
Bisimulation by Unification?

Paolo Baldan1, Andrea Bracciali2, and Roberto Bruni2

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italia.
2 Dipartimento di Informatica, Università di Pisa, Italia.

baldan@dsi.unive.it, braccia@di.unipi.it, bruni@di.unipi.it

Abstract. We propose a methodology for the analysis of open systems based on
process calculi and bisimilarity. Open systems are seen as coordinators (i.e. terms
with place-holders), that evolve when suitable components (i.e. closed terms) fill
in their place-holders. The distinguishing feature of our approach is the definition
of a symbolic operational semantics for coordinators that exploits spatial/modal
formulae as labels of transitions and avoids the universal closure of coordinators
w.r.t. all components. Two kinds of bisimilarities are then defined, called strict
and large, which differ in the way formulae are compared. Strict bisimilarity im-
plies large bisimilarity which, in turn, implies the one based on universal closure.
Moreover, for process calculi in suitable formats, we show how the symbolic
semantics can be defined constructively, using unification. Our approach is illus-
trated on a toy process calculus with CCS-like communication within ambients.

Introduction

The ever increasing usage and development of mobile devices raise the need of formal
models for open systems, where components can be dynamically connected to interact
with network services. Process calculi (PC) are often instrumental in focusing on certain
aspects like communications, distribution and causal dependencies. However, PC tech-
niques are mostly devised for the study of components (i.e. closed terms of the calculus)
rather than coordinators (i.e. contexts with holes marked by process variables).

In particular, while the operational semantics and several equivalences have been
often defined for components (e.g., based on either bisimulation or traces or testing),
their extensions to coordinators usually require additional efforts. Roughly, an equiva-
lence ≈ defined on components can be lifted to coordinators by letting C[X1, ...,Xn] ≈
D[X1, ...,Xn] when C[p1, ..., pn]≈D[p1, ..., pn] for all components p1, ..., pn. In the case
of bisimulation, this means that the coalgebraic techniques applicable to components
fall short for coordinators, since the definition involves universal quantification on com-
ponents. Instead, a symbolic technique for allowing contexts to “bisimulate without
instantiation” would ease the analysis and verification of coordinators’ properties.

This issue finds its dual formulation in the contextual closure needed when the
bisimilarity on components ∼ is not a congruence and one defines the largest con-
gruence ' contained in ∼ (by letting p ' q if for all contexts C[.], identity included,
C[p]∼C[q] holds). Note that in general' is not a bisimulation. The largest congruence

? Research supported by the IST programme on FET-GC Projects AGILE, MYTHS and SOCS.

which is also a bisimulation is called dynamic bisimilarity and it is defined by allowing
context closure at each bisimulation step [22].

To avoid universal quantification on contexts, several authors—e.g., Sewell in [25],
Leifer and Milner in [20]—propose a symbolic transition system for components whose
labels are the “minimal” contexts needed to the component for evolving. A transition

p
C[.,X1,···,Xn]−→ D[X1, ...,Xn]

means that C[p, p1, ..., pn] can reduce in one step to D[p1, ..., pn], and that C is strictly
necessary to perform the step. However, in their symbolic systems, though transitions
always depart from components, they may lead also to contexts (like D above) and
therefore bisimulation must be defined on contexts via universal quantification over all
possible closed instantiations. Thus, the problem of universal quantification is shifted
from contexts to components. Finding a sound and efficient way to face this problem is
the goal of our contribution.

Symbolic Bisimulation. It is nowadays commonly accepted that the operational se-
mantics of most process calculi can be conveniently expressed by exploiting two basic
ingredients, according to Plotkin’s SOS recipe [23]: the structure of the components
and the behaviour of their subcomponents. Thus, a PC definition usually involves a pro-
cess signature Σ, a structural equivalence ≡ on process terms, and a labelled transition
system (LTS) specified through a set of inductive (structural) proof rules.3

It follows that the behaviour of a coordinator can depend: (1) on the spatial struc-
ture of the components that are inserted/substituted/connected in/with it; (2) on their
behaviour, i.e. on the actions that can be observed.

The first attempt could be to define a transition system whose states are coordinators
and whose arcs are labelled with the components that allow coordinators to evolve. But
this would result in a too large transition system, making verification difficult.

To attack this problem, reducing the size of the transition system, we propose to
borrow formulae from a suitable logic for expressing the most general class of processes
with whom each coordinator can react. This leads us to the notion of symbolic transition
system (STS), whose states are coordinators and whose transitions have the shape

C[X1, ...,Xn]
ϕ1,..,ϕn−→ D[Y1, . . . ,Ym]

meaning that the step can be performed by C[p1, ..., pn] whenever pi |= ϕi, for i ∈ [1,n].
The logic where the formulae ϕi’s live and the notion of satisfaction |= must be of

course targeted to the PC under study. In general, the logic may involve both spatial and
temporal aspects of components, i.e. it can be a spatial logic [8,11].

Fixed an STS, two kinds of bisimilarities ∼strict and ∼large, referred to, respectively,
as strict and large, can be defined on coordinators, differing for the way labels (i.e.
formulae) are compared, with ∼strict⇒∼large, and ∼strict being an equivalence relation.
We show that, whenever the STS satisfies suitable properties of correspondence w.r.t.
the operational semantics of components, called correctness and completeness, ∼large
(and thus ∼strict) implies the equivalence induced by the universal closure.

3 Reduction semantics can be obviously recasted in LTS’s as the special case with a unique label.

For PC whose rules are in a quite general format, called algebraic format [16], we
provide a constructive way of defining a spatio-temporal logic and we give an algorithm
for building a correct and complete STS over such a logic. The algorithm, expressed
as a Prolog program, builds labels by computing recursively the most general unifiers
between coordinators and left-hand sides of the operational rules.

