
Unfolding Grammars in Adhesive Categories?

Paolo Baldan1, Andrea Corradini2, Tobias Heindel3,
Barbara König3, and Pawe l Sobociński4

1 Dipartimento di Matematica Pura e Applicata, Università di Padova, Italy
2 Dipartimento di Informatica, Università di Pisa, Italy

3 Abteilung für Informatik und Angewandte Kognitionswissenschaft, Universität
Duisburg-Essen, Germany

4 ECS, University of Southampton, United Kingdom

Abstract. We generalize the unfolding semantics, previously developed
for concrete formalisms such as Petri nets and graph grammars, to the
abstract setting of (single pushout) rewriting over adhesive categories.
The unfolding construction is characterized as a coreflection, i.e. the
unfolding functor arises as the right adjoint to the embedding of the
category of occurrence grammars into the category of grammars.

As the unfolding represents potentially infinite computations, we need to
work in adhesive categories with “well-behaved” colimits of ω-chains of
monomorphisms. Compared to previous work on the unfolding of Petri
nets and graph grammars, our results apply to a wider class of systems,
which is due to the use of a refined notion of grammar morphism.

1 Introduction

When modelling systems one often needs a truly concurrent semantics providing
explicit information concerning causality, conflict and concurrency of events in
computations. This is clearly the case if one wants to understand and investigate
the inherent concurrency of a given system, but truly concurrent models are also
a cornerstone of verification techniques based on partial order methods [17]. In
fact, the latter avoid the enumeration of all possible interleavings of events, and,
in this way – especially in the case of highly concurrent systems – yield very
compact descriptions of the behaviour of a system.

One such partial order method is the unfolding approach: it “unravels” a
system and produces a structure which fully describes its concurrent behaviour,
including all reachable states and the mutual dependencies of all possible steps.

Unfolding techniques were first introduced for Petri nets and later extended
to several other formalisms, e.g. to graph transformation systems, which in turn
generalize (various extensions of) Petri nets. However, there are many types of
graph transformation formalisms – based on undirected and directed graphs,
hypergraphs, graphs with scopes, graphs with second-order edges, and so forth.

? Supported by DFG project SANDS and project AVIAMO of the University of
Padova.

Hence a more abstract notion of unfoldings is called for, which exhibits the
“essence” of the unfolding technique underlying all these special cases.

To this aim, we propose an abstract unfolding procedure which applies uni-
formly to all these rewriting mechanisms. Following the line of research of [9,
14], we shall regard system states as objects of a category C satisfying suitable
properties. Part of the properties of C ensure a meaningful notion of C-object
rewriting, while other additional properties are required to guarantee, first, that
the unfolding procedure is feasible and, second, that the unfolding can be char-
acterized as a co-reflection in the style of [20].

The approach to rewriting that we will use is the single pushout approach
(spo) [16]. This is one of the most commonly used algebraic approaches to rewrit-
ing, alternative to the double pushout (dpo) approach [10], where some subtle
complications due to the inhibiting effects of dpo rewriting are avoided.

As a categorical framework we consider adhesive categories [14], which turn
out to be appropriate for spo rewriting as the needed pushouts in the partial
map category Par(C) can be shown to exist. After having provided an algorithm
to construct all finite prefixes of the unfolding, a crucial step consists in join-
ing these parts into a single structure. To ensure that this is possible, we need
that colimits of ω-chains of monomorphisms exist and satisfy suitable proper-
ties. Adhesive categories having sufficiently well-behaved colimits of ω-chains of
monomorphisms will be called ω-adhesive (see also [12, 8]).

The main result states that the unfolding construction induces a coreflection,
i.e. it can be expressed as a functor that is right adjoint to the embedding of
the category of occurrence grammars, the category where unfoldings live, into
the category of all grammars. In order to define the category of grammars we
introduce an original notion of grammar morphism which is similar to the graph
grammar morphisms proposed in [4] but more concrete; as a consequence, we
can treat uniformly the whole class of grammars, without the need to restrict to
so-called semi-weighted grammars as it was done in several approaches for Peri
nets (see, e.g. [18]) and for graph grammars [4].

Roadmap: In order to motivate at a more intuitive level the definitions and
constructions which will follow, we first sketch the general ideas of our work.
Note that we work in a setting of abstract objects (which could be sets, multisets,
graphs, etc.) which are rewritten according to a rule by removing (the image
of) its left-hand side and by gluing its right-hand side to the remaining object.
According to the spo approach, the left- and right-hand sides of a rule are related
by a partial map, i.e. a span L��K → R in the underlying category where the left
leg is a mono. As it is usually done in unfolding approaches we restrict to linear
rules where both legs are mono; for a schematic representation see Figure 1(a).

A rule essentially indicates what is deleted (), what is preserved () and
what is created (). This can either be represented by a span as in Figure 1(a)
or by a combined representation (see Figure 1(b)). Very roughly, given a (linear)
rule L��K ��R (or L ⊇ K ⊆ R in a more set-based notation), an object G
that contains the left-hand side L is rewritten to G\(L\K)∪R. This however is
properly defined only if the complement exists.

��

K RL

��

(a) (b)

(c)

Fig. 1. (a) Rule as a partial map; (b) Combined rule representation; (c) Schematic
representation of an unfolding step

In a general setting the so-called dangling condition issue arises. In the case
of graphs, the dangling condition can be understood as follows: what happens
if a node is to be removed, and such a node is attached to an edge which is not
explicitly deleted? There are two ways to resolve this issue: the dpo solution
which forbids the rewriting step, and the spo solution which removes the edge.
Since the inhibiting effects of the first solution lead to serious complications
in the theory, we follow the latter path, which, as we will discuss, amounts
to defining the term G\(L\K) using the more general construction of relative
pseudo-complements, known from lattice theory.

