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Abstract. Several formal concurrent semantics have been proposed for
graph rewriting, a powerful formalism for the specification of concurrent
and distributed systems which generalizes P/T Petri nets. In this paper
we relate two such semantics recently proposed for the algebraic double-
pushout approach to graph rewriting, namely the derivation trace and
the graph process semantics. The notion of concatenable graph process
is introduced and then the category of concatenable derivation traces is
shown to be isomorphic to the category of concatenable graph processes.
As an outcome we obtain a quite intuitive characterization of events and
configurations of the event structure associated to a graph grammar.

1 Introduction

Graph grammars (or graph rewriting systems) have been introduced as a gen-
eralization of string grammars dealing with graphs, but they have been quickly
recognized as a powerful tool for the specification of concurrent and distributed
systems [15]. The basic idea is that the state of many distributed systems can be
represented naturally (at a suitable level of abstraction) as a graph, and (local)
transformations of the state can be expressed as production applications. The ap-
propriateness of graph grammars as models of concurrency is confirmed by their
relationship with another classical model of concurrent and distributed systems,
namely Petri nets, which can be regarded as graph rewriting systems that act on
a restricted kind of graphs, i.e., discrete, labelled graphs (that can be considered
as sets of tokens labelled by places). In this view, graph rewriting systems gen-
eralize Petri nets not only because they allow for arbitrary (also non-discrete)
graphs, but also because they allow for the specification of context-dependent
operations, where part of the state is read but not consumed.

In recent years, various concurrent semantics for graph rewriting systems
have been proposed in the literature, some of which are based on the correspon-
dence with Petri nets (see [2]). The aim of this paper is to relate two such se-
mantics introduced recently by the last two authors in joint works with F. Rossi,
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H. Ehrig and M. Lowe: the category of concatenable derivation traces of [5], used
there to obtain an event structure semantics, and the graph processes proposed
in [6]. Both semantics are worked out, in the mentioned papers, for the algebraic,
double-pushout approach to graph transformation [9, 7].

Derivation traces are equivalence classes of derivations with respect to two
equivalences: a suitable refinement of the isomorphism relation (which makes
use of standard isomorphisms to guarantee the concatenability of traces); and
the shift equivalence, relating derivations that differ only for the order in which
independent direct derivations are performed. Thus the concurrent semantics is
obtained by collecting in equivalence classes all derivations that are conceptually
indistinguishable. Graph processes are for graph grammars what deterministic,
non-sequential processes [10] are for P/T Petri nets. A graph process of a graph
grammar G is an “occurrence grammar” O, i.e., a grammar satisfying suitable
aciclicity constraints, equipped with a mapping from O to G. This mapping is
used to associate to the derivations in O corresponding derivations in G, which
can be shown to be shift-equivalent. Therefore a process can be regarded as an
abstract representation of a class of shift-equivalent derivations, starting from the
start graph of a grammar: as such it plays a role similar to canonical derivations
[11]. The paper provides a bridge between processes and traces by introducing
concatenable graph processes, which enrich processes with some additional in-
formation needed to be able to concatenate them, and showing that they are
in bijective correspondence with concatenable linear derivation traces, a slight
variation of the traces of [5].

The paper is structured as follows. Section 2 introduces the basics of typed
graph grammars following the double pushout approach, and defines the category
of concatenable linear derivation traces. After recalling in Section 3 the basics
of graph processes as proposed in [6], Section 4 introduces the key notion of
concatenable graph process and the corresponding category. Section 5 presents
the main result of the paper, i.e., the fact that the category of concatenable linear
derivation traces is isomorphic to the category of concatenable processes. In
Section 6, exploiting the main result, we present a quite intuitive characterization
of the configurations and events of the event structure of a grammar, as defined
in [5], in terms of suitable classes of processes. Finally, Section 7 suggests some
further directions of investigation.

