
Encoding asynchronous interactions

using open Petri nets⋆

Paolo Baldan1 and Filippo Bonchi2,3 and Fabio Gadducci3

1 Dipartimento di Matematica Pura e Applicata, Università di Padova
2 Centrum voor Wiskunde en Informatica, Amsterdam

3 Dipartimento di Informatica, Università di Pisa

Abstract. We present an encoding for (bound) processes of the asyn-
chronous CCS with replication into open Petri nets: ordinary Petri nets
equipped with a distinguished set of open places. The standard token
game of nets models the reduction semantics of the calculus; the exchange
of tokens on open places models the interactions between processes and
their environment. The encoding preserves strong and weak CCS asyn-
chronous bisimilarities: it thus represents a relevant step in establishing
a precise correspondence between asynchronous calculi and (open) Petri
nets. The work is intended as fostering the technology transfer between
these formalisms: as an example, we discuss how some results on expres-
siveness can be transferred from the calculus to nets and back.

Keywords: Asynchronous calculi, bisimilarity, decidability, open Petri nets.

1 Introduction

Distributed systems often rely on asynchronous communication, where the oper-
ation of sending messages is non-blocking: a process may send a message without
any agreement with the receiver, and continue its execution while the message
travels to destination. After the introduction of the asynchronous π-calculus [1,
2], many process calculi have been proposed that embody some asynchronous
communication mechanism (see [3–5], among others). Due to the asymmetry be-
tween sending and receiving, behavioural equivalences for asynchronous systems
(see e.g. [4, 6–9]) exhibit subtle differences with respect to their synchronous
counterparts. Indeed, since sending is non-blocking, an external observer (inter-
acting with a system by message exchanges) cannot know if a message has been
received and thus message reception is considered, to some extent, unobservable.

In this paper we aim at establishing a formal correspondence between asyn-
chronous calculi and Petri nets [10]. Perhaps due to their longevity, Petri nets
are the best known and most widely used formalism for the visual specification
of distributed systems. Besides being used in countless verification tools, suitable

⋆ Partly supported by the EU FP6-IST IP 16004 SEnSOria and carried out during
the second author’s tenure of an ERCIM “Alain Bensoussa” Fellowship Programme.

net instances have been successfully adopted as a specification domain in many
areas: for their relevance, we mention web services and workflow nets [11].

Petri nets exhibit both synchronous and asynchronous features in their be-
haviour. On the one hand, a transition having more than one place in its pre-set
can be seen as a synchronisation point: it can be executed only if all the needed
tokens are available in its pre-set at the same time. On the other hand, a to-
ken is first produced by a transition and it then remains available until another
transition consumes it, in an asynchronous fashion.

The correspondence between synchronous calculi and Petri nets has been
thoroughly investigated (see e.g. [12–16]). Typically, a set of operations is iden-
tified on a class of nets, and used for a denotational mapping of the calculus.
The archetypal example is maybe the simple calculus of nets [13]: each occur-
rence of a CCS prefix in a process is mapped into a net transition, labelled by
the name of the corresponding channel; and basic transitions are used for the
parallel and non-deterministic operators. The resulting encodings are often quite
syntactical, and forced to restrict their attention to the finite fragment of a cal-
culus. More set-theoretical encodings, basically mapping each process onto a net
whose places represent its sub-processes, whilst transitions simulate the control
flow of the process, were considered [17]. The dichotomy is denoted [18] as label
vs location oriented encoding, where it is argued that nets with inhibitor arcs
should be considered for calculi equipped with both sums and restrictions.

Here we focus on the relation between asynchronous calculi and Petri nets.
We propose an approach to process encoding which differs from those outlined
above, as it relies on reduction semantics [19, 20] and open nets [21–23]. Open
nets are ordinary P/T Petri nets equipped with a set of open places, i.e., a
set of places visible from the environment: a net may then interact with the
environment by exchanging tokens on these places. Open nets are closely related
to previous approaches to reactivity and compositionality for Petri nets (see,
e.g., [24–27], to mention a few), which, interestingly enough, have been often
inspired by the search of encodings of calculi into nets or, more generally, by the
investigation of the relation between Petri nets and process calculi.

Specifically, we encode an asynchronous variant of CCS [7] into open nets,
in such a way that each process reduction corresponds to a transition firing in
the net, and vice versa. The key idea is to exploit openness of places in order to
account for name restriction. The free names of a process correspond to the open
places of the associated net, and message exchanging between a process and the
environment on a channel corresponds to token exchanging on open places. As
the set of places in a net is fixed, the encoding applies to bound processes, i.e.,
processes where no restriction operator occurs under the scope of a replication
(thus avoiding the generation of an unbounded number of restricted names).

Summarizing, the main features of our encoding are

1. it preserves the structural congruence of processes,

2. a bijective relation holds between process reductions and net firings,

2

3. the interaction between processes and environment is naturally modeled by
the built-in interaction mechanism of open nets, thus formalising the fact
that net interaction on open places is eminently asynchronous ;

4. it preserves and reflects both strong and weak asynchronous bisimilarity.

As far as we know, the latter is the first result of this kind, raising the cor-
respondence between reductions and firing steps up-to the level of asynchronous
observational equivalences. Furthermore, it seems noteworthy that, while we con-
sider the asynchronous equivalences for the calculus, the equivalences for open
nets exploit the standard (either weak or strong) bisimulation game.

We believe that our encoding and its properties establish the fundamental
correspondence between asynchronous calculi and open nets, thus paving the
way for a fruitful “technology transfer” between the two formalisms.