Synopsis. In § 1 we fix the notation and we recall some basic definitions. In § 2, we
overview the general ideas on which our approach relies, introducing the notion of
(correct and complete) STS, defining large and strict symbolic bisimilarities and show-
ing that both relations imply bisimilarity via universal closure. In § 3, first we illustrate
the algorithmic construction of correct and complete STS’s for process calculi with no
structural axioms and operational rules in the algebraic format of [16], and then we
show how to deal with the common AC1 axioms for the parallel composition operator.
In § 4, we test our approach against a simple case study consisting of a fragment of the
ambient calculus with CCS-like communication within ambients.

Related work. The aforementioned papers by Sewell, Leifer and Milner have motivated
and inspired our quest for a set of labels powerful enough to model the maximal classes
of components with whom coordinators can react. The papers by Caires, Cardelli and
Gordon on spatial logics have suggested us an elegant mathematical tool for expressing
both structural and temporal constraints in the labels. It is worth mentioning that spatial
formulae have many analogies with the topological modalities introduced separately by
Fiadeiro et al. in [15] when proposing a verification logic for rewriting logic.

A symbolic approach to bisimulation in the case of value passing calculi, where
actions are parametrised over a possibly infinite set, has been explored in [17].

Among other frameworks where the semantics of components and coordinators is
defined uniformly, let us mention tile logic (TL) [16,6], conditional transition systems
(CTS) [24] and context systems (CS) [19], which come also equipped with different
formats for guaranteeing that bisimilarity is a congruence. While models based on TL,
CTS and CS can be easily translated in our framework, the use of spatial formulae makes
our approach applicable to a wider class of calculi.

The idea of using unification for building formulae comes from Logic Programming
and more precisely by its view as an interactive system presented in [7].

1 Notation

To ease the presentation we consider one-sorted signatures, but our results easily ex-
tend to the many-sorted case. A signature is a set of operators Σ together with an arity
function ar : Σ→ N. For n ∈ N, we let Σn = { f ∈ Σ | ar(f) = n}. We denote by TΣ(X)
the term algebra over Σ and variables in the set X (disjoint from Σ), with TΣ = TΣ(/0).
For P ∈ TΣ(X) we denote by var(P) the set of variables X ∈ X that appear in P. If
var(P) = /0 then P is called closed, otherwise open. When signatures are used for pre-
senting the syntax of PC, closed terms define the set P of components p of the calculus,
while the general, possibly open, terms form the set C of coordinators C. Often we shall
write C[X1, . . . ,Xn] to mean that C is a coordinator such that var(C)⊆ {X1, . . . ,Xn}.

P≡ Q ∈ E, σ(P),σ(Q) ∈ TΣ

σ(P)≡ σ(Q)
(subs)

p1 ≡ q1, · · · , pn ≡ qn, f ∈ Σn

f (p1, ..., pn)≡ f (q1, ...,qn)
(context)

p ∈ TΣ

p≡ p (refl)
p≡ q
q≡ p (symm)

p1 ≡ p2, p2 ≡ p3
p1 ≡ p3

(trans)

Fig. 1. Closure of structural axioms.

A structural axiom is a sentence P≡Q for P,Q∈TΣ(X). Given a set E = {Pi≡Qi |
i ∈ I} of structural axioms, we say that a Σ-algebra A satisfies E if for any assignment
σ : X → A of values to the variables in X , we have that σ(Pi) =A σ(Qi), for all i ∈ I.
The initial algebra TΣ,E is the quotient of TΣ modulo the equivalence ≡ defined in
Fig. 1, where axioms in E are closed w.r.t. substitution, contextualization, reflexivity,
symmetry, and transitivity.

Process calculi come often equipped with LTS operational semantics, where states
are components over the process signature Σ, labels range over a suitable alphabet Λ,
and transitions model the activities of components. Commonly such LTS is specified by
a collection of inductive (transition) proof rules. In the presence of structural axioms,
states are equivalence classes of components (modulo ≡), as if proof rules included:

p′ ≡ p p a−→ q q′ ≡ q

p′ a−→ q′
(equiv)

A bisimulation is a symmetric, reflexive relation≈ over components such that if p≈
q, then for any transition p a−→ p′ there exists a component q′ and a transition q a−→ q′

with p′ ≈ q′. We denote by ∼ the largest bisimulation and call it bisimilarity. Note that
the rule (equiv) makes p ∼ q hold whenever p ≡ q. We call universal bisimilarity the
usual lifting of ∼ to coordinators obtained by closing for all possible substitutions:

C[X1, ...,Xn]∼ D[X1, ...,Xn]
def⇐⇒∀p1, ..., pn ∈ P , C[p1, ..., pn]∼ D[p1, ..., pn]

2 Formulae as Labels

The definition of bisimilarity on coordinators based on the closure with respect to any
possible substitution presents obvious drawbacks. In fact, to verify the bisimilarity of
two coordinators, one is typically led to check the bisimilarity of infinitely many pro-
cesses (all the possible closed instances of the coordinators). Furthermore bisimilarity
of coordinators is not defined in a coinductive way and thus the coalgebraic techniques
applicable to components fall short for coordinators. In trying to prove the equivalence
of two coordinators it is thus convenient to perform a kind of symbolic calculation:

1. without instantiating components which do not play an active role in a step and
instantiating the active components as little as possible;

2. making assumptions not only on the structure, but (as in TL, CTS, CS) also on the
behaviour of the active components.

The above strategy is formalised by introducing a symbolic transition system whose
states are coordinators and whose labels encode the structural and/or behavioural con-
ditions (see points 1–2 above) that components should fulfill for enabling the move.

