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Abstract

The category of 1-bounded compact ultrametric spaces and non-dis-
tance increasing functions (KUM’s) have been extensively used in the se-
mantics of concurrent programming languages. In this paper a universal
space U for KUM’s is introduced, such that each KUM can be isomet-
rically embedded in it. U consists of a suitable subset of the space of
functions from [0, 1) to IN, endowed with a “prefix-based” ultrametric. U

allows to characterize the distance between KUM’s in terms of the Haus-
dorff distance between its compact subsets. As applications, it is proved
how to derive the existence of limits for Cauchy towers of spaces without
using the classical categorical construction and how to find solutions of
recursive domain equations inside Pnco(U).

1 Introduction

In the recent past metric spaces have often been used successfully in the seman-
tics of concurrent programming languages. Since [3], where the technique of [12]
for solving domain equations is adapted to the metric context, several categories
of metric spaces have been introduced in the literature. Apart from technical
differences, all the approaches follow a common pattern which guarantees the
existence of categorical limits that provide solutions of recursive equations. We
give an outline of this pattern.

1. Given a category C, a new category C′ is introduced, which has the same
objects as C and whose morphisms from X to Y are pairs 〈f, g〉 of mor-
phisms in C, f : X → Y , g : Y → X which satisfy suitable conditions.
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The pairs play the same role as embedding-projection pairs in the order-
theoretic approach.

2. Differently from the order-theoretic approach, a number, δ(〈f, g〉), is asso-
ciated with each morphism 〈f, g〉 : X → Y in C′, which roughly speaking
expresses the similarity between X and Y when comparing them via f

and g.

3. These numbers allow to introduce the notion of Cauchy towers of spaces
(a sequence (Xn, 〈fn, gn〉)n∈IN is Cauchy if for each ǫ > 0 the δ’s of com-
positions of morphisms are eventually less than ǫ) and it is proved that
each Cauchy tower has a categorical limit.

4. Classes of functors (contracting [1, 2, 3, 13, 7] cut-contracting [8], hom-
contracting [3], locally contracting [13, 11]) are singled out that generate
Cauchy towers when iteratively applied to an initial space. This allows to
solve those domain equations which involve such functors.

An important remark is that all the categories considered in the cited papers
have complete or compact metric spaces as objects. Since they differ essentially
in morphisms, the common pattern suggests the possibility of finding solutions
to domain equations independently from the particular choice of morphisms
in the category. This idea is developed in [2], where it is shown that in the
compact case it is possible to get rid of the categorical setting, work in the
class of compact metric spaces and there solve domain equations. The key idea
consists in the introduction of a mapping ∆ : K × K → [0, 1], where K is the
class of compact metric spaces, which turns out to satisfy the metric axioms
(provided that one works up to isometry). Since K is complete in the usual
sense of Cauchy sequences convergence, it is possible to obtain a generalized
version of the Banach-Caccioppoli’s theorem on fixed points of contractions,
stating that each (functorial or non-functorial) operator F : K → K which
is contracting with respect to ∆ has a unique (up to isometry) fixed point,
i.e. there exists an essentially unique compact metric space X such that X ≃
F (X). Since the domain constructors involved in metric domain equations in
the various categories of compact metric spaces are used in such a way to define
contractions on K, the “non-functorial” fixed point result can be thought of as
a generalization of the categorical ones.

In this paper we give a characterization of the metric ∆ in the case of 1-
bounded compact ultrametric spaces (KUM’s), relating it to the Hausdorff dis-
tance dH between compact subsets of a suitable universal space U . KUM’s are
considered because they are the most common framework for metric semantics.

The results of this paper can be summarized as follows. We introduce the
space U and show that it is universal in the sense that each KUM can be
isometrically embedded in it. A characterization of compact subsets of U is
given, and it is proved that U is isometric to the space of its nonempty compact
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subsets endowed with the Hausdorff distance. Then we prove that ∆(X,Y ) is
the infimum of dH(i(X), i′(Y )) computed over all possible isometric embeddings
i : X → U , i′ : Y → U .

One may wonder whether our construction generalizes to more general cat-
egories. Unfortunately this seems not to be the case. We will clarify this point
at the end of Section 4.

Finally two applications of our results are presented. In the first one we show
how to derive the existence of limits for Cauchy towers of KUM’s without using
the classical categorical construction. In the second one, following [6], we find
solutions of recursive domain equations inside Pnco(U) by defining a suitable
pseudo-ultrametric on it. This last application brings as a consequence the
possibility of carrying out semantics in a set-theoretic framework, alternative to
that of hyperuniverses of [4].

2 Mathematical Preliminaries

We start with recalling some standard notions and definitions (see e.g. [10]). A
metric space is a pair (X, d) (X for short) where X is a set and d : X ×X →
[0,∞) is a mapping, called metric, which satisfies, for all x, y and z in X :

1. d(x, x) = 0,

2. d(x, y) = d(y, x),

3. d(x, y) ≤ d(x, z) + d(y, z),

4. d(x, y) = 0 ⇒ x = y.

B(x, r), where x ∈ X and r > 0, denotes the open ball with centre x and
radius r, i.e. the set {y ∈ X | d(x, y) < r}. If the range of d is in [0, 1],X is called
a 1-bounded metric space. If d satisfies, instead of the third condition above,
the stronger one d(x, y) ≤ max{d(x, z), d(z, y)}, then X is called an ultrametric
space. A sequence (xn)n∈IN is Cauchy if ∀ǫ > 0.∃m.∀n, p ≥ m.d(xn, xp) ≤ ǫ. X
is complete if each Cauchy sequence (xn)n∈IN converges to a point limn xn in X .
X is compact if for each sequence in X there exists a subsequence converging
to a point of X .