In this paper, we exploit the encoding of (bound) asynchronous CCS pro-
cesses into open nets in order to answer some questions about expressiveness of
(fragments of) the two models. In an independent work, the recent paper [16],
building upon [28], offers some results concerning the expressive power of restric-
tion and its interplay with replication in synchronous calculi. Here we prove that
analogous results can be given for asynchronous calculi. We first show that for
bound asynchronous CCS processes strong and weak asynchronous bisimilarities
(as well as many other behavioural equivalences) are undecidable. Exploiting the
encoding, we immediately obtain that these bisimilarities are undecidable also
for open nets. This fact falls outside the known undecidability of bisimilarity for
Petri nets [29], as we only observe the interaction with the environment: internal
transitions are indistinguishable for strong equivalences and unobservable for
weak equivalences (e.g., all standard, closed Petri nets are weakly bisimilar in
our setting). In the other direction, using the fact that reachability is decidable
for Petri nets, through the encoding we prove that reachability and convergence
are decidable for bound asynchronous CCS (which, thus, is not Turing powerful).

As mentioned before, in the study of the relation between Petri nets and pro-
cess calculi, asynchronous calculi has received less attention than synchronous
ones. In general terms, most of the proposals we are aware of put their emphasis
on the preservation of the operational behaviour, while behavioural equivalences
are seldom studied. This is e.g. the pattern followed in [30], which considers pos-
sible encodings of the join calculus, where communication is asynchronous, into
Petri nets. In particular, the fragment of the join calculus with no name passing
and process generation is shown to correspond to ordinary P/T Petri nets, while,
in order to encode wider classes of join processes, high-level Petri nets, ranging
from coloured nets to dynamic nets must be considered. The encoding share some
ideas with ours, e.g., the fact that Petri net places are partitioned into public
and private places, even if it does not tackle the relations between process and
net behavioural equivalences. Some related work has been done in the direction
of encoding several brands of coordination languages, where processes commu-
nicate through shared dataspaces, as Petri nets. The papers [30, 31] exploit the
encoding to compare the expressiveness of Linda-like calculi with various com-
munication primitives. In [32] an encoding of KLAIM, a Linda-like language

3

with primitives for mobile computing, into high-level Petri nets is provided. The
long-term goal there is to reuse in the context of KLAIM the techniques avail-
able for Petri net verification. Concrete results in this direction are obtained
in [33], where finite control π-calculus processes are encoded as safe Petri nets
and verified using an unfolding-based technique.

The paper is structured as follows. In Section 2 we recall the syntax and
the reduction semantics of asynchronous CCS, further presenting the strong and
weak (barbed) bisimilarities for the calculus. Section 3 recalls open nets and
their equivalences. Section 4 is the core of the paper: it presents the encoding
from bound processes of asynchronous CCS into open nets, proving that the
encoding preserves and reflects the operational as well as the observational se-
mantics of the calculus. Section 5 discusses some expressiveness issues for the
considered models, taking advantage from the encoding. Finally, Section 6 draws
some conclusions and provides pointers to future works.

2 Asynchronous CCS

Differently from synchronous calculi, where messages are simultaneously sent
and received, in asynchronous communication the messages are sent and travel
through some media until they reach destination. Thus sending is not blocking
(i.e., a process may send even if the receiver is not ready to receive), while re-
ceiving is (processes must wait until a message becomes available). Observations
reflect the asymmetry: since sending is non-blocking, receiving is unobservable.

This section introduces asynchronous CCS as a fragment of asynchronous
π-calculus (with no name passing). We adopt the presentation in [6] that allows
non-deterministic choice for input prefixes (a feature missing in [4, 7]).

Definition 1 (processes). Let N be a set of names, ranged over by a, b, c, . . .,
and τ 6∈ N . A process P is a term generated by the (mutually recursive) syntax

P ::= M, ā, (νa)P, P1 | P2, !a.P M ::= 0, µ.P, M1 + M2

for µ ranging over {τ} ∪ N . We let P, Q, R, . . . range over the set Proc of pro-
cesses, and M, N, O . . . range over the set Sum of summations.

The main difference with standard CCS [34] is the absence of output prefixes.
The occurrence of an unguarded ā indicates a message that is available on some
communication media named a, and it disappears whenever it is received.

We assume the standard definitions for the set of free names of a process P ,
denoted by fn(P). Similarly for α-convertibility w.r.t. the restriction operators
(νa)P : the name a is restricted in P , and it can be freely α-converted. Structural
equivalence (≡) is the smallest congruence induced by the axioms in Figure 1.
The behaviour of a process P is then described as a relation over processes up
to ≡, obtained by closing a set of rules under structural congruence.

Definition 2 (reduction semantics). The reduction relation for processes is
the relation RA ⊆ Proc × Proc inductively defined by the following set of rules

a.P + M | ā → P τ.P + M → P !a.P | ā → P |!a.P

4

P | Q = Q | P P | (Q | R) = (P | Q) | R P | 0 = P

M+N = N+M M+(N+O) = (M+N)+O M+0 = M N+N = N

(νa)(νb)P = (νb)(νa)P (νa)(P | Q) = P | (νa)Q for a 6∈ fn(P) (νa)0 = 0

(νa)(M + µ.P) = M + µ.(νa)P for a 6∈ fn(M + µ.0)

Fig. 1. The set of structural axioms.

P → Q

(νa)P → (νa)Q

P → Q

P | R → Q | R

and closed under ≡, where P → Q means that 〈P, Q〉 ∈ RA. As usual, we let ⇒
denote the reflexive and transitive closure of −→.