In the following, we assume that a process calculus PC is fixed with signature Σ

and structural axioms E, whose semantics is given by the LTS L over TΣ,E and label
alphabet Λ. We also assume that a logic L over components is given, which may have
modal operators and whose atomic formulae include the process variables in X and the
components in P (with p |= X for any p ∈ P and X ∈ X , while p |= q iff p≡ q for any
p,q ∈ P , where |= is satisfaction).

Definition 1 (Symbolic Transition System). A symbolic transition system (STS) S
over L for the process calculus PC is a set of transitions

C[X1, . . . ,Xn]
(ϕ1,...,ϕn)−→ a D[Y1, . . . ,Ym]

where C[X1, . . . ,Xn] and D[Y1, . . . ,Ym] are coordinators, a ∈ Λ and ϕi are formulae in L
containing only variables from {Y1, . . . ,Ym}.

The variable names in the states of S are not relevant: they are just indexed placeholders,
whose number can vary along the computation. The correspondence between variables
in the source (e.g. Xi) and their residuals (e.g. Yj) in the target is expressed by the
formulae (e.g. ϕi), in which the residuals may occur. For example, the modal formula
ϕi = �a.Yj is satisfied by any process performing a (and its residual replaces Yj in D).

For S to be an abstract view of PC we must of course require some additional
properties enforcing the correspondence with the concrete LTS L . Consider a transition
system where coordinators have just one hole. Intuitively, whenever C[X]

ϕ−→a D[Y] the
idea is that the coordinator C, when instantiated with any component satisfying ϕ, can
perform action a becoming an instance of D. The process variable Y , which typically
occur in ϕ, is intended to represent the residual of what substituted for X , after it has
exhibited the capabilities required by ϕ. More precisely, for any component q such that
p |= ϕ[q/Y] (where ϕ[q/Y] denotes the formula obtained from ϕ by replacing all the oc-
currences of Y by q) the component C[p] can perform an action a becoming D[q]. On the
other hand, any concrete transition on components should have symbolic counterparts.
These two properties are formalised as correctness and completeness, respectively.

Definition 2 (Correctness). An STS S for the process calculus PC is correct if for any
symbolic transition

C[X1, ...,Xn]
(ϕ1,...,ϕn)−→ a D[Y1, ...,Ym]

in S , for any q1, ...,qm and for any pi |= ϕi[q1/Y1, ...,qm/Ym] for i ∈ [1,n], there exists a
transition C[p1, ..., pn]

a−→ D[q1, ...,qm] in L .

Definition 3 (Completeness). An STS S for the process calculus PC is complete if for
any coordinator C[X1, ...,Xn], for all components p1, ..., pn and for any transition

C[p1, ..., pn]
a−→ q

in L there exists a transition C[X1, ...,Xn]
(ϕ1,...,ϕn)−→ a D[Y1, ...,Ym] in S and q1, ...,qm such

that pi |= ϕi[q1/Y1, ...,qm/Ym] for i ∈ [1,n], and q≡ D[q1, ...,qm].

Over any STS we can straightforwardly define a bisimulation-like equivalence.

Definition 4 (Strict Symbolic Bisimulation). A symmetric relation ≈ over the set of
coordinators C is a strict symbolic bisimulation if for any two coordinators C[X1, ...,Xn]
and D[X1, ...,Xn] such that C[X1, ...,Xn]≈ D[X1, ...,Xn], for any transition

C[X1, ...,Xn]
(ϕ1,...,ϕn)−→ a C′[Y1, ...,Ym]

there exists a transition D[X1, ...,Xn]
(ϕ1,...,ϕn)−→ a D′[Y1, ...,Ym] such that C′[Y1, ...,Ym] ≈

D′[Y1, ...,Ym]. The largest strict symbolic bisimulation is an equivalence relation called
strict symbolic bisimilarity and denoted by ∼strict.

Our first result states that the strict symbolic bisimilarity distinguishes as much as
universal (closure) bisimilarity ∼, as defined by the end of Section 1.

Theorem 1 (∼strict⇒∼). If S is a correct and complete STS, then

C[X1, ...,Xn]∼strict D[X1, ...,Xn] ⇒ C[X1, ...,Xn]∼ D[X1, ...,Xn]

Proof. Suppose C[X1, ...,Xn]∼strict D[X1, ...,Xn]. We want to show that for any p1, ..., pn,
we have C[p1, ..., pn]∼ D[p1, ..., pn]. Let Rstrict be the relation defined by

C[p1, ..., pn] Rstrict D[p1, ..., pn]
def⇐⇒C[X1, ...,Xn]∼strict D[X1, ...,Xn].

We first show that Rstrict is a bisimulation for L .
For any transition C[p1, ..., pn]

a−→ q in L , by completeness of S , a symbolic tran-

sition C[X1, ...,Xn]
(ϕ1,...,ϕn)−→ a C′[Y1, ...,Ym] and m components q1, ...,qm exist such that

pi |= ϕi[q1/Y1, ...,qm/Ym] and q ≡ C′[q1, ...,qm]. Since C[X1, ...,Xn] ∼strict D[X1, ...,Xn]

by hypothesis, we have that D[X1, ...,Xn]
(ϕ1,...,ϕn)−→ a D′[Y1, ...,Ym] with C′[Y1, ...,Ym]∼strict

D′[Y1, ...,Ym]. By correctness of S , and by pi |= ϕi[q1/Y1, ...,qm/Ym] for all i ∈ [1,n], it
holds that D[p1, ..., pn]

a−→ D′[q1, ...,qm]. Since C′[Y1, ...,Ym] ∼strict D′[Y1, ...,Ym], we
have that C′[q1, ...,qm] Rstrict D′[q1, ...,qm]. The relation Rstrict is obviously symmetric
and hence it is a bisimulation. Since bisimilarity ∼ is the largest bisimulation, it con-
tains Rstrict and therefore C[p1, ..., pm]∼ D[q1, ...,qm], concluding the proof. ut

2.1 Large Symbolic Bisimulation

The requirement of exact matching between formulae in the definition of strict sym-
bolic bisimulation can be too strong, especially in the presence of spatial formulae and
structural congruences. Hence, we propose a way to relax this condition.