In the paper we deal with compact ultrametric spaces with 1-bounded dis-
tance (KUM’s). In the following X , Y will always denote KUM’s.

A mapping f : X → Y is non-distance increasing (NDI) if for all x, x′ in X
dY (f(x), f(x′)) ≤ dX(x, x′). The space [X → Y ] of all non-distance increasing
functions is endowed with the metric d(f, g) = sup{dY (f(x), g(x)) | x ∈ X}.
([X → Y ], d) is a KUM if X and Y are (see e.g. [13]).

Pairs of non-distance increasing functions (NDI pairs) provide a tool for
defining a distance between KUM’s. More precisely, given a pair of NDI func-
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tions f : X → Y , g : Y → X , the number

δ(〈f, g〉) =def max{d(IdX , g ◦ f), d(IdY , f ◦ g)},

is a measure of the quality with which X approximates Y , and vice-versa, via
〈f, g〉. Hence

∆(X,Y ) =def min{δ(〈f, g〉) | 〈f, g〉 NDI-pair between X and Y }

(min ∅ is set equal to 1) expresses the degree to which the spaces mutually
approximate each other. Notice that in the definition of ∆ the existence of the
minimum is guaranteed by the compactness of [X → Y ] and [Y → X ]. The
mapping ∆ : C × C → [0, 1], where C is a suitable class of metric spaces, is
studied in details in [2]. In particular, (working up to isometry) if C is the
class of compact [complete] 1-bounded (ultra)metric spaces, then ∆ satisfies the
axioms for a metric [pseudo-metric, i.e. the fourth condition in the definition
of metric is dropped] and (C,∆) is complete w.r.t. ∆, in the usual sense that
each Cauchy sequence of metric spaces has a limit. Moreover, in the 1-bounded
compact case, if F : C → C is a contraction then there exists a unique (up to
isometry) X in C such that X ≃ F (X).

In order to characterize ∆ we recall the notion of Hausdorff distance. Let
Pnco(X) denote the family of nonempty compact subsets of X . For all A, B in
Pnco(X) we define

dH(A,B) = max{maxx∈A{d(x,B)},maxy∈B{d(y,A)}},

where d(x,B) = min{d(x, y) | y ∈ B} and d(y,A) is defined similarly1.
dH(A,B) can be characterized as the smallest value r such that

∀x ∈ A.∃y ∈ B.d(x, y) ≤ r ∧ ∀y ∈ B.∃x ∈ A.d(x, y) ≤ r.

We recall (see e.g. [13]) that (Pnco(X), dH) is compact if (X, d) is so. The next
lemma gives a characterization of the Hausdorff metric for KUM’s.

Lemma 2.1 Let (X, d) be a KUM. For all A,B ∈ (Pnco(X), dH) and r > 0,

dH(A,B) < r ⇔ A[r] = B[r],

where A[r] =
⋃

{B(x, r) | x ∈ A}.

Proof. We prove (⇒) by showing A ⊆ B. Let x ∈ A[r]. Then there exists
a ∈ A such that d(a, x) < r. Since dH(A,B) < r there exists b ∈ B such that
d(a, b) < r. Because d(x, b) ≤ max{d(a, b), d(a, x)}, we can conclude x ∈ B[r].

(⇐) Let A[r] = B[r] and a ∈ A. Clearly, a ∈ B[r]. Hence there exists b ∈ B

such that d(a, b) < r. Similarly, for each b ∈ B there exists a ∈ A such that
d(b, a) < r. Therefore dH(A,B) < r. 2

1We can define Hausdorff distance by using the max and min instead of the standard sup

and inf since we are dealing with compact spaces.
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Corollary 2.2 For all A,B ∈ Pnco(X), dH(A,B) = inf{r | A[r] = B[r]}.

We now give some properties of KUM’s. They will be useful for proving the
existence of isometric embeddings from KUM’s into the universal space U which
we will introduce later on.

For any r > 0, let Br(X) denote the set {B(x, s) | r ≤ s, x ∈ X}. For each
KUM X and r > 0, fix a subset Cr(X) ⊆ X such that:

1. ∀c, c′ ∈ Cr(X).d(c, c′) ≥ r (c 6= c′);

2. ∀x ∈ X.∃crx ∈ Cr(X).d(x, crx) < r.

Lemma 2.3 For all 0 < r ≤ 1, Cr(X) and Br(X) are finite sets.

Proof. Finiteness of Cr(X) follows immediately from the fact that a metric
space is compact if and only if it is complete and totally bounded (see e.g. [5]),
hence Cr(X) can be obtained by choosing one point in each open ball of a finite
minimal covering of X with balls of radius r. As regards Br(X), consider that
for each s ≥ r, B(x, s) =

⋃

{B(c, r) | d(c, x) < s & c ∈ Cr(X)} and Cr(X) is
finite, as we have just proved. Therefore Br(X) is finite. 2

The following corollary is an immediate consequence of the last lemma.

