
A Semantic Framework for Open Processes ∗

P. Baldan(1), A. Bracciali(2), R. Bruni(2)

(1) Dipartimento di Matematica Pura e Applicata,

Università di Padova (Italy)

baldan@math.unipd.it

(2) Dipartimento di Informatica,

Università di Pisa (Italy)

{bruni,braccia}@di.unipi.it

Abstract

We propose a general methodology for analysing the behaviour of open
systems modelled as coordinators, i.e., open terms of suitable process calculi.
A coordinator is understood as a process with holes or place-holders where
other coordinators and components (i.e., closed terms) can be plugged in, thus
influencing its behaviour. The operational semantics of coordinators is given
by means of a symbolic transition system, where states are coordinators and
transitions are labelled by spatial/modal formulae expressing the potential in-
teraction that plugged components may enable. Behavioural equivalences for
coordinators, like strong and weak bisimilarities, can be straightforwardly de-
fined over such a transition system. Differently from other approaches based
on universal closures, i.e., where two coordinators are considered equivalent
when all their closed instances are equivalent, our semantics preserves the
openness of the system during its evolution, thus allowing dynamic instanti-
ation to be accounted for in the semantics. To further support the adequacy
of the construction, we show that our symbolic equivalences provide correct
approximations of their universally closed counterparts, coinciding with them
over closed components. For process calculi in suitable formats, we show how
tractable symbolic semantics can be defined constructively using unification.

Keywords: Open systems, symbolic bisimulation, unification.

1 Introduction

In mobile and distributed programming, interaction and coordination have become
as much important issues as computation, and large systems have become environ-
ments more and more open to the dynamic connection with agents, components
and services. Given the high complexity of such open systems, formal models are
needed to drive their specification, design, analysis and verification for a successful
deployment.

∗Research partially supported by the EU FET-GC2 IST-2004-16004 integrated project Sen-
soria, the MIUR project PRIN 2005015824 Art and the CRUI/DAAD Vigoni project “Models
based on Graph Transformation Systems: Analysis and Verification”.

1

Process calculi are a quite popular formal model, often instrumental in focus-
ing on certain key aspects like communication and distribution. Depending on the
desired abstraction level, the openness of the modelled systems can be expressed
in many different ways. For example, in the π-calculus, processes can have free
channels on which fresh channels can be extruded to establish dynamic links for
communication and thus an open system is just a π-process with some free chan-
nels. However, this vision, that we can call name-driven, can blur to some extent
the conceptual distinction between components (computational entities) and coordi-
nators (open interaction environments). Here we take a different perspective, that
we call variable-driven, which appears to be rather natural and that can be applied
also to calculi simpler than the π-calculus, like ccs and other non-nominal calculi.
It relies on the obvious distinction between contexts C[X1, ..., Xn], namely terms
over the signature Σ of the calculus with process variables X1, . . . , Xn, and ground
terms p, namely terms with no process variables. The former are natural candidates
for coordinators, with process variables denoting the holes where processes can be
plugged in, while the latter are the natural candidates for components.

The operational semantics and the associated behavioural equivalences (e.g.,
bisimilarities, traces, testing) are often defined for components. A satisfactory defi-
nition of the semantics of coordinators is not straightforward. A natural possibility
consists of lifting the equivalences over components to coordinators by universal
closure, in an extensional style: C[X1, ..., Xn] and D[X1, ..., Xn] are considered as
equivalent if C[p1, ..., pn] and D[p1, ..., pn] are so for all components p1, ..., pn that
can be plugged in (as done, e.g., in [43]).

In this paper we promote a symbolic approach to the semantics of coordinators
by defining the operational semantics directly for coordinators. The rationale for
doing this is motivated by the following arguments:

- Open systems can evolve. In the context of environments open to multi-party
interaction, it may be of interest being able to study the behaviour of components
inserted in partially instantiated coordinators, i.e., in coordinators where some holes
are still available for being later instantiated. Hence the capability of formalising the
evolution of general, partially instantiated coordinators is a primary issue. With
respect to the aforementioned extensional semantics based on universal closure,
where the semantics is evaluated by fixing from the beginning the whole scenario
of execution, an explicit definition of the semantics of coordinators allows a higher
level of dynamics, which is typical of open systems, to be accounted for. For in-
stance, different components may join at different times and the choice of the next
component to plug in can be influenced by the components plugged in so far.

Since components can be regarded as a special kind of coordinators, it is worth
remarking that, on components, all equivalences arising from our constructions co-
incide with the corresponding standard behavioural equivalences for closed systems.
Additionally, on coordinators, symbolic equivalences are finer than (or equal to) the
corresponding equivalences obtained by universal closure.

- Constructive methodology. The need for the formal verification of open systems
calls for the support of automated tools. Our abstract theory is complemented
with an unification-based constructive counterpart that supports the automation
of the basic steps of the methodology, providing the basis for the development of
more sophisticated tools (initial experiments in this sense have already been carried
out). The use of most general unifiers for inferring the transitions of coordinators
guarantees that branching is kept to the necessary least.

2

- Complementarity with contextualisation techniques. Sewell’s paper [43] opened
a flourishing research thread on finding methodologies for the synthesis of labelled
transition systems starting from reduction systems. The idea is to use contexts as
labels and to derive labelled transition systems for which bisimilarity is a congru-
ence. The transitions are limited to those contexts that can play an active part in
the reduction of the source state. The congruence property is of course an important
achievement, as it allows modular reasoning. The states of the synthesised labelled
transition system are ground, but transitions can lead to terms with variables (i.e.,
contexts), so that bisimilarity must be extended to contexts and this is done by
considering all possible closed instances. Hence the problem of not exposing all
contexts in the labels is somehow shifted to exposing all the possible instances. Our
framework is precisely targeted to find/characterise an alternative abstract equiva-
lence over contexts, so that, as explained in more detail in Section 7, our approach
can be considered to some extent complementary to the one in [43].

- Generality and friendly notation. Our approach generalises previous different
variable-driven approaches in the literature (like [25, 38], see Section 7 for more
details) allowing us to deal with more expressive observations, which capture both
the behaviour and the structure of the plugged in components. Moreover, the
framework is largely independent of the underlying calculus. On the other hand,
we have done at our best to keep the notation easy to grasp, with the aim of making
it widely accessible.

The semantics we propose for coordinators is given in terms of a peculiar tran-
sition system. Its main distinguishing feature is the idea of labelling the transitions
exiting from coordinators with trigger-effect pairs 〈ϕ, a〉. The trigger ϕ is intended
to provide an abstract characterisation of the structure that a component must pos-
sess and of the actions it can perform in order to allow a transition with label a to
fire. The choice of mixing structural and behavioural constraints can be understood
by recalling that the operational semantics of process calculi can often be conve-
niently expressed by a set of inductive proof rules which, according to Plotkin’s
sos seminal paper [37], define the behaviour of each component on the basis of two
elements: the structure of the component and the behaviour of its subcomponents.
Intuitively, a coordinator can either evolve autonomously or interact with the com-
ponents which are plugged in and, by the above considerations, the interaction can
depend:

1. on the spatial structure of the components that are inserted in / connected
with the coordinator;

2. on the observable behaviour such components can exhibit, i.e. on the transi-
tions that they can perform.

We propose to use as triggers formulae from a suitable logic for expressing the
most general class of components with whom the coordinator can perform a specific
transition. Since a single formula can characterise potentially infinite classes of
components, this approach can drastically reduce the size of the transition system.
More specifically, we introduce a notion of symbolic transition system (sts for short),
whose states are coordinators and whose transitions have the shape

C[X1, ..., Xn]
ϕ1,..,ϕn
−→ a D[Y1, . . . , Ym]

3

meaning that a transition labelled with a can be performed by C[p1, ..., pn] whenever
each component pi satisfies the corresponding formula ϕi, and the target state will
be a suitable instance of D[Y1, . . . , Ym]. The logic where the formulae ϕi’s live
and the notion of satisfaction must be of course targeted to the process calculus
under study. As suggested above, in general the logic may involve both spatial
and behavioural aspects of components, i.e. it can be a spatial logic along the lines
of [14, 18].

For process calculi whose operational semantics is defined by inference rules in
quite general sos formats, e.g., the algebraic [25] or the positive gsos format [8]
(both including also the popular De Simone format [22]), we give an algorithm, ex-
pressed as a Prolog program, for building a sound and complete symbolic transition
system for the calculus. The use of unification guarantees a minimality property
for the generated transition systems.

Given a symbolic transition system for a process calculus several behavioural
equivalences can be defined directly for coordinators. In this paper we focus on
bisimilarities, which are by far the most popular equivalences, but the theory is
general enough to encompass several other behavioural equivalences (e.g., those
based on traces as shown in [6]).

Two kinds of bisimilarities ∼s and
�

∼l, called respectively strict and loose bisim-
ilarities (the second one introduced as “large bisimilarity” in [5]) are defined on
coordinators. Strict bisimilarity ∼s is a straight extension of the standard bisimi-

larity on labelled transition systems. Loose bisimilarity
�

∼l, is obtained by relaxing
the requirements when comparing labels in the bisimulation game: roughly, a tran-

sition C[X]
ϕ

−→a C
′[X] can be simulated by a transition D[X]

ψ
−→a D

′[X], where
ψ imposes weaker structural requirements than ϕ. For sound and complete stss
both “symbolic” bisimilarities imply ∼u, the standard lifting of bisimilarity ∼ to

coordinators defined by universal closure. More precisely, loose bisimilarity
�

∼l ap-

proximates ∼u better than ∼s, although in general
�

∼l is non-transitive (incidentally,

the dot on top of
�

∼l is a reminder of this fact).
Many process calculi include in the set of labels a special silent action, which

models internal (non-observable) computations. For such calculi, (strong) bisimilar-
ity can be too fine, distinguishing components on the basis of internal computations
that do not require any observable interaction. In such cases weak bisimilarities,
which “ignore” silent actions, are often considered more appropriate. We show that
our approach naturally extends to weak behavioural equivalences. More precisely,
we define a symbolic counterpart of weak bisimilarity, called weak symbolic bisimi-
larity ≈w, and we show that, as for strong equivalences, it implies the corresponding
equivalence, obtained by lifting the relation over components by universal closure.

Structure of the paper. In Section 2 we fix the notation and we give some ba-
sic definitions. In Section 3 we overview the general ideas on which our approach
relies, introducing the notion of (sound and complete) symbolic transition system.
In Section 4 we define strong and weak symbolic bisimilarities, showing that each
symbolic bisimilarity is finer than the corresponding equivalence based on universal
closure. In Section 5, we illustrate the algorithmic construction of the symbolic
transition system for process calculi with operational rules in the algebraic format,
we prove its correctness and we present a minimality result enjoyed by the con-
struction. In Section 6, in order to illustrate the applicability of the approach, we
show how it can be adapted in the presence of structural axioms and for calculi
in positive gsos format. Minimality properties enjoyed by these constructions are

4

P ≡ Q ∈ E, σ(P), σ(Q) ∈ TΣ

σ(P) ≡ σ(Q)
(subs)

p1 ≡ q1, · · · , pn ≡ qn, f ∈ Σn
f(p1, ..., pn) ≡ f(q1, ..., qn)

(context)

p ∈ TΣ

p ≡ p (refl)
p ≡ q
q ≡ p (symm)

p1 ≡ p2, p2 ≡ p3

p1 ≡ p3
(tran)

Figure 1: Closure of structural axioms.

also discussed. In Section 7, we report on some related literature, while in Section 8
we draw some conclusions and directions for further research. Some minor proofs
have been omitted or only sketched and can be found in [7]. A preliminary version
of this paper has been presented as [5].

2 Background

2.1 Notation

To ease the presentation we will consider only unsorted signatures, though our
results can be extended to the many-sorted case. A signature is a set of operators
Σ together with an arity function ar : Σ → N. For n ∈ N, we let Σn = {f ∈ Σ |
ar(f) = n}. We denote by TΣ(X) the term algebra over Σ and variables in the set
X (disjoint from Σ) and we let TΣ = TΣ(∅). For P ∈ TΣ(X) we denote by var (P)
the set of all variables X ∈ X that appear in P . If var(P) = ∅ then P is called
closed, otherwise open. A term is linear if each variable occurs at most once in it.

When signatures are used to present the syntax of process calculi, closed terms
define the set P of components of the calculus, ranged over by p, q, . . . , while
the general, possibly open, terms form the set C of coordinators, ranged over by
C, D, We shall write C[X1, . . . , Xn], often abbreviated C[~X] to mean that
C is a coordinator such that var(C) ⊆ {X1, . . . , Xn}. Unless stated otherwise, all
coordinators considered in the paper will be assumed to be linear.

Given a tuple ~p = p1, . . . , pn of components, we denote C[p1, . . . , pn] (or C[~p] for

short) the component C[p1/X1, . . . , pn/Xn] obtained from C[~X] by replacing each
occurrence of variable Xi with pi for i ∈ {1, . . . , n}.

A structural axiom is a sentence of the form P ≡ Q for P,Q ∈ TΣ(X). Let
E = {Pi ≡ Qi | i ∈ I} be a set of structural axioms. The initial algebra TΣ,E

is the quotient of TΣ modulo the equivalence ≡ defined in Figure 1, where axioms
in E are closed w.r.t. substitution, contextualisation, reflexivity, symmetry, and
transitivity.

2.2 Strong and weak bisimulation for process calculi

Process calculi come often equipped with an operational semantics which consists
of a labelled transition system (lts) over an alphabet of labels Λ, where states are
components over a process signature Σ and transitions model basic activities of
the system. More precisely the lts will consist of a pair 〈P ,→〉 where P is the
set of components and →⊆ P × Λ × P is the transition relation, whose elements
(p, a, q) are usually written as p →a q. Commonly such lts is specified by means

5

P ::= 0 | α.P | open n.P | in n.P | out n.P | n[P] | P | P

α.P →α P
(pref)

P →` Q

P | R →` Q | R
(par)

P1 →α Q1 P2 →ᾱ Q2

P1 | P2 →τ Q1 | Q2
(comm)

n[P] | open n.Q →τ P | Q
(open)

P →τ Q

n[P] →τ n[Q]
(amb)

n[P] | m[in n.Q | R] →τ n[P | m[Q | R]]
(in)

n[P | m[out n.Q | R]] →τ n[P] | m[Q | R]
(out)

Figure 2: Syntax and operational semantics of ACCS.

of a collection of inductive proof rules of the kind

q1 →a1
q′1 . . . qn →an

q′n
p →a p

′

which axiomatise the relation → over components. In the presence of structural
axioms E, proof rules typically include:

p′ ≡ p p →a q q′ ≡ q

p′ →a q
′ (equiv)

i.e., states are essentially equivalence classes [p]≡ of components (modulo ≡).
In the following, we assume that a process calculus PC is fixed with signature

Σ and structural axioms E, whose semantics is given by an lts L over TΣ,E and
label alphabet Λ.

Example 1 An example of a process calculus for mobility, which will be often
referred later, is the ACCS calculus, which can be seen as (a restriction-free version
of) the ambient calculus [17] with ccs-like communication [35]. Let A be a set
of channels and let N be a set of ambient names. Then, ACCS is defined by the
grammar and sos operational rules in Figure 2, where α ∈ Act = {a, ā : a ∈ A} and
n ∈ N . The parallel operator is AC1, i.e., associative, commutative and with the
nil process 0 as the unit. The rules pref, com and par are the usual ccs rules (where
it is intended that ¯̄α = α, τ 6∈ Act is a distinguished action, and ` ∈ Act ∪ {τ}).
The rules open, in, and out are the classical rules of ambient calculus. By rule amb,
communication is only allowed within the same ambient. �

Several notion of observational equivalences can be defined on top of an lts.
We focus on bisimilarities, which are by far the most popular equivalences.

6

Definition 2 (Strong bisimilarity ∼) A strong bisimulation is a symmetric
relation ÷ over components such that if p ÷ q, then for any transition p →a p

′ a
component q′ and a transition q →a q

′ exist such that p′ ÷ q′. We denote by ∼ the
largest bisimulation and call it strong bisimilarity or just bisimilarity.

Note that the presence of rule (equiv) guarantees that for any p and q we have
that if p ≡ q then p ∼ q.

In many situations the set of labels Λ contains a special silent action τ , which
models internal (non-observable) computations. In such cases, strong bisimilarity
can be too fine, distinguishing components whose behaviours differ only in the length
of some internal computations that do not require any observable interaction. A
more suitable, relaxed notion of behavioural equivalence is then provided by weak
bisimilarity, which is coarser than ∼.

Definition 3 (Weak transitions) Given a transition system over components,
whose transition relation → can include silent steps →τ , we define:

• p ⇒a q when p(→τ)∗ →a (→τ)∗q, and

• p⇒q when p(→τ)∗q.