To this aim, we assume that the logic L is a spatial logic whose operators include a
subset ΣL of Σ, with satisfaction defined by (for any f ∈ ΣL with arity n):

p |= f (ϕ1, . . . ,ϕn) iff ∃p1, . . . , pn. p≡ f (p1, . . . , pn) ∧ ∀i. pi |= ϕi.

We call ϕ a spatial formula if it is built by using just variables X ∈ X and spa-
tial operators f ∈ ΣL. Abusing the notation, a spatial formula can be either seen as a
component/coordinator or as a logic formula, depending on the setting where it is used.

Definition 5 (Large Symbolic Bisimulation). A symmetric relation ≈ over the set
of coordinators C is a large symbolic bisimulation if for any pair of coordinators
C[X1, ...,Xn] and D[X1, ...,Xn] such that C[X1, ...,Xn]≈ D[X1, ...,Xn], for any transition

C[X1, ...,Xn]
(ϕ1,...,ϕn)−→ a C′[Y1, ...,Ym]

a transition D[X1, ...,Xn]
(ψ1,...,ψn)−→ a D′[Z1, ...,Zk] and k spatial formulae ψ′1, ...,ψ

′
k ex-

ist such that ϕi = ψi[ψ
′
1/Z1, ...,ψ

′
k/Zk] and C′[Y1, ...,Ym] ≈ D′[ψ′1, ...,ψ

′
k]. The greatest

large bisimulation is called large symbolic bisimilarity and denoted ∼large.

Large symbolic bisimulation allows a transition to be simulated by another transi-
tion where the spatial constraints on the Y ’s are relaxed, so that “more general” com-
ponents can be used for the X’s. It follows that transitions in S that are dominated by
transitions with a less (spatially) specified label can be abstracted away from the system.

Example 1. Let Σ= {a, f (.),g(.)} and let the logic L include all the three corresponding
spatial operators. Let S be the STS with transitions f (X)

X−→τ X , g(X)
X−→τ X , and

g(X)
a−→τ a. Then it is obvious that f (X) 6∼strict g(X), because the last transition of

g(X) cannot be matched by f (X). However, the formula X is “more general” than the
formula a, and therefore f (X)∼large g(X). ut

Remark 1. While ∼strict is an equivalence relation, we only proved that, if necessary,
∼large can be guaranteed to be an equivalence by suitably saturating the STS with re-
dundant transitions. We also point out that the obvious way of relaxing the requirements
of ∼strict by allowing a step C[X]

ϕ−→a C′[Y] to be simulated by D[X]
ψ−→a D′[Y] with

ϕ⇒ ψ, would not yield a consistent formulation, as it can be seen that, contrary to
spatial operators, modal operators in ϕ cannot be safely abstracted away in ψ.

Proposition 1 (∼strict⇒∼large). For any symbolic transition system S

C[X1, ...,Xn]∼strict D[X1, ...,Xn] ⇒ C[X1, ...,Xn]∼large D[X1, ...,Xn].

Proof. It follows directly from the definition of the two bisimulations, since the spatial
formulae ψ′i’s used in ∼large when simulating the step can of course be identities. ut

Theorem 2 (∼large⇒∼). If S is correct and complete w.r.t. L , then

C[X1, ...,Xn]∼large D[X1, ...,Xn] ⇒ C[X1, ...,Xn]∼ D[X1, ...,Xn].

Proof. The proof is similar to, but slightly more involved than, that of Theorem 1.
Suppose C[X1, ...,Xn] ∼large D[X1, ...,Xn]. We want to show that for any p1, ..., pn, we
have C[p1, ..., pn]∼ D[p1, ..., pn]. Let Rlarge be the relation defined by

C[p1, ..., pn] Rlarge D[p1, ..., pn]
def⇐⇒C[X1, ...,Xn]∼large D[X1, ...,Xn].

We first show that Rlarge is a bisimulation for L . For any transition C[p1, ..., pn]
a−→ q

in L , by completeness of S , a symbolic transition C[X1, ...,Xn]
(ϕ1,...,ϕn)−→ a C′[Y1, ...,Ym]

and m components q1, ...,qm exist with pi |= ϕi[q1/Y1, ...,qm/Ym] and q≡C′[q1, ...,qm].
Since C[X1, ...,Xn]∼large D[X1, ...,Xn] by hypothesis, we have

D[X1, ...,Xn]
(ψ1,...,ψn)−→ a D′[Z1, ...,Zk]

and k spatial formulae ψ′1, ...,ψ
′
k exist such that C′[Y1, ...,Ym] ∼large D′[ψ′1, ...,ψ

′
k] and

ϕi = ψi[ψ
′
1/Z1, ...,ψ

′
k/Zk] for all i ∈ [1,n]. Since pi |= ϕi[q1/Y1, ...,qm/Ym] (for all i ∈

[1,n]), letting q′i ≡ψ′i[q1/Y1, ...,qm/Ym], it follows that pi |= ψi[q′1/Z1, ...,q′k/Zk]. There-
fore, by correctness of S , it follows that D[p1, ..., pn]

a−→D′[q′1, ...,q
′
k]. Moreover, since

C′[Y1, ...,Ym]∼large D′[ψ′1, ...,ψ
′
k], we have that C′[q1, ...,qm] Rlarge D′[q′1, ...,q

′
k]. The re-

lation Rlarge is clearly symmetric and hence it is a bisimulation for L . Since bisimilarity
∼ is the largest bisimulation, it contains Rlarge and thus C[p1, ..., pm]∼D[q1, ...,qm]. ut

Note that Theorem 1 now follows as a corollary of Proposition 1 and Theorem 2.