2 Typed Graph Grammars

In this section we review the basic definitions about typed graph grammars as
introduced in [6], following the algebraic double pushout approach [9]. Then
a category LTr[G] of concatenable linear derivation traces of a grammar G is
introduced, by reformulating, in the typed framework, some notions of [5].
Recall that a (directed, unlabelled) graph is a tuple G = (N, E, s,t), where N
is a finite set of nodes, E is a finite set of arcs, and s,t : E — N are the source
and target functions. Sometimes we will denote by Ng and Eg the set of nodes
and arcs of a graph G. A graph morphism f : G — G’ is a pair of functions



f={(/N:N—=N' fg:E— E')such that fyos=s"ofgand fxot=1to fg;
it is an <somorphism if both fy and fg are bijections; moreover, an abstract
graph [G] is an isomorphism class of graphs, ie., [G] = {H | H ~ G}. An
automorphism of G is an isomorphism h : G — G. The category having graphs
as objects and graph morphisms as arrows is called Graph.

A typed graph, as introduced in [6], is a pair (G, t¢), where G is a graph and
tg : G — TG is a graph morphism, typing nodes and arcs of G over elements of
a structure T'G that is itself a graph. The category TG-Graph of graphs typed
over a graph TG of types, is the comma category (Graph | TG).

Definition 1 (typed graph grammar). A (T'G-typed graph) production is
a span (L L K5 R) of injective typed graph morphisms. The typed graphs L,
K, and R are called the left-hand side, the interface, and the right-hand side
of the production. A (TG-typed) graph grammar G is a tuple (TG,Gs, P, ),
where G is the start (typed) graph, P is a set of production names, and w
maps each production name in P into a graph production. Sometimes we write

q:(L(l—KQR)fOTﬂ(q)z(LJ—KQR).

Since in this paper we work only with typed notions, when clear from the
context we omit the word “typed” and the typing morphisms. Moreover, we will
consider only consuming grammars, namely grammars where for each produc-

tion ¢ : (L L K5 R), morphism ! is not surjective. This corresponds to the
requirement of having non-empty preconditions in the case of Petri nets.

Definition 2 ((linear) direct derivation). Given a typed graph G, a pro-

duction q : (L LK R), and an occurrence (i.e., a typed graph morphism)
g : L = G, a (linear) direct derivation § from G to H using ¢ (based on g)
exists if and only if the diagram below can be constructed, where both squares are
required to be pushouts in TG-Graph.

¢: L<'—K-—">R
2 e
G D—H

h

In this case, D is called the context graph, and we write either § : G =4 H

Jk,h,b.d T .. . . .
oré : G <g:>q ) H, indicating explicitly all the involved morphisms. Since

pushouts are defined only up to isomorphism, given isomorphisms k : G' — G

k Yog,k,h,k " ‘tob,d k,hov,b,dov .
and v : H — H', also G’< g:>q >H andG<g == >H’ are direct

derivations, that we denote respectively by k-6 and § - v.

Informally, the rewriting step removes (the image of) the left-hand side from
the graph G and substitutes it by (the image of) the right-hand side R. The
interface K (common part of L and R) specifies what is preserved.



Definition 3 ((linear) derivations). A (linear) derivation over G is a se-
quence of (linear) direct derivations (over G) p = {Gi—1 =q,_, Gi}icn, where
n denotes the set of natural numbers {1,... ,n}. The derivation is written p :
Go =5 Gn or simply p : Go =" Gn. The graphs Go and G, are called the
starting and the ending graph of p, and are denoted by o(p) and 7(p), respec-
tively. The derivation consisting of a single graph G (with n = 0) is called the
identity derivation on G. The length |p| of p is the number of direct derivations
in p. Given two derivations p and p' such that 7(p) = o(p'), we define the con-
crete sequential composition p; p' = o(p) =* 7(p'), as the derivation obtained by
identifying T(p) with o(p’).

If p: G = H is a linear derivation, with [p| > 0, and x: G' - G, v: H — H’
are graph isomorphisms, then k- p: G’ = H and p-v : G = H’ are defined in
the expected way.

