
A Temporal Graph Logic for Verification

of Graph Transformation Systems⋆

Paolo Baldan1, Andrea Corradini2, Barbara König3, Alberto Lluch Lafuente2

1 Dipartimento di Matematica Pura e Applicata, Università di Padova
baldan@math.unipd.it

2 Dipartimento di Informatica, Università di Pisa
{andrea,lafuente}@di.unipi.it

3 Abt. für Informatik und Ang. Kognitionswissenschaft, Universität Duisburg-Essen
barbara koenig@uni-due.de

Abstract. We extend our approach for verifying properties of graph
transformation systems using suitable abstractions. In the original ap-
proach properties are specified as formulae of a propositional temporal
logic whose atomic predicates are monadic second-order graph formulae.
We generalize this aspect by considering more expressive logics, where
edge quantifiers and temporal modalities can be interleaved, a feature
which allows, e.g., to trace the history of objects in time. After char-
acterizing fragments of the logic which can be safely checked on the
approximations, we show how the verification of the logic over graph
transformation systems can be reduced to the verification of a logic over
suitably defined Petri nets.

1 Introduction

Graph Transformation Systems (GTSs) are suitable modeling formalisms for
systems involving aspects such as object-orientation, concurrency, mobility and
distribution. The use of GTSs for the verification and analysis of such systems
is still at an early stage, but there have been several proposals recently, either
using existing model-checking tools [10, 25] or developing new techniques [20, 21].
A recent line of research [1–5] takes the latter approach and proposes a method
inspired by abstract interpretation techniques. Roughly speaking, a GTS R,
whose state space might be infinite, is approximated by a finite structure C(R),
called covering ofR. The covering is a Petri net-like structure, called Petri graph,
and it approximates R in the sense that any graph G reachable in R has an
homomorphic image reachable in C(R). In a sense, this reduces the verification
of GTSs to the verification of Petri nets. One central feature of this approach is
the fact that it is a partial order reduction technique using unfoldings. That is,
the interleaving of concurrent events—leading to state explosion—is avoided if
possible.

⋆ Research partially supported by the EU IST-2004-16004 SEnSOria, the MIUR
PRIN 2005015824 ART, the DFG project SANDS and CRUI/DAAD Vigoni “Mod-
els based on Graph Transformation Systems: Analysis and Verification”.

In [5] a logic for the approximation approach is introduced, which is basi-
cally a propositional µ-calculus whose atomic predicates are closed formulae in a
monadic second-order logic for graphs. Also, fragments of the logic are identified
which are reflected by the approximations, i.e., classes of formulae which, when
satisfied by the approximation, are satisfied by the original system as well. For
the verification of such formulae, the logic is encoded into a µ-calculus whose
atomic predicates are formulae over markings of a Petri net, allowing the reuse
of existing model checking techniques for Petri nets [12].

There are other related papers working with graph logics, for instance [14].
However, most of them are based, like [5], on propositional temporal logics, that
is, logics that do not allow to interleave temporal modalities with graph-related
ones. Thus, properties like a certain edge is never removed are neither expressible
nor verifiable. The only exceptions we are aware of are [20, 22].

In this paper we extend the approach of [5] by considering a more expres-
sive logic that allows to interleave temporal and graphical aspects. As we shall
see, our temporal graph logic combines a monadic-second order logic of graphs
with the µ-calculus. Formulae of our logic are interpreted over graph transition
systems (GTrS), inspired by algebra transition systems [15] and the formalism
of [20], which are traditional transition systems together with a function map-
ping states into graphs and transitions into partial graph morphisms. Graph
transition systems are suitable formalisms for modeling the state space of graph
transformation systems and Petri graphs. We introduce a notion of approxima-
tion for GTrSs, identifying fragments of the logic whose formulae are preserved
or reflected by approximations. Then we show that the GTrS of the covering, as
defined in [1], is an approximation of the GTrS of the original graph transfor-
mation system, thus providing a concrete way of constructing approximations.
Finally, we propose an encoding for a fragment of our logic into a Petri net
logic. Our encoding is correct and complete, i.e., a Petri graph satisfies a for-
mula exactly when the encoding of the formula is satisfied by the underlying
Petri net.

Putting all this together, given a graph transformation system G and a for-
mula F in a suitable fragment of our logic, we can construct a Petri graph P
which approximates G, using the algorithm in [1]. Then F can be translated
into a Petri net formula [F], such that if NP is the Petri net underlying P , then
NP |= [F] implies G |= F , i.e., we reduce verification over graph transformation
systems to verification over Petri nets.

Section 2 introduces graphs, graph transformation systems and graph transi-
tion systems. Section 3 defines syntax and semantics of our temporal graph logic.
Section 4 defines Petri graphs, the structures used for approximating graph trans-
formation systems. Section 5 identifies fragments of the logic that are preserved
or reflected by approximations. Section 6 proposes an encoding of a fragment of
the logic into a Petri net logic. A last section concludes the paper and proposes
further work.

2

2 Graph Transition Systems

An (edge-labeled) graph G is a tuple G = 〈VG, EG, sG, tG, labG〉 where VG is
a set of nodes, EG is a set of edges, sG, tG : EG → VG are the source and
target functions, and labG : EG → Λ is a labeling function, where Λ is a fixed
set of labels. Nodes and edges are sometimes called items and we shall write
XG = EG ∪ VG for the set of items of G.

The transformation of a graph into another by adding, removing or merging
of items is suitably modeled by (partial) graph morphisms.

Definition 1 ((partial) graph morphism). A graph morphism ψ : G1 → G2

is a pair of mappings ψV : VG1
→ VG2

, ψE : EG1
→ EG2

such that ψV ◦ sG1
=

sG2
◦ ψE, ψV ◦ tG1

= tG2
◦ ψE and labG1

= labG2
◦ ψE. A graph morphism

ψ : G1 → G2 is injective if so are ψV and ψE; it is edge-injective if ψE is
injective. Edge-bijective morphisms are defined analogously. A graph G′ is a
subgraph of graph G, written G′ →֒ G, if VG′ ⊆ VG and EG′ ⊆ EG, and the
inclusion is a graph morphism.

A partial graph morphism ψ : G1 ⇀ G2 is a pair 〈G′
1, ψ

′〉 where G′
1 →֒ G1

is a subgraph of G1, called the domain of ψ, and ψ′ : G′
1 → G2 is a graph

morphism.

Graph transformation is presented in set-theoretical terms, but could be
equivalently presented by using the double-pushout [7] or single-pushout [11] ap-
proaches. With respect to more general definitions, our rules can neither delete
nor merge nodes, and they have a discrete interface, i.e., the interface graph
contains only nodes and thus edges are never preserved. Similar restrictions are
assumed in [1]. While the condition of having a discrete interface can be relaxed,
the deletion and merging of nodes is quite problematic in an unfolding-based
approach.

Also observe that, as it commonly happens in the algebraic approaches to
graph rewriting, we consider basic graph grammars, without any distinction
between terminal and non-terminal symbols and without any high-level control
mechanism. We remark that, even in this basic formulation, graph grammars
are Turing complete (since they can simulate string rewriting).

