15,5]).

7 Unfolding construction

This section introduces the unfolding construction which, applied to an spo
grammar G, produces a nondeterministic occurrence grammar Us(G) describ-
ing the behaviour of G. The unfolding is equipped with a strong grammar
morphism ϕG to the original grammar, making it a nondeterministic process
of G. Then, the unfolding construction for semi-weighted graph grammars is
shown to be functorial, right adjoint to the inclusion of OGG into SGG, thus
establishing a coreflection between the two categories.

The idea of the unfolding construction is to begin with the start graph of
the grammar, and to apply in all possible ways its productions to concurrent
subgraphs, recording in the unfolding each occurrence of production and each
new graph item generated in the rewriting process, both enriched with the
corresponding causal history.

A basic ingredient of the unfolding construction is the gluing operation. It
can be seen as a “partial application” of a rule to a given match, in the sense
that it generates the new items as specified by the production (i.e., items of
right-hand side not in the image), but items that should have been deleted
are not affected: intuitively, this is because such items may still be used by
another production in the nondeterministic unfolding.

Definition 42 (gluing) Let q = rq : Lq ! Rq be a production, G a graph
and m : Lq → G a graph morphism. We define, for any symbol ∗, the gluing
of G and Rq, according to m and marked by ∗, denoted by glue∗(q, m, G), as
the graph 〈N, E, s, t〉, where:

N = NG ∪ m∗(NRq) E = EG ∪ m∗(ERq)
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with m∗ defined by:

m∗(x) =





m(x) if x ∈ dom(rq);

〈x, ∗〉 otherwise.

The source and target functions and the typing are inherited from G and Rq.

The gluing operation keeps unchanged the identity of the items already in G,
and records in each newly added item from Rq the given symbol ∗. Notice
that (assuming that symbol ∗ is “fresh”) the gluing, as just defined, is a

concrete definition of a pushout object of the arrows G
m← Lq

rq
←

←↩ dom(rq) and

dom(rq)
rq
↪→ Rq.

As described below, the unfolding of a grammar is obtained as the limit of
a chain of occurrence grammars, each approximating the unfolding up to a
certain causal depth.

Definition 43 (depth) Let O = 〈T, P, π〉 be an occurrence grammar. The
function depth : Elem(O) → N is defined inductively as follows:

depth(x) = 0 for x ∈ |Gs| = Min(O);

depth(q) = max{depth(x) | x ∈ •q ∪ q} + 1 for q ∈ P ;

depth(x) = depth(q) for x ∈ q•.

It is not difficult to prove that depth is a well-defined total function, since
infinite descending chains of causality are disallowed in occurrence grammars.
Moreover, given an occurrence grammar O, the grammar containing only the
items of depth less than or equal to n, denoted by O[n], is a well-defined
occurrence grammar.

As expected, an occurrence grammar O is the (componentwise) union of its
subgrammars O[n], of depth n, for all n. Moreover it is not difficult to see that
if g : O → G is a grammar morphism, then for any n ∈ N, g restricts to a
morphism g[n] : O[n] → G. In particular, if T [n] denotes the type graph of O[n],
then the type-span of g[n] will be the equivalence class of

T [n] X [n]
gR

T
[n]

gL
T

[n]

TG

where X [n] = {x ∈ Xg | gL
T (x) ∈ T [n]}. Vice versa each morphism g : O → G is

uniquely determined by its truncations at finite depths.

The unfolding of a graph grammar is thus obtained as the limit of a chain
of occurrence grammars, each approximating the unfolding up to a certain
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causal depth.

Definition 44 (unfolding) Let G = 〈T, Gs, P, π〉 be a semi-weighted graph
grammar. We inductively define, for each n, an occurrence grammar
Us(G)[n] = 〈T [n], P [n], π[n]〉 and a pair of mappings ϕ[n] = 〈ϕT

[n] : T [n] →
T, ϕP

[n] : P [n] → P 〉. Then the unfolding Us(G) and the folding morphism
ϕG : Us(G) → G are the occurrence grammar and strong grammar morphism
defined as the componentwise union of Us(G)[n] and ϕ[n], respectively.

Since each morphism ϕ[n] is strong, assuming that the left component of the
type-span ϕT

[n] is the identity on T [n] we only need to define the right com-

ponent ϕR
T

[n]
: T [n] → T , which, by the way, makes 〈T [n], ϕR

T
[n]〉 a T -typed

graph.

(n = 0) The components of the grammar Us(G)[0] are T [0] = |Gs|, P [0] =

π[0] = ∅. Morphism ϕ[0] : Us(G)[0] → G is defined by ϕR
T

[0]
= tGs, ϕP

[0] = ∅,
and ι[0]

s
= id|Gs|.

(n → n + 1) The occurrence grammar Us(G)[n+1] is obtained by extending
Us(G)[n] with all the possible production applications to concurrent subgraphs
of its type graph. More precisely, let M [n] be the set of pairs 〈q, m〉 such that

q ∈ P is a production in G, m : Lq → 〈T [n], ϕR
T

[n]〉 is an injective match and

m(|Lq|) is a concurrent subgraph of T [n]. Then Us(G)[n+1] is the occurrence
grammar resulting after performing the following steps for each 〈q, m〉 ∈ M [n].