The unfolding of a fixed start object provides a partial order representation
of the set of derivations in the grammar starting from such an object. Intuitively
the construction works as follows: look for an occurrence of a left-hand side of a
rule and, instead of replacing it, attach the right-hand side as in Figure 1(c) and
record the occurrence of the rule. Doing this iteratively one obtains a growing
object, called a type object, which is possibly infinite, and a set of rules that
describe the dependencies on this type object.

Now, in order to characterize the unfolding construction abstractly and to
show its universality, we will need the following concepts:

– A notion of category which allows to define (spo) rewriting properly: For
this we will use adhesive categories which can be used for defining abstractly
a notion of rewriting which enjoys suitable Church-Rosser properties. (Sec-
tion 2)

– An analogue of occurrence nets: As the unfolding of a Petri net is a special
kind of net, the unfolding construction in this abstract setting will produce a
special kind of grammar, which will be characterized as an occurrence gram-
mar. In occurrence grammars suitable notions of causality, concurrency and
conflict can be defined, allowing for a “static” characterization of reachable
states as concurrent objects. (Section 4)

– Well behaved ω-colimits: In order to be able to construct potentially infinite
unfoldings, we have to be able to glue together a countable chain of finite pre-
fixes of the unfolding. To this aim we require that colimits of ω-chains exist
and are well-behaved: adhesive categories enjoying this property are called
ω-adhesive. The notion of ω-adhesivity is a natural extension of adhesivity
that enjoys several closure properties. (Section 5)

– A category of grammars and the coreflection result: Finally we will present a
coreflection result, i.e. we will show that the unfolding is in a sense the “best”

approximation of the original grammar in the realm of occurrence grammars.
In order to do this we have to introduce a category of grammars, defining a
suitable notion of grammar morphism. (Section 5)

2 Adhesive categories for SPO rewriting

We will use adhesive categories [14] as a basis for the rewriting framework. For
this we fix an (adhesive) category C to which all objects and morphisms belong.

Definition 1 (Adhesive category). A category is adhesive if

1. it has all pullbacks;
2. pushouts along monomorphisms exist, i.e. for each span B �f− A �m� C

with monic m, a pushout B −n�D �g− C exists, yielding a pushout square
B
D
↓q
←
←↓

A
C;

3. all pushouts along monos are Van Kampen squares, i.e. given a cube diagram
as shown below with: (i) m monic, (ii) the bottom square a pushout and
(iii) the back squares pullbacks, we have that the top square is a pushout iff
the front squares are pullbacks.

B C

A

D

B′ C ′
A′

D′

f m

⇒

 B C

A

D

B′ C ′
A′

D′

m

⇐⇒

B C

A

D

B′ C ′
A′

D′

m

It is known that every topos is adhesive [15]. The subobjects of an object in
an adhesive category form a distributive lattice, a fact which we will make more
precise in the following.

Definition 2 (Subobject poset). Let T ∈ C be an object. Two monomor-
phisms a : A �� T , a′ : A′ �� T are isomorphic if there exists an isomorphism
i : A→ A′ with a = a′ ◦ i. Such an equivalence class is called the subobject rep-
resented by a. Then the subobject poset 〈Sub(T),v〉 has isomorphism classes
[a : A��T] of monomorphisms over T as elements. Further, given two monomor-
phisms a : A �� T and b : B �� T , the inclusion [a] v [b] holds if there exists
j : A ��B such that a = b ◦ j.

Proposition 3 (Distributive subobject lattices [14]). Any subobject poset
in an adhesive category is a distributive lattice, where the meet [a] u [b] of two
subobjects [a], [b] is obtained by taking the pullback of their representatives and

the join [a] t [b] is obtained by taking a pullback, followed by a pushout (i.e.
adhesive categories have effective unions).

T

A

B

AuB

a

b

aub
T

A

B

AuB AtB

a

b

atb

Another operation on subobjects that is directly connected to the spo rewrit-
ing mechanism is relative pseudo-complementation [7] (cf. Proposition 6).

Definition 4 (Relative pseudo-complement). Let 〈L,v〉 be a lattice. The
relative pseudo-complement (rpc) of a with respect to b, written a Z− b, is an
element d satisfying a u x v b ⇐⇒ x v d for all x ∈ L. It is unique if it exists.

The lattice L is relatively pseudo-complemented (rpc) if the rpc a Z− b
exists for all pairs a, b ∈ L.

In a finite distributive lattice the rpc of a w.r.t. b always exists and can be
obtained as a Z− b =

⊔
{y | a u y v b}. We consider the following two special

cases:

– In the case of a powerset lattice, given two sets B,A ∈ ℘(M), the rpc of A
w.r.t. B, is the set M \ (A \B) = {m ∈M | m /∈ A or m ∈ B}.

– In the case of subobject lattices, if [a], [b] ∈ Sub(T), with [a] w [b], the rpc
[c] = [a] Z− [b] with c : (A Z− B)��T gives rise to a particular pullback square
A
T

��qq→
→�� B

A7 B.
In particular, note that that the rpc [a] Z− [a] is [idT] (if the top arrow of
the pullback is an iso so is the bottom arrow).
As an example we consider the category of directed graphs and graph mor-
phisms (i.e., the functor category Set•⇒•) which is known to be a topos and
thus adhesive. Given the two graph inclusions shown in (a) below, the rpc
is given in (b) and yields the pullback square shown in (c). This construction
corresponds to taking the largest pullback complement.