Definition 2 (graph transformation system). A graph transformation sys-
tem (GTS) R is a pair 〈G0, R〉, where G0 is a start graph and R is a set of
rewriting rules of the form r = 〈GL, GR, α〉, where GL and GR are left- and
right-hand side graphs, respectively, and α : VL → VR is an injective function.

A match of a rule r in a graph G is a morphism ψ : GL → G that is edge-
injective. The application of a rule r to a match ψ in G, resulting in a new graph

H, is called a direct derivation and is written G
r,ψ
−→ H, where H is defined as

follows. The set VH is VG⊎ (VR \α(VL)) and EH is (EG \ψ(EL))⊎ER, where ⊎
denotes disjoint union. The source, target and labeling functions are defined by

sH(e) = sG(e) tH(e) = tG(e) labH(e) = labG(e) if e ∈ (EG \ ψ(EL)),

sH(e) = ψ(sR(e)) tH(e) = ψ(tR(e)) labH(e) = labR(e) if e ∈ ER,

3

M

C

G0
M

u1u0
e2

e1

v0
e4

CC
v1

C

GL

e2
v0 v1

GR
M

e5

⇒e1 e3

u2 v2 v2

v3

Fig. 1. A graph transformation system.

where ψ : VR → VH satisfies ψ(α(v)) = ψ(v) if v ∈ VL and ψ(v) = v, otherwise.

Intuitively, the application of r to G at the match ψ first removes from G
the image of the edges of L. Then the graph G is extended by adding the new
nodes in GR and the edges of GR. All nodes in L are preserved.

A direct derivation G
r,ψ
−→ H induces an obvious partial graph morphism

τ
G
r,ψ
−→H

: G ⇀ H , injective and total on nodes, which maps items which are not

deleted in G to corresponding items in H .
A derivation is a sequence of direct derivations starting from the start graph

G0. We write G0
∗
→ H if there is a derivation ending in graph H , and we denote

by GR the set of all graphs reachable in R, i.e., GR = {G | G0
∗
→ G}.

Example 1. Figure 1 depicts a GTS G = 〈G0, {r = 〈GL, GR, α〉}〉 describing
a simple message passing system. The start graph G0 consists of three nodes
u0, u1, u2, one M -labeled edge e1, representing a message, and one C-labeled
edge e2, representing a connection. The only rule consists of graphs GL and GR,
and function α, which is the identity on VL. The rule consumes the message
and the connection, shifts the message to the successor node and recreates the
connection. Furthermore a new C-labeled edge e5 is created, along which the
message can be passed in the next step. Note also that the source node of the
message, representing its “identity”, is preserved by the rule. In the rest of the
paper we shall use this as a running example.

The state space of a GTS can be represented in a natural way as a transi-
tion system where the states are the reachable graphs and a transition between

two states G and H exists whenever there is a direct derivation G
r,ψ
−→ H , as

in [3]. However, such a structure would not be sufficient to interpret the logic
introduced in the next section. Informally, since temporal modalities can be in-
terleaved with quantification (over edges), the logic allows to trace the evolution
of graph items over time and thus we need to represent explicitly which items of
a graph are preserved by a rewriting step. To this aim, after recalling the stan-
dard definition of transition systems, we introduce below an enriched variant
called graph transition systems.

Definition 3 (transition system). A transition system is a tuple M = 〈SM ,
TM , inM , outM , s

M
0 〉 where SM is a set of states, TM is a set of transitions,

4

inM , outM : TM → SM are functions mapping each transition to its start and

end state, and sM0 ∈ SM is the initial state. We shall sometimes write s
t
→ s′

if inM (t) = s and outM (t) = s′, and s
∗
→ s′ if there exists a (possibly empty)

sequence of transitions from s to s′.
Correspondingly, a transition system morphism h : M → M ′ is a pair of

functions 〈hS : SM → SM ′ , hT : TM → TM ′〉 such that the initial state as well
as the start and end states of all transitions are preserved, i.e., hS(sM0) = sM

′

0 ,
hS ◦ inM = inM ′ ◦ hT , and hS ◦ outM = outM ′ ◦ hT .

A graph transition system is defined as a transition system together with
a mapping which associates a graph with each state, and an injective partial
graph morphism with each transition. We use the same name that is used in [20]
for different, but closely related structures. The main difference is that in our
case there is a clear distinction between the states and the graphs associated
to the states: This leads below to a natural notion of morphism between graph
transition systems, which will play a basic role in our definition of abstraction.

Definition 4 (graph transition system). A graph transition system (GTrS)
M is a pair 〈M, g〉, where M is a transition system and g is a pair g = 〈gS , gT 〉,
where gS(s) is a graph for each state s ∈ SM , and gT (t) : gS(inM (t)) ⇀
gS(outM (t)) is an injective partial graph morphism for each transition t ∈ TM .

Note that the result of the application of a rule to a given match in a graph
is determined only up to isomorphism, because of the use of disjoint union in the
definition. Therefore, formally speaking, the state space of a GTS contains for
each reachable graph G all graphs isomorphic to G as well. The next definition
shows how to represent the state space of a GTS with a graph transition system
(GTrS), where we get rid of such useless redundancy. Note that since the resulting
GTrS is usually infinite-state, this construction is non-constructive and useless
for practical purposes. We need the GTrS in order to define the semantics of the
logic, but verification itself is done using a different method.

Definition 5 (graph transition system of a graph transformation sys-
tem). Given a GTS R = 〈G0, R〉, a GTrS representing its state space, denoted
by GTrS(R), can be obtained as follows.

1. Consider first the graph transition system 〈M, g〉, where: SM = GR (set

of all graphs generated by R); sM0 = G0; TM = {G
r,ψ
−→ H | G

r,ψ
−→

H is a direct derivation of R}; and the mapping g = 〈gS , gT 〉 is defined as

follows: gS(G) = G and gT (G
r,ψ
−→ H) = τ

G
r,ψ
−→H

: G ⇀ H.

2. Next, for each state G in SM and for each pair 〈r, ψ〉 where r is a rule
applicable to match ψ in G, choose one among the transitions leaving from
G and using r and ψ, and delete from TM all the remaining ones.

3. Finally, GTrS(R) is defined as the graph transition sub-system reachable
from the start graph.

5

C

M

u1u0
e2

e1

u2

e4

CC

M

e5

e3

u0 u1

u2

u3
e4

C
u0 u1

C

M

u2

C
u3 u4

e6

e7 e8

→ . . .
t1→

t2→

Fig. 2. A graph transition system.

Example 2. Figure 2 depicts a GTrS of the GTS depicted in Figure 1. Since state
identities coincide with their corresponding graphs, the figure is simplified and
we directly depict the graphs and partial graph morphisms. The leftmost state is
G0, the initial state of both the GTS and its GTrS. Observe that for the second
transition t2, g

T (t2)V (the component on nodes of gT (t2)) is an inclusion, while
gT (t2)E is partial and is only defined on the edge e4. All transitions correspond
to different instances of the same rule.