Definition 4 (Weak bisimilarity ≈) A symmetric relation ÷ over components
is a weak bisimulation if for any p÷ q

1. if p →a p
′ then q ⇒a q

′ and p′ ÷ q′

2. if p →τ p
′ then q⇒q′ and p′ ÷ q′

We denote by ≈ the largest weak bisimulation and call it weak bisimilarity.

A natural way of lifting strong and weak bisimilarities (as well as any other
behavioural equivalence defined on components) to coordinators consists of consid-
ering all possible closed instances of the coordinators.

Definition 5 (Universal closure) Let ÷ be an equivalence relation defined on
components. The universal closure of ÷ is the equivalence relation ÷u on coordina-
tors defined by letting

C[X1, ..., Xn] ÷u D[X1, ..., Xn]
def
⇐⇒ ∀p1, ..., pn ∈ P , C[p1, ..., pn] ÷D[p1, ..., pn]

In particular ∼u and ≈u will denote the universal closures of ∼ and ≈, respec-
tively.

2.3 A spatial logic

As discussed in the introduction, we shall introduce a special kind of transition
systems whose transitions are labelled with logic formulae that characterise suitable
classes of components that play active roles in the transitions. The logic providing
the labels is built over a fixed logic over components. For the purposes of this paper
we consider LPC which has modal and spatial operators in the style of [14, 18].

It is worth observing that the word “spatial” has been used in the literature
to refer to the logical or physical distribution of system components, e.g., prefix in
ccs is generally not taken as a spatial operator. For the aim of this paper, this

7

word refers to the structure of a term and any operator of the signature can be,
in principle, considered spatial. The syntax of (ground) LPC-formulae ϕ and the
associated notion of satisfaction are given below.

Definition 6 (Ground formulae) The set Φ of (ground) LPC-formulae ϕ is de-
fined by the grammar

ϕ ::= > | f(ϕ, . . . , ϕ) | �aϕ

where f ∈ Σ is an operator in the process signature and a ∈ Λ an action label.

The formula > (true) is satisfied by any component. The formula f(ϕ1, . . . , ϕn)
is satisfied by any component p that can be decomposed as p ≡ f(p1, . . . , pn) such
that each pi satisfies the corresponding formula ϕi. The formula �aϕ is satisfied by
any process p that can perform a transition labelled with a ending in a state q that
satisfies ϕ. Formally, the satisfaction relation is defined as follow.

Definition 7 (Satisfaction) The satisfaction relation is the least relation |=
⊆ P × Φ such that

p |= >
p |= f(ϕ1, . . . , ϕn) if ∃p1, . . . , pn. p ≡ f(p1, . . . , pn) ∧ ∀i. pi |= ϕi
p |= �aϕ if ∃q. p →a q ∧ q |= ϕ

We say that a component p satisfies the formula ϕ, if p |= ϕ.

A formula in LPC is called purely spatial if it does not contain the modal operator
�a . Thus, abusing the notation, each component q can also be regarded as a (purely
spatial) formula and it can be readily proved that

p |= q iff p ≡ q.

3 An operational semantics for coordinators

As we argued in the introduction, from a conceptual point of view, resorting to the
universal closure is not the only natural way of providing a notion of equivalence for
coordinators. In fact, a coordinator can be intended as an open system whose un-
specified subcomponents can be progressively instantiated during the computation,
while considering “universal” equivalences amounts to fixing the closed instances
of the compared coordinators once and for all at the beginning of the computa-
tion. Moreover, from the point of view of automatic reasoning, the definition of
behavioural equivalences over coordinators based on the closure with respect to any
possible substitution presents some drawbacks. In fact, to verify the equivalence
of two coordinators, one is typically led to check the equivalence of infinitely many
processes (all the possible closed instances of the coordinators).

For the above reasons we have found convenient to define operational and ab-
stract semantics of coordinators, directly, by exploiting a symbolic approach based
on the following principles:

1. abstracting from components not playing an active role in the transition;

2. specifying the active components as little as possible;

8

3. making assumptions both on the structure and on the behaviour of the active
components.

The above strategy is formalised by introducing a symbolic transition system
whose states are coordinators and whose labels encode the structural and/or be-
havioural conditions that components should fulfil for enabling the move.

3.1 Formulae as labels

We first define the logic whose formulae will be used as labels for the transitions
of coordinators. The logic must be powerful enough to be able to express, for any
coordinator, the structural and behavioural properties which should be fulfilled by
unspecified components to allow transitions to happen. A natural choice for such
logic is a slight extension of the spatial logic LPC over components, but, as discussed
in [5], the approach is actually parametric with respect to the process logic over
components one starts from.

Definition 8 (sts logic) The sts logic SLPC associated to PC has as formulae

ϕ ::= X | � aϕ | f(ϕ, . . . , ϕ)

where X ∈ X , p ∈ P, a ∈ Λ, f ∈ Σ. Given a formula ϕ we will write Var(ϕ) to
denote the set of variables which occur in ϕ.

The notion of purely spatial formula in SLPC is defined, as in LPC, as a formula
where the modal operator �a does not occur (but observe that here a purely
spatial formula can contain variables).

To understand the choice of the sts logic SLPC, note that an instance
C[p1, . . . , pn] of a given coordinator C[X1, . . . , Xn], in order to perform a transi-
tion, must match the left-hand side of the conclusion of a proof rule. This might
impose the components pi’s to have a certain structure, hence the need of inserting
the spatial operators f ∈ Σ in the logic. Furthermore, the premises of the matched
rule must be satisfiable. Such premises usually require each component pi to be
able to exhibit some behaviour, i.e. to perform a certain transition. Hence the logic
includes also modal operators �a expressing the capability of performing action a.

The only novelty with respect to LPC is the replacement of the atomic formula
> with formulae X , one for each variable in X . Satisfaction is defined as for logic
LPC (see Definition 7), replacing the clause for > with the following, for any process
p ∈ P :

p |= X

i.e., as mentioned above, a formula X , consisting of a single process variable, does
not impose any constraint on the process and thus it is satisfied by any process.
For instance, the formula �aX is satisfied by any process which is able to perform
an action a, i.e., by any process p such that p →a q for some q.

Variables in SLPC formulae will be later used to identify the continuation, or
residual, of a process after it has exhibited the capabilities and/or structure imposed
by the formula. e.g., whenever p |= �aX and thus p →a q, the variable X in the
formula �aX , identifies the continuation q. In the following, given a formula ϕ and
n components q1, . . . , qn, we denote by ϕ[q1/X1, . . . , qn/Xn], or ϕ[~q/ ~X] for short,
the formula obtained from ϕ by replacing variables Xi with components qi.

9

Definition 9 (Satisfaction with residuals) Let p ∈ P be a component, let
~q = q1, . . . , qn be a tuple of components and let ϕ ∈ SLPC be a formula such that
Var(ϕ) ⊆ {X1, . . . , Xn}. We say that p satisfies ϕ with residuals q1, . . . , qn, and
write p |= ϕ; ~q, when

p |= ϕ[q1/X1, . . . , qn/Xn]

For example, consider the ACCS process p ≡ n[ā. 0 | a. b. 0] and the formula
ϕ = n[�āX1 | a.X2]. Then, it is easy to see that p |= ϕ. Moreover if q1 = 0 and
q2 = b. 0 then p |= ϕ; (q1, q2).

More generally, in the following, we will use the notation ~p |= ~ϕ; ~q where ~ϕ =
ϕ1, . . . , ϕk and ~p = p1, . . . , pk are tuples of formulae and components, respectively,
with the obvious meaning that pi |= ϕi[q1/X1, . . . , qn/Xn] for i ∈ {1, . . . , k}.

Note that the action prefix operator yields the spatial formula a.X , which is
satisfied by components of the shape p ≡ a.q. Although for specific calculi the
formulae a.X and �aX are satisfied exactly by the same set of components (e.g. in
a trivial calculus with only the prefix operator a. and the inactive process 0, and
with just one rule a. X →a X), we remark that their meaning is quite different: the
former imposes a structural constraint, the latter imposes a behavioural constraint,
satisfied by components which can perform the action a (e.g., by the process (b.0 |
a.0)\b in a ccs-like calculus).

3.2 Symbolic transition systems

We next introduce an operational description of coordinators in terms of transition
systems. As mentioned before, transition labels include also a formula from the logic
SLPC, which imposes constraints on the unspecified components in order to allow
the transition to happen. This fact will be formalised in terms of two properties
(called soundness and completeness) which establish a tight connection between
the symbolic transition system over coordinators and the original labeled transition
system over components.

Definition 10 (Symbolic Transition System) A symbolic transition system
(sts) S for the process calculus PC is a set of transitions

C[X1, . . . , Xn]
ϕ1,...,ϕn
−→ a D[Y1, . . . , Ym]

where C[X1, . . . , Xn] and D[Y1, . . . , Ym] are coordinators, a ∈ Λ and ϕi are formulae
in SLPC such that

⋃

iVar(ϕi) ⊇ {Y1, . . . , Ym}. The transition will be often written

as C[~X]
~ϕ

−→a D[~Y] and the tuple ~ϕ will be called the trigger.

The variable names in the states of S are not relevant: they are just indexed
placeholders, whose number can vary along the computation. What is relevant is the
correspondence between each variable Xi in the source and its residuals Yi1 , . . . , Yih
in the target, as expressed by the formula ϕi, in which the residuals may occur. This
could be made more formal by fixing an enumeration X0, X1, . . . of variables and
taking the i-th variable of a coordinator to be alwaysXi. For the sake of readability
we preferred to use different names for the variables appearing in the source and in
the target of symbolic transitions.

Consider again the calculus ACCS in Example 1. A symbolic transition can be

n[X | ā. b. 0]
�aY
−→τ n[Y | b. 0]

10

stating that a coordinator of the shape n[X | ā. b. 0], where X can perform an a-
labelled transition becoming Y , can evolve to n[Y | b. 0], performing a silent step.
A different symbolic transition could be

n[X1] | X2
Y1,open n. Y2

−→ τ Y1 | Y2

stating that a coordinator n[X1] | X2, where X2 has the shape open n. Y2 (i.e., it
can open environment n) can evolve to Y1 | Y2 via a silent step (with Y1 the same
as X1).

For S to provide an abstract view of PC we must of course require some ad-
ditional properties enforcing the correspondence with the lts L over components.
Consider a transition system where coordinators have just one hole. Intuitively,

whenever C[X]
ϕ

−→a D[Y] the idea is that the coordinator C, when instantiated
with any component satisfying ϕ, can perform action a becoming an instance of D.
As explained before, the process variable Y , which typically occurs in ϕ, is intended
to represent the residual of what substituted for X , after it has exhibited the capa-
bilities required by ϕ. More precisely, for any component q such that p |= ϕ; q, the
component C[p] can perform an action a becoming D[q]. On the other hand, any
concrete transition on components should have symbolic counterparts. These two
properties are formalised as soundness and completeness, respectively.

Definition 11 (Soundness) A symbolic transition

C[~X]
~ϕ

−→a D[~Y]

for the process calculus PC is called sound if for all tuples of components ~p and ~q
such that ~p |= ~ϕ; ~q, there exists a transition C[~p] →a D[~q] in L. An sts S for the
process calculus PC is sound if all its symbolic transitions are sound.

For instance, the aforeseen symbolic transitions for ACCS, i.e., n[X | ā. b 0]
�aY
−→τ

n[Y | b. 0] and n[X1] | X2
Y1,open n. Y2

−→ τ Y1 | Y2 can be easily shown to be sound in
the sense above.

Definition 12 (Completeness) An sts S for the process calculus PC is com-

plete if for any coordinator C[~X], for all tuples of components ~p and for any tran-
sition in L

C[~p] →a q

there exists a symbolic transition C[~X]
~ϕ

−→a D[~Y] in S and a tuple of components
~q such that ~p |= ~ϕ; ~q, and q ≡ D[~q].

An example of sound and complete sts for ACCS will be provided in Section 5,
since the complexity of such calculus prevents one to construct it with an ad-hoc
approach. Here we consider a much simpler calculus.

Example 13 The Tick calculus is defined by the grammar and sos operational
rules in Figure 3, where ` ranges in a fixed set of labels Λ, τ ∈ Λ is a distinguished
label and a ranges over Λ − {τ}. Rule (lift) assumes ` 6= a. Therefore processes
consist of lists of actions which can be performed sequentially. The hiding operator
(a) allows to hide action a, which then shows up as τ at the top level.

Let C[X] denote an arbitrary context in Tick (observe that in this simple calculus
at most one variable appears in a context). Then the sts consisting of the following
(schema of) symbolic transitions:

11

P ::= 0 | `. P | (a)P

`. P →` P
(pref)

P →a Q

(a)P →τ (a)Q
(hide)

P →` Q

(a)P →` (a)Q
(lift) ` 6= a

Figure 3: Syntax and operational semantics of Tick.

(a1) . . . (an) a. C[X]
Y
−→τ (a1) . . . (an)C[Y]

(a1) . . . (an) `. C[X]
Y
−→` (a1) . . . (an)C[Y]

(a1) . . . (an)X
�a Y
−→τ (a1) . . . (an)Y

(a1) . . . (an)X
�` Y
−→` (a1) . . . (an)Y

where n ≥ 0, a ∈ {a1, . . . , an} and ` 6∈ {a1, . . . , an}, is sound and complete for the
calculus.

For example, the coordinator (a) (b) a.X has just the transition

(a) (b) a.X
Y
−→τ (a) (b)Y

while the coordinator (a) (b)X has transitions

(a) (b)X
�a Y
−→τ (a) (b)Y (a) (b)X

�b Y
−→τ (a) (b)Y (a) (b)X

�` Y
−→` (a) (b)Y

for ` 6∈ {a, b}. �

4 Symbolic bisimulations

Relying on the operational description of coordinators given by an sts we can define
observational equivalences over coordinators in a direct way, without resorting to
their closed instances. Here we concentrate on (strong and weak) bisimulation
equivalences, but we could have considered different semantics, e.g., based on traces,
as shown in [6]. Observational equivalences defined over coordinators using an
sts will be shown to be coherent with the ones defined by resorting to the closed
instances of coordinators.

4.1 Strict symbolic bisimulation

Given any sts we can straightforwardly define a bisimulation-like equivalence, by
observing in a transition both the the ordinary label and the structural and be-
havioural requirements on the unspecified subcomponents expressed by the trigger.

Definition 14 (Strict Symbolic Bisimulation) A symmetric relation ÷ over
the set of coordinators C is a strict symbolic bisimulation if for any two coordinators
C[~X] and D[~X] such that C[~X] ÷D[~X], for any transition

C[~X]
~ϕ

−→a C
′[~Y]

12

there exists a transition D[~X]
~ϕ

−→a D
′[~Y] such that C ′[~Y]÷D′[~Y]. The largest strict

symbolic bisimulation is an equivalence relation called strict symbolic bisimilarity
and denoted by ∼s.

The notion of strict symbolic bisimilarity is clearly well-defined, i.e., the largest
symbolic bisimulation exists and it is an equivalence relation by classical results,
since ∼s is just an ordinary bisimulation over the sts, taking as labels the pairs
(trigger, label).

Strict bisimilarity requires a transition to be simulated by a transition with ex-
actly the same trigger. All the theory could be generalised by defining two formulae
ϕ and ψ equivalent if for any component p and n-tuple of components ~q we have

p |= ϕ; ~q iff p |= ψ; ~q.

Then one could allow a transition C[~X]
~ϕ

−→a C
′[~Y] to be simulated by a transition

D[~X]
~ψ

−→a D
′[~Y], where the formulae ϕi and ψi are equivalent, rather than iden-

tical. Syntactic equality has been preferred to logical equivalence since, in general,
the latter could be hard to verify or, even worse, undecidable. Nevertheless, given
a specific calculus, equivalences which are known or easy to check can be exploited
in symbolic bisimilarity (e.g., to standardise the triggers).

A first result about strict symbolic bisimilarity shows that it is coherent with
respect to universal closure bisimilarity ∼u (see Definition 5) in the sense that strict
symbolic bisimilarity distinguishes as much as ∼u.

Theorem 15 (∼s ⇒ ∼u) If S is a sound and complete sts, then for all coordina-

tors C[~X] and D[~X]

C[~X] ∼s D[~X] ⇒ C[~X] ∼u D[~X]

Proof. Let C[~X], D[~X] be coordinators and suppose C[~X] ∼s D[~X]. We want to
show that for any tuple of components ~p, we have C[~p] ∼ D[~p]. Let Rstrict be the
relation over component defined as follows:

C ′[~p]RstrictD[~p]′

for all C ′[~X], D′[~X] such that C ′[~X] ∼s D
′[~X] and for all tuple of components ~p.