�� �� ∅
(a)

��
(b)

∅

(c)

Having relatively pseudo-complemented subobject lattices will be important
for spo rewriting. In spo rewriting a rule is essentially a partial map which
specifies what is deleted, what is preserved and what is created. Given a category
C with pullbacks along monomorphisms, its category of partial maps is defined
as follows (see [19]).

Definition 5 (Partial maps). The category Par(C) of partial maps (in C) has
the same objects as C, i.e. ob(Par(C)) = ob(C). An arrow in Par(C) is a C-span

A�m�X −f� B with monic m, taken up to isomorphisms at X (Fig. 2(a)). It
is called a partial map and is written (m(X)f〉 : A ⇀ B or just (m, f〉 : A ⇀ B.

If m is an isomorphism, then (m, f〉 is called a total map. The identity on an
object A is (idA, idA〉 : A ⇀ A (Fig. 2(b)); composition is defined via pullbacks
(Fig. 2(c)).

(a)

A X

Y

B
m

n

f

g∼ =

(m,f〉

(b)

A A A
id id

idA

(c)

A X

B

U

Z C
m

f k

h

p q

(m,f〉 (n,g〉

(n,g〉◦(m,f〉

Fig. 2. Diagrams showing partial maps.

Note that a partial map (m, f〉 : A ⇀ B is monic in Par(C) if and only if it is
total and f is monic in C; hence we often write C�g�D instead of C−(id,g〉⇀D.

Proposition 6 (Partial map pushouts). Let C be an adhesive category. Then
in Par(C) pushouts along monomorphisms exist if and only if subobject lattices
in C are relatively pseudo-complemented.

The pushout can be obtained as depicted below. Note that the vertical partial
maps are monic and hence we omit the first legs which are isos. Starting from
the diagram on the left, one first obtains D as rpc of m w.r.t. m ◦ α and then
constructs C as pushout of d and β in C.

A

L K R
α β

m

DA C

L K R
α β

m

ε

m7 m◦α

η

nd

Besides assuming that C is adhesive we also require that the operation of
taking rpcs is stable under pullback (in the sense of Lemma 1.4.13 in [13]), a fact
needed later to show that spo rewriting is preserved by grammar morphisms. All
toposes and all adhesive categories known to the authors satisfy this requirement.
Note that it would also be possible to develop the theory in another setting such
as Heyting categories [13].

3 Grammars and grammar morphisms as simulations

The basic entities of single-pushout rewriting are rules, which are partial maps,
and grammars, which are collections of rules with a start object. As it is stan-
dard in unfolding approaches, we restrict to linear and consuming rules. Further,
rewriting amounts to taking pushouts along the rules of a grammar.

Definition 7 (Rules and SPO rewriting). A C-rule is a partial map span
q = L�α�K −β�R. It is called linear if β is monic and consuming if α is not
an isomorphism. We denote by RC the class of consuming, linear C-rules.

Let A ∈ C be an object. A (monic) match for a rule q = L �α� K �β� R
into A is a monomorphism m : L �⇀ A in Par(C). Then q rewrites A (at m)
to B, written A Z=〈q,m〉⇒ B or simply A Z=q⇒ B, if there is a pushout square
L
A ↼q

↼
↽↽
R
B in Par(C), i.e. if a pushout A−b⇀B↼n−R of A�m�L−(α,β〉⇀R exists;

in this situation A Z=〈q,m〉⇒ B is also referred to as an spo rewriting step.

Example 8. The graph S = models a tiny network: vertices are network
nodes, edges are directed network links, and looping edges represent stored mes-
sages. Further q1 = �� �� and q2 = �� ∅ �� ∅ model message
dispatching and failure of network nodes, respectively. Now q1 can rewrite S,
namely Z=q1⇒ . In the latter state, the failure of the middle net-
work node is captured by Z=q2⇒ , i.e. dangling edges are removed.

Definition 9 (Slice category). For an object T ∈ C, the slice category over T ,
denoted C↓T , has C-morphisms A−a�T with codomain T as objects. A C↓T -
morphism ψ : (A−a�T) → (B−b�T) is a C-morphism ψ : A → B satisfying
a = b ◦ ψ. Further, we denote by | |T : C↓T → C the obvious forgetful functor,
mapping A−a�T to A, and acting as the identity on morphisms.

A grammar will be defined as a set of rules with a start object. This is in
analogy to Petri nets where we regard the latter as a set of transitions with
an initial marking. More precisely, as described in detail in [4], the token game
of a Petri net with place set P can be modelled by spo rewriting in the slice
category S↓P , where S is the category of (finite) sets and functions: multisets are
encoded as functions with co-domain P . Abstracting away from sets, we work
in the slice category C↓T for a given “place” object T , also called type object.

Example 10. Fixing the type graph T = , we give a typed version of Example 8.
The double fins correspond to network links, i.e. the typed version of is

where the morphisms into T is the unique one preserving the fins; the
typed rules are given by �� �� and ��∅ ��∅.

Notation: We introduce a convention for rules q ∈ RC↓T : we will always assume
q = lq �αq� kq �βq� rq and |q|T = Lq �αq�Kq �βq�Rq ∈ RC , where the latter
is the obvious untyped version of q.

If C is adhesive and rpcs are stable under pullback, then C↓T has the same
properties (cf. Proposition 29 and [14]). Now typed grammars are defined as
follows.

Definition 11 (Typed grammar). Let T ∈ C be an object called the type
object. A T -typed grammar G is a pair G = 〈Q, s : S → T 〉 where Q ⊆ RC↓T is
a set of linear, consuming C↓T -rules, and S−s�T ∈ C↓T is the start object.

