
Abstract True Concurrency: Adhesive Processes

Paolo Baldan1, Andrea Corradini2, Tobias Heindel3,
Barbara König3, and Pawe l Sobociński4⋆

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy
2 Dipartimento di Informatica, Università di Pisa, Italy

3 Institut für Formale Methoden der Informatik, Universität Stuttgart, Germany
4 Computer Laboratory, University of Cambridge, United Kingdom

Abstract. Rewriting systems over adhesive categories have been re-
cently introduced as a general framework which encompasses several
rewriting-based computational formalisms, including various modelling
frameworks for concurrent and distributed systems. Here we begin the
development of a truly concurrent semantics for adhesive rewriting sys-
tems by defining the fundamental notion of process, well-known from
Petri nets and graph grammars. The main result of the paper shows
that processes capture the notion of true concurrency—there is a one-to-
one correspondence between concurrent derivations, where the sequential
order of independent steps is immaterial, and (isomorphism classes of)
processes. We see this contribution as an important step towards a gen-
eral theory of true concurrency which specialises to the various concrete
constructions found in the literature.

1 Introduction

Many rewriting theories have been developed in order to describe rule-based
transformations over specific classes of objects: words (formal languages), terms,
multi-sets (Petri nets) and graphs (graph rewriting). The recently introduced
categorical foundation for double-pushout (dpo) rewriting theory based on ad-
hesive categories [12] encompasses rewriting on words, multi-sets and (typed)
graphs. Indeed, adhesive categories satisfy practically all the High-Level Replace-
ment conditions [7], which ensure the validity of several standard theorems.

As a consequence of the relatively simple axioms and closure properties of
adhesive categories, it is not difficult to show that a wide range of structures
form the objects of an adhesive category. For instance, the categories of graphs
with second-order edges or graphs with scopes are adhesive. Because of their
generality, adhesivity and related concepts have begun to be exploited in the
area of graph transformation (see e.g., [8]).

The view of adhesive rewriting systems as a general, unifying setting into
which several models of concurrent and distributed systems can be embedded,
calls for a generalization of the concurrency theory already developed on specific

⋆ Partially supported by EPSRC grant GR/T22049/01, DFG project SANDS, EC
RTN 2-2001-00346 SegraVis, MIUR project PRIN 2005015824 ART. . .

formalisms like Petri nets and graph rewriting to this framework. The first steps
in this direction were already taken in [12] where the notions of sequential and
parallel independence of two rewriting steps, i.e. conditions under which they
can be switched or applied concurrently, were studied.

In this paper we initiate the development of a truly-concurrent semantics for
adhesive rewriting systems by generalizing the fundamental notion of process,
well-known from the theory of Petri nets [10]. A (deterministic, non-sequential)
process describes a possible computation of a given rule-based system taking
into account the dependencies between the rewriting steps. The fact that two
events are concurrent is therefore modeled by the absence of dependencies be-
tween them. Intuitively, a process provides a canonical representation of a class
of derivations (sequences of rewriting steps) which differ only in the order of
independent rewriting steps.

The theory of deterministic processes and their correspondence with suit-
able equivalence classes of derivations has been generalized from nets to graph
transformation systems in [6, 4, 1]. The classical definition of process is based
on the set-theoretic concept of items—tokens in the case of Petri nets, nodes
and edges in the case of graph rewriting. For example, a transition t is said to
be a cause of another transition t′ if it produces a token in the pre-set of t′,
while in dpo-graph rewriting a rule cannot be applied to a graph if it deletes a
node without deleting all edges incident to it (the so-called dangling condition).
Since our setting is categorical and there does not exist a straightforward way
of obtaining the “atoms” of an object, an entirely original approach is needed
in order to deal with the relevant concepts such as causality, concurrency, and
negative application conditions for rules.

In the abstract setting of adhesive categories, a concept related to the notion
of item is that of subobject of an object X . A subobject is an isomorphism class
of monomorphisms into X . For example, in the category of sets and functions,
the subobjects of a set are (in 1-1-correspondence with) its subsets, while in the
category of graphs and homomorphisms, a subobject of a graph is a subgraph.
When working with subobjects of X in adhesive categories, we benefit from the
fact that they form a distributive lattice [12]. However, we have no notion of
“atoms” that can be consumed or produced. As a consequence, the techniques
involved in the development of our theory are significantly different from those
used in the setting of nets or graph rewriting.

The theory in this paper provides the foundations for the development of
partial order verification methods that are applicable to rewriting systems over
general “graph-like” structures, including, for instance, UML models, bigraphs
and dynamic heap-allocated pointer structures.

From a theoretical perspective, the central merit of our development lies in
readdressing the concept of process that has so far been defined only in concrete
cases. This is in contrast to related notions such as parallel and sequential-
independence which are traditionally defined at the abstract level. The advan-
tages of understanding processes at a general level are clear: we are able to prove
theorems without resorting to the use of low-level structure.

Structure of the paper. We recall the definition of adhesive categories as well as
some of their properties in §2. Adhesive grammars and derivations are introduced
in §3 followed by a study of the possible relations between the rules and their
connections with concurrency. The notion of (deterministic) occurrence gram-
mars (on which the notion of process is based) is developed in §4. Finally, in §5
we define processes and show that processes and switch-equivalent derivations
are in 1-1-correspondence.