3 Bisimulation by Unification

In this section we outline a methodology for deriving a correct and complete STS for
algebraic PC, i.e. PC whose operational proof rules are in a quite general format, called
algebraic format [16], recalled below. More specifically, given a PC, a logic LPC with
spatial and modal operators in the style of [8,11] can be systematically derived. Then
the proof rules of the calculus are used to construct a Prolog program (finite if the set
of proof rules of the PC is finite) which represents an STS over LPC for the PC, in the
sense that given any coordinator, the program allows to compute the set of its symbolic
transitions. Such STS can be proved to be correct and complete for the given PC.

Definition 6 (Algebraic Format). A proof rule is in algebraic format if it has the form

{Xi
ai−→ Yi}i∈I

C[X1, ...,Xn]
a−→ D[Z1, ...,Zn]

with I ⊆ [1,n], and where Zi = Yi if i ∈ I and Zi = Xi otherwise. An algebraic process
calculus is a PC whose proof rules are in algebraic format.

The algebraic format generalises De Simone format [14] by allowing a generic context
C, possibly involving more than one operator, (to appear) as left-hand side of the conclu-
sion of the rule. However, it is worth recalling that while De Simone format guarantees
that bisimilarity is a congruence, for algebraic PC’s this is not necessarily the case.

3.1 A Spatio-Temporal Logic for Symbolic Transition Systems

Given a process calculus PC over a signature Σ we define the logic whose formulae
will be used as labels in the STS. The logic must be powerful enough to be able to
express, for any coordinator, the (more general) structural and behavioural properties
which should be fulfilled by unspecified components to allow transitions to happen.

p |= X
p |= q iff p≡ q
p |= �a.ϕ iff ∃p′. p a−→ p′ ∧ p′ |= ϕ

p |= f (ϕ1, . . . ,ϕn) iff ∃p1, . . . , pn. p≡ f (p1, . . . , pn) ∧ pi |= ϕi

Fig. 2. Satisfaction of formulae in the STS logic LPC.

Definition 7 (STS Logic). Let Σs be the set of operators in Σ which appear in the left-
hand side of the conclusion of a proof rule of PC (e.g. the operators in C[X1, . . . ,Xn] for
the rule of Definition 6). The STS logic LPC associated to PC has as formulae

ϕ ::= X | p | �a.ϕ | f (ϕ, . . . ,ϕ)

where X ∈ X , p ∈ P , a ∈ Λ, f ∈ Σs.

A formula f (ϕ1, . . . ,ϕn) is satisfied by any component of the shape f (p1, . . . , pn) where
each pi satisfies ϕi. A formula �a.ϕ is satisfied by any component which is able to
perform an a-labelled transition, evolving in a component satisfying ϕ. Since the logic
will be used to label the transitions of an STS, according to the general assumptions in
Section 2, process variables and (closed) components are included as atomic formulae.
Observe that, if Σs = Σ then all components can be inductively constructed as formulae
of the kind f (ϕ1, . . . ,ϕn) with f ∈ Σ and thus there is no need to add them explicitly (but
in most PC no rule is given for the nil component 0, which is thus not in Σs). Satisfaction
is formally defined in Fig. 2 (for any p ∈ P and for any formula ϕ in LPC).

To understand the definition of the STS logic LPC note that an instance C[p1, . . . , pn]
of a given coordinator C[X1, . . . ,Xn], in order to perform a transition, must match the
left-hand side of the conclusion of a rule. This might impose the components pi’s to
have a certain structure, hence the need of inserting the spatial operators f ∈ Σs in the
logic. Furthermore, the premises of the matched rule must be satisfiable. Such premises
usually require the components pi’s to be able to exhibit some behaviour, i.e. to perform
a certain transition. Hence the logic includes also modal operators �a.().

3.2 Algebraic PC without Structural Axioms

We next illustrate a constructive procedure for defining a correct and complete STS over
the logic LPC for a given process calculus PC whose proof rules are in algebraic format.
Here we concentrate on process calculi without structural axioms. In Section 3.3 will
discuss the refinements needed in the presence of structural axioms.

The STS over LPC is specified by means of a Prolog program which can be used to
compute the possible symbolic transitions of every coordinator.

Definition 8 (Prolog Program). The Prolog program Prog(PC) associated to the pro-
cess calculus PC contains as the first clause

trs(box(A,X),A,X) :- !.

where box is a new operator, not in Σ, and A is a variable that stands for any action.
For any proof rule in PC of the shape outlined in Definition 6 also a clause

trs(C[X1,. . .,Xn], a, D[Z1,. . .,Zn]) :- trs(Xi1,ai1,Yi1),. . .,trs(Xik,aik,Yik).

is included, where {i1, ..., ik} is the set of indexes I of the corresponding rule and Zi
can be either Yi (when i ∈ I) or Xi (otherwise).

The program Prog(PC) defines the predicate trs(X,A,Y) whose intended meaning
is “any component satisfying X can perform a transition labelled by A and become a
component satisfying Y ”. Given a coordinator C[X1, . . . ,Xn], if the query

?- trs(C[X1,...,Xn], A, Z)

is successful, then the corresponding computed answer substitution can be seen as a
symbolic step for the coordinator C[X1, . . . ,Xn]: the computed answer substitutions for
the variables X1, . . . , Xn will represent the formulae in LPC labelling the transition, A the
action label and Z the target coordinator.

