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We present an event structure semanticsctortextual netsan extension of P/T
Petri nets where transitions can check for the presencéehtowithout consuming
them (read-only operations). A bastde is played byasymmetric event structures
a generalization of Winskel's prime event structures wisnametric conflict is
replaced by a relation modellingsymmetric conflicor weak causality used to
represent a new kind of dependency between events arisiegritextual nets.
Extending Winskel's seminal work on safe nets, the trulyatorent event based
semantics of contextual nets is given at categorical leigeh\chain of coreflections
leading from the categor$W-CN of semi-weighted contextual nets to the category
Dom of finitary prime algebraic domains. First an unfolding domstion generates
from a contextual net a correspondingcurrence contextual nefrom where an
asymmetric event structure is extracted. Then the configmsof the asymmetric
event structure, endowed with a suitable order, are shoviorio a finitary prime
algebraic domain.
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1. INTRODUCTION

Petri nets are widely accepted as an adequate formalisnhéospecification of the
behaviour of concurrent and distributed systems [Pet6i83Reln fact the state of a net
has an intrinsic distributed nature, being a setoEnsdistributed among a set places
A transitionis enabled in a state if enough tokens are present in its pditans, and, in
this case, the firing of the transitioeamovessuch tokens angroducesnew tokens in its
postconditions. More transitions can fire together whey ttemsume mutually disjoint
sets of tokens. This informal description should alreadygsst how Petri nets can specify
in a natural way phenomena like mutual exclusion, concusresequential composition
and nondeterminism.

A limit in the expressiveness of Petri nets is representethéyact that transitions can
only consumeand producetokens, and thus a net cannot express in a natural way non-
destructive reading operations. Théveatechnique of representing the reading of a token
via a consume/produce cycle causes a loss in concurrenagides the netVy in Fig. 1,
where places is intended to represent a resource which is accessed byawsittonst
andt; in a read-only modality. Differently from what one could expthe two transitions
cannot read the instance of the shared resouicmncurrently, but their accesses must be
serialized.

Contextual nets. Contextual n§i$R93, MR95], also called nets with test arcs [CH93],
with activator arcs [JK95] or with read arcs [Mog96], extatassical nets with the possi-
bility of checking for the presence of tokens which are netszoned. Concretely, besides
the usual preconditions and postconditions, a transitfaapntextual net has also some
contextconditions, that, informally speaking, specify that thensition to be enabled re-
quires the presence of some tokens, which, however, areffectexd by the firing of the
transition. In other words, a context can be thought of agean iwhich isread but not
consumedby the transition, in the same way as preconditions can bgidered being read
and consumed, and postconditions being simply written. eGaitly with this view, the
same token can be used as context by many transitions atrietdae. For instance,
the situation of two agents reading a shared resource disdusbove can be modelled
directly by the contextual ne¥; of Fig. 1, where the transitioris andt; use the place as
context. According to the informal description of the beibav of contextual nets, iV,
the transitions, andt; can fire concurrently. Notice that in the pictorial reprdagion of
a contextual net directed arcs represent, as usual, prigicmscand postconditions, while,
following [MR95], non-directed (usually horizontal) arese used to represent context
conditions.

FIG. 1. Ordinary nets do not allow for concurrent read-only opersti
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The ability of faithfully representing the “reading of resoes” allows contextual nets to
model many concrete situations more naturally than claksets. In recentyears they have
been used to model concurrent access to shared data (edingén a database) [Ris94],
to provide concurrent semantics to concurrent constr@i@) programs [MR94], to model
priorities [JK91] and to specify a net semantics for thealculus [BG95]. Moreover
they have been studied for their connections with anotherepfoil formalism for the
specification of concurrent computations, namely graphsfi@mation systems [MR95,
Cor96]. If we think of the states of a net as sets (of tokert®llad by place names, then
a P/T net can be seen as a rewriting system on labelled setgj(dralently on discrete
graphs), the rewriting rules being specified by the trams#ti Therefore contextual nets
can be seen as an intermediate step between classical deggagoh grammars, and as
such they can be used for transferring to graph grammars#a¢ gumber of notions and
results developed for nets (see e.g. [CMR96, BCM99a, BCN)99b

In his seminal work [Win87], Winskel, starting from someuks in [NPW81], shows
that an event structure semantics $afenets can be given via a chain of coreflections
leading from the categorgafeof safe nets to the categoBES of prime event structures,
through categoryDcc of occurrence nets. In particular, the event structure cate
with a net is obtained by first constructing a “nondeterntiaignfolding” of the net, and
then by extracting from it the events (which correspondaadition occurrences) and the
causality and conflict relations among them. In [MMS92, MM$fl has been shown
that essentially the same construction applies to the vadgory osemi-weightedets,
i.e., P/T nets in which the initial marking is a set and traaes can generate at most
one token in each postcondition. It is worth noting that,des being more general than
safe nets, semi-weighted nets present the advantage af bearacterized by a “static
condition”, not involving the behaviour but just the stuiet of the net. Fig. 2 shows
two examples of semi-weighted P/T nets which are not saterdatingly, from the point
of view of expressiveness, semi-weighted nets allow oneddehan unbounded degree
of concurrency, which instead is not expressible in safs.nBbr instance, in the semi-
weighted netV} of Fig. 2, aftem firings of transitior,, the places contains: tokens and
thusn copies oft; can fire in parallel.

This paper generalizes such results to the settintgpofextual netby showing that an
event structure for a semi-weighted contextual®neégscribing its concurrent behaviour,
can be obtained via a similar chain of coreflections. Theltiegirsemantics is then shown
to be “consistent” with the deterministic process semargiimposed in the literature for
contextual nets.

We try next to outline the main problems which arise in suckvetbpment and the way
we have decided to solve them.

Asymmetric conflicts and asymmetric event structures. dement structure§PEs’s)
are a simple event based model of (concurrent) computatievisich events are considered
as atomic, indivisible and instantaneous steps, whichpgpear only once in a computation.
An event can occur only after some other events (its causes® taken place and the
execution of an event can inhibit the execution of other &ehhis is formalized via two
binary relations.causality modelled by a partial order relation, aodnflict modelled by
a symmetric and irreflexive relation, hereditary with retfie causality.

2Semi-weighted nets were called “weakly-safe nets” in thef@@nce version of this paper [BCM98b].
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FIG. 3. A simple contextual net and a prime event structure reptiggits behaviour.

When working with contextual nets the main critical pointhig fact that the presence
of context conditions leads tmsymmetric conflictsr weak dependencid®tween events.
To understand this basic concept, consider the\edf Fig. 3.(a), with two transitiong,
andt;, which use the same plasaas context and precondition, respectively.

The possible firing sequences are given by the firing, pfhe firing of¢; and the firing
of ¢, followed byt;, denotedy; t1, while ¢;; ¢y is not allowed. Also the concurrent firing
of ty andt; is not possible, differently from what happens in [JK95] §ving96], the idea
being that two concurrent events should be allowed to fireialsany order. This situation
cannot be modelled in a direct way within a prime event stnectt, and¢; are neither
in conflict nor concurrent nor causally dependent. Simpdyfos an ordinary conflict, the
firing of ¢, preventg, to be executed, so thaf can never followt; in a computation, but
the converse is not true, sintecanfire aftert,. This situation can be interpreted naturally
as anasymmetric conflichetween the two transitions. Equivalently, singerecedes,
in any computation where both transitions fire, in such co@pnst, acts as a cause of
t1. However, differently from a true causg,is not necessary fay to be fired. Therefore
we can also think of the relation between the two transitamaweakform of causality

A reasonable way to encode this situation iFEa is to represent the firing @f with an
eventey and the firing oft; with two distinct mutually exclusive events;, representing
the execution ot; that prevents,, thus mutually exclusive withy; ande/, representing
the execution of; aftert, (thus caused byy). Suchpgs is depicted in Fig. 3.(b), where
causality is represented by a plain arrow and conflict isssgmted by a dotted line, labelled
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by #. However, this solution is not completely satisfactoryhwigspect to the interpretation
of contexts as “read-only resources”: sirtggust reads the token inwithout changing it,
one would expect the firing af,, preceded or not bsy, to be represented by a single event.
The proposed encoding may lead to an explosion of the sizesofifs, since whenever an
eventis “duplicated” also all its consequences are duggitan addition it should be noted
that the information on the new kind of dependency deterchineread-only operations is
completely lost, because it is “confused” with causalitgpmmetric conflict.

Itis worth noting that the inability of representing the asyietric conflict between events
without resorting to duplications is not specific to primeeustructures, but it is basically
related to the axiom of general Winskel's event structuseg (Win87], Definition 1.1.1)
stating that the enabling relation is “monotone” with respect to set inclusion:

AFe N ACB A Bconsistent = BF e.

As a consequence, the computational order between corfigus s set inclusion, the idea
being that ifA and B are finite configurations such asC B, then starting fromd we can
reachB by performing the events iB — A, whenever they become enabled. Obviously,
this axiom does not hold in the presence of asymmetric conflic

In order to provide a more direct, event based representatioontextual net computa-
tions we introduce a new kind of event structure, calsgmmetric event structufakgs).

An AEs, besides of the usual causality relatigrof a prime event structure, has a relation
" that allows us to specify the new kind of dependency desdrdimve. E.g., for the
transitionsty andt; of the net in Fig. 3 we simply havig " ¢;. As already remarked,
the same relation has two natural interpretations: it cathbaght of as an asymmetric
version of conflict or as a weak form of causality. We have diegito call itasymmetric
conflict, but the reader should keep in mind both views, since in sdtmat®ns it will be
preferable to refer to theveak causalitynterpretation. Informally, in anEs each event
has a set of “strong” causes (given by the causality relatiom a set of weak causes
(due to the presence of the asymmetric conflict relation)b&dired, each event must be
preceded by all strong causes and by a (suitable) subse¢ afehk causes. Therefore,
differently frompes’s, an event of amgs can have more than one history. Moreover the
usual symmetric binary conflict can be represented easilydiryg cycles of asymmetric
conflict: for instance, it ' ¢’ ande’ ' e then clearlye ande’ can never occur in the
same computation, since each one should precede the other.

Configuration®f anAEks are defined as sets of events representing possible conopstat
of the AES. Then the set of configurations of ams, ordered in a suitable way using the
asymmetric conflict relation, turns out to be a finitary priatgebraic domain. The main
difference with respect to the definition for classical év&nuctures is that the order on
configurations is not simply set-inclusion, essentiallgdese a configuratioff cannot be
extended with an event inhibited by other events alreadygarieinC'. Such a construction
extends to a functor from the categdS of asymmetric event structures to the category
Dom of finitary prime algebraic domain, that establishes a cectifin betwee®ES and
Dom. By using the equivalence between the catedoyn and the categorES of prime
event structures [Win87] we can then translate any into an ordinarypEs. Essentially
the PES obtained in this way encodes the asymmetric conflict by meérausality and
symmetric conflict, as depicted in Fig. 3. Observe thatithe provides a finer semantics
than thepEs, since differentnEs’s may be mapped to the sarpes. It is remarkable that
the “translation” fromaEs’s to PES’s is done at categorical level, via a coreflection.
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Several authors pointed out the inadequacy of Winskel'sitesteuctures for faithfully
modeling general concurrent computations and they prapakernative definitions. To
model nondeterministic choice, or equivalently, the gaiisi of having multiple disjunc-
tive and mutually exclusive causes for an event, Boudol aasl€llani [BC88] introduce the
notion offlow event structurewhere the causality relation is replaced by an irreflexine (
general non transitivdlow relation representing essentially immediate causal dependency,
and conflict is no more hereditary. To face a similar probleamgerak [Lan92a] defines
bundle event structuresrhere a set of multiple disjunctive and mutually exclusieeses
for an event is called Bundle sefor the event, and comes into play as a primitive notion.
Asymmetric conflicts have been specifically treated by PamdiPoigi in [PP92, PP95],
where the “operational” notion of event automaton suggastsnrichment of prime event
structures and flow event structures witbssible causesThe basic idea is that if is a
possible cause af thene can precede’ or it can be ignored, but the executioneofiever
follows ¢’. This is formalized by introducing an explicit subset of gibte events in prime
event structures or adding a “possible flow relation” in floxgm®t structures. Similar ideas
are developed, under a different perspective, by Degamma/and Gorrieri, in [DGV93],
where prioritized event structures are introducedmss enriched with a partial order rela-
tion modeling priorities between events. Also bundle ewnictures have been extended
by Langerak in [Lan92b] to take into account asymmetric Gotstl

Despite some differences in the definition and in the relatsébns, ourAes’s can be
seen as a generalization of event structures with possielei® On the other hand, flow
event structures with possible flow and bundle event strastwith asymmetric conflict
would have been expressive enough for our aims, but lessgeabke than asymmetric
event structures. For example, due to the presence of digjercauses, given an event
there does not exist, in general, a least configuration wiietevent belongs to, and the
problem of establishing if an event is executable in somgudation becomes undecidable.
Understanding which part of the results presented in thiep#or AES’s extends to flow
event structures with possible flow and to bundle event &iras with asymmetric conflict
is an interesting matter of further investigation.

Unfolding for contextual nets. As for ordinary nets, the event structure semantics for
a contextual net is obtained by first unfolding the net intaanclic branching structure
that is itself a contextual net. More precisely,arfoldingconstruction is presented which
allows us to associate to each semi-weighted contextuaNnah occurrencecontextual
neti/,(N) that describes in a static way the behaviouAgfby expressing the events and
the dependency relations between them. Each transitiéf (fV) represents a specific
firing of a transition inN, and places iri4,(N) represent occurrences of tokens in the
places ofN. The unfolding operation can be extended to a furigtoirom SW-CN to the
categoryO-CN of occurrence contextual nets, that is right adjoint to tiauision functor
Zoc : O-CN — SW-CN.

Transitions of an occurrence contextual net are relatedamgality and asymmetric
conflict, which are defined according to the previous disomssMutual exclusion is a
derived relation, defined in terms of cycles of the asymrmoewiflict relation. Thus, the
semantics of semi-weighted contextual nets given in terht&ourrence contextual nets
can be naturally abstracted to ars semantics: given an occurrence contextual net we
obtain anAEs by simply forgetting the places, but remembering the depeogrelations

that they induce between transitions. Again, this constsa@xtends, at categorical level,
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to a coreflection betweeAES andO-CN. Therefore occurrence contextual nets can be
seen as a convenient concrete representatiames$, in the same way as occurrence nets
representEes’s [Win87] and flow nets represent flow event structures [BuFinally,

the coreflection betweehES andDom, discussed above, can be exploited to complete the
chain of coreflections fror8W-CN to Dom.

Independently from the conference version of this papgreaped as [BCM98b], an un-
folding construction for (safe finite) contextual nets hasmproposed by Vogler, Semenov
and Yakovlev in [VSY98]. Apart from some matters of preséintg the construction
in [VSY98] is based on ideas analogous to ours and it leadgh&considered class of
nets, to the same unfolding. An interesting result in the titeed paper, witnessing the
practical relevance of the study of the semantics of contxiets, is the generalization
to a subclass of safe contextual nets, called read-persiatextual nets, of McMillan’s
algorithm [McM93] for the construction of a (complete) fmprefix of the unfolding. The
algorithm is then applied to the analysis of asynchronoggloircuits, showing that the
use of contexts allows one to model a circuit via a simplerwidt a smaller unfolding,
thus making the verification activity more efficient.

The study of the applications of the concurrent semanticepfextual nets goes beyond
the goals of the present paper. Concerning the unfoldingtoaction, the main differences
between [VSY98] and our approach are that we deal with a thlidgérger class of nets
(including possibly infinite semi-weighted nets) and tha& provide a categorical char-
acterization of the unfolding as a coreflection. We think tha advantages of having a
categorical semantics defined via an adjunction are nursefétst, one is lead to consider
a notion of morphism between systems (typically formaliime idea of “simulation”) and
to define the semantical transformation consistently witthsotion: a morphism between
two systems must correspond to a morphism between theirlsmddereover, there is often
an obvious functor that maps models back into the categosysi€ms (this is the case for
nets, where occurrence contextual nets are particulaextual nets and thus such functor
is simply the inclusion). Consequently the semantics cateffieed naturally as the functor
in the opposite direction, forming an adjunction, whichit(éxists) is unique up to natural
isomorphism. In other words, once one has decided the nofisimulation, there is a
unigue way to define the semantics consistently with suciomofinally, several opera-
tions on nets (systems) may be expressed at categorickhkelmmit/colimit constructions.
Forinstance, a pushout construction can be used to composets, merging some part of
them, obtaining a kind of generalized non-deterministimposition, while synchroniza-
tion of nets can be modeled as a product (see [Win87, MMS%&i}jce left/right adjoint
functors preserve colimits/limits, a semantics definedanaadjunction turns out to be
compositional with respect to such operations. An inténgstiscussion on the usefulness
of category theory in computer science can be found in Gogyaper [Gog91].

Relation with deterministic processesThe problem of providing a truly concurrent
semantics for contextual nets based on (deterministicgases has been faced by various
authors (see, e.g., [JK91, MR95, BP96, Vog97, Win98, GM98Fach deterministic
process of a contextual net records the events occurringsingde computation of the
net and the relationships existing between such eventsarl@lsince the unfolding of a
net is essentially a nondeterministic process that comlgletescribes the behaviour of
the net, one would expect that a relation could be estaldibletween the unfolding and
the deterministic process semantics. Indeed, we showabalyeady known for ordinary
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nets [MMS96], the domain associated to a semi-weightedestumal netNV through the
unfolding construction is isomorphic to the set of deteiistio processes of the net starting
from the initial marking, endowed with a kind of prefix ordagi This result is stated
in an elegant categorical way. First a categBR{/N] of concatenable processes for the
netNV is introduced, where objects are markings (states of the awebws arelecorated
processes (computations of the net), and arrow composstamoperation of concatenation
of processes consistent with causal dependencies, muglskiquential composition of
computations [GM98, Win98]. Then the comma categorny| CP[N]), wherem is the
initial marking of the net, is shown to be a preorder, indganpartial order whose ideal
completionis isomorphic to the domain associated to theldirfg. Interestingly, the proof
relies on the categorical characterization of the unf@dand in particular on the fact that,
since the unfolding functor fro®W-CN to O-CN is right adjoint to the inclusion, the
counit of the adjunction provides a one-to-one corresponoéedetween the deterministic
processes of a néf and those of its unfolding,, (V).

Structure of the paper. The rest of the paper is organized as follows. Section 2-intro
duces the catego&ES of asymmetric event structures and describes some prepeiti
such structures. Section 3 defines the coreflection bet&E&nand the categoripom of
finitary prime algebraic domains. Section 4 presents caounédxets and focuses on the
categorySW-CN of (semi-weighted) contextual nets. Section 5 is devotdédealefinition
and analysis of the catego@+CN of occurrence contextual nets. Section 6 describes the
unfolding construction for semi-weighted contextual reetd shows how such a construc-
tion gives rise, at categorical level, to a coreflection leeaSW-CN andO-CN. Section 7
completes the chain of coreflections fr@iV-CN to Dom, by presenting a coreflection
betweerO-CN andAES. Section 8 shows how the proposed semantics for semi-wegight
contextual nets is related to Winskel's semantics for safénary nets and comments on
the expressive power of semi-weighted and safe contexéigl Section 9 investigates the
relation between the unfolding and the deterministic pssc@mantics of contextual nets.
Section 10 discusses how the results presented in this papédre extended to deal with a
wider class of contextual nets, where contexts might havéptiaities. Finally Section 11
draws some conclusions and suggests possible directiofustioer research. An extended
abstract of Sections 2-7 appeared in [BCM98b].