• Add to P [n] the pair 〈q, m〉 as a new production name and extend ϕP
[n]

so that ϕP
[n](〈q, m〉) = q. Intuitively, 〈q, m〉 represents an occurrence of q,

where the match m is needed to record the “history”.

• Extend the type graph T [n] by adding to it a copy of each item generated by
the application q, marked by 〈q, m〉 (in order to keep trace of the history).

The morphism ϕR
T

[n]
is extended consequently. Formally, the T -typed graph

〈T [n], ϕR
T

[n]〉 is replaced by glue〈q,m〉(q, m, 〈T [n], ϕR
T

[n]〉).
• The production π[n](〈q, m〉) has the same untyped components of π(q) and

the morphisms ι[n](〈q, m〉) are identities, that is ι(〈q, m〉) = 〈id|Lq|, id|Rq|〉.
The typing of the left-hand side is determined by m, and each item x in
|Rq| − rq(|dom(rq)|) is typed over the corresponding new item 〈x, 〈q, m〉〉 of
the type graph.

It is not difficult to verify that for each n, Us(G)[n] is a (finite depth) occurrence
grammar, and Us(G)[n] ⊆ Us(G)[n+1], componentwise. Therefore Us(G) is a
well-defined occurrence grammar. Similarly for each n ∈ N we have that ϕ[n]

is a well-defined morphism from Us(G)[n] to G and ϕ[n] coincides with the
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restriction of ϕ[n+1] to Us(G)[n]. This induces a unique morphism ϕG : Us(G) →
G.

The deterministic gluing construction ensures that, at each step, the order
in which productions are applied does not influence the final result of the
step. Moreover if a production is applied twice at the same match (even if in
different steps), the generated items are identical and thus they appear only
once in the unfolding.

It is possible to show that the unfolding construction applied to an occur-
rence grammar yields a grammar which is isomorphic to the original one. For
instance, the unfolding of grammar G in Fig. 10 is (up to isomorphism) the
grammar G itself.

By unfolding the running example grammar SR of Fig. 3 we obtain the (infi-
nite) occurrence grammar which is partially represented in Fig. 11. The folding
morphism f : Us(SR) → SR is defined as follows:

• fP maps each production of the kind namei or namei,j in Us(SR) to pro-
duction name in SR;

• the span fT relates any graph item namei or namei,j in Us(SR) to the item
name in SR.

The unfolding construction has been defined, up to now, only at the “ob-
ject level”. We next face the problem of characterising the unfolding as a
coreflection between suitable categories of graph grammars and of occur-
rence grammars. More specifically the unfolding construction is extended to
a functor Us : SGG → OGG that is right adjoint to the inclusion functor
Is : OGG → SGG.

The restriction to semi-weighted graph grammars is essential for the above
categorical result when one uses general morphisms. However, in Section 9.1 we
will see how, suitably restricting graph grammar morphisms to still interesting
subclasses (including, for instance, the morphisms of [21]) it is possible to
restore the characterisation of the unfolding as a universal construction for
general, possibly non semi-weighted, grammars.

Occurrence grammars are safe, and therefore a fortiori semi-weighted gram-
mars. Thus there exists an inclusion functor Is : OGG → SGG. The next
theorem shows that the unfolding of a grammar Us(G) and the folding mor-
phism ϕG are cofree over G. Therefore Us extends to a functor that is right
adjoint of Is and thus establishes a coreflection between SGG and OGG.

Theorem 45 (coreflection between SGG and OGG) Let G be a semi-
weighted grammar, let Us(G) be its unfolding and let ϕ : Us(G) → G be the
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Gk

Gk+1 Pk+1

MSi

msi sndi

MPi

Ri M

rcvi

Pi M

Si Rj

msi ci,j

Si Rj

mri,jci,j

Si M Rj

msi sndi rcvj

Si M Rj

msi ci,j

(Conni,j)

(Commi,j)

Si

Ri

G2 P2 S2 R2

snd1 rcv1
ms1 mr1,2

G0

G1 P1 S1 M R1

ms2 mr2,1

snd2 rcv2

c1,2c2,1

Type Graph

G0 M

Start Graph

(Recvi)

(Sendi)

(Genk) (EndSi)

(EndRi)

Fig. 11. Unfolding of the grammar SR in Fig. 3 (k ≥ 0 and i, j > 0).

folding morphism as in Definition 44. Then for any occurrence grammar O and
for any morphism g : O → G there exists a unique morphism h : O → Us(G)
such that the following diagram commutes:

Us(G)
ϕ

G

O

h g

Therefore Is > Us.
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PROOF. To avoid a cumbersome notation, let us fix the names of the compo-
nents of the various grammars. Let G = 〈T, Gs, P, π〉, Us(G) = 〈T ′, G′

s, P
′, π′〉,

and O = 〈To, Gso, Po, πo〉.

According to Definition 15, a morphism h : O → Us(G) is determined by a
semi-abstract span [hT ] : To → T ′, a function hP : Po → P ′, and a family of
morphisms ιh = {ιh(qo) | qo ∈ Po} ∪ {ιsh} satisfying suitable requirements.