In the theory of the algebraic approach to graph grammars, it is natural to
reason in terms of abstract graphs and abstract derivations, considering as equiv-
alent graphs or derivations, respectively, which only differ for representation de-
pendent details. However the definition of abstract derivations is a non-trivial
task, if one wants to have a meaningful notion of sequential composition on such
derivations. Roughly speaking, the difficulty is represented by the fact that two
isomorphic graphs are, in general, related by more than one isomorphism, but to
concatenate derivations keeping track of the flow of causality one must specify
how the items of two isomorphic graphs should be identified. The problem is
extensively treated in [4, 3], which propose a solution based on the choice of a
uniquely determined isomorphism, named standard isomorphism, relating each
pair of isomorphic graphs. Here we follow a slightly different technique: Inspired
by the theory of Petri nets, and in particular by the notion of concatenable net
process [8], and borrowing a technique proposed in [12], we choose for each class
of isomorphic typed graphs a specific graph, named canonical graph, and we dec-
orate the starting and ending graphs of a derivation with a pair of isomorphisms
from the corresponding canonical graphs to such graphs. In such a way we are
allowed to distinguish “equivalent”! elements in the starting and ending graphs
of derivations and we can safely define their sequential composition.

Let Can denote the operation that associates to each (TG-typed) graph
its canonical graph, thus satisfying Can(G) ~ G and if G ~ G’ then Can(G) =
Can(G"). The construction of the canonical graph can be performed by adapting
to our slightly different framework the ideas of [12].

Definition 4 (decorated derivation). A decorated derivation ¢ : Go =* G,,
is a triple {m, p, M), where p : Gy =* Gy, is a derivation and m : Can(Gy) —
Go, M : Can(G,) — G, are isomorphisms. We define o(¢)) = Can(o(p)),
7(¢) = Can(7(p)) and || = |p|. The derivation is called proper if || > 0.

Definition 5 (sequential composition). Let ) = (m, p, M), ' = (m/, p’, M)
be two decorated derivations such that T(v) = o(¢'). Their sequential composi-

1 With “equivalent” we mean here two items related by an automorphism of the graph,
that are, in absence of further informations, indistinguishable.



tion ;4 is defined, if 1y and ¢’ are proper, as (m,p- M~t;m’ - p', M'). Oth-
erwise, if || = 0 then ;" = (m' o M~Y om, p', M"), and similarly, if |1)'| =0
then ;" = (m, p, M om’ o M~1).

The abstraction equivalence identifies derivations that differ only in represen-
tation details. As for =% and =°, introduced in the following, such equivalence
is a reformulation, in our setting, of the equivalences defined in [5].

Definition 6 (abstraction equivalence). Let vy = (m,p, M), v' = (m/,p', M")
be two decorated derivations, with p : Go =* Gy, and p' : Gy =* G!,, (whose i*"
step is depicted in the low rows of Fig. 1). Then they are abstraction equivalent
ifn=n', gi—1 = qi_, for alli € n, and there exists a family of isomorphisms
{0x,: Xi = X! | X € {G,D}, i € n} U{lg,}, between corresponding graphs in
the two derivations, such that (1) the isomorphisms relating the starting and end-
ing graphs commute with the decorations, i.e. g, om =m' and 8g, oM = M’;
(2) the resulting diagram (step i is represented in Fig. 1) commutes.

Equivalence classes of decorated derivations w.r.t. =** are called abstract deriva-
tions and are denoted by []aps, where ¥ is an element of the class.

R;

' h!
g i
d;
z+1 n

\]\4/
Can(Go ) // / % Can(Gn)
m 1+1

Fig. 1. Abstraction equivalence of decorated derivations.

From a concurrent perspective, two derivations which only differ for the order
in which two independent direct derivations are applied, should not be distin-
guished. This is formalized by the classical shift equivalence on derivations.