We first show that Rstrict is a bisimulation for L.
For any transition C[~p] →a q in L, by completeness of S, a symbolic transition

C[~X]
~ϕ

−→a C
′[~Y] and a tuple of components ~r exist such that ~p |= ~ϕ;~r and q ≡

C ′[~r]. Since C[~X] ∼s D[~X] by hypothesis, we have that D[~X]
~ϕ

−→a D
′[~Y] with

C ′[~Y] ∼s D
′[~Y]. By soundness of S, and by the fact that ~p |= ~ϕ;~r, it holds that

D[~p] →a D
′[~r]. Since C ′[~Y] ∼s D

′[~Y], we have that C ′[~r] Rstrict D
′[~r]. The relation

Rstrict is obviously symmetric and hence it is a bisimulation. Since bisimilarity ∼
is the largest bisimulation, it contains Rstrict and therefore C[~p] ∼ D[~p], concluding
the proof. �

For instance, referring to the calculus Tick, defined in Figure 3, it is not difficult
to see that the coordinators C[X] = (a) (b)X and D[X] = (b) (a)X are strict
bisimilar. In fact (the symmetric closure of) the relation {(C[X], D[X])} is a strict
symbolic bisimulation, since the symbolic moves for the coordinators are of the kind

13

C[X]
�αY
−→` C[Y] D[X]

�αY
−→` D[Y]

where ` = α if α 6∈ {a, b} and ` = τ , otherwise. Similarly, assuming a 6= b, it
is easy to verify that (a) b.X ∼s b. (a)X , while of course (a) a.X 6∼s a. (a)X and
(a)X 6∼s (b)X .

Strict symbolic bisimilarity distinguishes at least as much as universal bisim-
ilarity, but the converse does not hold, in general. This issue is discussed later
on.

Note that components are just a special case of coordinators (with no place-
holders). Therefore, any sound and complete sts includes, by definition, all the
transitions of the reference lts and thus we trivially have the following result,
showing that on components strict symbolic bisimilarity coincides with standard
bisimilarity (which, in turn, is trivially the same as universal closure bisimilarity).

Lemma 16 If S is a sound and complete sts, then for all components p and q

p ∼s q iff p ∼ q

4.2 Loose symbolic bisimulation

In certain cases, if the sts are not carefully designed, the intensional nature of ∼s can
lead to distinguish coordinators that are intuitively equivalent. In particular, this
problem can arise in sts that are automatically generated starting from redundant
specifications (e.g., when the same transitions of the lts can be proved by applying
different sets of rules). In this section we propose a partial solution to this problem,
that can help in many situations.

In the presence of spatial formulae, the requirement of exact matching between
the triggers labelling the transitions can be relaxed. Intuitively, the more liberal
bisimilarity defined below allows for a transition to be simulated by another tran-
sition with weaker spatial constraints on the residuals.

In order to formalise the above intuition, it is convenient to define the composi-
tion of formulae.

Definition 17 (formulae composition) Given two tuples of formulae

~ϕ = (ϕ1, . . . , ϕn) and ~ψ = (ψ1, . . . , ψk), such that
⋃

i Var(ϕi) = {X1, . . . , Xk}, we
define

~ϕ; ~ψ = (ϕ1[~ψ/ ~X], . . . , ϕn[~ψ/ ~X]).

In words, composing ~ϕ and ~ψ we get a tuple of formulae obtained from ~ϕ by
imposing on each variableXi occurring in ~ϕ, the constraint expressed by the formula
ψi. For instance (�aX1, X1 | X2); (n[Y1], �b Y1) = (�an[Y1], n[Y1] | �b Y1).

In the following, whenever we write ~ϕ; ~ψ we will implicitly assume that composi-
tion is well-defined. By simple syntactical manipulations, it is easy to prove that the
composition operator over formulae “;” is associative, i.e., given tuples of formulae
~ϕ, ~ψ and ~γ, then (~ϕ; ~ψ);~γ = ~ϕ; (~ψ;~γ). Hence we will simply write ~ϕ; ~ψ;~γ. Also ob-
serve that the operator for composing formulae “;” generalises the one, denoted by
the same symbol, used in the definition of satisfaction with residuals (Definition 9).

14

Definition 18 (Loose Symbolic Bisimulation) A symmetric relation ÷ over
the set of coordinators C is a loose symbolic bisimulation if for any pair of coordi-
nators C[~X] and D[~X] such that C[~X] ÷D[~X], for any transition

C[~X]
~ϕ

−→a C
′[~Y]

a transition D[~X]
~ψ

−→a D
′[~Z] and a tuple of spatial formulae ~ψ′ exist such that

~ϕ = ~ψ; ~ψ′ and C ′[~Y]÷D′[~ψ′]. The greatest loose bisimulation is called loose symbolic

bisimilarity and denoted
�

∼l.

Loose symbolic bisimulation allows a transition to be simulated by another tran-
sition where the spatial constraints on the Y ’s are relaxed, so that “more general”

components can be used for the X ’s. It follows that loose bisimilarity
�

∼l is always
coarser than strict bisimilarity ∼s.

Proposition 19 (∼s ⇒
�

∼l) For any symbolic transition system S

C[~X] ∼s D[~X] ⇒ C[~X]
�

∼l D[~X].

Proof. It follows directly from the definition of the two bisimulations, since the

spatial formulae in the tuple ~ψ′, used in
�

∼l when simulating the step, can of course
be identities. �

Moreover, as witnessed by the following example, relation
�

∼l can be strictly
coarser than ∼s.

Example 20 Let Σ = {a, f(.), g(.)}. Let S be the sts with transitions f(X)
X
−→τ

X , g(X)
X
−→τ X , and g(X)

a
−→τ a. Then it is obvious that f(X) 6∼s g(X), because

the last transition of g(X) cannot be matched by f(X). However, the formula X

is “more general” than the formula a, and therefore f(X)
�

∼l g(X). �

Although coarser than ∼s, loose bisimilarity still results coherent, in the same
sense discussed above for ∼s, with respect to universal closure bisimilarity ∼u.

Theorem 21 (
�

∼l ⇒ ∼u) If S is sound and complete w.r.t. L, then

C[~X]
�

∼l D[~X] ⇒ C[~X] ∼u D[~X].

Proof. The proof is similar to, but slightly more involved than, that of Theorem 15.

Let C[~X], D[~X] be coordinators and suppose C[~X]
�

∼l D[~X]. We want to show that
for any ~p, we have C[~p] ∼ D[~p]. Let Rloose be the relation defined by

C[~p] Rloose D[~p]
def
⇐⇒ C[~X]

�

∼l D[~X].

We first show that Rloose is a bisimulation for L. For any transition C[~p] →a q

in L, by completeness of S, a symbolic transition C[~X]
~ϕ

−→a C
′[~Y] and a tuple

of components ~r exist, with ~p |= ~ϕ;~r and q ≡ C ′[~r]. Since C[~X]
�

∼l D[~X] by
hypothesis, there must be a transition

D[~X]
~ψ

−→a D
′[~Z]

15

and a tuple spatial formulae ~ψ′ such that C ′[~Y]
�

∼l D
′[~ψ′] and ~ϕ = ~ψ; ~ψ′. Since

~p |= ~ϕ;~r, letting ~s ≡ ~ψ′;~r it follows that ~p |= ~ψ;~s. Therefore, by soundness

of S, it follows that D[~p] →a D
′[~s]. Moreover, since C ′[~Y]

�

∼l D
′[~ψ′], we have

that C ′[~r] Rloose D
′[~s]. The relation Rloose is clearly symmetric and hence it is

a bisimulation for L. Since bisimilarity ∼ is the largest bisimulation, it contains
Rloose and thus C[~p] ∼ D[~p]. �

We note that
�

∼l is not guaranteed to be an equivalence relation, since it may
fail to be transitive in some “pathological” situations (see the example in [6]). In

such cases, its transitive closure (
�

∼l)
∗ should be considered.

Summarising we can conclude that both ∼s and
�

∼l are meaningful. In fact ∼s is
always an equivalence and, in view of an automated verification, the simpler formu-
lation of ∼s makes it easier to check. Furthermore, since ∼s is the straightforward
notion of bisimilarity over the sts, existing tools and techniques could be easily

reusable. On the other hand
�

∼l provides a coarser equivalence, able to deal with
certain redundant symbolic transitions in a satisfactory way. Fixing the underlying
calculus and the application context may help in choosing the most suitable notion.

Finally, symbolic bisimilarities can also be exploited just as convenient approxi-

mations of ∼u. Furthermore, in using
�

∼l as a proof technique for ∼u, the transitivity
property expressed by the following corollary of Theorem 21 can be exploited.

Corollary 22 If S is sound and complete, then (
�

∼l)
∗⇒ ∼u.

We conclude by pointing out that we should not expect, in general, a symbolic
bisimilarity to coincide with its universal counterpart, and even for very simple
calculi it may happen that ∼s 6=∼u. Below we provide a counterexample, reworked
from [38], and we try to clarify the conceptual reasons which underly this phe-
nomenon.

Example 23 Let us extend finite ccs with the operators onea(), stop(), and with
the sos rule

P →a Q

onea(P) →a stop(Q)

Although this calculus conforms to a very basic rule structure (namely, the De
Simone format, see Section 5), it is not difficult to find a sound and complete sts
and two universal bisimilar coordinators which are not strict symbolic bisimilar.

Consider the coordinators C[X] = a.0 + a.b.0 + a.oneb(X) and D[X] = a.0 +
a.b.0+a.stop(X). Then it is easy to see that C[X] and D[X] are universal bisimilar.
Indeed C[p] behaves as a.0+a.b.0+a.b.0, if p |= �b Y , or as a.0+a.b.0+a.0, otherwise.
In both cases it is bisimilar to D[p] that behaves as a.0 + a.b.0 + a.0. The following
figure shows the symbolic transitions of the two coordinators in the (sound and
complete) sts defined using the methodology in Section 5.

C[X]

Y

a

yyttt
t
t
t

Ya
��

Y

a ''PPPPPP
D[X]

Y

a

yyss
s
s
s
s

Ya
��

Y

a ''PPPPPP

0 b.0

Zb
��

oneb(Y)

�b Zb
��

0 b.0

Zb
��

stop(Z)

0 stop(Z) 0

16

Then observe that C[X] and D[X] are not equated by strict symbolic bisimilarity

(because the transition oneb(Y)
�bZ
−→b stop(Z) cannot be simulated by any state

reached from D[X]). Note that also
�

∼l 6=∼u since in this case the special format of
the proof rules ensures that triggers are only modal formulae or variables and thus
�

∼l=∼s .
�

Intuitively this happens because instantiation is dynamic in the symbolic bisim-
ulation game, while it is decided once and forever for ∼u. We informally claim
that this situation is to some extent independent of the sts at hand and would
replicate in any reasonably irredundant sts for the calculus. As already mentioned
at the beginning, rather than considering this fact as a limitation for the symbolic
approach, we think it clarifies the conceptual differences between our approach and
that based on universal closure of coordinators.

From a more technical point of view, when sketching the proof of the possible
implication ∼u ⇒ ∼s, one soon realises that ∼u can hardly be formulated as a strict
bisimilarity. Assume C[X] ∼u D[X] (we here restrict to single-holed coordinators),
and take a generic symbolic move

C[X]
ϕ

−→a C
′[Y]

of a sound and complete sts. Then, by soundness, we know that ∀pi, qi such that
pi |= ϕ; qi we have C[pi] →a C

′[qi]. Then, since C[X] ∼u D[X], for any such
move, we must have D[pi] →a di, with di ∼ C ′[qi]. By completeness, it must be

the case that there exist ϕi, D
′
i[Z], q′i with D[X]

ϕi
−→a D

′
i[Z] such that pi |= ϕi; q

′
i

and D′
i[q

′
i] = di, meaning that in general, according to ∼u, a symbolic move of

C[X] can be simulated via the joint effort of several symbolic moves of D[X]. More

precisely, the choice of the symbolic move D[X]
ϕi
−→a D

′
i[Z] is dependent on the

components pi and qi that C[X] is going to use. Intuitively, the difference between
the symbolic and the universal approach resembles the difference between “early”
and “late” semantics, based on the time in which pi and qi are fixed (before the

choice of transition D[X]
ϕi
−→a D

′
i[Z] in ∼u, after in ∼s).

The distinction between early and late is inessential provided that either (1) each
formula uniquely characterises exactly one pi and one qi, or (2) the set of processes
satisfying any two different formulae are disjoint and all symbolic transitions with
the same source have different labels. Only having the calculus at hand, these
semantic assumptions can be verified and eventually exploited. Finding a general
way to face this issue is a challenging open problem.

4.3 Weak symbolic bisimulation

Given a calculus with a distinguished silent action τ , “weak forms” of bisimilarities
can be naturally defined in our symbolic framework. Let us first define the relations
ϕ

=⇒a and
ϕ

=⇒ that represent in a single transition, called weak (symbolic) transition,
a sequence of steps including or not a visible action. Formula ϕ, labelling the weak
transitions, arises as the composition of the triggers labelling each single step.

Definition 24 (Weak Transition) Let S be an sts for the process calculus PC.

The weak symbolic transitions are defined as follows. For coordinators C[~X] and

D[~X] we write

17

• C[~X]
~ϕ

=⇒ D[~Y] if

C[~X]
~ϕ1
−→τ

~ϕ2
−→τ · · ·

~ϕh−→τ D[~Y]

where ~ϕ = ~ϕ1; . . . ; ~ϕh, with h ≥ 0. When h = 0 it is intended that ~ϕ = ~X.

• C[~X]
~ϕ

=⇒a D[~Y] if

C[~X]
~ϕ1
−→τ · · ·

~ϕk−1

−→ τ
~ϕk−→a

~ϕk+1

−→τ · · ·
~ϕh−→τ D[~Y]

where ~ϕ = ~ϕ1; . . . ; ~ϕh, with h ≥ k ≥ 1.

We can now easily define weak symbolic bisimulation.

Definition 25 (≈w) A symmetric relation ÷ on coordinators is a weak symbolic

bisimulation if for all coordinators C[~X], D[~X] with C[~X] ÷D[~X]

1. if C[~X]
~ϕ

−→τ C
′[~Y] then D[~X]

~ϕ
=⇒ D′[~Y] and C ′[~Y] ÷D′[~Y];

2. if C[~X]
~ϕ

−→a C
′[~Y] then D[~X]

~ϕ
=⇒a D

′[~Y] and C ′[~Y] ÷D′[~Y].

The largest strict symbolic bisimulation ≈w is an equivalence relation called weak
symbolic bisimilarity

As it happens for weak symbolic bisimulation defined over components, it is
immediate to see that weak symbolic bisimilarity is a well-defined relation on co-
ordinators and it is an equivalence. Moreover, the standard relation between weak
and strong bisimilarity holds.

Theorem 26 Weak symbolic bisimilarity is coarser than strict symbolic bisimilar-
ity, i.e., ∼s⇒≈w.

Proof. Immediate by definition. �

For instance, referring to the calculus Tick, defined in Figure 3, it is not difficult
to see that the coordinators C[X] = (a) a.X and D[X] = (a)X are not strict
bisimilar. Instead, they are weak bisimilar since (the symmetric closure of) the
relation {(C[X], D[X]), (D[X], D[X])} is a weak symbolic bisimulation. Roughly,

this happens because the symbolic move C[X]
Y
−→τ D[Y] can be simulated by D[X]

by remaining idle.
Given a sound and complete sts S for a given lts L we can show that soundness

and completeness also extend to the relations
ϕ

=⇒ and
ϕ

=⇒a. We first need a simple,
but essential result on the composition of formulae.

Lemma 27 Let ~ϕ and ~ψ be tuples of formulae and let ~p, ~r be tuples of components.
Then there exists a tuple of components ~q such that ~p |= ~ϕ; ~q and ~q |= ~ψ;~r if and

only if ~p |= ~ϕ; ~ψ;~r.

Proof. By induction on the structure of ϕ (see [7] for details). �

Proposition 28 Let S be a sts.

18

1. If S is sound then

• if C[~X]
~ϕ

=⇒ D[~Y] then for all tuples of components ~p, ~q such that ~p |=
~ϕ; ~q, we have C[~p]⇒D[~q].

• if C[~X]
~ϕ

=⇒a D[~Y] then for all tuples of components ~p, ~q such that ~p |=
~ϕ; ~q, we have C[~p] ⇒a D[~q].

2. If S is complete then

• if C[~p]⇒q then there exist a symbolic transition C[~X]
~ϕ

=⇒ D[~Y] and a
tuple of components ~r such that ~p |= ϕ;~r and D[~r] = q.

• if C[~p] ⇒a q then there exist a symbolic transition C[~X]
~ϕ

=⇒a D[~Y] and
a tuple of components ~r such that ~p |= ϕ;~r and D[~r] = q.

Proof. The proofs proceed by induction on the number of steps in a weak transition
=⇒, exploting the compositionality result on formulae given by Lemma 27 (see [7]
for details). �

Then we can prove, that, as it happens for strong bisimulation, weak symbolic
bisimulation implies universal weak bisimulation.