As a first step, we show that both the left component of [hT ] and the family ιh
are uniquely determined by the condition ϕ◦h = g and by the properties of the
folding morphism ϕ. In fact, let in the following diagram 〈gL

T , XgT , gR
T 〉 : To →

T be an arbitrary but fixed representative of [gT ], and let 〈id, T ′, ϕR
T 〉 : T ′ → T

be a representative of [ϕT ] (where, since ϕ is strong, we can choose the identity
of T ′ as left component).

XgT

hR
Tid

gL
T gR

T

To XgTgL
T hR

T
T ′ T ′

id ϕR
T

T

Then it is easily shown that for any semi-abstract span [hT ] : To → T ′ such
that [ϕT ]◦ [hT ] = [gT ] we can choose a representative of the form 〈gL

T , XgT , hR
T 〉

for some hR
T , because the inner square becomes a pullback. This shows that,

without any loss of generality, we can assume that the left components of [hT ]
and [gT ] coincide.

As far as the family of morphisms ιh is concerned, recall that morphism ιsϕ :
|Gs| → |G′

s| is the identity by Definition 44; thus, since ϕ ◦ h = g implies
ιsh ◦ ιsϕ = ιsg, we deduce that ιsh = ιsg. The same holds for the components of
ιh(qo) for any production qo ∈ Po, by observing that ιh(qo)◦ιϕ(hP (qo)) = ιg(qo)
must hold, and that ιϕ(q′) is a pair of identities for each q′ ∈ P ′.

Existence

We will show inductively that for each n ∈ N we can find a morphism h[n]

such that the diagram

Us(G)
ϕ

G

O[n]

h[n]

g[n]

commutes, and such that h[n+1] extends h[n]. Then the morphism h we are look-
ing for will be the componentwise union of the chain of morphisms {h[n]}n∈N.
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(k = 0) By definition, the occurrence grammar O[0] consists of the start
graph of O only, typed identically on the type graph, with no productions, i.e.,
O[0] = 〈|Gso|, ∅, ∅〉. By the considerations above, to determine morphism h[0] :

O[0] → Us(G) we only have to provide the right component hR
T

[0]
: XgT

[0] → T ′

of [hT
[0]]. Moreover, to be a well defined grammar morphism, h[0] must preserve

the start graph. By condition (1) of Definition 15 applied to g[0] : O[0] → G,
there is a morphism k : |Gs| → XgT

[0] such that the diagram below commutes,
and the square is a pullback. Furthermore, by the pullback properties k is an
isomorphism, and, since G is a semi-weighted grammar, by Lemma 24, k is
uniquely determined.

|Gso|
id

|Gs|
tGs

ιsg

k

|Gso| XgT

[0]

gL
T

[0]
gR

T
[0] T

Now we define hR
T

[0]
= tG′

s
◦ k−1, completing the definition of h[0]. The next

diagram shows that h[0] satisfies the requirement of preservation of the start
graph. The fact that g[0] = ϕ ◦ h[0] easily follows by construction.

|Gso|
id

|Gs|
tG′

s

ιsg

k

|Gso| XgT

[0]

gL
T

[0]
hR

T
[0]

=tG′
s
◦k−1

T ′

(n → n+1) We have to define morphism h[n+1] : O[n+1] → Us(G) by extending
h[n] to the items of To∪Po of depth equal to n+1. Without any loss of generality
we assume that there is just one production qo in O[n+1] with depth(qo) = n+1
(the general case can be carried out in a completely analogous way). To ensure
ϕP ◦ hP

[n+1] = gP
[n+1], the production qo must be mapped to a production q′

in Us(G), which is an occurrence of the production q = gP (qo) of G. In other
words, q′ will be 〈q, m〉, with m : Lq → 〈T ′, ϕR

T 〉 a match satisfying suitable
conditions.

The defining conditions of grammar morphisms, applied to g[n] : O[n] → G,
ensure the existence of a morphism kL, such that the diagram below commutes,
where the square is a pullback.

|Lqo|
tLqo

|Lq|
tLq

ιLg (qo)

kL

To
[n] XgT

[n]

gL
T

[n]
gR

T
[n] T
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Moreover, since G is a semi-weighted grammar, by Lemma 24, gT is relational
and thus the arrow kL is uniquely determined. By Definition 43, depth(x) ≤ n
for all x ∈ tLqo

(|Lqo|) = •qo ∪ qo, and thus h[n] is defined on the pre-set and on
the context of qo. Therefore we can construct the following diagram.

|Lqo |
tLqo

|Lq|
m=hR

T
[n]◦kL

ιLg (qo)

kL

To
[n] XgT

[n]

gL
T

[n]
hR

T
[n] T ′

Notice that m = hR
T

[n] ◦ kL can be seen as a T -typed graph morphism from

Lq to 〈T ′, ϕR
T 〉. In fact, it satisfies ϕR

T ◦ m = ϕR
T ◦ hR

T
[n] ◦ kL = gR

T
[n] ◦ kL = tLq .

