
Efficient contextual unfolding?

César Rodŕıguez1, Stefan Schwoon1, and Paolo Baldan2

1 LSV, ENS Cachan & CNRS, INRIA Saclay, France
2 Dipartimento di Matematica Pura e Applicata, Università di Padova, Italy

Abstract. A contextual net is a Petri net extended with read arcs,
which allow transitions to check for tokens without consuming them.
Contextual nets allow for better modelling of concurrent read access than
Petri nets, and their unfoldings can be exponentially more compact than
those of a corresponding Petri net. A constructive but abstract procedure
for generating those unfoldings was proposed in earlier work; however, no
concrete implementation existed. Here, we close this gap providing two
concrete methods for computing contextual unfoldings, with a view to
efficiency. We report on experiments carried out on a number of bench-
marks. These show that not only are contextual unfoldings more compact
than Petri net unfoldings, but they can be computed with the same or
better efficiency, in particular with respect to the place-replication en-
coding of contextual nets into Petri nets.

1 Introduction

Petri nets are a means for reasoning about concurrent, distributed systems. They
explicitly express notions such as concurrency, causality, and independence.

The unfolding of a Petri net is, essentially, an acyclic version of the net in
which loops have been unrolled. The unfolding is infinite in general, but for finite-
state Petri nets one can construct a finite complete prefix of it that completely
represents the behaviour of the system, and whose acyclic structure permits eas-
ier analyses. This prefix is typically much smaller than the number of reachable
markings because an unfolding exploits the inherently concurrent nature of the
underlying system; loosely speaking, the more concurrency there is in the net,
the more advantages unfoldings have over reachability-graph techniques.

Petri net unfoldings may serve as a basis for further analyses. There is a
large body of work describing their construction, their properties, and their use
in various fields (see, e.g., [6] for an extensive survey).

However, Petri nets are not well-suited to model concurrent read access,
that is, multiple actions requiring non-exclusive access to one common resource.
Consequently, the unfolding technique becomes inefficient in such situations. It
is possible to mitigate this problem with a place-replication (PR) encoding [17].
Here, a resource with n readers is duplicated n times, and each reader obtains a
“private” copy. However, the resulting unfolding may still be exponential in n.

? Supported by Fundación Caja Madrid, the MIUR project SisteR, and the University
of Padua project AVIAMO.

Contextual nets explicitly model concurrent read accesses and address this
problem. They extend Petri nets with read arcs, allowing an action to check for
the presence of a resource without consuming it. They have been used, e.g., to
model concurrent database access [13], concurrent constraint programs [12], pri-
orities [9], and asynchronous circuits [17]. Their accurate representation of con-
currency makes contextual unfoldings up to exponentially smaller in the presence
of multiple readers, which promises to yield more efficient analysis procedures.

While the properties and construction of ordinary Petri net unfoldings are
well-understood, research on how to construct and exploit the properties of con-
textual unfoldings has been lacking so far. Contextual unfoldings are introduced
in [17, 1], and a first unfolding procedure for a restricted subclass can be found
in [17]. A general but non-constructive procedure is proposed in [18].

A constructive, general solution was finally given in [3], at the price of mak-
ing the underlying theory notably more complicated. In particular, computing a
complete prefix required to annotate every event e with a subset of its histories,
where roughly speaking, a history of e is a set of events that must precede e
in any execution. However, it remained unclear whether the approach could be
implemented with reasonable efficiency, and how. For 1-safe nets, the interest of
computing a complete contextual prefix was doubtful: while the prefix can be ex-
ponentially smaller than the complete prefix of the corresponding PR-encoding,
the intermediate product used to produce it has asymptotically the same size.
More precisely, the number of histories in the contextual prefix matches the
number of events in the PR-prefix (for general k-safe nets, this is not the case).

In [2], first theoretical advances towards an efficient implementation were
made, proposing to annotate not only events, but conditions with histories. This
gave rise to a binary concurrency relation, a concept that mimics a crucial ele-
ment of efficient Petri unfolding tools [16, 10]. However, an implementation was
still lacking, so the above doubts persisted.

In this paper, we address these open issues with the following contributions:

– We provide new approaches to two key elements of an unfolding tool: the
computation of possible extensions and maintaining a concurrency relation.

– We generalise the results in [3, 2] in order to deal with a slight generalization
of the adequate orders from [7]. Although not very surprising, this extension
is quite relevant in practice as it drastically reduces the resulting prefixes.

– We implemented both approaches, aiming for efficiency. The resulting tool,
called Cunf [14], matches dedicated Petri net unfolders like Mole [16] on pure
Petri nets and additionally handles contextual unfoldings. The development
of such a tool was non-trivial: First, the new unfolder is not a simple exten-
sion of an existing one because the presence of histories influences the data
structures at every level. Secondly, even a Petri unfolder has complicated
data structures, and its computation requires to solve subproblems that are
computationally hard in principle [8].

– We ran the tool on a set of benchmarks and report on the experiments, for
both approaches. In particular, it turns out that, even for 1-safe nets, our
construction of contextual unfoldings is faster than that for PR-unfoldings.

Apart from details of the prefix computation, our main message is that effi-
cient contextual unfolding is possible and performs better than the PR-encoding,
even for 1-safe nets. Contextual nets and their unfoldings therefore have a right-
ful place in research on concurrency, including from an efficiency point of view.
A full version of this paper including all the proofs can be found at [15].