The rewriting relation over C↓T -objects associated with G is defined by
a Z=G⇒ b if a Z=q⇒ b for some q ∈ Q; further an object a ∈ C↓T is reach-
able in G if s Z=G⇒∗ a, where Z=G⇒∗ is the transitive-reflexive closure of Z=G⇒.

In the rest of the paper we restrict ourselves to finite grammars.

Definition 12 (Finite grammar). Let G = 〈Q, s : S → T 〉 be a grammar;
then G is finite if the start object and all left and right hand sides are finite, i.e.
Sub(S) is finite and Sub(Lq), Sub(Rq) are finite for all q ∈ Q. Moreover for each
rule there are at most finitely many other rules with isomorphic left-hand sides,
i.e. the set {q′ | lq ∼= lq′ & q′ ∈ Q} is finite for each q ∈ Q.

Finiteness of a grammar ensures that every reachable object is finite. As a
consequence, using Proposition 6 and existence of rpcs in finite lattices, it also
guarantees that for every rule q and match m of q into a reachable object, the
pushout of q and m exists in Par(C): this implies that (as it is usual for the spo
approach) rewriting is possible at any match.

Retyping operations and grammar morphisms. Now we equip grammars
with a notion of morphism, turning them into a category. Following the ideas in
the literature on Petri nets and graph transformation, a morphism relating two
systems should induce a simulation among them, in the sense that every com-
putation in the source system is mapped to a computation of the target system.
Another desirable property is that a notion of morphism defined in our abstract
setting should “specialize” to the corresponding notions proposed for systems
such as Petri nets and graph grammars. The morphisms we introduce below will
satisfy the first requirement, i.e. a grammar morphism will describe how the tar-
get grammar can simulate the source grammar. Concerning the second property,
the proposed notion of morphism is more concrete: for example, when C is the
category of graphs, a graph grammar morphism of [4] might be induced by sev-
eral different ones according to our definition. However, this greater explicitness
allows to characterize the unfolding as a coreflection without restricting to the
so-called semi-weighted grammars (cf. [18, 4, 1]).

In analogy to Petri nets, where morphisms are monoid homomorphisms pre-
serving the net structure, a morphism between two grammars typed over T and
T ′, respectively, will be a functor F : C↓T → C↓T ′ that preserves the rules and
the start object, and comes equipped with some additional information.

Definition 13 (Retyping operation). A retyping operation F : C↓T → C↓T ′
is a pair F = 〈F, ϕ〉 where F : C↓T → C↓T ′ is a functor mapping each object
A−a�T to F(a) = F(A)−F(a)�T ′, and ϕ : (| |T ′ ◦F) ·→ | |T is a cartesian natural
transformation.5

Every morphism f : T → T ′ in C induces a (canonical) retyping operation
]f = 〈f ◦ , id 〉 where the functor f ◦ : C↓T → C↓T ′ post-composes any C↓T -
object with f , and id is the family of identities {idA : A→ A}(A a→T)∈C↓T .

5 This means that ϕ = {F(A) −ϕa� A}a∈C↓T is a family of arrows such that for each
arrow ψ : a → b in C↓T , the span A �ϕa− F(A) −|F(ψ)|� F(B) is a C-pullback of
A −|ψ|�B �ϕb− F(B), yielding a pullback square B

A
↑q
→
→↑

F(B)
F(A).

This definition is closely related to the
pullback-retyping used in [4]. In fact, as
illustrated to the right, the action of a re-
typing operation 〈F, ϕ〉 : C↓T → C↓T ′
is pulling back along ϕidT followed by
composition with F(idT), which is retyp-
ing along the span T ← F(T) → T ′, ac-
cording to [4].

T F(T) T ′

A F(A)

B F(B)

b

ψ

a

ϕa

ϕb

ϕidT F(idT)

F(ψ)

F(b)

F(a)

The definition of grammar morphisms now is as follows.

Definition 14 (Typed grammar morphism). Let G = 〈Q, s : S → T 〉 and
G′ = 〈Q′, s′ : S′ → T ′〉 be typed grammars in C. Then a grammar morphism
F : G→ G′ is a retyping operation F = 〈F, ϕ〉 : C↓T → C↓T ′ such that

(i) the start object is preserved, i.e. F(s) = s′, and
(ii) for any rule q ∈ Q, the image F(q) := F(lq) �F(αq)− F(kq) −F(βq)� F(rq)

is either a rule in G′, i.e. F(q) ∈ Q′, or an identity rule, i.e. F(q) =
F(lq)

id← F(lq)
id→ F(lq).

We will now prove the Simulation Lemma: it shows that each grammar
morphism maps rewriting steps in the domain to corresponding ones in the co-
domain, which are either applications of rules in the target grammar or identity
steps. Hence grammar morphisms preserve reachability.

Lemma 15 (Simulation Lemma). Let F = 〈F, ϕ〉 : G → G′ be a morphism
between grammars G = 〈Q, s : S → T 〉 and G′ = 〈Q′, s′ : S′ → T ′〉. Then for any
rewriting step a Z=〈q,m〉⇒ b in G we have that F(a) Z=〈F(q),F(m)〉⇒ F(b).

Proof (Sketch). Suppose that (A−a�T) Z=〈q,m〉⇒ (B−b�T), with match m : l��a for a
rule q = l�α−k−β�r ∈ Q. Using Proposition 6, there is a diagram of the form l

a

��qq
→
→�� ��

q
←
←
r
b .