Theorem 29 ≈w⇒≈u

Proof. The proof follows exactly the same outline as that of Theorem 15, exploiting
the results in Proposition 28 in place of soundness and completeness. �

Although not explicitly developed here, we mention that a notion of “loose weak
symbolic bisimilarity”, refining weak symbolic bisimilarity, can be defined following
the ideas in Section 4.2. Results analogous to those in such section are obtained
along the same lines.

5 Building symbolic transitions by unification

In this section we present a constructive methodology for deriving sound and com-
plete stss. As explained, the trigger labelling sts transitions is intended to repre-
sent, in the most general way, the class of processes that enable the transition to
fire, once that the coordinator has been instantiated with them, i.e., it characterises
the “minimal” structure or behavioural capability needed at each step in order to
make a proof rule applicable. This is clearly reminiscent of unification that, to-
gether with the natural interpretation of SOS proof rules as Prolog clauses, lead to
the definition of a Prolog program that defines an sts for a given process calculus.
Such generated stss can be proved sound and complete.

We start by presenting the construction for calculi whose proof rules are in
algebraic format (a quite general format including, e.g., De Simone format, as a
special case) without structural axioms. Fixing the admissible format of the rules
is needed in order to be able to derive the Prolog program.

Characterising the desired minimality of the derived trigger is not straightfor-
ward, essentially because such minimality often results to be a local property of the

19

{Xi →ai
Yi}i∈I

f(X1 , ...,Xn) →a D[Z1, ...,Zn]

(a) De Simone.

{Xi →ai
Yi}i∈I

C[X1, ...,Xn] →a D[Z1, ...,Zn]

(b) Algebraic.

{Xi →ai,j
Yi,j | 1 ≤ j ≤ mi}i∈I

f(X1 , ...,Xn) →a D[Z1, ...,Zm]

(c) GSOS.

Figure 4: sos formats.

chosen derivation (this is similar to what happens in the cited approaches for deriv-
ing bisimulation congruences). This problem is faced in Section 5.2 which provides
a formal result of minimality for the presented construction.

In Section 6 we will illustrate how the construction can be extended to deal with
structural axioms and rules in positive GSOS format.

5.1 Algebraic process calculi without structural axioms

The algebraic format (alg) [25] allows a generic coordinatorC[X1, . . . , Xn], possibly
involving more than one operator, to appear as left-hand side of the conclusion of the
proof rules, as illustrated Figure 4(b). The premises of the rule impose behavioural
constraints on some components Xi, for i ∈ I ⊆ {1, . . . , n}. Then Zi = Yi if i ∈ I
and Zi = Xi otherwise. Also Xi 6= Yj for all i, j. An algebraic process calculus is a
process calculus whose proof rules are in algebraic format.

Observe that De Simone format [22] (see Figure 4(a)) is a just a special case of
the algebraic format, where only coordinators of the kind f(X1, . . . , Xn), involving
a single operator f , are allowed to appear as left-hand side of the conclusion of a
rule.

In the following, we assume that an algebraic process calculus PC without struc-
tural axioms is fixed (the refinements needed in the presence of structural axioms
are discussed in Section 6.1). Recall that coordinators are required to be linear in
their variables. In order to have a grasp of the problems arising when relaxing the
linearity assumption, consider the ACCS coordinator X | X . Within the theory
so far presented, it would be difficult to represent with a symbolic transition the
transition a.0 + ā.0 | a.0 + ā.0 →τ 0 | 0, obtained by instantiating X with a.0 + ā.0.
In order to do that, it should be possible to specify (and derive) a sort of composite
constraint for X , like �a Y1 ∧ �ā Y2. This will be formally dealt with, and the
linearity requirement released, when treating the gsos format (Section 6.3).

An sts for PC can be specified as a Prolog program which computes the symbolic
transitions of any given coordinator.

Definition 30 (Prolog program) The Prolog program Prog(PC) associated to
the algebraic process calculus PC contains as a first clause

trs(box(A,X),A,X) :- !. (1)

where box is a new operator, not in Σ and for any proof rule in PC the program
includes a clause

trs(C[X1,...,Xn], a, D[Z1,...,Zn]) :- trs(Xi1, ai1, Yi1),...,

trs(Xik, aik, Yik).

20

where {i1, ..., ik} is the set of indexes I of the corresponding rule and where Zi =
Yi, when i ∈ I, while Zi = Xi otherwise.

The program Prog(PC) defines the predicate trs(X,A,Y) whose intended mean-
ing is “any component satisfying X can perform a transition labelled by A with
target Y ”. More precisely, given a coordinator C[X1, . . . , Xn], if the query

?- trs(C[X1, ..., Xn],a,Z).

is successful, then the corresponding computed answer substitution represents a
symbolic transition for the coordinator C[X1, . . . , Xn] with action label a: the com-
puted answer substitutions for the variables X1, . . . , Xn represent the formulae in
SLPC labelling the transition and Z the target coordinator. (We assume identity
substitution for those variables in X1, . . . , Xn not appearing in the coordinator, like
X2 in C[X1, X2] = X1).

The first clause in Prog(PC) is used only in the refutation of goals of the kind
trs(X,a,) whose first argument is a variable (since box is not an operator in
PC). In this case there is no need to impose structural requirements on X , in fact
the only requirement for any component X for doing a and becoming Y is exactly
�a Y , represented in the program as box(a,Y). Thus the goal can be proved by just
imposing such behavioural constraint on the component corresponding to X. The
cut operator in the body of clause (1) avoids that subsequent refutations are tried,
using different clauses that could be otherwise matched by the goal trs(X,a,). To
this aim, it is important that clause (1) is listed in Prog(PC) before all the other
clauses.

The second class of clauses in Prog(PC) just represent a Prolog translation of the
operational proof rules of the calculus. Each such clause imposes (by unification)
the most general structural (spatial) constraints that the unspecified components
of a coordinator should satisfy in order to make the proof rule applicable. The
requirements on the behaviour of the subcomponents, as expressed by the premises
of the corresponding proof rule, are represented by the subgoals in the body of the
clause.

The sts for the process calculus PC (over logic SLPC) specified by the Prolog
program Prog(PC) is sound and complete for the considered calculus.

Theorem 31 The sts specified by Prog(PC) is sound and complete.

Proof. The proof is divided in two separate parts. The first part (soundness) is
worked out in full detail, while for the sake of readability, the second part (com-
pleteness) is presented at an higher level of description.

Soundness. To prove soundness observe that a symbolic transitions

C[X1, . . . , Xn]
ϕ1,...,ϕn
−→ a D[Y1, . . . , Yh]

belongs to the sts if a refutation of the query

?- trs(C[X1, ..., Xn], a, Z)

with computed answer substitution Xi = ϕi and Z = D[Y1, ..., Yh] exists. By
induction on length ` of the refutation, we prove that for any ~q and ~p such that
~p |= ~ϕ; ~q a derivation for the transition C[p1, . . . , pn] →a D[q1, . . . , qh] exists.

21

• (` = 1) We distinguish two possibilities:

– The query is unified with the Prolog clause trs(box(A,Y),A,Y) :- !.

and thus C[~X] is a variable, say X .

In this case the computed answer substitution contains X = box(a, Y),

which represents a symbolic transition X
�aY
−→a Y . By definition of �, for

any process q such that p |= �aq, it holds

p →a q.

– The query unifies with a clause having empty body

trs(E[W1,...,Wm], a, F[W1,...,Wm]).

arising from a proof rule with empty premises

E[~W] →a F [~W] (2)

Note that since none of the Wi is tested in the premises, the variables
occurring in the target coordinator are again the Wi’s.

The most general unifier will be split as ~ϕ over X1, . . . , Xn and ~ψ over
W1, . . . ,Wm, both consisting only of purely spatial formulae:

C[~ϕ] = E[~ψ]

and, moreover, D[~Y] = F [~ψ].

Now, for any ~p, ~q such that ~p |= ~ϕ; ~q, since ϕ is purely spatial, we have
~p = ~ϕ; ~q and thus

C[~p] = C[~ϕ; ~q] = C[~ϕ]; ~q = E[~ψ]; ~q

Therefore, by using the proof rule (2), we obtain the desired transition

C[~p] = E[~ψ]; ~q →a F [~ψ]; ~q = D[~Y]; ~q = D[~q].

• (` > 1) In this case the successful refutation that generates the symbolic

transition for C[~X] starts by unifying the query with the head of a clause, say

trs(E[W1,...,Wm], a, F[Z1,...,Zm]) :- trs(Wi1, ai1, Ui1),...,

trs(Wik, aik, Uik).

where we recall that {i1, ..., ik} is the set of indexes I of the corresponding rule
and where Zi is either Ui, when i ∈ I , or Wi otherwise. The unification gives
a most general unifier ~ψ over X1,...,Xn,W1,...,Wm, which consists only of
purely spatial formulae (that can be read as coordinators).

By hypothesis, we have successful refutations for any trs(Wj; ~ψ, aj, Uj) for

j ∈ I , with computed answer substitutions ~ξ. We call ~θj the restriction of ~ξ

to the variables in Wj; ~ψ and ηj the restriction to Uj (we split the computed
answer substitution just for convenience of notation in the rest of the proof).
Note that due to the rule format ηj is purely spatial and that by linearity the
variables appearing in each subgoal are all disjoint. Hence the refutations for
the subgoals are “independent”, in the sense that they produce substitutions
for distinct variables of the original goal.

22

Then, in the transition

C[X1, ..., Xn]
ϕ1...ϕn
−→ a D[Y1, ..., Yh]

we have ϕi = Xi; ~ψ; ~ξ and D[~Y] = F [~Z]; ~ψ; ~ξ = F [~Z; ~ψ; ~ξ] (since the formulae

Zi; ~ψ; ~ξ are purely spatial).

Each successful refutation of trs(Wj; ~ψ, aj, Uj) determines the symbolic
transition

Wj ; ~ψ
~θj

−→aj
Uj ; ~ξ = Uj ; ηj

Since the length of such refutations is clearly less than `, by inductive hypoth-
esis, ∀~uj , ~vj such that ~uj |= ~θj ;~vj the ground transition

Wj ; ~ψ; ~uj →aj
Uj ; ηj ;~vj

exists. These transitions satisfy the premise of the proof rule which corre-
sponds to the selected Prolog rule. Moreover, it also holds

E[r1, . . . , rm] →a F [s1, . . . , sm]

whenever rj |= Wj ; ~ψ; ~uj and sj |= Uj ; ηj ;~vj = Uj ; ~ξ;~vj if j ∈ I , while ri = si
is any process otherwise.

Now, we have to show that for any ~p, ~q such that ~p |= ~ϕ; ~q we can find suitable
~r, ~s such that

C[p1, . . . , pn] = E[r1, . . . , rm] →a F [s1, . . . , sm] = D[q1, . . . qh]

Since ~ϕ = ~X; ~ψ; ~ξ we have ~p |= ~X; ~ψ; ~ξ; ~q. The formulae ~X; ~ψ are purely

spatial, hence the residual ~t of ~p after satisfying ~X; ~ψ is uniquely determined,
and ~t |= ~ξ; ~q. Then, by associativity and by definition of ~ψ:

C[~p] = C[~X ; ~ψ;~t]

= C[~X]; ~ψ;~t

= E[~W]; ~ψ;~t

= E[~W ; ~ψ;~t]

Then let ~r = ~W ; ~ψ;~t and sj = rj if j 6∈ I , while sj = Uj ; ~q otherwise. For j ∈ I ,

let also ~uj be the residual of rj after satisfying Wj ; ~ψ, i.e., rj = Wj ; ~ψ; ~uj , and

let ~vj be the residual of rj after satisfying Wj ; ~ψ; ~ξ. Then ~uj |= ~θj ;~vj and
therefore we can prove that

C[p1, . . . , pn] = E[r1, . . . , rm] →a F [s1, . . . , sm]

Recalling that D[~Y] = F [~Z]; ~ψ; ~ξ, the proof is completed by showing that

D[~q] = D[~Y ; ~q]

= D[~Y]; ~q

= F [~Z]; ~ψ; ~ξ; ~q

= F [~Z; ~ψ; ~ξ; ~q]

= F [~s]

23

Completeness. Let C[~X] be a coordinator and let ~p be a tuple of components and
q a component such that C[~p] →a q. We have to show that the goal

?- trs(C[~X], a, Z).

returns a computed answer ~X = ~ϕ and Z = D[~Y] such that ∃~r with ~p |= ~ϕ;~r and
D[~r] = q.

Observe that since C[~p] →a q there exists a refutation in Prog(PC) of the goal

?- trs(C[~p], a, q).

which does not use clause (1). Let us proceed by induction on the length ` of such
refutation.

• (` = 1) We distinguish two possibilities:

– If the coordinator C[~X] is a variable, say X , then the query

?- trs(X, a, Z).

returns X = �a Y and Z = Y. Clearly p |= �aq (and Z; q = q).

– Assume that C[~X] does not consist of a single variable. Since the query
?- trs(C[~p], a, q). is refuted in one step, it must unify with a clause
with empty body

trs(E[W1,...,Wm], a, F[W1,...,Wm]). (3)

arising from a proof rule with empty premises

E[~W] →a F [~W] (4)

Since clause (3) instantiates to trs(C[~p], a, q). there will be a most

general unifier of C[~X] and E[~W] that can be split in ~ψ, ~θ for ~X , ~W ,

respectively, such that C[~ψ] = E[~θ]. Moreover, ~ψ, ~θ can be seen as purely
spatial formulae. We also have a tuple of components ~r such that

~ψ;~r = ~p E[~θ;~r] = C[~ψ;~r] = C[~p] F [~θ; r] = q.

The above implies that there is a refutation of ?- trs(C[~X], a, Z).

with computed answer substitution ~ψ for ~X and F [~θ] for Z, correspond-
ing to a symbolic transition

C[~X]
~ψ

−→a F [~θ]

which is the desired transition. In fact, ~p |= ~ψ;~r and q = F [~θ; r] = F [~θ]; r.

• (` > 1) If C[~X] is a variable, say X , we conclude as in the first case of the
previous point. Otherwise take the first clause (corresponding to a proof rule
of PC), used in the refutation of trs(C[~p], a, q), say

trs(E[~W], a, F[~Z]) : −trs(~W,~a,~Z). (5)

where, trs(~W,~a,~Z). is a shortcut for

trs(W1, a1, Z1), . . . , trs(Wn, an, Zn).

24

and, to simplify the notation we are assuming that all variables are tested in
the sos rule (the general case would be completely analogous).

Since the head of the clause (5) instantiates to trs(C[~p], a, q), there will

be a most general unifier between C[~X] and E[~W] that can be split in ~ψ, ~θ for
~X, ~W , respectively, such that C[~ψ] = E[~θ]. Moreover, ~ψ and ~θ can be seen as
purely spatial formulae. We also have tuples of components ~r and ~s such that

~ψ;~r = ~p E[~θ;~r] = C[~ψ;~r] = C[~p] F [~s] = q.

The original ground goal is thus reduced to the following ground subgoals
obtained by instantiating the body of clause (5)

trs(~θ;~r,~a,~s).

whose refutation will be of length shorter than `. Hence, by inductive hypoth-
esis, the Prolog program will compute symbolic transitions

θi
~γi
−→ai

Gi[~Yi]

such that, for any i there exists a tuple of components ~ui satisfying ~ri |= ~γi; ~ui,
where ~ri consists of a suitable subset of components of ~r and Gi[~ui] = si. Note
that the linearity assumption on coordinators ensures that the sets of variables
in different coordinators ~θi are disjoint.

Therefore, coming back to the original coordinator, the Prolog program will
determine the symbolic transition

C[~X]
~ψ;~γ
−→a F [~G[~Y]]

where ~γ = (~γ1, . . . , ~γk) and ~G[~Y] = G1[~Y1], . . . , Gk[~Yk].

To conclude, recall that ~p = ~ψ;~r and ~ri |= ~γi; ~ui, for all i. Hence ~p |= ~ψ;~γ; ~u,

where ~u = (~u1, . . . , ~uk) and F [~G[~u]] = q, as desired. �

Observe that, according to Definition 30, any proof rule of the calculus PC

gives rise to Prolog clauses in Prog(PC) where the action label is a ground term.
While this simplifies the theoretical treatment, for practical purposes the proof rules
that are parametric in action labels can be represented by Prolog clause containing
variables. For instance, considering the proof rule

X →a X
′

X | Y →a X
′ | Y

(par)

all the corresponding clauses in Prog(PC)

trs(X1|X2, ai, Y1|X2) :- trs(X1, ai, Y1).

with ai ranging in the set of labels, can be replaced by the following single clause

trs(X1|X2, A, Y1|X2) :- trs(X1, A, Y1).