2 Basic notions

A contextual net (c-net) is a tuple N = 〈P, T, F,C,m0〉, where P and T are
disjoint sets of places and transitions, F ⊆ (P ×T)∪ (T ×P) is the flow relation,
and C ⊆ P × T is the context relation. A pair (p, t) ∈ C is called read arc. Any
function m : P → N is called a marking, and m0 is the initial marking. A Petri
net is a c-net without any read arcs.

p1

t1

p3 t2

t3 p4

p2

c2

e1

c3

e3

c′2

e′1

c′3

e2

(b)

c1

(a)

e′2

c′4

c4

Fig. 1. (a) A 1-safe
c-net; and (b) an
unfolding prefix.

For x ∈ P ∪ T , we call •x := {y ∈ P ∪ T | (y, x) ∈ F} the
preset of x and x• :={y ∈ P∪T | (x, y) ∈ F} the postset of x.
The context of a place p is defined as p:={ t ∈ T | (p, t) ∈ C },
and the context of a transition t as t :={ p ∈ P | (p, t) ∈ C }.
These notions are extended to sets in the usual fashion.

A marking m is n-safe if m(p) ≤ n for all p ∈ P . A set
A ⊆ T of transitions is enabled at m if for all p ∈ P ,

m(p) ≥ |p• ∩A|+

{
1 if p ∩A 6= ∅
0 otherwise

Such A can occur or be executed, leading to a new marking
m′, where m′(p) = m(p)− |p• ∩ A|+ |•p ∩ A| for all p ∈ P .
We call 〈m,A,m′〉 a step of N .

A finite sequence of transitions σ = t1 . . . tn ∈ T ∗ is a run
if there exist markings m1, . . . ,mn such that 〈mi−1, {ti},mi〉
is a step for 1 ≤ i ≤ n, and m0 is the initial marking of N ;
if such a run exists, mn is said to be reachable. A c-net N is
said to be n-safe if every reachable marking of N is n-safe.

Fig. 1 (a) depicts a 1-safe c-net. Read arcs are drawn as
undirected lines. For t2, we have {p1} = •t2, {p3} = t2 and
{p4} = t•2.

General assumptions. We restrict our interest to finite 1-safe
c-nets and treat markings as sets of places. Furthermore, for
any c-net N = 〈P, T,C, F,m0〉 we assume for all transitions
t ∈ T that •t ∩ t = ∅; notice that transitions violating this
condition can never fire in 1-safe nets.

2.1 Encodings of contextual nets

A c-net N can be encoded into a Petri net whose reachable markings are in
one-to-one correspondence with those of N . We treat two such encodings, and

N ′′

(c)(b)

p1

N

(a)

b

a

p
c

d

N ′

b

a
p

d

c b

a
p2

c

d

Fig. 2. C-net N , its plain encoding N ′ and its Place-Replication encoding N ′′.

illustrate them by the c-net N in Fig. 2 (a). Place p has two transitions b, c in
its context, modelling a situation where, e.g., two processes are read-accessing a
common resource modelled by p. Note that step {b, c} can occur in N .

Plain encoding. Given a c-net N , the plain encoding of N is the net N ′ obtained
by replacing every read arc (p, t) in the context relation by a read/write loop
(p, t), (t, p) in the flow relation. The net N ′ has the same reachable markings
as N ; it also has the same runs but not the same steps as N . An example can
be found in Fig. 2 (b). Note that the step {b, c} can no longer occur in N ′, as
the firings of {b} and {c} are sequentialized.

PR-encoding. The place-replication (PR-) encoding [17] of a c-net N is a Petri
net N ′′ in which we substitute every place p read by n ≥ 1 transitions t1, . . . , tn
by places p1, . . . , pn, updating the flow relation ofN ′′ as follows. For i ∈ {1, . . . , n},

1. transition ti consumes and produces place pi, i.e., pi ∈ •ti and pi ∈ t•i ;
2. any transition t producing p in N produces pi in N ′′, i.e., pi ∈ t•;
3. any transition t consuming p in N consumes pi in N ′′, i.e., pi ∈ •t.

A PR-encoding is depicted in Fig. 2 (c). Reachable markings, runs, and steps
of N ′′ are in one-to-one correspondence to those of N .

3 Contextual unfoldings and their prefixes

In this section, we mostly recall basic definitions from [3] concerning unfoldings.
We fix a 1-safe c-net N = 〈P, T, F,C,m0〉 for the rest of the section. Intuitively,
the unfolding of N is a safe acyclic c-net where loops of N are “unrolled”; in
general, this structure is infinite.

Definition 1. The unfolding of N , written UN , is a c-net (B,E,G,D, m̂0)
equipped with a mapping f : (B ∪ E) → (P ∪ T), which we extend to sets and
sequences in the usual way. We call the elements of B conditions, and those of
E events; f maps conditions to places and events to transitions.