As pushouts and pullbacks in C↓T are constructed in C, it is enough to consider the
underlying C-diagram L

A

��qq
→
→�� ��

q
←
←
R
B. Now the morphism 〈F, ϕ〉 provides not only arrows

ϕa : F(A) → A and ϕb : F(B) → B into the “tips” of the two squares, but actually a
pair of “fitting” pullback cubes over L

A

��qq
→
→�� ��
q
←
←
R
B. The top face of the resulting double

cube is F(L)
F(A)

��qq
→
→�� ��

q
←
←

F(R)
F(B), which by Proposition 6 is a Par(C) pushout square because

rpcs and pushouts of pairs of monomorphisms are stable under pullback.

4 Unfolding grammars into occurrence grammars

Every typed grammar can be unfolded by recording all possible sequences of
rewriting steps originating from the start object. In analogy to the constructions
proposed for Petri nets and graph grammars, the structure that we will obtain is
a (non-deterministic) occurrence grammar, which is a partial order representa-
tion of all possible computations. Finite initial parts of the (full) unfolding of the
grammar – so-called prefixes – give a compact representation of the behaviour
of the grammar up to a certain causal depth.

In this section we introduce the class of occurrence grammars and show that
in such grammars reachable objects can be characterized statically, by means

of suitably defined dependency relations (causality and asymmetric conflict) be-
tween rules. This allows to avoid “solving” reachability problems while construct-
ing the truncations of the full unfolding, i.e. the algorithm presented at the end
of this section builds the unfolding in a static manner.

4.1 Occurrence grammars

To properly define occurrence grammars, we need to recall from [2] the corre-
sponding relations between rules of typed grammars, which can be described
in words as follows. Given two rules q and q′, then q causes q′ if q produces
something needed by q′ to be activated, and q can be disabled by q′ if q′ destroys
something on which q depends.

Definition 16 (Causality, conflict). Let G = 〈Q, s : S → T 〉 be a typed gram-
mar; then G is mono-typed if s is monic and, for each rule q ∈ Q all three of
lq, kq and rq are monic, yielding subobjects [lq], [kq] and [rq] ∈ Sub(T). If G is
mono-typed, a pair of rules q, q′ ∈ Q may be related in any of the following ways.
< : q directly causes q′, written q < q′, if rq u lq′ 6v kq
� : q can be disabled by q′, written q � q′, if lq u lq′ 6v kq′
Further, the asymmetric conflict relation is ↗ := <+ ∪ (�\ idQ) where <+ is
the transitive closure of < and �\ idQ the irreflexive version of �; moreover

– the direct causes of q, are given by xqy = {q′ ∈ Q | q′ < q}, and
– the (complete) causes of q, are given by bqc = {q′ ∈ Q | q′ <∗ q}.
Any subobject [a] ∈ Sub(T) may be related to a rule q ∈ Q in a similar way:
< : q directly causes [a], written q < a, if rq u a 6v kq, and

<co : [a] is (partly) consumed by q′, written a <co q′, if a u lq′ 6v kq′ ,
and we also have the following sets:
– the consumers of [a], are paq = {q′ ∈ Q | a <co q′} and
– the (complete) causes of [a], are bac = {q′ ∈ Q | ∃q ∈ Q. q′ <∗ q < a}.

Now we are ready to define occurrence grammars, which are a generaliza-
tion of occurrence nets. We will see later that in an occurrence grammar with
type object T , rule applications can be interpreted as consuming and producing
subobjects of T (Proposition 19).

Definition 17 (Occurrence Grammar). An occurrence grammar is a mono-
typed grammar O = 〈Q, s : S �� T 〉 with a countable set of rules Q such that

1. the type object is the union of all right hand sides, i.e. idT ∼= s t
⊔
q∈Q rq,

2. the transitive-reflexive closure <∗ of causality < is a partial order,
3. for each rule q ∈ Q, bqc is finite, and ↗|bqc :=↗∩ (bqc × bqc) is acyclic,
4. the start object has no causes, i.e. bsc = ∅,
5. there are no backward conflicts, i.e. rq u rq′ v kq t kq′ for all q 6= q′ ∈ Q,
6. left-hand sides are properly produced, i.e. lq v s t

⊔
p′∈xqy rp′ for all q ∈ Q.

Example 18. Consider the following occurrence grammar which exactly captures
the two rewriting steps of Examples 8 and 10. The type graph is where
the dot and the plus discern the different nodes; the start object is , and
we have the two rules �� �� and ��∅ ��∅ corresponding to the
dispatching of the message and the breakdown of the middle node. As it will
become clear later, this grammar is part of the unfolding of the grammar in
Examples 8 and 10.

Properties of occurrence grammars. In the theory of Petri nets, a charac-
teristic property of occurrence nets is that they are safe, i.e. that every reachable
marking is a set of places, rather than a proper multiset. The analogous result
for occurrence grammars reads as follows.

Proposition 19 (Safety). Let O = 〈Q,S �s� T 〉 be an occurrence grammar
and let s Z=O⇒∗ a ∈ C ↓ T be a reachable object. Then a is monic.

Hence reachable objects of occurrence grammars can be seen as subobjects
of the type object. In the unfolding algorithm below, instead of considering
reachable objects, we can concentrate on the statically characterized concurrent
subobjects, as they are exactly the ones contained in reachable subobjects.

Definition 20 (Concurrent subobject). Let O = 〈Q,S �s� T 〉 be an occur-
rence grammar. A subobject [a] ∈ Sub(T) is called a concurrent subobject of O
if (i) bac is finite, (ii) bac ∩ paq = ∅, and (iii) ↗|bac is acyclic.