2 Adhesive Categories

Adhesive categories were introduced in [12]. Roughly, they may be described as
categories where pushouts along monos are “well behaved”. Here we only give
a minimal introduction, concentrating on the algebra of subobjects of a given
object T .

Definition 1 (Adhesive category). A category C is said to be adhesive if

1. C has pushouts along monomorphisms; C′

tthhhhhhhh
&&LL

L

��

A′

��

&&MM
M B′

��

tthhhhhhhh

D′

��

Cm
hhhh

sshhhh &&MMM

A
&&MMM B

sshhhhhhhhh

D

2. C has pullbacks;
3. Given a cube diagram as shown to the right

with: (i) m : C → A mono, (ii) the bottom
face a pushout and (iii) the back faces pull-
backs, we have that the top face is a pushout
iff the front faces are pullbacks.

A subobject of a given object T is an isomorphism class of monomorphisms
to T . Binary intersections of subobjects exist in any category with pullbacks.
Adhesive categories enjoy also the existence of binary subobject unions which are
calculated in an intuitive way by pushing out along their intersection. Moreover,
the lattice of subobjects is distributive—that is, meets distribute over joins.

Theorem 2 ([12], Theorem 17 and Corollary 18). For an object T of an
adhesive category C, the poset Sub(T) of subobjects of T has joins: the join of two
subobjects is (the equivalence class of) their pushout in C over their intersection.
Furthermore the lattice Sub(T) is distributive.

3 Adhesive Grammars

We start by introducing rules and grammars. Rules consist of three objects: a left-
hand side, a right-hand side and a common “read-only” part that is preserved,
called the context, which is a subobject of both the left- and the right-hand side.

Definition 3 (Rules and grammars). Let C be an adhesive category that we
assume to be fixed for the rest of the paper. A rule is a span of monomorphisms
L

α
�−� K

β
�−� R in C. It is called consuming if α is not an isomorphism.

A grammar is a triple G = 〈S, P, π〉, where P is a set of rule names, π is a
function which maps any q ∈ P to a rule Lq

αq
�−−� Kq

βq
�−� Rq and S ∈ ob(C) is

the start object. The grammar G is called consuming if all its rules are consuming.

A direct derivation is a diagram representing a single application of a rewrit-
ing rule. Applying several rules in sequence gives us a path through the state
space of the grammar. The diagram consisting of the corresponding sequence of
direct derivations can be reconstructed from a given path, and together they form
a derivation. In this paper we will only consider monomorphisms as matches.

Definition 4 (Direct derivations and paths). Let G = 〈S, P, π〉 be a gram-
mar, let q ∈ P , A, B ∈ ob(C), and f : Lq �−� A be a monomorphism. Then q

rewrites A to B at f in G, written A
〈q,f〉
===⇒G B, if there exists a diagram (1)

consisting of two pushouts. If it exists, we shall refer to such a diagram as a
direct derivation along 〈q, f〉, to the left pushout as pushout complement of αq

and f , and to f as a (q-)match.

Lq

f
��

Kq

αqoo

g
��

βq // Rq

h
��

A

�_
Dγ

oo
δ

// B

_� (1)

A G-path is a sequence τ = 〈qi, fi〉i∈[n], so that A0 = S and Ai
〈qi,fi〉====⇒G Ai+1

for i ∈ [n].5 Given a G-path τ , let d
τ be the diagram which results from including

the direct derivations of all of τ ’s individual steps:

L0

f0

����
��
��

K0
α0oo

g0

��

β0 //R0

h0

��/
//

//
/ L1

f1

����
��
��

K1
α1oo

g1

��

β1 //R1

h1

��/
//

//
/ · · ·

· · ·

Ln−1

fn−1

����
��
��

Kn−1
αn−1oo

gn−1

��

βn−1//Rn−1

hn−1

��-
--

--
-

S = A0

�_
D0

︸ ︷︷ ︸

d
τ
0

γ0

oo
δ0

//A1

� �
D1

︸ ︷︷ ︸

d
τ
1

γ1

oo
δ1

//A2

_�
· · · An−1

�_
Dn−1

︸ ︷︷ ︸

d
τ
n−1

γn−1

oo
δn−1

//An

_�

Then d
τ is said to be a diagram of τ and a witness of A0

τ
=⇒ An and the pair

〈τ, dτ 〉 is called a (G-)derivation. For each i ∈ [n] we write d
τ
i for the sub-diagram

of d
τ that witnesses Ai

〈qi,fi〉====⇒ Ai+1, and d
τ
[i] for the sub-diagram containing the

first i steps of the derivation diagram. Each sub-diagram Li
αi

�−� Ki
βi

�−� Ri is
said to be an occurrence of qi.

In the sequel we will consider typed grammars, as introduced in [6], which
are grammars where every component is endowed with a morphism into a fixed
object T ∈ ob(C). Roughly, the type object T is intended to provide the pattern
which any possible system state must conform to, and the existence of the typing
morphism α : A→ T ensures that the state A conforms to the type.

Formally, typed grammars can be seen as grammars in the slice category
C ↓T , which is adhesive when C is (see [12]). However having an explicit typing
will be useful when defining the process of a grammar G, which describes a
concurrent computation in G by representing the rules used and the resources

5 For each n ∈ N, we denote by [n] the set {0, . . . , n − 1}.

generated and deleted in such a computation. Explicitly working with this type
graph will enable us to view all left-hand sides, right-hand sides and contexts as
subobjects and work in the subobject lattice Sub(T).