The first clause in Prog(PC) can be unified only with a goal trs(X,A,) whose
first argument is a variable (since box is not an operator in PC). In this case there
is no need of imposing structural requirements on X , since the only requirement for
any component X for doing a and becoming Y is exactly box(a,Y). Thus the goal is
refuted just imposing a behavioural constraint on the component corresponding to X,
i.e. by asking that X can perform an A action. The cut operator in the body of the clause
avoids that subsequent refutations are tried, using different rules that could be otherwise
matched by the goal trs(X,A,). To this aim, it is important that modal rules be listed
first than all the other rules.

The second class of clauses in Prog(PC) just represents a Prolog translation of
the operational proof rules of the calculus. Each such clause imposes (by unification)
the more general structural (spatial) constraints that the unspecified components of a
coordinator should satisfy to allow the corresponding step. The requirements on the
behaviour of the subcomponents, as expressed by the premises of the corresponding
proof rule, are represented by the subgoals in the body of the clause.

The backtracking mechanism of Prolog and the use of meta-logic operators (like
bagof) allow one to determine all the symbolic transitions for each coordinator C
(finitely many under the assumption that the rules of the calculus and thus the pro-
gram are finite). Hence the Prolog program Prog(PC) can be seen as the specification
of an STS for the process calculus PC over logic LPC. The main result of this section
states that such STS is correct and complete for the considered process calculus.

Theorem 3. The STS specified by Prog(PC) is correct and complete.

Proof (Sketch). To prove correctness observe that if C[X1, . . . ,Xn]
(ϕ1,...,ϕn)−→ a D[Y1, . . . ,Ym]

then there exists a refutation of the query

?- trs(C[X1, ..., Xn], a, Z)

with computed answer substitution Xi = ϕi and Z = D[Y1, ..., Yn]. An inductive
reasoning on the height of the refutation allows us to prove that for any q1, . . . ,qm
and p1, . . . , pn such that each pi |= ϕi[q1/Y1, . . . ,qm/Ym] there exists a derivation of
C[p1, . . . , pn]

a−→ D[q1, . . . ,qm].

trs(box(tau,X) , tau , X) :- !.
trs(a.X|‘a , tau , X).
trs(X|Y , tau , X|Z) :- trs(Y, tau, Z).

Fig. 3. The Prolog program relative to the simple CCS-like calculus.

As for completeness, if C[p1, . . . , pn]
a−→ q then the corresponding derivation in the

proof system of PC can be turned into a refutation witnessing that C[X1, . . . ,Xn]
(ϕ1,...,ϕn)−→ a

D[Y1, . . . ,Ym]. Furthermore q≡ D[q1, . . . ,qm] and each pi |= ϕi[q1/Y1, . . . ,qm/Ym]. ut

3.3 Algebraic PC with AC1 Parallel Composition Operator

To understand why the proposed approach must be extended to deal with structural ax-
ioms, we focus on a very common case, i.e., an algebraic PC with a parallel composition
operator “|”, subject to AC1 axioms (associativity, commutativity and identity)

(X | Y) | Z ≡ X | (Y | Z) X | Y ≡ Y | X X | 0≡ X

where 0 is the inactive component. Furthermore we suppose that parallel composition
allows a single component to move autonomously, performing an action that is reflected
at topmost level, i.e., we assume that the proof rules for parallel composition include

X a−→ X ′

X | Y a−→ X ′ | Y
(par)

For the construction of the Prolog program Prog(PC) we first need to extend the set of
proof rules of the calculus. Due to the presence of the associativity axiom, for any proof
rule r of the calculus where “|” occurs in the left-hand side of the conclusion as topmost
operator, we have to insert a new rule r′. The new rule is obtained from r by adding in
parallel a generic idle component, i.e. for any rule of the kind

{Xi
ai−→ Yi}i∈I

C1[X1, ...,Xn] |C2[Xn+1, ...,Xn+m]
a−→ D[Z1, ...,Zn+m]

we add a new rule (analogous to the completion in rewriting systems modulo AC1)

{Xi
ai−→ Yi}i∈I

C1[X1, ...,Xn] |C2[Xn+1, ...,Xn+m] | Xn+m+1
a−→ D[Z1, ...,Zn+m] | Xn+m+1

Then Prog(PC) is defined exactly as before. Of course unification must be considered
up to AC1 structural axioms (see algorithms and further references in [18,4]).

Example 2. Consider a simple CCS-like calculus, with AC1 parallel composition and
only one rule for asynchronous communication

a.X | ā τ−→ X

The Prolog program induced by the original proof rule is shown in Fig. 3, where ‘a is
the program representation for action ā. The following query

?- trs(a.0|a.0|X, A, Z)

would return the substitutions X = ‘a for X and Z = a.0 for Z; but X = ‘a is not the
more general substitution for X that allows the context to perform the step. In fact, the
coordinator a.0|a.0|X , instantiated with a component p satisfying the formula ϕ = ā
returned by the Prolog program (namely with p = ā), could perform only one step,
but, obviously, X could also be instantiated with the component ā | ā, allowing the
coordinator to perform two steps. Actually, X = ‘a | Y results to be the more general
substitution which, thanks to the identity axiom, “comprises” the previous one. In order
to obtain such a computed answer from the program, it is enough to extend the proof
system with the rule r′

a.X | ā | Y τ−→ X | Y ut

It is easy to show that the new proof rules r′ are valid in the original proof system,
hence the extension of the proof system does not change the semantics of the PC. Due
to the presence of the identity axiom, for any r′ we can also remove the original rule
r without affecting the semantics of the calculus. The result expressed by Theorem 3
extends also to this case, i.e., the STS specified by Prog(PC) is correct and complete.

An analogous approach can be followed to deal with a replication operator “!”,
subject to the structural axiom !X ≡!X | X .