25

In this way, the Prolog program can be finite whenever the semantics of the calculus
is defined by a finite set of rule schemata. This approach will be used in the examples
which follow.

When querying the program, the variable A can either be instantiated, like in
?- trs(X, b, Y). (asking under which conditions X can perform an observable
action b) or left uninstantiated, like in ?- trs(X, A, Y). (asking under which
conditions X can perform any action). In this case, A, as well as the variables
possibly occurring in the computed answers, play the role of a “symbolic” variable
ranging over the set of actions of the calculus.

The backtracking mechanism of Prolog and the use of meta-logic operators (like
bagof and findall) allow one to determine all the symbolic transitions for any
coordinator. The answers are finitely many and they can be computed in a finite
amount of time under the assumption that the set of sos rules of the calculus is
finite.

Example 32 This example shows how ground transitions can be abstracted by
symbolic ones, and how, once that the coordinator has been fixed, the symbolic
transitions are generated. This reconsiders the main aspects of the proof of Theo-
rem 31. We consider a simple fragment of ccs with prefix and parallel composition
only, i.e., the syntax of processes is

P ::= 0 | α. P | P | P

where α ∈ Act = {a, ā | a ∈ A}, for a given set of actions A. The semantics is
defined by the following sos rules:

α.X →α X

X1 →α Y1 X2 →ᾱ Y2

X1 | X2 →τ Y1 | Y2

X1 →` Y1

X1 | X2 →` Y1 | X2

X2 →` Y2

X1 | X2 →` X1 | Y2

where ` ranges in Act ∪ {τ}.
A Prolog program for the calculus can be the following:

trs(box(A,Y),A,Y):- !.

trs(A.X1, A, X1).

trs(X1|X2, tau, Y1|Y2) :- trs(X1, A, Y1), trs(X2, ’A, Y2).

trs(X1|X2, A, Y1|X2) :- trs(X1, A, Y1).

trs(X1|X2, A, X1|Y2) :- trs(X2, A, Y2).

where ’A stands for the complementary action of A.
The transition a. b. 0 | ā. 0 →τ b. 0 | 0 can be abstracted at the symbolic level,

amongst other possibilities, by reading the component a. b. 0 | ā. 0 as an instance
of the coordinator X1 | X2, through the component tuple ~p = (a. b. 0, ā. 0). Then
the query

?- trs(X1|X2, tau, Z).

unifies with the second Prolog clause, leading to the answer Z=Y1|Y2. Each one of
the atoms in the body unifies in turn with the first clause of the program, yielding
the computed answers box(A,Y1) and box(’A,Y2) for X1 and X2 respectively. This
corresponds to the symbolic transitions below, where a ranges over the set of action

X1 | X2
�a Y1,�ā Y2

−→ τ Y1 | Y2

26

Note that ~p |= (�a Y1, �ā Y2); ~q, where ~q = (b. 0, 0) and a is a generic action,
showing how the original ground transition arises as an instance of the symbolic
transition above.
On the other hand, the above component can also be understood as an instance of
the coordinator a.X | ā. 0 where X is replaced by the component p = b.0. In this
case, the query

?- trs(a.W|’a.0, tau, Z).

unifies with the third Prolog clause, with Z=Y1|Y2 as computed substitution. Then,
both the atoms trs(a.W, A, Y1). and trs(’a.0, ’A, Y2). unify with the sec-
ond clause of the program, yielding the computed answers Y1=W and Y2=0. This
defines the symbolic transition

a.X | ā
Y
−→τ Y | 0

�

5.2 Minimality

The use of unification for the generation of the sts naturally suggests that such sts
satisfies some minimality property. We next provide a result aimed at formalising
such intuition.

Let us start by observing that we cannot expect that given a symbolic transition

C[~X]
~ϕ

−→a D[~Y] (6)

the label ~ϕ expresses the minimal constraints on ~X which allow the coordinator to
perform a generic a-labelled step. In fact, in general, according to the operational
semantics of a process calculus PC, there can be several different rules which can
be applied to let the coordinator C[~X] evolve. For instance, consider a set of proof
rules including

Y →b Z

f(X,Y) →a h(X,Z)
(r1)

Y →b Z

f(g(X), Y) →a h(X,Z)
(r2)

Then the sts computed by the Prog(PC) program contains, for a coordinator
f(X,Y), the two symbolic transitions

f(X,Y)
X′, �b Z
−→ a h(X

′, Z) f(X,Y)
g(X′), �b Z

−→ a h(X
′, Z)

Note that both transitions are needed in order to have a complete sts. In fact, in a
scenario in which b.0 →b 0, the first symbolic transition alone would not represent
the transition f(g(0), b.0) →a h(0, 0) (since it does not “consume” g()). The sec-
ond symbolic transition, labeled with the trigger (g(X ′), �b Y), is hence necessary
despite of the presence of the first transition, with the “smaller” label (X ′, �b Y),
i.e. a label imposing a weaker constraint.

Instead, if (6) is a transition of the generated sts, the label ~ϕ expresses the

minimal requirements on the unspecified components ~X which allow the transition
of C[~X] to happen according to a specific (fragment of) refutation, or equivalently,
sos derivation. Intuitively speaking, let d be the fixed initial fragment of a refutation

27

involving C[~X]. By (the proof of) correctness of the sts generated by Prog(PC),
we know that for all components ~p, ~q such that ~p |= ~ϕ; ~q we have

C[~p] →a D[~q]

with a refutation (sos derivation) which “extends” d. The minimality result below
shows that the satisfaction of ~ϕ is not only sufficient, but also necessary for the
components ~p, ~q to make such a derivation possible, and thus ~ϕ cannot be weakened.

For instance, reconsider the symbolic transition f(X,Y)
g(X′), �bZ

−→ a h(X
′, Z). In

this case the fixed initial fragment d of sos derivation consists only of rule r2. Then
for all pair of components p, p′ such that f(p, p′) →a s with a derivation which
extends d, i.e., which starts by using rule r2, we necessarily have that p |= g(X ′); q
and p′ |= �b Z; q′ for suitable q and q′.

It is worth noting that this is conceptually similar to what happens in the men-
tioned “deriving bisimulation congruences” approach, started with [43, 33], where,

roughly speaking, the labels of transitions p
C[]
−→ q do not represent the minimal

context which allows for a generic reaction, but rather the minimal context which
allow a fixed reduction rule to be applied at a fixed position.

In order to formalise these concepts, let us first introduce for any refutation
of a goal in Prog(PC) the corresponding derivation tree, which is simply a tree
(represented as a term), where nodes are labelled by the clauses used. To this aim
we will denote the clauses in Prog(PC) by r0, r1, . . . , rn, where r0 is assumed to be
clause (1) of Definition 30.

Definition 33 (derivation tree for a refutation) Let d be the refutation of
a goal ? − trs(C[X1, . . . , Xn], A, Z) in Prog(PC). The derivation tree of d, denoted by
Tr(d), is defined as Tr(d) = ri(Tr(d1), . . . ,Tr(dn)), where ri is the first clause used
in the refutation, and d1, . . . , dn is the (possibly empty) list of the refutations of
the subgoals spawned by the use of rule ri.

We next define an order on the derivation trees.

Definition 34 (order on derivation trees) The order on derivation trees is
inductively defined as

• r0 � T for any derivation tree T and

• if Ti � T ′
i for i ∈ {1, . . . k} then ri(T1, . . . , Tk) � ri(T

′
1, . . . , T

′
k).

When T1 � T2 we say that T2 extends T1.

Intuitively, the order � is a kind of prefix ordering. Roughly, T1 � T2 when T2 can
be obtained from T1 by replacing the application of clause r0, which just imposes
that a variable component X is able to perform an a-labelled transition, with a
derivation explicitly proving how such a-transition can be performed by suitably
instantiating X .

We can finally formalise the minimality result informally discussed above.

Proposition 35 (minimality) Let C[~X]
~ϕ

−→a D[~Y] be a symbolic transition gen-
erated by Prog(PC) with a refutation d. For all components ~p, s, if C[~p] →a s
is proved by a refutation d′ satisfying Tr(d) � Tr(d′) then there exists a tuple of
components ~q such that ~p |= ~ϕ; ~q and s = D[~q].

28

Proof. The proof proceeds by induction on the height ` of Tr(d).

(` = 1) In this case Tr(d) = r for some clause r in Prog(PC). We distinguish two
subcases according to the clause r used in the refutation.

• If r = r0 then the coordinators C[~X] and D[Y] are variables, X and Y re-
spectively say, and ~ϕ = �a Y . Now, for all p, q such that C[p] = p →a s, by
taking q = s we have s = D[q] and p |= ϕ; q trivially satisfied.

• If r 6= r0, then r must be a clause with empty body (corresponding to a rule
without premises) of the kind

trs(E[W1,...,Wm], a, F[W1,...,Wm]).

and the most general unifier between C[~X] and E[~W] is ~ϕ on ~X and some

other substitution ~η over ~W such that

C[~ϕ] = E[~ψ]

and, additionally, D[~Y] = F [~ψ].

Now, if C[~p] →a s with a derivation d′ such that Tr(d) � Tr(d′), it is easy to
see that Tr(d′) = Tr(d) = r, i.e., the refutation d′ uses only clause r. This

means that there is a unifier between C[~p] and E[~W], i.e., a substitution ~r
such that C[~p] = E[~r]. Moreover F [~r] = s.

By the properties of the most general unifier, there must be ~q such that

~r = ~ψ; ~q

Therefore we have

s = F [~r] = F [~ψ; ~q] = F [~ψ]; ~q = D[~Y]; ~q = D[~q].

Moreover

C[~p] = E[~r] = E[~ψ; ~q] = E[~ψ]; ~q = C[~ϕ]; ~q = C[~ϕ; ~q],

hence ~p = ~ϕ; ~q, which by definition implies that, as desired

~p |= ~ϕ; ~q.

(` > 1) In this case Tr(d) = r(T1, . . . , Tk) and thus the refutation which produces

the symbolic transition for C[~X] starts by unifying the query with the head of a
clause r, say

trs(E[W1,...,Wk], a, F[Z1,...,Zk]) :- trs(W1, a1, Z1),...,

trs(Wk, ak, Zk).

29

where, to simplify the notation, we are assuming that all variables are tested in
the sos rule (the general case would be analogous). The unification gives a most

general unifier ~ψ, ~ζ over ~X , ~W , respectively, which consists only of purely spatial
formulae (that can be read as coordinators). Hence

C[~ψ] = E[~ζ] (7)

Moreover, we have successful refutations di for any trs(Wi; ~ζ, ai, Zi), with
computed answer substitutions ~θi for the variables in Wi; ~ζ and ηi for Zi (as usual
we split the substitution for notational convenience). Each refutation di, whose
derivation tree is Tr(di) = Ti, determines a symbolic transition

Wi; ~ζ
~θi−→ai

= Zi; ηi. (8)

Additionally, if we denote by ~θ, ~η the unions of all ~θi and ηi, respectively, in the
transition

C[X1, ..., Xn]
ϕ1...ϕn
−→ a D[Y1, ..., Yh]

we have ~ϕ = ~ψ; ~θ and D[~Y] = F [~Z]; ~η = F [~η].
Now, let C[~p] →a s, i.e., the goal trs(C[~p], a, s) is provable with a refutation

d′ such that Tr(d′) � Tr(d) = r(T1, . . . , Tk). Then Tr(d′) = r(T ′
1, . . . , T

′
k), where

Ti � T ′
i . Since the refutation d′ starts by using clause r, there are substitutions

(which are actually tuple of components) ~r and ~t such that

C[~p] = E[~r] and s = F [~t] (9)

Since ~ψ is the most general unifier of C[~X] and E[~W], there must be ~p′ and ~r′ such
that

~p = ~ψ; ~p′ and ~r = ~ζ; ~r′ (10)

The subgoal after applying clause r are in this case:

trs(Wi;~r, ai, Zi;~t) = trs(Wi;~ζ; ~r′i, ai, Zi;~t)

where ~r′i denotes the components of ~r′ over the variables in Wi; ~ζ. These goals have
successful refutations d′i, such that Tr(d′i) = T ′

i , which correspond to transitions

Wi; ~ζ; ~r′i →ai
Zi;~t. Recalling that the derivation tree associated to the refutation

producing the symbolic transition (8) is Ti � T ′
i , we can apply the inductive hy-

pothesis and deduce that for all i there exists ~qi such that

Zi; ηi; ~qi = Zi;~t and ~r′i |= θi; ~qi (11)

If we denote by ~q the union of the ~qi’s we have that

s = F [~t] = F [~Z;~t] = F [~Z; ~η; ~q] = F [~Z; ~η]; ~q = D[~Y]; ~q = D[~q]

as desired.
Moreover, from the second part of (11) we have that

~r′ |= ~θ; ~q (12)

Therefore we have:

30

C[~p] = [by (9)]

= E[~r] [by (10)]

= E[~ζ; ~r′] [by (12) and the fact that |=, by definition,

is closed under contextualisation]

|= E[~ζ ; ~θ; ~q] [by (7)]

= C[~ψ; ~θ; ~q] [since ~ϕ = ~ψ; ~θ]

= C[~ϕ; ~q]

Therefore C[~p] |= C[~ϕ; ~q] and it is immediate to see that this implies that

~p |= ϕ; ~q

as desired. �

We conclude with a simple corollary which gives a slightly different view on
the minimality result. The corollary makes an explicit comparison of the labels
of symbolic transitions, showing that those in a sts generated by Prog(PC) are as
weak as possible in the sense formalised below.

For any formula ϕ of the logic SLPC let [[ϕ]] = {(p, ~q) : p |= ϕ; ~q}. Then we
say that ϕ is weaker than ψ when [[ϕ]] ⊇ [[ψ]]. Such notion extends in the obvious
component-wise way to tuples of formulae.

The next definition is intended to formalise the intuitive idea of a symbolic
transition subsuming another one.

Definition 36 (mimicking symbolic transitions) Let C[~X]
~ϕ

−→a D[~Y] be a
symbolic transition generated by Prog(PC) with a refutation d. We say that such

transition is mimicked by a correct symbolic transition C[~X]
~ϕ′

−→a D[~Y] if for all

tuples of components ~p and ~q such that ~p |= ~ϕ′; ~q, we have C[~p] →a D[~q] with a
refutation d′ such that Tr(d) � Tr(d′).

Then the following corollary holds.

Corollary 37 Let C[~X]
~ϕ

−→a D[~Y] be a symbolic transition generated by

Prog(PC). Then for any correct symbolic transition C[~X]
~ϕ′

−→a D[~Y] which mimics

the original one ~ϕ is weaker than ~ϕ′.

Proof. Let C[~X]
~ϕ

−→a D[~Y] be a symbolic transition generated by Prog(PC)
with a refutation d and assume that it is mimicked by the correct transition

C[~X]
~ϕ′

−→a D[~Y].

Let (~p, ~q) ∈ [[~ϕ′]], i.e., ~p |= ϕ′; ~q. Then by definition, we have C[~p] →a D[~q] with
a refutation d′ such that Tr(d) � Tr(d′).

Then, by Proposition 35, there is ~q′ such that D[~q′] = D[~q] and ~p |= ~ϕ; ~q′, i.e.,

(~p, ~q′) ∈ [[~ϕ]]. Note that by the first equality, ~q′ = ~q and thus (~p, ~q) ∈ [[~ϕ]]. Therefore

[[~ψ]] ⊆ [[~ϕ]] and thus ~ϕ is weaker than ~ψ as desired. �

31

6 Extending the methodology

In this section we analyse the case of calculi with structural axioms, which are dealt
with by using non-syntactical forms of unification, and we discuss the case of calculi
in positive GSOS format. These results are intended to suggest the extensibility
of the proposed approach, while an exhaustive discussion about its applicability to
the various existing formats is beyond the scope of this paper.

6.1 Algebraic process calculi with structural axioms

Consider a process calculus PC with a (non-empty) set of structural axioms E,
inducing a structural congruence ≡ over coordinators and components. We will
show that under mild conditions over the theory E, the unification-based approach
to the construction of the sts can be generalised to this case.

According to [4], given two coordinators C[~X] and D[~Y] an E-unifier is a sub-

stitution θ such that C[~X]; θ ≡ D[~Y]; θ. A complete set of most general E-unifiers

for C[~X] and D[~Y] is a set U of E-unifiers such that for any E-unifier γ there exist
θ ∈ U and a substitution δ satisfying γ = θ; δ. Then we say that E-unification is
finitary (infinitary) if all unifiable C[~X] and D[~Y] admit a finite (infinite) complete
set of most general E-unifiers. It is called nullary if a complete set of most general
E-unifiers does not exist in general.

Let us call E-Prolog an idealised Prolog interpreter which uses E-unification
instead of syntactic unification (see, e.g., [28] for the idea of combining logic pro-
gramming and equational unification). When the set of most general E-unifiers
contains more than one substitution, the interpreter chooses in a (don’t know) non-
deterministic fashion an element in the set.