The construction described in Definition 5 is clearly non-deterministic, be-
cause of step 2. Among the possible GTrSs associated with the GTS of Figure 1,
the one drawn above enjoys some desirable properties: the partial injective mor-
phisms associated with transitions are partial inclusions (i.e., every item pre-
serves its name along rewriting), and edge and node names are not reused again
in the computation after they have been deleted. The interpretation of the logic
of Section 3 will be defined only over GTrSs satisfying such properties, and
called unraveled GTrSs. For any GTrS M not satisfying these properties we
shall consider an unraveled one which is behaviorally equivalent toM, called its
unraveling.

In order to characterize the unraveling of a GTrS we first need to intro-
duce GTrS morphisms, which will also be used later for relating a system and
its approximation. A morphism between two GTrSs consists of a morphism be-
tween the underlying transition systems, and, in addition, for each pair of related
states, of a graph morphism between the graphs associated with such states.
Furthermore, these graph morphisms must be consistent with the partial graph
morphisms associated to the transitions.

Definition 6 (graph transition system morphism). A graph transition
system morphism h : M → M′ from M = 〈M, g〉 to M′ = 〈M ′, g′〉 is a
pair 〈hM , hg〉, where hM : M → M ′ is a transition system morphism, and for

each state s ∈ SM , hg(s) is a graph morphism from gS(s) to g′S(hSM (s)), such

that the following condition is satisfied: for each transition s1
t
→ s2 ∈ TM ,

g′
T
(hTM (t)) ◦ hg(s1) = hg(s2) ◦ gT (t).

The diagram below illustrates the situation. The bottom square represents

transition s1
t
→ s2 in M and its image through hM in M ′ (sub- and super-

scripts are avoided for the sake of readability). The vertical arrows of the left

6

front square show how transition t is associated to a graph morphism via the g
component ofM, and similarly for the back right square. Finally, the back left
and front right sides of the top square are the components of the GTrS morphism
associated to states s1 and s2, and the top square is required to commute.

g′(h(s1)) g′(h(t))
%-

S
S

S

S
S

S

g(s1)

hg(s1) /7fffffffffff

fffffffffff

g(t)
#+

O
O

O

O
O

O

g′(h(s2))

g(s2)
hg(s2)

.6eeeeeeeeeeeee

eeeeeeeeeeeee

h(s1) h(t)

))T
T

T
T

T
T

OO

s1

OO

t ((Q
Q

Q
Q

Q
Q

33

h(s2)

OO

s2

OO

22

Definition 7 (unraveled graph transition system). A GTrS M = 〈M, g〉
is unraveled whenever M is a tree, for each t ∈ TM the morphism gT (t) :
gS(inM (t)) ⇀ gS(outM (t)) is a partial inclusion, and item names are not re-
used, i.e., for all s′, s′′ ∈ SM , if x ∈ XgS(s′) ∩XgS(s′′) there exists s ∈ SM such
that
x ∈ XgS(s) ∧ s

∗
→ s′ ∧ s

∗
→ s′′ ∧ gT (s

∗
→ s′)(x) = x ∧ gT (s

∗
→ s′′)(x) = x,

where gT (s
∗
→ s′) is the composition of the partial morphisms associated with

the transitions in s
∗
→ s′, which is uniquely determined since M is a tree.

An unraveling of a GTrS M = 〈M, g〉 is a pair 〈M′, h〉 where M′ is an
unraveled GTrS and h = 〈hM , hg〉 :M′ →M is a GTrS morphism, satisfying:

1. for each s ∈ SM ′ , hg(s) : g′
S
(s)→ gS(hSM (s)) is an isomorphism;

2. for each s ∈ SM ′ and transition hSM (s)
t′
→ s′′ in M , there is a transition

s
t
→ s′ in M ′ such that hTM (t) = t′ (and thus hSM (s′) = s′′).

Proposition 1 (unraveling of a GTrS). Any GTrS admits an unraveling.

The conditions defining an unraveled GTrSM ensure that taking the union
of all the graphs associated to the states in SM , we obtain a well-defined graph.
In fact, given any two states s and s′ and an edge e ∈ EgS(s) ∩ EgS(s′), the

source, target and label of e coincide in gS(s) and gS(s′). We shall denote the
components of this “universe” graph as 〈VM, EM, sM, tM, labM〉, where VM =
⋃

s∈SM
VgS(s), EM =

⋃

s∈SM
EgS(s), sM(e) = sgS(s)(e) if e ∈ gS(s), and similarly

for tM and labM.

3 A Temporal Graph Logic for Graph Transformation

Systems

We now define syntax and semantics of our temporal graph logic, that extends
the logic µL2 of [3]. The logic is based both on the µ-calculus [6] and on second-
order graph logic [8]. Let Vx, VX , VZ be sets of first- and second-order edge
variables and propositional variables, respectively.

7

Definition 8 (syntax). The logic µG2 is given by the set of all formulae gen-
erated by:

F ::= η(x) = η′(y) | x = y | l(x) = a | ¬F | F ∨ F | ∃x.F | ∃X.F |
x ∈ X | Z | 3F | µZ.F

where η, η′ ∈ {s, t} (standing for source and target), x, y ∈ Vx, X ∈ VX , a ∈ Λ
and Z ∈ VZ . Furthermore 3F is the (existential) next-step operator. The letter µ
denotes the least fixed-point operator. As usual the formula µZ.F can be formed
only if all occurrences of Z in F are positive, i.e., they fall under an even number
of negations. In the following we will use some (redundant) connectives like ∧, ∀,
2 and ν (greatest fixed-point), defined as usual. We denote by µG1 its first-order
fragment, where second-order edge variables and quantification are not allowed.

Definition 9 (semantics of µG2). Let M = 〈M, g〉 be an unraveled GTrS.
The semantics of temporal graph formulae is given by an evaluation function
mapping closed formulae into subsets of SM , i.e., the states that satisfy the
formula. We shall define a mapping J·KMσ : µG2→ 2SM , where σ is an environ-
ment, i.e., a tuple σ = 〈σx, σX , σZ〉 of mappings from first- and second-order
edge variables into edges and edge sets, respectively, and from propositional vari-
ables into subsets of SM . More precisely, σx : Vx → EM, σX : VX → 2EM and
σZ : VZ → 2SM , where EM is the set of all edge names used in M. When M is
implicit, we simply write J·Kσ.

Jη(x) = η′(y)Kσ = TηM(σx(x)) = η′M(σx(y))U Jx = yKσ = Tσx(x) = σx(y)U
Jl(x) = aKσ = TlabM(σx(x)) = aU Jy ∈ Y Kσ = Tσx(y) ∈ σX(Y)U

J¬F Kσ = SM \ JF Kσ JF1 ∨ F2Kσ = JF1Kσ ∪ JF2Kσ
JZKσ = σZ(Z) JµZ.F Kσ = lfp(λv.JF Kσ[v/Z])

J3F Kσ = {s ∈ SM | ∃s′, t. s
t
→ s′ ∧ s′ ∈ JF Kσ}

J∃x.F Kσ = {s ∈ SM | ∃e ∈ Eg(s) . s ∈ JF Kσ[e/x]}
J∃X.F Kσ = {s ∈ SM | ∃E ⊆ Eg(s) . s ∈ JF Kσ[E/X]}

where T·U maps true and false to SM and ∅, respectively, v ∈ 2SM , and lfp(f)
denotes the least fixed-point of the function f .