4 Case Study: A Basic Calculus for Mobility

We consider a basic calculus for mobility (BCM) which can be seen as an asynchronous
version of CCS [21], enriched with ambients, or, alternatively, as (a restriction-free ver-
sion of) the ambient calculus [12] with asynchronous CCS-like communication.

Definition 9 (BCM). Let A be a set of channels and let N be a set of ambient names.
The set of BCM processes P is defined by the grammar:

P ::= 0 | ā | a.P | open n.P | in n.P | out n.P | n[P] | P|P

with a ∈ A, n ∈N , and where the parallel operator is AC1:

P|(Q|R)≡ (P|Q)|R P|Q≡ Q|P P|0≡ P

The operational semantics of BCM is defined by the SOS operational rules in Fig. 4.
The rules open, in, and out are the classical rules of ambient calculus; communication
(rule com) is allowed only inside the same ambient; reductions can happen under any
ambient and in any parallel process (but not under prefixes), as stated by rules amb and
par, respectively. Since the semantics is presented as a reduction system, transitions
have no label (or equivalently they can be thought of as having all the same label τ).

The logic LBCM over the set of components is defined as explained in Section 3.1.
The set of spatial operators of the logic includes all the operators of the signature, i.e.,
Σs = Σ, so as to characterise all the possible transitions of the semantics of BCM (strictly
speaking, 0 6∈ Σs, but its presence is harmless and makes the notation simpler). All ax-
ioms in Fig. 4 introduce the need of spatial formulae (the lefthand side of the reduction

n[P] | open n.Q → P|Q
(open)

n[P]|m[in n.Q|R] → n[P|m[Q|R]]
(in)

n[P|m[out n.Q|R]] → n[P]|m[Q|R]
(out)

n[a.P|ā|Q] → n[P|Q]
(comm)

P → Q
n[P] → n[Q]

(amb)
P → Q

P|R → Q|R
(par)

Fig. 4. Operational semantics of BCM.

requires a specific structure of the component). The rules amb and par, instead, calls
for modal formulae, since their premises refer to observable behaviours and not to the
structure of the components. The formulae ϕ of the logic LBCM are:

ϕ ::= X | � .ϕ | 0 | α.ϕ | n[ϕ] | ϕ1|ϕ2,

where X ∈ X , n ∈ N and α ∈ {a, ā,open n, in n,out n}. Since transitions are not la-
belled, the modal operator does not refer to any action. The notion of satisfaction for
LBCM (P |= ϕ) is defined like in the general case (see Fig. 2). Then we can consider the
correct and complete STS for BCM specified by the Prolog program Prog(BCM).

To have a grasp of the properties of the calculus, let us consider two ambients with
different names n[a.0 | ā.0] and m[b.0 | b̄.0]. Both processes are able to perform an
internal communication according to rule comm, evolving to a (deadlocked) ambient
containing the nil component 0. Straightforwardly,

n[a.0 | ā.0]∼ m[b.0 | b̄.0],

i.e. internal actions do not distinguish ambients. It is easy to show that bisimilarity is
not a congruence for this calculus, since the above bisimilar processes are distinguished
when put in parallel with open n.0 (it interacts with n[a.0 | ā.0] but not with m[b.0 | b̄.0]).

Processes n[a.0 | ā.0] and m[b.0 | b̄.0] are (bisimilar) instances of the coordinators
n[X] and m[X]. It is easy to verify n[X] 6∼strict m[X], in fact, due to rule out:

n[X]
Y |m[out n. Z|W]−→ n[Y] | m[Z |W],

while m[X] has an analogous transition but with a different label and conclusion:

m[X]
Y |n[out m. Z|W]−→ m[Y] | n[Z |W].

Actually, n[X] 6∼ m[X], since they are distinguished by X = k[out n.0], and hence, by
Theorem 2, n[X] 6∼large m[X]. An example of coordinators related by ∼strict, and hence,
using Theorems 1 and 2, also by ∼large and ∼, is: n[m[out n.X]]∼strict n[0] | m[a | ā.X].
In fact, the two coordinators have the only symbolic transitions below, which lead to
obviously bisimilar coordinators:

n[m[out n.X]]
Y−→ n[0] | m[Y] and n[0] | m[a | ā.X]

Y−→ n[0] | m[Y].

Conclusions

We have illustrated a general methodology for reasoning about open systems, viewed
as coordinators in suitable process calculi, with special interest in bisimilarity. For a
PC and a process logic which characterises the structural and behavioural properties
of interest, we have introduced a notion of (correct and complete) symbolic transition
system, where states are coordinators and transitions are labelled by logic formulae
expressing the requirements which uninstantiated components should satisfy for the
transition to happen. Over an STS two symbolic bisimilarities can be defined, the strict
bisimilarity and the “coarser” large bisimilarity, both refining the universal bisimilarity
on coordinators which takes all possible closed instantiations. For algebraic PC, whose
rules are in a quite general format, we have also provided a constructive way of deriving
a spatio-temporal logic and a (correct and complete) symbolic transition system over
such logic. The applicability of the proposed methodology has been finally illustrated
by means of a toy process calculus with CCS-like communication within ambients.

An interesting issue which has not been faced here is the treatment of names and
name restriction, which plays a basic role in the specification of systems with fresh or
secret resources. While the notions of (correct and complete) STS and the results about
symbolic bisimulation are parametric w.r.t. the chosen process logic, the constructive
definition of the correct and complete STS for a given process calculus, presented in
Section 3, and especially the definition of the underlying process logic, should be ex-
tended to deal with a logical notion of freshness. A source of inspiration could be the
work of Cardelli and Caires [9,10].