Consider a program ProgE(PC) obtained from the program Prog(PC) given in
Definition 30 by replacing the first clause (1) with

trs(X,A,Y) :- var(X), X=box(A,Y), !. (13)

This is needed to ensure that such a clause will be exploited only when the source
coordinator is a variable. Keeping the old clause (1) this would have not been true.
E.g., if the the theory were E = {X ≡ 0 | X} then clause (1) could be used for
solving the goal ?- trs(X|Y, a, Z) since X | Y unifies with box(A, Z). This would
lead to the answer X = �a X′ and Y = 0, which would not be the most general one
allowing for the step to be performed.

Then we can generalise Theorem 31 to this setting.

Theorem 38 Let E be a set of structural axioms such that E-unification is not
nullary. Then the sts specified by ProgE(PC), executed by an E-Prolog interpreter,
is sound and complete.

Proof. (Sketch.) The proof is essentially the same as for Theorem 31. It can be
trivially adapted by replacing syntactical equality with structural congruence ≡. In
particular, observe that soundness only relies on the fact that, at each step, the
Prolog interpreter computes an E-unifier between a (sub)goal and the head of a
clause. Completeness uses the fact that the considered unifiers are complete sets
of most general unifiers, so that, as it happens in the absence of structural axioms,
any step of a ground refutation will arise as the instance of a refutation step done
for the corresponding coordinator. �

32

trs(X, A, Y) :- var(X), X=box(A,Y), !.

trs(A.X|‘A, tau, X).

trs(X|Y, tau, X|Z) :- trs(Y, tau, Z).

Figure 5: The prolog program for the calculus asCCS .

Observe that given a coordinator C[~X], the number of answers to the query
?- trs(C[X], a, Y) will be finite if the number of proof rules of the process cal-
culus is finite and E-unification is finitary.

Example 39 As an example let us consider a simple asynchronous ccs-like calcu-
lus asCCS , with a parallel composition operator “|”, subject to AC1 axioms, i.e.
associativity, commutativity and identity

(X | Y) | Z ≡ X | (Y | Z) X | Y ≡ Y | X X | 0 ≡ X

where 0 is a distinguished component in the calculus. Moreover, the parallel com-
position operator allows a single component to move autonomously, performing an
action that is reflected at topmost level, i.e., the proof rules for the parallel compo-
sition include

X →τ X
′

X | Y →τ X
′ | Y

(par)

and, in addition, only one rule for asynchronous communication

a.X | ā →τ X
(comm)

Note that this rule imposes that the communicating processes are close to each
other, a situation which could require the use of AC1 axioms to be reached. The
Prolog program ProgAC1(asCCS) can be found in Figure 5, where ‘a is the program
representation for ā.

Consider the coordinator C[X] = a.0 | X | a.0, and the goal

?- trs(a.0|X|a.0, tau, Z).

Then the computation proceeds as follows. First, the third clause of
ProgAC1(asCCS) can be used. Take a copy of the clause with fresh variables

trs(X1|X2, A1, Z1|X2) :- trs(X1, A1, Z1).

The set of most general AC1-unifiers between the head of the clause and the goal
includes three substitutions θi (i ∈ {1, 2, 3}) such that θi(X) = X3|X4, θi(A1) = tau,
θi(Z) = Z1|X2 and

θ1(X1) = X3|a.0, θ1(X2) = X4|a.0

θ2(X1) = X3, θ2(X2) = X4|a.0|a.0

θ3(X1) = X3|a.0|a.0, θ3(X2) = X4

Assume that substitution θ1 is chosen. Then X=X3|X4, Z=Z1|X2=Z1|X4|a.0 and
the goal is reduced to

?- trs(X3|a.0, tau, Z1).

33

Then the second clause of ProgAC1(asCCS) can be used. Take a copy of the clause
with fresh variables

trs(A2.W|’A2, tau, W).

It is easy to see that there exists a unique most general AC1-unifier η between the
head of the clause and the goal

η(W) = 0, η(X3) = ′a, η(A2) = a, η(Z1) = 0

and this concludes the refutation, with computed answer substitution X=’a|X2 and
Z=X2|a.0, corresponding to a symbolic transition

C[X]
ā|Y
−→τ Y | a.0 (14)

It is worth observing that the idea of considering coordinators up to structural
congruence and taking syntactical unification would not work. More precisely, the
sts in which the symbolic transitions of each coordinator C[~X] are obtained by

considering any C ′[~X] ≡ C[~X] and taking the symbolic transitions produced for

C ′[~X] by a standard Prolog interpreter, with syntactical unification, is not complete.
As an example, it is easy to verify that for

?- trs(a.0|X|a.0, tau, Z).

we would get the answers X = ‘a, Z = 0|a.0 and X = box(tau,Y), Z = a.0|Y|a.0

corresponding to the symbolic transitions

C[X]
ā

−→τ a. 0 | 0 C[X]
�τ. Y
−→ τ a. 0 | Y | a. 0

However this does not fully capture the behaviour of the coordinator, i.e. the
resulting sts is not complete. Indeed, the first transition is less general than (14),
obtained by resorting to AC1-unification. More explicitly, replacing X by ā | ā we
get the transition

C[ā | ā] →τ a. 0 | 0 | ā

which would not have any symbolic counterpart. �

Now, while the extension to process calculi with structural axioms and the con-
sequent use of E-unification allow the theoretical framework to be generalised quite
smoothly, it is worth observing that from a computational perspective some fur-
ther issues have to be considered. One is obviously the complexity of E-unification
which, depending on the theory E at hand, can be intractable or even undecid-
able (see [4, 27]). Additionally, as a consequence of the use of E-unification, it can
happen that some computations of the E-Prolog interpreter are infinite, when we
should simply get as answer “no”. This means that, as shown in Theorem 38, the
sts defined by ProgE(PC) is complete, in the sense that any ground transition is the
instance of a symbolic transition produced by an E-Prolog computation. However,
by the presence of infinite computation, it could be problematic to compute all the
symbolic transitions of a given coordinator, using a findall construct.

As an example, consider again the calculus asCCS with AC1 parallel composi-
tion and the same goal as in Example 39

?- trs(a.0|X|a.0, tau, Z).

34

If in the first step of the refutation we still consider the same clause as before, but
we use the most general unifier θ3 we reduce to

?- trs(X3|a.0|a.0, tau, Z).

i.e., to the starting goal, leading to a potentially infinite reduction.
It is easy to see that the problem is related to rule (par) which involves only

variables and the AC1 operator “|”. Thus, due to the presence of a neutral element
0 for parallel composition, the application of the corresponding clause does not
necessarily reduces the goal to structurally less complex ones.

While a general treatment of this problem goes beyond the scope of this paper,
we discuss the typical case of an algebraic calculi with AC1 parallel composition,
including (par) in the proof rules. In this case, a simple solution to avoid such
non-termination consists of modifying the proof rules of the calculus, according to
a transformation that does not modify its semantics. This approach follows a set
of proposals developed in order to address the study of rewriting and deduction
systems in presence of equational theories, like the AC1 equivalence axioms (see,
e.g., [29]).

The problematic rule (par) is removed and any proof rule r of the calculus where
“|” occurs in the left-hand side of the conclusion as topmost operator is replaced by
a new rule r′, obtained by r by adding a parallel generic component which stays idle
in the transition (and plays the role of accumulation variables in AC1 rewriting),
i.e. any rule r of the kind

{Xi →ai
Yi}i∈I

C1[X1, ..., Xn] | C2[Xn+1, ..., Xn+m] →a D[Z1, ..., Zn+m]

is replaced by a new rule r′

{Xi →ai
Yi}i∈I

C1[X1, ..., Xn] | C2[Xn+1, ..., Xn+m] | Xn+m+1 →a D[Z1, ..., Zn+m] | Xn+m+1

Clearly the new proof rules, like r′, are “valid” in the original proof system, and
due to the presence of the neutral element, they subsume the original rule r. Hence
the transformation does not affect the semantics of the calculus.

Now, it is easy to see that with the new set of rules, for any coordinator C[~X],
each computation starting from the goal

?- trs(C[X1, ..., Xn], A, Y)

is finite. In fact, if we define the complexity of a goal

?- trs(C[X1, ..., Xn], A, D[Y1, ..., Ym])

as the number of operators, different from |, occurring in C[X1, ..., Cn], at any
step the subgoals produced by the use of a clause will have a strictly smaller com-
plexity than the original one.

6.2 Symbolic bisimulation: examples on ACCS

After having presented stss and a constructive methodology for their definition, we
now discuss some examples based on the calculus ACCS, with structural axioms,
defined in Example 1.

35

We refer to the “canonical” sts, proved sound and complete, determined by the
Prolog construction presented above. As discussed in the previous Section 6.1, if A
denotes the AC1 axioms for the parallel operator, then the program ProgA(ACCS)
contains

trs(X,A,Y) :- var(X), X=box(A,Y), !.

as the first clause and the straightforward translation of the other proof rules of
ACCS. Moreover, in order to avoid trivial non-termination, we follow the construc-
tion described at the end of Section 6.1, i.e. the clause corresponding to rule (par)
is removed, and rule (open), which has the parallel as topmost operator, gives rise
to the clause

trs(amb(N,P) | open(N,Q) | R, tau, P|Q|R).

Additionally, recall that unification is performed up to structural axioms. Note that
some rules in Figure 2 introduce the need of spatial formulae (their left-hand sides
require specific composite structures), while the rules (par), (comm) and (amb) call
for behavioural modalities, since their premises refer to observable actions.

To have a grasp of the properties of the calculus, let us consider the two com-
ponents n[a.0 | ā.0] and m[b.0 | b̄.0], which are ambients with different names and
internal actions. Both components are able to perform an internal communication
according to rule (comm), evolving to a (deadlocked) ambient containing the nil
component 0. Straightforwardly,

n[a.0 | ā.0] ∼ m[b.0 | b̄.0],

i.e. internal actions do not distinguish ambients. On the other hand, it is easy to
note that names distinguish ambients so that, for instance, bisimilarity fails to be
a congruence for this calculus, e.g. the above bisimilar processes are distinguished
when put in parallel with open n.0 (it interacts with n[a.0 | ā.0] but not with
m[b.0 | b̄.0]).

Taking into consideration coordinators, the components n[a.0 | ā.0] and m[b.0 |
b̄.0] can be seen as (bisimilar) instances of n[X] and m[X]. It is easy to verify
n[X] 6∼s m[X], in fact, due to rule (out):

n[X]
Y |m[out n. Z|W]

−→ τ n[Y] | m[Z |W],

while m[X] has an analogous transition but with a different label and conclusion:

m[X]
Y |n[out m. Z|W]

−→ τ m[Y] | n[Z |W].

Actually, n[X] 6∼u m[X], since they are distinguished byX = k[out n.0], and hence,

by Theorem 21, n[X] 6
�

∼l m[X].
An example of coordinators related by ∼s, and hence, because of Theorems 15

and 21, also by
�

∼l and ∼, is: n[m[out n.X]] ∼s n[0] | m[a | ā.X]. In fact, the two
coordinators have the only symbolic transitions below, respectively, which lead to
obviously bisimilar coordinators:

n[m[out n.X]]
Y
−→τ n[0] | m[Y] and n[0] | m[a | ā.X]

Y
−→τ n[0] | m[Y].

Not surprisingly, n[m[out n.X]] and n[0] | m[a | ā.τ.X] are weak bisimilar.
Indeed, as before

36

n[m[out n.X]]
Y
−→τ n[0] | m[Y] and n[0] | m[a | ā.τ.X]

Y
−→τ n[0] | m[τ.Y]

and, trivially, n[0] | m[Y] ≈w n[0] | m[τ.Y].
Another example of coordinators related by weak symbolic bisimilarity but not

equivalent according to strict symbolic bisimilarity is

m[n[out m.a.b.X]] | open n.ā.0 ≈w n[m[0]] | b.open n.X

Note that in this case the weak symbolic bisimilarity identifies coordinators that
are able to exhibit the same observable action b, although they are quite different
structurally.

6.3 Positive GSOS process calculi

The positive GSOS format (gsos) [8], see Figure 4(c), requires the source of the
conclusion of any rule to be of the kind f(X1, ..., Xn), where f ∈ Σn is a single
operator and, differently from alg, not a generic context. On the other hand,
it allows more general premises where each argument Xi, whose index is in I ⊆
{1, . . . , n}, can be tested more than once. The variables Zi occurring in the target

D[~Z] of the conclusion of the rule are a subset of {Xi | 1 ≤ i ≤ n}∪{Yi,j | i ∈ I∧1 ≤
j ≤ mi}. The targets Yi,j of tested arguments and, additionally, tested variables

themselves can occur in D[~Z] (i.e., it is possible to test an argument without letting
it move). All the variables are distinct. It this setting coordinators are not assumed
to be linear in their variables.

Example 40 An example of gsos calculus is given by FCCS, the ccs fragment
of ACCS (including the rules pref, com and par, see Figure 2) extended with an
operator fork(·) and with the additional rule

P →α Q1 P →α Q2

fork (P) →α Q1 | Q2
(fork)

�

The Prolog program ProgG(PC) for a gsos process calculus PC includes, as in
the case of alg (Definition 30), the translation of the sos rules into Horn clauses:

trs(f(X1,...,Xn), a, D[Z1,...,Zn]) :- trs(Xi1, ai1, Yi1),...,

trs(Xik, aik, Yik).

where {i1, ..., ik} is the set of indexes I of the corresponding proof rule. Each Zh,
with 1 ≤ h ≤ n, can either be Yij or Xi, for given i, j according to the gsos rule
structure. Each variable Xi may occur several times within Xi1, ..., Xik and the
corresponding Yijs (possibly occurring within Z1,...,Zn) represent the residuals
obtained by the multiple tests for Xi. This fact might lead to impose multiple
(behavioural) constraints on the same component, in order to allow a transition
to happen. This require to extend the chosen sts logic SLPC with a conjunction
operator “∧”.

The clause (1) of the program in Definition 30 becomes inadequate for gsos
calculi. In fact, instead of simply recording into the variable Xi the unique corre-
sponding formula and residual, it is necessary to accumulate all the formulae and
residuals relative to multiple tests for Xi. The corresponding gsos clause uses

37

the cut operator, as in Definition 30, and a distinct term and() to accumulate
box(A,Y) terms in a list:

trs(and(X),A,Y) :- last(X,box(A,Y)), !. (15)

More precisely, this clause, the first one of the program, can unify with a goal
whose first element is either a variable or it has already been instantiated with
and([...]). Here, last(L, E) is defined so as to force L to be a list where E is
added as the last but one element and a fresh variable is kept as last element. This
allows information to be appended in the list when other premises for the same
variable Xi, now instantiated to and([...,box(a,Y),]), are considered. This
can be implemented as follows:

last([Y|],E) :- var(Y), Y = E, !.

last([|Z],E) :- last(Z,E).

The first clause is selected when the first argument in a query, say X , unifies with
a list whose head is a variable followed by any non-empty tail (note that in our
program X is initially a variable that will be forced to have such a structure, and
this guarantees that the tail is, in turn, a variable). The second clause is selected
to recursively scan a list until the condition stated by the first clause is reached.

Each sts transition C[~X]
ϕ

−→α D[~Y] is determined from the computed answer
substitution θ for trs(C[X1,...,Xn],A,Z) as follows:

(1.g) if Xi; θ = and([box(a1, Y1),...,box(ak, Yk), Yk+1]) then the ϕi com-
ponent of the trigger ϕ will be �a1 Y1 ∧ . . . ∧ �ak Yk ∧ Yk+1.

(2.g) D[~Y] is the computed answer substitution for Z. The possibility of mul-
tiply testing a variable, say Xi, and also letting it occur unchanged in
the target after a test, may lead to occurrences of Xi; θ = and([box(a1,

Y1),...,box(ak, Yk), Yk+1]) in the computed answer substitution for Z,
i.e. in D[~Y]. Each such occurrence is replaced by the variable Yk+1, which,
appearing as a conjunct in the formula for Xi, represents the continuation of
the unchanged component (see next examples).

Example 41 Consider the above introduced FCCS calculus and the coordinator
fork (a.X | Y). Amongst the computed answer substitutions returned for the query
?- trs(fork(a.X|Y),a,Z) we have:

1. X= 1, Y= 2, Z= 1| 2 | 1| 2, and

2. X= 1, Y=and([box(a, 7), 5]), Z= 1|and([box(a, 7), 5]) | a. 1 | 7

The first one determines the symbolic transition

fork (a.X | Y)
X1,Y1
−→ a X1 | Y1 | X1 | Y1

while the second leads to

fork (a.X | Y)
X1,�aY1∧Y2

−→ a X1 | Y2 | a.X1 | Y1

Note that in this case the target coordinator is obtained from the substitution for Z
by replacing the term and([box(a, 7), 5]), representing an untested occurrence
of Y , with variable Y2 as explained in (2.g) above. �

38

Example 42 Consider the FCCS calculus extended with the next GSOS rule and
the corresponding Prolog clause:

P →α Q

do(P) →α α | P
(do)

trs(do(X), a, a | X) :- trs(X, a, Y).