Corollary 2.4 (i) For each 0 < r ≤ 1 let Dr(X) = {s | r ≤ s & ∃x, x′ ∈
X.d(x, x′) = s}. Then Dr(X) is finite.
(ii) If X is infinite then the elements of D0(X) =def

⋃

r>0Dr(X) form a
sequence in (0, 1] decreasing to 0.

3 The Universal Space

In this section we introduce a universal space for KUM’s. We characterize
compact subsets of U and show that U is isometric to Pnco(U). Finally we prove
the embedding result, namely that each KUM can be isometrically embedded
in U .

We fix some notations. Given r and s such that 0 < s < r ≤ 1 and
f : [0, 1− s) → IN, f[r] denotes the restriction of f to the interval [0, 1− r], and
N(f) = {x | f(x) 6= 0}.

Here is the definition of the universal space.

Definition 3.1 Let U =def {f : [0, 1) → IN | ∀r > 0.N(f[r]) is finite}2,

equipped with the distance d̂(f, g) = 1 − min{x ∈ [0, 1) | f(x) 6= g(x)}.

2IN can be replaced by any pointed countable set, i.e. a countable set with a distinguished
element. In the present case the distinguished element is 0.

5



We introduce some further notations. For each r > 0, X ⊆ U , X[r] =def

{f[r] | f ∈ X}. The following equivalences, which hold for any f, g ∈ U , X ⊆ U ,
show how the operators (·)[r] are related to the topology of U .

f[r] = g[r] ⇔ f ∈ B(g, r),
f[r] ∈ X[r] ⇔ f ∈ X [r].

Let 0 < s ≤ r ≤ 1. If f ∈ U[r], g ∈ U[s], we write f ⊑ g when f = g[r]. If
moreover g(t) = 0 for each t such that 1 − r < t < 1 − s, we write f ⊑∗ g.
If A ⊆fne U[r], B ⊆fne U[s] (i.e. they are finite nonempty subsets), we write
A ⊑∗ B if the following two conditions are satisfied:
- ∀f ∈ A.∃g ∈ B.f ⊑∗ g;
- ∀g ∈ B.∃f ∈ A.f ⊑∗ g.3

0 ⊑∗ B abbreviates “∀f ∈ B.∀t ∈ [0, 1 − s).f(t) = 0”.
Let K be either IN or a initial segment of IN, and (rk)k∈K be a decreasing

sequence of elements in (0, 1], converging to 0 if K = IN . Suppose, for each
k ∈ K, fk ∈ U[rk] and fk ⊑ fk+1.
- If K = IN,

⊔

k∈K fk denotes the unique element g of U such that ∀s.g(s) =
fk′(s), where k′ is any index such that 1 − rk′ ≥ s.
- If K = {0, 1, . . . , i},

⊔

k∈K fk denotes the unique element g of U such that
g(s) = fi(s), if s ≤ 1 − ri, otherwise g(s) = 0.
- If K = ∅, then

⊔

k∈K fk = λt.0.
In the following, K will always denote either IN or some initial segment of

IN. In order to keep notation uniform, if K = {0, 1, . . . , i}, limk∈K xk stands for
xi. If we write (rk)k it is intended that k ranges over IN.

Lemma 3.2 (U, d̂) is a complete ultrametric space.

Proof. The proof that d̂ is an ultrametric easily follows from the equivalence
d̂(f, g) < r ⇔ f[r] = g[r]. As for completeness, let (fn)n a Cauchy sequence in U .
Fix a decreasing sequence to 0, say (rk)k. Then ∀k.∃nk.∀n,m ≥ nk.(fn)[rk] =
(fm)[rk]. It is not restrictive to suppose ∀k.nk ≤ nk+1. Hence (fnk

)[rk] ⊑
(fn(k+1)

)[r(k+1)] and thus we can define f̄ =
⊔

k(fnk
)[rk]. f̄ is an element of U

and is the limit of (fn)n, since d̂(f̄ , fn) ≤ rk if n ≥ nk. 2

Before showing that each KUM can be isometrically embedded in U , we focus
on the characterization of compact subsets of U , and show that U is isometric
to Pnco(U). This digression seems useful for several reasons.

Firstly, compact subsets of U are the ranges of isometric embeddings i :
X → U , X being any KUM.

Secondly, the result of isometry between U and Pnco(U) is interesting since,
as shown in the second application, it is possible to develop in Pnco(U) a set-
theoretic approach to domain equations alternative to that provided by hyper-
universes in [4].

3The definition of “⊑∗” corresponds to that of the Egli-Milner preorder over nonempty
finite subsets of compact elements in ω-algebraic cpo’s.
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Thirdly, characterization of Pnco(U) casts light on the structure of U and
provides the proof of Theorem 4.3 with some intuition.

Let us fix some notation. Let X ⊆ U be any subset of U . Then, for any
r > 0, define:
- X(1 − r) = {f(1 − r) | f ∈ X};
- DU

r (X) = {s | s ≥ r & X(1 − s) ⊃ {0}};
- DU

0 (X) =
⋃

r>0D
U
r (X). Notice that for each r ∈ DU

0 (X), the set X(1 − r) is
nonempty.

Proposition 3.3 X ⊆ U is compact if and only if the following three conditions
are satisfied:

1. ∀r > 0.DU
r (X) is finite;

2. ∀r ∈ DU
0 (X).X(1 − r) is finite;

3. for each sequence (rk)k decreasing to 0 and gk ∈ U[rk] satisfying gk ⊑ gk+1

it holds:
(∗) (∀k.∃fk ∈ X.gk ⊑ fk) ⇒

⊔

k gk ∈ X.