2. ASYMMETRIC EVENT STRUCTURES

We stressed in the introduction thats’s (and in general Winskel’s event structures) are
not expressive enough to model in a direct way the behaviboroolels of computation,
such as string, term, graph rewriting and contextual netgreva rule may preserve a part
of the state, in the sense that part of the state is necessahgfapplication of the rule, but
it is not affected by such application.

To allow for a faithful description of the dependencies @i between events in such
models, and in particular in contextual nets, this sectinoduces the catego&ES
of asymmetric event structurean extension of Winskel's prime event structures where
the usual symmetric conflict relation is replaced by the néwaty relation ~, called
asymmetric conflict The intuition underlying the asymmetric conflict relatibas been
discussed in the introduction: i,  e; then the firing ofe; inhibits eg, namely the
execution ofy may precede the execution@f or ey can be ignored, bufy cannot follow

e1. We will see that in this setting the symmetric binary comfiicno more a primitive
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relation, butit is represented via “cycles” of asymmetoafiict. As a consequencegs’s
can be identified with a special subclass of asymmetric esguottures, namely those
where all conflicts are actually symmetric.

Let us start by introducing some basic notations on setatioak and functions. Let
r C X x X be abinary relation and I&f C X; then

e 7y denotes the restriction ofto Y, i.e.,r N (Y x Y);

e T denotesthe transitive closurergfindr* denotes the reflexive and transitive closure
of r;

e 7 is well-foundedif it has no infinite descending chains, i.€e;);cy € X such
thate; 1 re;, e; # e;41, foralli € N. The relationr is acyclicif it has no “cycles”
epreir ... re,reg, Withe; € X. Inparticular, ifr is well-founded it has no (non-trivial)
cycles;

e 1 is called apreorderif it is reflexive and transitive; it is partial order if it is also
antisymmetric.

If f: X — X'is a partial function and € X, we write f(x) = L to mean thaf is not
defined one. Finally, the powerset of a séf is denoted by, while 2;;1 denotes the set
of finite subsets of{. WhenY ¢ 2;;1 we will write Y Cg,, X.

It is worth recalling the formal definition of the categdP¥S of prime event structures
with binary conflicts, informally described in the introdiam.

DEFINITION 2.1 (prime event structure). A prime event structureps) is a tuple
P = (E,<,#), whereF is a set ofeventsand <, # are binary relations onF, called
causality relatiorandconflict relationrespectively, such that:

1. the relation< is a partial order and|e| = {¢’ € E | ¢/ < e} isfinite for alle € E;
2. the relation# is irreflexive, symmetric and hereditary with respecttoi.e., for all
e, e e’ € E,ifefte’ < e’ thene#e” ;

Let Py = (Fo, <o, #0) and P; = (E1, <1,#1) bePEs’s. ApeEs-morphismf : Py — P
is a partial functionf : Ey — E; such that, for alkg, ej, € Fy:

1. if f(eg) # L then| f(eo)] C f(leo));
2. if f(eo) # L # f(e}) then

(i) fleo)#1f(en) = eofoen:
(i) (f(eo) = f(en)) A (eo #en) = eoFfoey;

The category of prime event structures amb-morphisms is denoted IBES.

We can now define the notion of asymmetric event structuree dsic ideas for the
treatment of asymmetric conflict in our approach are sintdahose suggested by Pinna
and Poige in [PP92, PP95]. In these papers they concentrate on evtrhata and on
the distinction between specifications (given in the fornewednt structures) and automata
implementing such specifications. Moreover, looking foemvstructures that allow to
specify adequately features like priority and asymmetoicflict, they introduce the idea
of possible events, namely events that, according to theidered computation, may be
or not causes of other events. Consequently the notiarEefwith possible events and
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that of flow event structure with possible flow are considerdgart from a different
presentation, asymmetric event structures can be seen esesatjzation ofPEs’s with
possible events. Using their terminology, when ~ e; we can say that, is a possible
cause ofe;. However, differently from what happens for event struesuwith possible
events, where a distinct set of possible events is singlgdou notion of possible cause
is local, being induced by the asymmetric conflict relatidrhe extended bundle event
structures of Langerak [Lan92b] share with our approachkides the above mentioned
basic ideas, the intuition that when asymmetric conflicvalable, the symmetric conflict
becomes useless, since it can be represented as an asyorooetiict in both directions.

For technical reasons we first introduce pre-asymmetriatesteuctures. Then asym-
metric event structures will be defined as special pre-asstmcrevent structures satisfying
a suitable condition of “saturation”.

DEFINITION 2.2 (pre-asymmetric event structure) A pre-asymmetric event structure
(pre-aEs) is a tupleG = (E, <, ), whereE is a set ofeventsand <,  are binary
relations onE calledcausality relatiorandasymmetric conflictespectively, such that:

1. the relation< is a partial order and|e| = {¢’ € E | ¢’ < e} isfinite for alle € E;
2. the relation, ” satisfies, for alk, ¢’ € E:

Ye<e = e/ €,
(i) | is acyclic?

where, as usual, with < ¢’ we meare < ¢’ ande # ¢'. If e / ¢/, according to the double
interpretation of / we say thae is preventedy ¢’ or e weakly causes’. Moreover we
say thate is strictly preventedy ¢’, writtene ~»¢ ¢, ife /" ¢’ and—(e < €').

The definition can be explained by giving a more precise atcolthe ideas presented
in the introduction. Lebecur(e, C') denote the fact that the evenbccurs in a computation
C, later formalized by the notion of configuration, and fetc. (e, ¢’) indicate that the
evente precedeg’ in C. Then, informally,

e<e meansthat  VC. occur(e/,C) = occur(e,C) A precq(e,e’)

e /¢ meansthat  VC. occur(e’,C) A occur(e,C) = precs(e,e€’)

Therefore< represents a global order of execution, while determines an order of
execution only locally to each computation. Thus it is nakio impose  to be an
extension of<. Moreover notice that if some events form a cycle of asymimetnflict
then such events cannot appear in the same computatiomvigaeéhe execution of each
event should precede the execution of the event itself. &kdains why we require the
transitive closure of”, restricted to the causés| of an event, to be acyclic (and thus
well-founded, beinge | finite). Otherwise not all causesetould be executed in the same
computation and thus itself could not be executed. The informal interpretatioakes
also clear that” is notin general transitive. 1& ¢’ 7 ¢’ it is not true thate must
precede:” when both fire. This holds only in a computation where alsfires.

3Equivalently, we can require” ¢ )t irreflexive. This implies that, in particulag” is irreflexive.
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FIG. 4. A pre-AEs with two eventse ande’ in conflict, but not related by asymmetric conflict.

The fact that a set of events in a cycle of asymmetric conféintreever occur in the same
computation can be naturally interpreted as a kind of canfldore formally, it is useful
to associate to each prgss an explicit conflict relation (on sets of events) defined ia th
following way:

DerINITION 2.3 (induced conflict relation). Let G = (E, <, /) be a preags. The
conflictrelation #* C 2}“;7” associated td- is defined as:

eo /er /... en /€ #(AU{e}) e<¢
#a{e()aelv"'aen} #G(Au{el})
where A is a finite subset off. The superscript &” in #¢ reminds that this relation is

induced by asymmetric conflict. Sometimes we will use theriofation for the “binary
version” of the conflict, i.e., we write#%¢’ for #{e, e'}.

Notice that if#£* A then | A| contains a cycle of asymmetric conflict, and, vice versa,
if | A| contains a cycley " e1...e, /" eg then there exists a subsét C A such that
#2A’ (for instance, choosing an evente A such that; < a; fori € {0,...,n}, the set
A’ canbe{a; | i€ {0,...,n}}).

Clearly, by the rules above,df " ¢’ ande’ e then#%{e, ¢’'}. The converse, instead,
does not hold, namely in general we can hay&e’ and—(e , €’), as in theags of
Fig. 4, becausét® is inherited along<, while ' is not. An asymmetric event structure is
a preages where each binary conflict is induced directly by an asymimetnflict in both
directions.

DEFINITION 2.4. Anasymmetric event structufaes) is a preAes G = (E, <, /)
such that for any, e’ € E, if e#£%¢’ thene " ¢'.

Observe that any pregs can be “saturated” to produce ams. More precisely, given
apreAes G = (E, <, /), its saturation, denoted Hy, is thears (E, <, /), where /’
isdefinedas ' ¢’ ifandonlyif(e /" €’') vV (e#%€’). Inthis situation it is easy to verify
that the conflict relations aff and ofG coincide.

The notion of AES-morphism is a quite natural extension of thatrafs-morphism.
Intuitively, it is a (possibly partial) mapping of eventsath'preserves computations”, a
property which will be made precise later, in Lemma 3.6, rafidoducing the notion of
configuration.

DEFINITION 2.5 (AEs-morphism). LetGy = (Fy, <o, o)andG; = (E1, <1, 1)
be twoAEs’s. An AEs-morphismf : Gy — G, is a partial functionf : £y — F; such
that, for all eg, e}, € Ej:

1. if f(eo) # L then| f(eo)| € f(leo));
11



2. if f(eg) # L # f(ef) then

() fleo) /1 flep) = eo oep;
(i) (f(eo) = f(ep)) A(eo #ep) = eo#bep-

It is easy to show thahEs-morphisms are closed under composition. In fact, let
fo: Go — Gy andf; : Gi — Gy be AEs-morphisms. The fact thaf; o f; satisfies
conditions (1) and (2.ii) of Definition 2.5 is proved as fodoraryPes’s. The validity of
condition (2.i) is straightforward.

DEFINITION 2.6 (categoryAES). We denote bpESthe category having asymmetric
event structures as objects ands-morphisms as arrows.

In the following when considering ees P and anAes G, we implicitly assume that
P =(E,<,#)andG = (E, <, /). Moreover superscripts and subscripts on the structure
name carry over the names of the involved sets and relatogs@; = (E;, <;, /).

The binary conflict in amEgs is represented by asymmetric conflict in both directions,
and thus, analogously to what happens#as’s, it is reflected byaEs-morphisms (by
condition (2.i) in Definition 2.5). The next lemma shows that-morphisms reflect also
the general conflict relation over sets of events.

LemMMaA 2.1 (AEs-morphisms reflect conflicts). Let Gy and G; be twoaEs'’s and let
f: Go — Gi be anaes-morphism. Given a set of evesCg,, Ey, if #{ f(A) then
a A’ forsomed’ C A.

Proof. Let A Cg, Ep and let#{ f(A). By definition of conflict there is a™;-cycle
ey /1€y 10 e, ey in | [f(A)]. By definition of AES-morphism, we have
that | f(4)] € f(|A]) and thus we can findo,...,e, € |A] such thate, = f(e;)
forall i € {0,...,n}. Considerd’ = {ag,...,a,} C A such thate; <y a; fori €

{0,...,n}. By definition ofAES-morphismey "o e1 o ... /0 €0, and thus#g A’. ®

We conclude this section by formalizing the relation betwees’s andpEs’s. We show
that AES’s are a proper extension of:s’s, in the sense that, as one would expeets's
can be identified with the subclassas’s where the strict asymmetric conflict relation is
actually symmetric. This correspondence defines a full elding of PESinto AES.

LEMMA 2.2. LetP = (E,<,#) be ares. Then7(P) = (E, <, < U#) is anAEs,
where the asymmetric conflict relation is defined as the uafdhe “strict” causality and
conflict relations.

Moreover, iff : Py — P; is aPEs-morphism thery is an AEs-morphism between the
corresponding\Es’s J (Fy) and J (P1), and ifg : J(Py) — J(Py) is an AEs-morphism
then itis also aEs-morphism between the originaks'’s.

Proof. Let P = (E, <,#) be apEs. The fact that7(P) = (E,<,< U#) iS anAEs
is a trivial consequence of the definitions. In particullag, assymmetric conflict relation of
J(P) is acyclic on the causes of each event sigces hereditary with respect tg and

irreflexive, and< is a strict partial order (i.e., an irreflexive and trangtrelation) inP.
12



Now, let f : Py — P; be apEs-morphism. To prove thaf is also anAEs-morphism
between the correspondings’s 7 (Py) and.7 (Py), first observe that, according the defi-
nition of < 7(p;) and " 7(p,), the validity of the conditions (1) and (2.ii) of Definition®
follows immediately from the corresponding conditionstie tlefinition ofPEs-morphism
(Definition 2.1). As for Condition (2.i), iff(eo) " 7(p,) f(e1), then, by construction,
f(eo) <p, f(e1)or f(eo)#p, f(e1) and thus, by properties efs’s (easily derivable from
Definition 2.1), in the first cas®) <p, e1 Or eg# p, €1 Whilst, in the second casey# p, e1.
Hence, in both casesy 7 (p,) €1-

Similar considerations allow to conclude that,gif: J(FPy) — J(P1) is an AEs-

morphism, then it is also BEs-morphism betwee®, andP;. B

By the previous lemma, the constructigh extended as the identity on arrows, defines
a full embedding functor frorPESinto AES.

ProposITION 2.1 (from PES’s to AEs’s). The functory : PES — AES defined by

o J((E,<,#)) = (B, <, <UH#);
o J(f:Pop—P1)=f

is a full embedding dPESinto AES.

3. FROM ASYMMETRIC EVENT STRUCTURES TO DOMAINS

Prime event structures are intimately connected to prirgelahic domains, another
mathematical structure widely used in semantics. Moreigedcthe categoriPESof prime
event structures is equivalent to the categoom of (finitary coherent) prime algebraic
domains. For asymmetric event structures this result gdines to the existence of a
coreflection betweeAES andDom. Such a coreflection allows for an elegant translation
of an AES semantics into a domain, and thus into a classieal semantics. Theks
semantics obtained in this way represents asymmetric ctaWiia symmetric conflict and
causality with a duplication of events, as described in tii@duction (see Fig. 3).

3.1. Prime event structures and domains

This subsection reviews the definition of the categdom of finitary coherent prime
algebraic domains, and the equivalence betvizam and the category ESof prime event
structures [Win87], which will be needed in the sequel.

First we need some basic notions and notations for part@dérer A preordered or
partially ordered setD, C) will be often denoted simply aB, by omitting the (pre)order
relation. Given an element € D, we write | x to denote the sefy € D | y C z}. A
subsetX C D is compatible written T X, if there exists an upper bourtde D for X
(i.e.,x C dforall x € X). Itis pairwise compatibléf T {z,y} (often writtenz 1 y) for
all z,y € X. AsubsetX C D is calleddirectedif for any x,y € X there existy € X
such thatr C z andy C z.

DeriniTION 3.7 ((finitary) (algebraic) complete partial order).A partial order D is
(directed) completec(po) if for any directed subseX C D there exists the least upper
bound| | X in D. An element € D is compacif for any directed seX C D,e C | | X
impliese C x for somex € X. The set oEompacklements oD is denoted by (D).

13



A cpo D is calledalgebraidf for anyz € D, z = | |[(| N K(D)). We say thaD is
finitary if for each compact elemente D the set| e is finite.

Given afinitary algebraicro D we can think of its elements as “pieces of information
expressing the states of evolution of a process. Finite @srepresent states which are
reached after a finite number of steps. Thus algebraicigngisdly says that each infinite
computation can be approximated with arbitrary precisipthie finite ones.

Winskel's domains satisfy stronger completeness praggertvhich are formalized by
the following definition.

DEerFINITION 3.8 ((prime algebraic) coherent poset) A partial order D is calledco-
herent(or pairwise completgif for all pairwise compatibleX C D, there exists the least
upper bound | X of X in D.

A complete primeof D is an elemenp € D such that, for any compatibl& C D, if
p C | | X thenp C z for somex € X. The set of complete primes bfis denoted by
Pr(D). The partial orderD is calledprime algebraidf for any elementl € D we have
d= (] ldn Pr(D)). The setl d n Pr(D) of complete primes ab belowd will be
denotedPr(d).

Not being expressible as the least upper bound of other alsmeomplete primes
of D can be seen as elementary indivisible pieces of informggeants). Thus prime
algebraicity expresses the fact that all the possible céatipns of the system at hand can
be obtained by composing these elementary blocks of infooma

Notice that directed sets are pairwise compatible, anddghak coherent partial order is
acpo. For the same reason each complete prime is a compact elamaerglyPr(D) C
K(D) and thus prime algebraicity implies algebraicity. More¥eD is coherent then for
each non emptiX C D there exists the greatest lower bodijd(, which can be expressed
as| {ye D |Vz e X.y C z}.

DEerINITION 3.9 (domains). The partial orders we shall work with are coherent,
prime algebraic, finitary partial orders, hereinafter sitgpeferred to agWinskel's) do-
mains*

The definition of morphism between domains is based on thmmatf immediate
precedence. Given a domaihand two distinct elements# d’ in D we say thatl is an
immediate predecessof d’, writtend < d’ if

dCd AVd"€D.(dCd' Cd = d'=d v d'=d).

Moreover we writed < d’ if d < d’ ord = d’. According to the informal interpretation
of domain elements sketched abowex d’' intuitively means that!’ is obtained fromd
by adding a quantum of information. Domain morphisms areilired to preserve such
relation.

DEFINITION 3.10 (categoryDom). LetDgandD; be domains. Alomain morphism
f: Dg — D is afunction, such that:

4The use of this kind of structures in semantics have beenifivestigated by Berry [Ber78], where they
are calleddl-domains The relation between Winskel domains and dl-domains, vhie finitary distributive
consistent-complete algebraieo’s is established by the fact that for a finitary algebraicsistent-complete (or
coherent)cpo, prime algebraicity is equivalent to distributivity.
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o Vz,y € Dy, ifx X ythenf(x) < f(y); (=-preserving)
e VX C Dy, X pairwise compatiblef(| | X) = | | f(X); (Additive)
e VX C Dg, X # 0 and compatiblef ([ X) =[] f(X). (Stable)

We denote bypom the category having domains as objects and domain morphésms
arrows.

In the paper [Win87] the categoByom is shown to be equivalent to the categ®S,
the equivalence being established by two functbrsPES — DomandP : Dom — PES

P

%
PES z Dom

The functor( associates to eaahes the partial order of its configurations (subsets of
events, left-closed with respect to causality and confiex), ordered by subset inclusion.
The image vial of apEs-morphismf : Py — Py is the obvious extension gfto sets of
events.

A more accurate description of the func®is needed, since such functor will be used in
the next subsection to map domains back into asymmetrid streictures. A fundamental
role is played by the notion of prime interval.

DEeFINITION 3.11 (prime interval). Let(D,C) be a domain. Aprime intervalis a
pair [d, d’] of elements oD such thatd < d’. Let us define

[e,d] <[d,d] if(c=cNd) A (dUd=4d),

and let ~ be the equivalence obtained as the transitive and symmegure of (the
preorder)<.