In particular, if F is a closed formula, we say that M satisfies F and write
M |= F , if s0 ∈ JF Kσ, where σ is the empty environment. Finally, we say that a
GTS R = 〈G0, R〉 satisfies a closed formula F , written R |= F , if the unraveling
of GTrS(R) satisfies F .

The restriction to formulae where all occurrences of propositional variables
are positive guarantees every possible function λv.JF Kσ[v/Z] to be monotonic.
Thus, by Knaster-Tarski theorem, fixed-points are well-defined.

Note that using unravelled GTrS is crucial for the definition of the semantics
of the logic: items can be easily tracked since their identity is preserved and
names are never reused. This allows to remember also the identities of deleted
items, differently from what happens in the semantics given in [20, 22].

8

Example 3. The following formula states that no M -labeled message edge is
preserved by any transition: M-consumed ≡ ¬∃x.(l(x) = M ∧ 3∃y. x = y).
The fact that this property holds in any reachable state is expressed by the
formula: always-M-consumed ≡ νZ.(M-consumed ∧ 2Z). It is easy to see
that M-consumed is satisfied by any state of the unraveled GTrS in Fig. 2, and
thus G |= always-M-consumed, where G is the GTS of Fig. 1.

The formula M-moves ≡ ¬∃x.(l(x) = M ∧3(∃y.(l(y) = M ∧ t(y) = t(x) ∧
s(y) = s(x)))) states that messages always move, i.e., there is no message edge
such that in the next state there is another message edge with the same identity
(i.e., source nodes coincide) attached to the same target node. And we can
require this property to hold in every reachable state: always-M-moves ≡
νZ.(M-moves∧2Z). Again, the GTS G satisfies this property. A GTS in which
the message would at some point cross a “looping connection” or with more than
one message would violate the formula.

4 Approximating GTSs with Petri graphs

In the verification approach proposed in [1, 3–5] Petri graphs, structures consist-
ing of a Petri net and a graph component, have been introduced. They are used
to represent finite approximations of the (usually infinite) unfolding of a GTS, on
which to verify certain properties of the original system. Furthermore they pro-
vide a bridge to Petri net theory, allowing to reuse verification techniques devel-
oped for nets: a property expressed as a formula in the graph logic can be trans-
lated into an equivalent multiset formula to be verified on the net underlying the
Petri graph. Here we shall concentrate on this latter aspect. We will not treat in-
stead the construction of finite Petri graphs over-approximating GTSs, presented
in [1, 4] also for varying degrees of precision, recently enriched with a technique
for counterexample-guided abstraction refinement [18], and for which the ver-
ification tool Augur (http://www.ti.inf.uni-due.de/research/augur 1/)
has been developed.

Before introducing Petri graphs we need some definitions. Given a set A we
will denote by A⊕ the free commutative monoid over A, whose elements will be
called multisets over A. In the sequel we will sometimes identify A⊕ with the
set of functions m : A→ N such that the set {a ∈ A | m(a) 6= 0} is finite. E.g.,
in particular, m(a) denotes the multiplicity of an element a in the multiset m.
Sometimes a multiset will be identified with the underlying set, writing, e.g.,
a ∈ m for m(a) 6= 0. Given a function f : A→ B, by f⊕ : A⊕ → B⊕ we denote
its monoidal extension, i.e., f⊕(m)(b) =

∑

f(a)=bm(a) for every b ∈ B.

Definition 10 (Petri nets and Petri graphs). A (Place/Transition) Petri
net is a tuple N = 〈SN , TN , •(), ()•,m0〉, where SN is a set of places, TN is a
set of transitions, •(), ()• : TN → S⊕

N determine for each transition its pre-set
and post-set, and m0 ∈ S

⊕
N is the initial marking. A transition t is enabled at a

9

Me1

C
C

u0

u2

C

M

u1

C

C
e4

M

e7

e6

u3

t2t1

e3
e2 e5

e8

2

t3

Fig. 3. A Petri graph.

marking m ∈ S⊕
N if •t ≤ m; in this case the transition can be fired at m, written

m[t〉m′, and the resulting marking is m′ = m− •t+ t•.4

A Petri graph P over a GTS R = 〈G0, R〉 is a tuple 〈G,N, p〉 where (1)
G is a graph (sometimes called the template graph); (2) N is a Petri net such
that (2.1) SN = EG, i.e., the set of places is the set of edges of G; (2.2) there
is a graph morphism ψ : G0 → G; (2.3) the initial marking m0 ∈ E

⊕
G properly

corresponds to the start graph of R, i.e., m0 = ψ⊕(EG0
); (3) p : TN → R is

a labeling function mapping each transition to a rule of R, such that (3.1) for
each transition t ∈ TN , its pre- and post-sets •t and t• properly correspond to
the left- and right-hand side graphs of p(t). A marking m is said to be reachable
in P if there is a (possibly empty) sequence of firing m0[t1〉m1[t2〉 . . . [tn〉m in
the underlying net N . The set of reachable markings of P is denoted by MP .

Example 4. Figure 3 depicts a Petri graph over the GTS G of our running ex-
ample. It has been computed by the tool Augur as the covering of depth 1. As
edges are places, the boxes representing edges can include tokens, which here
represent the initial marking. Transitions are depicted as black rectangles. The
pre-sets (resp. post-sets) of transitions are represented by dotted edges from edge
places to transitions or vice versa. Note that all three transitions are instances
of rule r, the only rule of G, and that there is indeed a morphism from G0 to
the template graph, such that the image of this morphism (e1, e2) corresponds
to the depicted (initial) marking.

A marking m of a Petri graph can be seen as an abstract representation of
a graph. The intuition is that every token of an edge represents an instance of
the corresponding template edge.

Definition 11 (graph generated by a marking). Let P = 〈G,N, p〉 be a
Petri graph and let m ∈ E⊕

G be a marking of N . The graph generated by m,
denoted by graphP (m), is the graph H defined as follows: VH = VG, EH =
{〈e, i〉 | e ∈ m ∧ 1 ≤ i ≤ m(e)}, sH(〈e, i〉) = sG(e), tH(〈e, i〉) = tG(e) and

4 Operations on markings are computed pointwise on the coefficients: e.g., m1 ≤ m2

iff m1(s) ≤ m2(s) for all s ∈ SN , and (m1 + m2)(s) = m1(s) + m2(s).

10

labH(〈e, i〉) = labG(e). In the following ψm denotes the obvious graph mor-
phism from graphP (m) into G, which is the identity on nodes and which satisfies
ψmE(〈e, i〉) = e ∈ EG.

Example 5. The marking of the Petri graph depicted in Figure 3 generates the
leftmost graph of Figure 4. The remaining graphs are generated by other reach-
able markings.

