Unfolding-based Diagnosis of Systems
with an Evolving Topology

Paolo Baldaf'#, Thomas Chatath Stefan Hadr, Barbara Konig®

@Dipartimento di Matematica Pura e Applicata, UniversiteRadova, Italy
BLSV, CNR®- ENS de Cachan, INRIA, France
CAbteilung fur Informatik und Angewandte Kognitionswiesghaft, Universitat Duisburg-Essen, Germany

Abstract

We propose a framework for model-based diagnosis of systdthamobility and variable topologies, modelled as
graph transformation systems. Generally speaking, mibaledd diagnosis is aimed at constructing explanations of
observed faulty behaviours on the basis of a given modelestistem. Since the number of possible explanations
may be huge, we exploit the unfolding as a compact data steitd store them, along the lines of previous work
dealing with Petri net models. Given a model of a system angbaervation, the explanations can be constructed by
unfolding the model constrained by the observation, and teeoving incomplete explanations in a pruning phase.
The theory is formalised in a general categorical settirgistraining the system by the observation corresponds to
taking a product in the chosen category of graph grammatbasohe correctness of the procedure can be proved by
using the fact that the unfolding is a right adjoint and thysréserves products. The theory should hence be easily
applicable to a wide class of system models, including ggagpinmars and Petri nets.

Keywords: Model-based diagnosis, distributed and concurrent systpartial order methods, graph rewriting
2010 MSC:68Q60, 68Q85, 68Q42, 68M15

1. Introduction

The event-oriented model-based diagnogisblem is a classical topic in discrete event systems [1,Glyen
an observed alarm stream, the aim is to proweplanationsn terms of actual system behaviours. Some events
of the system are observable (alarms) while others are notpaiticular, fault events are usually unobservable;
therefore, fault diagnosis is the main motivation of thegdiasis problem. Given a sequence (or partially ordered set)
of observable events, the diagnoser has to find all posséfiawiours of the model explaining the observation, thus
allowing the deduction of invisible causes (faults) of bisievents (alarms). The paper [3] provides a survey on fault
diagnosis in this direction.

Since the number of possible explanations may be huge, iefipéc the case of highly concurrent systems, it is
advisable to employ space-saving methods. In [3, 4], thieajldiagnosis is obtained as the fusion of local decisions:
this distributedapproach allows one to factor explanations over a set of uservers and diagnoses, rather than
centralizing the data storage and handling.

We will build here upon the approach of [5] where diagnosesséored in the form of unfoldings. The unfolding
of a system fully describes its concurrent behaviour in glsifbranching structure, representing all the possible
computation steps and their mutual dependencies, as wall esachable states; thdéfectiveness of the approach
lies in the use of partially ordered runs, rather than iearings, to store and handle explanations extracted frem th
system model.

USupported by the RNRT project SWAN no. 03 S 481, INRIA Salsa@firogram, the DFG project SANDS, the MIUR projeetiSR and the
project AVIAMO of the University of Padova.
*Corresponding author
Email addressesbaldan@math.unipd. it (Paolo Baldan)Thomas.Chatain@lsv.ens-cachan.fr (Thomas Chatain),
haar@lsv.ens-cachan. fr (Stefan Haar)barbara_koenig@uni-due.de (Barbara Konig)

Preprint submitted to Information and Computation March 3, 2010

LoD B0
00 Q0O 0

Figure 1: A Petri net (left) and a fragment of its unfoldingy(if).

In order to provide some intuition about unfoldings, an egbamof a Petri net and a fragment of its unfolding are
reported in Fig. 1. In the Petri net, for later use, a bold fabel is used to denote alarms, i.e., observable transi-
tions. More explicitly, transitions labellea b, c,d are observable, while, f are not. The unfolding is inductively
constructed, starting from the initial marking and recogglistep after step, any possible firing of a transition, with
tokens it produces. Hence transitions and places in thddinépcan be seen as occurrences of firing of transitions
(events) and of tokens in computations of the original néte Tausal dependencies and conflicts between items of
the unfolding are made explicit by the struture of the unfudtself. For instance, let us focus on the upper part of
the unfolding. The two events labell@dare in conflict, since they consume a common resource, wheléeftmost
event labelleda is a cause for the event labelledinstead, the absence of dependencies between the evaamds,
means that such events are concurrent and thus they cdedntein any way.

While [5] and subsequent work in this direction were mainlsedied to Petri nets, here we face the diagnosis
problem in mobile and variable topologies. This requires dievelopment of a model-based diagnosis approach
which applies to other, more expressive, formalisms. UWhihgls of extensions of Petri nets where the topology may
change dynamically were studied in [6, 7]. Here we focus @ngbneral and well-established formalism of graph
transformation systems.

In order to retain only the behaviour of the system that negdhe observation, it is not the model itself that
is unfolded, but the product of the model with the observegjovhich intuitively represents the original system
constrained by the observation; under suitable obsertyah#sumptions, only a finite prefix of the unfolding must be
considered. The construction is carried out in a suitabfindd category of graph grammars, where such a product
can be shown to be the categorical product. A furgieming phase is necessary in order to remove incomplete
explanations that are only valid for a prefix of the obsepradi

The steps of the diagnosis procedure can be illustratedh&Petri net case, by referring to the net in Fig. 1.
Assume that the observation is given by the sequertte The idea consists in representing the observation as a
special system, in this case a Petri net. This can be easily,@s shown in the left part of Fig. 2. Then, taking the
product of the system with the observation, we force evantheé system to occur synchronously with those of the
observation net. The unfolding of the product intuitivegpresents all the runs of the system which are consistent
with the observation. For the considered example, such &siding is represented in the right part of Fig. 2 (for
the sake of readability some places which do not influencevkeall behaviour are omitted). Some events, although
compatible with the observation, cannot be part of a corapdsplanation of the observation. For instance, in the
example, after firing the transition labelladn the middle, depicted in grey, no other event can be firedhcdehere

2

()]

o

O

Figure 2: An observation (left) and the corresponding disisnet (right).

is no way of explaining the occurrencelmfindc in the observation. This transition is removed in the prgrphase,
which produces the actual diagnosis. Observe that, evdnsisimple case, the set of possible sequential executions
explaining the observation would have been larger thanitilgndsis in the form of an unfolding, as concurrent events
can interleave in any way. For instance, indicating an ewdéhtthe pair (abel, numbej, a possible explanation would

be @ 1) (e 2) (f,3) (b, 5) (c, 7). But since eventf(, 3) is concurrent withg, 1) and €, 2), also other interleavings, such
as @,1)(f,3)(e2)(b,5)(c,7) or (f,3) (& 1) (e, 2) (b,5) (c, 7) are valid explanations. Additionally, since eveat?)

is not observable and concurrent with 8), (b,5), (¢, 7), it can be omitted or inserted in any position aftari),
leading to several more valid explanations.

The diagnosis technique proposed for graph grammars, whgkxplained above, follows analogous steps, is
shown to be correct. More precisely, we prove that the runth@funfolding produced by the diagnosis procedure
properly capture all those runs of the model which explagdhservation. This non-trivial result relies on the fact
that unfolding for graph grammars is a coreflection, hengedterves limits (and especially products, such as the
product of the model and the observation). In order to enthaethe product is really a categorical product, special
care has to be taken in the definition of the category.

The rest of the paper is structured as follows. In Section 2nveduce the category of graph grammars used in
the paper, characterise the product in such a category andsdi the unfolding semantics. In Section 3 we introduce
interleaving structures, an intermediate semantic modétinis instrumental in developing the theory of diagnosis.
In Section 4 we formalise the diagnosis problem and show lwowonstruct a diagnosis for a given system and
observation. In Section 5 we prove the correctness of thgndiis procedure and give some experimental results in
Section 6. Finally in Section 7 we draw some conclusions arttine directions of future research. An appendix
includes some auxiliary material about asymmetric eventsires, along with the proof of a technical result needed
in the paper.