Conditions will take the form 〈p, e′〉, where p ∈ P and e′ ∈ E ∪ {⊥}, and
events will take the form 〈t,M〉, where t ∈ T and M ⊆ B. We shall assume

a

b

d

p
c

(b) (c)(a)

p

a

b c

b c

ddd dd

p p

pp

a

p2

cb

p1

dddd

p1 p2

Fig. 3. Unfoldings of N , N ′, and N ′′ from Fig. 2

f(〈p, e′〉) = p and f(〈t,M〉) = t, respectively. A set M of conditions is called
concurrent, written conc(M), iff UN has a reachable marking M ′ s.t. M ′ ⊇M .
UN is the smallest net containing the following elements:

– if p ∈ m0, then 〈p,⊥〉 ∈ B and 〈p,⊥〉 ∈ m̂0;
– for any t ∈ T and disjoint pair of sets M1,M2 ⊆ B such that conc(M1∪M2),
f(M1) = •t, f(M2) = t, we have e := 〈t,M1 ∪M2〉 ∈ E, and for all p ∈ t•,
we have 〈p, e〉 ∈ B. Moreover, G and D are such that •e = M1, e = M2, and
e• = { 〈p, e〉 | p ∈ t• }.
Fig. 3 shows unfoldings of the nets from Fig. 2, where f is indicated by

the labels of conditions and events. In this case, the c-net is isomorphic to its
unfolding; crucially, it is smaller than the unfoldings of its two encodings. Call
events labelled by b and c “readers”, and events labelled by d “consumers”. If, in
Fig. 2, we replaced b, c by n transitions reading from p, there would be n readers
and one consumer in the contextual unfolding; O(n!) readers and consumers in
the plain unfolding; and n readers but 2n consumers in the PR-unfolding.
UN represents all possible behaviours of N , and, in particular m is reachable

in N iff some m̂ with f(m̂) = m is reachable in UN . Intuitively, the plain unfold-
ing explodes because it represents the step {b, c} of the c-net by two runs; and the
cycles in the PR-encoding mean more consuming events for the PR-unfolding.

Definition 2. The causality relation on UN , denoted <, is the transitive closure
of G∪ { (e, e′) ∈ E ×E | e• ∩ e′ 6= ∅ }. For x ∈ B ∪E, we write [x] for the set of
causes of x, defined as { e ∈ E | e ≤ x }, where ≤ is the reflexive closure of <.

In Fig. 1 (b), we have, e.g., c2 < e1, e1 < e2, and c2 < e2. The causality
relation between a pair of events e < e′ captures the intuition that e must occur
before e′ in any run that fires e′.

Definition 3. A set X ⊆ E is called causally closed if [e] ⊆ X for all e ∈ X.
A prefix of UN is a net P = 〈B′, E′, G′, D′, m̂0〉 such that E′ ⊆ E is causally
closed, B′ = m̂0 ∪ (E′)•, and G′, D′ are the restrictions of G,D to (B′ ∪ E′).

In other words, a prefix is a causally-closed subnet of UN . Surely, if P is a
prefix and m̂ a marking reachable in it, then f(m̂) is reachable in N . We are
interested in computing a prefix for which the inverse also holds.

Definition 4. A prefix P is called complete if for all markings m, m is reachable
in N iff there exists a marking m̂ reachable in P such that f(m̂) = m.

A complete prefix thus preserves all behavioural information about N , while be-
ing typically smaller than its reachability graph; yet its acyclic structure makes
the reachability problem easier than for N itself [11]. Moreover, as we saw in
Fig. 3, a contextual unfolding is more succinct than its corresponding Petri net
unfolding. Other papers, e.g., [17], consider a slightly stronger notion of com-
pleteness imposing that not only reachable markings, but also firable transitions
have a representative in the prefix. That would not affect the results in this
paper.

4 Constructing finite prefixes

In this section, we make inroads on how to construct a finite prefix. The material
from this section mostly recalls elements from [3], with minor modifications. We
fix a net N and its unfolding UN as in Section 3.

Consider events e2 and e3 in Fig. 1 (b). Clearly, e2 < e3 does not hold.
However, any run that fires both e2 and e3 will fire e2 before e3 (since e3 consumes
c3). This situation arises due to read arcs and motivates the next definition.

Definition 5. Two events e, e′ ∈ E are in asymmetric conflict, written e↗ e′,
iff (i) e < e′, or (ii) e ∩ •e′ 6= ∅, or (iii) e 6= e′ and •e ∩ •e′ 6= ∅. For a set of
events X ⊆ E, we write ↗X to denote the relation ↗∩ (X ×X).

Asymmetric conflict can be thought of as a scheduling constraint: if both e, e′

occur in a run, then e must occur first. Note that in case (iii) this is vacuously
the case, as e, e′ cannot both occur. Thus, by condition (iii) ↗ subsumes the
symmetric conflicts known from Petri net unfoldings as loops of length two.

Definition 6. A configuration of UN is a finite, causally closed set of events C
such that ↗C is acyclic. Conf (UN) denotes the set of all such configurations.

A set of events is a configuration iff all its events can be ordered to form a run
that respects the scheduling constraints given by ↗. We say that configuration
C evolves to configuration C′, written C v C′, iff C ⊆ C′ and ¬(e′ ↗ e) for all
e ∈ C and e′ ∈ C′ \ C. Intuitively, a run of C can be extended into a run of C′.

Configurations C, C′ are said to be in conflict, written C # C′, when there is
no configuration C′′ verifying C vC′′ and C′vC′′. Note that if two configurations
are not in conflict, then their union is a configuration.

The cut of a configuration C is the marking reached in UN by a run of C.
We define Cut(C) := (m̂0 ∪ C•) \ •C. The marking of C is its image through f :
Mark(C) := f(Cut(C)).