To each Petri graph P we can associate a GTrS, as shown in the next defini-
tion. As the reader would expect, each marking m is a state and the associated
graph is graphP (m). However, each transition of P corresponds in general to a
set of transitions in the GTrS, representing the different ways of preserving the
edges. To see why this is necessary consider the Petri graph of our running ex-
ample. Transition t3 consumes a token from edge place e8. Now assume that the
marking m is such that m(e8) = 2, i.e., there are two tokens in e8. Such a mark-
ing is indeed reachable. In this case one has to consider two transitions in the
transition system: one consuming edge 〈e8, 1〉 and the other consuming 〈e8, 2〉.
The intuitive idea of having different ways of preserving edges is formalized by
the notion of significant preservations.

Definition 12 (significant preservations). Let P = 〈G,N, p〉 be a Petri
graph, m,m′ be markings and t a transition such that m[t〉m′. We denote by
SP (m, t) the set of significant preservations, which contains the possible differ-
ent subsets of edges in graphP (m) which are not deleted by a firing of t, i.e.,
SP (m, t) = {EgraphP(m) − Y : Y ⊆ EgraphP (m) ∧ ψ⊕

m(Y) = •t}.

Definition 13 (GTrS by a Petri graph). The GTrS generated by a Petri
graph P = 〈G,N, p〉, denoted by GTrS(P), is 〈M, g〉 where

– SM is the set of markings reachable in P , i.e., SM = MP ;
– TM = {〈m, t,X,m′〉 | m[t〉m′ and X ∈ SP (m, t)};
– in(〈m, t,X,m′〉) = m and out(〈m, t,X,m′〉) = m′ for 〈m, t,X,m′〉 ∈ TM ;
– sM0 = m0;
– gS(m) = graphP (m);
– gT (〈m, t,X,m′〉) = fm,t,X, where fm,t,X : graphP (m) → graphP (m′) is any

injective partial graph morphism which is the identity over nodes, and whose
domain over edges is exactly X; for example, a concrete definition over edges
can be fEm,t,X(〈e, i〉) = 〈e, k〉 if k = |〈e, j〉 ∈ X : j ≤ i|.

Example 6. Figure 4 illustrates the GTrS associated to the Petri graph of our
running example. For the sake of simplicity only the underlying graphs and
partial graph morphisms are depicted. The leftmost state corresponds to the
initial marking m0 = {e1, e2}, while the next one corresponds to marking m1 =
{e3, e4, e5} reachable after firing t1. In the third graph a looping C-edge is in-
troduced, due to over-approximation. The most interesting transitions are t′4, t

′′
4 ,

both leaving markingm3. Both have the form 〈m3, t3, X,m4〉, whereX can either
be {〈e4, 1〉, 〈e7, 1〉, 〈e8, 1〉} or {〈e4, 1〉, 〈e7, 1〉, 〈e8, 2〉}. These transitions represent
different ways of consuming an instance of edge place e8.

11

C

C

t′′4←

t′4←

C

M

u1u0

u2

CC

M

u0 u1

u2

u3

C
u0 u1

M

u2

C
u3

〈e1, 1〉

〈e2, 1〉 〈e4, 1〉

〈e3, 1〉

〈e5, 1〉

C
u0 u1

M

u2

C
u3

C

〈e6, 1〉

〈e7, 1〉

〈e8, 1〉

〈e6, 1〉

〈e8, 1〉

〈e8, 2〉

〈e7, 1〉〈e4, 1〉

〈e4, 1〉

t′1→
t′2→

↓ t′3

. . .

Fig. 4. A graph transition system of a Petri graph.

Definition 14 (approximation). Let R = 〈G0, R〉 be a GTS, let P = 〈G,N, p〉
be a Petri graph and letMR andMP be the unravelings of the GTrSs generated
by R and P , respectively. We say that P is an approximation of R if there is a
GTrS morphism 〈hM , hg〉 : MR → MP such that for each state s ∈ SMR

, the
graph morphism hg(s) is edge-bijective.

It is easy to see that this notion of approximation implies a simulation in
Milner’s sense: if the original system can make a transition t from a graph G
to a graph H , then the approximation can simulate it with a transition from a
graph G′ to a graph H ′ via h(t). Additionally, we require that there must be
edge-bijective morphisms from G to G′ and from H to H ′, a property which will
be crucial for determining fragments of our logic that are preserved or reflected
by the approximation.

Example 7. Consider our running example. It is easy to see that the Petri graph
in Fig. 3 approximates the GTS in Fig. 1: there exist several morphisms with
edge-bijective components from the GTrS of Fig. 2 to the unraveling of the GTrS
of Fig. 4.

As already mentioned, given a GTSR = 〈G0, R〉, an algorithm proposed in [1,
4] constructs a Petri graph associated to R, called its covering and denoted by
C(R). The covering is an approximation of R in the sense stated above.

Proposition 2 (covering approximates). Let R = 〈G0, R〉 be a graph trans-
formation system. Then the covering C(R) = 〈G,N, p〉 of R is an approximation
of R.

12

5 Preservation and Reflection of Formulae

In this section we introduce a type system over graph formulae in µG2, gener-
alizing the one in [5], which characterizes subclasses of formulae preserved or
reflected by approximations. More precisely, the type system may assign to a
formula F the type “→”, meaning that F is preserved by approximations, or
the type “←”, meaning that F is reflected by approximations. Note especially
that since the approximation may merge nodes, formulae checking the identity
of nodes are preserved, but not reflected.

Definition 15 (reflected/preserved formulae). The typing rules are given
by

η(x) = η′(y):→ x = y, l(x) = a, x ∈ X,Z:↔

F : d
¬F : d−1

F1, F2: d
F1 ∨ F2: d

F : d
∃x.F : d

F : d
∃X.F : d

F :→
3F :→

F :←
2F :←

F : d
µZ.F : d

where it is intended that →−1 =← and ←−1 =→. Moreover F :↔ is a shortcut
for F :→ and F :←, while F1, F2 : d stands for F1 : d and F2 : d.

The type system can be shown to be correct in the following sense (see
also [19]).

Proposition 3 (preservation and reflection). Let M and M′ be two un-
raveled GTrSs such that there is a morphism 〈hM , hg〉 :M→M′ having all hg
components edge-bijective. Then for each closed formula F ∈ µG2 we have (i)
if F :← then M′ |= F implies M |= F and (ii) if F :→ then M |= F implies
M′ |= F .

Not all formulae that are preserved respectively reflected are recognized by
the above type system. A result of [5] shows that this incompleteness is a fun-
damental problem, due to the undecidability of reflection and preservation.

Example 8. Observe that always-M-consumed :← and hence approximations
reflect this property. Indeed the unraveling of the GTrS of the Petri graph of
our running example (see Fig. 4) satisfies the property, and so does the original
GTrS. Also, formula always-M-moves is classified as reflecting: however, in
this case the GTrS of Fig. 2 satisfies this property, but the unraveling of the
GTrS of Figure 4 does not, by the presence of a connection loop e8.