This is an extended version of the conference paper [8], winicludes detailed definition of the grammar mor-
phisms needed to get the right notion of product, full pradfihe results and a section with experimental evaluations.

2. Graph Grammars and Grammar Morphisms

In this section we summarise the basics of graph rewritirtgésingle-pushoufsro) approach [9]. We introduce
a category of graph grammars, whose morphisms are a vartibose in [10] and we provide a characterisation of
the induced categorical product, which turns out to be aatedfor expressing the notion of composition needed in our
diagnosis framework. Then we argue that the unfolding séicgsmoothly extends to this setting and, as in [10], the
unfolding construction can be characterised categoyiealla universal construction. The existence of a satigfacto
unfolding semantics motivates our choice of the approach as opposed to the more classioable-pushoutoro)
approach, for graph rewriting.

2.1. Graph Grammars and their Morphisms

Given a partial functionf : A — B we write f(a) | wheneverf is defined ora € A and f(a) T whenever it is
undefined. We denote Ijon(f) the domainof f, i.e., the sefa € A | f(a) |}. Let f,g: A — B be two partial
functions. We writef < gwhendom(f) € dom(g) andf(x) = g(x) for all x € don{f).

For a setA, we denote byA* the set of finite sequences owkr Givenf : A — B, the symbolf* : A* —» B*
denotes its extension to sequences definefi‘'fy; ... a,) = f(a1)... f(a,), where itis intended that the elements on
which f is undefined are “forgotten”. Specificallf/i(a; . .. a,) = ¢ wheneverf (g) 1 for everyi € {1,...,n}. Instead,
f+: A* — B* denotes thestrict extension off to sequences, satisfying-(a; ...a,) T wheneverf(a;) T for some

Definition 1 ((hyper)graph). A (hyper)graph Gis a tuple g, Eg, cg), whereNg is a set of noded;s is a set of
edges andg : Ec — N is a connection function.

Given a graptG we will write x € G to say thatxis a node or edge i6, i.e.,x € Ng U Eg.

Definition 2 (partial graph morphism). A partial graph morphism f: G — H is a pair of partial functiong =
<fN :Ng — Ny, fg : Eg — En) such that:

cyo fg < fyoce (%)

We denote byPGraph the category of hypergraphs and partial graph morphisms.ofphism is calledotal if
both components are total, and the corresponding subasitefBGraph is denoted byGraph.

Notice that, according to Condition (*), if is defined on an edge then it must be defined on all its adjacetesn
this ensures that the domain bis a well-formed graph. The inequality in Condition (*) enssithatany subgraph
of a graphG can be the domain of a partial morphis§m G — H. Instead, the stronger (apparently natural) condition
cy o fg = fj o ¢ would have imposed to be defined over an edge whenever it is defined on all its enfamdes.

We will work with typed graphg11, 12], which are graphs labelled over a structure thasedfia graph, called
thetype graph

Definition 3 (typed graph). Given a grapiT, atyped graph GoverT is a graphG|, together with a total morphism
ts : |G| — T. A partial morphismbetweenT -typed graphd : G; — G; is a partial graph morphisrh; |G;| — |Gy
consistent with the typing, i.e., such thgt > tg, o f. A typed graplG is calledinjectiveif the typing morphisnig is
injective. It is callededge-injectivef the component on edges &f is injective. The category of-typed graphs and
partial typed graph morphisms is denotedIbyGraph.

In Fig. 3 the reader can find an example of a typed graph (toyln) twe corresponding type graph (bottom). Note
that, when depicting a graph, nodes and edges are représentircles and boxes, respectively. In our examples we
have both unary (hyper-)edges (represented by boxes dedhecone node only) and binary hyperedges (where the
order of nodes is indicated by an arrow, going from the firgh®second node.) The typing morphism is implicitly
represented by labelling each item of the graph with the éthe type graph it is mapped to.

Definition 4 (graph production, direct derivation). Fixing a graphrl of types, &T -typed graph) production i an

injective partial typed graph morphisiyg K\ Ry. Itis calledconsumingf rq is not total. The typed graphs, andRy
are calledeft-hand sideandright-hand sideof the production.

Given a typed grapls and amatch i.e., a total injective morphismg : Lq — G, we say Lq _fey Ry
that there is alirect derivation from G to H using q (based on glittenG =4 H, if there gi \Lh
is a pushout square il-PGraph as on the right. G——H

Roughly speaking, the rewriting step removes frénthe image of the items of the left-hand side which are not
in the domain of 4, namelyg(Ly — don{rg)), adding the items of the right-hand side which are not énithage of,
namelyR, —rq(dom(rg)). The items in the image afor(ry) are “preserved” by the rewriting step (intuitively, thega
accessed in a “read-only” manner). Additionally, wheneveiode is removed, all the edges incident to such a node
are removed as well. For instance, consider produdtidrat the bottom of Fig. 5. Its left-hand side contains a unary
edge and its right-hand side is the empty graph. The apjdicaf fail to a graph is illustrated in Fig. 4, where the
match of the left-hand side is indicated as shaded.

Start graph:

Type graph:

Figure 3: The start graph and type graph of the example graghmarsS.

a an an z %] %]
Figure 4: Dangling edge removal $ro rewriting.

Definition 5 (typed graph grammar). A (T-typed)spo graph grammarg is a tuple(T, Gs, P, 7, A, 1), whereGg is

the (typed) start graphP is a set ofproduction namesr is a function which associates to each nagne P a

productionnr(qg), andA : P — A is a labelling over the set. A graph grammar isonsumingf all the productions in
the range ofr are consuming.

As standard in unfolding approaches, in the paper we willsiaT consuminggraph grammars only, where each
production deletes some item. Hereafter, when omitted, ifassume that the components of a given graph grammar
G are(T,Gg, P, A, 2). Subscripts carry over to the component names.

For a graph grammay we denote byElenm(G) the setNr U Er U P. As a convention, for each production name

g the corresponding productior(q) will be L K\ Ry. Without loss of generality, we will assume that the injeeti
partial morphisntg is a partial inclusion (i.e., tha,(x) = x whenever defined). Moreover we assume that the domain
of rq, which is a subgraph of bothg| and|Ry/, is theintersectionof these two graphs, i.e., thiaty| N [Ry| = dorr(rg),
componentwise. Since in this paper we work only with typetioms, we will usually omit the qualification “typed”,
and, sometimes, we will not indicate explicitly the typingmphisms.

In the sequel we will often refer to the runs of a grammar deffimefollows.

Definition 6 (runs of a grammar). Let G be a graph grammar. ThdRungg) consists of all sequencesgr,...r,
wherer; € P andGg 3 Gy 3 Gy--- 4 G, for someGy, ...,G.

Example 1. As a first example, let us consider the graph gram@awhose start and type graph are in Fig. 3, while
productions are given in Fig. 5. For productions (and theesponding partial morphisms) we adopt the following
graphical representation: edges that are deleted or drasedrawn with solid lines, whereas edges that are preferve
are indicated with dashed lines. Nodes which are presemngsid@icated with numbers, whereas newly created nodes
are not numbered. Productions that should be observabt#itarthat will be made formal in Section 4) are indicated
by bold face letters.