The intuition that a prime interval represents a pair of elata differing only for a “quan-
tum” of information is confirmed by the fact that there exiatbijective correspondence
between~-classes of prime intervals and complete primes of a doaisee [NPW81]).
More precisely, the map

[d,d'] — p,

wherep is the unique element ifir(d') — Pr(d), is an isomorphism between theclasses
of prime intervals o and the complete primé-(D) of D, whose inverse is the function:

p— [LU{c€ D|cC p},pl~.

The above machinery allows us to give the definition of thefarPP “extracting” an event
structure from a domain.

DEeFINITION 3.12 (from domains teeEs’s).  The functofP : Dom — PESis defined
as follows:

e given adomairD, P(D) = (Pr(D), <, #) where

p<p iff pCyp and  p#p’ iff -(pTp);
15



e given a domain morphisrfi: Dy — Dy, the morphisnP(f) : P(Dg) — P(D1) is
the function:

[ pr it po o [dosdyles £(do) < F(dy) and [£(do), £(dy)]- > pi;
P(f)po) = { 1 otherwise, i.eo.7 when f(dp) Z(}(dﬁ)- 0

3.2.  Asymmetric event structures and domains

This subsection defines a coreflection between the catege8yof asymmetric event
structures and the categoBom of domains. The domain associated to s G is
obtained by considering the configurations@f suitably ordered using the asymmetric
conflict relation. Vice versa, given a domain we obtain the correspondinges by
applying first the functo® : Dom — PESand then the embedding : PES — AES,
defined in Proposition 2.1.

Generally speaking, a configuration of an event structuaiesest of events representing a
computation of the system modelled by the event structune.pfesence of the asymmetric
conflict relation makes such definition slightly more invedvthan the traditional one.

DerFINITION 3.13 (configuration). Let G = (E, <, /) be anaEs. A configuration
of G is a set of event§' C F such that

1. /¢ is well-founded;
2. {e/eC|e /e}isfiniteforalle € C;
3. Cis left-closed with respect tg, i.e., foralle € C, ¢’ € E, ¢’ < eimpliese’ € C.

The set of all configurations aF is denoted byConf(G).

Condition (3) requires that all the causes of each event sgsept. Condition (1)
first ensures that i’ there are ng/-cycles, and thus, together with (3), it excludes the
possibility of having inC' a subset of events in conflict (formally, for any C g, C, we
have—(#®A)). Moreover it guarantees that has no infinite descending chaingifthat,
together with condition (2), implies that the et € C | ¢/(,“¢)"e} is finite for each
evente in C; thus each event has to be preceded only by finitely many etresits of the
configuration.

If a set of eventsA satisfies only the first two properties of Definition 3.13 icaled
consistenand we writeco(A). Notice that, unlike for Winskel's event structures, censi
tency is not a finitary properyFor instance, letl = {¢; | i € N} C F be a set of events
such that alk;'s are distinct and; ., " e; for all i € N. ThenA is not consistent, but
each finite subset ol is.

Let us now define an ordé€r on the configurations of anEs, aimed at formalizing the
idea of “computational extension”, namely such tGatC C; if the configurationC; can
evolve intoC>. A remarkable difference with respect to Winskel's evenicures is that
the order on configurations is not simply set-inclusiongsia configuratiol”’ cannot be
extended with an event inhibited by some of the events ajrpegkent inC'.

5A property@ on the subsets of a sit is finitary if given anyY C X, from the fact that)(Z) holds for all
finite subsetsZ C Y it follows thatQ(Y") holds.
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DEFINITION 3.14 (extension). LetG = (E,<, /) be anars andletd, A’ C F be
sets of events. We say thdltextends4 and we writed C A’, if

1. AC A,
2. ~(e! S'e) forallee A, ¢’ € A — A.

Often in the sequel it will be preferable to use the followgmpdition, equivalent to (2):
Vec A Ve c A.e' /e = € € A.

The extension relation is a partial order on the €etf (G) of configurations of an
AES. Our aim is now to prove thatConf(G),C) is a finitary prime algebraic domain.
This means that like prime event structures [Win87], flowndv&ructure [Bou90], and
prioritized event structures [DGV93], also asymmetricrengructures provide a concrete
presentation of prime algebraic domains.

Given anaEs G, in the following we will denote byConf ( G) both the set of configura-
tions of G and the corresponding partial order. The following proposipresents a simple
but useful property of the partial order of configurationaohEs, strictly connected with
coherence.

LEMMA 3.1. Let G be anags and letA C Conf(E) be a pairwise compatible set of
configurations. Then for all' € A ande € C

eeJANne Se = el

Proof. Lete’ € |JA be an event such that " e. Then there is a configuration
C’ € Asuchthat’ € C’'. SinceC andC’ are compatible, there@” € Conf(G) suchthat
C,C" C C”. Thuse' € ¢ and, sinceC C C”, by definition ofC we conclude that

eeC. nm

The next lemma proves that for pairwise compatible setswfigorations the least upper
bound and the greatest lower bound are simply given by umdrnrgersection.

LeEmMaA 3.2 (|| and[] for sets of configurations). Let G be anaks. Then

1. if A C Conf(E) is pairwise compatible thejn| A = | 4;
2. ifCy 1 CithenCy 1 Cy = Cy N Ch.

Proof. 1. Let A C Conf(E) be a pairwise compatible set of configurations. First
notice thal J A is a configuration. In fact:

e /4 is well-founded.
Let us suppose that there is|ifiA an infinite descending chain:

...€i+1/€i/€i_1/.../60.

Let C € A such thatey, € C. Lemma 3.1, together with an inductive reasoning, ensure
that this infinite chain is entirely contained@ But this contradicts’ € Conf(G).
17



o {¢cUA e /e}isfiniteforalle € | A.
Lete € [JA. Then there exist§ € A such thate € C. By Lemma 3.1, the set
{felJAle /e}={e €C|e e}, andthusitis finite.

e | JAis left-closed
It immediately follows from the fact that each € A is left-closed.

The configuratiot J A is an upper bound fod. Infact, foranyC € A, clearlyC C |J A
and foralle € C, ¢’ € |JA, if ¢/ / ethen, by Lemma 3.1’ € C. ThusC C [JA.
Moreover, if Cy is another upper bound fot, namely a configuration such thatC C,
forall C € A, thenl A C Cy. Furthermore forany € |J A4, ¢’ € Cy with e’ " e, since
e € C for someC € A we conclude that’ € C' C |J A. Thus|J A C Cy and this shows
that| J A is the least upper bound df.

2. LetCy T C; be two compatible configurations and €t = Cy N C;. Then it
is easily seen that’ is a configuration. Moreovet’ C Cy. In factC C Cy and for
alle € C, e € Cy, if & /e, sincee € C; andCy T C1, by Lemma 3.1¢ € C;
and thuse’ € C. In the same wayC' C (i, and thusC is a lower bound forCy
and Cy;. To show thatC is the greatest lower bound observe thatf C Cy, C;
is another lower bound then, clearty/ C C. Furthermore, ife € C’, ¢/ € C

with e/ " e, since, in particular’ € Cy, we conclude’ € C’. HenceC'C C. &

In a prime event structure an eventiniquely determines its history, that is the et
of its causes, independently of the configuration at handhdrcase of asymmetric event
structures, instead, an everrhay have different histories, in the sense that the set aftsve
that must precedein a configuratiorC' depends oi”. Essentially, the possible histories
of e are obtained inserting or not in a configuration the weakesofe, that thus can be
seen as “possible causes”.

DErFINITION 3.15 (possible history). Let G be anags and lete € E. Given a
configurationC' € Conf(G) such thate € C, thehistory ofe in C is defined ag’[e] =
{e/! € C|e(/ c)*e}. The set ofpossible) historiesf e, denoted byHist(e), is then
defined as

Hist(e) = {C[e] | C € Conf(E) N e € C}.
We denote byfist(G) the set of possible histories of all eventsinnamely

Hist(G) = J{Hist(e) | e € E}.

Notice that, by conditions (1) and (2) in the definition of figaration (Definition 3.13),
each historyC[e] is afinite set of events. Moreover, each histd@r{e] is characterized by
the fact that is the greatest element with respect 16¢[j)*, and, therefore, for any two
eventse ande’, we have thafist(e) N Hist(e') # O if and only ife = €. Itis also easy
to see thatC[e])[e] = Cle].

Let us now give some other properties of the set of histofesnt (1) shows that each
history of an event in a configuratiorC, is itself a configuration which is extended &Y
Point (2) essentially states that although an ewdrats in general more than one history, as
one would expect, the history cannot change after the exnbbcurred. Point (3) asserts
that different histories of the same event are incompatible
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LeEmMA 3.3 (history properties). Let G be anags. Then in{Conf(G), C) we have
that:

1. if C € Conf(G) ande € C, thenC[e] € Conf(G). MoreoverC[e] C C;,

2. ifC,C" € Conf(G),C 1 C"ande € C N C’thenC[e] = C’[e]; in particular this
holds forC' C C’;

3. ifee E, Cy,C € Hist(e) andCy 1 C; thenCy = C.

Proof. 1. Obviously,C[e] € Conf(G). In fact, the requirements (1) and (2) in
Definition 3.13 are trivially satisfied, while (3) follows lrgcalling that "> <. Moreover
Cle] € C andife’ € Cle], ¢” € Cande” /¢, thene” " ¢'(,/¢)*e, thuse” € C[e].
ThereforeCfe] C C.

2. By Lemma 3.1, sinc&€ 1 C’ ande € C, an inductive reasoning ensures that
ifeo “er ... ~en /e Withe € CUC, then eache; is in C. Therefore
Cle] = (CuC)[e] = C'[e]-

3. SinceCy T Cy ande € Cy N C4, by (2), we have

Co = Co[[e]] = Cl [[6]] = Cl.
|

We are now able to show that the complete prime€'aif (G) are exactly the possible
histories of events i.

LEMMA 3.4 (primes). Let G be anags. Then

1. for all configurationg” € Conf(G)
C=|HC" e Hist(G) | C"CC} = [{C[e] | e € C}.

2. Pr(Conf(G)) = Hist(G) and Pr(C) = {C[e] | e € C}.

Proof.

1. LetC € Conf(G) and letCy = | |{C" € Hist(G) | C' C C}, which exists by
Lemma 3.2.(1). Then clearlgy, T C. Moreover for alle € C, by Lemma 3.3.(1), the
historyC[e] C C and thus € C[e] C Cj. This gives the converse inclusion and allows
us to conclud€ = Cy.

2. LetC[e] € Hist(e), forsomee € E, be a history andlett C Conf(G) be a pairwise
compatible set of configurations.dffe] C | | A, thene € | J A. Thus there exist§, € A
such that € C,. Therefore:

Cle]= (L1 A)[e] [by Lemma 3.3.(2), sinc€'[e] C || 4]
= Ce[e] [oy Lemma 3.3.(2), sinc€. C | | A]
CC, [by Lemma 3.3.(1)]
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ThereforeC[e] is a complete prime ionf (G).
For the converse, let' € Pr(Conf(G)). Then, by point (1),

C = | {C" € Hist(G) | C" T C}.

SinceC is a complete prime, there mustexiste Hist(G), C' C C suchthatC C C’ and
thusC = C’ € Hist(G). W

It is now immediate to prove that the configurations ofaars ordered by the extension
relation form a finitary prime algebraic domain.

THEOREM 3.1 (configurations form a domain). For any AEs G the partial order
(Conf(G),C) is a (coherent finitary prime algebraic) domain.

Proof. By Lemma 3.2.(1)Conf(G) is a coherent partial order. By Lemma 3.4, for any
configurationC' € Conf(G)

Pr(C) ={Cle] | e € C}

andC = | |C[e]. ThereforeConf(G) is prime algebraic.

Finally, Conf(QG) is finitary, as it immediately follows from the fact that coaqt el-
ements inConf (G) are exactly the finite configurations. To see this,det Conf(G)
be finite and let us consider a directddC Conf(G) such thatC C | |A. Then we
can choose, for alt € C, a configurationC., € A such thate € C.. SinceA is
directed andC is finite, the set{C. | e € C} has an upper boun@’ € A. Then
C =l.cc Cle] = U.ee Cele] E €' follows immediately from Lemma 3.3.(2). Thas
is compact. For the converse, It € Conf(G) be a compact element. Since each
possible history is finite{{J,., Cle] | Z Cpun C} is a directed set ofinite con-
figurations, havingC' as least upper bound. Singg is compact, we conclude that

there existsZ Cg, C suchthaC C J,., C[e]. ThusC = .., C[e] is finite. W

ec”Z ec”Z

An example ofaEs with the corresponding domain can be found in Fig. 8, (a) &hdht
the end of Section 7. In particular notice how asymmetridlazinnfluences the order on
configurations, which is different from set-inclusion. Fostanceto,t4} C {to,t],%4},
but{to, t4} z {to, tll, t4} Sincet’l S ty.

The nextlemma gives a characterization of the immediatigmessors of a configuration.
Informally, it states that, as one could expect, we pass &nimmediate predecessor of a
configuration to the configuration itself by executing a rgyent.

LemMA 3.5 (immediate precedence).Let G be anags and letC' C C’ be configu-
rations in Conf (G). Then

c<cC iff |C'—Cl=1.

Proof. (=) LetC < C’"andlete’,e” € C' — C. We haveC' — C' U (C'[¢']) T C’
and thus, by definition of immediate precedencé,= C U (C'[¢']). In the same way
C’' = C U C'[¢"]. Hence, by definition of history, we hav§ "¢/ )*e” (/¢ )*e’ and thus
e’ = ¢’ (otherwise "¢ would not be acyclic, contradicting the definition of configtion).

(<) Obvious. =
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The following lemma leads to the definition of a functor fréx&S to Dom. First we
prove thataEs-morphisms preserve configurations and then we show thafutinetion
between the domains of configurations naturally inducedtyes-morphism is a domain
morphism.

LeMMaA 3.6 (AES-morphisms preserve configurations)Let Gy, G; be twoaEs's and
let f : Go — G1 be anaes-morphism. Then for eadfly € Conf(Gy) the morphisny is
injective onCy and thef-image ofCy, is a configuration of~4, i.e.,

*(Co) ={f(e) | e € Co} € Conf(Gh).

Moreoverf* : Conf(Gy) — Conf(G1) is a domain morphism.

Proof. LetCy € Conf(Gy) be a configuration. Sincg”¢, is well founded and thus
—(e#%€’) for all e, e’ € Cp, the conditions in the definition ofes-morphism (Defini-
tion 2.5) imply that for alk, ¢’ in Cy such thatf(e) # L # f(e'):

Lf(e)] € f(le));
fley=f() = e=¢€,
fle) /1 fle) = e oe.

Thereforef is injective onCy (as expressed by the second condition) and we immediately
conclude thaif*(Cy) is a configuration irG; .

Let us now prove that* : Conf(Gy) — Conf(G1) is a domain morphism. Additivity
and stability follow from Lemma 3.2. In particular for stéityione should also observe that
if Cp andC, are compatible thefiis injective onC; UC> and thusf (C1 N Cs) = f(Cy)N
f(Cy). Finally, the fact thaff* preserves immediate precedence can be straightforwardly

derived from Lemma 3.5. 1

Theorem 3.1 and Lemma 3.6 suggest how to define a functor fierodtegonAES of
asymmetric event structures to the categdoom of domains. Instead, the functor going
back fromDom to AES first transforms a domain into Bes via P : Dom — PES
introduced in Definition 3.12, and then embeds sueRsinto AESvia 7 : PES — AES,
defined in Proposition 2.1.

DEFINITION 3.16 (from AES’s to domains and backwards).The functoi’,, : AES —
Dom s defined as:

o for anyAES-objectG,
L.(G) = (Conf(G),C);
e for anyAES-morphismf : Gy — Gi,
La(f)=f*":La(Go) = La(Gh).

The functorP, : Dom — AES is defined ag7 o P.

Itis worth recalling that, concretely, given a domain, C), thepes P(D) is defined as
(Pr(D), C, #), where# is the incompatibility relation (i.ep#p’ iff p andp’ do not have
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a common upper bound). Thén,(D) = J(P(D)) is the correspondinges, namely
(Pr(D),C,C U#).

The functorP, is left adjoint to £, and they establish a coreflection betwed&BS
andDom. The counit of the adjunction maps each history of an evédnto the event
itself. The next technical lemma shows that the functionreefiin this way is indeed an
AES-morphism.

LEMMA 3.7. LetG be anags. Theneq : Po(Lo(G)) — G defined as:
eq(C)=e if C € Hist(e),

is an AEs-morphism.

Proof. Observe first that is well-defined since, as observed befofést(e) N
Hist(e') = () for e # €’. Let us verify that ¢ satisfies the three conditions imposed on
AEs-morphisms: for allC, C’ € Hist(G), with C' € Hist(e), C' € Hist(e'):

e [ea(O)] Cea(lC)).
We have:

ec(lC]) =

eq(Pr(C))

ec({Cle'] | ¢ € C}) [by Lemma 3.4]

C

e] [sinceC is left-closed]

|
lea(C)]
o (cq(C)=eq(C) A C£C" = C#C".

o

Leteg(C) =e=¢€ =eg(C’)andC # C'. SinceC,C’ € Hist(e), by Lemma 3.3.(3),
we have-(C 1 C") andthusC#C" in P(L,(G)) and therefore, by definition of, C#*C”
iNn Py (La(G)).

e c(C) Seqg(C) = C/C.
Leteg(C) = e / ¢ = eq(C’). Since the relation” is irreflexive, surelye # ¢’ and
thusC # C’. Now, if e ¢ C’ then, by Lemma 3.1, surely(C 1 C”), thusC#C’ in
P(L,(G)) and therefore, by definition of, C  C’ in P, (L, (G)). Otherwise, ife € C”
we distinguish two cases:

- C =Cle] = C'[e].
In this case, by Lemma 3.3.(1), we have tidat_ C’, and the relation is strict, since
C # C'. Thus, by definition ofP,, C' /' C' in P, (L.(G)).

- C =Cle] # C'[e].
In this case, by Lemma 3.3.(2), we conclude ti@ndC’[e] are not compatible, and thus
—(C 1 C"). HenceC#C" in P(L,(G)) and therefor€' ~ C in P, (La(G)).
[ |

The next technical lemma characterizes the behaviour diutihetor 7, on morphisms

having a domain of configurations as codomain.
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LEMMA 3.8. Let G be anags, D a domain and ley : D — L,(G) be a domain
morphism. Then for alh € Pr(D), | g(p) — U g(Pr(p) — {p}) |[< 1 and

1 if g(p) —Ug(Pr(p) — {p}) =0

Pal9)(p) = { 9(0)[e] if g(p) —Ug(Pr(p) — {p}) = {e}

Proof. Letp € Pr(D) and let us consider the corresponding prime interval

L(Pr(p) — {p}),p],

then also

o(LJPr) — 21, 9(0)] )

is a prime interval inC,(G), and, by definition of the functdf, (Definition 3.16)

et if g(p) = g(LU(Pr(p) — {pr}))
ﬂ@@‘{c it Pr(g(p)) — Prig(LI(Pr(p) — (p})) = {C}

Now, by additivity ofg and Lemma 3.2.(1y(_|(Pr(p) — {p})) = | 1g(Pr(p) — {p}) =
Ug(Pr(p)—{p}),and, since (1)isaprimeinterval, by Lemma 3&)—J g(Pr(p)—{p})
has at most one element. dfp) = Jg(Pr(p) — {p}) thenP,(g)(p) = L. Otherwise,
if g(p) — Ug(Pr(p) — {p}) = {e}, then, by Lemma 3.4.(2), we have th&t(g(p)) —

Pr(Ug(Pr(p) — {r})) = {9(p)[e] } and thus we conclude ®

Finally we can prove the main result of this section, nantbt P, is left adjoint to£,
and they establish a coreflection betwédts andDom. Given anAEs G, the component
at G of the counit of the adjunction ig; : P, o L,(G) — G.