To describe the typed setting formally it shall be convenient to consider an
“identity” rule for the start object of a grammar. Given S ∈ ob(C), we shall
adopt the convention of letting S denote the rule π(S) = S

id←− S
id−→ S.

Definition 5 (Typed grammars and derivations). A typed grammar is a
tuple G = 〈G′, T, t〉 where G′ = 〈S, P, π〉 is a grammar, T ∈ ob(C) is the type
object and t is the (rule) typing, which assigns to each rule name q ∈ P ·∪ {S} a
cocone for π(q) to T as depicted in the commutative diagram below.

Lq
π(q)

{

t(q)

{

lq ,,

Kq

αqoo βq //

kq��

Rq

rqrrT

A rule q is called mono-typed if lq and rq are monos; G is called mono-typed if
all q ∈ P ·∪ {S} are mono-typed.

Let G =
〈
〈S, P, π〉, T, t

〉
be a typed grammar; then a (t-typed) G-derivation is

a triple ρ = 〈τ, dτ , c〉 where 〈τ, dτ 〉 is a derivation and c is a cocone to T for d
τ

that coincides with t(q) on each rule occurrence of q in d
τ for each q ∈ P ·∪ {S}.

��

Li

li

??

��?
?

fi

����
��
��
��
��
��

Ki

ki

yy

||yyy

αioo

gi

��

βi // Ri
ri

iii

iiiiii

ttiiiiii
hi

��3
33

33
33

33
33

3

��

· · ·
...

,, 33 T
...

qqmm · · ·

// Ai

aiooooo

77ooooo

Di

di DD

bbDDD

γi

oo
δi

// Ai+1

ai+1 XXXXXXXXX

XXXXXX
kkXXXXXX

oo

The grammar G is called safe if all objects reachable from the start object are
mono-typed.

Now consider two rules qm−1, qm which can be applied in sequence and
rewrite Am−1 to Am and then to Am+1. Furthermore assume that the left-hand
side of qm is already present in Dm−1 and the right-hand side of qm−1 can still
be found in Dm. This means that these rules do not interfere with each other
and their applications can hence be switched, leading to the same result Am+1.
Pairs of direct derivations of this kind are called sequential-independent.

Definition 6 (Sequential independence [11]). Let 〈τ, dτ 〉 be a G-derivation.
Then, fixing m ∈

[
|τ |

]
, m > 0, the direct derivations d

τ
m−1 and d

τ
m are sequential-

independent if there are morphisms u : Lm → Dm−1 and w : Rm−1 → Dm such

that the diagram below commutes, i.e., δm−1 ◦ u = fm and γm ◦ w = hm−1.

· · ·
��

oo

��

// Rm−1

w

&&hm−1
��?

??
??

?
Lm

u

xx fm����
��

�
oo

��

//

��
· · ·

Am−1 Dm−1

︸ ︷︷ ︸

d
τ
m−1

oo
δm−1

// Am Dm

︸ ︷︷ ︸

d
τ
m

γm

oo // Am+1

We shall now introduce certain relations between the rules of a mono-typed
grammar, and the resulting connections with sequential independence and the
classical Local Church-Rosser Theorem. In the following, the inclusion (or partial
order) ⊑, union (or join) ⊔ and intersection (or meet) ⊓ are interpreted in the
subobject lattice Sub(T).

Definition 7 (Rule relations). Let G =
〈
〈S, P, π〉, T, t

〉
be a mono-typed

grammar and let q, q′ ∈ P be rule names. We define four rule relations:

< : q directly causes q′, written q < q′, if Rq ⊓ Lq′ 6⊑ Kq

≪ : q can be disabled by q′, written q ≪ q′, if Lq ⊓ Lq′ 6⊑ Kq′

<co : q directly co-causes q′, written q <co q′, if Rq ⊓ Lq′ 6⊑ Kq′

≪co : q can be co-disabled by q′, written q ≪co q′, if Rq ⊓Rq′ 6⊑ Kq.

The following proposition gives a partial account of the relationship between
sequential independence and rule relations.

Proposition 8. Let 〈τ, dτ , c〉 be a typed derivation such that d
τ witnesses

A0
〈q0,f〉

====⇒ C
〈q1,g〉

===⇒ A2 and suppose that C is mono-typed. Then:

1. If q0 ≮ q1 and q0 6≪ q1 then d0 and d1 are sequential-independent;
2. If d0 and d1 are sequential-independent then q0 ≮ q1 and q0 6<co q1.

As mentioned above, sequential-independent direct derivations can be
switched, giving us the first part of the following result. Moreover, when working
with mono-typed grammars and derivations, we identify a sufficient condition
making it possible to construct the “middle-object” of the switched derivation
as a subobject of the type object.

Theorem 9 (Local Church-Rosser). Consider the derivation diagram below:

L0

~~~~~
f
~~~~~

K0
α0oo

��

β0 // R0
h
��>

>>
L1g

�����
K1

α1oo

��

β1 // R1
k
 A

AA

A0

t
{

a0 00

D0

++WWWWWWWW
γ0oo δ0

// C
c��

D1γ1oo δ1
//

sshhhhhhhh
A2

a2nnT

where t is a cocone for d to T and assume that the (untyped) direct derivations
are sequential-independent. Then the following hold:

1. There exist C′, g′, f ′ and a witness d
′ for A0

〈q1,g′〉

====⇒ C′
〈q0,f′〉

====⇒ A2 such that
d
′
0 and d

′
1 are sequential-independent.