GrammaiS models a network with mobility whose nodes are either sen@i@elledS), receiversR) or interme-
diary nodes|(). Senders may send messages (producia) which can then cross connections (productoos9
and should finally arrive at a receiver (production). The network is variable and of unbounded size as we allow
the creation of new intermediary nodes and connectionsdio sades (productioonode). Note that a newly created
node is initially inactive (labell) and it will become active only later, by means of productan Other rules are
given to connect a sender to an intermediary node and anviatBary node to a receiver (productiorsonmn, and

5

Productions.
.
send message
10 10
R
receive message
01 1
—
777777777777 message crosses connection
10 C =02 10—+ C =02
10 o2 —> iz .
connection stays idle
1 cconny:
> create connection from sender
10 02
'R cconn:
[— create connection to receiver
1 02
(1] (1] cnode
— create inactive intermediary node
> t t t diary nod
1 10 e
act
> activate intermediary node
1 1
fail:
— intermediary node fails
1

Figure 5: Example gramma: message passing over an evolving network.

cconn). Finally, a node can disappear (and in this case, as coneahéefore, also all its connections are removed)
as expressed by productifail. Productiondl simply deletes and generates again a connection. It caridrpiiated
as a transient failure of the connection, which makes it aifavle for a while.

An example of run inS is given by the sequenandcrosscconn, crossrcv, where a message is generated by a
sender, it travels towards a receiver and it is finally rezetivThis is made possible by an extension of the network
which, in the second step, is enriched with a new connect#ographical representation of the run can be found in
Fig. 6.

We next define the class of grammars which we will focus on.

Definition 7 (semi-weighted SPO graph grammars).A grammargG is semi-weightedf (i) the start graphGs is
edge-injective, (i) for eaclgq € P, for anyx,y € Er, - B if tr,(X) = tr,(y) thenx =y, i.e., the right-hand side
graphRy is injective on the “produced edges” and (iii) in the stagmhiGs and, for anyg € P, in Lq and in the graph
Lq U Ry, there are no isolated nodes.

Intuitively, Conditions (i) and (ii) ensure that in a semeighted grammar each edge generated in a computation has a
uniquely determined causal history. Condition (iii) egsly says that only edges carry semantic information,levhi

6

D D=0E0 O=l® ol
S)0
/(3] MR e (5] (R |w [(5) (1) (R)

Figure 6: A run in the example gramma&r

Xf’ Xf

" kT Y y Q) | Z
I U
A B

A+—Xi —— B
fL fr

@ (b)

Figure 7: Equivalence and composition of spans.

nodes are just used as attaching points for edges. At a naneital level, it ensures that the correspondence between
the type graphs of two graph grammars as established by amgamorphism, is determined by the correspondence
on edges. These facts are essential for the validity of Tredr.

We next introduce a category of graph grammars, which wilibed to define products and to characterise the
unfolding construction as a coreflection. The choice ofvasrof the category is quite subtle: other possible notions
of morphisms are conceivable but they do not necessarilyigieathe right notion of product and the coreflection
result. In order to define grammar morphisms we need to intedhe notion of semi-abstract span, which, roughly
speaking, provides a categorical generalisation of thienmaitf multirelation.

Given a categorg, a(concrete) span f A « Bin C is a pair of total graph morphisnfs= (f- : X; — A fR:

Xt — B), whereX; is called thesupport

A semi-abstract spaff] : A « B is an equivalence class of spans obtained by consideringujheort up to
isomorphism, i.e.,f] = {f' : A< B| 3k: X; — Xs..(kisomorphisma f'-ok = f- A fRok = fR)} (see Fig. 7.(a)).

If Cis a category with pullbacks, then semi-abstract spans eaoimposed as follows: given two semi-abstract
spans f1] : A & Band [f;] : B «& C, their composition is the (equivalence class of a) spaonstructed as in
Fig. 7.(b) (i.e.,f- = fLoyandfR = fRo2), where the square (1) is a pullback. This allows one to ctensi category
Span(C) which has the same objects@snd semi-abstract spans@as arrows.

The following definition generalises the notion of image seathrough a multirelation (see, e.g., [13]).

Definition 8 (pullback-retyping relation). Let [fr] : T1 < T, be a semi-abstract span @raph, let G; be aT;-
typed graph, and l&b, be aT,-typed graph. Thefs; andG, arerelated by pullback-retyping (vipfr]) if there exist
total morphisms: |G,| — |G| andy : |G2| — X, such that the square in the following diagram is a pullback:

X
Gal - [Gal
t
t("ll 0y E
T X T
1 f.l': T f-{? 2

In this case we will writeft{x, y}(G1, G2), or simply f+(G1, Gy) if we are not interested in morphismsandy.

Some concrete examples of retypings will be discussed R&énition 10.
We are now ready to introduce grammar morphisms. Excepth®itreatment of the labels, these morphisms
coincide with those in [10], which are, in turn, a generdl@a of Winskel's morphisms for Petri nets (see [14]).

7

R(a)

IRg, | IRg, |

I r r

Gal < Gy . (1) y /
te L K
s : P i (an)

SLJ kv \ |LC|1| . / f |Lq2| TRy,
T, — X, — T, \tLq Z teg, \kL . Z\/

T T X/ \/ x{ 42

T]_ fTL XfT fTR Tz
(@ (b)

Figure 8: Diagrams fogpo grammar morphisms.

The latter ensure the existence of products, which can leepireted as asynchronous compositions, and of some
coproducts, modelling nondeterministic choice [15].

Besides the component specifying the (multi)relation leemthe type graphs, a morphism frgimto G, includes
a (partial) mapping between production names. Furthermthmgd component explicitly relates the (untyped) graphs
underlying corresponding productions of the two grammeassyell as the graphs underlying the start graphs.

Definition 9 (grammar morphism). Let G; (i € {1,2}) be graph grammars such th&t € A;. A morphismf :
G1 — Gois atriple([fr], fp,¢s) where

e [fr]: T1 & Ty is a semi-abstract span @raph, called thetype-span

e fp: P1 — P,U{0}is atotal function, wher@ is a new production name (not), with associated production
0— 0

e (1 is afamily{cs(au) | ou € P1} U {¢§} of morphisms inGraph such thats : |Gs,| — |Gs | and for eachy; € Py,
if fp(au) = 0, thenes(au) is a pair

((5(q0) * Lyl = ILgyls F(c) IRepl — IRg,D-
such that the following conditions are satisfied:

1. Preservation of the start graph.
There exists a morphistsuch thatfr{:$, k}(Gs,, Gs,), i.€., the diagram in Fig. 8.(a) commutes and the square
is a pullback.

2. Preservation of productions.
For eachq; € Py, with go = fp(qy), there exist morphismk- andkR such that the square (1) in Fig. 8.(b)
commutes, andr{c} (1), k¥}(Yq,, Yg,) for Y € {L, R}

3. Preservation of labelling.
For each € Py, fp(ay) # 0 iff A1(q1) € A2 and, in this casels(fp(dy)) = A1(qu).

For technical convenience, the partial mapping on prodaogtames is represented as a total mapping by enriching
the target set with a distinguished elem@ntepresenting “undefinedness”. With respect to the monphiig [10],
note that here for the existence of a morphism fi@pto G, we require that\, € A; and there are some restrictions
on the labelling as expressed by Condition 3 above.

Definition 10 (category of graph grammars). We denote bysG the category where objects are graph grammars
and arrows are grammar morphisms. 88G we denote the full subcategory &G having semi-weighted graph
grammars as objects.

Start graph:

Type graph:

Figure 9: Start graph and type graph for the running examglsgrarM.

Example 2. Let us consider a second graph gramoyé&which will be used as a running example. The start and type
graph are given in Fig. 9, while the productions can be fourfeig. 10.