The first rule denotes the reception of a message, possibly occurring inside a non-
deterministic context: the process a.P is ready to receive a message along channel
a; it then receives message ā and proceeds as P . The second rule represents an
internal computation, while on the third rule the replication of a process P

occurs after a message is received on a. The latter rules state the closure of the
reduction relation w.r.t. the operators of restriction and parallel composition.

A difference w.r.t. the standard syntax of the asynchronous calculus proposed
in [6] is the use of guarded input replication !a.P instead of pure replication !M
(see, e.g., [35] which shows that for the synchronous π-calculus, this restriction
does not affect the expressiveness of the calculus). Since we plan to later use our
encoding to study the concurrency properties of asynchronous interactions, this
choice appears more reasonable. Indeed, unguarded replication has an (unrealis-
tic) infinitely branching behaviour when considering concurrent semantics: just
think of process !τ.ā. We also remark that, at the price of a slight complication of
the presentation, the results in the paper could be easily extended to a calculus
with replication for guarded sums, i.e., allowing for terms of the kind !Σi∈Iai.Pi.

As for the structural axioms, we added sum idempotency and an axiom
schema for distributing the restriction under the sum: neither of them is changing
the reduction relation, whilst they simplify our encoding of processes into nets.

2.1 Behavioural equivalences

The main difference with the synchronous calculus lies in the notion of observa-
tion. Since sending messages is non-blocking, an external observer can just send
messages to a system without knowing if they will be received or not. For this
reason receiving should not be observable and thus barbs, i.e., basic observations
on processes, take into account only outputs.

Definition 3 (barb). Let P be a process. We say that P satisfies the strong
barb ā, denoted P ↓ ā, if there exists a process Q such that P ≡ ā | Q.

Similarly, P satisfies the weak barb ā, denoted P ⇓ ā, if P ⇒ Q and Q ↓ ā.

5

Now, strong and weak barbed bisimulation can be defined as in the syn-
chronous case [20], but taking into account only output barbs.

Definition 4 (barbed bisimulation). A symmetric relation R ⊆ Proc×Proc
is a strong barbed bisimulation if whenever (P, Q) ∈ R then

1. if P ↓ ā then Q ↓ ā,
2. if P → P ′ then Q → Q′ and (P ′, Q′) ∈ R.

Strong barbed bisimilarity ∼ is the largest strong barbed bisimulation.
Weak barbed bisimulation and weak barbed bisimilarity ≈ are defined analo-

gously by replacing ↓ ā with ⇓ ā and → with ⇒.

Strong (weak) barbed bisimilarities are not congruences. Indeed, a.b̄ ∼ 0 (and
a.b̄ ≈ 0), since neither process can perform any transition, but when inserted
into the context − | ā, the former can perform a transition, while the latter
cannot. Behavioural equivalences which are congruences are obtained as follows.

Definition 5 (barbed equivalence). Let P , Q be processes. They are strongly
barbed equivalent, denoted P ∼b Q, if P | S ∼ Q | S for all processes S.

Similarly, they are weakly barbed equivalent, denoted P ≈b Q, if P | S ≈
Q | S for all processes S.

An alternative characterization of barbed equivalence considers output transi-
tions and the closure w.r.t. the parallel composition with outputs in the bisim-
ulation game. Strong and weak output transitions are defined as follows: we

respectively write P
ā
−→ Q if P ≡ ā | Q, and P

ā
⇒ Q if P ⇒ P ′ ā

−→ Q′ ⇒ Q.

Definition 6 (1-bisimulation). A symmetric relation R ⊆ Proc × Proc is a
strong 1-bisimulation if whenever (P, Q) ∈ R then

1. ∀a ∈ N . (P | ā, Q | ā) ∈ R,
2. if P → P ′ then Q → Q′ and (P ′, Q′) ∈ R,

3. if P
ā
−→ P ′ then Q

ā
−→ Q′ and (P ′, Q′) ∈ R.

Strong 1-bisimilarity ∼1 is the largest strong 1-bisimulation.
Weak 1-bisimulation and weak 1-bisimilarity ≈1 are defined analogously by

replacing → with ⇒ and
ā
−→ with

ā
⇒.

Proposition 1 ([6]). ∼b=∼1 and ≈b=≈1.

Example 1. Consider the processes P = (νd)(!d.ē | (a.(ā | d̄ | d.c̄) + τ.(d̄ | d.c̄)))
and Q = (νd)(τ.(d.c̄ | d.ē | d̄)). It is not difficult to see that P ∼1 Q. First
consider their internal steps: P −→ (νd)(!d.ē | d̄ | d.c̄), while Q −→ (νd)(d.c̄ | d.ē |
d̄). Notice that (νd)(!d.ē | d̄ | d.c̄) ∼1 (νd)(d.c̄ | d.ē | d̄), since after one execution
the replication operator is stuck.

The process P can also receive on the channel a. Instead of observing the
input transitions

a
−→, in the 1-bisimulation game this behaviour is revealed plug-

ging the processes into − | ā. The process P | ā can choose one of the two
branches of +, but in any case it performs an internal transition becoming

6

e

a

c

d

P2

P3

P4
t4

t2

t′
2

t3

P = (νd)(

P1
z }| {

!d.ē
|{z}

P3

| (a.(ā | d̄ |

P4
z}|{

d.c̄)
| {z }

M

+ τ.(d̄ |

P4
z}|{

d.c̄)
| {z }

M′

)

| {z }

P2

)

t2 = (P2, M) t3 = P3

t′2 = (P2, M
′) t4 = (P4, P4)

Fig. 2. An open net encoding a process P .

(νd)(!d.ē | ā | d̄ | d.c̄). On the other hand, Q | ā performs an internal tran-
sition to (νd)(d.c̄ | d.ē | d̄ | ā), and clearly the resulting states are 1-bisimilar.