Given the query ?- trs(do(X),a,Z), the computed answer substitution X =

and([box(a, 1)], 2), Z = a | and[box(a, 1), 2] defines the symbolic transi-
tion

do(X)
�a.Y ∧X1−→ a a | X1

�

The result in Theorem 31 can be extended to the setting of gsos calculi, showing
that ProgG(PC), as defined above, generates a correct and complete sts. The proof
is complicated by the possible occurrence of the same variable in more goals, break-
ing the independence of the corresponding refutations. For the sake of simplicity,
the proof has been decomposed in some lemmata.

First, we characterise the substitutions, corresponding to sts formulae, deter-
mined by a ProgG(PC) program. A gsos substitution for ~X associates to each

variable in ~X either a variable or a list and([box(a1, Y1), . . . , box(ak, Yk), n]) to be
interpreted as a set of behavioural constraints, whose order is immaterial.

Definition 43 (gsos substitution) A substitution θ is a gsos substitution over
~X if for each Xi either Xi; θ = Yj or Xi; θ = and([box(a1, Y1), . . . , box(ak, Yk), n]).
For any Xi we define θLXiM = ∅ if Xi; θ = Yj and θLXiM = {a1, . . . , ak}, otherwise.

Lemma 44 Given a coordinator C[~X], each computed answer substitution θ for a
query ? − trs(C[~X], a, Z) is a gsos substitution over ~X.

Proof. By induction on the length of the refutation. �

We next define an order on substitutions. Intuitively speaking, a substitution is
smaller than another one if it is more general, i.e., if the corresponding formula is
weaker.

Definition 45 (order on gsos substitutions) Let η, η1, . . . , ηn be gsos sub-

stitutions over ~X. Then we define η v {η1, . . . , ηn} over ~X if for each Xi we have

ηLXiM ⊆ η1LXiM ∪ . . . ∪ ηnLXiM

We will write η v η1 for η v {η1}.

Roughly, we have η v {η1, . . . , ηn} over ~X when for each Xi, any constraint
box(a, Y) in Xi; η appears also in Xi; ηj , for some j.

The next technical lemma relates gsos computed answer substitutions for co-
ordinators to those for instances of the same coordinators, and it is needed by the
following lemmata. It relies on the capability implemented by the last/2 predicate
of merging substitutions for the same variable.

39

Lemma 46 Let C1[~X], . . . , Cm[~X] be coordinators and let ζ be a gsos substitution
over ~X. Then,

1. if a computed answer substitution θ exists for

? − trs(C1[~X; ζ], a1, Z1), . . . , trs(Cm[~X; ζ], am, Zm).

such that ζ; θ is a gsos substitution over ~X, then a gsos computed answer
substitution η over ~X such that η v ζ; θ over ~X, exists for

? − trs(C1[~X], a1, Z1), . . . , trs(Cm[~X], am, Zm).

2. if a gsos computed answer substitution η over ~X, exists for

? − trs(C1[~X], a1, Z1), . . . , trs(Cm[~X], am, Zm).

then a computed answer substitution θ, such that ζ; θ v {ζ, η} and ζ; θ is a
gsos substitution over ~X, exists for

? − trs(C1[~X; ζ], a1, Z1), . . . , trs(Cm[~X; ζ], am, Zm).

Proof. See [7] (by induction on the length of refutations and exploiting the definition
of the last/2 predicate).

Next two lemmata will be used in the proofs of soundness and completeness,
respectively. In the sequel we will denote by ~Xj the variables that occur in Cj [~X].

Lemma 47 Let C1[~X], . . . , Ck[~X] be coordinators. If a ProgG(PC) refutation for
the query

? − trs(C1[~X], a1, U1), . . . , trs(Ck[~X], ak, Uk).

exists with a gsos computed answer substitution θ, then a refutation for

? − trs(Cj[~Xj], aj, Uj).

exists, for any 1 ≤ j ≤ k, with a gsos computed answer substitution η such that
η v θ over ~Xj. Moreover Uj; η∗ = Uj; θ∗, where η∗ and θ∗ are obtained from η and
θ by applying the transformation described in (2.g) above.

Proof. See [7] (by Lemma 46 (1)).

Lemma 48 Let C1[~X], . . . , Cm[~X] be coordinators. If a ProgG(PC) refutation for

? − trs(Cj[~X], aj, Uj).

exists for each 1 ≤ j ≤ k with a gsos computed answer substitution ηj , then a
refutation for

? − trs(C1[~X], a1, U1), . . . , trs(Ck[~X], ak, Uk). (16)

exists with a gsos computed answer substitution θ, such that θ v {η1, . . . , ηk} over
~X. Moreover Uj; η∗j = Uj; θ∗, where η∗j and θ∗ are obtained from ηj and θ by using
the transformation described in (2.g) above.

40

Proof. See [7] (by Lemma 46 (2)).

Ultimately, the theorem about soundness and completeness for the sts generated
by the Prolog program for gsos calculi can be proved.

Theorem 49 If PC is in gsos format, ProgG(PC) defines a sound and complete
sts.

Proof. The proof follows the same structure of that of Theorem 31, the main
differences being induced by non-linearity of variables in the premises of the rules
(which is dealt by Lemma 47 for soundness and Lemma 48 for completeness).

Soundness. It is necessary to prove that given a symbolic transition of the sts

C[X1, . . . , Xn]
ϕ1,...,ϕn
−→ a D[Y1, . . . , Yh] (17)

for any ~p, ~q such that ~p |= ~ϕ; ~q a derivation C[p1, . . . , pn] →a D[q1, . . . , qh] exists.
Recall that the above transition is obtained from a successful refutation of the

query

?- trs(C[X1, ..., Xn], a, Z).

with computed answer substitution Xi = ϕ+
i , and Z = D[Y1, ..., Yh], and each

ϕi is obtained following the steps (1.g)-(2.g) above described. The proof is by
induction on z, the length of such refutation.

• (z = 1) This case, where the matching clause has empty body, works exactly
as for the corresponding case of Theorem 31.

• (z > 1) A successful refutation for a coordinator C[~X] = f(C1[~X], . . . , Cl[~X])
starts by unifying the above query with the head of a clause, say

trs(f(W1,...,Wl), a, F[Z1,...,Zm]) :- trs(Wi1, a1, U1),...,

trs(Wik, ak, Uk).

where I = {i1, . . . , ik} is the set of the indexes in the premise of the corre-
sponding proof rule. We recall that the same variable may occur more times
within {Wi1, ..., Wik} and each Zh can either be Wi or Uj, for some i and
j. Let H ⊆ I denote the set of indexes h such that Zh = Uj for some j (i.e.
Zh is the continuation of a tested variable). Unification gives a most general
unifier ψ such that for each 1 ≤ i ≤ l, Wi;ψ = Ci[~X] and Z;ψ = F[Z1, . . . , Zm],

i.e. Wij; ~ψ are coordinators. By hypothesis, a successful refutation for

?- trs(Wi1; ~ψ, a1, U1),...,trs(Wik; ~ψ, ak, Uk).

exists, with computed answer substitution ~ξ. We indicate with ~θ the restric-
tion of ~ξ relative to the variables occurring in Wi1; ~ψ ...Wik; ~ψ, i.e. ~X, and
with ~η the one relative to U1,..., Uk. Formulae in ~θ may represent a con-
junction of constraints over multiply tested variables. We indicate with ~η∗

the substitution obtained from ~η by replacing any and([...]) with a fresh
variable, with ~θ∗ the substitution obtained from ~θ by suitably adding these
fresh variables as conjuncts, as described in (2.g) above. By the rule format,

41

~η∗ is purely spatial. The union of ~θ∗ and ~η∗ is indicated as ~ξ∗. Consequently,
in (17)

ϕi = Xi; ~ψ; ~ξ∗ = Xi; ~θ∗

D[~Y] = F [~Z]; ~ψ; ~ξ∗ = F [~Z; ~ψ; ~ξ∗] where Zh; ~ψ; ~ξ∗ =

{

Wi; ~ψ if h 6∈ H

Uij ; ~η∗ if h ∈ H

since the formulae Zh; ~ψ; ~ξ∗ are purely spatial.

By Lemma 47, a successful refutation for any query

?- trs(Wij; ~ψ, aj, Uj).

exists, with computed answer substitutions ~µj for the variables in Wij; ~ψ and

νj for Uj. It holds that ~µj v ~θ over ~Xj and Uj; ν
∗
j = Uj; η

∗
j , where ~Xj are

the variables in X1, . . . , Xk occurring in Wij; ~ψ. This successful refutation
determines the symbolic transition

Wij ; ~ψ
~µ∗

j

−→aj
Uj ; η

∗
j

Since the length of every such refutation is clearly less than z, by inductive
hypothesis the above transition is sound and ∀~u,~v such that ~u |= ~µ∗

Jj
;~v the

ground transition
Wij ; ~ψ; ~u →aj

Uj ; η
∗
j ;~v (18)

exists for any j ∈ I . Each one of these transitions separately satisfies one
premise of the proof rule corresponding to the first selected Prolog clause.

We now show that each ~p, ~q such that ~p |= ~φ∗; ~q guarantee that all the premises
are satisfied and hence the ground transition can take place, i.e. for suitable
~r, ~s

C[p1, . . . , pn] = f(r1, . . . , rl) →a F [s1, . . . , sm] = D[q1, . . . , qh].

Since ~p |= ~X; ~ψ; ~ξ∗; ~q and the formulae ~X; ~ψ are purely spatial, then the resid-

ual ~t of ~p after satisfying ~X; ~ψ is uniquely determined, and ~t |= ~θ∗; ~q. Then,

by associativity and being ~ψ an unifier:

C[~p] = C[~X ; ~ψ;~t]

= C[~X]; ~ψ;~t

= f(~W); ~ψ;~t

= f(~W ; ~ψ;~t)

Let be ~r = ~W ; ~ψ;~t, then ~r |= ~W ; ~ψ; ~θ∗; ~q. For j ∈ I , let us write the compo-

nents of ~r as rj = Wj ; ~ψ; ~fj , where the components of ~fj are determined as

the residual of rj after satisfying Wj ; ~ψ.1 Then, ~fj |= θ∗j ; ~q, i.e. ~f |= ~θ∗; ~q.

1Note that differently from the case of alg, an ri component can be tested more times. Accord-
ingly, being Wjψ = Cj [~X], the components of ~θ∗j may consist of the conjunction of the constraints

imposed (over ~X) by the different tests. Each component of ~fj satisfies the corresponding con-
junction.

42

From µj v θ, it follows that for each j ∈ I fj |= µ∗
j ; ~q, i.e. all the premises

(18) are satisfied by ~r and the transition

C[p1, . . . , pn] = f(r1, . . . , rl) →a F [s1, . . . , sm]

occurs. According to the format of the selected clause (note that all the
formulae here are spatial, i.e. can be read as coordinators/components)

sj =

{

rj = Zj ; ~ψ; ~ξ∗; ~q if j 6∈ I

Uj ; η
∗
j ; ~q = Zj ; ~ψ; ~ξ∗; ~q if j ∈ I

(Note that, in order to guarantee that satisfaction with residuals works prop-
erly, sj is defined for each j ∈ I , although only sj with j ∈ H actually occurs
in the target of the transition).

Finally, F [s1, . . . , sm] = F [~Z; ~ψ; ~ξ∗; ~q] = F [~Z; ~ψ; ~ξ∗]; ~q = D[~Y]; ~q = D[~q] fol-
lows.

Completeness. It is necessary to prove that for any coordinator C[~X], a tuple of
components ~p and a component q such that C[~p] →a q, the goal

? − trs(C[~X], a, Z). (19)

returns a computed answer substitution ~X = ~ϕ+ and Z = ~η+ such that ∃ ~r with

~p |= ~ϕ;~r and Z; ~η;~r = q, where ~ϕ and ~η are obtained from ~ϕ+ and ~η+ following the
steps (1.g)-(2.g) above described. The existence of C[~p] →a q implies the existence
of a ProgG(PC) refutation for

?- trs(C[~p], a, q).

(which does not use clause (15)). Let us proceed by induction on the length z of
such refutation.

• (z = 1) As for the corresponding premise-less cases of Theorem 31 (possibly
managing the transformation (1.g)-(2.g) of computed answer substitutions).

• (z > 1) The case C[~X] = X is resolved by the modal clause, as in the corre-
sponding point of Theorem 31. Otherwise, let

trs(f(~W), a, F[~Z]) : −trs(Wi1, a1, Z1), . . . , trs(Wik, ak, Zk). (20)

be the first clause used in the refutation of trs(C[~p], a, q). The unification
of the query with the clause yields a most general unifier of C[~X]; p and f[~W],
which consists, as in the soundness part of this proof, of the purely spatial
substitution ~ψ for ~W, and a tuple of components ~s such that

C[~p] = f[~ψ;~p] C[~X] = f[~ψ] F[~s] = q.

The original ground goal is thus reduced to the k ground subgoals:

trs(Wi1;~ψ; ~p, a1, s1),..., trs(Wik;~ψ; ~p, ak, sk).

43

obtained by instantiating the body of the clause. Note that for some l, j it
may happen that Wil;~ψ; ~p = Wij;~ψ; ~p. The existence of a refutation for the
conjunction of the ground subgoals guarantees that a ProgG(PC) refutation
for each of them exists, and it is clearly shorter than z. Each one of these
refutations corresponds to the ground transition Wij; ~ψ;~p →aj sj, which oc-
curs as a premise in the first proof rule used to derive the ground transition
C[p] →a q. By inductive hypothesis, a refutation for each

trs(Wij; ~ψ, aj, Zj)

exists with computed answer substitution ~γ+
j for the variables in Wij; ~ψ and

ζ+
j for Zj. This defines the symbolic transition (with ~γj , ζj obtained as usual

according to (1.g) − (2.g) above)

Wij ; ~ψ
~γj

−→ai
Zjζj

such that, for any j there exists a tuple of components ~uj satisfying ~pj |=
~γj ; ~uj , where ~pj is a suitable subset of the components of ~p, i.e. those that
according to the rule occur in the j − th premise, and Zj ; ζj ; ~uj = sj .

By Lemma 48, a refutation for

trs(Wi1; ~ψ, a1, Z1), . . . , trs(Wik; ~ψ, ak, Zk)

exists with computed answer substitution ~γ, over the variables in ~W ~ψ, i.e.
~X, and ~ζ (as usual, form ~ζ+) over ~Z such that ~γ v {~γ1, . . . , ~γk}, ~p |= ~γ~u and

Zj ; ~ζ = Zj ; ζj .

Therefore, the query (19) unifies with the clause (20), determining the sym-
bolic transition

C[~X]
~ψ;~γ
−→a D[~Y] = F [~Z; ~ζ]

To conclude, recall that ~p |= ~γ; ~u and ~X; ~ψ;~γ = ~X;~γ, and hence ~p |= ~ψ;~γ; ~u,

and D[~u] = F [~Z; ~ζ; ~u] = F [~s] = q, as desired. �

6.4 Further notes on minimality

In Section 5.2 we have discussed to which extent the use of unification may guarantee
some property of minimality for the constructed sts’s in the case of alg process
calculi. The same issue is discussed here in the case of calculi with structural axioms
and gsos calculi, even though a detailed treatment goes beyond the scope of this
paper.

The most relevant difference between alg and gsos formats is the fact that for
calculi adhering to the latter format the possibility of multiply testing a variable in
a rule immediately leads to consider non-linear coordinators. On the other hand,
gsos rules impose simpler constraints on components, i.e. the computed answer
substitutions for the variables consist only of modal constraints, which can be easily
accumulated during the computation, and give rise to conjunctive formulas for
multiply tested variables. This has been exploited in extending the soundness and
completeness proof from alg to gsos. We conjecture that the same technique can
be used to extend the, similar in structure, proof of minimality to gsos calculi.

44

The case of alg calculi with structural equivalence, with the consequent use
of unification modulo the equivalence, appears to be more complex because of the
possibility of having several most general unifier for a given refutation. In this case,
Proposition 35 could be generalised as follows: A fixed refutation d can lead to a set

of symbolic transition C[~X]
~ϕi
−→a Di[~Yi], with i ∈ I . Then, for all components ~p, s,

if C[~p] →a s is proved by a refutation d′ satisfying Tr(d) � Tr(d′) then there exists
an index i ∈ I such that s = Di[~q] for some tuple of components ~q with ~p |= ~ϕi; ~q.
This is scope for future work.