Definition 7. Let e be an event. If C is a configuration with e ∈ C, we define
the configuration C[[e]] := { e′ ∈ C | e′(↗C)∗e } as the history of e in C. Moreover,
Hist(e) := { C[[e]] | C ∈ Conf (UN) ∧ e ∈ C } is the set of histories of e.

While in Petri net unfoldings each event has exactly one history, a contex-
tual unfolding may have multiple (even infinitely many) histories per event. For
instance, in Fig. 1 (b) Hist(e3) = {{e1, e3}, {e1, e2, e3}}. To compute a complete
prefix, one annotates events with a finite subset of their histories.

Definition 8. An enriched event is a pair 〈e,H〉 where e ∈ E and H ∈ Hist(e).
A closed enriched prefix (CEP) of UN is a pair E = 〈P, χ〉 such that P =
〈B′, E′, G′, D′, m̂0〉 is a prefix and χ : E′ → 22

E

satisfies for all e ∈ E′ (i) ∅ 6=
χ(e) ⊆ Hist(e), and (ii) H ∈ χ(e) and e′ ∈ H imply H[[e′]] ∈ χ(e′). For an
enriched event 〈e,H〉, we write 〈e,H〉 ∈ E if e ∈ E′ and H ∈ χ(e).

In [3], a complete prefix of UN is constructed by a saturation procedure that
adds one enriched event at a time until there remains no addition that would
“contribute” new markings. We concretize this idea in the following:

Definition 9. Let E be a CEP. An enriched event 〈e,H〉 is a possible extension
of E iff 〈e′, H[[e′]]〉 ∈ E for all e′ ∈ H, e′ 6= e, but 〈e,H〉 /∈ E.

Let ≺ be a partial order among configurations verifying that C v C′ and
C 6= C′ implies C ≺ C′. We extend ≺ to enriched events by 〈e,H〉 ≺ 〈e′, H ′〉
if H ≺ H ′. Given a fixed ≺, a tuple 〈e,H〉 is called cutoff iff there exists an
enriched event 〈e′, H ′〉 such that Mark(H ′) = Mark(H) and 〈e′, H ′〉 ≺ 〈e,H〉.
Thus, ≺ parametrizes the following informal algorithm:

Algorithm 1.

– Start with the CEP that contains just m̂0;
– Then, in each iteration, add a non-cutoff ≺-minimal possible extension.
– If no non-cutoff possible extensions remain, terminate.

Whether Algorithm 1 terminates with a complete prefix depends on the choice
of ≺. It was shown in [3, 2] that the procedure above yields a complete prefix if
≺ is the partial order due to McMillan [11]. However, it is known for Petri net
unfoldings that using a total, so-called adequate order as defined in [7] can result
in up to exponentially smaller complete prefixes.

Proposition 1. Let N be a 1-safe c-net. If ≺ is adequate, then Algorithm 1
terminates with a CEP E = 〈P, χ〉 such that P is a complete prefix of UN .

5 Two approaches to possible extensions and concurrency

We now turn to the question of how to implement Algorithm 1 efficiently, for
constructing unfoldings in practice. The main computational problem is to iden-
tify the possible extensions at each iteration of the procedure. Let N and UN be
as in the previous sections.

For Petri net unfolders (which do not deal with histories) this involves iden-
tifying sets M of conditions such that conc(M) and f(M) = •t for some t ∈ T
(compare Definition 1). For Petri nets, it is known that conc(M) holds iff
conc({c1, c2}) for all pairs c1, c2 ∈M . Possible extensions can therefore be iden-
tified by repeatedly consulting a binary relation on conditions. Moreover, this
binary relation can be computed efficiently and incrementally during prefix con-
struction. This idea is exploited by existing tools such as Mole [16] or Punf [10].

The above statement about conc(·) was shown to be invalid for contextual
unfoldings in [3]. However, one can define a binary relation with similar proper-
ties on conditions enriched with histories.

Definition 10. Let c be a condition. A generating history of c is ∅ if c ∈ m̂0,
or H ∈ Hist(e), where {e} = •c. A reading history of c is any H ∈ Hist(e) such
that e ∈ c. A history of c is any of its generating or reading histories or H1∪H2,
where H1 and H2 are histories of c verifying ¬(H1 #H2). In the latter case, the
history is called compound.

If H is a history of c, we call 〈c,H〉 an enriched condition, called generating,
reading, or compound condition, according to H3. For a CEP E = 〈P, χ〉, we
say 〈c,H〉 ∈ E if H is built from histories in χ. The mapping f is extended to
enriched events and conditions by f(〈e,H〉) = f(e) and f(〈c,H〉) = f(c).

Definition 11. Two enriched conditions 〈c,H〉, 〈c′, H ′〉 are called concurrent,
written 〈c,H〉 ‖ 〈c′, H ′〉, iff ¬(H #H ′) and c, c′ ∈ Cut(H ∪H ′).

In Section 5.1, we discuss how ‖ helps to compute possible extensions. In
Section 5.2 we then discuss how to update ‖ during the unfolding construction.

5.1 Computing possible extensions

We discuss two ways of computing possible extensions. The first, called “lazy”,
avoids constructing compound conditions (see Definition 10), reducing the num-
ber of enriched conditions considered. The second, “eager” approach does use
compound conditions, saving work while computing possible extensions instead.
The lazy approach was introduced in [2] for the McMillan order, but holds also
for the total order of [7]. The eager approach is proposed for the first time here.