Furthermore, consider the process a.ā: it is one of the idiosyncratic features
of the asynchronous communication that the equivalence a.ā ≈1 0 holds.

3 Open nets

Differently from process calculi, standard Petri nets do not exhibit an interac-
tive behaviour, i.e., they are intended to model concurrent systems considered
as standalone. This section reviews open nets, i.e., ordinary P/T nets with a
distinguished set of open places : they represent the interfaces through which the
environment interacts with a net, by putting and removing tokens (see [21–23]).4

Given a set X , let X⊕ denote the free commutative monoid over X . An
element m ∈ X⊕, called a multiset over X , is often viewed as a function from
X to N (the set of natural numbers) that associates a multiplicity with every
element of X . We write m1 ⊆ m2 if ∀x ∈ X , m1(x) ≤ m2(x). If m1 ⊆ m2,
the multiset m2 ⊖ m1 is defined as ∀x ∈ X m2 ⊖ m1(x) = m2(x) − m1(x). The
symbol 0 denotes the empty multiset.

Definition 7 (Open P/T Petri net). An open (P/T Petri) net is a tuple
N = (S, T,• (.), (.)

•
, O) where S is the set of places, T is the set of transitions,

•(.), (.)
•

: T → S⊕ are functions mapping each transition to its pre- and post-set,
and O ⊆ S is the set of open places.

Example 2. Figure 2 shows an open net: as usual, circles represent places and
rectangles transitions. Arrows from places to transitions represent function •(.),
while arrows from transitions to places represent (.)

•
. An open net is enclosed in

a box and open places are on the border of such a box. Additionally, any open
place has a name which is placed inside the corresponding circle: in this example
these are chosen from the set N . Also transitions and closed places are provided

4 Differently from [21], yet with no loss of generality, we do not distinguish between
input and output open places, tailoring equivalences accordingly.

7

(tr) t ∈ T
•
t ⊕ c

τ
−→ t

• ⊕ c
(in) s ∈ O

m
s
+

−→ m ⊕ s
(out) s ∈ O

m
s
−

−→ m ⊖ s

Table 1. Operational Semantics of open nets.

with an identifier, yet positioned outside of the corresponding circle or square:
their precise meaning, as well as an explanation of the process on the right, is
provided later on. The open place identified by a and the closed place identified
by P2 form e.g. the pre-set of transition t2; its post-set is formed by a, P4 and d.

Given an open net N , we consider the set of interactions (ranged over by i)
IN = {s+, s− | s ∈ O}. The set of labels (ranged over by l) consists in {τ}⊎ IN .
The operational semantics of open nets is expressed by the rules on Table 1,
where we write •t and t• instead of •(t) and (t)•. The rule (tr) is the standard
rule of P/T nets (seen as multiset rewriting) modelling internal transitions. The
other two rules model interactions with the environment: in any moment a token
can be inserted in (rule (in)) or removed from (rule (out)) an open place.

Weak transitions are defined as usual, i.e.,
τ
⇒ denotes the reflexive and tran-

sitive closure of
τ
−→ and

i
⇒ denotes

τ
⇒

i
−→

τ
⇒.

Definition 8 (Strong and weak bisimilarity). Let N1, N2 be open nets with
the same interface i.e., O1 = O2. A strong bisimulation between N1 and N2 is
a relation over markings R ⊆ S⊕

1 × S⊕
2 such that if (m1, m2) ∈ R then

– if m1
l
−→ m′

1 in N1 then m2
l
−→ m′

2 in N2 and (m′
1, m

′
2) ∈ R;

– if m2
l
−→ m′

2 in N2 then m1
l
−→ m′

1 in N1 and (m′
1, m

′
2) ∈ R.

Two markings m1 ∈ S⊕
1 and m2 ∈ S⊕

2 are bisimilar, written m1 ∼ m2, if
(m1, m2) ∈ R for some strong bisimulation R.

Weak bisimilarity ≈ is defined analogously by replacing strong transitions
l
−→

by weak transitions
l
⇒.

In order to ease the intuition behind net bisimilarity, nets must be thought of
as black boxes, where only the interfaces (i.e., the open places) are visible. Two
nets are weak bisimilar if they cannot be distinguished by an external observer
that may only insert and remove tokens in open places. For strong bisimilarity
the observer can also see the occurrence of internal transitions.

4 From processes to nets

Our encoding is restricted to bound processes, i.e., processes where restrictions
never occur under replications. Any bound process is structurally equivalent to
a process of the shape (νX)P , for P a restriction-free process and X ⊆ fn(P).
In the following, we implicitly assume that bound processes are always in this

8

Pl(P1 | P2) = Pl(P1) ∪ Pl(P2)
Pl(!a.P) = {a} ∪ {[!a.P]} ∪ Pl(P)

Pl(M) =

∅ ifM ≡ 0
{[M]} ∪ Pls(M) otherwise

Pl(ā) = {a}
Pls(a.P) = {a} ∪ Pl(P)
Pls(τ.P) = Pl(P)
Pls(M1 + M2) = Pls(M1) ∪ Pls(M2)

Fig. 3. The place functions.

shape. Moreover, we call basic processes those bound processes described by the
following syntax (where P must be restriction-free)

B ::= ā, !a.P, M

Observe that any restriction-free process is just the parallel composition of
several basic processes. In our net encoding, basic processes become places,
marked with a number of tokens equal to the number of occurrences of the
corresponding basic process in the parallel composition. Hereafter, we use [P] to
denote the equivalence class of process P w.r.t. structural equivalence.