The proof of the proposition above follows immediately from the following
two lemmata.

Lemma 3.4 X ⊆ U is totally bounded if and only if conditions 1 and 2 of
Proposition 3.3 hold.

Proof. (⇒) Consider the covering C = {B(f, r) | f ∈ X} of X . Since X is
totally bounded, we can extract a finite subcovering C′ = {B(fi, r) | i ∈ I}. We
have ∀i ∈ I.N((fi)[r]) is finite. This fact immediately implies 3.3.1 and 3.3.2.

(⇐) Let C = {B(g, r) | g ∈ Y } any covering of X . Let r′ < r. Define
H =

∏

s∈DU

r′
(X)X(1 − s). From the hypotheses H is finite. Consider H ′ =

{h ∈ H | ∃f ∈ X.∀s > r′.f(1 − s) = hs}. We have f ∈ X ⇒ (∃h ∈ H ′.∀s ≥
r.f(1 − s) = hs). We get a finite subcovering C′ ⊆ C of X by choosing, for each
h ∈ H ′, any g ∈ Y such that g(1 − s) = hs, for each s ∈ DU

r (X). 2

Lemma 3.5 X ⊆ U is closed if and only if condition 3 of Proposition 3.3 holds.

Proof. (⇒) If the premise of (∗) holds, then (fk)k is a sequence in X

converging to
⊔

k gk. Since X is a closed subset,
⊔

k gk ∈ X .
(⇐) X is closed if whichever converging sequence in X , say (fk)k, has its

limit f̄ in X . Let rk = d̂(fk, f̄). It is not restrictive to suppose that (rk)k is a
decreasing sequence. For each k define gk = (fk)[rk]. The hypotheses of (∗) are
satisfied and therefore

⊔

k gk = f̄ belongs to X . 2

We give now a second characterization of compact subsets of U , which is
inspired by that of the Plotkin powerdomain in [9]. Consider the set E consisting
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of all the sequences of pairs 〈rk, Ak〉k∈K (K may be empty) such that:
- (rk)k∈K is a decreasing sequence in (0, 1], converging to 0 whenever K = IN;
- for each k, Ak ⊆fne U[rk], 0 ⊑∗ A0 and Ak ⊑∗ Ak+1 hold (therefore for each s
in [0, 1 − rk], if f ∈ Ak and f(s) 6= 0 then s = 1 − rk′ for some k′ ≤ k).

We have the following result, which says that E is in one-to-one correspon-
dence with compact subsets of U .

Proposition 3.6 There is a bijection φ from Pnco(U) to E.

Proof. For each X ∈ Pnco(U) define φ(X) = 〈rk, Ak〉k∈K , where (rk)k∈K

is the sequence consisting of the elements of DU
0 (X) (if X is finite so is K,

otherwise K = IN) and for each k ∈ K, Ak = X[rk]. ¿From condition 1 and
2 of Proposition 3.3 it follows that (rk)k∈K converges to 0 whenever DU

0 (X)
is infinite and that each Ak is nonempty and finite. Trivially 0 ⊑∗ A0 and
Ak ⊑∗ Ak+1. Hence φ : Pnco(U) → E is well-defined (notice that φ({λt.0}) is
the empty sequence)

For each e = 〈rk, Ak〉k∈K ∈ E define ψ(e) as the set of all f ∈ U such that

∃(gk)k∈K .(∀k.gk ∈ Ak) & gk ⊑ gk+1 &
⊔

k∈K

gk = f.

Notice that ψ maps the empty sequence to λt.0. We prove that ψ(e) is compact.
Definition of ψ(e) and finiteness of Ak immediately imply 1 and 2 of Proposition
3.3. Thus ψ(e) is totally bounded. When K is finite ψ(e) is trivially closed since
it is finite. Consider the case K = IN. Let (fp)p be a sequence of elements in
ψ(e), converging to f̄ . We have to prove f̄ ∈ ψ(e). ¿From a Koenig’s Lemma
argument the following conditions are equivalent:
- ∀k ∈ IN.∃gk ∈ Ak.gk ⊑ gk+1 &

⊔

k gk = f ;
- ∀k ∈ IN.∃gk ∈ Ak.gk ⊑ f . (†)

Fix any k ∈ IN. Let p be such that d̂(f̄ , fp) ≤ rk and say fp =
⊔

k′ g′k′ . Then
g′k ⊑ f̄ . Therefore (†) is satisfied and we conclude that ψ(e) is closed.

Finally a routine check shows that φ ◦ ψ(e) = e and ψ ◦ φ(X) = X . 2

We now prove that U is isometric to Pnco(U). For each 0 < s < r ≤ 1,
A ⊆fne U[r], fix bijections

αA,s : {B ⊆fne U[s] | A ⊑∗ B} → IN,
α0,s : {B ⊆fne U[s] | 0 ⊑∗ B} → IN.

Let now e = 〈rk, Ak〉k∈K ∈ E . We define ν(e) ∈ U as
⊔

k∈K fk, where fk are
inductively defined as follows:

f0(t) =

{

0 if t < 1 − r0,
α0,r0(A0) if t = 1 − r0.

fk+1(t) =







fk(t) if t ≤ 1 − rk,
0 if 1 − rk < t < 1 − rk+1,
αAk,rk+1

(Ak+1) if t = 1 − rk+1.
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Now define σ = ν ◦φ : Pnco(U) → U . σ is the required isometry. Before proving
this, we need a lemma.