Moreover, recalling that hT
[n] = 〈gL

T
[n]

, hR
T

[n]〉, by the diagram above we have
that hT

[n](Lqo , 〈|Lq|, m〉). Since by definition of occurrence grammar tLqo
(|Lqo|)

is a concurrent subgraph of To, by Corollary 33.(1), we can conclude that
m(|Lq|) is a concurrent subgraph of T ′. Let us prove that, in addition, the
mapping m is a well-defined injective match. First observe that for x, y ∈ |Lq|

m(x) = m(y) ⇒ kL(x) = kL(y). (†)

In fact, assume that m(x) = m(y), let x′ = kL(x) and y′ = kL(y) and

suppose x′ 7= y′. From the fact that m(x) = m(y) we deduce hR
T

[n]
(x′) =

hR
T

[n]
(y′), and therefore, since h[n] is relational, gL

T
[n]

(x′) 7= gL
T

[n]
(y′). Now ob-

serve that, by commutativity of the square in the diagram above, gL
T

[n]
(x′),

gL
T

[n]
(y′) ∈ tLqo

(|Lqo |) and moreover hT
[n](gL

T
[n]

(x′), z), hT
[n](gL

T
[n]

(y′), z), where
z = m(x) = m(y). But according to Corollary 33.(1) this would imply that
tLqo

(|Lqo|) is not concurrent, contradicting the definition of occurrence gram-
mar. Hence, as desired, it must be kL(x) = kL(y). Now, by definition of oc-
currence grammar, the typing tLq is injective and thus, by (†), we conclude
that m is injective, as desired.

Since m : Lq → 〈T ′, ϕR
T 〉 is an injective match and m(|Lq|) is concurrent, by

definition of unfolding q′ = 〈q, m〉 is a production name in P ′. Then the pro-
duction component hP

[n+1] of the morphism h[n] can be defined by extending
hP

[n] with hP
[n+1](qo) = q′. The diagram above shows that, with this exten-

sion, the left-hand side of the production is preserved. Now, it can be seen that
there is a unique way of extending the type-span hT

[n] to take into account
also the right-hand side of production q′. In fact, consider the diagram below
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expressing, for morphism g[n+1], the preservation of the right-hand side of qo.

|Rqo|
tRqo

|Rq|
tRq

ιRg (qo)

kR

To
[n+1] XgT

[n+1]

gL
T

[n+1]
gR

T
[n+1] T

To complete the definition of h[n] we must define the right component hR
T

[n+1]
:

XgT

[n+1] → T ′, extending hR
T

[n]
on the items which are in X = XgT

[n+1]−XgT

[n].
Now one can verify that kR establishes an isomorphism between X and |Rq|−
rq(dom(rq)). Then the condition requiring that hT

[n+1] preserves the right-

hand side of qo forces us to define, for each x ∈ X, hR
T

[n+1]
(x) = tLq′ (k

R−1
(x)).

The fact that g[n] = ϕ ◦ h[n] easily follows by construction.

Uniqueness
Uniqueness follows from the fact that at each step we are forced to define the
morphism h as we have done to ensure commutativity. !

8 Event structure semantics for SPO graph grammars

In this section, after reviewing the basics of asymmetric event structures,
we discuss how, combining the adjunction between occurrence graph gram-
mars and occurrence nets and the results proved for contextual nets in [8], we
can obtain a coreflective asymmetric event structure semantics for spo graph
grammars.

8.1 Asymmetric event structures

Asymmetric event structures [8] are a generalisation of prime event structures
where the conflict relation is allowed to be non-symmetric. As already men-
tioned, this is needed to give a faithful representation of dependencies between
events in formalisms such as string, term, graph rewriting and contextual nets,
where a rule may preserve a part of the state, in the sense that part of the state
is necessary for applying the rule, but it is not affected by the application. In
this setting the symmetric binary conflict is no longer a primitive relation,
but it is represented via “cycles” of asymmetric conflict. As a consequence,
pes’s can be identified with a special subclass of asymmetric event structures,
namely those where all conflicts are actually symmetric.
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We next review some basics of asymmetric event structures. For a wider treat-
ment we refer the reader to [8]. For technical reasons we first introduce asym-
metric pre-event structures. Then asymmetric event structures will be defined
as special asymmetric pre-event structures satisfying a suitable condition of
“saturation”.

Definition 46 (asymmetric event structure) A asymmetric pre-event
structure (pre-aes) is a tuple A = 〈E,≤,↗〉, where E is a set of events
and ≤, ↗ are binary relations on E called causality and asymmetric conflict,
respectively, such that:

(1) ≤ is a partial order and 9ε: = {ε′ ∈ E | ε′ ≤ ε} is finite for all ε ∈ E;
(2) ↗ satisfies, for all ε, ε′ ∈ E:

(a) ε < ε′ ⇒ ε ↗ ε′, (b) ↗ is acyclic in 9ε:,

where, as usual, ε < ε′ means ε ≤ ε′ and ε 7= ε′.

An asymmetric event structure (aes) is a pre-aes which satisfies:

(3) for any ε, ε′ ∈ E, if ↗ is cyclic in 9ε: ∪ 9ε′: then ε ↗ ε′.

The asymmetric conflict relation ↗ determines an order of execution locally
to each computation: if ε ↗ ε′ and ε, ε′ occur in the same computation then ε
must precede ε′. Therefore a set of events ε1 ↗ ε2 ↗ . . . ↗ εn ↗ ε1 forming
a cycle of asymmetric conflict can never occur in the same computation, a
fact that can be naturally interpreted as a kind of conflict over sets of events.
Condition (3) above ensures that, in an aes, this kind of conflict is inherited
through causality, a typical property also of pes’s.

Any pre-aes can be “saturated” to produce an aes.