2. If both rules are mono-typed, a0, c and a2 are monic, and also L0 ⊓ R1 ⊑
D0 ⊓D1 in Sub(T), then C′ = L0 ⊔ (D0 ⊓D1) ⊔R1.

Proof. For the the first part of the theorem see [11, 7, 12]. For the second half,
let w0 : R0 → D1 and u0 : L1 → D0 be such that h = γ1 ◦ w0 and g = δ0 ◦ u0.

We obtain the following four diagrams: square (1) by pullback, also yielding
pullbacks (2) and (3). Squares (4) and (5) by pushout, also yielding pushouts (6)
and (7). Finally, square (8) by pushout. Notice that all the morphisms in the
diagrams are mono.

L0

u1 ��

K0

(2)(4) ��

α0oo β0 // R0

w0��
E0

γ′
1 ��

D0⊓D1

(1)(6) ��

oo // D1

γ1��
A0 D0γ0

oo
δ0

// C

L1

u0 ��

K1

(3) (5)��

α1oo β1 // R1

w1��
D0

δ0 ��

D0⊓D1

(7)(1)

oo //

��

E1

δ′
0��

C D1γ1

oo
δ1

// A2

L1

u0 ��u0 ��

K1

(3) (5)

α1oo

��

β1 // R1

w1��
D0

γ0 ��

D0⊓D1

(8)(6)

oo

��

// E1

γ′
0��

A0 E0
γ′
1

oo
δ′
1

// C′

L0

u1 ��

K0

(4) (2)

α0oo

��

β0 // R0

w0��
E0

δ′
1 ��

D0⊓D1

(8) (7)

oo

��

// D1

δ1��
C′ E1

γ′
0

oo
δ′
0

// A2

Notice that E0 =
L0 ⊔ (D0 ⊓ D1) (be-
cause a0 is mono) and
(since a2 is mono)
E1 = R1 ⊔ (D0 ⊓ D1).
It remains to show that
C′ = E0 ⊔ E1 for which
it suffices to show that
E0 ⊓ E1 = D0 ⊓ D1.
But by assumption
E0 ⊓ E1 = (L0 ⊓ R1) ⊔
(D0 ⊓D1) = D0 ⊓D1.

⊓⊔
Notice that E0 = L0 ⊔ (D0 ⊓D1) (because a0 is mono) and (since a2 is mono)
E1 = R1 ⊔ (D0 ⊓ D1). It remains to show that C′ = E0 ⊔ E1 for which it
suffices to show that E0 ⊓ E1 = D0 ⊓ D1. But by assumption E0 ⊓ E1 =
(L0 ⊓R1) ⊔ (D0 ⊓D1) = D0 ⊓D1. ⊓⊔

From a true concurrency point of view, we do not want to distinguish among
derivations which differ only in the order of sequential-independent direct deriva-
tions. This is formalized by the relation introduced next.

Definition 10 (Derivation switching). Let 〈τ, dτ 〉 be a derivation and as-
sume that the direct derivations d

τ
m−1 and d

τ
m are sequential-independent. Let

τ ′ be the path obtained from τ by switching these two direct derivations accord-

ing to Theorem 9. Finally let d
τ ′

be a diagram of τ ′. Then we say that the two

derivations are switchings of each other and write 〈τ, dτ 〉
sw
∼ 〈τ ′, dτ ′

〉.

4 Occurrence Grammars

In this section we will introduce the central notion of occurrence grammar which
will be used to describe the computation of a system modulo concurrency and
on which the notion of process—to be introduced later—is based.

To this aim it is convenient to first present some auxiliary definitions: A
notion which commonly occurs in formalisms allowing to express that a re-
source can be read without being consumed, e.g., in contextual Petri nets or
in graph transformation systems, is the notion of asymmetric conflict. For adhe-
sive grammars asymmetric conflict can be defined using the rule relations from
Definition 7: rules p, q are in asymmetric conflict (written pր q) whenever either
p is an indirect cause of q or p depends on something that is destroyed by q. In
a (deterministic) occurrence grammar, i.e. the representation of a computation,
where every rule occurs exactly once; hence p must be executed before q.

Definition 11 (Asymmetric conflict, (co-)causes). Let G =
〈
〈S, P, π〉, T, t

〉

be a mono-typed grammar. Thenր = <+ ∪ (≪ \ idP), where idP is the identity
relation on P , is called asymmetric conflict. For a subobject A ∈ Sub(T) we define

xAy = {q ∈ P | Rq ⊓A 6⊑ Kq} and xAy = {q ∈ P | Lq ⊓A 6⊑ Kq}

as the sets of (direct) causes and (direct) co-causes of A respectively.

We are now ready to define the notion of (deterministic) occurrence gram-
mars. Technically an occurrence grammar is a grammar with special properties
which generalizes the notions of deterministic occurrence nets [10] and gram-
mars [4] defined in the setting of Petri nets and graph grammars, respectively.