THEOREM 3.2 (coreflection betweeAES andDom). P, - L,.

Proof. Let G be anakes and letei : P, (L.(G)) — G be the morphism defined as in
Lemma 3.7. We have to show that given any donfaiand AEs-morphismh : P, (D) —
G, there is a unique domain morphism D — L,(G) such that the following diagram
commutes:

Existence
Letg: D — L,(G) be defined as:

g(d) = h*(Pr(d)).

A straightforward checking shows th&(d) is a configuration inP, (D) and thus, by
Lemma 3.6} is injective onPr(d) andh*(Pr(d)) is a configuration irG, i.e., an element
of £,(G). Moreoverg is a domain morphism. In fact it is

e =<-preserving Letd,d’ € D, withd < d’'. ThenPr(d') — Pr(d) = {p} and thus
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g9(d') —g(d) =
= h*(Pr(d’)) — h*(Pr(d))

C {h(p)}

Thereforelg(d') — g(d)] < 1 and, since it is easy to see thdtl) C g(d'), by Lemma 3.5
we concludg(d) < g(d').

e Additive Let X C D be a pairwise compatible set. Then:

g( =

(Pr(dX))

*(Ugex Pr(z)) [since Pr(| ] X) = U,cx Pr(z)]
Uzex b (Pr(z))

= I_lzGX g(z)

e Stable Letd,d’ € Dwithd 1 d, then:

*

Sy
SRS

gldnd) =
= h*(Pr(dnd"))
= h*(Pr(d) N Pr(d")) [sincePr(dnd') = Pr(d) N Pr(d")
andh injective onPr(d) U Pr(d’)]
= h*(Pr(d)) N h*(Pr(d"))
=g(d)Ng(d)
The morphisny defined as above makes the diagram commute. In faptdePr(D) (=
P.(D) ) and let us use Lemma 3.8 to determingg)(p). We have:

g(p) —Ug(Pr(p) — {p}) =

= h*(Pr(p)) — U{h*(Pr(p")) | p' € Pr(D), p' C p}
= h*(Pr(p)) — {h(") | p" € Pr(D), p" C p}

= h*(Pr(p)) — h*(Pr(p) — {p})

={h(p)} [sinceh injective onPr(p)]

Therefore, ifh(p) is undefined therP,(¢)(p) = L and thuseq(P.(g9)(p)) = L. If
h(p) = e thenP,(g)(p) = g(p)[e] and thuse¢(P,(g)(p)) = e = h(p). Summing up we
conclude

€Gg © Pa(g) = h

Uniqueness
Lety’ : D — L,(G) be another morphism such that

eqoPalg’) =h.

By Lemma 3.8, for alp € Pr(D) we have:

ney L if g'(p) —Ug'(Pr(p) — {p})
Palg')lo) = { SO ity - Ug(Prin) ~ )

=0
={

e}



Therefore

L ifg(p) -Ug (Prip) —{p}) =0
e if g'(p) —Ug'(Pr(p) — {p}) = {e}

Let us show thay’(p) = g(p) for all p € Pr(D), by induction onk = |Pr(p)| (that is
finite, sinceD is finitary).

(k =1) In this casgy’(p) — U ¢'(Pr(p) — {p}) = ¢'(p). Thus, by (2), ifa(p) = L then
g'(p) =0 = g(p), otherwisey'(p) = {h(p)} = g(p)-

(k — k + 1) Firstnotice that being’ monotonic, foralp’ € Pr(p) we havey’ (p') C ¢'(p),
thus

h(p) = ea(Palg’)(p)) = { (2)

9'(p) = (¢'(p) — (Ug'(Pr(p) —{p})) U (Ug'(Pr(p) — {p}))-

By inductive hypothesid ) ¢'(Pr(p) — {p}) = Ug(Pr(p) — {p}), thus, reasoning as in
the casék = 1) we conclude.
Recalling thatg and ¢’ are additive, since they coincide on the complete primes of

D which is prime algebraic, we conclude that they coincidehenwhole domairD. =

Observe that the above result is, in a sense, modular wigeceso some properties of
AES’s established along this section. Basically it relies omfict that the configurations
of an AEs form a domain where the complete prime elements are thelpedsstories of
events and the greatest lower bound and least upper boumpaiofvise) compatible sets
are given by set-theoretical intersection and union, retspdy. This fact suggests the
possibility of extending the results of this section to otblasses of event structures, like
flow, bundle or prioritized event structures which shouldifuhe mentioned properties.

4. CONTEXTUAL NETS

Contextual netextend ordinary Petri nets with the possibility of handloantexts: in
a contextual net transitions can have not only preconditeomd postconditions, but also
contexconditions. A transition can fire if enough tokens are preisdts preconditions and
context conditions. In the firing, preconditions are conedntontext conditions remains
unchangedand new tokens are generated in the postconditions. Thi®geontroduces
(marked) contextual P/T nefiRis94] (orc-netdor short), that following the lines suggested
in [MR95] for C/E systems, add contexts to ordinary P/T nets.

To give the definition of c-net we need some notation for reats and multirelations.
Let A be a set. Amultisetof A is a functionM : A — N. Such a multiset will be denoted
sometimes as a formal suM =} _, n, - a, wheren, = M (a). The set of multisets
of A is denoted by A. The usual operations and relations on multisets are used. F
instance, multiset union is denoted #yand defined asM + M')(a) = M(a) + M'(a);
multiset difference f/ — M’) is defined agM — M’')(a) = M (a) — M'(a) if M(a) >
M'(a) and (M — M')(a) = 0 otherwise. We writeM < M’ if M(a) < M’(a) for
all a € A. If M is a multiset ofA, we denote by[M] the flattening ofM, namely
the multisetd ¢ 4/rs(a)>0y 1 - @ Obtained by changing all non-zero coefficientsidf
to 1. Sometimes we will confuse the multigét/] € nA with the corresponding subset
{a € A| M(a) > 0} C A, anduse onitthe usual set operations and relations. Ranics,
we say that a multise¥/ is finite if [M/], seen as a set, is finite. Conversely, a¥et A
will be sometimes identified with the multisgt ,_  1-a. A multirelationf : A — Bisa



multiset of A x B. Itis calledfinitaryifforall « € Atheset{b € B | f(a,b) > 0} isfinite.
The composition of two finitary multirelations: A «— B andg : B <« C'is the (finitary)
multirelationg o f : A « C defined agg o f)(a,c) = > ,cp5 f(a,b) - g(b,c). Observe
that working with general multirelations the compositioayrbe undefined since infinite
coefficients are not allowed. For a multirelatipn A — B we denoteby.f : nA — uB,
the (possibly partial) function defined byf (3", c 4 7a- @) = > e g D aca(Ma- f(a, b)) b
when the summation is well-defined, and undefined otherw@eserve that if we think
of a multisetM € uA as a multirelationV : 1 < A (wherel is any singleton set), then
wf(M) is the composition of multirelationg o M, hence the partiality of the function
wnf. If the multisetM is finite, thenpf(M) is always defined. When a multirelation
f: A« B satisfiesf(a,b) < 1foralla € Aandb € B we sometimes confuse it with the
corresponding set-relation and wriféa, b) for f(a,b) = 1.

We are now able to give the definition of contextual P/T net.

DEFINITION 4.17 (c-net). A (marked) contextual Petri net (c-né$)a tuple N =
(S, T, F,C,m), where

e Sis asetobplaces

T is a set otransitions

o F' = (Fpre, Fpost) is a pair of multirelations, fronf" to S.
e C C T x Sisarelation, called theontext relation

e m is a multiset of5, called theinitial marking

We assume, without loss of generality, that 7' = (). Moreover, we require that for each
transitiont € T', there exists a place € S such thatF),,.(t, s) > 0.8

Inthe sequelwhen considering a c-p&twe implicitly assumethaV = (S, T, F, C,m).
Moreover superscripts and subscripts on the nets namgos@nthe names of the involved
sets, functions and relations. For instad¢e= (S;, T;, F;, C;, m;).

DEFINITION 4.18 (pre-set, post-set, and context)Let N be a c-net. The functions
from p 7" to 1S induced by the multirelations,,,.. and F,.s; are denoted by () and( )®,
respectively. IfA € uT is a finite multiset of transitions$ A is called itspre-set while
A* is called itspost-set Moreover, byA we denote theontextof A, defined as the set
A=Uaw>0 C(®).

An analogous notation is used to denote the functions fsoto 27 defined as, for
anys € S, *s = {t € T | Fpost(t,s) > 0}, s* = {t € T | Fye(t,s) > 0} and
s={teT|C(ts)}.

A different notion of contextual net is conceivable, whére tontext relation is replaced
by a contextultirelationand the context of transitions is defined as a multiset, raltam
a set. We will explain in Section 10 the intuition underlyigs different model and how
our theory can be extended to cope with it.

A multiset of transitionsA is enabled by a markingy/ if it contains the pre-set oft and,
additionally, the context ofd. Since the contextis a set, this formalizes the intuitiat th
token in a place can be used as contaxicurrentlyby many transitions.

6This is a weak version of the condition Birestrictednesthat requires als@post (t, s) > 0, for somes € S.
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DEFINITION 4.19 (token game). Let NV be a c-net and lef\/ be amarkingof N,
that is a multisetV/ € uS. Given a finite multiset of transitions € u7', we say thatd is
enabledoy M if *A + A < M. Thestep relatiorbetween markings is defined as

M[A) M’ iff Alis enabled byM and M’ = M — *A + A°.

We callM [A) M’ a step Asimple stepor a firing is a step involving a single transition,
i.e., M [t) M’. AmarkingM is calledreachabléf there exists a finitstep sequence

starting from the initial marking and leading /.

Other authors (e.g. [JK91, Vog96]) allow for the concurfeing of transitions that use
the same token as context and precondition. For instan¢@K81] the formal condition
for a multisetA of transitions to be enabled by a markifgis (*A < M A A< M).
Our definition does not admit such steps, the idea being tratwrrent transitions should
be allowed to fire also in any order.

A c-net morphism between two nets maps transitions and platéhe first net into
transitions and multisets of places of the second net, otisply, in such a way that the
initial marking as well as the pre-set, post-set and comtiexach transition are “preserved”.

DEFINITION 4.20 (c-net morphism). Let Ny and N; be c-nets. Amorphism#h :
No — Niis a pairh = {(hy,hg), wherehy : Ty — T is a partial function and
hs : So < S is afinitary multirelationsuch that

1. phg(mg) is defined andihg(mg) = my;
2. for each transitiort € Ty, phs(®t), phs(t*) andphs(t) are defined, and

() phs(®t) = *uhr(t);
(i) phs(t®) = phr(t)*;
(ii) phs(t) = phr(t).

We denote b N the category having c-nets as objects and c-net morphisrag@ass.

Observe thatihr (t) = hr(t) whenhr(t) # L, anduhr(t) = 0 otherwise. In the last
case, by the definition above, the places in the pre-setgebsind context afare forced to
be mapped to the empty set, i.ehs(*t +t* +t) = 0. Furthermore, itis immediate to see
that, for any (finite) multiset of transition$ € pT', we have that (iuhs(*A) = *uhr(A),

(i) phs(A®) = phr(A)* and (i) [uhs (A)] = phr(A).

A basic result to prove (to check that the definition of mosphis “meaningful”) is that
the token game is preserved by c-net morphisms. As an immneagiasequence morphisms
preserve reachable markings.

ProposITION 4.1 (morphisms preserve the token game)l.et N, and N, be c-nets,
and leth : No — N7 be a morphism. Then for eadd, M’ € pSy and A € uTy
MIAYM' = phs(M)[uhr(A)) phs(M').

Therefore c-net morphisms preserve reachable markirgsijfiM is a reachable marking
in Ny thenphgs(M) is reachable inV;.

Proof. First notice thauhr(A) is enabled by:hs(M). In fact, sinced is enabled by
M, we haveM > *A+ A. Thus
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phs (M)
> phs(*A+A)
= phs(*A) + phs(A)
= phs(*A) + [phs(4)]
= *uhr(A) + phr(A) [oy def. of c-net morphism]
Moreoveruhg(M') = phs(M) — *phr(A) + phr(A)®. Infact, M’ = M —*A+ A°,
therefore we have:

phs(M')
= phs(M) — phs(*A) + phs(A*®)
= phs(M) — *uhr(A) + phr(A)® [by def. of c-net morphism]
|

The seminal work by Winskel [Win87] presents a coreflectietmzen prime event struc-
tures and a subclass of P/T nets, nansalfenets. In [MMS97] it is shown that essentially
the same constructions work for the larger category of “seighted nets” as well (while
the generalization to the whole category of P/T nets requimene original technical ma-
chinery and allows one to obtain a proper adjunction ratheen & coreflection [MMS96]).
In the next sections we will relate by a coreflection (asymmimand prime) event structures
and “semi-weighted c-nets”.

DEFINITION 4.21 (semi-weighted and safe c-nets)A semi-weightea-net is a c-net
N such that the initial markingn is a set andF),,; is a relation (i.e.,t* is a set for all
t € T). We denote bW-CN the full subcategory oEN having semi-weighted c-nets as
objects.

A semi-weighted c-net is calleshfeif also F,,. is a relation (i.e.,*t is a set for all
t € T) and each reachable marking is a set. The full subcategoSM3fCN containing
all safe c-nets is denoted I8+CN.

Notice that the condition characterizing safe nets inwlilee dynamics of the net
itself, while the one defining semi-weighted nets is “sytitad” in the sense that it can be
checked statically, by looking only at the structure of teé The relation between safe and
semi-weighted contextual nets is further investigateddnti®n 8, where a more precise
comparison of their expressive power is carried out.

5. OCCURRENCE CONTEXTUAL NETS

In the previous section the behaviour of a c-net has beerideddn a dynamic way,
by defining how the token game evolves. Occurrence contereta are intended to
represent, via the unfolding construction, the behaviduc-nets in a more static way,
by expressing the events (firing of transitions) which cacuodén a computation and the
dependency relations between them. Occurrence c-netdbavitlefined as safe c-nets
where the dependency relations between transitions watisfable acyclicity and well-
foundedness requirements. While for ordinary occurreeteone has to take into account
the causality and the (symmetric) conflict relations, byphesence of contexts, we have
to consider an asymmetric conflict (or weak dependencyjioelas well. The conflict
relation, as already seen in the more abstract settingee’, turns out to be a derived
relation.
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5.1. Dependency relations on transitions
Causality is defined as for ordinary safe nets, with an aaldfti clause stating that
transitiont causeg’ if it generates a token in a context placeof

DEFINITION 5.22 (causality). Let N be a safe c-net. Theausality relation< y is
the transitive closure of the relatior defined by:

1. ifs € *tthens < t;
2. if s € t* thent < s;
3. ift*nt # Othent < ¢'.

Given a place or transition € SUT, we denote byz | the set otausesfx in T, defined
as|z| ={teT|t<yz} CT,where<y is the reflexive closure &f y.

DEFINITION 5.23 (asymmetric conflict). LetN be a safe c-net. Th&rict asymmet-
ric conflict relation~ y is defined as

toy t iff N A0 or tAY A tNt £0).

The asymmetric conflict relation” 5 is the union of the strict asymmetric conflict and
causality relations:

t/Ntl iff t<Nt/ or thtl,

In our informal interpretation, if ' t' thent must precedé¢ in each computatiot
in which both fire or, equivalently, preventg to be fired, namely

occur(t,C) A occur(t',C) = precs(t,t') M

As suggested by the considerations in the introductionniagyclic safe c-net where any
transition is enabled at most once in each computation,itondy) is surely satisfied when
the same place appears in the context ofand in the pre-set df. But (}) is trivially true
(with ¢ andt’ in interchangeable roles) wherand¢’ have a common precondition, since
they never fire in the same computation. This is apparenilyi@tricky but corresponds
to the clear intuition that a symmetric (direct) conflictdsao asymmetric conflicts in both
directions. Furthermore, since, as noticed for the abisinmdlel of AES's, (}) is weaker
than the condition that expresses causality, the conditipis satisfied when causes (in
the usual sense).” For technical reasons it is convenient to have a speciatiootéor the
strict asymmetric conflict.

In the sequel, when the nét is clear from the context, the subscripts in the relations
<wn and "y will be omitted.

The c-netN, in Fig. 5 shows that, as expected, also in this setting tlaiosl " is not
transitive. In factwe have, " t3 " to 7 tq, but, forinstance, it is not true that 5.

An occurrence c-net is a safe c-net that exhibits an acydlabiour and such that
each transition can fire in some computation of the net. Euantore, to allow for the
interpretation of the places as token occurrences, eack plas at most one transition in
its pre-set.

"This is the origin of the weak causality interpretation 6t
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FIG.5. An occurrence c-net with a cycle of asymmetric conflict.

DEFINITION 5.24 (0ccurrence c-nets). Anoccurrence c-nds a safe c-nefV satis-
fying the following requirements

1. each place € S'is in the post-set of at most one transition, i|@s| < 1;

2. the reflexive closure y of the causality relation<  is a partial order and|t] is
finite for anyt € T,

3. m={s eS| *s =0} ie., thenitial markingm coincides with the set of minimal
places with respect tg y;

4. (/'n)|¢ is acyclic for all transitiong € T'.

With O-CN we denote the full subcategory®fCN having occurrence c-nets as objects.

Conditions (1)-(3) are the same as for ordinary occurremts. nCondition (4) corre-
sponds to the requirement of irreflexivity for the conflictaten in ordinary occurrence
nets. In fact, if the causes of a transitiboontain a5 cycle thent can never fire, since
in an occurrence c-net, the order in which transitions apjmea firing sequence must be
compatible with the transitive closure of the (restricttorthe transitions in the sequence
of the) asymmetric conflict relation.

As mentioned before the asymmetric conflict relation induaesymmetric conflict
relation (on sets of transitions) defined in the followingywa

DEFINITION 5.25 (conflict). Let N be a c-net. Theonflict relation # C 27,
associated taV is defined as:

to/ t /. St o #AU{t}) <t
#{to,t1, - tn} #AU{t'})

whereA is a finite subset df'. As forags’s, we use the infix notatiot¥tt’ for #{¢,t'}.

For instance, referring to Fig. 5, we hagdt,, t2, t3}, while #{¢;, t; } does not hold for
anyi,j € {1,2,3}. Notice that, by definition, the binary conflict relatighis symmetric.
Moreover in an occurrence c-n#tis irreflexive by the fourth condition in Definition 5.24.