Definition 7 (shift equivalence). Two direct derivations 61 : G =4, 4, X and
02+ X =g,,9, H (as in figure below) are sequentially independent if go2(Lg) N
h1(R1) C g2(I2(K2)) Nhyi(r1(K7)); in words, if the left-hand side of g2 and the
right-hand side of q1 overlap only on items that are preserved by both steps.

qr : go :
L1<LK1‘>R1 2<7K2‘>R1
o) k) \ / | k2 |ne
G o Dy D, o H

Given a derivation p = G =4, g, X =g,.9, H, consisting of two sequentially in-
dependent direct derivations, there is a constructive way to obtain a new deriva-
tion p' : G = 42,9, X' =q.,9, H, where productions ¢1 and g are applied in the

reverse order. We say that p' is a switching of p and we write p ~" p'.



=" on concrete derivations is the transitive and “context”

The shift equivalence
closure of ~*", i.e. the least equivalence, containing ~*", such that if p ="
P then pi1ipips =" p1ip'ips. The same symbol denotes the equivalence on

decorated derivations induced by =", i.e. (m, p, M) =" (m, p', M) if p =" p'.

Definition 8 (ctc-equivalence). The concatenable truly concurrent equiva-
lence (ctc-equivalence) =¢ on derivations is the transitive closure of the union
of the relations =** and =*". Equivalence classes of decorated derivations with
respect to =€ are denoted as [Y]. and are called concatenable linear (derivation)
traces.

It is possible to prove that sequential composition of decorated derivations
lifts to composition of linear derivation traces.

Definition 9 (category of concatenable linear traces). The category of
concatenable linear traces of a grammar G, denoted by LTr[G], has abstract
graphs as objects and concatenable linear traces as arrows.

In [5] a category Tr[G] of concatenable (parallel) traces is defined considering
possibly parallel derivations and using standard isomorphisms instead of decora-
tions. More precisely, a class of standard isomorphisms is fixed and abstraction
equivalence on (parallel) derivations is defined as in Definition 6, but replacing
condition 1 with the requirement for the isomorphisms 6y and 6,,, relating the
starting and ending graphs, to be standard. Then the concatenable truly concur-
rent equivalence on parallel derivations is again defined as the least equivalence
containing the abstraction and shift equivalences. Despite of these differences,
the two approaches lead to the same category of traces.

Proposition 1. The category of concatenable parallel traces Tr[G] and the cat-
egory LTr[G] of concatenable linear traces are isomorphic.

3 Graph Processes

Graph processes, introduced in [6], generalize the notion of (deterministic, non-
sequential) process of a P/T net [10] to graph grammars. A graph process of
a graph grammar G is an “occurrence grammar” O, i.e., a grammar satisfying
suitable acyclicity constraints, equipped with a mapping from O to G.

Definition 10 (strongly safe grammar). A strongly safe graph grammar
is a grammar G = (T'G,Gs, P,7) such that each graph H reachable from the
start graph (i.e., Gs =* H) has an injective typing morphism. We denote with
Elem(G) the set Nyg U Epg U P.

Without loss of generality, injective morphisms can be seen as inclusions. Thus
sometimes we identify a graph (G, m), reachable in a strongly safe grammar,
with the subgraph m(G) of T'G. In the following, L, (resp. K,, R,) denotes the

graph L (resp., K, R) of a production ¢ : (L LKL R). When interested in
the typing we assume L, = (LG, tl,), K, = (KGg, tky) and R, = (RGy, try).



Definition 11 (causal relation). Let G = (TG,G, P, ) be a strongly safe
grammar, let ¢ € P be a production, and let x € Npg U Epg be any arc or node
of the type graph TG. We say that q consumes « if x € tly(LG, — KGy), that ¢
creates z if x € try(RG, — KG,) and that q preserves x if x € thy(KGy).?