Definition 12 ((Deterministic) occurrence grammar). A grammar O =
〈
〈S, P, π〉, T, t

〉
is a (deterministic) pre-occurrence grammar if it is mono-typed,

1. P is finite and ր is acyclic,
2. the start object S has no causes, i.e. xSy = ∅,
3. there are neither forward nor backward conflicts, i.e., for all q 6= q′ ∈ P

(Lq′ ⊓ Lq) ⊑ Kq′ ⊔Kq and (Rq′ ⊓Rq) ⊑ Kq′ ⊔Kq.

The grammar O is a (deterministic) occurrence grammar if there is some end
object F ∈ Sub(T) such that xFy = ∅ and for all A ∈ Sub(T):

A ⊑

(

S ⊔
⊔

q∈xAy

Rq

)

and A ⊑

(

F ⊔
⊔

q∈xAy

Lq

)

(2)

The requirements of Definition 12 above can be motivated as follows: First,
ր must be acyclic, since there is otherwise no valid execution order for all rules
of the occurrence grammar. Furthermore there are no forward conflicts, meaning
that the occurrence grammar is deterministic, and no backward conflicts which
roughly amounts to saying that “everything” is generated by at most one rule.
Note also that S and F are determined uniquely by Condition (2).

Condition (2) is central for the following theory. It intuitively says that ev-
erything is either in the start object or generated at some point and that also
the converse holds: everything is either in the end object or it is consumed at
some time. The first part is needed to show that when we put the rules of an

occurrence grammar into sequence according to asymmetric conflict and apply
an initial part of this sequence, we reach an object that contains the left-hand
side of the next rule. Then the second part is needed to prove that also the
pushout complement exists and the rule can actually be applied. (See also the
proof of Theorem 19.) Though it looks simple, note that Condition (2) is really
new in the adhesive case and one might even claim that it is one of the essential
contributions of the paper. Its role is further explained by the example below.

Example 13 (Pre-occurrence grammar that is not an occurrence grammar). Con-
sider the category of usual (multi-)graphs with nodes and edges, i.e., the functor
category Set•⇇•. Now take a grammar with the empty graph ∅ as start object
S, and two rule names p, q with associated rules and type graph as shown below.

S : ∅ T :
©v

e

��

∅← ∅→©v
︸ ︷︷ ︸

π(q)

©v

e

�� ←
©v

e

�� →
©v

e

��

︸ ︷︷ ︸

π(p)

The typing is given by the obvious inclusions. This is clearly a pre-occurrence
grammar, but not an occurrence grammar since Condition (2) is violated. To
see why observe that for the subobject T one has xTy = {q} and thus T 6⊑
S ⊔

⊔

q′∈xTy

Rq′ = S ⊔Rq = Rq. Note that this corresponds to the fact that the
graph obtained after applying q is too small to contain the left-hand side of p.

Similarly, when we consider the reversed pre-occurrence grammar (view rules
from right to left) with T as the start object, the second part of Condition (2)
does not hold. In order to see this observe that now the end object is the empty
graph and that only (the reversed) q is a co-cause for T , which leads to T 6⊑ F ⊔
⊔

q′∈xAy

Lq′ . This is connected to the fact that—after applying rule p (reversely)

to T—q cannot be applied since the pushout complement for ∅ �−�
◦

�−�

�

◦
does

not exist, due to the existence of the edge.

To further explain why Condition (2) is new, consider that in the case of
graph occurrence grammars equivalent properties are given only indirectly by
speaking about single items, i.e., nodes and edges as used in the previous ex-
ample. For instance [5] defines a deterministic occurrence grammar O requiring
that whenever a node v is deleted by a rule of O and an edge e attached to v is
created by O, then O must also delete e. This is something that cannot be done
in this setting and has to be formulated in a significantly different way.

Example 14 (Graphs with scopes). In order to show that our theory applies to
a setting wider than standard graph rewriting, we consider graphs with scopes
where each node is contained in a set of scopes. These graphs can can be viewed
as objects of the functor category Setfin

•←•→•⇇•. More specifically every object
consists of a set of nodes V , a set of edges E, a set of scopes S and an auxiliary
set X , used to relate nodes and scopes. We have functions src, tgt : E → V ,
scS : X → S, scV : X → V . If there is an element x ∈ X with scS (x) = s ∈ S

and scV (x) = v ∈ V we say that v is contained in or within scope s. A node

may belong to several scopes and a scope may contain several nodes. We draw
the graph part of the objects in the usual way. Scopes are depicted by labelled
boxes around the nodes they contain (see below).

The following example grammar is inspired by scope extrusion in process
calculi. We want to model that a node is moved from one scope into another by
a reaction rule. The first rule (p1) can move the target of an edge within the
same scope, the second (p2) is a reaction where a node v is transferred from one
scope to another whenever there is a two-edge path from it to a node w within
the second scope, and the third (p3) models garbage collection of empty scopes.
Note that rule (p3) cannot be applied to non-empty scopes, since the pushout
complement of diagram (1) in Definition 4 would not exist, intuitively because
the removal of the scope would leave some dangling arcs.

S :

A

©u ©v

��

B C

©x

CK

©z

T :

A

©u ©v

��

B C

©x

CK CK

©z

A

©u ©v

©x

CK
←

A

©u ©v

©x

→

A

©u ©v

©x

CK

︸ ︷︷ ︸

π(p1)

©v

��

B C

©x

CK

©z

←

©v

B C

©x ©z

→

©v

B C

©x ©z

︸ ︷︷ ︸

π(p2)

B

← ∅→ ∅

︸ ︷︷ ︸

π(p3)

By taking S and T above as the start and type graph respectively, and the
obvious inclusions as rule typings we obtain an occurrence grammar where p1 is
a cause for p2 (p1 < p2) and p2 is in asymmetric conflict with p3 (p2 ր p3).