GrammarM still models an evolving network with message passing, bte b connection may spontaneously get
corrupted (productioerpt), a fact which causes the corruption of any message whicdsesoit (productioeross).
Note that in order to represent corrupted items there areanfditional types in the type grapl€C for corrupted
connections an@M for corrupted messages. It could also be natural to add ennilecross, modelling a corrupted
message crossing a corrupted connection, but we omit tlei§oukeeping the presentation simpler.

The two example grammait$ and M are used to illustrate the notion of grammar morphism. Wendedimor-
phismf : M — S which intuitively mapsM into S by forgetting about the distinction between corrupted aol n
corrupted items. More formally, the type sparfis: Ty, < Ts, WhereXs, = Ty, the left Ieng'- :Tpm — Tristhe
identity and the right IengR : Tym — Ts maps the two connection edgesTigy (i.e., C andCC) to the only connection
edge inTs (i.e., C); the same happens for messages, while any other it@iyyiis mapped to the corresponding item
in Ts (see Fig. 11).

The component on productiorfs : Py — Ps U {0} maps productionsrcv andcrpt in M to rcv andidl in S,
respectively, while productionsross (i € {1,2,3}) in M are all mapped to productiacrossin S. The remaining
productionssnd, rcv, cconn (i € {1,2}), cnode act, fail in M are mapped to the corresponding productions, with the
same name, its. Note that in this case no productionM is mapped td@, which intuitively means that the mapping
is total on productions. All the morphisms in thefamily are isomorphisms.

It can be easily seen that the conditions of Definition 9 camog the preservation of start graph and productions
are satisfied. Since, in this case, the left leg of the type $pas the identity, the pullback-retyping of a typed graph
G will result in a diagram of the kind

Gl 2 — |G|

RS

e Tm——Ts
i.e., it just amounts to a retyping via a post—compositiothvﬁf.

We observe that morphisms can be more sophisticated, as spanrepresent general (multi-)relations. The
pullback retyping construction can, e.g., remove somestgome multiply some others. For instance Fig. 12(a) shows
a spanf] (the left and right leg are implicitly given by the labellingnd Fig. 12(b) the graph which would result
by applying the pullback retyping to the left-hand sidecadss. Note that the connectioBC disappears, while the
messagéM is doubled.

Productions

snd:

send message

S —

7> Icv:
receive message

R

receive corrupted message

Cross:
message Crosses connection

Cross:
message gets corrupted

Cross:
corrupted message crosses

crpt:
connection gets corrupted

cconmy:
create connection from sender

cconm:
create connection to receiver

cnode
create inactive intermediary node

act
activate intermediary node

fail:
%] — intermediary node fails
1

Figure 10: Productions for the running example gramswfar

10

(@) (b)

Figure 12: An example of pullback-retyping.

2.2. Product in the category of grammars

The choice of grammar morphisms and, in particular, the itimmg on the labelling, lead to a categorical product
suited for composing two grammagg andG,: productions with labels i\; N A, are forced to be executed in a
synchronous way, while the others are executed indepdgderhe two components. At a more technical level, the
type and start graph of the product grammar are obtainedikiygtéhe disjoint union of the type and start graphs of
G1 andG,. Similarly, productions in the product grammar which afieen the synchronisation of productions @f
andgG, are constructed by taking the disjoint union of the left- agtit-hand sides of the original productions.

Proposition 1 (product of graph grammars). Let G; and G, be two graph grammars. Their product @G is de-
fined asG = G1 X G» with the following components:

e T=T1wTy;

e Gg = Gg; WGy, With the obvious typing;

P ={(p1, p2) | A1(p1) = A2(p2)} U {(P1. 0) | 41(p1) ¢ A2} U{(0, p2) | A2(p2) ¢ Ad};
7(p1, P2) = m1(p1) W m2(p2), wherern;(0) is the empty rul® — 0;

e A=A1UAy;
e A(p1, P2) = Ai(p), forany i€ {1, 2} such that p+ 0;

where, p and p range over R and P, respectively, and disjoint unions are taken componesmtwitie projections
fi: G — Gi (i € {1,2)) are morphisms; f= (fi1, fip, ("), where

o fit : T1 W Ty & T; has support T, the left leg ﬂ# . Ti —» T1 W T, is the obvious injection, while the right leg
fir 1 T — T is the identity;

o fip: P — P;w{0}is the obvious projection;

e concerning the components@f for the start graphﬁi : Gg — Gg; W Ggp is the obvious inclusiom‘f-l andtﬁf
are defined analogously.

11

If G1, G» are both semi-weighted grammars, thgmas defined above is semi-weighted, and it is the produgt @ind
G» in SGG.

Proor. Let G’ be another graph grammar with morphisfyis ' — G;. We have to show that there exists a unique
morphismf’: G’ — G with fjo f" = f/.

The morphismf’ will be defined as follows:

e Assume thaf;;: T" & T; has suppor¥;. Thenforf{: T’ & T, W T, takeX; ¥ X, as support, where the arrows
X1 WXy — T/ andX; W X, — T1 W T, are obtained as mediating morphisms (see diagram below).

T r\' g i df T2
SN N
X1 Tiw T, X2

N

~ ~
o

The category of graphs with total morphisms is an adhesitegoay with a strict initial object (the empty
graph), which is hence extensive [16]. This implies that tthe squaresX;, Ti, X; W Xp, T1 W T, must be
pullbacks. It follows that the composition of the spdnsand fi; equalsf; ;.. Furthermore the spaff is unique
since, again by extensivity, taking w X, as support is the only way to obtain two pullbacks; then theves
of the span are fixed as mediating morphisms.

o Now definef,: P* — Pw {0} as follows: fA(q') = (f;,(d'), f;(d)) if at least one of the components of the pair
is different fromd and f;(q') = 0 otherwise. The situation is depicted in the diagram below:

P1 P>

Clearly fip o f; = f/, and itis easy to see th# is unique. In fact, lef}: P — Pw {0} another mapping with
fipo f = /s and letq’ € P'. It holds thatt’(q') € A” 2 A = A3 U A,. We distinguish two cases

— A(q) € A1U Az inthis case at least one 6f,(q") and f;,(q') must be diferent fromd. Hence, since the
fip are simply projections, we deduce tHgt(q’) = (f{.(d'), f;,(d)) = fA(d').
= A(q) ¢ A: in this casef/,(q) = 0 for i € {1,2}. Since (,0) is not inP, we deduce that/'(q') = 0 =
fo(a).
Note that for the argument above, the condition about labelse definition of grammar morphisms (Condi-
tion 3 in Definition 9) is essential.
¢ Finally, the components of. can be defined as follows: in the diagram below take the pchlodX; WX, — T’
and|Gg| — T’ in order to obtairS. The arrowgGsj| — S are obtained as mediating morphisms.

Since the squard&gl, IGy|, Xi, T’ are pullbacks, the squarisg|, X;, S, X; W X, are also pullbacks, due to
pullback splitting. Hence, since we are working in an extensategoryS must be the coproduct @b |, |Gs,|

12

and thus it is isomorphic t{5s|. This gives morphisna$, and shows thaG.| can be obtained fronGy| via
pullback-retyping. The arrow}, must be unique since it is the mediating morphism of a copbdu

X5

Analogously one can define morphisd;;s [Lgl = ILgl, L$,: IRyl = |Ry| for productionsy’ € P, g € P where
f2(d') = g. It remains to show that the square on the left below commutesq = f15(q) and consider the

diagram on the right below. It is known that all triangles agqdares—apart from the bottom square—commute

and thatLg| is the coproduct oflq,| and|Lg,|. Since the two coprojectionkg| — |Lg| are jointly epi (also in
the category of partial morphisms), commutativity follofkem a simple diagram-chasing argument.