Definition 47 (saturation) Given a pre-aes A = 〈E,≤,↗〉, its saturation,
denoted by A, is the aes 〈E,≤,↗′〉, where ↗′ is defined as ε ↗′ ε′ if (ε ↗ ε′)
or ↗ is cyclic in 9ε: ∪ 9ε′:.

It is immediate to prove that for any A its saturation A is a well-defined aes.

Definition 48 (category of AES’s) Let A0 and A1 be two aes’s. An aes-
morphism f : A0 → A1 is a partial function f : E0 ! E1 such that, for all
ε0, ε′0 ∈ E0, assuming that f(ε0) and f(ε′0) are defined,

(1) 9f(ε0): ⊆ f(9ε0:);
(2) (a) f(ε0) ↗1 f(ε′0) ⇒ ε0 ↗0 ε′0;

(b) (f(ε0) = f(ε′0)) ∧ (ε0 7= ε′0) ⇒ ε0 ↗0 ε′0.

We denote by AES the category having asymmetric event structures as objects
and aes-morphisms as arrows.
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The notion of configuration extends smoothly from pes’s to aes’s. A config-
uration is a subset C of events, closed under causality (i.e., 9ε: ⊆ C for any
ε ∈ C) such that ↗+ is well-founded and finitary in C (well-foundedness of
asymmetric conflict implies its acyclicity which, in turn, corresponds to the
absence of conflicts). The main novelty is the fact that the computational or-
der between configurations is not simply set-inclusion. In fact, a configuration
C can be extended with an event ε′ only if for any event ε ∈ C, it does not
hold that ε′ ↗ ε (since, in this case, ε would prevent the execution of ε′).
The set of configurations of an aes with such a computational order is a fini-
tary coherent prime algebraic domain (domain, for short). The corresponding
functor from AES to Dom, the category of domains, has a left adjoint which
maps each domain to the corresponding pes (each pes can be seen as a special
aes where conflict is symmetric). Hence Winskel’s equivalence between PES,
the category of prime event structures, and Dom generalises to a coreflection
between AES and Dom.

AES
La

⊥ Dom
Pa

As mentioned in the introduction, aes’s have been introduced to provide a
coreflective concurrent semantics for contextual nets. In particular, the pa-
per [8] establishes a coreflection between the category of occurrence contextual
nets and AES

OCN
Ea

⊥ AES
Na

The functor Ea maps any occurrence contextual net N to the aes obtained
by saturating the pre-aes consisting of the set of transitions, endowed with
causality and asymmetric conflict. Given an occurrence net morphism f =
〈fT , fS〉 : N → N ′ we have Ea(f) = fT . The component at an aes A of the
unit κ : 1 → Ea ◦ Na is the identity.

8.2 Occurrence grammars and AES’s

The adjunction between OGGRel and OCN in Section 5, can be com-
posed with the coreflection between OCN and AES mentioned above, thus
leading to an adjunction between OGGRel and AES. Let us denote by
Es : OGGRel → AES the functor defined as Ea ◦ Net and by Ns : AES →
OGGRel the functor defined as Gram◦Na. According to this definition, given
an occurrence grammar O, the corresponding aes is obtained by saturating
the pre-aes consisting of the set of production names of O, endowed with
the relation of causality and asymmetric conflict as defined in Definitions 19
and 20.
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q1

q3 q2 q4

∅

{3} {4} {1}
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{1, 3, 4} {1, 2, 3} {1, 2, 4}

{1, 2, 3, 4}

(a) (b)

Fig. 12. The (a) aes and (b) domain of configurations for G of Fig. 10.

Gen0

Send1

Gen2

Recv2 Recv1 Send2

Gen1

Conn1,2

Comm1,2 Comm2,1

Conn2,1

EndS1 EndR2 EndR1 EndS2

# #

Fig. 13. Event structure of the example grammar.

For instance, Fig. 12 shows the aes (and the domain of its configurations)
associated to the occurrence grammar G in Fig. 10. In the aes straight and
dotted arrows represent causality and asymmetric conflict, respectively. In any
configuration the event corresponding to qi is written as “i”.

The aes corresponding to grammar SR in Fig. 3 can be found in Fig. 13.
Note that any Send and Recv event is caused by the Gen event generating
the corresponding process. A process cannot be a sender and a receiver at
the same time, hence the corresponding events are in conflict. A Conn event
requires (and thus is caused by) a Send and a Recv events, which must be
performed by different processes. Any Conn event is a cause for a Comm
event, which establishes the communication. Observe that Conn and Comm
events can be prevented by the execution of events EndS and EndR (formally,
because the latter events delete the process node which is preserved by the
former). Hence events EndS and EndR are in asymmetric conflict with events
Conn and Comm.

The adjunction between OGGRel and AES is actually a coreflection, as
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expressed by the following corollary.

Corollary 49 (coreflection between OGGRel and AES) The func-
tor Ns = Gram ◦ NaGram ◦ Na : AES → OGGRel is left-adjoint to
Es = Ea ◦ Net : OGGRel → AES and they establish a coreflection between
OGGRel and AES.

PROOF. The fact that Ns is left-adjoint to Es follows from the fact that the
composition of left-adjoint functors is a left adjoint.