The causal relation of G is given by the structure (Elem(G), <), where <
is the transitive and reflexive closure of the relation < defined by the following
clauses: for any node or arc x in TG, and for productions qi,q2 € P

1. x < q1 if 1 consumes x; 8. q1 < qo if q1 creates x and g preserves x,
2. q1 <z if q1 creates x; or q1 preserves x and gz consumes x.

The first two clauses of the definition of relation < are obvious. The third one
formalizes the fact that if an item is generated by ¢; and it is preserved by ¢so,
then ¢ cannot be applied before g1, and, symmetrically, if an item is preserved
by ¢1 and consumed by ¢o, then ¢; cannot be applied after ¢s.

Definition 12 (occurrence grammar). An (deterministic) occurrence gram-
mar is a strongly safe graph grammar O = (T'G, Gy, P, ) such that

1. its causal relation < is a partial order, and for any n € Nrg,e € Erg such
that n = s(e) or n = t(e), and for any g € P, we have (i) if ¢ < n, then
qg<eand (i1) if n <gq, then e < q;

2. consider the set Min of minimal elements of (Elem(G), <) and Min(O) =
(Min O Nrg, Min 0 ErG, 8| yinonpe Hainongg )¢ then Gs = Min(0);

3. for all ¢ € P, q satisfies the identification condition [9], i.e. there is no
x,y € LGy such that tly(z) = tl,(y) and y € I(KGy).

4. for all x € Nyg U Erg, x is consumed by at most one production in P, and
it is created by at most one production in P.

For an occurrence grammar O, denoted by Max the set of maximal elements in
(Elem(0), <), let Max(O) = (Maz N Nrg, Maz 0 ETc, S|y, onpe s Hitesnngs -
Note that, since the start graph of an occurrence grammar O is determined as
Min(0O), we often do not mention it explicitly.

Definition 13 (reachable sets). Let O = (T'G, P, ) be an occurrence gram-
mar, and let (P, <) be the restriction of the causal relation to the productions of
O. For any <-left-closed P' C P, the reachable set associated to P’ is the set of
nodes and arcs Spr C Nyg U Erg defined as

z€Sp  iff VgeP.(z<q=q¢P)N(x>q=qcP).
We denote by G(SP/) the structure <Sp/ﬂET(;,Sp/ NNra,

S|SP/ﬁETG’t|SP/ﬁETG>'

For any reachable set Sp/, G(Sp/) is a graph and it is reachable from Min(O)
with a derivation which applies exactly once every production in P’, in any order
consistent with <.

2 With abuse of notation, in LG, — KG, or RG, — KG, graphs are considered as sets
of nodes and arcs.



As a consequence, in particular Min(O) = G(Sy) and Maxz(O) = G(Sp) are
well-defined subgraphs of TG and Min(O) =% Max(O), using all productions
in P exactly once, in any order consistent with <. This makes clear why a graph
process of a grammar G, that we are going to define as an occurrence grammar
plus a mapping to the original grammar, can be seen as a representative of a set
of derivations of G, where only independent steps may be switched.

Definition 14 (process). Let G = (TG, G, P,w) be a typed graph grammar.
A process p for G is a pair (O, @), where O = (TG, P', ') is an occurrence
grammar and ¢ = (mg, mp, 1), where (1) mg: TG' — TG is a graph morphism;
(2) mp : P — P is a function mapping each production ¢’ : (L' +— K' — R/)
in P’ to an isomorphic production ¢ = mp(q’) : (L + K — R) in P and
(8) ¢ is a function mapping each production ¢’ € P’ to a triple of isomorphisms
u(q)= (") L—L,5(¢): K— K, /'(¢) : R — R'), making the diagram
in Fig. 2.(a) commute.

We denote with Min(p) and Max(p) the graphs Min(O) and Max(O) typed
over TG by the corresponding restrictions of mg.

Notice that, unlike [6], we do not force processes to start from the start graph
of the grammar. This is needed to define a reasonable notion of concatenable
process.