After these motivating examples, we will continue to develop the theory. First
we show that if every rule is applied at most once then the reached object is
mono-typed. A consequence of this is that any object reachable in a consuming
pre-occurrence grammar is mono-typed.

Proposition 15 (Quasi-safety and safety of consuming grammars).
Let O =

〈
〈S, P, π〉, T, t

〉
be a pre-occurrence grammar. Then for each path τ =

〈qi, fi〉i∈[n] and derivation ρ = 〈τ, dτ , c〉, with d
τ witnessing S

τ

=⇒ An, if no rule
occurs twice in τ then

1. An is mono-typed, i.e., cAn
is a mono,

2. asymmetric conflict is respected, i.e., ∀i, j ∈ [n] : qi ր qj ⇒ i < j,

3. the inclusion cocone to S ⊔
⊔

i∈[m] Ri for m ≤ n is a colimit of d
τ
[m].

In particular, if O is consuming then any rule can be applied at most once in
each O-derivation and thus 1-3 above holds for any derivation.

In the setting of pre-occurrence grammars is that all derivations applying
the same rules, possibly in different orders, are equivalent from a true concur-
rency point of view. Formally this involves the notion of switch equivalence for
derivations.

Definition 16 (Switch equivalence). Let ρ = 〈τ, dτ , c〉 and ρ′ = 〈τ ′, dτ ′

, c′〉
be two G-derivations, with τ = 〈qi, fi〉i∈[n] and τ ′ = 〈q′i, f

′
i〉i∈[n]. Then ρ and ρ′

are isomorphic, written ρ ∼= ρ′, if qi = q′i for each i ∈ [n] and there is a diagram

isomorphism ι : 〈dτ , c〉 ∼= 〈dτ ′

, c′〉 that relates the start object, rule-occurrences
and the type objects by identities.

Moreover ρ
sw
∼ ρ′ if 〈τ, dτ 〉

sw
∼ 〈τ ′, dτ ′

〉 and finally switch equivalence
sw

≈ is the

union of the transitive closure of
sw
∼ and ∼=, in signs

sw

≈ = (
sw
∼)∗∪ ∼=.

Lemma 17 (Switch equivalence in pre-occurrence grammars). Let
O =

〈
〈S, P, π〉, T, t

〉
be a pre-occurrence grammar, and let ρ = 〈τ, dτ , c〉 and

ρ′ = 〈τ ′, dτ ′

, c′〉 be O-derivations where τ = 〈qi, fi〉i∈[n] and τ ′ = 〈q′i, f
′
i〉i∈[n] are

paths in which no rule occurs twice and
〈
qi

〉

i∈[n]
is a permutation of

〈
q′i

〉

i∈[n]
.

Then the two derivations are switch-equivalent, i.e., ρ
sw

≈ ρ′.

The above facts about pre-occurrence grammars have a premise about the
existence of some derivation. In the context of proper occurrence grammars we
can single out sufficient conditions for the existence of derivations, which can be
described in terms of asymmetric conflict ր.

Definition 18 (Rule linearizations). LetO =
〈
〈S, P, π〉, T, t

〉
be a pre-process

and let P ′ ⊆ P and n = |P ′|. Then a sequence q =
〈
qi

〉

i∈[n]
∈ (P ′)

∗
is a (rule)

linearization of P ′ if P ′ = {qi | i ∈ [n]} and ∀i, j ∈ [n] . qi ր qj ⇒ i < j. The set
of all linearizations of P ′ is denoted by lin(P ′) and qi = qi by convention.

We write S
q

=⇒ A if S
τ
=⇒ A and τ = (〈qi, fi〉)i∈[n] is a path for some sequence

of matches
〈
fi

〉

i∈[n]
, where the matches fi are uniquely determined.

The next fundamental theorem gives two central results: First it shows that
if O is an occurrence grammar, then there exists a derivation which rewrites the
start object into the end object, applying all the rules in any order that respects
asymmetric conflict. Furthermore a pre-occurrence grammar is an occurrence
grammar, i.e., Condition (2) holds, if there exists a linearization of all rules that
leads to a derivation. In addition we have to require that the type graph is not
too large, i.e., it is the union of the start object and all the right-hand sides.

Theorem 19 (Derivation existence and occurrence grammar charac-
terization). Let O be a pre-occurrence grammar.

1. If O is an occurrence grammar then ∀q ∈ lin(P). S
q

=⇒ F , where F is the end
object of O.

2. If ∃q ∈ lin(P). ∃F ∈ Sub T. S
q

=⇒ F and T = S ⊔
⊔

q∈P Rq then O is an
occurrence grammar.

Proof (idea). The crucial point is the proof of the first part, i.e., of the fact that
any linearization of P gives rise to a derivation. Let q = pqp′ ∈ lin(P) and
assume that S

p

=⇒ A. Then we have to show that Lq ⊑ A and that the pushout
complement for A

ı
�−� Lq

α
�−� Kq exists.

By using the left part of Condition (2) we can prove that A is is the greatest
object with causes in p and co-causes in p′. Then Lq ⊑ A follows immediately.