Furthermore, let κ : 1
·→ Ea ◦Na be the unit of the coreflection between OCN

and AES in [8] (which is the identity), and let η : 1
·→ Net ◦Gram be the unit

of the adjunction OGGRel and OCN, as defined in Section 5. Then the unit
of the adjunction Ns > Es at an aes A turns out to be Ea(ηNa(A)) ◦ κA, which
is the identity. Therefore the adjunction is a coreflection. !

9 Unfolding semantics of other classes of grammars

In this section we present some possible extensions of the work in this paper,
first to general, non-semi-weighted spo graph grammars, next to spo gram-
mars with possibly non-injective matches, and finally to graph grammars in
the dpo approach. We discuss which results can be generalised to each of these
three classes of grammars, and under which assumptions.

9.1 Unfolding semantics of general SPO grammars

A natural question regards the possibility of extending the results in this pa-
per to the full category GG of spo graph grammars. Here we show that
considering general, possibly non semi-weighted, graph grammars the result
characterising the unfolding as a coreflection fails. However considering a re-
stricted, still meaningful, subclass of grammar morphisms, the construction
in the paper can be easily adapted in order to provide a functorial concurrent
semantics for the full class of spo graph grammars. In this setting, the un-
folding can be again characterised as a coreflection, while, unfortunately the
adjunction with domains is lost.

First, we notice that in the characterisation of the unfolding as a coreflection
(Theorem 45) the restriction to semi-weighted grammars plays a basic role.
In fact, in the proof of such theorem, the uniqueness of morphism h relies on
Lemma 24 which in turn requires the grammar G to be semi-weighted. Unfor-
tunately the problem does not reside in our proof technique: the cofreeness of

50



|Gs2 ||Gs1 |

x

T1 XgT T2

B

11 2

yA

q2
2:B1:B

Grammar G2

B
T2 =

2:B1:B
Gs2 =

q1
1:A

Grammar G1

A
T1 =

1:A
Gs1 =

Fig. 14. The grammars G1 and G2, and the pullback-retyping diagram for their start
graphs.

the unfolding of Us(G) and of the folding morphism ϕG over G may really fail
to hold if the grammar G is not semi-weighted.

For instance, consider grammars G1 and G2 in Fig. 14, where typed graphs
are represented by decorating their items with pairs “concrete identity:type”.
The grammar G2 is not semi-weighted since the start graph is not injectively
typed, while G1 is clearly an occurrence grammar. The unfolding Us(G2) of the
grammar G2, according to Definition 44, is defined as follows. The start graph
and type graph of Us(G2) coincide with |Gs2|. Furthermore, Us(G2) contains
two productions q′2 = 〈q2, m′〉 and q′′2 = 〈q2, m′′〉, which are two occurrences
of q2 corresponding to the two possible different matches m′, m′′ : Lq2 → Gs2

(the identity and the swap).

Observe that there exists a morphism g : G1 → G2 which is not relational, i.e.,
the property in Lemma 24 fails to hold. The component gP on productions is
defined by gP (q1) = q2, while the type span gT is defined as follows: XgT is
a discrete graph with two nodes x and y, gL

T (x) = gL
T (y) = A and gL

T (x) =
gL

T (y) = B (see the bottom row of the diagram in Fig. 14). Consider the
pullback-retyping diagram in Fig. 14, expressing the preservation of the start
graph for morphism g (Condition (1) of Definition 15). Notice that there are
two possible different morphisms k and k′ from |Gs2| to XgT (represented via
plain and dotted arrows, respectively) such that the diagram commutes and
the square is a pullback. Now, it is not difficult to see that, correspondingly, we
can construct two different morphisms hi : G1 → Us(G2) (i ∈ {1, 2}), such that
ϕG2 ◦ hi = g, the first one mapping production q1 into q′2 and the second one
mapping q1 into q′′2 . An immediate consequence of this fact is the impossibility
of extending Us on morphisms, in order to obtain a functor which is right
adjoint to the inclusion I : OGG → GG.
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The above considerations, besides giving a negative result, also suggest a way
to partially overcome the problem. An inspection of the proof of Theorem 45
reveals that the only difficulty which prevents us to extend the result is the non
uniqueness of the morphisms k, kL and kR in the pullback-retyping diagram.
In other words, if we consider any morphism g : O → G such that [gT ] is
relational then we can prove, as in Theorem 45, the existence of a unique
morphism h : O → Us(G) making the following diagram commute:

Us(G)
ϕG

G

O

h g

The coreflection result can now be restored by limiting our attention to any
(non full) subcategory ĜG of GG, where objects are general graph grammars,
but all morphisms have a relational span as type component. The only thing
to prove is that the unique morphism h constructed in the proof of Theorem 45
is indeed an arrow in ĜG. As worked out in details in [1] for the dpo case,
the generalisation to extended occurrence grammars (which are called simply
occurrence grammars there) does not cause additional complications.

The naive solution of taking all relational morphisms as arrows of ĜG does not
work because they are not closed under composition. A possible appropriate
choice is instead given by the category GGR, where the arrows are grammar
morphisms f such that the left component fL

T of the type span is mono.

Definition 50 (Category GGR) We denote by GGR the subcategory of
GG, where for any arrow f the left component fL

T of the type span is mono.
Furthermore we denote by OGGR the full subcategory of GGR having occur-
rence grammars as objects.

By the properties of pullbacks, the arrows in GGR are closed under composi-
tion and thus GGR is a well-defined subcategory of GG.