Since the covering provides an approximation of the original GTS, the the-
orem above applies. For a Petri graph P and a closed formula F ∈ µG2, we
shall write P |= F if the unraveling of the graph transition system GTrS(P)
generated by P satisfies F .

Corollary 1 (covering preserves and approximates). Let R be a GTS
and let F ∈ µG2 be a closed formula. Then we have (i) if F :← then C(R) |= F
implies R |= F and (ii) if F :→ then R |= F implies C(R) |= F .

13

6 From Temporal Graph Logics to Petri Net Logics

In this section we show how the first-order fragment of µG2 can be encoded into
a temporal logic for Petri nets, in a way that the Petri net underlying a Petri
graph satisfies the encoding of a formula exactly when the Petri graph satisfies
the original µG2 formula.

Let VZ be a set of propositional variables and NP , NT sets from which place
and transition names are drawn, respectively.

Definition 16 (Petri net logic syntax). The syntax of the Petri net logic P
is given by the following grammar, where p ∈ NP , t ∈ NT , c ∈ N and Z ∈ VZ :

φ ::= #p ≤ c | φ ∨ φ | ¬φ | Z | µZ.φ | 〈t〉φ.

The semantics is mostly standard and given by a mapping J·KPσ : P → 2MP

mapping formulae into sets of markings, where σ : freeZ → 2MP is an environ-
ment mapping propositional variables into sets of markings. We sometimes use
a satisfaction relation |=σ⊆MP × P , where m |=σ φ whenever m ∈ JφKPσ .

As an example, #e ≤ c is satisfied by markings m, where m(e) ≤ c, i.e.,
markings where the number of tokens in place e is less than or equal to c. Next-
time modalities are enriched with transition labels with the following meaning:
〈t〉φ is satisfied by markings from which transition t can be fired leading to a
marking that satisfies φ.

The encoding J·K, which maps formulae of µG1 into formulae of the logic P ,
is based on the following observation: Every graph graphP (m) for some marking
m of P can be generated from the finite template graph G in the following way:
some edges of G might be removed and some edges be multiplied, generating
several parallel instances of the same template edge. Whenever a formula has
two free variables x, y and graphP (m) has n parallel instances e1, . . . , en of the
same edge, it is not necessary to associate x and y to edges in all possible ways,
but it is sufficient to remember whether x and y are mapped or not mapped
to the same edge. Hence, in the encoding of a formula F , we keep track of the
following information: a partition Q on the free variables free(F), telling which
variables are mapped to the same edge, and a mapping ρ from free(F) to the
edges of G, with ρ(x) = e meaning that x will be instantiated with an instance
of the template edge e. When encoding an existential quantifier ∃x, we form a
disjunction over all the possibilities we have in choosing such an x: either x is
instantiated with the same edge as another free variable y, and thus x and y are
in the same class of the partition Q; or x is mapped to a new instance of an edge
in G, and thus a new set {x} is added to Q, adding a suitable predicate which
ensures that enough edges are available.

This is enough for the logic of [5], where interleaving of temporal operators
and edge quantifiers is not allowed. Here we have to consider the case in which
temporal modalities are nested into edge quantification. The main problem is
that an edge where some variables have been mapped can be removed by a tran-
sition and thus, when encoding quantification, one must be careful in avoiding to

14

instantiate a variable with the class of a removed edge. This is faced by recording
in a set R the classes corresponding to removed edges.

Before we define the encoding we need some definitions. An equivalence re-
lation Q over a set A will be represented as a partition Q ⊆ 2A, where every
element represents an equivalence class. We will write xQy whenever x, y are in
the same equivalence class k ∈ Q. Furthermore we assume that each equivalence
Q is associated with a function rep : Q → A which assigns a representative to
every equivalence class. The encoding given below is independent of any specific
choice of representatives. Given a function f : A→ B such that f(a) = f(a′) for
all a, a′ ∈ A with aQa′, we shall often write f(k) for f(rep(k)); furthermore, for
any b ∈ B we define nQ,f (b) = |{k ∈ Q | f(k) = b}|, i.e., the number of classes
in the partition Q that are mapped to b.

We next define the encoding, concentrating first on the fragment without
fixed-point operators.

Definition 17 (encoding for the fixed-point free first-order logic). Let
P = 〈G,N, p〉 be a Petri graph, F be a fixed-point-free µG1 formula, ρ : free(F)→
EG and Q ⊆ 2free(F) be an equivalence relation, R ⊆ Q and xQy implies
ρ(x) = ρ(y) for all x, y ∈ free(F). The encoding [·] : µG1 → P is defined as
follows:

[¬F, ρ,Q,R] = ¬[F, ρ,Q,R]

[F1 ∨ F2, ρ,Q,R] = [F1, ρ,Q,R] ∨ [F2, ρ,Q,R]

[x = y, ρ,Q,R] =

{

true if xQy
false otherwise

[l(x) = a, ρ,Q,R] =

{

true if labG(ρ(x)) = a
false otherwise

[s(x) = s(y), ρ,Q,R] =

{

true if sG(ρ(x)) = sG(ρ(y))
false otherwise

analogously for t(x) = t(y) and s(x) = t(y)

[∃x.F, ρ,Q,R] =
∨

k∈Q\R[F, ρ ∪ {x 7→ ρ(k)}, Q \ {k} ∪ {k ∪ {x}}, R] ∨

∨
∨

e∈EG
([F, ρ ∪ {x 7→ e}, Q ∪ {{x}}, R]
∧ (#e ≥ nQ\R,ρ(e)+1))

[3F, ρ,Q,R] =
∨

t∈TN

∨

R′∈SR,t
(
∧

e∈ •t(#e ≥ nQ\(R∪R′),ρ(e)+
•t(e)) ∧

∧〈t〉[F, ρ,Q,R ∪R′])
[Z, ρ,Q,R] = Z

where SR,t abbreviates {R′ ∈ 2(Q\R) | (ρ ◦ rep)⊕(R′) ≤ •t}.

If F is closed, we define [F] to be [F, ∅, ∅, ∅]. The main novelty with respect
to [5] is the encoding of formulae 3F involving the next-time operator. In or-
der to see if there is a transition after which F holds we examine the possible
transitions t of the Petri graph, and hence the disjunction amongst all t ∈ TN
arises. Concerning the removed edges, after the firing of a transition t several

15

cases may apply since edges corresponding to places in the pre-set of t may be
preserved or consumed, depending on the number of tokens in such places.

All the cases that have to be considered are defined by SR,t. In words, SR,t
contains sets of equivalence classes from Q \R that correspond to places in the
preset of t, not exceeding the number of tokens removed by t from each place,
i.e., if a transition consumes n tokens from a place e we shall not consider the
case in which more than n equivalence classes mapped to e are consumed.

When considering the consumption of one of such set R′ of equivalence
classes, we have to ensure that equivalence classes not included in R′ can actu-
ally be preserved. This can only happen if there are enough tokens (

∧

e∈ •t #e ≥
nQ\(R∪R′),ρ(e)+

•t(e)), i.e., if in each place e in the pre-set of t the number of
tokens is greater or equal to the number of tokens removed by t from e plus the
number of equivalence classes mapped to e that will be preserved.