We already mentioned that symbolic transitions have been studied by several au-
thors, e.g. Sewell [25], and Leifer and Milner [20] in order to avoid universal quantifi-
cation over contexts. These approaches, where steps can perform contextual closures,
can be seen as the dual of our approach, where steps can instantiate contexts. It would
be interesting to give a formal account of this duality, and, in particular, to see if the
categorical approach of [20], based on relative pushouts, can be dualised in our case
resorting to a notion of relative pullback.

Recently, the symbolic approach to the verification of infinite state cryptographic
protocols has attracted a lot of interest. Some authors use logic abstractions to charac-
terise symbolic states [1,13], others exploit, in particular, the generality of unification
to devise minimal assumptions over symbolic states [5]. Pursuing further the similari-
ties of our symbolic approach to bisimulation with these approaches, so as to apply our
methodology to the field, appears to be a stimulating line of future research.

Regarding the automatic construction of STS, we plan to generalise it to meta and
abductive Logic Programming. The first one should allow for the programmable defini-
tion of proofs, and hence for more specific reasoning over the structure of a PC. The sec-
ond one should provide the means for hypothetical (assumption-based) reasoning about
the properties labelling STS, allowing to answer questions like “under which circum-
stances (assumptions) the process P | X can evolve so as to satisfy a given property?”,
typically relevant in open and dynamic system engineering [3,2].

Acknowledgements. We would like to thank Narciso Martı́-Oliet, Sabina Rossi and the
anonymous referees for their helpful comments and suggestions.

References
1. M. Abadi and M.P. Fiore. Computing symbolic models for verifying cryptographic protocols.

In Proc. 14th IEEE Computer Security Foundations Workshop, pp. 160–173. IEEE, 2001.
2. R. Allen and D.Garlan. A Formal Basis for Architectural Connectors. ACM TOSEM, 6(3),

pp. 213–249, 1997.
3. L.F. Andrade, J.L. Fiadeiro, J. Gouveia, G. Koutsoukos and M.Wermelinger. Coordination

for Orchestration. In Coordination Models and Languages, 5th Int. Conference COORDI-
NATION. Lect. Notes in Comput. Sci. 2315 pp. 5–13. Springer 2002.

4. F. Baader and W. Snyder. Unification theory. In Handbook of Automated Reasoning. Elsevier
Science, 2000.

5. M. Boreale. Symbolic trace analysis of cryptographic protocols. In Proc. ICALP’01, Lect.
Notes in Comput. Sci. 2076, pp. 667–681. Springer, 2001.

6. R. Bruni, D. de Frutos-Escrig, N. Martı́-Oliet, and U. Montanari. Bisimilarity congruences
for open terms and term graphs via tile logic. In Proc. CONCUR 2000, Lect. Notes in
Comput. Sci. 1877, pp. 259–274. Springer, 2000.

7. R. Bruni, U. Montanari, and F. Rossi. An interactive semantics of logic programming. Theory
and Practice of Logic Programming, 1(6):647–690, 2001.

8. L. Caires. A Model for Declarative Programming and Specification with Concurrency and
Mobility. PhD thesis, Departamento de Informática, Universidade Nova de Lisboa, 1999.

9. L. Caires and L. Cardelli. A spatial logic for concurrency (part I). In Proc. TACS 2001, Lect.
Notes in Comput. Sci. 2215, pp. 1–37. Springer, 2001.

10. L. Caires and L. Cardelli. A spatial logic for concurrency (part II). In Proc. CONCUR 2002.
Lect. Notes in Comput. Sci., Springer, 2002. To appear.

11. L. Cardelli and A.D. Gordon. Anytime, anywhere. modal logics for mobile ambients. In
Proc. POPL 2000, pp. 365–377. ACM, 2000.

12. L. Cardelli and A.D. Gordon. Mobile ambients. In Proc. FoSSaCS’98, Lect. Notes in Comput.
Sci. 1378, pp. 140–155. Springer, 1998.

13. E.M. Clarke, S. Jha, and W. Marrero. Using state space exploration and a natural deduc-
tion style message derivation engine to verify security protocols. In Proc. PROCOMET’98.
Chapmann & Hall, 1998.

14. R. De Simone. Higher level synchronizing devices in MEIJE-SCCS. TCS, 37:245–267, 1985.
15. J.L. Fiadeiro, T. Maibaum, N. Martı́-Oliet, J. Meseguer, and I. Pita. Towards a verification

logic for rewriting logic. In Proc. WADT’99, LNCS 1827, pp. 438–458. Springer, 2000.
16. F. Gadducci and U. Montanari. The tile model. In Proof, Language and Interaction: Essays

in Honour of Robin Milner. MIT Press, 2000.
17. M. Hennessy and H. Lin. Symbolic bisimulations. Theoret. Comp. Sci., 138:353–389, 1995.
18. A. Herold and J. Siekmann. Unification in abelian semi-groups. Journal of Automated

Reasoning, 3(3):247–283, 1987.
19. K.G. Larsen and L. Xinxin. Compositionality through an operational semantics of contexts.

In Proc. ICALP’90, Lect. Notes in Comput. Sci. 443, pp. 526–539. Springer, 1990.
20. J.J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems. In Proc.

CONCUR 2000, Lect. Notes in Comput. Sci. 1877, pp. 243–258. Springer, 2000.
21. R. Milner. A Calculus of Communicating Systems, LNCS 92. Springer, 1980.
22. U. Montanari and V. Sassone. Dynamic congruence vs. progressing bisimulation for CCS.

Fundamenta Informaticae, 16:171–196, 1992.
23. G. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19,

Aarhus University, Computer Science Department, 1981.
24. A. Rensink. Bisimilarity of open terms. Inform. and Comput., 156(1-2):345–385, 2000.
25. P. Sewell. From rewrite rules to bisimulation congruences. In Proc. CONCUR’98, Lect.

Notes in Comput. Sci. 1466, pp. 269–284. Springer, 1998.