ILgl —— |Rq|

J |LQ1

|Lq|;|Rq| \\A

Note also that whenevey; and G, are semi-weighted, the@ is semi-weighted. And since every arrow GG
between semi-weighted grammars is also an arro8Gi®, the same argument applies. |

2.3. Occurrence Grammars and Unfolding

A grammarg is safeif (i) for all H such thatGy =* H, H is injective, and (ii) for eacly € P, the left- and
right-hand side graphs; andR, are injective.

In words, in a safe grammar each graphreachable from the start graph is injectively typed, and thve can
identify it with the corresponding subgrapk(|G|) of the type graph. With this identification, a productiom@nly
be applied to the subgraph of the type graph which is the imagthe typing morphism of its left-hand side. Thus,
according to its typing, we can think that a productmnducespreservesr consumegems of the type graph, and
using a net-like language, we speak of pre-set, context asdget of a production, correspondingly. Intuitively the
type graphr plays the role of the set gflacesof a net, whereas the productionsRrcorrespond to theansitions

Definition 11 (pre-set, post-set and context of a production Let G be a graph grammar. For any productopa P
we define itgre-set'q, context_qandpost—set ¢ as the following subsets @&t U Nr:

' =ty (Lol — Idon(rg)l) g =ty (don(rg)l) O = tr,(IRg| — rq(ldom(ry)l)).
Symmetrically, for each itemme T we define’x ={ge P|xeq’},xX* ={qe P|xeg},x={ge P| xe g
Causal dependencies between productions are capturelibasfo

Definition 12 (causality). The causalityrelation of a grammag is the (least) transitive relation over ElemG)
satisfying, for any node or edgee T, and for productions, g € P,

1. if xe *gthenx < q;
13

2. if xe g°* thenqg < x;
3. ifg"ng #0thenqg<(.

As usual< is the reflexive closure of. Moreover, forx € Elem(G) we denote by x| the set of causes ofin P,
namely{g e P| q < x].

As it happens in Petri nets with read arcs, the fact that aymti@h application not only consumes and produces,
but also preserves a part of the state, leads to a form of asymernonflict between productions; for a more thorough
discussion of asymmetric event structures see AppendixaAdl[17].

Definition 13 (asymmetric conflict). Theasymmetric conflict relationf a grammag is the binary relation” over
the set of productions, defined by:

1. ifgn*g #0thenq /'
2. ifgn*y # 0andq# q thenq ' q’;
3. ifg<qthenqg (.

Intuitively, whenevery ,” ¢, g can never follonq’ in a computation. This holds wheppreserves something deleted
by ' (Condition 1), trivially wherg andq’ are in conflict (Condition 2) and also whernc ¢ (Condition 3). Conflicts
are represented by cycles of asymmetric conflictyif” 2 /... /" an /" O1 then the entire sdt;, .. ., gy} will
never appear in the same computation.

An occurrence grammais an acyclic grammar which represents, in a branching tstreicseveral possible com-
putations beginning from its start graph and using eachymtioh at most once. Recall that a relatiRrc X x X is
calledfinitary if for any x € X, the sefly € X | R(y, X)} is finite.

Definition 14 (occurrence grammar). An occurrence grammais a safe gramma® = (T, G, P, 7, A, 4) such that

1. causality< is irreflexive, its reflexive closurg is a partial order, and, for any € P, the set q] is finite and
asymmetric conflicy” is acyclic on[q];

2. any itemxin T is created by at most one productiorAni.e.,|*x| < 1;

3. the start graplss is the seMin(O) of minimal elements ofElenm(0), <) (with the graphical structure inherited
from T and typed by the inclusion);

A finite occurrence grammar geterministidf relation 7+, the transitive closure of”, is irreflexive. We denote by
OGG the full subcategory o6G with occurrence grammars as objects.

Intuitively, by condition 1 the causes of any event are fiaitd free of conflicts (cycles of asymmetric conflict), while
condition 2 ensures that any item is generated at most ongedmputation. By condition 3, the start graph of an
occurrence grammar is determined kyn(0). An occurrence grammar is deterministic when it does notain
conflicts so that all its productions can be executed in theessomputation. Given two occurrence gramn@2¢sind
0,, we say tha0; is asub-grammaiof O, if O; € O,, componentwise, and the inclusion®@f into O, is a grammar
morphism. In the sequel, the productions of an occurrenamgrar will often be called events.

The notion of configuration captures the intuitive idea atédministic) computation in an occurrence grammar.

Definition 15 (configuration). Let O be an occurrence grammar. obnfigurationis a subse€ C P satisfying the
following requirements

1. for anyq € C it holds that{q] € C;
2. /¢, the asymmetric conflict restricted @ is acyclic and finitary.

The set of configurations @ is denoted a€onf(0).
It is shown in [10] that, indeed, configurations faithfullgpresent computations in an occurrence grammar: all the
productions in a configuration can be applied in a derivaéigactly once in any order compatible witfi, and all

and only the derivations i@ can be obtained in this way. Hence the runs of an occurrerssargar are exactly the
linearisations, compatible with the asymmetric confli¢atien, of its configurations, i.e., the following holds:

14

Proposition 2 (configurations as runs).LetO be an occurrence grammar. Then R(@s={qs...0qn | {01, ...,0n} €
Conf(O) A Vi< j. =(q; /7 o)}

Since occurrence grammars are particular semi-weightaehmars, there is an inclusion functbr: OGG —
SGG. As an easy corollary of [10, Theorem 45], this functor haghtradjoint. We remark that this theorem would
not hold if we considere®G instead ofSGG.

Theorem 1 (coreflection). The inclusion functoZ : OGG — SGG has a right adjoint, the so-called unfolding
functor : SGG — OGG.

As a consequence of the above redudltas a right adjoint, preserves all limits and in particulesducts, i.e.,
given two grammarg; andGo, it holds thatl/(G1 x G2) = U(G1) X U(G2).

The result in [10] is obtained through the explicit definitiof the unfoldingZ{/(G). Given a grammag the
unfolding construction produces an occurrence grammaciwiaily describes its behaviour recording all the possible
graph items which are generated and the occurrences of g@fods. The unfolding 0§ is constructed inductively
by starting from a grammar which only includes the start grapG (which is also used as a type graph), and
then extending such grammar, at any step, by applying ptmhscin any possible way to the type graph, without
deleting items but only generating new ones, and recordiagorresponding production instances. The result is an
occurrence grammai(G) and a grammar morphisiin: U(G) — G, called thefolding morphismwhich maps each
item (instance of production or graph item) of the unfoldinghe corresponding item of the original grammar. The
construction is not formally defined here, we refer the re4ol¢10]. In Section 4 we will show an example of an
unfolding.

As an immediate consequence of the fact that the unfoléi(@) completely captures the behaviour of a grammar
G, we have the following result.

Proposition 3 (completeness of the unfolding) For any semi-weighted graph grammg@rit holds that

A"(Rung(@))) = A" (Rungg)).

3. Interleaving Structures

Interleaving structures [18] are a semantic model whichurag the behaviour of a system as the collection of its
possible runs. They are used as a simpler intermediate naddeh helps in stating and proving the correctness of
the diagnosis procedure.

An interleaving structure is essentially a collection aisysequences of events) satisfying suitable closure prop-
erties. Given a seE, we will denote byE® the set of sequences ovErin which each element dE occurs at most
once.

Definition 16 (interleaving structures). A (labelled)interleaving structuras a tupleZ = (E,R, A, 1) whereE is a
set ofeventsA: E — A is a labelling of events anld C E® is the set ofuns satisfying: (i)Ris prefix-closed, (iR
contains the empty rug, and (iii) every evene € E occurs in at least one run.