Lazy Approach. The lazy approach [2] is based on the observation that the
history associated with an event can be constructed by taking generating and
read histories for places in the pre-set and generating histories for places in the
context. This is expressed by the following proposition:

Proposition 2. [2] The pair 〈e,H〉 with f(e) = t is an enriched event iff there
exist sets Xp, Xc of enriched conditions such that

3 In [2], generating histories were called causal ; we find the term generating more
suggestive. The definition of compound histories is new and does not appear in [2].

1. f(Xp) = •t and f(Xc) = t;
2. Xp ∪Xc contains exactly one generating condition for every c ∈ (•e ∪ e);
3. Xp contains generating or reading conditions, Xc generating conditions;
4. for all ρ, ρ′ ∈ Xp ∪Xc we have ρ ‖ ρ′;
5. finally, H =

⋃
〈c,H′〉∈Xp∪Xc

H ′.

Proposition 2 allows to identify new possible extensions whenever a prefix
is extended with new enriched conditions. Compound conditions are avoided at
the price of combining generating and reading conditions as stated in items 2–4
for every possible extension.

Eager approach. The eager approach, instead of attempting to combine gen-
erating and reading histories when computing a possible extension, explicitly
produces all types of enriched conditions, including compound ones. This means
more enriched conditions, but on the other hand less work when computing
possible extensions.

Proposition 3. The pair 〈e,H〉 with f(e) = t is an enriched event iff there
exist sets Xp, Xc of enriched conditions such that

1. f(Xp) = •t and f(Xc) = t;
2. Xp ∪Xc contains exactly one enriched condition for every c ∈ (•e ∪ e);
3. Xp contains arbitrary enriched conditions, Xc generating conditions;
4. for all ρ, ρ′ ∈ Xp ∪Xc we have ρ ‖ ρ′;
5. finally, H =

⋃
〈c,H′〉∈Xp∪Xc

H ′.

Notice that |Xp| = |•t| in Proposition 3 whereas no such bound exists in
Proposition 2. Like the latter, Proposition 3 allows to identify new possible
extensions upon addition of new enriched conditions.

5.2 Updating the concurrency relation

We face the problem of keeping up to date the concurrency relation on enriched
conditions when the unfolding grows by the insertion of new enriched events.

In [2] an approach is proposed, based on the introduction of another binary
relation on enriched conditions, called subsumption. Intuitively, 〈c,H〉 subsumes
〈c′, H ′〉, written 〈c,H〉 ∝ 〈c′, H ′〉, when in the history H there is an event that
reads condition c′, with history H ′, and c′ is not consumed by H. This means
that when taking the enriched condition 〈c,H〉 we are also implicitly taking
〈c′, H ′〉. For instance, in Fig. 1(b), 〈c4, {e1, e2}〉 subsumes 〈c3, {e1, e2}〉. When
a new enriched event is inserted in the unfolding, subsumption plays a role in
updating the concurrency relation. Assume that the inserted event is 〈e,H〉 and
that it is created using sets Xc, Xp (see Proposition 2 or Proposition 3). Then
the enriched conditions generated by 〈e,H〉 are concurrent with an enriched
condition ρ already in the prefix iff Xp ∪Xc ∪ {ρ} is pairwise concurrent and it
satisfies suitable closure properties w.r.t subsumption.

Here we show that for 1-safe nets the result below holds, which allows to up-
date the concurrency relation for a new generating or reading conditions inserted
in the unfolding, in a simpler way, without the need of computing subsumption.

Proposition 4. In Algorithm 1, let E be the current CEP, where 〈e,H〉 is the
last addition thanks to sets Xc, Xp as per Proposition 2 or Proposition 3. We
denote by Yp = e•×{H} and Yc = e×{H} the generating and reading conditions
created by the addition of 〈e,H〉. Let ρ ∈ Yp ∪ Yc, and let ρ′ = 〈c′, H ′〉 ∈ E be
any other enriched condition. Then ρ ‖ ρ′ iff

ρ′ ∈ Yp ∪ Yc ∨ (c′ /∈ •e ∧ ∀ρ1 ∈ Xp ∪Xc : (ρ1 ‖ ρ′) ∧ •e ∩H ′ ⊆ H)

Then the concurrency relation can be transferred to compound conditions on
the basis of the result below.

Proposition 5. Let ρ = 〈c,H1 ∪ H2〉 be a compound condition of E, where
ρ1 = 〈c,H1〉, ρ2 = 〈c,H2〉 are enriched conditions verifying ¬(H1 # H2). Let
ρ′ ∈ E be any enriched condition. Then ρ ‖ ρ′ iff ρ1 ‖ ρ′ ∧ ρ2 ‖ ρ′.

5.3 Discussion: lazy vs. eager approach

In order to discover possible extensions of the form 〈e,H〉, both approaches
consider combinations of generating and reading histories for conditions c ∈ •e.

Consider Proposition 2. For every possible extension, the lazy approach takes
one generating and possibly multiple reading histories for c, all of which must
be concurrent. If the events in c have many different histories, or c is large, then
many different combinations need to be checked for concurrency.

The eager approach (Proposition 3) takes exactly one enriched condition of
arbitrary type, including compound, for c. Compound histories are a set of con-
current reading histories (Definition 10); thus a compound condition represents
pre-computed information needed to identify possible extensions.