Finally, observe thatirreflexivity of the asymmetric cocfflielation,” v in an occurrence
c-net N implies that the pre-set, the post-set and the context otramgitiont in N are
disjoint (any possible intersection would leadtto” v ).

5.2. Concurrency and reachability
As for ordinary occurrence nets, a set of pladdsis called concurrent if there is a
reachable marking in which all the placesidfcontain a token. Here, due to the presence
of contexts some places that a transition needs to be firetdxts) can be concurrent
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with the places it produces. However, the concurrency ofteob@laces can still be
checked locally by looking only at the causes of such planddfaus can be expressed via
a “syntactical” condition. This subsection introducesrsaendition and then shows that it
correctly formalizes the intuitive idea of concurrency.

DEFINITION 5.26 (concurrency relation). Let N be an occurrence c-net. A set of
placesM C S is calledconcurrentwritten conc(M), if

1. Vs,s' € M. —(s < §');
2. | M| is finite, wherd M | = |J{|s]| | s € M };
3. /| um is acyclic (and thus well-founded, sing&/ | is finite).

In particular, for each transitiohin an occurrence c-net the set of places consisting of
its pre-set and context is concurrent.

ProposITION 5.1. For any transitiont of an occurrence c-netonc(*t + t).

Proof. Since |[*t+t| U {t} = [t] conditions (2) and (3) of Definition 5.26 are
satisfied by definition of occurrence c-net. As for the firshdition, suppose that
s < & for s,s’ € °*t+t. Then there is a transitiof such thats € °t and
t' < s’. Now, sincet’ < s’ ands’ € *t -+t we havet’ < t and, sinces € *t -+t
ands € °t/, we have alsa& " t'. Thereforet’ < t / t' is a /-cycle in |t],

contradicting the definition of occurrence c-net. Thusp alsndition (1) is satisfied. m

The next two lemmata show that given a concurrent set of plage can interpret it as
the result of a computation and perform a backward or forssed in such a computation,
still obtaining a concurrent set.

Lemma 5.1 (backward steps preserve concurrencylet N be an occurrence c-net
and letM C S be a set of places. Honc(M) andt € | M | is maximal with respect to

(/" |amy) T then

1. 3ds; € S.s; €t*NM;
2. conc(M —t* + °t).

Proof. 1. Sincet € |M |, there iss;, € M andt’ € T such that < ¢ ands; € t'*.
But recalling that< implies ~, by using maximality of, we can conclude that= ¢'.

2. LetM' = M —t* + *t. Clearly|M'| = | M| — {t} and thus| M’] is finite and
/v is acyclic. Moreover, we have to show there are no causafhguient (distinct)
places inM’. Sinceconc(M — t*), by hypothesis, andonc(*t), by Proposition 5.1, the
only problematic case could bec M — t* ands’ € *t. But

e if s < s’ then, by transitivity ok, we haves < s;;
e if s < sthenthere is a transitiori such thats’ € *t’ andt’ < s. Sinces’ € *tN *t/,
we have that 't / tisa 7-cyclein|M].

In both cases we reach a contradiction with the hypothesig(M/). |
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Lemma 5.2 (forward steps preserve concurrency).et/N be an occurrence c-netand
let M C S be a set of places. Honc(M) and M [t) M’ thenconc(M’).

Proof. The transitiory is enabled byM, i.e., *t + ¢ C M and thus~(t  ¢') for all
t' € |[M]. Infactlett’ € |M], thatist’ < s’ for somes’ € M. Clearly it cannot be
t ~ t/, otherwise, ifs € *¢' N (*tUt) C M thens < s, contradicting the hypothesis
conc(M). In the same way, if < t' then given any € *t (which is included inM), we
would haves < s'.

Therefore, sincéM’| C | M| U {t} (the strict inclusion holds whett = )) and, by
hypothesis,”| ) is acyclic, we can conclude that'| /| is acyclic. Moreover, since
| M | is finite, also| M’ | is finite.

Finally, we have to show that there are no (distinct) caysidlpendent places i/’.
Sinceconc(M — *t) and conc(t*) the only problematic case could bes M — *¢ and
s’ € t*. But

e if s < s’ thens < s” for somes” € *tU{;
e if s’ < sthen, fors” € *t, by transitivity of <, s” < s.
In both cases we reach a contradiction with the hypothesig(M/). |

It is now quite easy to conclude that, as mentioned befoesgtimcurrent sets of places
of a c-net indeed coincide with the (subsets of) reachabh&ings.

PRrROPOSITION 5.2 (concurrency and reachability).Let NV be an occurrence c-netand
let M C S be a set of places. Then

conc(M) iff M C M’ for some reachable markindy/’.

Proof.
(=) By definition of the concurrency relation) | is finite. Moreover,”| ;) is acyclic
and therefore there is an enumeratiohi, . .., t(*) of the transitions in M | compatible

with (7)) " Let us show by induction oh = || M || that
m = MO W)y MO @Yy M@ [y MR D M.

(k = 0) In this case simplyn © M and thusn = M) D M.

(k > 0) By constructiont® is maximal in| M | with respect to(,”|5;)*. Thus, by
Lemma 5.1, if we defin@/” = M — t*)* 4 *¢t(k) we haveconc(M") and | M" | =
{tM . t(=11 Therefore, by inductive hypothesis, there is a firing segae

m[t(l)) MO [t(k—1)> M=) > M. 3)

Now, by construction?t*) C M”. Moreover als¢*) C M”. Infact, if s € t(*) then

s € mors € t(")* forsomeh < k. Thus atoken is is generated in the firing sequence (3),
and no transitiort") can consume this token, otherwig®& ~ ¢())| contradicting the
maximality oft(*). Finally, by definition of occurrence c-nett*) N t*) = ¢, being
irreflexive. Therefore(®) is enabled im\/” so that we can extend the firing sequence (3)

to
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m W) MO k=D pp=1) [g(R)y ppk),
whereM *) = ppk=1) _ o4(k) (K)o o ppr — op(k) 4 y(k)e — pf,
(«=) Let us suppose that there exists a firing sequence
m [ty MO [y M@ Ry M) D M,

and let us prove thabnc(M *)) (and thusconc(M)). If (k = 0),thenM C m and clearly
conc(m). If k > 0 then an inductive reasoning that uses Lemma 5.2 allows one to
conclude. m

As an immediate corollary we obtain that each transitiomadecurrence c-net s firable
in some computation of the net.

CoroLLARY 5.1. For any transitiont of an occurrence c-neV there is a reachable
marking M of N which enables.

Proof. By Proposition 5.1¢conc(*t 4 t) and thus, by Proposition 5.2, we can find a
reachable marking/ of N, such that\/ D °t + ¢, enablingt. ®

5.3. Morphisms on occurrence contextual nets
This subsection states some properties of c-net morphigtmgebn occurrence c-nets
that will be useful in the sequel. We start with a characsgian of such morphisms.

LeMMA 5.3 (occurrence c-nets morphisms).Let Ny and N; be occurrence c-nets
and leth : Ny — N; be a morphism. Thehyg is arelationand

e Vs1 € my. dlsg € mg. hs(so, s1);

e for eachty € Ty andt; € Ty, if hr(tg) = t; then
— Vs1 € *t1. dlsg € 1. hs(SO,Sl);
— Vs; € t_l dlsg € t_o hs(So, 81);

— Vs1 € t1°. dlsg € tp°. hs(So, 81);
Moreover given any, € Sg, s1 € S1,t1 € T1:

e 51 €my A hs(so,81) = So € mo;
e 51 EH* A hs(So, 81) = dlty € Tp. (So € to® A hT(to) = tl).

Proof (Sketch). The result is easily proved by using the strutfun@perties of occur-
rence c-nets. We treat just the first point. kete m,. Since it must beihg(mg) = my,
there existsy € my such thats(so, s1). Suchsy must be unique, since otherwise the ini-
tial marking of N; should be a proper multiset, rather than a set, contraditttmdefinition

of occurrence c-net.

As an easy consequence of the results in the previous sidisectnet morphisms

preserve the concurrency relation.
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CoRrOLLARY 5.2 (morphisms preserve concurrency)Let Ny and N; be occurrence
c-nets and leb : Ny — N7 be a morphism. Givei/y C Sy, if conc(My) thenphg(My)
is a set ancconc(uhs(Mp)).

Proof. Let My C Sy, with conc(Mp). Then, by Proposition 5.2, there exists a firing
sequence iiNy:

mo Y MO L [E™) M0 S M,
By Proposition 4.1, morphisms preserve the token game argd th

ma = s (mo) [hr (K0))) s (M) ... [hr(E0)) juhs (M) 2 phs(Mo).

isafiring sequenceiV;. Henceuhgs(M,) isasetand, by Proposition 5@nc(phs(My)). B

Notice that the corollary implicitly states that morphisare “injective” on concurrent
sets of places, in the sense thatdf.c(M) ands # s" are inM thenuhg(s) anduhg(s’)
are sets, anflhs(s) N uhs(s’) = 0 (otherwiseus (M) would be a proper multiset).

In the next theorem we show that, more generally, morphisrasepve the “amount
of concurrency”, namely they reflect causality and conflidtjle asymmetric conflict is
reflected or becomes conflict. The fact that asymmetric adidlnot necessarily reflected
is related to the fact that the asymmetric conflict relatimnan occurrence c-net does not
satisfy the saturation condition required fars’s (see Definition 2.4).

THEOREM 5.1. Let Ny and N; be occurrence c-nets and lét: Ng — N; be a
morphism. Then, for ally, ¢, € Ty such thathp(to) # L # ho(ty)

1. [hr(to)] C hr(lto));
2. (hr(to) = hr(ty)) A (to #15) = to#oto;
3. he(to) /1 he(ty) = (to Joth) V (tooth):
4. #hp(A) = #A' forsomed’ C A.

Proof. 1. Let the symbok denote the immediate causal dependency between tran-
sitions, namelyt < ¢’ if ¢ < ¢’ and there does not exist$ such that < ¢” < t’. The
desired property easily follows by observing that c-netphésms reflec-chains, namely
thatif £ < ¢V < ... < ¢{") is a chain of transitions itV; such that\™ = hp(t{"),
then there exists a chatff’ < " < ... <t in Ny such that!” = h(t$?) for all
i € {0,...,n}. This fact can be proved by induction enexploiting Lemma 5.3.

2. Lethp(ty) = hr(t)) andty # t;. Consider a chain of transitioﬁéo) S
tgk) = hp(to) such that‘tgo) Cmy andtgi)' N 'tg”l) #(foralli € {0,...,k — 1} (the
existence of such afinite chain is an immediate consequéditice definition of occurrence
c-net). Since, as observed in point (1), morphisms refleethains, there are iffiy two
<-chains of transitions,

< o<t and O < <)M,

such thathr (t$7) = hr(t87) = 1, foralli € {1,..., k} andty = £, t§ = /™).
34



Let j be the least index such th%f) # tg(j). If j =0 (and thus‘tgj) C m4) consider
a generics; € *\*). By definition of morphism there arg € *t\”’ ands} € *t\* such
thathgs(so, s1) andhgs(sy, s1). By Lemma 5.3, since; € mq, alsosy andsg are in the
initial marking and thus, = s). Hencet!" 7o t” 7, ") and thus, by definition of

#, toftoty. If 7 > 0, then considering; € tgj_l)' N 'tgj), the same reasoning applies.

3. We distinguish two cases. A (to) ~+1 hr(t;) then there is a placg € (hp(to) U
*hr(to)) N *hr(ty). Thusthere arey € (to U *to) such thatis(so, s1) andsy € *¢; such
thaths(sg, s1). If s1 is in the initial marking them, = s{, and thusy ~~; t,. Otherwise
so ands, are in the post-sets of two transitionﬁ%> andtg(0 , which are mapped to the same
transition inN; (the transition which has, in its post-set). By point (2)‘,80) andtg(o) are
identical or in conflict: in the first case = s{, and thusiy ~¢ t;, while in the second
caseto#oty-

If, instead,hr (to) <1 hr(t)), then, by point (1), there exist§ € Ty such that{ <, t{
andhyp(ty) = hr(to). It follows from point (2) that eithet; = t, and thusiy <o t{, or
tg#oto and thugo#oté.

4. Recall that if#thr(A) then|hr(A)] contains a cycle of asymmetric conflict. Now,
by point(1),| hr(A)| C hr(| A]) and thus, by point (3), itis easy to conclude the thesis.

6. UNFOLDING: FROM SEMI-WEIGHTED TO OCCURRENCE
CONTEXTUAL NETS

This section shows how, given a semi-weighted c-Netan unfolding construction
allows us to obtain an occurrence c-&t(N) that describes the behaviour 8f. As
for ordinary nets, each transition i, (V) represents a firing of a transition iN, and
places in,(N) represent occurrences of tokens in the place¥ oEach item (place or
transition) of the unfolding is mapped to the correspondieg of the original net by a
c-net morphisnyy : U, (N) — N, called the folding morphism. The unfolding operation
can be extended to a functy, : SW-CN — O-CN that is right adjoint to the inclusion
functorZ,. : O-CN — SW-CN and thus establishes a coreflection betw8&hnCN and
O-CN.

We first introduce some technical notions. We say that a AA\els a subnetof Ny,
written Ny < Ny, if So C S1, To € T and the inclusionir,is) (with ip(t) = t for
t € Ty, andig(s,s’) = 1if s = s’ and0 otherwise, fors, s’ € Sp) is a c-net morphism.
In words, Ny < N; if Ny coincides with an initial segment @¥;. In the following it will
be useful to consider the subnets of an occurrence c-nehebthy truncating the original
net at a given “causal depth”, where the notion of depth isdefin the natural way.

DEFINITION 6.27 (depth). Let N be an occurrence c-net. The functidapth :
S UT — Nis defined inductively as follows:

depth(s) =0 fors € m;
depth(t) = max{depth(s) | s € *tUt} +1 fort e T;
depth(s) = depth(t) for s € t°.

35



It is not difficult to prove thatdepth is a well-defined total function, since infinite
descending chains of causality are disallowed in occuerengets. Moreover, given an
occurrence c-nelV, the net containing only the items dkpth less than or equal té,
denoted byV¥ | is a well-defined occurrence c-net and it is a subné¥ ofrhe following
simple result holds:

ProrosITION 6.1. An occurrence c-neV¥ is the (componentwise) union of its subnets
N of depthk.

The unfolding of a semi-weighted c-nét can be constructed inductively by starting
from the initial marking of N, and then by adding, at each step, an instance of each
transition of N which is enabled by (the image of) a concurrent subset ofeglat the
partial unfolding currently generated. For technical ozeswe prefer to give an equivalent
axiomatic definition.

DEeFINITION 6.28 (unfolding). LetN = (S, T, F,C,m) be a semi-weighted c-net.
The unfoldingll,(N) = (S',T’, F',C’,m’) of the netN and thefolding morphism
fn = {fr,fs) : U,(N) — N are the unique occurrence c-net and c-net morphism
satisfying the following equations:

m' = {(0,5) | s € m}

S = mU{{',s) |t = (Mp, M, t) eT' N st}

T = {(Mp, M.,t) | Mp, M. CS" N MyN M, =0 A cone(M, UM, A
teT A pfs(Mp) ="t N pfs(M.) =1}

FlL (t,s) iff = (My,M,t) AsEM, (tcT)

C'(t',s") iff t'= (M, M., t) N s e M. (teT)
Fposi(t's ") iff s={(ts) (s€09)

fri) =t iff t' = (M,, M,,t)

fs(s',s) iff s ={x,s) (xeT U{0})

The existence of the unfolding can be proved by explicitiyrrg its inductive definition.
Uniqueness follows from the fact that each item in a occureennet has a finite depth.

Places and transitions in the unfolding of a c-net represespectively, tokens and
firing of transitions in the original net. Each place in thdalding is a pair recording the
“history” of the token and the corresponding place in thgiodl net. Each transition is a
triple recording the pre-set and context used in the firing, the corresponding transition
in the original net. A new place with empty histoffy, s) is generated for each plagen
the initial markingm of N (recall thatm is a set sincéV is semi-weighted). Moreover
a new transition’ = (M, M,,t) is inserted in the unfolding whenever we can find a
concurrent set of place¥,, + M. that corresponds, in the original net, to a marking that
enableg (M, corresponds to the pre-set ahf} to the context used bg). For each place
s in the post-set of such a transitiona new placet’, s) is generated, belonging to the
post-set of’. The folding morphismf maps each place (transition) of the unfolding to
the corresponding place (transition) in the original neig. 6 shows a c-nelv and an
initial part of its unfolding (formally, it is the subnet dfi¢ unfolding of deptt8, namely
L{a(N)B]). The folding morphism is represented by labelling the geshthe unfolding
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(s5,0,t4)

(s7,s%,t1) (t},s5)

(t/1/751>

CHEEARY

u, (N)[?’]

FIG. 6. Ac-netand (a part of) its unfolding.

with the names of the corresponding itemsN\of enriched with a superscript. The figure
also reports the concrete identity of the items of the urifigid

Occurrence c-nets are particular semi-weighted c-netsttaunsl we can consider the
inclusion functorZ,. : O-CN — SW-CN that acts as identity on objects and morphisms.
We show now that the unfolding of a c-ri¢f (V') and the folding morphisnfiy are cofree
over N. Thereford/, extends to a functor that is right adjoint8§. and thus establishes
a coreflection betweeBW-CN andO-CN.
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THEOREM 6.1 (coreflection betweeBW-CN andO-CN). Z,. 41U,

Proof. Let N be a semi-weighted c-net, 1&,(N) = (S, 7', F',C’',m/) be its
unfolding and letfy : U,(N) — N be the folding morphism as in Definition 6.28. We
have to show that for any occurrence c-ngtand for any morphisng : N; — N there
exists a unigue morphisim: N; — U, (NN) such that the following diagram commutes:

Existence
We define a sequence of morphishd : N, ¥ — 74,(IV) such that, for anyt,

WE C R and fy oAM= gy,

then the morphismk we are looking for will beh = |J,, hl¥. We give an inductive
definition:

(k = 0) The c-netV, I consists only of the initial marking a¥; with no transitions, i.e.,
N = (my,0,0,0,m;). Thereforeh! has to be defined:

hT[O] - @l

hs®(s1, (0, 8)) = gs(s1,s) forall s; € 5% = m, ands € S.

(k — k 4+ 1) The morphismh[**+1 extendsh!*! on items with depth equal t + 1 as
follows. Lett; € T+ with depth(t1) = k + 1. By definition of depthdepth(s) < k
forall s € *t; Ut; and thush!*! is defined on the pre-set and on the context ofVe must
definehr ont; andhg on its post-set. Two cases arise:

o If gr(t1) = L then necessarily (1) = L andhs** (s, s') = 0 for all
s1 € t1*ands’ € .

e If gr(t1) = t then consider the sets
M, = uhs™(*t) M, = uhs™(ty).

Since N, is an occurrence c-nett; Nt; = () and, by Proposition 5.1g0nc(*t; U ty).
Hence, by Corollary 5.2,

M,NM.=0 and conc(M, U M.).