The components of an interleaving structurewill be denoted byE, R, A, A, possibly with subscripts. The
category of interleaving structures, as defined below, &ptetl from [18] by changing the notion of morphisms
in order to take into account the labels. This is needed taiokd product which expresses a suitable form of
synchronised composition.

Definition 17 (interleaving morphisms). Let Z; with i € {1, 2} be interleaving structures. Anterleaving morphism
from 71 to I, is a partial functiord: E; — E, on events such that

1. Ay C Ay
2. for eache; € Eq, 6(ey) | iff 11(e1) € A, and, in this casely(6(e1)) = A1(e1);
3. for everyr € Ry it holds thatt*(r) € R..

15

Morphismé is called a projection if it is surjective on runs, i.€.,: Ry — R is surjective. The category of interleaving
structures and morphisms is denotkd

Observe that an interleaving morphisim 71, — I, is necessarily injective on the events occurring in each run
e, foranyrumry = e;...e € Ry, fori # j we haved(g) # 6(g;), when both are defined. Otherwigir) could not
be a run inZ, as it would contain two occurrences of the same event.

An occurrence grammar can be easily mapped to an interigatincture, by simply taking all the runs of the
grammar.

Definition 18 (interleaving structures for occurrence granmars). For an occurrence grammaimwe defindlv(0) =
(P,Rung0), A,).

We next characterise the categorical produdhinwhich turns out to be, as iIBG, the desired form of synchro-
nised product.

Proposition 4 (product of interleaving structures). Let 7; and 7, be two interleaving structures. Then the product
objectZ; x I, is the interleaving structurg = (E, R A,) defined as follows. Let

E' = {(e,&)lereE,e e By ier) = 2(e))
U {(en,*) | e € B, A1(e1) € Ao} U {(x,. &) | & € Ep, Aa(e) ¢ A1}

and letr; : E — E; be the obvious partial projections (e.gri(e1, x2) = e and my(x, x2) T for e € E; and
X2 € Ex U {#}). Then R={r € (E')° | }(r) € Ry, 7m5(r) € R}, E={€¢ € E’ | e occurs insome rune R}, A = A; U A
and is defined in the obvious way.

Proor. Let 7’ be any interleaving structure and gt 7’ — 7; be morphisms. Let us defige 7/ — I as follows:

0(e) 1 if 61(€')T and6z(€') T
(61(€),62(¢)) if 62(€)] andba(€) |
oe) = (61(€), %) if 61(€')] anddx(e) T
(+, 62(€)) if 61(€')T and6b(¢) |

Trivially, the diagram, seen in the category of sets andgldttnctions, commutes ardlis uniquely determined.
Hence to conclude we just need to show tht a well-defined interleaving morphism. In fact,

1. Since there are morphisréis. 7’ — I, necessarily\; € A’, fori € {1,2} and thusA = Ay U Ay C A’
2. Foreacte € E/, 4(¢) | iff (€¢/) € A. In more detalil:
0€)l < ()l oro(e)l
— /1/(8() e A or /l’(e/) e Ny
= /1/(9’) e AfUA> = A.
And clearly, when defined) (¢') = A(6(€))
3. For any r’ € R, o6(r) € R. In fact, notice that, due to commutativity,
7 (07(r')) = 6/(r') € R.. Hence, by constructiom; (r’) € R. o

4. Diagnosis and Pruning

In this section we use the tools introduced so far in ordetmélise the diagnosis problem. Then we show
how, given a graph grammar model and an observation for sgghramar, the diagnosis can be obtained by first
taking the product of the model and the observation, conisigéts unfolding and finally pruning such unfolding
in order to remove incomplete explanations. As already roeatl, typically only a subset of the productions in
the system is observable. Hence, for this section, we fix phggrammarg with A as the set of labels, and a
subsetA” € A of observable labelsan event or production is callembservableif it has an observable label. In

16

Figure 13: A graph grammar representing an observatlpgiven in a Petri-net-like notation.

order to keep explanations finite, we will only consider syss$ that satisfy the followingbservability assumption
(compare [2, 19])any infinite run must contain an infinite number of observainteluctions.

In the sequel we will need to consider the runs of a systemiwiéwe a number of observable events coinciding
with the number of events in the observation. For this ainfeewing definition will be useful.

Definition 19 (n-runs of a grammar). Let G be a graph grammar. For a givare N we denote byRun$(G) the set
of all runs for which the number of observable productionsagsn.

The outcome of the diagnosis procedure is an occurrencengaanvhich, intuitively, collects all the behaviours
of the grammayg modelling the system, which are able to “explain” the obaton.

An observation can be a sequence (in the case of a singlevebser a set of sequences (in the case of multiple
distributed observers) of alarms (observable events).e ler consider, more generally, partially ordered sets of
observations, which can be conveniently modelled as détéstic occurrence grammars.

Definition 20 (observation grammar). An observation grammaiA for a given grammag, with observable labels
A, is a (finite) deterministic occurrence grammar labelleeray.

Given a sequence of observed events, we can easily conatrotiservation grammad having that sequence as
observable behaviour. It will have a production for eachnévie the sequence, with the corresponding label. Each
such production consumes a resource generated by the gsewie in the sequence (or an initial resource in the case
of the first production). The same construction applies ttegal partially ordered sets of observations.

Example 3. In the running example gramma¥((see Fig. 9 and Fig. 10), assume that we have the following ob-
servation:snd cnode ccong crev, i.e., we observe, in sequence, the sending of a messagereidton of a new
intermediary node with the corresponding connection, tkaton of a connection to a receiver and the reception of
a corrupted message. As explained above, these four okises/aan be represented by a simple gramifigsee

Fig. 13) with four productions, each of which either consarar initial resource or a resource produced by the pre-
vious production. These resources are modeled as 0-arg éldppelledX, Y, W, Z). The start graph is depicted with
bold lines, and the left- and right-hand sides of the pradastof the occurrence grammar are indicated by using a
Petri-net-like notation: productions are drawn with blaektangles connected to the edges they consume or produce
by dashed lines.

When unfolding the product of a gramm@iwith its observationA, we obtain a gramma#{ = U(G x A) with
a morphismr: U — A, arising as the image through the unfolding functor of thgjgutionGg x A — A (since
the unfolding of an occurrence grammar is the grammar jtsdlbw, as grammar morphisms are simulations [10],
given the morphismr: U — A we know that any configuration itf is mapped to a configuration id. Say that a
configuration in{ is afull explanationof A if it is mapped to the configuration oft including all its productions.
As U can still contain events belonging only to incomplete ewrptaons, the aim obpruningis to remove such events.

Definition 21 (pruning). Letn: U — A be a grammar morphism from an occurrence granth#o an observation
A. Then, thepruningof , denoted byPr(n), is the sub-grammar ¢ obtained by keeping only the productions in

{q € Pq | AC € Conf(U): (g€ C A n(C) = Pa)}

The next technical lemma shows that applying the pruningadjpe to a morphismr: U — A no runs inU
which provide a full explanation aft are lost.

Lemma 1 (interleavings of a pruned grammar). Let 7: U — A be a grammar morphism from an occurrence
grammar to an observatioi with n productions. Then

Runs(Pr(n)) = {r € RungU) | n*(r) € Rund(A)}.
17

Proor. We first show thaRun$§(Pr(x)) C {r € Rung¥) | =*(r) € Run§(A)}. Take any rumr € Run$(Pr(x)). Then
clearlyr € Rung) sincePr(r) is a subgrammar of{. Furthermore, since preserves the observable productions,
7*(r) must contain exactlp observable productions and thus it belongRtm$ (A).