Intuitively, [a] is concurrent when its set of causes is finite and conflict free (con-
dition (i) and (iii), respectively) and there are no causal dependencies between
subobjects of [a] (condition (ii)).

Proposition 21 (Static coverability). Let O = 〈Q,S�s�T 〉 be an occurrence
grammar, and [a] ∈ Sub(T) be a subobject. Then [a] is concurrent if and only if
there is some reachable object b such that a v b.

4.2 The unfolding construction

The idea of the unfolding procedure for a given grammar G, is to construct a
chain of growing occurrence grammars Un. Each Un represents all computations
up to causal depth n where the depth of a concurrent computation is the length
of a maximally parallel execution of the computation. Finally the full unfolding
UG will arise as the “union” of the chain {Un “⊆” Un+1}n∈N. This is a concrete
algorithmic description of the unfolding. As shown in the next section, the un-
folding can be characterised in a succint and elegant way as the right adjoint
functor to the inclusion of the category of occurrence grammars into the category
of grammars.

Definition 22 (Unfolding algorithm). Let G = 〈Q,S −s� T 〉 be a finite
grammar. We will construct a chain U0“⊆”U1“⊆” . . . “⊆”Un . . . of occurrence

grammars Un = 〈Qn, S −sn� Tn〉 that come equipped with folding morphisms
Fn : Un → G mapping rule occurrences in each n-th unfolding Un to the original
grammar G; further each Fn will be induced by a folding arrow Tn −λn� T , i.e.
Fn =]λn (see Definition 13).

Base case. The 0-th unfolding U0 contains the start object of G and no rules,
i.e. U0 = 〈∅, S �id� S〉. The folding arrow is λ0 : T0 = S → T , which induces
F0 =]λ0.

Induction step. Going from Un to Un+1 consists in adding the next level of causal
depth. The central operation of this step can be described as the non-consuming
application of all rules with all possible (new) matches to Tn “in parallel” – here
the non-consuming rule application of a rule q = L �α� K �β� R at a match
m : L �� T is the application of q+ := K �id�K �β� R at m ◦ α : K �� T (see
Figure 1(c)).

A new match or a new occurrence of a rule q ∈ Q in the n-th unfolding
〈Qn, S−sn�Tn〉 via the folding Fn is a monomorphism ν : Lq ��Tn such that the
corresponding subobject of Sub(Tn) is concurrent, and that satisfies λn ◦ ν = lq;
additionally, ν must be new, which means that ν is not an occurrence of q that
is already present in Qn, i.e. there is no rule q′ ∈ Qn such that ν = lq′ and q is
the image of q′ w.r.t. Fn.

Let {νi : Lqi �� Tn | i ∈ In} be the set of all new matches where the index
set In = {1, . . . ,m} is finite as G is finite. Now consider the diagram below,
consisting of the matches νi and the rule morphisms αqi , βqi for i ∈ In.

Lq1 Kq1 Rq1

Lqm Kqm Rqm

Tn

... ν1

νm αqm βqm

αq1 βq1

Take the colimit of the diagram above in C, by a stepwise computation of
pushouts of monos, obtaining the morphisms tn, ki, ri into Tn+1 for i ∈ In. Fur-
thermore since every object in the diagram above is typed over T , we obtain the
folding arrow λn+1 : Tn+1 → T as a mediating arrow.

Lq1 Kq1 Rq1

Lqm Kqm Rqm

Tn Tn+1

... ν1

νm αqm βqm

rm

km tn

k1

r1

αq1 βq1

Now the new rule occurrences form the setQ′n+1 := {(tn ◦ νi)�αqi− kqi −βqi� rqi |
i ∈ In} and are at depth level n + 1; further the complete set Qn+1 of rules of
Un+1 is Qn+1 = Q′n+1 ∪]tn(Qn).

To complete the object part of the (n+1)-th unfolding, we just need to define
Un+1 := 〈Qn+1, S�tn◦sn�Tn+1〉. Further the folding morphism Fn+1 : Un+1 → G
is given by Fn+1 :=]λn+1, which is induced by the folding arrow Tn+1−λn+1�T .

Summarizing, we have inductively defined an ω-chain of occurrence grammars
U0“⊆”U1“⊆” · · · “⊆”Un . . .∞, where each Un has components 〈Qn, sn : S��Tn〉,
folding morphisms]λn : Un → G, and “inclusion” morphisms]tn : Un �� Un+1.

Example 23. We sketch the unfolding of the grammar
〈
{q′1, q′2}, s : →

〉
where the rules q′1 and q′2 are �� �� and ��∅ ��∅, respectively.

We start with the type graph T0 = . In the first unfolding step we find
the single rule occurrence of q′1 and the three occurrences , , and of q′2 and
add the corresponding right-hand sides, yielding the type graph T1 = .

In the second unfolding there is only one occurrence of q1, namely , and
adding the right-hand side yields the type graph T2 = . Now as there are
no further new matches, the latter unfolding is actually the full unfolding.

5 ω-adhesive categories and the coreflection result

In this section we propose ω-adhesive categories as a framework in which the
unfolding construction is feasible and can be characterized as the right adjoint
to the inclusion functor from the full sub-category of occurrence grammars into
the category of all finite grammars. Note however that once we have the extra
structure of ω-adhesive categories, we could also relax the condition on grammars
from finite to countable.

As we mentioned at the beginning of Section 4.2, the unfolding UG of a
grammar G will be a single occurrence grammar that represents the complete
chain of truncations generated by the algorithm of Definition 22. The colimits
that we will use to construct UG and to prove the coreflection result are Van
Kampen (vk) fans: they are the ω-chain counterpart of Van Kampen squares,
the latter being the central concept in the definition of adhesive categories in [14].