Moreover, by constructioryy o hl*l = 9|n, ), and therefore

pfs(Mp) = MfS(MhSUi(s.tl)) = ngs(*t1) = *t



where the last passage is justified by the definition of c-regpimsm, and in the same way
wufs(M.) = t. Thus, by definition of unfolding, there exists a transitibe= (M,,, M., t)
inT".

It is clear that, to obtain a well defined morphism that makesdiagram commute, we
must define

hT[k+1] (f1) — ¢
and, sinceugs(t1°®) = t*, forall s; € ¢1* ands € t*
h’SUH—l] (517 <t/7 S>) = 95(51, S)'

A routine checking allows to prove that, for eathh!*! is a well-defined morphism and
fN ] h[k] = g‘Nl[k] .

Uniqueness

The morphism is clearly unique since at each step we were forced to defamte did
to ensure commutativity. Formally, lét : Ny — U,(N) be a morphism such that the
diagram commutes, i.efy o A’ = g. Then, we show, that for all

/ —
W0 = Py

We proceed by induction okt
(k = 0) The c-netV, I consists only of the initial marking a¥; and thus we have:

W =0 = hpl,
h%[o](sl, <®,S>) = 95(51, S) = hS[O](Sl, <®,S>), for all S1 € Sl[o] =mi ands € S.

(k — k + 1) For allt, € T4, with depth(t,) = k + 1 we distinguish two cases:

o If gr(t1) = L then necessarily,. " (t;) = L and phs®*V(t,%) = 0. Thus
R'* 1 coincides withh*+1) on¢; and its post-set.

o If gp(t1) =t then
h ) = ¢ = (M, M., t) € T,

with M, = *t’ = ph/s(°t1) and M. = ¢’ = ph/s(t1). By inductive hypothesis, since
depth(s) < k for all s; € *t; Uty, we have thafuhs(®t1) = M, anduhs(t1) = M..
Therefore, by definition ok, hr(t1) = (M, M., t) = hip(t1).

Moreover, for alls; € ¢, and for alls € ¢*, again by reasoning on commutativity of the
diagramh:s‘(sla <t/a S>) = gS(Sla S) = hS(Slv <t/7 S>)
|
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7. OCCURRENCE CONTEXTUAL NETS AND ASYMMETRIC EVENT
STRUCTURES

This section shows that the semantics of semi-weightedsgieen in terms of occur-
rence c-nets can be abstracted to an event structure andotma@rdsemantics. First the
existence of a coreflection betwe&fS and O-CN is proved, substantiating the claim
according to whices’s represent a suitable model for giving event based senstdi
c-nets. Then the coreflection betwe®BS andDom, defined in Section 2, can be exploited
to complete the chain of coreflections fr@iV-CN to Dom.

Given an occurrence c-net we can obtain a prs-by simply forgetting the places
and remembering the dependency relations that they indetweekbn transitions, namely
causality and asymmetric conflict. The corresponding (ated)AESs has the same causal
relation<y, while asymmetric conflict is given by the union of asymneetonflict
and of the induced binary confligt . Furthermore a morphism between occurrence c-nets
naturally restricts to a morphism between the correspandins’s.

DEFINITION 7.29 (from occurrence c-nets toes's). Let&, : O-CN — AES be the
functor defined as:

e for each occurrence c-né¥, if # denotes the induced binary conflictivi

Ea(N)=(T,<n, /N U#nN);

e for each morphismv : Ny — Ny:

ga(h : NQ — Nl) = hT.

Notice that the induced conflict relatiof® in the AEs £,(N) (see Definition 2.3)
coincides with the induced conflict relation in the Aé{see Definition 5.25). Therefore in
the following we will confuse the two relations and simplyiter# to denote both of them.

ProposiTION 7.1 (well-definedness). &, is a well-defined functor.

Proof. Given any occurrence c-nét, by Definition 5.24 and the considerations on the
saturation of prexes’s following Definition 2.4, we immediately have th&f( V) is anaEgs.
Furthermore, ifh : Ny — N; is a c-net morphism, then, by Theorem 53(h) = hp

is anaes-morphism. Finally€, obviously preserves arrow composition and identities.

To go the other way around, from ams we can obtain a canonical occurrence c-net via
a free construction that mimics Winskel's. In the constedat-net the events are used as
transitions, and for each set of events related in a certainby causality and asymmetric
conflict, aunique place is generated that induces such kiredadions on the corresponding
transitions.

DerINITION 7.30 (from AES'S to occurrence c-nets). LetG = (E, <, /') be anAEs.
ThenN,(G) is the netN = (S, T, F, C, m) defined as follows:

° m:{@,A,BH A,BCE, VaeA.VbGB.a/‘b,}

Vb,b' € B.b#£ b = bitb'
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A BCFE ecE, Vxe AUB. e<u,
S=mU< ({e},A,B)| Yae A.Vbe B.a /D, ;
Vb, € B.b# bV = b#b

T=F,
o = <Fpre,Fpost>,With
Fpre == {(675) | s = <I5AvB> € Sv € EB}'
Foost ={(e,s) | s = ({e},A,B) € S};
C={(es)|s=(x,A,B) €S, ec A}.

As anticipated, the transitions 8f, (G) are simply the events aF, while places are
triples of the form(z, A, B), with 2, A, B C E, and|z| < 1. A place(z,A,B) is a
precondition for all the events iB and a context for all the events ih. Moreover, if
z = {e}, such a place is a postcondition ferotherwise ifz = () the place belongs to
the initial marking. Therefore each place gives rise to aflairbetween each pair of
(distinct) events inB and to an asymmetric conflict between each pair of everds A
andb € B. Fig. 7 presents some examples of basis’s with the corresponding c-nets.
The cases of anes with two events related, respectively, by causality, aswtmimconflict
and (immediate symmetric) conflict are considered. Pialigtian asymmetric conflict
eop /" e1 is represented by a dotted arrow fregito e;. Causality is represented, as usual,
by plain arrows. In the first case the places of the net aretatetwith their concrete
identity.

The next proposition relates the causality and asymmeomdlict relations of ames
with the corresponding relations of the c-tét(G). In particular, this will be useful in
proving that\/, (G) is indeed an occurrence c-net.

LeEmMMA 7.1. Let G = (E,<, /) be anags and let NV,(G) be the c-netN =
(S,T,F,C,m). Thenforalle,e’ € E:

l.e<ye iff e<e;
2.e~pye iff e e
3.e/'ne iff e €.

Proof. 1. Let<, denote the immediate causality relation¥n If e <, ¢’ then there
exists a placé{e}, A, B) € S with ¢/ € AU B and thus, by definition alV,, e < ¢'.
Vice versa, ife < ¢’ then({e},0,{e'}) € S and thus <y ¢’. Since<y is the transitive
closure of< y and< is a transitive relation we conclude the thesis.

2. If e ~>y €’ then there exists a plage, A, B) € Swithe € AU B ande’ € B and
thus eithere ¢’ or e#¢’. But sinceG is anAEs, the binary conflict is included in the
asymmetric conflict and thus, also in the second casé,e’. Vice versa, ife /¢’ then
(0,{e},{e'}) € Sand thus ~y ¢’

3. Easy consequence of points (1) and (2.

As an immediate corollary we have:
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(wvwv{e()})

[ ]
(0,{eo},0) €0 (0,{eo}{er})
€o ({e0},0,0)
Go J Na(Go) teordufer) () (O.feo.c1).0)
€1 (0,0,{e1})
(0,{e1},0) e1 ({eo},{e1},0)
<{61}7®7®>
O,
G, e » €1 Na(Gr)
Gy € e Na(Ga)

FIG. 7. Three simplergs's and the corresponding occurrence c-nets produced byitieedr N, .




COROLLARY 7.1. LetG = (E, <, /)beanags. TheW,(G) = N = (S, T, F,C,m)
is an occurrence c-net.

Proof. By Lemma 7.1 the causality relatiod y=< and the asymmetric conflict
/' ~="inherits the necessary properties from thos&'of m

LetG = (E, <, /) be anags. Fore € E, we define the set afonsequencdde}], as
follows (considering the singletofe} instead of itself will later simplify the notation).

[{e}]={e € E|le<e}.

This function is extended also to the empty set[by= F. We use the same notation for
occurrence c-nets, referring to the underlyis.

The next technical lemma gives a property of morphisms betweecurrence c-nets
which will be useful in the proof of the coreflection result.

LemMA 7.2. LetNyandN; be occurrence c-nets and let Ny — N; be a morphism.
Forall sy € Sy ands; € Sy, if hs(So,Sl) then

1. hT(.SO) = ®sq;
2. 50° = h;l(sl') N |_.So-|;
3. 50 = hy'(s1) N [*s0].

Proof. Letsy € Sy ands; € S7 such thatig(so, s1)-

1. If *sg = 0, i.e.,sg € mo thens; € my and thus®s; = 0 = hp(®sp). Otherwise, let
*so = {to}.2 Thereforehr(to) = t; is defined (see the remark after Definition 4.20) and
s1 € t1°. Thus®s; = {tl} = hT('So).

2. Letty € sp°, i.e.,s0 € *tp. Sincehs(so,s1), we have thahr(ty) = t1 is defined
ands; € *t;. Thusty € h2'(51°) N [*s0].

For the converse inclusion, les € h;'(s1°) N [*sg]. Thens; € *hr(t) and thus
there iss{, € *to such thatis(s(, s1). Now, reasoning as in Theorem 5.1.(2), we conclude
thats;, andsy necessarily coincide, otherwise they would be in the pestbconflicting
transitions and thus, singg € [*sg], we would have,#t.

3. Analogousto (2). m

Recall that, by Lemma 7.1, for amgs G = (E, <, /) the causality and asymmetric
conflict relations inV, (G) coincide with< and ”. Hence&, (N, (G)) = (E, <, /),
with =7 U+# = 7, where the last equality is justified by the fact that imass # C .
Hence&, o NV, is the identity on objects.

We next prove thalV,, extends to a functor frorAES to O-CN, which is left adjoint to
E. (with unit the identityids). More precisely they establish a coreflection betw&ES
andO-CN.

8There is a unique transition generating sinceNy is an occurrence c-net.
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THEOREM 7.1 (coreflection betwee®-CN andAES). N, 4 &,

Proof. LetG = (E,<, ) be anaEgs and letN,(G) = (S,T, F,C,m) be as in
Definition 7.30. We have to show that for any occurrence cMeand for any morphism
g : G — &,(Np) there exists a unique morphigm N, (G) — Ny, such that the following
diagram commutes:

G S (NL(G) =G

Ea(h)

Ea(No)

The behaviour ofi on transitions is determined immediately dxy
hT =4d.

Therefore we only have to show that a multirelation: S < Sy such thathr, hg) is a
c-net morphism exists and it is uniquely determinedhy

Existence
Let us definghs in such a way it satisfies the conditions of Lemma 7.2, spieeidlto the
netN,(G), thatis, for alls = (x, A, B) € S andsq € Sy:

hs(s,50) iff  ((x=0Asoemg)V (x={t} A so€hr(t)*))
A B =h;'(s0®) N [z]
A A= b (s9) O[]

To prove that the pait = (h7, hg) is indeed a morphism, let us verify the conditions on
the preservation of the initial marking and of the pre-sestgset and context of transitions.
First observe thaths(m) = mg. Infact, if s = (x, A, B) € m andhg(s, sg) then

z = () and thus, by definition ol s, so € mg. Vice versa, lekg € mg and let

A= hz'(s0) and B = h;'(s0°).

Sinceto#t, for all to,t; € so® andty " t; for all ty € s, t, € so°®, by definition of
AEs-morphism¢#t’ forall¢,t’ € Bandt ¢ forallt € A andt’ € B. Hence thereis a
places = (0, A, B) € m andhs(s, so).

Now, lett € T be any transition, such that(¢) is defined. Then

(] /th(.t) = 'hT(t).
In fact, lets = (z, A, B) € °t, thatist € B, and leths(s, so). Then, by definition oh.g,
hr(t) € so®, or equivalently, € *hy(t). For the converse inclusion, leg € *hp(t) and
letx = h;'(*so) N [t]. SinceNy is an occurrence c-ngts, |< 1andthus = |< 1 (more
preciselyr = () if s € mg, otherwisey contains the uniqué < ¢, such thabr(t') = ¢,
with *so = {to}). Consider

A= h;l(s_o) N[z] and B= h;l(so') N [z].
Sinceto#t;, for all ¢, t € so® andty 7t for all ty € so, t; € s0°, as in the previous

case, we have that= (z, A, B) € S is a place such thdts(s, so). Clearlyt € [z], thus
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t € B and therefore € *t andsg € phs(®t).

° /th(ﬁ) = hT(t).
Analogous to the previous case.

o uhs(t*) = hr(t)*.
If s = (z,A,B) € t*, thatisx = {t}, andhg(s, so), then, by definition ofs, we have
so € hp(t)®. For the converse, let, € hr(t)®. As above, consider

A=hi'(s)N[{}] and B =hz'(so®) N[{t}].

Thens = ({t}, A, B) € t* and, by definition of.s, we havehgs(s, so).

Finally, if hr(t) is not defined, then the definition bf implies thatuhs(*t) = phs(t) =
uhs(t*) = 0. This concludes the proof thatis a c-net morphism.

Uniqueness

The multirelationhs such that(hr, hgs) is a c-net morphism is unique essentially be-
cause it is completely determined by the conditions of Leni2a More precisely, if
Iy : S < Spis another multirelation such théir, h'y) is a morphism and’ (s, so), then
necessarily by Lemma 7.2,5(s, s9). Conversely, leths(s, so), with s = (z, A, B).
Then, if x = (), by properties of net morphismsy € mg. Therefore there must
be s’ € m such thath/s(s’,s0). But, by Lemma 7.2 and definition otg, s’ =
h3'(so) = A and similarlys’* = h;'(s0*) = B. Therefores’ = (0, A,B) = s
and thush/s (s, so). An analogous reasoning allows us to conclude when{t}. ®H

We know by the previous theorem th}, extends to a functor froAES to O-CN. The
behaviour ofV, on morphisms is suggested by the proof of the theoremh L&ty — G4,
be anaes-morphism and letV,, (G;) = (S;, T;, F;, C;,m;) fori € {0,1}. ThenN,(h) =
(h, hg), with hs defined as follows:

o for all places(), A, B;)

h5(<®a h_l(Al)’ h_l(Bl)>7 <®’ A, Bl))

e forall eq € Tj such thatir(eg) = e; and for all placeg{e; }, A1, B1)

hs(({eo}, h™ (A1) N [eo], A~ (B1) N [eol), ({e1}, A1, Br))

As mentioned before, once we havexas semantics for contextual nets, the coreflection
betweenAES an Dom (Theorem 3.2) immediately provides a domain semantics.nThe
the equivalence betwe&ESandDom (see Subsection 3.1) can be used to “translate” the
domain semantics of semi-weighted c-nets into a prime estentture semantics. This
completes the following chain of coreflections betw&a#i-CN andPES

ZUC ) Na 7)0/ L
SW-CN_L OCN_L1 AES_L Dom_~ . PES
Uq Ea Lq P

Fig. 8 shows (a part of) thees, the domain and thekes associated to the c-net of Fig. 6.
Although (for the sake of readability) not explicitly drawin the PEs all the “copies” of
t4, namely the events are in conflict.

45



to

N

~

tll >ty < to N tg #o 3

J AT

0o

t&//

(@) Ea(Ua(N)) (©) P(La(EaUa(N))))
w\
/ {io} \ s}
{to. t1} {to. ta} {to. 2} {to. t3}

{to. t, 14} {to, th, ¢} {to, ), t2} {to, ), t3} {to,ta,tat  {to,ts, ta}

{to, t1, ¢, ta}  {to, 07,81, 87"} {to, 1, t3,ta}  {to, ]t ta} {to,t1,t],ts} {to,t},ta,ta}

(0) La(Ea(Ua(N)))

FIG. 8. The (a)aEs (b) domain and (cpEs for the c-netNV of Fig. 6
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© e e
Ny G = E,(N3)

P = ga(Né) = P(Ea(ga(N3)))

FIG. 9. AEs semantics is finer thares semantics.

We remark that thegs semantics is obtained from thess semantics by introducing
an event for each possible different history of events in Alis, as discussed in the
introduction. For instance, thees semantics of the néYs in Fig. 9 is given byP, where
e} represents the firing of the transitionby itself, with an empty history, and’ the firing
of the transitior; afterty. Obviously theaEs semantics is finer than thass semantics,
or, in other words, the translation froAES to PES causes a loss of information. For
example, the netd&; and IV} in Fig. 9 have the samees semantics, but differemes
semantics.

8. RELATION WITH WINSKEL'S SEMANTICS FOR ORDINARY NETS

In this section we study the relationship between the pregaemantics for semi-
weighted contextual nets and the classical Winskel's séiogafor safe ordinary nets
(generalized to semi-weighted ordinary nets in [MMS92hef, we formally compare the
expressiveness of semi-weighted and safe contextual pe¢sbrting to their prime event
structure semantics.

Let us start by considering the diagram in Fig. 10. The top represents the chain
of coreflections defined in [MMS92, MMS97], leading from tretegorySW-N of semi-
weighted ordinary nets to the categ@gm, through the categoi®-N of occurrence nets.
Inthe mentioned paper itis shown that such coreflectionsecggor safe nets, to Winskel's
coreflections. The bottom row, instead, summarizes ouffleat&re semantics for contex-
tual nets. The vertical functots,. : SW-N — SW-CN andZ,,., : O-N — O-CN are
inclusions, while7 : PES — AES is the full embedding functor introduced in Proposi-
tion 2.1. We want to show that, as suggested by some previdaisrial considerations,
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SW-N L O-N L PES
u € K
1
x
Tne (1) Tonco (2) g (3) » Dom
/
ZUC ) Na [,
SW-CN L O-CN L AES
Us £a

FIG. 10. Relating the semantics of ordinary and contextual nets.

each of our coreflections cuts down to Winskel's coreflechietween the corresponding
subcategories.

Let us first concentrate on square (1). It is easy to see teatitfolding functoii/,
restricts td/ in the sense th&k,,., ol = U, o Z,,.. Similarly, the inclusiorf,. restricts to
Toyi.€,Lpe 0Ly = Tyhe 0 Iyeo- Since the inclusions,,. andZ,,., are full embeddings, by
general categorical arguments, from the factthat 7. is a coreflection we immediately
conclude that/ - Z,, and that such adjunction is a coreflection as well. A siméassoning
applies to the “degenerate” square (3) (we can imaginedtst edge to be the identity
functor onDom), just observing that/ o P = P, andL, o J = L.