It remains to show that the pushout complement exists: the candidate is D̃ =
(S ⊔

⊔

q∈p
Rq) ⊓ (F ⊔

⊔

q∈p′ Lq).

By using only facts about pre-occurrence grammars one can show that D̃ is
the greatest pullback complement. Finally resorting to the right part of Con-
dition (2) and to some simple category theoretic facts we can show that D̃ is
actually a pushout complement. ⊓⊔

An interesting point of the proof is that the question about the existence of
pushout complements can be answered in lattice-theoretic terms only.

5 From Derivations to Processes and Back

We now come to some central results of this paper. After introducing the notion
of process (for a given grammar), we show that such a process can be seen
as a representative of a full class of switch equivalent derivations, all of which
are linearizations of the process. Vice versa, given a derivation, a colimit-based
construction allows to derive a corresponding process. The result states that
these two constructions are (essentially) inverse to each other.

We first have to define the notion of G-process, i.e., a truly concurrent com-
putation of a specific grammar G represented by an occurrence grammar.

Definition 20 (Processes). Let G =
〈
〈S, P, π〉, T, t

〉
be a grammar. Then a G-

process is a triple P = 〈O, v, fP 〉 where O =
〈
〈S′, P ′, π′〉, T ′, t′

〉
is an occurrence

grammar and

– v : T ′ → T is a morphism between the type objects, and
– fP : P ′ ·∪ {S′} → P ·∪ {S} is a function between rule names with fP (S′) = S

such that for all q′ ∈ P ′ ·∪ {S′}

1. π′(q′) = π(fP (q′)) and6

2. v ⊚ t′(q′) = t(fP (q′))

i.e., the diagram on the right commutes,
where π(q′) = L

α
�−� K

β
�−� R = π(fP (q′)).

T ′

v

oo

L

l′
q′

44

oo α

lfP (q′)

**

K

k′
q′

OO

kfP (q′)

��

R

r′
q′

jj

//β

rfP (q′)

tt
T

Let P1 and P2 be two G-processes. An isomorphism 〈i, j〉 : P1
∼= P2 from P1

to P2 is a pair 〈i, j〉 such that (i)
〈
O1, i, j

〉
is an O2-process, (ii) i : T1 → T2 is

6 For a cocone c to an object A and a morphism v : A → B we denote by v ⊚ c the
cocone to B obtained by composing every morphism in c with v.

an isomorphism satisfying v2 ◦ i = v1, and (iii) j : P1 ·∪ {S1} → P2 ·∪ {S2} is a
bijection satisfying fP 1 = fP 2 ◦ j.

Intuitively, an occurrence grammar O only represents an “autonomous” con-
current computation, whereas the pair 〈v, fP 〉 provides a link back to a grammar.
The morphism v specifies how such a computation can be “typed” over the type
object of G, and fP specifies how the rule occurrences of O can be seen as
instances of rules in G.

Given a process P of a grammar G, we can obtain a corresponding derivation
in G by taking any linearization of the rules in O, applying each such rule in the
specified order (possible by Theorem 19) and retyping the generated derivation
over the type object of G.

Definition 21 (Drv—derivations of a process). Let P = 〈O, v, fP 〉 be a
G-process, where O =

〈
〈S, P, π〉, T ′, t′

〉
. Let q ∈ lin(P) be a linearization of P

and let ρ = 〈τ, dτ , c〉 be a derivation witnessing S
q

=⇒O F . Then 〈τ, dτ , v ⊚ c〉 is
called a P-derivation. The set of all such P-derivations is denoted by Drv(P).

The next proposition shows that all derivations of a given process are “equiv-
alent” from a true concurrency point of view. Hence Drv induces a mapping from
(isomorphism classes of) processes to switch equivalence classes of derivations.

Proposition 22. Let P and P ′ be processes such that P ∼= P ′. Then for all

ρ ∈ Drv(P) and ρ′ ∈ Drv(P ′) it holds ρ
sw

≈ ρ′.

Vice versa, given any derivation in a grammar G, we can generate a corre-
sponding process as follows. The colimit of the (untyped part) of the derivation
diagram is the type object of the process, while the rule instances of the deriva-
tion become the rules of the process. The morphism back to the type object
of G is given by the mediating morphism to the G-derivation cocone. The next
definition describes this procedure formally.

Definition 23 (Prc—processes of a derivation). Let τ = 〈qi, fi〉i∈[n] be a

path and ρ = 〈τ, dτ , c〉 be a G-derivation for some grammar G =
〈
〈S, P, π〉, T, t

〉
.

Let c̄ be a colimit cocone for d
τ to T ′, whose components are the dotted arrows

below.