Lemma 3.7 Let X,Y ∈ Pnco(U), φ(X) = 〈rk, Ak〉k∈K , φ(Y ) = 〈sk, Bk〉k∈H .
For r > 0 let p = max{k ∈ K | rk ≥ r}, q = max{k ∈ H | sk ≥ r}. Then the
following conditions are equivalent:

1. X[r] = Y[r];

2. d̂H(X,Y ) < r;

3. p = q & ∀k ≤ p.rk = sk & Ak = Bk;

Proof. The equivalence between 1 and 2 follows from X[r] = Y[r] ⇔ X [r] =
Y [r] and Corollary 2.1. In order to prove 1 ⇒ 3, consider that X[r] = Y[r]

implies both DU
r (X) = DU

r (Y ) and ∀t ≥ r.X[t] = Y[t]. These two conditions
clearly imply the three of 3. Hence 1 ⇒ 3. In order to show 3 ⇒ 1, we prove
that ∀f ∈ X.∃g ∈ Y.f[r] = g[r]. Since Ap = Bp there exists g ∈ Y such that
f[rp] = g[rp]. Since, in the case p + 1 ∈ K, we have rp+1 > r, sp+1 > r and
f(t) = g(t) = 0 for each t ∈ (1 − rp, 1 − r], we get f[r] = g[r]. Similarly one
proves that ∀g ∈ Y.∃f ∈ X.f[r] = g[r]. 2

Theorem 3.8 σ is an isometry between (Pnco(U), d̂H) and (U, d̂).

Proof. It is easy to show that σ is a surjection. In fact arrange N(f) into a
decreasing sequence (rk)k∈K . Then define the sequence (Ak)k∈K by induction
on k:

A0 = α−1
0,r0

(f(r0)),

Ak+1 = α−1
Ak,rk+1

(f(rk+1)).

We have Ak ⊑∗ Ak+1, hence e = 〈rk, Ak〉k∈K ∈ E . By definition it follows
ν(e) = f . Therefore the compact subset X ⊆ U defined as X = ψ(e) satisfies
σ(X) = f . We now prove that σ preserves distances. Let X,Y ∈ Pnco(U),

r > d̂H(X,Y ) and φ(X) = 〈rk, Ak〉k∈K , φ(Y ) = 〈sk, Bk〉k∈K′ . By Lemma 2.1
it follows X [r] = Y [r], hence X[r] = Y[r]. Define p = max{k ∈ K | rk ≥ r}.
Then the thesis of Lemma 3.7 ensures rk = sk and Ak = Bk for any k ≤ p.
By definition of σ it follows σ(X)[r] = σ(Y )[r] and therefore d̂(σ(X), σ(Y )) < r,

hence d̂(σ(X), σ(Y )) ≤ d̂H(X,Y ).

Let now d̂(σ(X), σ(Y )) < r, for some r. This is equivalent to σ(X)[r] = σ(Y )[r],
which implies (since 〈rk, Ak〉k∈K = ν−1(σ(X)), 〈sk, Bk〉k∈K′ = ν−1(σ(Y )) )

rk = sk, Ak = Bk for any k such that rk ≥ r. This implies d̂H(X,Y ) < r by

Lemma 3.7. Thus d̂H(X,Y ) ≤ d̂(σ(X), σ(Y )) and we conclude. 2

This section ends with the proof of the embedding result.

Theorem 3.9 Let X be a KUM. Then there exist isometric embeddings i :
X → U .
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Proof. Arrange elements of D0(X) into a decreasing sequence (rk)k∈K . We
define injections ρk : Crk

(X) → U[rk] inductively on k, as follows:

(a) ρ0 is any injection such that ∀c ∈ Cr0(X).0 ⊑∗ ρ0(c);

(b) ρk+1 is any injection such that ∀c ∈ Crk
(X), c′ ∈ Crk+1

(X).dX(c, c′) < rk ⇒
ρk(c) ⊑∗ ρk+1(c

′).

Given x ∈ X , we have x = limk∈K crk
x . We define i(x) =

⊔

k∈K ρk(crk
x ). i is

well-defined (if K = IN, (rk)k∈K converges to 0 by Corollary 2.4). The range
of i is φ−1(〈rk, Ak〉k∈K), where Ak = ρk(Crk

(X)). Notice that each Ak is finite
by Lemma 2.3, hence 〈rk, Ak〉k∈K ∈ E . We state that i is an isometry. In fact
let dX(x, y) = rk. Then, if k > 0, c

rj

x = c
rj

y for each j ∈ K, j < k, while
crk
x 6= crk

y . By definition of i and ρk it follows i(x)[s] = i(y)[s] for each s > rk,

and i(x)(1 − rk) 6= i(y)(1 − rk). Therefore d̂(i(x), i(y)) = rk. 2

4 The Result

If we consider two isometries i : X → U , i′ : Y → U , we can compute the
Hausdorff distance between i(X) and i′(Y ) as compact subsets of U . The aim
of this section is to study the relation between ∆(X,Y ) and such Hausdorff
distances. This will lead to the characterization of ∆.

As an application we will show how it is possible to derive the existence of
limits for Cauchy towers without reference to the (categorical) limit construc-
tion.

We start with a technical result.