Theorem 51 (unfolding as coreflection - reprise) The unfolding con-
struction can be turned into a functor UR

s : GGR → OGGR, having the
inclusion IR

s : OGGR → GGR as left adjoint, establishing a coreflection be-
tween the two categories.

PROOF. By the considerations above, the only thing to prove is that the
morphism h constructed as in the proof of Theorem 45 is an arrow in OGGR.
But this is obvious since, by construction hL

T = gL
T and thus hL

T is mono. !

Observe that although not completely general, the above results apply to
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a remarkable class of grammar morphisms. In particular, they apply to the
morphisms used in [21] where the type component of an arrow from G1 to G2

is a partial graph morphism from T1 to T2.

Now, a functor ER
s : OGGR → AES can be defined straightforwardly, by

composing the corresponding restrictions of the functors Net and Ea.

Summing up, we have the following chain of functors providing a concurrent
semantics to the full class of spo grammars.

GGR

UR
s

⊥ OGGR
ER

s
AES

La

∼ Dom
P

Unfortunately, morphisms in the range of the functor Ns, which maps each aes
to a canonical occurrence grammar, are not in GGR and thus the construction
in Section 8 does not induce a functor in this restricted setting, i.e., Ns does
not restrict to a functor from AES to OGGR. Hence the whole semantic
transformation is not characterised as an adjunction.

9.2 Unfolding semantics of SPO grammars with non-injective matches

In this paper we considered spo grammars with injective matches. As for-
mally proved in [26,27], this choice does not affect the expressiveness of the
formalism: for any spo graph grammar dealing with general matches we can
obtain a grammar with injective matches which is “essentially equivalent” to
the original one (e.g., which generates the same graph language). The new
grammar is obtained by replacing every production of the original grammar
by a finite (if the left-hand sides of productions are finite) set of productions.

Still, one could wonder if something goes wrong when injectivity condition is
relaxed. It can be seen that a similar theory can be developed by allowing
matches to be non-injective, but only on preserved items (this formalises the
intuition that a single item can be read with multiplicity greater than one).

Definition 52 (valid match) A match g : Lq → G is called valid when for
any x, y ∈ |Lq|, if g(x) = g(y) then x, y ∈ dom(rq).

Conceptually, a match is not valid if it specifies a use of the resources which is
somehow inconsistent, i.e., it requires a single resource to be consumed twice,
or to be consumed and preserved at the same time. In other words, a resource
can be accessed twice (or, more generally, with multiplicity greater than one)
by a rewriting step only to be read.

All the results in the paper can be easily adapted to spo grammars with
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valid matches, but we are forced to consider a more restrictive notion of semi-
weightedness for grammars requiring productions to be injective not only on
the produced but also on the preserved items.

Definition 53 (semi-weighted grammars) A grammar G is semi-
weighted if (i) the start graph Gs is injective, and (ii) for each production
q ∈ P , the right-hand side graph Rq is injective.

With this notion of semi-weightedness the encoding of general grammars into
semi-weighted grammars presented at the end of Section 2 would not work
(the rules used in the encoding can be non-injective on the preserved part)
and it is unclear whether an encoding exists in this case.

Summing up, the choice of restricting to injective matches does not represent
a limitation for the expressiveness of the formalism, and it is technically con-
venient since it allows to have a coreflective semantics for a larger class of
grammars, where general grammars can be encoded.

9.3 Unfolding semantics of DPO grammars

Another natural question regards the possibility of exploiting the work in this
paper to obtain analogous results for the dpo approach to graph rewriting.
Recall that a dpo production consists of a span of injective total morphisms
in T -Graph

L
φL←↩ K

φR
↪→ R,

where L, K, R are T -typed graphs. To apply such rule to a T -typed graph
G one must find a match of the production, i.e., a total graph morphism
φ : L → G such that a diagram

L
φ

K
φL φR

R

G D H

can be constructed in T -Graph, where both squares are required to be
pushouts. As for spo grammars we will consider injective matches only.

Roughly, the effect of an spo rule r : L ! R is similar to that of the “cor-

responding” dpo rule D(r) : L
r←←↩ dom(r)

r→
↪→ R. However, the fundamental

difference in the dpo rewriting mechanism is the fact the left pushout square
in the diagram exists only if the match satisfies an application conditions.
Informally, without getting too much into technical details, according to the
so-called dangling condition a production q cannot be applied to a match if its
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application would remove some nodes and not the attached edges, or, in other
word, if the application of the production would leave some dangling edges.

The dpo and spo approaches are equivalent when we restrict to productions
which do not delete nodes.

Definition 54 (node-preserving grammars) An spo grammar G is called
node-preserving if for any q ∈ P , the production π(q) = rq : Lq ! Rq is total
on nodes. Similarly, a dpo grammar is node-preserving if for any q ∈ P , in

the production π(q) = Lq
φL←↩ Kq

φR
↪→ Rq the function φL is surjective on nodes.

Let GG− denote the full subcategory of node-preserving spo graph gram-
mars. It is immediate to see that GG− is isomorphic to the category of
node-preserving dpo graph grammars, with the morphisms defined in [7].
The isomorphism maps each spo graph grammar G = 〈T, Gs, P, π〉 to the dpo
grammar D(G) = 〈T, Gs, P, π′〉 where any production q of is transformed as
described above, i.e., π′(q) = D(π(q)). In this transformation, spo derivations
corresponds to dpo derivations, and vice versa.