U 4 4 / 1 (p1) o (p2)
q:L li R L, P1 6 3 (p2 o
tl
TG tly i mo TG mg itm
COI I CA) yma S = ~Z
TG TG, TGo
mp(q')E K R iz
(a) (b)

Fig. 2. Processes and isomorphisms of processes

Definition 15 (isomorphism of processes). Let G = (TG,Gs, P, ) be a
typed graph grammar and let p; = (O;, ¢;), with O = (T'G;, Pj, ;) and ¢; =
(mg;,mpj,t;), for j = 1,2, be two processes of G. An isomorphism between p;
and ps is a pair (fg, fp) : p1 — p2 such that
— fg:{TG1,mg1) — (T'Ga,mgs) is an isomorphism (of TG-typed graphs);
— fp: P — P is a bijection such that mp; = mps o fp;
— for each q1 : (L1 < Ky — Ry) in Py, g2 = fp(q) : (L2 + K2 = Ry) in P,
g =mpi(q1) = mpa(g2) : (L + K — R) in P, the diagram in Fig. 2.(b) and
the analogous ones for the interfaces and the right-hand sides, commute.

To indicate that p; and po are isomorphic we write p; = po. This definition
is slightly more restrictive than the original one in [6], since, guided by the
notion of abstraction equivalence for decorated derivations, we require the com-
mutativity of the diagrams like that in Fig. 2.(b) w.r.t. to fixed isomorphisms
L]L (pj)s Lf (pj)s Lf(pj), which are here part of the processes, and not w.r.t. generic
isomorphisms as in [6].



4 Concatenable Processes

Since processes represent (concurrent) computations and express explicitly the
causal dependencies existing between single rewriting steps, it is natural to ask
for a notion of sequential composition of processes consistent with causal de-
pendencies. When trying to define such notion, the same problem described for
traces arises, and we solve it in the same way, i.e., by decorating the source
Min(p) and the target Max(p) of the process p with isomorphisms from the
corresponding canonical graphs. Such isomorphisms play the same réle of the
ordering on maximal and minimal places of concatenable processes in Petri net
theory [8]. In this view our concatenable graph processes are related to the graph
processes of [6] in the same way as the concatenable processes of [8] are related
to the classical Goltz-Reisig processes for P/T nets [10]. Essentially the same
technique has been used in [12] to make dynamic graphs concatenable.

Definition 16 (concatenable process). Let G = (T'G,Gs, P, ) be a typed
grammar. A concatenable process (c-process) for G is a triple cp = (m,p, M),
where p is a process and m : Can(Min(p)) — Min(p), M : Can(Max(p)) —
Mazx(p) are isomorphisms (of TG-typed graphs). We denote with Min(cp) and
Maz(cp) the graphs Min(p) and Maz(p).

An isomorphism between two c-processes ¢cp1 = (my,p1, M1) and cps =
(ma, p2, Ma) is an isomorphism of processes (fg, fp) : p1 — p2 that “commutes”
with the decorations, i.e., such that fgomy = msg and fgo My = My (where fg
denotes the restrictions of fg itself to Min(cp1) and Max(cpy) respectively). To
indicate that cp; and cps are isomorphic we write cp; = cps. An isomorphism
class of c-processes is called abstract c-process and denoted by [cp], where cp is
a member of the class.

Given two c-processes ¢p; and c¢ps such that Max(cpr) ~ Min(cps), we can
concatenate them by gluing the Maz graph of the first one with the Min graph of
the second one. Formally, the type graph of the resulting process is obtained via
a pushout construction and thus it is defined only up to isomorphism. However,
when lifted to the abstract setting the operation turns out to be deterministic.
Definition 17 (sequential composition). Let G = (T'G,G,, P,7) be a typed
graph grammar and let [ep1] and [cps] be two abstract c-processes for G (with
cpj = (my,pj, M), pj = (O;,0;) = (TGy, Pj,m5), (mgj, mpj, 15))), such that
Maz(cpr) ~ Min(cpe). The sequential composition of [cp1] and [cps], denoted
by [cp1]; [ep2] is the isomorphism class [cp] of the c-process:

cp = (m,p, M),
where p = (0", ¢') = ((GL, TG, P, 7'),(mg’,mp’)), is defined as follows. The
type graph TG', with the morphism mg' : TG' — TG, is given by the following
pushout diagram (in TG-Graph):