When considering square (2) instead, the correspondemod completely straightfor-
ward. The vertical “edges” of the square, namély,, and 7, are still full embedding
functorsanq/o& = £,07,.,, butthe other commutativity property,i.&,,cooN = N0 J
fails to hold. In fact, given @Es P, the netZ,,., (N (P)) is obtained by saturating with
places acting as preconditions and postconditions forthats inP, while in A, (7 (P))
also context places are added. In this case we resort to Hlogvifog categorical result
which generalizes the observation used for the other twarssu

LEMMA 8.1. LetA; andB, fori € {0,1} be categories, leF; : A; — B,,G; : B; —
A, befunctorsand lef4 : Ag — A4, Ip : By — B; be full embedding functors (see
Fig. 11). Suppose that

1. Fi+ Gl;

2. Fioly=1IgoFy;

3. thereis a natural transformationm : G; o I — 4 o Gy, such that for all objectst
in Ay and B in By, each arrowy : G1(Ip(B)) — I4(A) uniquely factorizes through,
i.e., there exists a uniqug: 14(Go(B)) — Ia(A) suchthaty = foap

G1(Ig(B)) —" 14(Go(B))

I4(4)

ThenFy - Gy. Furthermore if the unit of; - G and F; o « are natural isomorphisms
then so is the unit ofy - G as well.
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Ay L By
Fy
Ia \ Ip
G1
Al L Bl
Py

FIG. 11. Restriction of an adjunction.

Proof (Sketch). Lety! : 1 — F} o G, be the unit of the adjunctiof; - G;. Given an
objectB in By, consider the arrow’; (ap) o ”}B(B) : Ig(B) — Ig(Fo(Go(B)))

1
Mg (B) Fi(ap)

I5(B) ———— F1(G1(I3(B))) ———— F1(1a(Go(B))) = Ip(Fo(Go(B)))

Then one can prove th#&, - G, with unitn% = 15" (Fi(ap) o W}B(B))' [ |

Coming back to square (2), observe that there is a naturaftsemationy : N, o 7 —
Tneo o N, which essentially forgets the contexts. The componenrasal = (E, <, #)
of ais given byap = (idg,apg) : No(T(P)) = Zneo (N(P)), whereapg is a partial
function defined, for any placein the contextual net/, (7 (P)), as follows:

€ if sis a context place for some transition
s otherwise

ars(e) = {

Furthermore, given amyes P and (ordinary) occurrence n&t, each arrovy : N, (7 (P)) —
Tneo (IN) can be factorized uniquely gso ap, for f : Zpeo (N (P)) — Zneo(N)

Nu(T(P)) =% Tpeo (N(P))

h f

~

Inco (N)

In fact, since the transitions iB,.,(N) have an empty context, necessayjlynust map
the context places in, (7 (P)) to the empty multiset, and thysis uniquely determined
as the restriction of to Z,,., (A (P)). Finally, it is easy to verify thaf, o « is a natural
isomorphism. Hence we can apply Lemma 8.1 to conclude thatareflectiont, - N,
induces the coreflectiofi- N.

Let us now comment on the expressiveness of semi-weightkdafe contextual nets,
by exploiting the proposed event structure semantics asweaioneans to compare the two
classes of nets. As discussed in the introduction, in the chsrdinary nets the safeness
condition prevents one to model an unbounded degree of camay. Formally, in the
PES semantics of a finite safe nat the cardinality of a concurrent set of events is bounded
by the number of transitions iV; the same applies to finite satentextuainets as well.
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Ny Ua(N4)

FIG. 12. A semi-weighted contextual né¥, and (a part of) its unfolding where a transition occurrence
directly causes infinitely many other transition occuresic

Instead, observe that tires semantics of the semi-weighted c-@éf of Fig. 12 includes
sets of concurrent events of unbounded cardinality, namléfynite subsets 017];41 (t1),
wherefy, : U,(N4) — Ny is the folding morphism. Even more interestingly, let ustfirs
remind that, as proved in [MR95], any finite safe contextuedlean be translated into a
finite safe ordinary net, having the same process semamiicthas, a “fortiori”, the same
PES semantics. Instead there is no finite general (ordinary)fefThaving the samees
semantics ad/y. In fact, in thepes associated to any P/T net, the number of events which
are directly caused by a single everns$ bounded by the number of tokens produced by the
transition corresponding t@ Instead, in theEs associated tdV, the event corresponding
to t5 is an immediate cause of infinitely many other events (aletrents corresponding to
transitiont).

9. PROCESSES AND UNFOLDING

The notion of occurrence c-net introduced in Section 5 @dlfusuggests a notion of
nondeterministic process for c-nets, which can be definednasccurrence c-net with
a morphism (mapping places into places and total on transitito the original net.
Deterministic c-net processes can then be defined as gartrmandeterministic processes
such that the underlying occurrence c-net satisfies a fucthlict-freeness requirement.
Interestingly, the resulting notion of deterministic pess turns out to coincide with those
proposed by other authors, like [Ris94, Vog97, GM98, Win98Jher PhD thesis [Bus98],
Busi introduces processes for nets with read and inhibitcs,avhich, restricted to the
subclass of nets without inhibitor arcs, still coincidetwiturs. Furthermore it is worth
recalling that the stress on the necessity of using an additrelation of “weak-causality”
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to be able to fully express the causal structure of net coatjous in the presence of read
or inhibitor arcs can be found already in [JK93, JK95].

The papers [Ris94, GM98, Win98] extend the theory of conwtke processes of
ordinary nets [DMM89] to c-nets, by showing that the connatde processes of a c-net
form the arrows of a symmetric monoidal categ®@®[N], where objects are the elements
of the free commutative monoid over the set of places (naifisf places). In particular,
in [GM98] a purely algebraic characterization of such catggs given.

Since the categoi@P[N] of concatenable processes of a Ngprovides a computational
model for N, expressing its operational behaviour, we are naturadlgl te compare such
semantics with the one based on the unfolding, proposed maqper. In this section, relying
on the notion of concatenable c-net process and explotieghain of coreflections from
SW-CNto Dom, we establish a close relationship between process anttinfeemantics
for c-nets. More precisely, we generalize to c-nets (in gmaisveighted case) a result
proved in [MMS96] for ordinary nets, stating that the domaésociated to a semi-weighted
netN (in our caseC, (&, (U, (N)))) coincides with the completion of the preorder obtained
as the comma category @P|[N] over the initial marking. Roughly speaking, the result
says that the domain obtained via the unfolding of a c-nebeasquivalently described as
the collection of the deterministic processes of the neted by prefix.

9.1. Contextual nets processes

A process of a c-neV can be naturally defined as an occurrence cAfgttogether with
a morphismr to the original net. In fact, since morphisms preserve then@amer maps
computations ofV,. into computations ofV in such a way that the process can be seen as
a representative of a set of possible computation¥ ofThe occurrence c-néY,, makes
explicit the causal structure of such computations sinch gansition is fired at most once
and each place is filled at most with one token during each atattipn. In this way (as
it happens in the unfolding) transitions and placesvgfcan be thought of, respectively,
as firing of transitions and tokens in places of the origiral ctually, to allow for such
an interpretation, some further restrictions have to beosep on the morphism, namely
it must map places into places (rather than into multisepdafes) and it must be total on
transitions.

Besides “marked processes”, representing computatidhs okt starting from its initial
marking, we will introduce also “unmarked processes”, espnting computations starting
from a generic marking. This is needed to be able to define animgfal notion of
concatenation between processes.

DEFINITION 9.31 (process). A marked processfa c-netN = (S, T, F,C,m) is a
mappingr : N, — N, whereN is an occurrence c-net andis astrongc-net morphism,
namely a c-net morphism such that is total andrs maps places into places. The process
is calleddiscreteif IV, has no transitions.

An unmarked processf N is defined in the same way, where the mappinig an
“unmarked morphism”, namely is not required to preserve the initial marking (it satisfies
all conditions of Definition 4.20, but (1)).

9A different notion of enabling allowing for the simultanefiring of weakly dependent transitions is used
in [JK95], making difficult a complete direct comparison. rEbe same reason, although “syntactically” the
processes of [Mog97] coincide with ours, they are intendexdpresent the same firing sequences, but different
step sequences.
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Equivalently, if we denote b€N* the subcategory &N where the arrows argrong c-
netmorphisms, the processesf§fcan be seen as objects of the comma cate@fZN |
N) in CN*.19 This gives also the (obvious) notion of isomorphism betwpetesses,
which is an isomorphism between the underlying occurrerate fconsistent” with the
mappings to the original net. Analogous definitions can lvemilso for the unmarked
processes of anét. Itis worth remarking that if we want each truly concurremtputation
of the netN to be represented by at most one configuration of the nondetistic process,
an additional constraint must be imposedmnrequiring that®t; = °ty, t; = t and
m(t1) = w(t2) impliesty = to, as in [VSY98]. However, the two notions of process
collapse when we restrict to deterministic processes wdnietthe focus of this section.

A deterministic process represents a set of computatioiwdiffer only for the order
in which independent transitions are fired. In our settingetedninistic process is thus
defined as a process such that, in the underlying occurrestc¢he transitive closure of
asymmetric conflict is a finitary partial order, in such a wlaattall transitions can be fired
in a single computation of the net. Deterministic occureeaxets will be always denoted
by O, possibly with subscripts.

DEeFINITION 9.32 (deterministic occurrence c-net).An occurrence c-ned is called
deterministidf the asymmetric conflict”o is acyclic and well-founded.

Equivalently, one could have asked the transitive clostirdn@® asymmetric conflict
relation (,”o)* to be a partial order, such that for each transition O, the set{t' |
t'(/0)*t} is finite. Alternatively, it can be easily seen that a finitewtence c-net is
deterministic if and only if the correspondings is conflict free.

We denote bynin(O) andmax(O) the sets of minimal and maximal places®@fwith
respect to the partial ordet,.

DEFINITION 9.33 (deterministic process). A (marked or unmarked) process is
called deterministicif the occurrence c-ne®, is deterministic. The process fiite
if the set of transitions i is finite. In this case, we denote hyin(7) andmax(7) the
setsmin(O,) andmax (O, ), respectively. Moreover we denotetsyand=® the multisets
urs(min(7)) andurs(max()), called respectively theourceand thetargetof 7.

Clearly, in the case of a marked processf a c-netV, the marking® 7 coincides with
the initial marking of V.

9.2. Concatenable processes
Asin [GM98, Win98] a nation of concatenable process for eahtal nets, endowed with
an operation of sequential (and parallel) composition,measily defined, generalizing
the concatenable processes of [DMM89]. Obviously, a meduimperation of sequential
composition can be defined only on the unmarked processeasoéa In order to properly
define such operation we need to impose a suitable orderiegtbe places imin(7)
andmax(7) for each process. Such ordering allows to distinguish among “interface

10Recall that given a categof¥ and an object: of C, thecomma category of objects (69 overz, denoted
(C | z), has arrows : y — z in C as objects. Moreover, giveh: y — zandg : z — x,anarrowk : f — g
in (C | z)isanarrowk : y — zin C such thatf = g o k. Symmetrically, theeomma category of objects (G)
underz, denotedz | C), has arrows : = — y in C as objects. Furthermore, givgn: x — yandg : z — z,
anarrowk : f — gin (z | C)isanarrowk : y — zin Csuchthatt o f = g.
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places ofO, which are mapped to the same place of the original net, a dapahich is
essential to make sequential composition consistent Wéltausal dependencies.

DEerINITION 9.34. LetAandB besetsandlef : A — B be afunction. Arf-indexed
orderingis a familya = {a;, | b € B} of bijectionsay, : f~1(b) — [|f~1(b)|], where]i]
denotes the subsét, ... i} of N,andf~1(b) = {a € A | f(a) = b}.

The f-indexed orderingv will be often identified with the function from to N that it
naturally induces (formally defined &, . 5 o).

DEFINITION 9.35 (concatenable process).A concatenable proces§a c-netN is a
triple 6 = (u, 7, v), where

e 7 is a finite deterministic unmarked process\of
e u is w-indexed ordering ofnin(7);
e v ism-indexed ordering ofnax(r).

Two concatenable processés = (u1,m,v1) anddy = (ug, 2, 2) 0Of @ c-netN
are isomorphicif there exists an isomorphism of processes m; — ms, consistent
with the decorations, i.e., such that(fs(s1)) = pi(s1) for eachs; € min(m) and
va(fs(s1)) = v1(s1) for eachs; € max(m1). Anisomorphism class of processes is called
(abstract) concatenable proceard denoted byf], whered is a member of that class. In
the following we will often omit the word “abstract” and weit to denote the corresponding
equivalence class.

The operation of sequential composition on concatenalegsses is defined in the
natural way. Given two concatenable procesges mi,v1) and {(us, w2, v2), such that
m® = °my their concatenation is defined as the process obtained lmyggilne maximal
places ofr; and the minimal places af, according to the ordering of such places.

DEeFINITION 9.36 (sequential composition). Letd; = (g, 71, v1) andds = (ug, ma, 12)
be two concatenable processes of a cNesuch thatr;®* = *m,. Supposd; N1 = ()
and S; N Sy = max(m;) = min(mg), With 71 (s) = m2(s) andvy(s) = pa(s) for each
s € S1NS,. Inwordsd; andd, overlap only onnax(m;) = min(w2), and on such places
the labelling on the original net and the ordering coincidden their concatenatioh ; J-
is the concatenable proceds= (u1, 7, v2), where the process is the (componentwise)
union ofr; andmy

It is easy to see that concatenation induces a well-definechtipn of sequential com-
position between abstract processes. In particul@r, Jiand[d;] are abstract concatenable
processes such thét® = *4, then we can always findl, € [2] such that; &) is defined.
Moreover the result of the composition seen at abstract,lexenely[d;; §5], does not
depend on the particular choice of the representatives.

DEFINITION 9.37 (category of concatenable processes)et N be a c-net. Theat-
egory of (abstract) concatenable procesdes, denoted bYCP[ V], is defined as follows.
Objects are multisets of places8f namely elements @fS. Each (abstract) concatenable
procesq{u, m,v)] of N is an arrow from®r to =*.

One could also define a tensor operatignrmodeling parallel composition of processes,
making the categor€P[N] a symmetric monoidal category. Since such operation is not
relevant for our present aim, we refer the interested read&M98, Win98].
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9.3. Relating processes and unfolding
LetN = (S, T, F,C,m) be ac-netand consider the comma category, CP[N]). The
objects of such category are concatenable process€stdrting from the initial marking.
An arrow exists from a process to J. if the second one can be obtained by concatenating
the first one with a third procegs This can be interpreted as a kind of prefix ordering.

LEMMA 9.1. Forany c-netN = (S, T, F, C, m) the comma categor§m | CP[N]) is
a preorder.

Proof. Letd;, : m — M; (: € {1,2}) be two objects in(m | CP[N]), and
suppose there are two arrow§¢” : 61 — J2. By definition of comma category
01;0" = 61;6” = b9, which, by definition of sequential composition, easily lrap
§y=4. 1

In the sequel the preorder relation oyet | CP[N]) (induced by sequential composi-
tion) will be denoted by<, or simply by <, when the netV is clear from the context.
Therefore we writed; < 4, if there exists) such that;; 6 = ds.

We provide an alternative characterization of the preordktion <, which will be
useful in the sequel. It essentially formalizes the inveilidea that the preorder dm |
CP[N)) is a generalization of the prefix relation. First, we neechteoduce the notion of
left-injection for processes.

DerINITION 9.38 (leftinjection). Letd; : m — M; (i € {1,2}) be two objects in
(m | CP[N]), with 6; = {u;, m;,v;). Aleftinjection. : 6; — d5 is a morphism of marked
processes : m; — s, such that

1. ¢ is consistent with the indexing of minimal places, namelys) = p2(c(s)) for all
s € min(my);

2. . is “rigid” on transitions, namely fort} in O,, andt; in O, if t,  «(t1) then
th, = 1(t}) for somet; in O,.

The name “injection” is justified by the fact that a morphisbetween marked determin-
istic processes (being a morphism between the underlyimgrdaistic occurrence c-nets)
is injective on places and transitions, as it can be showilydag using the properties
of (occurrence) c-nets morphisms proved in Section 5. Thelvileft” is instead related
to the requirement of consistency with the decoration ofrtfigimal items. Finally, the
rigidity of the morphism ensures th&t does not extend, with transitions inhibited ird; .

LEMMA 9.2. Letd; : m — M, (i € {1,2}) be two objects ifm | CP[N]), with
51’ = <,LLZ',7TZ',I/Z'>. Then

01 S oo iff  there exists a left injection: §; — 0s.

Proof. (=) Letd; < d2, namelyds = d1; 6 for some procesé = (u, w,v). Without

loss of generality, we can imagine thatis obtained as the componentwise unionpand

« and this immediately gives a morphism of marked proceskesr{tlusion) : m; — s,

consistent with the indexing of minimal places. To conclitdlemains only to show that

is rigid. Suppose that,  (t1) for some transitions, in O,, andt), in O,,, and thus, by
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Definition 5.23, eithet!, ~~ +(t1) ort}, < «(t1). To conclude that is rigid we must show
that in both cases, is in O, .

e If t}, ~» 1(t1), since the process, is deterministic{, and.(¢;) cannot be in conflict
and thus it must b&, N *.(¢1) # 0. Sincet}, uses as context a place which is not maximal
in Ox,, necessarily_’2 is in O, , otherwise it could not be added by concatenatirig ;.

o If t;, < u(t1) then we can find a transitiot} in O,, such thatt, < ¢; and¢4® N
(*u(t1) Ue(t1)). As abovets must be inO., since it uses as postcondition a plac&ip .

An inductive reasoning based on this argument shows thatals in O, .

(«) Lett : 61 — 92 be aleft injection. We can suppose without loss of gengrtiit
O, isasubnet 0®.,, in such away thatis the inclusion angh; = u2. LetO, be the net
(Ox, \ Or,) Umax(O,, ), where difference and union are defined componentwise. More
preciselyO, = (S, T, F, C, with:

e S =(52\51)Umax(m)
e T =T \Ty
e the relationg’ andC are the restrictions af; andCs to T'.

It is easy to see thad, is a well-defined occurrence c-net amd (O, ) = max (O, ). In
particular, the fact thak’ is well-defined namely that if € T then®t, ¢* C S immediately
derives from the fact that the inclusiefis a morphism of deterministic occurrence c-nets.
On the other hand the well-definednes€0i related to the fact that the injection is rigid.
In fact, lets € ¢ for t € T and suppose that¢ S. Therefores € *tq, for somet; € Ty
and thug " t1, which, by rigidity, impliest € Ty, contradicting: € T'.

Therefore if we denote bjthe concatenable process, 7, v2), thend;; § = d2, and thus

51 <6 M

We can now show that the ideal completion of the preofdeq CP[N]) is isomorphic
to the domain obtained from the unfolding of the A&tnamelyL, (€, (U, (N))). Besides
exploiting the characterization of the preorder relation@ | CP[N]) given above, the
result strongly relies on the description of the unfoldingstruction as chain of adjunctions.

First, it is worth recalling some definitions and results de ideal completion of
(pre)orders.

DEFINITION 9.39 (ideal). Let P be a preorder. Andealof P is a subsetS C P,
directed and downward closed (namely= (J{| = | z € S}). The set of ideals aP,
ordered by subset inclusion is denoteddiy P).

Given a preordeP, the partial ordeld|( P) is an algebraicro, with compact elements
K(dI(P)) = {lp | p € P}. Moreoverldl(P) ~ IdI(P/=), where P/= is the partial
order induced by the preordd?. Finally, recall that if D is an algebraiccpo, then
IdI(K(D)) ~ D.

LemMA 9.3. Let P, and P, be preorders and lef : P, — P, be a surjective function
such thafp; C p] iff f(p1) C f(p}). Thenthe functiorf* : IdI(Py) — IdI(P), defined by
f*(I)={f(x) | =z € I}, forI e ldl(P;), is an isomorphism of partial orders.