Proposition 4.1 For each r ≥ 0, ∆(X,Y ) < r ⇔
(i) Dr(X) = Dr(Y ),
(ii) ∀s ∈ Dr(X).∃gs : Cs(X) → Cs(Y ) bijection such that
∀s′ ∈ Ds(X), c ∈ Cs(X), c′ ∈ Cs′(X).d(c, c′) < s′ ⇒ d(gs(c), gs′(c′)) < s′.

Proof: (⇒) We prove first that (i) holds.
Let i : X → Y , j : Y → X such that δ(〈i, j〉) < r. Suppose Dr(X) 6=
Dr(Y ). Then there exist x1, x2 ∈ X (or y1, y2 ∈ Y etc.) such that d(x1, x2) =
s ≥ r, while for all y, y′ ∈ Y d(y, y′) 6= s. We get the contradiction s =
d(x1, x2) ≤ max{d(x1, ji(x1)), d(ji(x1), ji(x2)), d(x2, ji(x2))} < s (notice that
d(ji(x1), ji(x2)) < s since s is not a value of distance in Y and i, j are NDI-
functions). We prove now that (ii) holds. Define gs : Cs(X) → Cs(Y ) as
gs(c) = csi(c) (it is the unique point e in Cs(Y ) such that d(i(c), e) < s). We

prove that gs is a bijection by giving the inverse mapping. For c′ ∈ Cs(Y ) let
hs(c

′) = cs
j(c′). Then, for each c ∈ Cs(X),

d(c, hsgs(c)) ≤ max{d(c, ji(c)), d(ji(c), jgs(c)), d(jgs(c), hsgs(c))} < s
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. By definition of Cs(X) it follows that c = hsgs(c). Analogously, for each c′ ∈
Cs(Y ), c′ = gshs(c

′). Thus hs = g−1
s . Let now s′ ≥ s, c1 ∈ Cs(X), c2 ∈ Cs′(X).

Then d(gs(c1), gs′(c2)) ≤ max{d(gs(c1), i(c1)), d(gs′ (c2), i(c2)), d(i(c1), i(c2))} <
s′.

(⇐) We will prove that (ii) is enough to conclude ∆(X,Y ) < r (hence (ii)
implies (i)). First we extend the domain of gs and hs to the whole X and
Y respectively, by defining gs(x) = gs(c

s
x), hs(y) = hs(c

s
y). gs : X → Cs(Y )

and hs : Y → Cs(X) are NDI functions. In fact, consider gs. If d(x, x′) < s,
then gs(x) = gs(x

′). If d(x, x′) = s′ ≥ s, let t > s′. Then d(gs(x), gs(x
′)) ≤

max{d(gs(c
s
x), gt(c

t
x)), d(gs(c

s
x′), gt(c

t
x′))} < t (in the first inequality we use the

fact that ctx = ctx′), hence d(gs(x), gs(x
′)) ≤ s′. The proof that hs is NDI

is similar. Now consider g and h. d(x, hrgr(x)) = d(x, crx) < r. Similarly
d(y, grhr(y)) = d(y, cry) < r. Since we have just proved δ(〈gr, hr〉) < r, it
follows ∆(X,Y ) < r. 2

Remark 4.2 Notice that for each isometric embedding i : X → U there exists
ρk : Crk

(X) → U[rk] such that i(x) =
⊔

k∈K ρk(crk
x ). It is sufficient to define

ρk(c) = i(c)[rk] for each c ∈ Crk
(X).

We now give the main result by characterizing the distance ∆ between
KUM’s in terms of Hausdorff distance in U .

Theorem 4.3 Let X,Y be KUM’s and i : X → U any isometric embedding.
Then

∆(X,Y ) = min{d̂H(i(X), j(Y )) | j : Y → U isometric embedding}.

Proof. Let (rk)k∈K be the decreasing sequence built on the elements in
D0(X), and let ρk : Crk

(X) → U[rk] defined as in the previous remark. If
∆(X,Y ) < r, then we have, for each rk ≥ r, bijections gk : Crk

(Y ) → Crk
(X) as

in Proposition 4.1. We build an isometric embedding jr : Y → U as in the proof
of Theorem 3.9. We define, for each k such that rk ≥ r, ρ′k : Crk

(Y ) → U[rk],
by ρ′k = ρk ◦ gk. Condition (a) in the proof of Theorem 3.9 holds trivially for
ρ′0. Moreover, for each k such that rk+1 ≥ r, condition (b) is guaranteed by (ii)
of Proposition 4.1. For each k such that rk < r we simply define ρ′k according
to (b) of Theorem 3.9. Now define jr according to jr(x) =

⊔

k∈K ρ′k(crk
x ). By

definition of jr it follows i(X)[rk] = jr(Y )[rk] for each k such that rk ≥ r.

Therefore, by Lemma 3.7 we get d̂H(i(X), jr(Y )) < r. This proves ∆(X,Y ) ≥

inf{d̂H(i(X), j(Y )) | j : Y → U isometric embedding}.