L0

f0

����
��
��

K0
α0oo

g0

��

β0 //R0

h0

��/
//

//
/ L1

f1

����
��
��

K1
α1oo

g1

��

β1 //R1

h1

��/
//

//
/ ···

···

Ln−1

fn−1

����
��
��

Kn−1
αn−1oo

gn−1

��

βn−1//Rn−1

hn−1

��-
--

--
-

S = A0

�_

a0 66

D0

d0 //

γ0

oo
δ0

//A1

� �

a1

&&

D1

d1

��

γ1

oo
δ1

//A2

_�

a2

��

··· An−1

�_

an−1

pp

Dn−1

dn−1

ff

γn−1

oo
δn−1

//An

_�

an

WWT ′

Define O =
〈
〈S′, P ′, π′〉, T ′, t′

〉
to be a grammar where

– S′ = S;
– P ′ = {〈qi, i〉 | i ∈ [n] ∧ τi = 〈qi, fi〉} is a set that contains a rule occurrence

name for each rule occurrence of d
τ, and

– π′ with π′(〈qi, i〉) = π(qi) assigns each rule occurrence name the rule of the
grammar G it originates from; and

– t′(〈qi, i〉) is a cocone for π(qi) to T ′, which gives the typing for each rule
occurrence 〈qi, i〉 ∈ P ′ ·∪ {〈S, 0〉} as indicated below

Li
π′(〈qi, i〉)

{

t′(〈qi, i〉)

{

ai◦fi
++

Ki
αioo βi //

di◦gi��

Ri

ai+1◦hi
rr

T ′

and t′(S′) is the cocone obtained by taking three times morphism a0.

Finally let v : T ′ → T be the mediating morphism from the colimit c̄ to the
cocone c. Then

P = 〈O, v, fP : P ′ ·∪ {S′} → P ·∪ {S}〉

with fP (〈qi, i〉) = qi and fP (S′) = S is a ρ-process. The set of all ρ-processes—all
of them being isomorphic to each other—is denoted by Prc(ρ).

The next proposition shows that starting from switch equivalent derivations,
the construction described in Definition 23 produces isomorphic processes. Hence
Prc can be seen as a function from switch equivalence classes of derivations to
isomorphism classes of processes.

Proposition 24. Let ρ and ρ′ be G-derivations such that ρ
sw

≈ ρ′. Then for all
P ∈ Prc(ρ) and P ′ ∈ Prc(ρ′) it holds P ∼= P ′.

We conclude with the main result of this section, stating that Prc and Drv
can be seen as functions between switch equivalence classes of derivations and
isomorphism classes of processes, and that they are inverse to each other.

Theorem 25 (Quasi-inverses Prc and Drv). Let ρ be a G-derivation and P
be a G-process. Then

1. ρ′ ∈ Drv
(

Prc(ρ)
)

implies ρ′
sw

≈ ρ

2. P ′ ∈ Prc
(

Drv(P)
)

implies P ′ ∼= P

6 Conclusion

We have shown that the notion of process, originally introduced for Petri nets,
can be studied in the general setting of dpo rewriting systems over adhesive cat-
egories. This is theoretically pleasing, since it allows one to study this fundamen-
tal concept at the same abstract level as, for instance, the notion of sequential-
independence.

While the fact that processes can be studied in an abstract framework may
not seem surprising, the generalization is non-trivial to obtain. The reason is that
the previous definitions of occurrence grammars and processes, e.g. of Petri nets
and graph grammars, used the inherently set-theoretical concept of items: atomic
units that are consumed and produced. The absence of an analogous concept for
adhesive categories has required the development of original techniques, mainly
relying on the algebra of the subobject lattice of the type object.

As a consequence of its generality, the theory developed in this paper is
applicable to a wide range of rewriting systems. It enables us to handle many
different graph-like structures which appear in literature and are used in tools.

While starting the development of an encompassing theory of true concur-
rency, we have also laid the foundations for the use of partial order verification
techniques. Specifically, the generalization of methods developed for Petri nets
and graph transformation systems (see, e.g., [13, 9, 2, 3]) appears as a stimulating
direction of research. In order to achieve this goal, future work will concern un-
foldings : non-deterministic (infinite) processes which fully describe the behavior
of a system.

References

1. P. Baldan. Modelling Concurrent Computations: from Contextual Petri Nets to

Graph Grammars. PhD thesis, TD-1/00, Università di Pisa, 2000.

2. P. Baldan, A. Corradini, B. König. A static analysis technique for graph trans-
formation systems. Proc. of CONCUR’01, LNCS 2154, pp. 381–395. Springer,
2001.

3. P. Baldan, A. Corradini, and B. König. Verifying finite-state graph grammars: an
unfolding-based approach. Proc. of CONCUR’04, LNCS 3170, pp. 83–98. Springer,
2004.

4. P. Baldan, A. Corradini, and U. Montanari. Concatenable graph processes: relating
processes and derivation traces. Proc. of ICALP’98, LNCS 1443. Springer, 1998.

5. P. Baldan, A. Corradini, and U. Montanari. Unfolding and Event Structure Seman-
tics for Graph Grammars. Proc. of FoSSaCS ’99, LNCS 1578, pp. 73–89. Springer,
1999.

6. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-

maticae, 26:241–265, 1996.

7. H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and con-
currency in high-level replacement systems. Mathematical Structures in Computer

Science, 1:361–404, 1991.

8. H. Ehrig, A. Habel, J. Padberg, and U. Prange. Adhesive high-level replacement
categories and systems. Proc. of ICGT’04, LNCS 3256, pp. 144–160. Springer,
2004.

9. J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm. Formal Methods in System Design, 20(20):285–310, 2002.

10. U. Goltz and W. Reisig. The non-sequential behaviour of Petri nets. Information

and Control, 57:125–147, 1983.

11. A. Habel, J. Müller, and D. Plump. Double-pushout graph transformation revis-
ited. Mathematical Structures in Computer Science, 11(5):637–688, 2001.

12. S. Lack and P. Sobociński. Adhesive and quasiadhesive categories. Theoretical

Informatics and Applications, 39(2):511–546, 2005.
13. K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.