Proof. The functionf* is surjective since for every ided} < IdI(P) it can be easily
proved thatf~!(1I,) is an ideal andf*(f~'(I2)) = I by surjectivity of f. Moreover,
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notice that if;, I € IdI(Py) are two ideals thed; C I7 if and only if f*(I;) C f*(17).
The right implication is obvious. For the left one, assuffiél;) C f*(I;). Then observe
that if x € I; then f(x) € f*(I1) C f*(I]). Hence there exists’ € I] such that
f(@") = f(x). Thus by hypothesis ofi we haver C 2z’ and therefore, by definition of
ideal,z € I].

Then we can conclude th#t is also injective, thus it is a bijection, and cleaffyas well

as its inverse are monotone functions

Notice that in particular, i is a preorderD is an algebraicro andf : P — K(D) is
a surjection such thatC p' iff f(p) C f(p'), thenldl(P) ~ IdI(K(D)) ~ D.

We can now prove the main result of this section, which elabs a tight relationship
between the unfolding and the process semantics of sengihtesl c-nets. We show that
the ideal completion of the preorder. | CP[N]) and the domain associated to the iet
through the unfolding construction are isomorphic. To usténd which is the meaning
of taking the ideal completion of the preorder | CP[N]), first notice that the elements
of the partial order induced by the preorder | CP[N]) are classes of concatenable
processes with respect to an equivaleagalefined byd; =; J, if there exist a discrete
concatenable proceésuchthab;; § = . In other wordsy; =; J» can be read as); and
09 left isomorphic”, where “left” means that the isomorphissiréquired to be consistent
only with respect to the ordering of the minimal places. 8itie netV is semi-weighted,
the equivalences; turns out to coincide with isomorphism of marked process$edact,
being the initial marking ofV a set, only one possible ordering function exists for the
minimal places of a marked process. Finally, since proceaee finite, taking the ideal
completion of the partial order induced by the preor@der| CP[N]) (which produces the
same result as taking directly the ideal completiorraf| CP[N])) is necessary to move
from finite computations to arbitrary ones.

TuEOREM 9.1 (unfolding vs. concatenable processes).et N be a semi-weighted
c-net. TherdI((m | CP[N])) is isomorphic to the domaif, (€, (Us(N))).

Proof. Let N = (S, T, F,C,m) be a c-net. Itis worth recalling that the compact ele-
ments of the domaid, (€, (U, (N))), associated t&V, are exactly the finite configurations
of &, (Us(N)) (see Theorem 3.1). By Lemma 9.3, to prove the thesis it ssffceshow
that it is possible to define a functign (m | CP[N]) — K(L,(E.(Ua(N)))) such thatf
is surjective and for alld,, d2 in (m | CP[N]),

01 S 02 iff £(01) C £(52).

The function¢ can be defined as follows. Lét= (u, 7, v) be a concatenable process in
(m | CP[N]). Sincer is a marked process &f (and thus a c-net morphism: O, — N),
by the universal property of coreflections, there existsigumarrowr’ : O, — U,(N),
making the diagram below commute.



In other words, the coreflection betwe®W-CN andO-CN gives a one-to-one correspon-
dence between the (marked) processeN @ind of those of its unfoldingy, (V).

Then we defin€(6) = n/.(T%), whereT is the set of transitions aP.. To see that
¢ is a well defined function, just observe that it could havenbeétten, more precisely,
as &, (Uy(m))(Tx) and T is a configuration o€, (U, (0r)) = &,(O) sinceO;, is a
deterministic occurrence c-net.

e {issurjective
Let C' € K(L,(E,(Ua(N)))) be a finite configuration. Thel determines a deterministic
processr, : Ox;, — Ua(N) of the unfolding ofN, havingC' as set of transitions: Thus
m = fn o is a deterministic process @f, and, by the definition of, we immediately
getthat{(r) = 7 (Ty,,) = C.

e £ ismonotone
Let ; andd, be processes ifm | CP[N]) and let§; < d2. Then, by Lemma 9.2, there

exists a left-injection : §; — d2. The picture below illustrates the situation, by depicting
also the processes andr of the unfolding ofV, induced byr; andr,, respectively.

L{aN)LN
B

PN
T2
2

ﬂ-i O7T2 Us

We have that(61) = 7} (Tr,) = 75(t(Tx,)) C 75(Tr,) = £(02). Therefore, to conclude
that£(d;) C £(d2) we must show that also the second condition of Definition 3s14
satisfied. Lety € £(d2) andt; € £(d1), withta " t1. By definition of¢, ¢; = ) (¢}) with
t;in Oy, fori € {1,2} and thus:

mo(ts) /" mi(ty) = ma(u(th))

By properties of occurrence net morphisms (Theorem 5.1 laadact thatO,., is deter-
ministic), this impliest), ,” «(t}) and thus, sinceis a left injection, by rigidityt}, = «(¢)
for somet in O, . Thereforegs = 74 (t,) = w5(c(t)) = 7 (t) belongs t& (), as desired.

o £(01) C &(02) impliesd; < ds.

Let{(d1) C &(d2). Theinclusiort(d;) C £(d2), immediately induces a mappin®f the
transitions ofO,, into the transitions 00, defined byi(t;) = 3 if 7] (t1) = 7h5(t2)
(see the picture above). This function is well-defined sproeesses are deterministic and
thus morphismsr; are injective. Since the initial marking d¥ is a set, the mapping of
min(7;) into min(s) is uniquely determined and thusuniquely extends to a (marked)
process morphism between andm,. Again for the fact thatV is semi-weighted (and
thus there exists a unique indexing for the minimal placesach process starting from the

11EssentialIyO,r/C is the obvious subnet &f, (V) havingC'as set of transitions ang. is an inclusion.
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initial marking) such morphism is consistent with the inithexof minimal places. Finally,

cis rigid. In fact, letty  1(t1), fort; in O, andt, in O,,. By properties of occurrence
c-net morphisms (Lemma 5.3}}(t2) " 74(¢(t1)). The way. is defined implies that

w5 (e(t1)) = 71 (t1), and thus

my(ta) /i (t).

Sincer}(t;) € £(4;) for i € {1,2}, by definition of the order on configurations, we
immediately have that/(¢2) € £(41), hence there is; in O, such thatr] (¢]) = 75 (t2),
and thus(t}) = t».

By Lemma 9.2, the existence of the left injectiond; — d2, impliesd; < da.
|

10. CONTEXTUAL NETS WITH MULTISET CONTEXTS

In this section we discuss how the theory developed in thiepaan be extended to
deal with the more general class of (semi-weighted) contdxiets where the context of
a transition is a multiset rather than a simple set. This iataml choice if we think of
transitions as agents which compute some results, i.6t,gbst-set, starting from some
arguments, i.e., their pre-set, which is destroyed, arid¢hatext, which is instead accessed
in a non-destructive manner. A token in a places thus interpreted as an argument of
“type” s and hence the multiplicities of pre-set, post-set and comtetransitions have a
very clear meaning: a transitions can consume and readedevguments of the same type
and, similarly, produce several results of the same type.

DErFINITION 10.40 (mc-net). A multiset contextual Petri net (mc-naf a tuple
N = (S,T,F,C,m), whereS, T, F andm are defined as for c-nets, whi¢: T' — S is
a multirelation, called theontext multirelation

Thecontextof a finite multiset of transitionsl € p1'is, in this case, a multiset defined
asA = uC(A). The notion ofenablingremains essentially unchanged: a finite multiset
of transitionsA is enabled by a markind/ if, besides the pre-set of, the multiset\/
contains at least oredditionaltoken in each place in the context df This corresponds
to the intuition that a token in a place can be used as cont&dmy by many transitions
at the same time, but also with multiplicity greater then bp¢he same transition.

DEFINITION 10.41 (token game). LetN be an mc-netand Ie¥/ be amarkingof N.
A finite multiset of transitionsl € uT is enabledby M if *A + [A] < M. In this case
MI[A)M + A® — *A.

Since here we consider contexts with multiplicities, thader could have expected
a notion of enabling requiring for the presence of each contéth the corresponding
multiplicity, namely

MI[A) iff *A+A<M. ()

We remark that this would not fit with the intuition underlgioontextual nets. Consider, for

instance, the ne¥; in Fig. 1 and the multiset of transitiomg+ t,. We have® (tg + ¢1) =

so + s1 and(to +¢1) = 2 - s. According to (), the marking ofN; in Fig. 1, namely
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FIG. 13. A simple mc-net.

sp + s1 + s would not enable, + t1, contradicting the idea that a single tokersioan be
read concurrently by, andt; .

Still, one could think that, although it is natural to allowrntexts to be shared among
different transitions, each single transition, to be eadbshould require its context with
the right multiplicities. The idea of allowing for the firirgf a transition when at least one
token is present in each context place, can be understoogthifing the interpretation of
transitions as agents and of contexts as read-only argsroéstch agents: in this view
not only different agents can share read-only argumentsalba an agent requiring two
“read” parameters of the same type can read twice the sarmenarg. At a more formal
level, we have been influenced also by the correspondenagéetcontextual nets and
graph transformation systems [MR95, Cor96]. In fact, in apdrtransformation system,
which can be thought of as a “generalized” contextual netaplgproduction may specify
a context with multiple occurrences of the same resourcecandbe applied with a match
which is non-injective on the context.

According to the multiplicities of places in the context ofransitiont, the firing of¢
may involve a multiset of tokens larger thif (ranging from[t] to¢). For example, in the
net of Fig. 13, after the firing of; + t¢, we Fnay have three “different” firings of sincet
can use as context

e both the tokens generated hyand byt;;
e twice the token generated ly;
e twice the token generated by.

In the first case the occurrencetofausally depends both @g andty, in the second case
it depends only orty and in the third case only on. More precisely, as the functions
*(.), (.)* : uT — pS associate to each multiset of transitioAsthe multiset of tokens
which are consumed and produced by the firinglofn the presence of contexts, we can
introduce a relatiorread C pT" x pS such thatd read M means thaf\/ can be used as
context in the firing ofA. According to the discussion abowead can be formally defined
as: for all finite multisetsA € p7" and for all.X € uS,

Aread X iff [A] <X <A

Observe that, differently frorfi(.) and(.)*®, which are functionsread is a relation.
A mc-net morphism is still required to preserve the initisdnking as well as the pre-
and post-sets of transitions, while contexts are presenvadveak sense.

DEFINITION 10.42 (mc-net morphism). Let Ny and N; be mc-nets. Anorphism
h: Ny — Ny is apairh = (hr,hg), wherehr : To — T; is a partial function and
hs : Sp < S is a finitary multirelation such that
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1. phs(mg) is defined andihg (mo) = my;
2. for each transitiort € Ty, phs(*t), phs(t®) anduhs(t) are defined, and

(i) phs(®t) = *phr(t);

(i) phs(t®) = phr(t)®;
(i) [phr@)] < phs(t) < phr(t

~—

We denote bMCN the category having mc-nets as objects and mc-net morphasms
arrows.

Conditions (1), (2.i) and (2.ii) are the same as in Defini#oR0, but condition (2.iii),
regarding contexts, deserves some comments. Like the iofape pre-set (post-set) of
t is required to be a multiset of tokens which is the pre-sestset) of the image of,
similarly, given a multiset of token& which can be used as contexthyts image must be
a set of tokens that can be used as context by the imageByfusing the ‘read ” notation
defined before, this requirement can be expressed as folfowany X € 1.5

tread X = phr(t) read phs(X).

According to the definition ofread, this condition can be rephrased by asking that for
any X € uSo, if [t] < X < tthen[uhr(t)] < phs(X) < phr(t), which is in turn

equivalent to condition (2.iii) above. It is easy to provaithhe token game and thus
reachable markings are preserved by mc-net morphisms.

Observe tha€N is a full subcategory dfICN. In factif NV is a c-net, namely an mc-net
where the context multirelatiof’ is a relation (i.e.C' = [C]), then for any transition,
we havet = t. Therefore, whenVy and N; are c-nets, condition (2.iii) in the definition
of mc-net morphism above reducesptor(t) = phs(t), i.e., to condition (2.iii) in the
definition of c-net morphism(Definition 4.20).

If we denote bySW-MCN the full subcategory dACN having semi-weighted mc-nets
as objects, then the whole theory developed in this papeB¥WfrCN, comprising the
coreflective semantics of semi-weighted nets, their psemantics and the relationship
between the two approaches, smoothly extends to the widegay SW-MCN. The
notion of safe net, occurrence net and the correspondirgasés remains the same. In
proving thatO-CN coreflects inSW-MCN we only need to modify the definition of the
unfolding (see Definition 6.28). The equation defining thetinsitions of the unfolding
slightly changes in order to generate a different occue@fa transitiort for each possible
multiset of tokens that can use in its firing:

T = {(Mp, M, t) | My, M. CS" N MpyNM.=0 A conc(M, U M) A
teT A pfs(Mp)="°t A [t] < pfs(Me) <t}

11. CONCLUSIONS AND FUTURE WORK

The main contribution of this paper is a truly concurrentrévgased semantics for
(semi-weighted) P/T contextual nets. The semantics isngatecategorical level via a
coreflection between the categori@d/-CN of semi-weighted c-nets aridlom of finitary
coherent prime algebraic domains (or equivaleREBS of prime event structures). Such a
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coreflection factorizes through the following chain of dtetions:

ZUC ) Na 7)(1 [;
SW-CN_L OCN_L AES_L Dom_~ ,PES
Ua Ea La P

Such a construction is a consistent extension of Winskelés[@Vin87], in the sense that
it associates to a safe c-net without context places the saagrence net and domain
produced by Winskel's construction. More precisely, weeéhatiown how each of our
coreflections cuts down to Winskel’s coreflection betweerctirresponding subcategories.

We have also shown that a close relationship exists betvieamifolding semantics and
the deterministic process semantics, generalizing atreSfjMMS96] to c-nets. Roughly
speaking, the domain associated to a semi-weighted coldextt by the above functors
is shown to be isomorphic to the set of deterministic proeges$ the net starting from the
initial marking, endowed with a kind of prefix ordering.

A key rble in our semantics is played by asymmetric event strustume extension of
Winskel's (prime) event structures (with binary confliat)froduced to deal with asym-
metric conflicts. Asymmetric event structures are closelgted to other models in the
literature, like PES’s with possible events [PP95], flow event structures witlsgilole
flow [PP95] and extended bundle event structures [Lan92bjvé¥er, none of the above
models was adequate for our aimeEs’s with possible events are not sufficiently ex-
pressive, while the other two models look too general anceaessarily complex for the
concerns of this paper, due to their capability of expregsinltiple disjunctive causes for
an event. Moreover, no categorical treatment of the moremgmodels was available
and, due to their greater complexity, it is still uncleahié tcoreflection result betwe &S
andDom of this paper extends to them. Understanding which partefésults presented
in this paper forags’s extends to flow event structures with possible flow and todbe
event structures with asymmetric conflict is an interestiragter of further investigation.

We already mentioned that McMillan algorithm for the constion of a finite prefix of
the unfolding has been generalized, in [VSY98] to a subaésafe contextual nets, called
read-persistent contextual nets, and it has been appliguetanalysis of asynchronous
circuits. We are confident that the results in the presergpapd in particular the notion
of set of possible histories of an event in a contextual nely ase the extension of the
technique proposed in [VSY98] from the subclass of readipemt nets to the whole class
of semi-weighted c-nets (perhaps at the price of a growth@tbmplexity).

Recall that Winskel's construction has been generalizefiS96] not only to the
subclass of semi-weighted P/T nets, but also to the fulkotdi$®/T nets. In the last case,
some additional effort is needed and only a proper adjunctther than a coreflection can
be obtained. We believe that also the results of this papddd® extended to the full class
of P/T contextual nets, by following the guidelines tracedNMS96] and exploiting, in
particular, a suitable generalization to c-nets of theanstiof decorated occurrence net and
family morphism introduced in that work.

Apart from the application to c-nets analyzed in this paggymmetric event structures
seem to be rather promising in the semantic treatment of madeomputation, such as
string, term and graph rewriting, allowing context sensifiring of events. Therefore, as
suggested in [PP95], it would be interesting to investiglagepossibility of developing a
theory of general event structures with asymmetric confticiveak causality) similar to
thatin [Win87].

61



O
o RegRGE

FIG. 14. A (double pushout) graph rewriting step.

Finally, we remark that one of the motivations of the reseant contextual nets is their
relationship withgraph transformation systenf&TS’s) [Ehr87, CMR 97], a formalism
for the specification of concurrent and distributed systevh&h can be an appropriate
alternative to Petri nets when one is interested in havingeerstructured description of
the state. In fact, in a GTS the state is represented by a @ragblocal transformations of
the state are modelled via the application of graph produostiwhich, roughly speaking,
are rules specifying that the left-hand side of the rule, given context, rewrites to its
right-hand side. Since Petri nets are essentially rewrisystems on multisets, it is quite
natural to see GTS'’s as a proper extension of Petri nets bottiné fact that they allow
for a more complex state and for their capability of expmgscontextual” rewritings. It
is worth noting that, in the case of GTS's, “contexts” are antoptional feature but an
essential part of the rewriting mechanism, which permisptecify how the subgraph added
by the step is connected to the remaining part of the statdefier understand this fact,
recall that, according to [Ehr87], a graph production csissif a left-hand side graph a
right-hand side grapR and a (common) interface graphembedded both i® and inL,
as depicted in the top part of Fig. 14. Informally, to applglsa rule to a graptr we must
find an occurrence of its left-hand siden G. The rewriting mechanism first removes the
part of the left-hand sidé which is not in the interfac&” producing the graplv, and then
adds the part of the right-hand sidewhich is not in the interfacds, thus obtaining the
graphH. The interface graplk is “preserved”: it is necessary to perform the rewriting
step, but it is not affected by the step itself, and as suchbritesponds to the contexts of
our contextual nets. Notice that the interfd€elays a fundamentabte in specifying how
the right-hand side has to be glued with the grdphwWorking without contexts, which in
a grammar-theoretical framework would mean working witbdurctions having an empty
interface graphi’, the expressive power of graph grammars would drasticatyehse:
only disconnected subgraphs could be added.

To present GTS's as a formalism for concurrent/distribsiestems, people working in
this area have been naturally lead to the attempt of progidtiem with an appropriate con-
current semantics. In particular, some efforts have beentsp the direction of recasting
in this more general framework notions, constructions astlts from Petri nets theory.
Unfortunately, the reason for which graph grammars repteseappealing generalization
of Petri nets, namely the fact that they extend nets with sonometrivial features, makes
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non-trivial also such generalization. Some successfulltee the project of extending
the constructions from net theory to GTS’s have been obdaiméhe development of a
theory of non sequential processes for GTS’s [CMR96, BCNI98&nce contextual nets
extend ordinary nets with one of the new features of GTS'speiq with the capability
of preserving part of the state in a rewriting step, we thimkt the work on c-nets could
help in transferring notions and results from nets to GT8eéd, (a part of) the results of
this paper have been recasted for GTS’s [BCM99a, BalOORlooreflective semantics for
GTS's still missing and constitutes a direction of furthesearch.
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