Now, it is not difficult to see that all the results in this paper can be re-
formulated for the subclass of node-preserving spo/dpo graph grammars. In
particular we have the chain of adjunctions:

SGG−

U′
s

⊥ OGG− ? OGGRel−
Net′
⊥ OCN

Ea

⊥
Gram′

AES
La

∼
Na

Dom
P

where SGG−, OGG−, OGGRel− denotes the subcategories of node-
preserving semi-weighted and occurrence graph grammars.

This is mostly trivial as all functors above, apart from Gram′, are simply the
restrictions of the corresponding functors defined in this paper. The only del-
icate point is to define functor Gram′ in order to ensure that any occurrence
contextual net is mapped to a node-preserving occurrence grammar. This re-
quires to change Definition 36 in order to enforce this property. More precisely,
the definition of the set of nodes of the type graph becomes:

N = {s ∈ S : s• = ∅}

Then, it can be shown that the functors Gram′ and Net′ establish a coreflection
between OGGRel− and OCN.

When we consider general dpo graph grammars, unfortunately the situation
is significantly more complex. For instance, consider the safe dpo grammar
in Fig. 15, which is obtained form the spo grammar in Fig. 10 by transform-
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Fig. 15. A safe dpo graph grammar.

ing each spo rule into the corresponding dpo rule, as explained above. The
morphisms from the interface to the left-hand side and right-hand side of pro-
ductions are inclusions represented by drawing the items in the domain as
dashed circles/arrows.

Observe that production q3, which simply removes the B-typed node, can
be applied to the start graph. However, if q1 is applied to the start graph,
producing an edge L attached to B, then q3 is “inhibited”: it cannot be applied
to the current graph since it would leave the L edge dangling. Then, the
application of q2, which remove the L-typed edge enables q3 again.

As discussed in [1], this non-monotonic features of the enabling relation can-
not be captured neither by a prime nor by an asymmetric event structure.
The mentioned work, relying on the relationship between dpo grammars and
inhibitor Petri nets, introduces a new class of event structures, the so-called
inhibitor event structures, which properly generalises aes’s (and many other
event based models in the literature). The basic relation of an ies is a ternary
relation which allows to express a kind of conditional or-causality. Roughly it
specifies triples of the kind ({e′}, e, {e1, . . . , en}), which express the fact that
if e′ occur then event e can happen only after one among the events e1, . . . ,
en, i.e., if e′ occur then e causally depends on the disjunction of {e1, . . . , en}.
For instance, the dependency between the productions {q1, q2, q3} in the dpo
grammar of Fig. 15 is expressed by the triple ({q1}, q2, {q3}).

Relying on these structures one can define an unfolding construction charac-
terised as a coreflection and a functor mapping any occurrence dpo grammar
to the category of inhibitor event structures, as summarised in the diagram
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below.

DPO Graph
Grammars Ug

⊥ Occurrence
Grammars Eg

Inhibitor Event
Structures Li

⊥ Domains
Pi

However the functor mapping each occurrence grammar to an event structure
does not admit a left adjoint (see [1,2]), due to the greater expressiveness of
inhibitor event structures needed to model the dependencies between events
in dpo grammar derivations.

An idea to overcome this problem could be to view asymmetric event struc-
tures as a coreflective subcategory of inhibitor event structures and then to
devise a construction which associates a canonical dpo grammar to any asym-
metric event structure, but this goes beyond the aim of this paper.

10 Conclusions

We have defined a functorial concurrent semantics for spo graph grammars,
expressed as a chain of coreflections leading from a category of semi-weighted
spo graph grammars to the categories of asymmetric event structures and
domains. The approach originally proposed by Winskel in the setting of Petri
nets has been fully extended to spo graph grammars, improving the previous
proposals where some steps of the construction were lacking, notably, in the
case of the dpo approach, the functor from event structures to occurrence
grammars. The constructions and results in this paper are summarised by the
diagram below.

SGG
Us

⊥ OGG ∼ OGGRel

Net
⊥

Es

⊥ AES
Na La

∼
Ns

Dom
P

OCN Ea

⊥
Gram

For general, possibly not semi-weighted grammar, the paper shows how the
above constructions can be adapted to get a chain of functors

GGR

UR
s

⊥ OGGR
ER

s
AES

La

∼ Dom
P

where, unfortunately, not the whole chain is characterised as an adjunction.

The notions needed to define the unfolding naturally suggests a notion of graph
process for spo grammars, defined as a deterministic occurrence grammar
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with a morphism to the original grammar. Although not worked out in this
paper, it can be shown that the (abstract) processes correspond exactly the
(abstract) equivalence classes of shift-equivalent derivations. Then this would
establishes a link also with the concurrent derivations of [23], which in turn
were characterised as special classes of graph grammars in [35].

The analogies between the first steps of the constructions for the spo and dpo
approaches (the proper unfolding constructions) suggest the possibility of de-
veloping a general theory of unfolding in abstract categories (e.g., high level
replacement systems [17] or adhesive categories [24]). Some parts of the con-
struction are rather concrete and not easy to recast in an abstract categorical
setting, but still this represents a challenging topic of further investigation.
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