In order to prove the converse, let d̂H(i(X), j(Y )) < r. By Remark 4.2 we
have, for suitable ρk : Crk

(X) → U[rk], ρ
′
k : Cr′

k
(Y ) → U[r′

k
], (rk ∈ D0(X),

r′k ∈ D0(Y )):

i =
⊔

k∈K ρk φ(i(X)) = 〈rk, ρk(Crk
(X))〉k∈K ,

j =
⊔

k∈K′ ρ′k φ(j(Y )) = 〈r′k, ρ
′
k(Cr′

k
(Y ))〉k∈K′ .
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Let p = max{k ∈ K | rk ≥ r}, q = max{k ∈ K ′ | r′k ≥ r}. By 3.7 p = q and
i(X)[rp] = j(Y )[rp], that is ρp(Crp

(X)) = ρ′p(Crp
(Y )). This enables us to define

two mappings,

u : Crp
(X) → Crp

(Y ), u = (ρ′p)
−1 ◦ ρp;

v : Crp
(Y ) → Crp

(X), v = ρ−1
p ◦ ρ′p.

The extensions u : X → Crp
(Y ), v : Y → Crp

(X), defined as in the proof of
4.1, are easily shown to satisfy δ(〈u, v〉) < r. Therefore it holds ∆(X,Y ) ≤

inf{d̂H(i(X), j(Y )) | j : Y → U isometric embedding}. Finally we prove that
the infimum is actually a minimum. Let ∆(X,Y ) = r. If r = 0 the thesis is
trivial since X and Y are isomorphic. If r 6= 0, define r′ = min(DU

r (i(X))\{r}).
Such a minimum exists by Proposition 3.3. Then take jr′ as defined in the first
part of the proof. By construction we have (i(X))[r′] = (jr′(Y ))[r′]. Moreover,
for each r < s < r′ we have (i(X))(1 − s) = 0 = (jr′(Y ))(1 − s). Thus for
each s > r we get (i(X))[s] = (jr′(Y ))[s]. By applying Lemma 3.7 we obtain

∀s > r.d̂H(i(X), jr′(Y )) < s, hence it must be d̂H(i(X), jr′(Y )) = r. 2

As mentioned in the Introduction, we conclude the section by explaining
why our construction hardly generalizes to other categories (such as complete
ultrametric spaces or compact metric spaces). Actually both ultrametricity and
compactness hypotheses play an essential role in the construction of U as a
universal space. In fact, when proving a key result, namely Theorem 3.9, we
rely on Lemma 2.1, Lemma 3.7, which both use ultrametricity hypothesis, and
Lemma 2.3, which uses compactness hypothesis. On the contrary the hypothesis
of 1-boundness could be dropped. With slight modifications one can extend the
construction of the universal space in the case of compact ultrametric spaces
with distances which take values in [0,+∞). However, the wide use of one-
boundness hypothesis throughout the literature on metric semantics suggested
us to maintain it.

5 Two applications

In this section we give two applications of the previous results. They are both
related to the problem of solving recursive domain equations.

Consider the category C of [2] whose objects are KUM’s and morphisms are
ǫ-adjoint pairs, i.e. pairs 〈i, j〉 : X → Y such that i : X → Y , j : Y → X are NDI
functions. This notion of morphism is more general than that of embedding-
projection pairs in [1, 3, 11, 13], where the further condition j ◦ i = IdX is
imposed (there is a similar generalization in the order-theoretic framework when
considering Galois-connections instead of embedding-projection pairs). Thus
what we prove below holds also for the category of KUM’s and embedding-
projection pairs.
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A crucial role for finding fixed points solutions of domain equations is played
by Cauchy towers. A Cauchy tower of spaces is a sequence (Xn, 〈un, vn〉)n such
that

〈un, vn〉 : Xn → Xn+1;
∀ǫ > 0.∃n.m > n ≥ n⇒ δ(〈um ◦ um−1 . . . ◦ un, vn ◦ vn+1 . . . ◦ vm〉) < ǫ.

By using the universal space U one can derive the existence of limits for
Cauchy towers of KUM’s just from the completeness of Pnco(U). This approach
seems more simple than that devised in [2], where the existence of limits is
proved by building, as standard, the categorical limit lim←(Xn, 〈un, vn〉)n as a
suitable subset Y ⊆

∏

nXn.

Theorem 5.1 Let (Xn, 〈un, vn〉)n be a Cauchy tower. Then there exists a
unique (up to isometries) X such that limn ∆(Xn, X) = 0. Moreover X is
isomorphic to lim←(Xn, 〈un, vn〉)n.

Proof. Let i0 : X0 → U any isometric embedding. Define, inductively on
IN, in+1 : Xn+1 → U as any isometric embedding such that ∆(Xn, Xn+1) =

d̂H(in(Xn), in+1(Xn+1)). in+1 exists by Theorem 4.3. We have that (in(Xn))n

is a Cauchy sequence in Pnco(U). Since this space is complete we get the

existence of X ∈ Pnco(U) such that limn d̂H(X, in(Xn)) = 0. This implies
limn ∆(X,Xn) = 0, by Theorem 4.3 again.

As to the last statement, let Y = lim←(Xn, 〈un, vn〉)n. Then ∆(X,Y ) ≤
max{limn ∆(X,Xn), limn ∆(Y, Yn)} → 0. By Proposition 4.7 of [2] it follows
X ≃ Y . 2

The discussion of the second application will not be given in full details.
We will prove that the usual constructors over C can be represented (in a sense
explained below) over Pnco(U), hence over U . We need some definitions. Given
an element A ∈ Pnco(U), let θ(A) be the KUM obtained by endowing A with
the subspace metric induced by U . Now we endow Pnco(U) with the mapping
∆U : Pnco(U) × Pnco(U) → [0, 1] defined by:

∆U (A,B) = inf{d̂H(A, i(θ(B))) | i : B → U isometric embedding}.