Definition 9 (places). The (mutually recursive) functions Pl(P) and Pls(M),
associating to each restriction-free process and summation, respectively, a set of
places, are defined by structural induction according to the rules in Figure 3.

The set of places associated with a restriction-free process P thus consists
in the set of names of P together with the set of equivalence classes of basic
sub-processes of P of shape !a.P and M , for M 6≡ 0. Notice that a basic process
ā is simply encoded by a token in the place corresponding to name a. We use
m(P) to denote the marking associated with a restriction-free process P , which,
assuming m(0) to be the empty marking, is defined by

m(P1 | P2) = m(P1) ⊕ m(P2) m(ā) = a m(M) = [M] m(!a.P) = [!a.P]

Definition 10 (transitions, pre- and post-conditions). Let M be a sum-
mation. The set of atoms of M , denoted Atom(M), is inductively defined as:

Atom(0) = ∅, Atom(µ.P) = {[µ.P]}, Atom(M1 + M2) = Atom(M1)∪Atom(M2)

for µ ∈ N ∪ {τ}. Now, let P be a restriction-free process. The set of transitions
of P , denoted T (P), is inductively defined as:

T (0) = ∅ T (P1 | P2) = T (P1) ∪ T (P2)
T (ā) = ∅ T (!a.P) = {[!a.P]} ∪ T (P)

T (M) = ({[M]} × Atom(M)) ∪
⋃

[µ.P]∈Atom(M) T (P)

The pre- and post-conditions •(.)P , (.)
•
P : T (P) → Pl(P)⊕ are defined as follows.

•
tP =

{[M]} ⊕ fn(µ.0) if t = 〈[M], [µ.P]〉
{[!a.P]} ⊕ {a} if t = [!a.P]

t
•
P =

m(P) if t = 〈[M], [µ.P]〉
{[!a.P]} ⊕ m(P) if t = [!a.P]

9

Intuitively, transitions mimic the control flow of a process, passing the token
between its sequential components (its basic processes).

We next introduce the net encoding for bound processes. In order to get
a full correspondence between behavioural equivalences, we need to encode our
processes parametrically w.r.t. a set of names Γ , as usually necessary in graphical
encodings of process calculi (based e.g. on DPO rewriting [36] or bigraphs [37]).

Definition 11. Let P be a restriction-free process and X, Γ disjoint sets of
names such that fn((νX)P) ⊆ Γ . Then, the open net [[(νX)P]]Γ is the tuple

(Pl (P) ∪ Γ, T (P),• (.)P , (.)
•
P , Γ)

First we take the net associated with P , consisting of those places and transi-
tions as given in Definitions 9 and 10. Then the set of places is extended with
those names belonging to Γ (the assumption Γ ∩ X = ∅ avoids that by chance
a restricted name in X is overlapped). Finally, we take as open those places
corresponding to a name in Γ (by hypothesis this includes the free names of
(νX)P).

Example 3. The net in Example 2 is the encoding [[P]]Γ of the process P in
Example 1, with Γ = {a, c, e}. The places identified by a, c, and e correspond
to the free names of the process, while place d corresponds to the restricted
name d. The remaining places correspond to (equivalence classes of) the basic
sub-processes of P : for example, the place P2 corresponds to the sub-process
[a.(ā | d̄ | d.c̄)+ τ.(d̄ | d.c̄)], while the place P4 to [d.c̄]. The transition t2 encodes
the pair (P2, M), for M the atom [a.(ā | d̄ | d.c̄)]. It may fire in presence of a
token in a and P2: it roughly represents the reduction P2 | ā → ā | d̄ | d.c̄.

We close this section by establishing a first correspondence result.

Proposition 2. Let P , Q be bound processes and Γ a set of names such that
fn(P)∪fn(Q) ⊆ Γ . Then P ≡ Q iff the open nets [[P]]Γ and [[Q]]Γ are isomorphic.

4.1 Relating asynchronous CCS and open nets

This section shows that our encoding preserves and reflects process reductions,
as well as strong and weak behavioural equivalences. In order to state these
results, we must define a correspondence between the set of processes reachable
from P , hereafter denoted by reach(P), and markings over the net [[P]]Γ . For
this, we need a technical lemma concerning reductions for bound processes.

Lemma 1. Let P be a restriction-free process and X a set of names. Then,

1. (νX)P → Q iff Q ≡ (νX)Q1 and P → Q1;
2. if P → Q then Q ≡ B1 | . . . | Bn, for Bi’s basic sub-processes of P .

The above lemma tells us that each process Q reachable from a bound process
(νX)P can be seen as a (possibly empty) marking over the net [[(νX)P]]Γ . In
fact, the set of places of [[(νX)P]]Γ contains all the basic sub-processes of P .

10

Definition 12. Let P be a bound process and X, Γ disjoint sets of names such
that P ≡ (νX)P1 (for P1 restriction-free) and fn(P) ⊆ Γ . The function mX,P1

Γ :
reach(P) → (Pl(P1) ∪ Γ)⊕ maps any process Q ≡ (νX)Q1 (for Q1 restriction-
free) reachable from P into the marking m(Q1) over the net [[P]]Γ .

Example 4. Recall P = (νd)P1, for P1 =!d.ē | (a.(ā | d̄ | d.c̄) + τ.(d̄ | d.c̄)),

from Example 1. Let X = {d} and Γ = {a, c, e}. The function mX,P1

Γ maps the
processes reachable from P into markings of [[P]]Γ , that is, the net in Figure 2.
E.g., P is mapped to P2 ⊕ P3; (νd)(!d.ē | d̄ | d.c̄) is mapped to P3 ⊕ d ⊕ P4;
(νd)(!d.ē | c̄) is mapped to P3 ⊕ c and (νd)(ē | d.c̄) to e ⊕ P4.