Can(Maz(cpy)) Mo, Maz(cp))——TG, _ ¢
\ ,
I e TG
Can(Max(cp2)) ;i Max(cps)—= TGy~



The set of production names is P’ = P W Py, with @ and mp’' defined in the
expected way. Finally m = g1 omy, M’ = gy o My and G, = g1(Min(cp1)).

Definition 18 (category of (abstract) c-processes). Given a typed graph
grammar G = (TG, G5, P,m), we denote by CP[G] the category of (abstract)
c-processes having abstract graphs typed over TG as objects and abstract
C-PTOCesSes as arrows.

5 Relating traces and processes

This section shows that the semantic model based on concatenable linear traces
and the one based on concatenable graph processes are essentially the same.
More formally we prove that the category LTr[G] of concatenable linear traces
(Definition 9) is isomorphic to the category of abstract c-processes CP[G].

First, given an abstract c-process [cp] we can obtain a derivation by “execut-
ing” the productions of ¢p in any order compatible with the causal order.

Definition 19 (from processes to traces). Let G = (T'G, G, P, ) be a typed
graph grammar and let [cp] be an abstract c-process of G, where cp = (m,p, M),
p=(0,¢) = (TG, P 7', (mg,mp,)). Let q,...,q,_1 be an enumeration of
the productions of P’ compatible with the causal order of cp.

We associate to [cp] the concatenable linear trace La([cp]) = []c, with

Y= <ma P M>7 where p = {Gi—l = qi—1,9i-1 Gi}ieﬂ
such that Gy = Min(cp), Gy, = Max(cp), and for eachi=0,...,n—1

— ¢; = mp(q));

— Gip1 = G(S{qé}wq;}), i.e. Gy is the subgraph of the type graph TG’ of the
process determined by the reachable set S{q67___7q;}, typed by mg;

— each derivation step G; =, 4, Git1 s as in Fig. 3.(a), where unlabelled
arrows represent inclusions.

L T l; T4

qi =mp(q)) : LG; KG; RG; Qi L; K; R;
LL<q§>i LK(qi)l LR(q;)i gil kbi ihi
¢ LGi<— KG} — > RG; Gi <2 Dy —Y G
tlii 1 tkil 1 tril o cdii Al
G D; Git1 TG
(a) (b)

Fig. 3. From abstract c-processes to concatenable linear traces and backward.

It can be shown that the mapping £ 4 is well defined. Moreover it preserves
sequential composition of processes and identities, and thus it can be lifted to a
functor £4 : CP[G] — LTr[G] which acts as identity on objects.



The backward step, from concatenable linear traces to abstract c-processes,
is performed via a colimit construction that, applied to a derivation in the trace,
essentially constructs the type graph as a copy of the starting graph plus the
items produced during the rewriting process. Productions of the process are
occurrences of production applications.

Definition 20 (from traces to processes). Let G = (TG, G, P, ) be a typed
graph grammar and let [1)]. be a concatenable linear trace, with v = (m,p, M).
We associate to [{]. an abstract c-process Pa([¢]c) = [ep], with cp = (m/,p, M),
p=1(0,¢) = (TG, P 7', {mg,mp,¢)), such that:

— (T'G',mg) is the colimit object (in category TG-Graph) of the diagram rep-
resenting derivation v, as depicted (for a single derivation step and without
typing morphisms) in Fig. 3.(b);

— P = {{gi,%) | ¢; is used in step i, for i = 0,...,n — 1}, and for all i =
0,...,n—1, referring to Fig. 3.(b), 7' ({¢;,1)) = ((LG;, cg;og;) & (KG;,cd;o
kl> - <RG17 CGi+1 © hl>)7 mp(<q1'7i>) =q; and L(<qi7i>) = <idLi7idKi’idRi>'

—m' =cggom and M' = cg,, o M ;

It is possible to prove that P4 : Abs[G] — LCP[G], obtained extending P4
as identity on objects, is a well defined functor, and that £4 and P4 are inverse
each other.