For the other direction take any rune Rung{) such thatr*(r) € Run$(A). Then, againy must contain
exactlyn observable productions. Furthermore take the configur&iconsisting of the productions in Sincer
mapsC to the set of all productions off, none of the productions ofis removed during the pruning phase. Hence
r € Run$(Pr(n)). O

Discussing the ficiency of pruning algorithms is outside the scope of the pdpe sequential observations an
on-the-fly algorithm is discussed in [5].

As described above, the diagnosis is constructed by firgtgake product ofz with the observation (this intu-
itively represents the system constrained by the obsenjatiThis product is then unfolded to get an explicit repre-
sentation of the possible behaviours explaining the olasierv. Finally, a pruning phase removes from the resulting
occurrence grammar the events belonging (only) to incormpd&planations. This is formalised in the definition
below.

Definition 22 (diagnosis grammar). Let G be the grammar modelling the system of interest ancHi&ie an obser-
vation. Take the produg x A, the right projectiorp : G x A — A and consider = U(y) : UG X A) — A.

Then the occurrence gramntar(r) is called thediagnosis grammafor the modelg and the observatior, and
it is denoted byD(G, A).

Since the observability assumption holds, it can be shown tthe diagnosis grammar is finite whenever the
observation is finite. Roughly, the argument is as followss#me that the diagnosis grammar is infinite. Since it
is finitely branching it must contain an infinite computatiavhich, by the observability assumption, would contain
infinitely many observable events. However, this cannohectise since all computations in the diagnosis grammar
contain at most as many observable events as the obsetvation

Example 4. We can compute the product of grammarsand A and unfold it. For the sake of clarity Fig. 14 shows
only a prefix of the unfolding (The full unfolding is presedt@ Section 6.) In order to give a compact representation
of such prefix we again use a Petri-net-like notation. Edbgasdre preserved by a production are indicated by read
arcs, i.e., dashed arcs without arrowhead that connectgmatt a black rectangle.

The considered prefix depicts one possible explanatiore ther message is sent (evahtand crosses the first
connection). Possibly concurrently a new intermediate node and a atiometo this node is created)(The new
node is initially inactive and it becomes active immediatgter). The new connection is crossed by the message
(e) and, in a possibly concurrent step, a new connection togbeiver is created). Such connection is corrupted
(9), leading to the corruption of the messabgdnd its reception by the receive}.(Observablesvents are indicated
by bold face letters.

Several events of the unfolding have been left out due toesparstraints, for instance:

e Events belonging to alternative explanations: the coronif the first connection or the corruption of the newly
created middle connection (or the corruption of any nontgrspbset of these connections). Alternatively it
might have been the case that the new connection was creatadtfe original intermediate node directly to
the receiver.

e Events that are not directly related to the failure, suchhascbrruption of the first or second connection after
the message has crossed.

Furthermore there are events belonging to prefixes of theldinfy that cannot be extended to a full observation.
For instance, the full unfolding would contain an event esponding to an (uncorrupted) message crossing the
rightmost uncorrupted connecti@h However, this is a false trail since, after this, it wouldilmgpossible to complete
the explanation with the reception of a corrupted messagggt, this would require the sending of a new message,
an event which would be visible and inconsistent with theeoletion). These events belonging only to incomplete
explanations are removed from the unfolding in the pruningse.

We remark that—due to the presence of concurrent events—thkling is a much more compact representation
of everything that might have happened in the system thasethef all possible interleavings of events.

18

event| label
snd,
Cross
cnode
act
Cross
cconn
crpt
Cross
crcv

- 0TTKQ -0 Q20T

Figure 14: Running example: prefix of the unfolding of the proid

5. Correctness of the Diagnosis

We now show our main result, stating that the runs of the aiagrgrammar properly capture all those runs of the
system model which explain the observation. This is donexpo&ing the coreflection result (Theorem 1) and by
additionally taking care of the pruning phase (Definition.21

To lighten the notation, hereafter, given an interleavitigcdure I we write 2*(I) for 2*(R;). Recall that, given
f AL — Ay, "1 A7 — A} denotes the (non-strict) extension fofo sequences. Theft? : P(A;) — P(A)) isits
inverse.

A first lemma shows that the labelled runs of a product of asnge grammar®; x O, can be obtained by
suitably combining pairs of compatible runs @f andO,. By “compatible” we mean that they admit a common
extension, obtained by interleaving the run@f with events labelled inX; U A,) — A, and, dually, the run o,
with events labelled inX; U Ap) — As.

Lemma 2. Let 04, O, be two occurrence grammars and let Aq U A, — Aj (i € {1,2}) be the obvious partial
inclusions. Then it holds that

(V01X 02)) = 1 (IV(0))) N £, (A5(IV(O2))).

Proor. LetT; = Ilv(0,), 72 = llv(02) andt = 71 x I, = llv(O7) x IIv(O-). Furthermore let: 7 — 1j,i € {1,2} be
the projections. We first observe that

(1) = ' (Ry) {/l}(r) |re (EI)G> A m(r) e Ry A m(r) e Ry}
D we A |) € 4Ry, fw) € (R}

fr A3 (Ry) N 51 (A5(Re))

(7)) N 51 (5(72)

The equality markedt{ above, which is not obvious, can be shown as follows.

C: Taker € Ry and consider the sequence of lab&l¢r) associated with. Sincer; is defined exactly on the events
whose label is iM\y, it holds thatd; (77 (r)) = f;(25(r)), hencef;(15(r)) € A7(Ry). Similarly one can show that
f(25(1) € A5(Ro).

2. Letw € A* be such thaff;(w) € 2;(Ry) and f;(w) € A5(Rp). Assume thatv = ¢;...c, fi(w) = ¢, ...c, and
fy(w) =cj, ...cj,. Furthermore let; = fi ... fi € Ry be arunwithij(r;) = fy(w) and letr = g, ...gj, € R

19

be a run witht;(r2) = f;(w). Now constructarun = e; ... €, with

(f,g) ifceAinA;
g = (fi, >k) if C € A]_\Az
(+,09) if G eA\AL

It holds thatr}(r) = ry, 75(r) = ro and obviouslyi; (r) = w. Hencew is contained in the left-hand set.

We next show that*(7) = A*(Ilv(O1 x O,)), and thus we conclude. This follows from Lemma 3 in App&ndi2
which guarantees the existence of a total projecsioiiv(0; x O;) — 1. In fact, since’ respects labellings and is
total, whenever it maps two runs Ibf (O; X O,) to one run off, they must be associated with the same label sequence.
Using, additionally, the fact thdtis surjective on runs, the desired equality immediateliofos. O

The next proposition shows that considering the produchefdriginal grammagz and of the observatio,
taking its unfolding and the corresponding labelled runs,obtain exactly the runs ¢f compatible with the obser-
vation.

Proposition 5. Let G be a grammar andA an observation, whera is the set of labels af and A’ C A the set of
labels ofA. Furthermore let f A — A’ be the obvious partial inclusion. Then it holds that:

A (IV(U(G x A))) = 2*(Rungg@)) N 1" (RungA))).

Proor. First, recall that, by Proposition 31*(Rungg)) = A*(IlV(U(G))) and A*(RungA)) = A*(IV(U(A))) =
A*(Ilv(A)). Furthermore due to the fact that unfolding is a coreftec{iTheorem 1), we havel(G x A) = U(G) x
U(A).

Hence we have to show that

X (INV(U@) x (UFA))) = X (INUEG))) N F-HA (IV(UA))).