Once established that any process reachable from a bound process P identifies
a marking in the net [[P]]Γ , we can state the main correspondence results.

Theorem 1. Let P be a bound process, and X, Γ disjoint sets of names such
that P ≡ (νX)P1 (for P1 restriction-free) and fn(P) ⊆ Γ . Moreover, let Q be a
process reachable from P . Then,

1. if Q → R then mX,P1

Γ (Q)
τ
−→ mX,P1

Γ (R) in [[P]]Γ ;

2. if mX,P1

Γ (Q)
τ
−→ m in [[P]]Γ , then Q → R for m = mX,P1

Γ (R).

The result establishes a bijection between the reductions performed by any
process Q reachable from P , and the firings in [[P]]Γ from the marking mX,P1

Γ (Q),
for any restriction-free P1 such that P ≡ (νX)P1.

Such a bijection can then be lifted to a fundamental correspondence between
the observational semantics in the two formalisms.

Theorem 2. Let P , Q be bound processes and X, Y, Γ sets of names (with X ∩
Γ = Y ∩Γ = ∅) such that P ≡ (νX)P1 and Q ≡ (νY)Q1 (for P1, Q1 restriction-
free) and fn(P) ∪ fn(Q) ⊆ Γ . Then,

1. P ∼1 Q iff mX,P1

Γ (P) ∼ mY,Q1

Γ (Q);

2. P ≈1 Q iff mX,P1

Γ (P) ≈ mY,Q1

Γ (Q).

Please note that the markings mX,P1

Γ (P) and mX,Q1

Γ (Q) live in the open nets
[[P]]Γ and [[Q]]Γ , respectively.

Example 5. Consider the net on the left of Figure 4: it corresponds to [[Q]]Γ , for
Γ = {a, c, e}, Q = (νd)Q1 and Q1 = τ.(d.c̄ | d.ē | d̄) as in Example 1. Note
the presence of the isolated place a: it says that name a does not occur in Q.
Now, the left-most place represents the (equivalence class of the) sub-process
Q1; the left-most transition, identified by t, the pair (Q1, Q1); and its firing is
the execution of the internal transition Q1 → d.c̄ | d.ē | d̄, putting a token on
the three places representing the restricted name d and the basic sub-processes
Q2 = d.c̄ and Q3 = d.ē.

It is easy to see that mX,P1

Γ (P) = P2 ⊕ P3 in [[P]]Γ is strongly bisimilar to

the marking mX,Q1

Γ (Q) = Q1 in [[Q]]Γ : they clearly induce the same internal
behaviour; moreover when the environment inserts a token into a, P2 ⊕ P3 ⊕ a

11

a

t

d

e

c
Q1

Q3

Q2

a

Fig. 4. The net encodings [[Q]]Γ for Γ = {a, c, e} (left) and [[a.ā]]{a} (right).

may fire also transition t2 producing a ⊕ P4 ⊕ d ⊕ P3, but this is equivalent to
the firing of the other internal transition t′2. From this, it follows that P ∼b Q.

Consider now the net in the right of Figure 4: it corresponds to the encoding of
[[a.ā]]{a}. It is weakly bisimilar to the encoding [[0]]{a}, represented by a net having
only an open place, identified by a. In fact, in both cases the only observable
action is either placing or removing a token on the open place a, while the
execution of the transition (a.ā, a.ā), consuming and producing a, is unobservable
from the environment. It thus holds that a.ā ≈b 0.

5 Technology transfer on expressiveness

In this section we discuss some expressiveness issues for asynchronous CCS and
open nets, taking advantage from the encoding presented before.

More specifically, we first show that strong and weak bisimilarity of bound
processes of asynchronous CCS are undecidable, thus answering a question faced
for the synchronous case in the recent [16]. By using Theorem 2, we can deduce
that the same result holds for open nets, a fact which was previously unknown.

On the other hand, using the fact that reachability and convergence are
decidable for Petri nets, through the encoding we can prove that the same holds
for bound asynchronous CCS (which, thus, is not Turing powerful).

5.1 Undecidability of bisimilarity

The undecidability of bisimilarity for bound CCS processes is proved by reduc-
tion to the halting problem for Minsky’s two-register machines, adapting a proof
technique originally proposed in [29].

Definition 13 (two-register machine). A two-register machine is a triple
〈r1, r2, P 〉 where r1 and r2 are two registers which can hold any natural num-
ber, and the program P = I1 . . . Is consists of a sequence of instructions. An
instruction Ii can be one of the following: for x ∈ {r1, r2}, j, k ∈ {1, . . . , s + 1}

– s(x, j): increment the value of register x and jump to instruction Ij

– zd(x, j, k): if x is zero, then jump to Ij else decrement x and jump to Ik

The execution of the program starts from instruction I1, with r1 = 0, r2 = 0 and
possibly terminate when the (s + 1)st instruction is executed.

12

The idea consists in defining, for any two-register machine program P , a
bound process γ(P) which “non-deterministically simulates” the computations
of the program (starting with null registers). Some “wrongful” computations are
possible in the process γ(P), not corresponding to a correct computation of the
program P (due to the absence of zero-tests in the considered fragment of CCS).
Still, this can be used to prove undecidability of (strong and weak) bisimilarity.
In fact, given P , a second process γ′(P) can be built such that γ(P) ∼ γ′(P) iff
program P does not terminate. Therefore, deciding bisimilarity for bound CCS
processes would allow to decide the termination of two-register machines. As
two-register machines are Turing powerful, we conclude.