Theorem 1. Let G be a graph grammar. Then L4 : CP[G] — LTr[G] and
Pa : LIr[G] — CP[G] are inverse each other, establishing an isomorphism of
categories.

6 Processes and events

The category of concatenable traces Tr[G] is used in [5] to define the finitary
prime algebraic domain (hereinafter domain) and the event structure of a gram-
mar G. Elements of the domain are suitable classes of concatenable traces. Propo-
sition 1 implies that the same structure can be obtained starting from category
LTr[F].

Theorem 2. For any graph grammar G = (TG,Gg, P,7t) the comma category
[G] } LTY[G] is a preorder PreDom|[G], i.e., there is at most one arrow between
any pair of objects. Moreover the ideal completion of PreDoml|G] is a domain,

denoted by Dom|G].

By results in [17], Dom[G] is the domain of configurations of a uniquely
determined PES ES[G], which is proposed as the truly concurrent semantics of
the grammar. Here, thanks to the close relation existing between concatenable
processes and concatenable linear traces, stated in Theorem 1, we can provide
a nice characterization of the finite configurations (finite elements of the do-
main Dom[G]) and of the events of ES[G]. The result resembles the analogous
correspondence existing for P/T nets and is based on a similar notion of left
concatenable process.



Definition 21 (abstract left c-process). Two c-processes cpy and cps are left
isomorphic, denoted by cp1 =; cpa, if there exists a pair of functions f = (fg, fp)
satisfying all the requirements of Definition 15, but, possibly, the commutativity
of the right triangle of Fig. 2. An abstract left c-process is a class of left iso-
morphic c-processes [cp|;. It is initial if Min(cp) ~ G. It is prime if the causal
order < of cp, restricted to the set P of its productions, has a maximum element.

The following result has a clear intuitive meaning if one think of the pro-
ductions of (the occurrence grammar of) a process as instances of production
applications in the original grammar G, and therefore as possible events in G.

Theorem 3. There is a one to one correspondence between.:

1. ingtial left c-processes and finite elements of Dom][G];
2. prime initial left c-processes and elements of ES[G].

7 Conclusions

As recalled in the introduction, typed graph grammars can be seen as a proper
generalization of P/T Petri nets and many concepts and results in the theory
of concurrency for graph grammars manifest an evident similarity with cor-
responding notions for nets. The deepening and formalization of this analogy
represents a direction for future research. In particular, we intend to continue
the investigation of the relationship among the various notions of graph and net
processes. Furthermore we are trying to extend to graph grammars the unfold-
ing construction of [17,13] (which generates the event structure associated to a
net via the unfolded occurrence net) following, for what concern the handling
of asymmetric conflicts, the ideas presented in [1]. Preliminary considerations
suggest that graph processes of [6] are in precise correspondence with Goltz-
Reisig processes [10]. On the other hand, our concatenable graph processes are
not the exact counterpart of the concatenable processes of [8]. This is due to the
fact that we have been mainly guided by the aim of unifying the various exist-
ing semantics for graph grammars: the equivalence with [5] has been formally
proved in this paper and we are confident that a similar result can be obtained
for the semantics proposed by Schied in [16]. Furthermore many variations of
concatenable processes in the theory of nets exists, enjoying different properties.
For instance, the decorated processes [14] generate the same domain produced
by the unfolding construction. We are convinced that our concatenable graph
processes correspond to a slight refinement of such net processes and, therefore,
that the equivalence result between the process and unfolding semantics can be
extended to the graph rewriting setting.
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