A1 A2 A3 · · ·

A ω-fan

u1 u2 u3

a1

a2 a3

A1 A2 A3 · · ·

A ω-fan prism

u1 u2 u3

a1

a2 a3

B1 B2 B3 · · ·

Bx1 x2 x3

v1 v2 v3

b1
b2 b3

x

Definition 24 (ω-adhesive categories). An ω-fan is an ω-chain diagram
A = {An −un� An+1}n∈N with a cocone α = {An −an� A}n∈N (see the left
one of the displayed diagrams); it is a colimit ω-fan if α is a colimit of A, and
it is a Van Kampen fan if in each ω-fan prism over it, as illustrated in the
right one of the displayed diagrams, having pullback squares Bi

Ai

↑q→
→↑Bi+1

Ai+1
as back

faces, the top face is a colimit ω-fan if and only if all lateral trapezia Bi→B↘
↘Ai→A

are pullbacks.

Now a category is ω-adhesive if it is adhesive, and moreover

– it has colimits of monic ω-chains {An �un�An+1}n∈N, and
– colimits of monic ω-chains give rise to Van Kampen fans.

From now on, we assume C to be ω-adhesive. To ensure soundness of the full
unfolding construction in Definition 26, we need the following lemma, which can
be shown in analogy to Lemma 2.3 of [14].

Lemma 25 (Monic VK-fans). Let C be any category, let {An�un�An+1}n∈N
be a monic ω-chain paired with a cocone {An−an�A}n∈N such that they together
form a Van Kampen fan. Then each an : An ��A is monic.

Definition 26 (Full unfolding). Let G = 〈Q, s : S → T 〉 be a finite grammar,
and let {Un �]tn�Un+1}n∈N be the chain constructed as in Definition 22, where
Un = 〈Qn, sn : S �� Tn〉 and tn : Tn �� Tn+1 for each n ∈ N. To define the full
unfolding UG, let ι = {in : Tn �� TU}n∈N be the colimit of the ω-chain diagram
T = {Tn �tn� Tn+1}n∈N, and put UG :=

〈⋃
n∈N]in(Qn), i0 : S �� TU

〉
.

Finally, to define the folding morphism F : UG → G, let the λn : Tn → T be
as in Definition 22. By the universal property of the colimit ι, there is a unique
folding arrow λ : TU → T satisfying λ ◦ in = λn for all n ∈ N; now put F :=]λ.

Proposition 27 (Completeness of the unfolding). Let G be a grammar
and]λ : UG → G be the folding morphism from the full unfolding UG.

Then each derivation in G has a unique counterpart in UG, i.e. for each
rewriting sequence s Z=〈q′1,m′1〉⇒ a′1 · · · Z=〈q′n,m′n〉⇒ a′n in G, there is a unique se-
quence sU Z=〈q1,m1〉⇒ a1 · · · Z=〈qn,mn〉⇒ an in the unfolding UG such that m′i, q

′
i, a
′
i

are the images of mi, qi, ai under the retyping with λ.

This proposition is sufficient for many applications, but it does not rule out
that UG might contain superfluous information. The coreflection result ensures
that the unfolding with the folding morphism F : UG → G is the “minimal” or –
more precisely – universal choice of an occurrence grammar O and a morphism
H : O → G that is complete in the sense of Proposition 27.

Theorem 28 (Coreflection). Let F : UG → G be the folding mor-
phism from the unfolding UG of a finite grammar G. Then for each
occurrence grammar O and morphism H : O → G there is a unique
morphism V : O → UG such that H = F ◦ V.

UG G

O
H

F

V

Proof (idea). Existence and uniqueness of some morphism V = 〈V, ζ〉 follow from two
facts: first, the morphism H = 〈H, ϑ〉 determines ζ and | |TU ◦ V, and in fact the only
information missing is the value V(idT ′) – here O = 〈Q′, s′ : S′ → T ′〉; second, the type
object T ′ is the “tip” of a vk fan, the diagram of which is determined by the start
object and all the right hand sides. Pulling back this fan along ϑidT ′ yields again a
colimit fan, and V(idT ′) arises as a uniquely determined mediating morphism. ut

This theorem directly implies that the unfolding construction extends to a
functor from the category of finite (or even countable) grammars to that of occur-
rence grammars, which in turn means that the category of occurrence grammars
is a coreflective subcategory of the category of finite grammars.

As for examples and counter examples of ω-adhesive categories: the category
S of finite sets – the “primordial” elementary topos – is not ω-adhesive; as a fact,
any elementary topos is ω-adhesive if and only if it has countable sums. Hence
the category of sets is ω-adhesive, and more generally any Grothendieck topos
is. Further examples arise via the following constructions.

Proposition 29 (Closure of ω-adhesivity). Let C and D be ω-adhesive cat-
egories. Then the following categories are again ω-adhesive:

– the product category C× D;
– the slice category C↓T for any T ∈ C;
– the co-slice category I↓C for any I ∈ C;
– the functor category [X,C] for any category X;
– the Artin-Wraith glueing C↓F, i.e. the comma category C↓F for any functor

F : D→ C that preserves pullbacks.

Proof (Sketch). In each case pullbacks and the relevant colimits are constructed com-
ponentwise.

In addition we know that the slice construction preserves stability of pseudo-
complementation. Note also that all examples of “graph categories” mentioned
in the introduction (undirected and directed graphs, hypergraphs, graphs with
scopes, graphs with second-order edges, etc.) are ω-adhesive and rpcs are stable
under pullback.