Theorem 3. Strong (weak) 1-bisimilarity of bound processes is undecidable.

From the properties of the encoding (Theorem 2) we can deduce the same
undecidability results for open nets.

Corollary 1. Strong (weak) bisimilarity is undecidable for open nets.

In the same way, one can easily prove that various other behavioural equiva-
lences, including failure equivalence (the notion of equivalence considered in [16])
and language equivalence, are undecidable.

5.2 Decidability of reachability and convergence

It is immediate to see that for open nets the reachability problem, i.e., the
problem of determining whether a given marking is reachable by means of a firing
sequence starting from the initial marking, is decidable. In fact, reachability in an
open net N can be reduced to reachability in a standard P/T net obtained from
N by adding, for any open place s, two transitions t−s and t+s which, respectively,
freely remove and add tokens from s, i.e., •t−s = t+s

•
= s and t−s

•
=• t+s = 0.

By exploiting the encoding, we may transfer the result to bound asynchronous
CCS, showing that reachability in an open environment, providing any needed
message, is decidable.

Proposition 3. Let P, Q be bound processes. Then the problem of establishing
whether there exists an environment R, consisting of the (possibly empty) parallel
composition of output messages, such that P |R ⇒ Q is decidable.

In particular, the problem P ⇒ Q is decidable. In fact, if X = fn(P)∪ fn(Q), it
is easy to see that P ⇒ Q iff (νX)P ⇒ (νX)Q, and this is turn equivalent to
the existence of a suitable process R such that R|(νX)P ⇒ (νX)Q.

Another property which is often considered when studying the expressiveness
of process calculi is convergence, i.e., the existence of a terminating computation.
We recall such notion below, according to [28].

Definition 14 (convergence). A process P is called convergent if there exists
Q such that P ⇒ Q 6→.

13

Convergence is clearly decidable for an open net N , as it can be reduced to
the existence of a deadlock in the standard P/T net obtained from N by closing
all the open places, and this property is known to be decidable for P/T nets [38].

As a consequence the same holds for bound asynchronous CCS.

Proposition 4. Convergence is decidable for bound processes.

The paper [16] shows that, in the synchronous case, adding priorities to the
language radically changes the situation: bound CCS becomes Turing complete
and convergence is thus undecidable. It is easy to show that the same applies
to the asynchronous case. The fact that adding priorities makes bound asyn-
chronous CCS Turing complete can be proved by noting that using priorities
the encoding of two-counter machines into bound asynchronous CCS can be
made deterministic. This is not surprising as, on the Petri net side, priorities are
strictly connected to inhibitor arcs, which make Petri nets Turing powerful [39].

6 Conclusions and further work

We believe that the relevance of our paper lies in establishing the fundamental
correspondence between asynchronous calculi and open nets, as stated by the
theorems of Section 4. Indeed, even if our presentation has been tailored over a
variant of standard CCS, we feel confident that it can be generalized to other
asynchronous calculi as well, at least to those based on a primitive notion of
communication, i.e., without either value or name passing. As suggested by the
work in [15, 30, 32], the generalisation to calculi with value or name passing
looks feasible if one considers more expressive variants of Petri nets, ranging
from high-level to reconfigurable/dynamic Petri nets.

We consider such a correspondence quite enlightening, since most of the en-
codings we are aware of focus on the preservation of some variants of reachability
or of the operational behaviour [30–32,40], while ours allow to establish a cor-
respondence at the observational level.

As a remark, note that the encoding of CCS processes into open nets could
be defined in a compositional way, either via a more syntactical presentation
(thus losing the preservation of structural congruence) or by the exploiting the
composition operation available for open nets. The latter would require to view
open nets as cospans (with complex interfaces) in a suitable category [23, 36]. In
order to keep the presentation simpler we adopted a direct definition.

We believe that the tight connection between Petri nets and asynchronous
calculi allows for a fruitful “technology transfer”. We started by showing the
undecidability of bisimilarity for bound processes which, through the encoding,
is used to prove undecidability of bisimilarity for open nets (where all internal
transitions are considered indistinguishable in the strong case and unobservable
in the weak case), a previously unknown fact. Analogously, decidability of reach-
ability and convergence for open nets is transferred, through the encoding, to
bound asynchronous CCS processes.

14

We are currently investigating the concurrent semantics for asynchronous
CCS. The idea is to consider the step semantics for our nets, i.e., where many
transitions may fire simultaneously, and then try to distill an adequate equiva-
lence for bound process. Indeed, our initial results are quite encouraging. On the
longer run, our hope would then be to lift these equivalences to richer calculi,
such as the paradigmatic asynchronous π-calculus [6] and to different behavioural
equivalences, including, e.g., failure and testing equivalences [7].

Acknowledgments. We are grateful to Barbara König for enlightening discus-
sions on a preliminary version of this paper and to the anonymous reviewers for
their inspiring comments.