7 Related work

The notion of sts has been influenced by several related formalisms. Symbolic ap-
proaches to behavioural equivalences can be found in [26, 39], while the idea of using
spatial logic formulae as an elegant mathematical tool for combining structural and
behavioural constraints has been separately proposed in [18, 24]. Many different
kinds of labelled transition systems for coordinators have been previously proposed
in the literature, starting from context systems [32] and structured transition sys-
tems [21], till more recent proposals like tile systems [25] and conditional transition
systems [38]. The common point is to define abstract equivalences on coordinators
by labelling the transitions with trigger-effect pairs, where the triggers express the
hypotheses on process variables under which a global transition can be performed.
Roughly, the distinguishing feature of our approach w.r.t. all the frameworks above
is the greater generality of symbolic labels which account for spatial constraints
over unspecified components.

The use of spatial formulae makes our framework tailored to a wider class of
calculi than those which essentially rely on modal formulae alone, like [32, 21, 25, 38]
above. Interestingly, the research in the above frameworks has led to the definition of
convenient specification formats that guarantee properties such as that bisimilarity
is a congruence. It would be interesting to develop similar results for our framework,
too.

The idea of using unification for building the triggering formulae comes from
Logic Programming and more precisely by its view as an interactive system pre-
sented in [13].

In case of ltss with a unique label τ (that can be regarded as reduction se-
mantics), our approach seems to share some analogies with narrowing techniques
used in rewrite systems, and it would be interesting to formally compare the two
approaches.

Some close relations exist also with the work on modal transition systems [31],
where both transitions that must be performed and transitions which are only
possible can be specified. Consequently the syntax of the calculus is extended with
two kind of prefix operators �a.() and ♦a (). We recall also the logical process
calculus of [20], which mixes ccs and a form of µ-calculus in order to allow some
components of the system to be logically specified. Our process logic exhibits some
similarities both with the calculus underlying modal transition systems and with
the logical process calculus. However, the purpose of the mentioned formalisms is to
provide a loose specification of a system, where some components are characterised
by means of logical formulae. Instead, in our case open systems are modelled within
the original calculus and the sts fully describes their semantics by using the logic
to characterise synthetically their possible transitions.

45

The issue of avoiding universal closure of coordinators finds its dual formulation
in avoiding contextual closure of components, which is a current theme of research
in the area of process calculi and reactive systems. Specifically, there are two main
scenarios. The first scenario consists of a process calculus for which bisimilarity
∼ is not a congruence (on components). One can define the largest congruence '
contained in ∼ by letting p ' q if for all contexts C[.], identity included, C[p] ∼ C[q]
holds. But note that in general ' is not a bisimulation. The largest congruence
which is also a bisimulation is called dynamic bisimilarity and is defined by allowing
context closure at each bisimulation step [36], with transitions like p →C[.] C[p] for
any p and C[.]. The second scenario concerns reactive systems equipped with reduc-
tion semantics. The idea is to synthesise an lts that respects the original reductions
and for which bisimilarity is a congruence. This is done by labelling transition with
contexts that catalyse reactions, as there is no other predefined notion of obser-
vation. In both scenarios the problem is of course to keep the branching of the
transition system as small as possible, still guaranteeing the congruence property.

To avoid universal quantification on contexts, several authors [43, 33, 40, 41, 42,
30, 12, 23] propose a symbolic transition system for components whose labels are
the “minimal” contexts necessary to the component for evolving:

p
C[.,X1,...,Xn]

−→ D[X1, ..., Xn]

means that C[p, p1, ..., pn] can reduce in one step to D[p1, ..., pn] for any p1, ..., pn,
and that C is strictly necessary to perform the step.

The technique, originally proposed in [43] with a purely set-theoretical presenta-
tion has been further refined in [33] in categorical terms, by expressing minimality in
terms of relative pushouts in pre-categories. The papers [40, 41, 42] provide a more
general and elegant framework based on groupoidal relative pushouts and groupoidal
2-categories, where the groupoid structure is used to deal with structural axioms.
A recent work recasts the groupoidal approach in terms of double categories and it
also investigates weak equivalences [12]. Finally, some relaxed equivalences, called
semi-saturated, have been considered in [9], and it has been shown that the relative
pushouts approach can be applied also to graph rewriting systems [23].

All the above categorical approaches are very general, robust and elegant, but
except for [43] they are not “constructive”, in the sense that the context-labelled
transitions are characterised very precisely from the mathematical point of view,
but in general it cannot be said how to construct them starting from the operational
rules of the calculus. On the contrary, our approach provides a constructive way
of defining a tractable symbolic transition system, as explained in Section 5. As a
future work, it could be worth investigating the connections with [30], which looks
very close to the spirit of our approach.

Regarding the symbolic systems in [43], it seems that they could be comple-
mented and made more efficient by exploiting our technique. In fact, even if there
transitions always depart from components, they may lead also to contexts (like D
above), over which bisimulation is defined via universal closure. Thus, the problem
of universal quantification is just shifted from contexts to components (which is the
problem we have addressed).

46

8 Conclusions

We have presented a semantic framework for open processes, here represented as
suitable coordinators that can evolve autonomously or dynamically interact with
other coordinators and components. Our approach can be said to be variable-driven
instead of name-driven (the distinction is explained in the introduction), because the
openness of coordinators is modelled by placeholders and composition corresponds
to substitution. The operational semantics of coordinators is expressed by symbolic
transition systems, whose labels include spatial and modal formulae that constrain
the components to be inserted in the coordinator before interaction can take place.
One advantage is that the symbolic transition system is typically more tractable
than the universal closure on all components. Furthermore, for open systems, the
dynamic feeding of coordinators can be more appropriate than static closure.

On top of the operational semantics, we have discussed how to derive some
abstract semantics:

• Strict bisimilarity ∼s is a straight extension of the standard bisimilarity on
labelled transition systems.

• Loose bisimilarity
�

∼l relaxes the structural constraints imposed by spatial
formulae, solving in part the problem of redundant symbolic transitions which
might cause ∼s to distinguish “too much”.

• Weak bisimilarity ≈w is another relaxation of ∼s. It is more appropriate
for those calculi that include a silent action τ for internal (non-observable)
computations.

For sound and complete stss, it is shown that ∼s and
�

∼l imply ∼u and that ≈w

implies ≈u (where ∼u and ≈u are defined by universal closure).
Interestingly, in many cases sound and complete symbolic transition systems

can be derived automatically just starting from the sos specification of the process
calculus, making our approach constructive. The branching width of the synthesised
sts is kept to a minimal extent by exploiting most general unifiers and the cut
operator.

The results above constitute just the core theory of our framework. Other issues
like congruence properties, trace equivalences, and redundancy freeness of symbolic
transitions have been discussed in [6].

Future work will include the study of more complex examples and applications,
the treatment of nominal calculi (thus reconciling the variable-driven approach with
the name-driven approach), and the investigation of specification formats and ad-
ditional hypotheses that allow symbolic equivalences to most suitably match their
corresponding universal closures.

In particular, regarding nominal calculi, we plan to develop the treatment of
names and name restriction in order to deal with the modelling of fresh and re-
stricted/secret resources. The idea will be to extend the notion of sts and the un-
derlying process logic so as to deal with a logical notion of freshness, possibly taking
inspiration from [15, 16]. The higher-order unification mechanism of λ-Prolog [34]
could provide a convenient framework for the construction of the relative sts. An-
other interesting related work in this respect is [44], where a model checker for the
π-calculus has been developed in tabled logic programming by using variables and
unification to abstract over classes of fresh and restricted names.

47

Practical applications of our approach seems to be possible in the field of secu-
rity and protocol verification in particular. Indeed, process calculi have been tra-
ditionally used for verification exploiting symbolic semantics and unification-based
approaches for dealing with the infiniteness of the execution environments, typically
due to the unconstrained generative power of intruders (see, e.g. [1, 19, 10, 11]).
Such similarities are worth being further investigated.

Finally, the Prolog-based construction of stss can be further pursued in an
open and dynamic system engineering perspective [2, 3], in which, for instance,
the use of meta logic constructs for the programmable definition of transitions and
more specific reasoning about the structure of the calculus, or the hypothetical,
assumption-based reasoning about formulae, e.g., “under which assumptions the
process P | X can evolve so as to satisfy a given property?”, seems to be of interest.

48

References

[1] M. Abadi and M. Fiore. Computing symbolic models for verifying crypto-
graphic protocols. In 14th Computer Security Foundations Workshop (CSFW-
14), pages 160–173. IEEE, Computer Society Press, 2001.

[2] R. Allen and D. Garlan. A formal basis for architectural connection. ACM
Trans. Softw. Eng. Methodol., 6(3):213–249, 1997.

[3] L.F. Andrade, J.L. Fiadeiro, J. Gouveia, G. Koutsoukos, and M. Wermelinger.
Coordination for orchestration. In F. Arbab and C. L. Talcott, editors, Pro-
ceedings of COORDINATION’02, volume 2315 of LNCS, pages 5–13. Springer,
2002.

[4] F. Baader and J. H. Siekmann. Unification theory. In D. M. Gabbay, C. J.
Hogger, J. A. Robinson, and J. H. Siekmann, editors, Handbook of Logic in
Artificial Intelligence and Logic Programming (2), pages 41–126. Oxford Uni-
versity Press, 1994.

[5] P. Baldan, A. Bracciali, and R. Bruni. Bisimulation by unification. In H. Kirch-
ner and C. Ringeissen, editors, Proceedings of AMAST ’02, volume 2422 of
LNCS, pages 254–270. Springer, 2002.

[6] P. Baldan, A. Bracciali, and R. Bruni. Symbolic equivalences for open systems.
In C. Priami and P. Quaglia, editors, Global Computing: IST/FET Interna-
tional Workshop, GC 2004, volume 3267 of LNCS, pages 1–17. Springer, 2005.

[7] P. Baldan, A. Bracciali, and R. Bruni. A semantic framework for open pro-
cesses. Technical Report TR-07-09, Department of Computer Science, Univer-
sity of Pisa, 2007. Available at http://compass2.di.unipi.it/TR/Files/

TR-07-09.pdf.gz.

[8] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. Journal
of the ACM, 42(1):232–268, 1995.

[9] F. Bonchi, B. Konig, and U. Montanari. Saturated semantics for reactive
systems. In Proceedings of LICS’06, pages 69–80. IEEE, 2006.

[10] M. Boreale. Symbolic trace analysis of cryptographic protocols. In F. Orejas,
P.G. Spirakis, and J. van Leeuwen, editors, Proceedings of ICALP’01, volume
2076, pages 667–681. Springer, 2001.

[11] A. Bracciali, G. Baldi, G. Ferrari, and E. Tuosto. A coordination-based
methodology for security protocol verification. In N. Busi, R. Gorrieri, and
F. Martinelli, editors, ENTCS, volume 121. Elsevier, 2005.

[12] R. Bruni, F. Gadducci, U. Montanari, and P. Sobociński. Deriving weak bisim-
ulation congruences from reduction systems. In M. Abadi and L. de Alfaro,
editors, Proceedings of CONCUR’05, volume 3653 of LNCS, pages 293–307.
Springer, 2005.

[13] R. Bruni, U. Montanari, and F. Rossi. An interactive semantics of logic pro-
gramming. Theory and Practice of Logic Programming, 1(6):647–690, 2001.

49

[14] L. Caires. A Model for Declarative Programming and Specification with Con-
currency and Mobility. PhD thesis, Departamento de Informática, Faculdade
de Ciências e Tecnologia, Universidade Nova de Lisboa, 1999.

[15] L. Caires and L. Cardelli. A spatial logic for concurrency (part I). In
N. Kobayashi and B. Pierce, editors, Proceedings of TACS, volume 2215 of
LNCS, pages 1–37. Springer, 2001.

[16] L. Caires and L. Cardelli. A spatial logic for concurrency (part ii). In L. Brim,
P. Jancar, M. Kret́ınský, and A. Kucera, editors, Proceedings of CONCUR’02,
volume 2421 of LNCS, pages 209–225. Springer, 2002.

[17] L. Cardelli and A. Gordon. Mobile ambients. In M. Nivat, editor, Proceedings
of FoSSaCS’98, volume 1378 of LNCS, pages 140–155. Springer, 1998.

[18] L. Cardelli and A.D. Gordon. Anytime, anywhere. modal logics for mobile am-
bients. In Proceedings of 27th ACM Symposium on Principles of Programming
Languages, pages 365–377. ACM, 2000.

[19] E.M. Clarke, S. Jha, and W. Marrero. Using state space exploration and a
natural deduction style message derivation engine to verify security protocols.
In IFIP Working Conference on Programming Concepts and Methods (PRO-
COMET), 1998.

[20] R. Cleaveland and G. Lüttgen. A logical process calculus. In U. Nestmann and
P. Panangaden, editors, ENTCS, volume 68(2). Elsevier, 2002.

[21] A. Corradini and U. Montanari. An algebraic semantics for structured tran-
sition systems and its application to logic programs. Theoretical Computer
Science, 103:51–106, 1992.

[22] R. De Simone. Higher level synchronizing devices in MEIJE–SCCS. Theoretical
Computer Science, 37:245–267, 1985.

[23] H. Ehrig and B. König. Deriving bisimulation congruences in the DPO ap-
proach to graph rewriting. In I. Walukiewicz, editor, Proceedings of FoS-
SaCS’04, volume 2987 of LNCS, pages 151–166. Springer, 2004.

[24] J.L. Fiadeiro, T. S. E. Maibaum, N. Mart́ı-Oliet, J. Meseguer, and I. Pita.
Towards a verification logic for rewriting logic. In Proceedings of WADT ’99,
pages 438–458. Springer, 2000.

[25] F. Gadducci and U. Montanari. The Tile Model. In G. Plotkin, C. Stirling,
and M. Tofte, editors, Proof, Language and Interaction: Essays in Honour of
Robin Milner, pages 133–166. MIT Press, 1998.

[26] M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer Sci-
ence, 138:353–389, 1995.

[27] A. Herold and J. H. Siekmann. Unification in abelian semigroups. J. Autom.
Reasoning, 3(3):247–283, 1987.

[28] S. Hölldobler. Foundations of Equational Logic Programming, volume 353 of
LNCS. Springer, 1989.

50

[29] J. P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of
equations. SIAM Journal of Computing, 15, 1986.

[30] B. Klin, V. Sassone, and P. Sobociński. Labels from reductions: towards a
general theory. In J. Fiadeiro and J. Rutten, editors, Proceedings of CALCO’05,
volume 3629 of LNCS, 2005.

[31] K. G. Larsen and B. Thomsen. A modal process logic. In Proceedings of LICS,
pages 203–210. IEEE, 1988.

[32] K.G. Larsen and L. Xinxin. Compositionality through an operational semantics
of contexts. In M.S. Paterson, editor, Proceedings of ICALP’90, 17th Interna-
tional Colloquium on Automata, Languages and Programming, volume 443 of
LNCS, pages 526–539. Springer, 1990.

[33] J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems.
In C. Palamidessi, editor, Proceedings of CONCUR’00, volume 1877 of LNCS,
pages 243–258. Springer, 2000.

[34] D. Miller and G. Nadathur. Higher-order logic programming. In Handbook
of Logics for Artificial Intelligence and Logic Programming, pages 499–590.
Clarendon Press, 1990.

[35] R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS.
Springer, 1980.

[36] U. Montanari and V. Sassone. Dynamic congruence vs. progressing bisimula-
tion for CCS. Fundamenta Informaticae, 16(1):171–199, 1992.

[37] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, Computer Science Deapartment, 1981.

[38] A. Rensink. Bisimilarity of open terms. Information and Computation, 156(1-
2):345–385, 2000.

[39] D. Sangiorgi. A theory of bisimulation for the π-calculus. Acta Informatica,
33(1):69–97, 1996.

[40] V. Sassone and P. Sobocinski. Deriving bisimulation congruences using 2-
categories. Nordic Journal of Computing, 10(2):163–183, 2003.

[41] V. Sassone and P. Sobocinski. Locating reaction with 2-categories. Theor.
Comput. Sci., 333(1-2):297–327, 2005.

[42] V. Sassone and P. Sobocinski. Reactive systems over cospans. In Proceedings
of LICS’05. IEEE, 2005.

[43] P. Sewell. From rewrite rules to bisimulation congruences. In D. Sangiorgi and
R. de Simone, editors, Proceedings of CONCUR’98, volume 1466 of LNCS,
pages 269–284. Springer, 1998.

[44] P. Yang, C.R. Ramakrishnan, and S.A. Smolka. A logical encoding of the
pi-calculus: Model checking mobile processes using tabled resolution. In L.D.
Zuck et al., editor, Proceedings of VMCAI’03, volume 2575 of LNCS, pages
86–101. Springer, 2003.

51