We consider two examples where eager beats lazy and vice versa. In Fig. 4 (a),
condition c has a sequence of n readers and hence n+1 histories {e1, . . . , ei}, for
i = 0, . . . , n. For each history H of c′, eager simply combines H with the n + 1
histories for c, while lazy checks all 2n subsets of e1, . . . , en to find these n + 1
compound histories. If c′ has many histories, eager becomes largely superior. Of
course, an intelligent strategy may help lazy to avoid exploring all 2n subsets one
by one. However, even with a good strategy, lazy still has to enumerate at least
the same combinations as eager; and since the problem of identifying the useful
subsets is NP-complete [8], there will always be instances where lazy becomes
inefficient, whatever strategy is employed.

On the other hand, consider Fig. 4 (b). Again, c has n readers, this time
yielding 2n histories. Suppose that f(c) is an input place of some transition t.
Now, if t also has f(a) and f(b) in its preset, then no t-labelled event e will ever
be generated in the unfolding, and all histories of c are effectively useless. Since
those compound conditions also appear in the computation of the concurrency
relation, they become a liability in terms of both memory and execution time.
The lazy approach does not suffer from this problem here.

Both approaches therefore have their merits, and we implemented them both.
We shall report on experiments in Section 7. Concerning Section 5.2, we only
retained the new approach, which is clearly better than that of [2].

(a) (b)

e1
c

c′

e

e1
c

en

e
en

a
b

Fig. 4. Good examples for the eager (a) and the lazy (b) approach.

6 Efficient prefix construction

We implemented the procedure from Algorithm 1, using the methods proposed in
Section 5. The resulting tool, called Cunf, is publicly available [14]. Cunf expects
as input a 1-safe c-net and produces as output a complete unfolding prefix.

Notice that efficient tools exist for the unfolding of Petri nets such as Mole [16]
or Punf [10]. While we profited much from the experiences gained from devel-
oping Mole, Cunf is not a simple extension of Mole. The issues of asymmetric
conflict and histories permeate every aspect of the construction so that we went
for a completely new implementation in C, comprising some 4,000 lines of code.

Here, we review some features such as data structures and implementation
details, relevant to handling the complications imposed by contextual unfoldings,
that helped to produce an efficient tool. Experiments are reported in Section 7.

The history graph. Cunf needs to maintain enriched events and conditions, i.e.
tuples 〈e,H〉 or 〈c,H〉, where H is a history. We store these in a graph struc-
ture, maintained while the enriched prefix E evolves. Formally, the history graph
associated with E is a directed graph HE whose nodes are the enriched events
of E , and with edges 〈e,H〉 → 〈e′, H ′〉 iff e′ ∈ H and H ′ = H[[e′]] and either (i)
(e′• ∪ e′) ∩ •e 6= ∅ or (ii) e′• ∩ e 6= ∅. Each node 〈e,H〉 is labelled by e.

Intuitively, HE has an edge between two enriched events 〈e,H〉 and 〈e′, H ′〉
iff some enriched condition 〈c,H ′〉 has been used to construct 〈e,H〉 (in the sense
of Proposition 2 or Proposition 3).

This structure allows Cunf to perform many operations efficiently: every ad-
ditional enriched event enlarges the graph by just one node plus some edges;
common parts of histories are shared. We can easily enumerate the events in
H ∈ χ(e) by following the edges from node 〈e,H〉, and HE implicitly represents
the relation @. Given an event e, we can enumerate the histories in χ(e) by keep-
ing a list of nodes in HE labelled by e. Given a condition c, we can enumerate
its generating and reading histories similarly.

Compound conditions are stored in a shared-tree-like structure, where leaves
represent reading histories and internal nodes compound histories. An internal
node has two children, one of which is a leaf, the other either internal or a leaf.

One easily sees that a compound history of c corresponds, w.l.o.g., to a union
H1 ∪ · · · ∪Hn of reading histories. Every internal node represents such a union,
and the structure allows sharing if one compound history contains another.

Possible extensions. Cunf behaves similar to Mole or other unfolders in its flow
of logic, but its actions are on enriched events and conditions. We start with
a prefix containing just m̂0 and identify the initial possible extensions. As long
as the set of possible extensions is non-empty, we choose a “minimal” extension
and add it unless it is a cutoff. For “minimal”, we use the adequate order ≺F

from [7]. Adding 〈e,H〉 means adding H to χ(e), creating e first if necessary. The
addition of 〈e,H〉 will give rise to various types of enriched conditions for whom
we compute the concurrency relation (see below). Whenever we add an enriched
condition ρ, we attempt to find possible extensions, i.e. sets Xp, Xc matching
the conditions in Propositions 2 or 3 such that Xp ∪ Xc includes ρ, where, in
order to implement condition 4, we use the precomputed binary concurrency
relation. Upon identifying a possible extension 〈e,H〉, we immediately compute
its marking, information relevant to deciding ≺F , and certain lists r(H), s(H)
during two linear traversals of H. Details on r(H) and s(H) are given below.

Concurrency relation. The relation ‖ on the enriched conditions E can be stored
and updated whenever new possible extensions are appended to E . We detail
now how Propositions 4 and 5 are used to efficiently compute this update.

Let c(ρ) denote the set of enriched conditions ρ′ verifying ρ‖ρ′. The relation ‖
is generally sparse, and Cunf stores c(ρ) as a list. However, for the purpose of
the following, c(ρ) could also be a row in a matrix representing ‖.