6 Related work and conclusion

Our work is strongly related to earlier work on true concurrency in the setting
of adhesive categories. For instance [14] shows parallel and sequential indepen-
dence results for adhesive rewriting systems. As a next step, in [2] it has been
shown how one can represent computations of a system as processes, i.e. as de-
terministic occurrence grammars. In the present paper we generalize this work
to non-deterministic occurrence grammars (or branching processes) that record
all events of a set of possible computations.

The central contribution is the generalization of the unfolding technique to
the abstract setting of ω-adhesive categories and the theorem that the unfold-
ing construction, “unravelling” a grammar into an occurrence grammar, can be
characterized as a coreflection. As this result holds in any ω-adhesive category
with some mild restrictions it applies to numerous application-relevant instances
of graph-like structures, and hence it is unnecessary to prove it again and again.

Furthermore we have introduced a new notion of grammar morphisms where
the retyping is given by a functor. This allows us to treat also non-semi-weighted

grammars, i.e. grammars where the start graph or the right-hand sides might
not be injectively typed. Otherwise technical complications arise because of the
presence of “too much symmetry” in the structure which is being unfolded and
hence the uniqueness of arrow V in Theorem 27 cannot be guaranteed. Another
solution to the symmetry problem has been proposed in [11], for the case of Petri
nets and with a different notion of morphism.

Our definition of grammar morphism is not the most general one that can
be conceived: it was inspired by previous works on graph transformation [1] and
on unfolding constructions characterized as coreflections [20]. It is not obvious
to what extent the coreflection result of Section 5 could be extended to more
general definitions of morphisms: this is an interesting topic for future work.

The unfolding represents all computations as well as all reachable objects of
the original grammar in a single acyclic branching structure. Hence, as observed
in [17, 3], it can serve as the basis for partial order verification techniques. For
instance, we plan to generalize the notion of finite complete prefix to the abstract
framework of the present paper. Another direction is to adapt the model-based
diagnosis techniques of [6, 5]; the latter depend on the preservation of products
of grammars by the unfolding functor, which is ensured by the coreflection result.
In future work we will further investigate products in our category of grammar
morphisms.

References

1. P. Baldan. Modelling Concurrent Computations: from Contextual Petri Nets to
Graph Grammars. PhD thesis, Dipartimento di Informatica, Università di Pisa,
2000.

2. P. Baldan, A. Corradini, T. Heindel, B. König, and P. Sobociński. Processes for
adhesive rewriting systems. In L. Aceto and A. Ingólfsdóttir, editors, FoSSaCS,
volume 3921 of LNCS, pages 202–216. Springer, 2006.

3. P. Baldan, A. Corradini, and B. König. A framework for the verification of infinite-
state graph transformation systems. Information and Computation, 206:869–907,
2008.

4. P. Baldan, A. Corradini, U. Montanari, and L. Ribeiro. Unfolding Semantics of
Graph Transformation. Information and Computation, 205:733–782, 2007.

5. Paolo Baldan, Thomas Chatain, Stefan Haar, and Barbara König. Unfolding-based
diagnosis of systems with an evolving topology. In Proc. of CONCUR ’08, volume
5201 of LNCS, pages 203–217. Springer, 2008.

6. A. Benveniste, E. Fabre, S.Haar, and C. Jard. Diagnosis of asynchronous discrete
event systems, a net unfolding approach. IEEE Transactions on Automatic Control,
48(5):714–727, 2003.

7. G. Birkhoff. Lattice Theory. American Mathematical Society, 1967.
8. R. Cockett and X. Guo. Join restriction categories and the importance of being

adhesive. Unpublished manuscript, slides from ct‘ presentation available at
http://pages.cpsc.ucalgary.ca/~robin/talks/jrCat.pdf.

9. H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and Concur-
rency in High-Level Replacement Systems. Mathematical Structures in Computer
Science, 1:361–404, 1991.

10. H. Ehrig, M. Pfender, and H.J. Schneider. Graph-grammars: an algebraic approach.
In Proc. of IEEE Conf. on Automata and Switching Theory, pages 167–180, 1973.

11. J. Hayman and G. Winskel. The unfolding of general Petri nets. In Proc. of
FSTTCS ’08, number 08004 in Dagstuhl Seminar Proceedings, 2008.

12. T. Heindel and P. Sobociński. Van Kampen colimits as bicolimits in Span. In Proc.
of CALCO ’09, LNCS. Springer, 2009. to appear.

13. P.T. Johnstone. Sketches of an Elephant, volume 1. Oxford Science Publications,
2002.

14. S. Lack and P. Sobociński. Adhesive and quasiadhesive categories. Theoretical
Informatics and Applications, 39(2):511–546, 2005.

15. S. Lack and P. Sobociński. Toposes are adhesive. In A. Corradini, H. Ehrig,
U. Montanari, L. Ribeiro, and G. Rozenberg, editors, ICGT, volume 4178 of LNCS,
pages 184–198. Springer, 2006.

16. M. Löwe. Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science, 109:181–224, 1993.

17. K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.
18. J. Meseguer, U. Montanari, and V. Sassone. On the semantics of Place/Transition

Petri nets. Mathematical Structures in Computer Science, 7(4):359–397, 1997.
19. E. Robinson and G. Rosolini. Categories of partial maps. Inf. Comput., 79(2):95–

130, 1988.
20. Glynn Winskel. Event structures. In Petri Nets: Applications and Relationships

to Other Models of Concurrency, volume 255 of LNCS, pages 325–392. Springer,
1987.