Example 9. To clarify this point consider an example in which we are treating
a transition t whose pre-set is {e, e′, e′} and we have that Q is {k1, k2, k3}, R
is empty and ρ maps k1, k2 to e and k3 to e′. In this case we have that SR,t is
{∅, {k1}, {k2}, {k1, k3}, {k2, k3}}. Note that {k1, k2, k3} does not belong to SR,t
because the in-degree of e for t is just 1. Now let us consider the requirements
on the places for some of the elements of SR,t. For instance, for {k1} we need
#e ≥ 2 ∧#e′ ≥ 3 in order to be able to preserve k2 and k3, while for {k1, k3}
we need #e ≥ 2 to preserve k2.

After fixing an R′ and setting the requirement on the number of tokens
in the pre-set of t we have only to state that formula F holds under the new
configuration, i.e., where R′ is added to the set of removed equivalence classes.

Example 10. For the Petri graph in Fig. 3 formula [M-consumed] has the fol-
lowing form:

¬
∨

(i,j)∈L

(#ei ≥ 2 ∧#ej ≥ 1) ∨

#ei ≥ 1 ∧
∨

(k,ℓ)∈L−{(i,j)}

(#ek ≥ 1 ∧#eℓ ≥ 1)

where L = {(1, 2), (3, 5), (6, 8)} (pairs of indices of edges which form the pre-set
of a transition). Intuitively, the two disjuncts above encode the fact that an M -
edge can be preserved if there is an enabled transition with more than one token
in the M -edge in its pre-set (left disjunct), or there is a token in an M -edge and
a transition which does not consume this token is enabled (right disjunct).

In the worst case there can be an exponential blowup in the size of the
encoded formula. But at the same time, the resulting formula can often be greatly
simplified, even on-the-fly.

The encoding for general formulae of µG1, possibly including fixed-point
operators requires additional effort. Suppose we want to express that there is
an edge x and a computation that never consumes x, i.e., F ≡ ∃x.νZ.∃y.(x =
y ∧ 3Z). Now, if we try to encode F we encounter a problem: sometimes Z

16

should be evaluated in a context where the equivalence class of x is preserved
and sometimes in one where x is consumed.

In order to solve this, we exploit a property of fixed-points, namely that un-
folding an occurrence of the variable of a fixed-point formula results in an equiv-
alent formula. More formally, µZ.F is equivalent to µZ.F ′, where F ′ is the same
as F except that some free occurrences of Z are substituted by µZ ′.F [Z ′/Z],
where Z ′ is a fresh variable. As we shall see, unfolded fixed-points will be evalu-
ated in different contexts and a syntactic restriction will guarantee termination
of the encoding.

This is handled in the encoding of the next-step operator where in the case of
partition-consuming transitions we use the unfolding of F , denoted by uf (F,R).
The unfolding is formally defined as follows. Let fp(Z) denote the fixed-point
formula corresponding to a propositional variable Z and let {ZF1 , .., Z

F
n } denote

the set of propositional variables appearing free in F . Then uf (F,R) is defined
as F{fp(ZF1)/ZF1 , .., fp(Z

F
n)/ZFn }, i.e., each variable is substituted by the cor-

responding fixed-point formula, if R is not empty, otherwise uf (F,R) is just F .
The idea is that if no equivalence class is consumed the unfolding is not neces-
sary. Of course, every propositional and edge variable must be renamed in the
unfolding.

Formally, the encoding in presence of fixed-point operators is defined as fol-
lows.

Definition 18 (encoding for first-order logic). Let P = 〈G,N, p〉 be a Petri
graph, F ∈ µG1, ρ, Q, R as in Definition 17. The encoding [·] : µG1 → P is
defined as in Definition 17, but for the clause of the next-step operator which
becomes (a) below and the new clause for fixed-point operators (b):

[3F, ρ,Q,R] =
∨

t∈TN

∨

R′∈SR,t
(
∧

e∈ •t(#e ≥ nQ\(R∪R′),ρ(e)+
•t(e)) ∧ (a)

∧〈t〉[uf (F,R′), ρ,Q,R ∪R′])

[µZ.φ, ρ,Q,R] = µZ.[φ, ρ,Q,R] (b)

In order to guarantee termination of the encoding, we have to forbid formulae
in which propositional variables appear free under the scope of an edge quantifier.
To see why this is necessary, one can apply the encoding to formula νZ.∃x.3(Z∧
∃y.y = x), expressing that there is an infinite computation where in every state
there is at least one edge that is preserved in the next state. With the restriction
mentioned the encoding is guaranteed to terminate, since in this case the set Q
will not increase, hence set SR,t will decrease and at some point the chosen R′

must be empty. It is an open question whether this syntactic restriction involves
a loss of expressive power.

Proposition 4 (finite encoding). Let (G,N, p) be a Petri graph, F ∈ µG1
such that no propositional variable appears free under the scope of an edge quan-
tifier. Then [F, ∅, ∅, ∅] is finite.

17

Example 11. We have that [always-M-consumed] equals

νZ.

[M-consumed] ∧
∧

(i,j,k)∈M

(#ei ≥ 1 ∧#ej ≥ 1⇒ [tk]Z)

 ,

where M = {(1, 2, 1), (3, 5, 2), (6, 8, 3)} (indices of pre-sets together with tran-
sition indices) and [t]φ = ¬〈t〉¬φ. That is, in order to ensure that it is im-
possible for a message to be preserved in any reachable state we require that
M-consumed holds for any reachable marking.

This formula is satisfied by the Petri net underlying the Petri graph in Fig. 3
and it can even be verified using standard techniques for coverability checking.

Finally, we state correctness of the encoding. This result, together with Corol-
lary 1 allows to check that a formula F in µG1, typed as reflected, holds for a
GTS R by checking that its encoding [F] holds in the Petri net underlying any
covering of R.

Proposition 5 (correct encoding). Let P = 〈G,N, p〉 be a Petri graph and
let F be a closed formula in µG1. Then m0 |=∅ [F, ∅, ∅, ∅] iff P |= F .

7 Conclusion

We have enriched an existing approach for the verification of behavioral proper-
ties of GTSs via approximation [1, 4, 5]. The original approach approximates a
GTS by a Petri graph and reduces temporal graph formulae to existing logics for
Petri nets. The original logic proposed in [5] does not allow to interleave tem-
poral modalities and edge quantifiers and is thus not able to express properties
like an edge is never removed. We have proposed a solution to this, by using a
logic that interleaves temporal and structural aspects of a GTS and extending
the encoding into Petri net logics.

Our work is not the first one that proposes a non-propositional temporal
logic for graph transformation systems. The most relevant approach, in this
respect, is [20], where a second-order LTL logic is proposed, which is interpreted
on “graph transition systems” (these however are defined in a slightly different
way). Our approach is more general in the sense that also consider systems with
a possibly infinite state space and approximations of these systems, whereas
[20] considers finite-state systems; furthermore the temporal aspect of our logic
subsumes LTL. However, a precise comparison of the two approaches is not
easy, because the graph-related aspect of the logics are different ([20] considers
a logic to express path properties as regular expressions, while ours is based on
a fragment of the monadic second-order logic of graphs [8]), and graph items
which are deleted are handled differently in the two approaches.