References

1. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In:
Proc. ECOOP’91. Volume 512 of LNCS. 133–147

2. G.Boudol: Asynchrony and the π-calculus. Technical Report 1702, INRIA, Sophia
Antipolis (1992)

3. De Nicola, R., Ferrari, G., Pugliese, R.: KLAIM: A kernel language for agents
interaction and mobility. IEEE Trans. Software Eng. 24(5) (1998) 315–330

4. Castellani, I., Hennessy, M.: Testing theories for asynchronous languages. In: Proc.
FSTTCS’98. Volume 1530 of LNCS., Springer (1998) 90–101

5. Ferrari, G., Guanciale, R., Strollo, D.: Event based service coordination over dy-
namic and heterogeneous networks. In: Proc. ICSOC’06. Volume 4294 of LNCS.,
Springer (2006) 453–458

6. Amadio, R., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous
pi-calculus. TCS 195(2) (1998) 291–324

7. Boreale, M., De Nicola, R., Pugliese, R.: Asynchronous observations of processes.
In: Proc. FOSSACS’98. Volume 1378 of LNCS., Springer (1998) 95–109

8. Boreale, M., De Nicola, R., Pugliese, R.: A theory of ”may” testing for asyn-
chronous languages. In: Proc. FOSSACS’99. Volume 1578 of LNCS., Springer
(1999) 165–179

9. Rathke, J., Sobocinski, P.: Making the unobservable, unobservable. In: Proc.
ICE’08. ENTCS, Elsevier (to appear).

10. Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical
Computer Science. Springer (1985)

11. van der Aalst, W.: Pi calculus versus Petri nets: Let us eat “humble pie” rather
than further inflate the “Pi hype”. BPTrends 3(5) (2005) 1–11

12. Goltz, U.: CCS and Petri nets. In: Semantics of Systems of Concurrent Processes.
Volume 469 of LNCS., Springer (1990) 334–357

13. Gorrieri, R., Montanari, U.: SCONE: A simple calculus of nets. In: Proc. CON-
CUR’90. Volume 458 of LNCS., Springer (1990) 2–31

14. Busi, N., Gorrieri, R.: A Petri net semantics for pi-calculus. In: Proc. CONCUR’95.
Volume 962 of LNCS., Springer (1995) 145–159

15. Devillers, R., Klaudel, H., Koutny, M.: A compositional Petri net translation of
general pi-calculus terms. Formal Asp. Comput. 20(4-5) (2008) 429–450

16. Aranda, J., Valencia, F., Versari, C.: On the expressive power of restriction and
priorities in CCS with replication. In: Proc. FOSSACS’09. Volume 5504 of LNCS.,
Springer (2009) 242–256

15

17. Olderog, E.: Nets, terms and formulas. Cambridge University Press (1991)
18. Busi, N., Gorrieri, R.: Distributed semantics for the π-calculus based on Petri

nets with inhibitor arcs. Journal of Logic and Algebraic Programming 78 (2009)
138–162

19. Berry, G., Boudol, G.: The chemical abstract machine. TCS 96 (1992) 217–248
20. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Proc. ICALP’92. Volume 623

of LNCS., Springer (1992) 685–695
21. Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional semantics for open

Petri nets based on deterministic processes. Mathematical Structures in Computer
Science 15(1) (2004) 1–35

22. Milner, R.: Bigraphs for Petri nets. In: Lectures on Concurrency and Petri Nets.
Volume 3098 of LNCS., Springer (2003) 686–701

23. Sassone, V., Sobociński, P.: A congruence for Petri nets. In: Proc. PNGT’04.
Volume 127 of ENTCS., Elsevier (2005) 107–120

24. Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets.
Volume 625 of LNCS. Springer (1992)

25. Nielsen, M., Priese, L., Sassone, V.: Characterizing behavioural congruences for
Petri nets. In: Proc. CONCUR’95. Volume 962 of LNCS., Springer (1995) 175–189

26. Koutny, M., Esparza, J., Best, E.: Operational semantics for the Petri box calculus.
In: Proc. CONCUR’94. Volume 836 of LNCS., Springer (1994) 210–225

27. Kindler, E.: A compositional partial order semantics for Petri net components. In:
Proc. ICATPN’97. Volume 1248 of LNCS., Springer (1997) 235–252

28. Busi, N., Gabbrielli, M., Zavattaro, G.: Comparing recursion, replication, and
iteration in process calculi. In: Proc. ICALP’04. Volume 3142 of LNCS., Springer
(2004) 307–319

29. Jancar, P.: Undecidability of bisimilarity for Petri nets and some related problems.
TCS 148(2) (1995) 281–301

30. Buscemi, M., Sassone, V.: High-level Petri nets as type theories in the join calculus.
In: Proc. FOSSACS’01. Volume 2030 of LNCS., Springer (2001) 104–120

31. Busi, N., Zavattaro, G.: A process algebraic view of shared dataspace coordination.
J. Log. Algebr. Program. 75(1) (2008) 52–85

32. Devillers, R., Klaudel, H., Koutny, M.: A Petri net semantics of a simple process
algebra for mobility. In: Proc. EXPRESS’05. Volume 154.3. (2006) 71–94

33. Meyer, R., Khomenko, V., Strazny, T.: A practical approach to verification of
mobile systems using net unfoldings. In: Proc. Petri Nets 2008. Volume 5062 of
LNCS., Springer (2008) 327–347

34. Milner, R.: A Calculus of Communicating Systems. Volume 92 of LNCS. Springer
(1980)

35. Sangiorgi, D.: On the bisimulation proof method. Mathematical Structures in
Computer Science 8(5) (1998) 447–479

36. Gadducci, F.: Graph rewriting and the π-calculus. Mathematical Structures in
Computer Science 17 (2007) 1–31

37. Milner, R.: Pure bigraphs: Structure and dynamics. Information and Computation
204 (2006) 60–122

38. Esparza, J., Nielsen, M.: Decidability issues for Petri nets - a survey. Journal
Inform. Process. Cybernet. EIK 30(3) (1994) 143–160

39. Agerwala, T., Flynn, M.: Comments on capabilities, limitations and “correctness”
of Petri nets. Computer Architecture News 4(2) (1973) 81–86

40. Busi, N., Zavattaro, G.: Expired data collection in shared dataspaces. TCS 3(298)
(2003) 529–556

16