The mapping ∆U satisfies the following properties: for each A,B,C ∈ Pnco(U)

∆U (A,A) = 0,
∆U (A,B) = ∆U (B,A),
∆U (A,B) ≤ max{∆U (A,C),∆U (B,C)},

hence ∆U is a pseudo-ultrametric over Pnco(U) (see e.g. [2] or [10]). The
following facts are easy to prove:

• for each X,Y KUM’s and i : X → U , j : Y → U isometric embeddings,

∆(X,Y ) = ∆U (i(X), j(Y )).

13



In particular

X ≃ Y ⇔ ∆U (i(X), j(Y )) = 0, (‡)
∆U (A,B) = ∆(θ(A), θ(B)), for each A,B ∈ Pnco(U).

• (Pnco(U),∆U ) is a complete pseudo-ultrametric space (see [10]), in the
sense that each Cauchy sequence (An)n converges to (infinitely many)
limits Ā such that ∆U (An, Ā) → 0. All such limits, considered as KUM’s,
are isometric, since their mutual distance is zero.

We now give the notion of representable operator (see [6]). Given a operator
F : Cn → C, we say that F is representable over Pnco(U) if there exists a
non-distance increasing function φF : Pnco(U)n → Pnco(U) such that, up to
isometry,

F ◦ 〈θ, . . . , θ〉 = θ ◦ φF .

The next result states that all the standard constructors are representable. In
the following + and × denote the disjoint union and cartesian product re-
spectively; → is the non-distance increasing function constructor and Idε (for
0 < ε ≤ 1) the shrinking constructor, which transforms a KUM (X, d) into the
KUM (X, dε), where dε(x, y) = ε · d(x, y).

Theorem 5.2 +, ×, →, Pnco(U) and Idε are representable constructors over
Pnco(U). Moreover composition of representable operators is representable.

Proof: We give the proof for →. Given two KUM X,Y , [X → Y ] denotes
the space of non-distance increasing functions from X to Y . We have to prove
that there exists a non-distance increasing function φ→ : Pnco(U)×Pnco(U) →
Pnco(U) which represents →. For any A,B ∈ Pnco(U), fix an isometric embed-
ding uA,B : [θ(A) → θ(B)] → U . Consider now A,A′, B,B′ ∈ Pnco(U) and let
∆U (A,A′) = r, ∆U (B,B′) = s. Then ∆(θ(A), θ(A′)) = r and ∆(θ(B), θ(B′)) =
s. Let 〈i, j〉 : θ(A) → θ(A′) and 〈h, k〉 : θ(B) → θ(B′) be NDI-pairs such that
δ(〈i, j〉) = r, δ(〈h, k〉) = s. As remarked in Section 2, these pairs exist by
the compactness hypothesis. We consider 〈j → h, i → k〉 : [θ(A) → θ(B)] →
[θ(A′) → θ(B′)] defined by:

∀f ∈ [θ(A) → θ(B)].(j → h)(f) = h ◦ f ◦ j,
∀g ∈ [θ(A′) → θ(B′)].(i → k)(g) = k ◦ g ◦ i.

We have (f ranges over [θ(A) → θ(B)], x, x′ range over θ(A))

maxf{d(f, (i→ k) ◦ (j → h)(f))} =

= maxf{d(f, k ◦ h ◦ f ◦ j ◦ i)}

≤ maxf{max{d(f, k ◦ h ◦ f), d(k ◦ h ◦ f, k ◦ h ◦ f ◦ j ◦ i)}}

≤ maxf{max{d(Id, k ◦ h), d(Id, j ◦ i)}}
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≤ maxf{max{maxx{d(f(x), khf(x))},maxd(x,x′)≤r{d(khf(x), khf(x′))}}}

≤ maxf{max{s, r}}

= max{r, s}.

Similarly maxg∈[θ(A′)→θ(B′)]d(g, (j → h) ◦ (i→ k)(g)) ≤ max{r, s}, hence we
have ∆([θ(A) → θ(B)], [θ(A′) → θ(B′)]) ≤ max{r, s}. Therefore

∆U (uA,B([θ(A) → θ(B)]), uA′,B′([θ(A′) → θ(B′)])) ≤

≤ max{∆U (A,A′),∆U (B,B′)}.

Thus we have shown that the function

φ→ = λA,B ∈ Pnco(U).uA,B([θ(A) → θ(B)])

is non-distance increasing. It is immediate to prove that φ→ represents → over
Pnco(U).

Following similar arguments one can prove that all the above mentioned
constructors are representable. Finally it is easy to show that the composition
of representable operators is represented by the function obtained as composition
of the representations of the original operators. 2

Consider a domain equation X ≃ F (X) over C, where F is a representable
contractive operator. Similarly to Theorem 7.3 of [6], we can now prove that the
equation has solution, by taking the fixed point of the function which represents
F . We use, without giving the easy proof, the fact that a representable contrac-
tive operator over C is represented by a contractive function over Pnco(U).

Theorem 5.3 If F : C → C is a contractive representable functor, then the
equation X ≃ F (X) has a (unique up to isometry) solution.

Proof: Let φF be the contractive function which represents F . Since
Pnco(U) is complete, there exists A ∈ Pnco(U) such that ∆U (φF (A), A) = 0,
hence we have, by (‡),

θ(A) ≃ θ(φF (A)) ≃ F (θ(A)).

Uniqueness follows from contractiveness of F .
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