For reading and generating conditions ρ (Proposition 4), Cunf initially sets
c(ρ) to Yp ∪ Yc. Next, it computes the intersection of c(ρ′) for all ρ′ ∈ Xp ∪Xc,
and filters out those 〈c′, H ′〉 for which •e ∩H ′ 6⊆ H holds. In order to compute
this condition without actually traversing H and H ′, we use the sets r(H) and
s(H) computed earlier (see above). These are defined as r(H) := { e′ ∈ H |
e′ ∩ Cut(H) 6= ∅ } and s(H) := { e′ ∈ H | e′ ∈ •e }. Then •e ∩ H ′ 6⊆ H holds
iff •e \ s(H) ∩ r(H ′) 6= ∅, which can be computed traversing •e and s(H) one
time, and checking r(H ′) for every ρ′. Note that, while the other steps have
their counterparts in Petri net unfoldings, this step is new and specific to c-nets.
However, we find that this implementation keeps the overhead very small.

As for compound conditions ρ built using ρ1 and ρ2 (Proposition 5), Cunf
computes c(ρ) as the intersection of c(ρ1) and c(ρ2).

Certain enriched conditions ρ = 〈c,H〉 need not to be included in the con-
currency relation. It is safe, for instance, to leave c(ρ) empty if ρ is generating
and f(c)• ∪ f(c) = ∅, or if H is a cutoff. We can also avoid computing c(ρ) if ρ
is reading or compound and f(c)• = ∅, even if f(c) 6= ∅.

7 Experiments

In order to experimentally evaluate our tool, we performed a series of experi-
ments. We were interested in the following questions:

Plain PR Contextual Ratios

Net Events tP Events tR Av. t Events tL tE tE/tP tE/tR tE/tL

bds 1.sync 12900 0.51 4302 0.26 1.22 1866 0.14 0.14 0.27 0.54 1.00
byzagr4 1b 14724 3.40 8044 5.30 0.92 8044 3.41 2.90 0.85 0.55 0.85
dpd 7.sync 10457 0.88 10457 0.99 0.77 10457 0.92 0.91 1.03 0.92 0.99
elevator 4 16856 2.01 16856 504.77 1.19 16856 1.27 1.26 0.63 >0.01 0.99
ftp 1.sync 83889 76.74 50928 113.38 1.05 50928 34.25 34.21 0.45 0.30 1.00
furnace 4 146606 40.39 100260 43.52 0.85 95335 23.48 18.34 0.45 0.42 0.78
key 4.fsa 67954 2.21 21742 4.30 0.37 4754 2036.66 6.33 2.86 1.47 >0.01
q 1.sync 10722 1.21 10722 2.18 0.90 10722 1.13 1.13 0.93 0.52 1.00
rw 12.sync 98361 3.95 98361 7.64 0.99 98361 4.52 3.10 0.78 0.41 0.69
rw 1w3r 15401 0.38 14982 0.69 0.48 14490 0.45 0.45 1.18 0.65 1.00
rw 2w1r 9241 0.30 9241 8.95 0.76 9241 0.43 0.40 1.33 0.04 0.93

Table 1. Experimental results

– Is the contextual unfolding procedure efficient?

– What is the size of the unfoldings, compared to Petri net unfoldings?

– How do the various approaches (lazy, eager, PR, plain encoding) compare?

Concerning the second and third point, contextual unfoldings may be up to
exponentially more succinct than Petri net unfoldings, and we could contrive
examples showing arbitrarily large discrepancies. To get more realistic numbers,
we took a set of 1-safe nets provided in [4]. This collects nets with various
characteristics that allowed to test practically all aspects of our implementation.

For each net N in the set, we first obtained the c-net N ′ by substituting pairs
of arcs (p, t) and (t, p) in N by read arcs. Evidently, the plain encoding of N ′ is
N . Secondly, we obtained the PR-encoding N ′′ of N ′.

We first ran both Mole [16] and Cunf on the nets N and N ′′, which are ordi-
nary Petri nets without read arcs. Naturally, both tools compute the same result;
the object of this exercise was to establish whether Cunf was working reasonably
efficient on known examples. Indeed, its running times were always within 70%
and 140% of those of Mole, the differences due to minor implementation choices.
To abstract from these details, we used Cunf for all further comparisons.

We then used Cunf to produce complete unfoldings of the plain net N , the
PR-encoding N ′′, and of N ′ using both lazy and eager methods and the order ≺F

from [7]. Table 1 summarizes the results. For all approaches, we list the number
of events in the complete prefix and the running times (in seconds) of the eager
approach. For c-nets, we additionally list the running time tL of the lazy method,
since only in proper c-nets this time differs from eager. Notice that the number
of events in lazy and eager is the same; moreover, the number of enriched events
in lazy and eager equals the number of events in PR (compare the discussion in
the introduction). The average transition context size is provided for the c-nets,
as well as three ratios comparing our running times.

We make the following observations:

– In all examples that we tried, the eager approach was always at least as
fast as the lazy approach; an effect similar to the one in Fig. 4 (b) did not
happen. On the other hand, in many examples both approaches were nearly
equivalent, while in one case (key 4) lazy performed badly; see below.

– The eager approach handles all examples gracefully. It is significantly faster
than the plain approach in half the cases, and significantly slower in only
one case, key 4.