Another first order temporal logic—called evolution logic—is proposed in [26],
in a framework based on abstract interpretation for the verification of Java pro-
grams featuring dynamic allocation and deallocation of objects and threads.

18

Evolution logic is a first order version of LTL, enriched with transitive closure,
and we think it suitable to express complex properties of graph transformation
systems as well: a deep comparison in this respect with our logic µG2 is planned
as future work.

In [22] it has been shown how the verification problem for CTL with addi-
tional quantification over “items” can be reduced to the verification of standard
CTL. This is not directly applicable to our setting, since we consider infinite-
state systems, but the connection to [22] deserves further study. Another related
work is [9], which is concerned with the approximation of special kinds of graphs
and the verification of a similar logic for verifying pointer structures on a heap.

In future work we plan to study the decidability of fragments of our logic.
First, we can profit from decidability results on similar logics like the guarded
monadic fragments of first-order temporal logics [16] and similar approaches for
the modal µ-calculus with first-order predicates [13]. Note that from a practical
point of view we can focus on the target Petri net logic P . Although the full logic
is undecidable, there are some clearly identifiable decidable fragments [12, 17].
In the linear-time case for instance, it is decidable to show whether there exists
a run satisfying a formula containing only “eventually” operators, but mixing of
“eventually” and “generally” operators in general leads to an undecidable logic.

Additionally, further approximation on the transition system generated by
the Petri net can be used in order to model-check formulas on infinite-state
Petri nets (see, e.g., [24]). We plan to enhance our approach by extending the
encoding to the full logic including second-order quantification, and considering
more general graph transformation systems, allowing non-discrete interfaces [2].

References

1. P. Baldan, A. Corradini, and B. König. A static analysis technique for graph trans-
formation systems. In CONCUR’01, volume 2154 of Lecture Notes in Computer
Science. Springer, 2001.

2. P. Baldan, A. Corradini, and B. König. Verifying finite-state graph grammars: An
unfolding-based approach. In Proc. of CONCUR’04, volume 3170 of Lecture Notes
in Computer Science, pages 83–98. Springer, 2004.

3. P. Baldan, A. Corradini, B. König, and B. König. Verifying a behavioural logic for
graph transformation systems. In Proc. of COMETA’03, volume 104 of ENTCS,
pages 5–24. Elsevier, 2004.

4. P. Baldan and B. König. Approximating the behaviour of graph transformation
systems. In Proc. of ICGT’02, volume 2505 of Lecture Notes in Computer Science,
pages 14–29. Springer, 2002.

5. P. Baldan, B. König, and B. König. A logic for analyzing abstractions of graph
transformation systems. In SAS’03, volume 2694 of Lecture Notes in Computer
Science, pages 255–272. Springer, 2003.

6. J. Bradfield and C. Stirling. Modal logics and mu-calculi: an introduction. In
J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of Process Algebra. Else-
vier, 2001.

7. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Alge-
braic Approaches to Graph Transformation I: Basic Concepts and Double Pushout
Approach, chapter 3. Volume 1 of Rozenberg [23], 1997.

19

8. B. Courcelle. The expression of graph properties and graph transformations in
monadic second-order logic, chapter 5, pages 313–400. Volume 1 of Rozenberg [23],
1997.

9. D. Distefano, J.-P. Katoen, and A. Rensink. Who is pointing when to whom? In
K. Lodaya and M. Mahajan, editors, Proc. of FSTTCS’04, volume 3328 of Lecture
Notes in Computer Science, pages 250–262. Springer, 2004.

10. F. Dotti, L. Foss, L. Ribeiro, and O. Marchi Santos. Verification of distributed
object-based systems. In Proc. of FMOODS ’03, volume 2884 of Lecture Notes in
Computer Science, pages 261–275. Springer, 2003.

11. H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini.
Algebraic Approaches to Graph Transformation II: Single Pushout Approach and
Comparison with Double Pushout Approach, chapter 4. Volume 1 of Rozenberg
[23], 1997.

12. J. Esparza and M. Nielsen. Decidability issues for Petri nets - a survey. Journal
of Information Processing and Cybernetic, 30(3):143–160, 1994.

13. E. Franconi and D. Toman. Fixpoint extensions of temporal description logics. In
Proc. of the International Workshop on Description Logics (DL2003), volume 81
of CEUR Workshop Proceedings, 2003.

14. F. Gadducci, R. Heckel, and M. Koch. A fully abstract model for graph intepreted
temporal logic. In Proc. of TAGT’98, volume 1764 of Lecture Notes in Computer
Science, pages 310–322. Springer, 1998.

15. M. Große-Rhode. Algebra transformation systems as a unifying framework. Elec-
tronic Notes in Theoretical Computer Science, 51, 2001.

16. I. Hodkinson, F. Wolter, and M. Zakharyaschev. Monadic fragments of first-order
temporal logics: 2000-2001 a.d. In Proc. of LPAR’01, pages 1–23. Springer, 2001.

17. R. R. Howell, L. E. Rosier, and H.-C. Yen. A taxonomy of fairness and temporal
logic problems for Petri nets. Theoretical Computer Science, 82:341–372, 1991.

18. B. König and V. Kozioura. Counterexample-guided abstraction refinement for the
analysis of graph transformation systems. In Proc. of TACAS ’06, volume 3920 of
Lecture Notes in Computer Science, pages 197–211. Springer, 2006.

19. C. Loiseaux, S. Grafa, J. Sifakis, A. Bouajjani, and S. Bensalem. Property pre-
serving abstractions for the verification of concurrent systems. Formal Methods in
System Design, 6:1–35, 1995.

20. A. Rensink. Towards model checking graph grammars. In Proc. of the 3rd Work-
shop on Automated Verification of Critical Systems, Technical Report DSSE–TR–
2003–2, pages 150–160. University of Southampton, 2003.

21. A. Rensink. Canonical graph shapes. In Proc. of ESOP ’04, volume 2986 of Lecture
Notes in Computer Science, pages 401–415. Springer, 2004.

22. A. Rensink. Model checking quantified computation tree logic. In Proc. of CON-
CUR ’06, volume 4137 of Lecture Notes in Computer Science, pages 110–125.
Springer, 2006.

23. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation: Foundations, volume 1. World Scientific, 1997.

24. K. Schmidt. Model-checking with coverability graphs. Formal Methods in System
Design, 15(3), 1999.

25. D. Varró. Automated formal verification of visual modeling languages by model
checking. Software and System Modeling, 3(2):85–113, 2004.

26. E. Yahav, T. Reps, M. Sagiv, and R. Wilhelm. Verifying temporal heap properties
specified via evolution logic. In Proc. of ESOP ’03, volume 2618 of Lecture Notes
in Computer Science, pages 204–222. Springer, 2003.

20