– The contextual methods produce smaller unfoldings than the plain approach
in 6 out of 11 cases. Interestingly, these are not the same as those on which
they run faster. For elevator 4 and rw 12.sync, the same number of events
is produced more quickly. Here, the read arcs are arranged in such a way that
each event still has only one history; the time saving comes from the fact that
the contextual approach produces fewer conditions and hence a smaller con-
currency relation. For key 4 and rw 1w3r, the contextual methods produce
smaller unfoldings but take longer to run; see below for an explanation.

– Comparing with PR, the eager approach is consistently more efficient except
for key 4. This clear tendency is slightly surprising given that the enriched
contextual prefix has essentially the same size as the PR-prefix. We experi-
mentally traced the difference to the enlarged presets of certain transitions
in the PR-encoding (see Fig. 2), causing combinatorial overhead and increas-
ing the number of conditions in the concurrency relation. Note that the ratio
between number of events in contextual and number of events in PR is the
average number of histories per event in the contextual approach.

We briefly discuss key 4, which causes problems for the contextual approaches.
In this net, there is one place p with a read arc to almost every transition in
the net, similar to Fig. 4 (a), with long sequences of readers. As discussed in
Section 5.3, the eager approach constructs a number of enriched conditions lin-
ear in the length of each sequence whereas the lazy approach breaks down. The
plain encoding works fast because every event creates a new copy of p, and every
condition is concurrent with only one such copy. It remains to be seen whether
the eager approach can be adapted to handle this special case in the same way.

8 Conclusions

We made theoretical and practical contributions to the computation of unfold-
ings of contextual nets. To our knowledge, Cunf is the first tool that efficiently
produces these objects. The availability of a tool that produces contextual un-
foldings may trigger new interest in applications of c-nets and the algorithmics
of asymmetric event structures in general.

It will be interesting to explore the applications in verification. Unfolding-
based techniques need two ingredients: an efficient method for generating them,
and efficient methods for analyzing the prefixes. We have provided the first in-
gredient in this quest. We believe that traditional unfolding-based verification
techniques [5] (e.g., SAT-based techniques) can be extended to work with contex-

tual unfoldings and that their succinctness may help to speed up these analyses.
We find this topic to be an interesting avenue for future research.

Moreover, despite promising results, the present work will probably not be
the last word on the algorithmics of contextual unfoldings; we have some ideas
on how to further speed up the process. It would also be interesting to investigate
a mix between eager and lazy that tries to get the best of the two worlds. For
instance, one could start with the eager approach and switch (selectively for
some conditions) to lazy as soon the number of compound conditions exceeds a
certain bound. This, and other ideas, remain to be tested.

References

1. Baldan, P., Corradini, A., Montanari, U.: An event structure semantics for P/T
contextual nets: Asymmetric event structures. In: Proc. of FoSSaCS ’98. LNCS,
vol. 1378, pp. 63–80. Springer (1998)

2. Baldan, P., Bruni, A., Corradini, A., König, B., Schwoon, S.: On the computation
of McMillan’s prefix for contextual nets and graph grammars. In: Proc. of ICGT’10.
LNCS, vol. 6372, pp. 91–106 (2010)

3. Baldan, P., Corradini, A., König, B., Schwoon, S.: McMillan’s complete prefix for
contextual nets. ToPNoC 1, 199–220 (2008), LNCS 5100

4. Corbett, J.C.: Evaluating deadlock detection methods for concurrent software.
IEEE Transactions on Software Engineering 22, 161–180 (1996)

5. Esparza, J., Heljanko, K.: Implementing LTL model checking with net unfoldings.
In: Proc. of SPIN’01. LNCS, vol. 2057, pp. 37–56. Springer (2001)

6. Esparza, J., Heljanko, K.: Unfoldings - A Partial-Order Approach to Model Check-
ing. EATCS Monographs in Theoretical Computer Science, Springer (2008)

7. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding al-
gorithm. Formal Methods in System Design 20, 285–310 (2002)

8. Heljanko, K.: Deadlock and Reachability Checking with Finite Complete Prefixes.
Licentiate’s thesis, Helsinki University of Technology (1999)

9. Janicki, R., Koutny, M.: Invariant semantics of nets with inhibitor arcs. In: Proc.
of CONCUR’91. LNCS, vol. 527, pp. 317–331 (1991)

10. Khomenko, V.: Punf, http://homepages.cs.ncl.ac.uk/victor.khomenko/

tools/punf/
11. McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the veri-

fication of asynchronous circuits. In: Proc. of CAV’92. LNCS, vol. 663, pp. 164–177
(1992)

12. Montanari, U., Rossi, F.: Contextual occurrence nets and concurrent constraint
programming. In: Dagstuhl Seminar 9301. LNCS, vol. 776 (1994)

13. Ristori, G.: Modelling Systems with Shared Resources via Petri Nets. Ph.D. thesis,
Department of Computer Science, University of Pisa (1994)

14. Rodŕıguez, C.: Cunf, http://www.lsv.ens-cachan.fr/~rodriguez/tools/cunf/
15. Rodŕıguez, C., Schwoon, S., Baldan, P.: Efficient contextual unfolding. Tech. Rep.

LSV-11-14, LSV, ENS de Cachan (2011)
16. Schwoon, S.: Mole, http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/
17. Vogler, W., Semenov, A.L., Yakovlev, A.: Unfolding and finite prefix for nets with

read arcs. In: Proc. of CONCUR’98. LNCS, vol. 1466, pp. 501–516 (1998)
18. Winkowski, J.: Reachability in contextual nets. Fundamenta Informaticae 51(1–2),

235–250 (2002)