This is a corollary of Lemma 2 faD; = U(G), O2 = U(A) = A, A1 = A, Ay = N’; furthermoref corresponds td;
and f; is the identity sinceé\’” C A. O

We can finally prove that the described diagnosis proceducemplete, i.e., given an observation of sizehe
runs of the diagnosis grammBXG, A) with n observable events are in 1-1-correspondence with thoseofighthat
provide a full explanation of the observation. As a preliamnresult, on the basis of Proposition 5, one could have
shown that the same holds replacing the diagnosis gramniari{iz x A), i.e., the unpruned unfolding. The result
below additionally shows that no valid explanation is lostidg the pruning phase.

Theorem 2 (correctness of the diagnosis)With the notation of Proposition 5 it holds that:
A (Run$(D(G, A))) = 1*(Rungg)) N (1" (Rund(A))).

That is, the maximal interleavings of the diagnosis gramiisaen as label sequences) are exactly the runs of the
model which explain the full observation.

Proor. By definition
A*(Rund(D(G, A))) = 2*(Rund(Pr(r))), (1)

where, if we letd = U(G x A), thenny: U — A is the (image through the unfolding functor of the) second
projection of the product. By Lemma 1, the set (1) is the sasne a

A*({r € RungU) | #*(r) € Run$(A)}), 2
We will now show that set (2) coincides with
A*(Rung@)) N 11" (Runé(A))). 3)
20

Figure 15: Spurious runs in a diagnosis grammar.

n

Letw = 2*(r) for somer € Rung/) andx*(r) € Run$(A). By Proposition 3w € 2*(RungG)). The fact that
w e f1(1*(Runé(A))) easily follows by observing thait"(rr3(r)) € 4*(Run$(A)) is a subsequence vfwhere
all unobservable labels are missing and these labels, byititafi can be reinserted b/ . This proves the
inclusion (2)c (3).

Y

Letw € 2*(RungG)) n f~1(1*(Run$(A))). Observe that
A*(Rung@)) N 712" (Runé(A)))

c 2*(Rung@)) N f 11" (RungA)))
A (Iv(U)) (Proposition 5)

N

Hence there exists a rune Rung?{) such thatt*(r) = w. By definition of a morphismz;(r) € RungA) and
A (m5(r)) = £5(2%(r)) = £*(w) € 2*(Run$(A)) (by choice ofw). Hence alsar;(r) € Run$(A).

Summing up € {r € Rung¥) | mo(r) € Run$(A)} and sincel*(r) = w we concludew € 1*(r,*(Runs(A))).

O

Observe that, due to the nondeterministic nature of thendisig grammar, events which are kept in the pruning
phase as they are part of some full explanation of the obsenyacan also occur in a filerent configuration. As
a consequence, although all inessential events have beeved, the diagnosis grammar can still contain spurious
configurations which cannot be extended to full explanatioAs an example, consider the graph gram@an
Fig. 15, given in a Petri-net-like notation. Assume we obse¢hree unordered everdash, c. Then the unfolding of
the product basically correspondsgatself. In the pruning phase nothing is removed, since e&ehtds part of a
chain consisting o, b, ¢c which fully explains the observation. However, sincéatient explanations can interfere,
there is a configuration (indicated by the dashed close{ltivae cannot be further extended to an explanation.

6. Experimental Evaluation

In order to give an idea about the practical applicabilityoaf approach, we use some existing tools in order
to compare the size of the unfolding with that of interlegvimased models which could be used for analysing the
running example (message passing over a network).

Graph grammars are unfolded by using an extension of thedigalr [20], whose original purpose is to compute
approximated unfoldings in order to abstract infiniteestgtaph transformation systems. The extension, under the
assumption that rules do not delete nodes, can also be upeaiace an ordinary, non-approximated, unfolding of a
graph grammar. In our running example this assumption istdd only by rulefail, which is however not involved
in the specific observation that we are considering and tange safely omitted. We have not yet implemented the
computation of the product of two graph grammars (this issdmanually) and pruning.

We took the running example grammf (see Figures 9 and 10) and computed the product of this graizumda
the observation grammar for the sequesnd cnode ccong crcv. The unfolding is shown in Figures 16 and 17,
visualized by using GraphViz. For reasons of clarity the output of the tool, i.e. the unifuigl is split into two

Lhttp;/www.graphviz.org
21

Figure 16: Type graph of the unfolding of the product.

components: the underlying type graph and a Petri net wiejglesents the rules, depicting deletion, preservation and
creation of the edges of the type graph.

The unfolding includes 40 edges, 4 nodes and 26 transiteppseffix of this unfolding was already presented in
Figure 14). The unfolding shown here is still unpruned. la pmuned version the transitions labelletbss1_115
andcross1_129 would be removed. They correspond to cases where an untedropessage arrives at the receiver,
thus making the last observatiotr¢v) impossible.

The five transitions labelledrcv represent five distinct situations: either the message &ssep from the sender
to the original intermediate node cirectly to the received the corruption of the message has been caused by the first
connection €rcv_127) or by the second connection{cv_139). Or the message has passed from the sender to the
original intermediate node to a new intermediate node taé¢beiver and its corruption has been caused by the first
(crcv_143), second ¢rcv_141) or third (crcv_147) connection. Note that the last event€¢v_147) corresponds to
eventi in Figure 14.

In order to get an idea of the cost of a diagnosis algorithnedhas interleavings, we can compute the product
of the transition system oM with an automaton representing the observation. The sizkeofesulting transition
system is the same as the size of the state space of the pgrdouhar. We determined the corresponding number of
states (taken up to isomorphisms) by using Grépaetool for state space exploration and model-checking aplyr
transformation systems [21]. The state space consistsoé®fles and it is not straightforward to deduce manually
the diagnosis information from the corresponding traosigystem.

’nttp://groove.cs.utwente.nl/groove-home/

22

T

“v V7 :

crossl cross2 cconn2 (4~ crpt |\ |

\

_93 95] A // 7;07 \ |

H , | |

/ | !

M / | !

92 / i :
/ |

T 1 ‘ 1 | \

\ N * L |
crpt crossl cross3 crossl cross2 cross3 cconn2
121 _115 _119 _103 _117 _105 4 _125

~ , D @
~ -~ / N
~ ~ - / AN
N
cross2 cross3 crpt cross3
131 _133 137 _135
16 5
cross2 crev crev
_145 _141 _143

1

Figure 17: Petri net underlying the unfolding of the product

23

act
_113

Since this example is still fairly small we took the same greanAM and considered a slightly longer observation
sequencesnd cnode cconn2 cnode crevn this case, the unfolding consists of 83 edges, 8 verdind$7 transitions,
whereas the state space contains 1338 states. In generhigiitly concurrent systems, the unfolding tends to be
exponentially smaller than the interleaving model; thmblp in the size will decrease for systems where the degree
of concurrency is limited.

7. Conclusion

In this paper we formalised event-based diagnosis for Bysteith variable topologies, modelled as graph trans-
formation systems. In particular we have shown how to expl@ coreflection result for the unfolding of graph
grammars in order to show the correctness of a diagnosieg@uoe generating partially ordered explanations for a
given observation.

We are confident that the approach presented in the papesugh developed for transformation systems over
hypergraphs, can be generalised to the more abstractgseftadhesive categories. In particular we have developed
a generalization of the unfolding procedure [22] that woitks spo-rewriting in (suitable variations of) adhesive
categories [16]. This would allow one to have a kind of paramiméramework which can be used to instantiate the
results of this paper to more general rewriting theories,, eewriting graphs with scopes, graphs with second-order
edges, and other kind of graph structures (which for ingarcur in the various UML diagrams).

We are also interested in distributed diagnosis where eviesgrver separately computes possible explanations
of local observations that however have to be synchronibedll8] we already considered distributed unfolding of
Petri nets; fodiagnosishowever, the non-trivial interaction of distribution andiping has to be taken into account.
Distribution will require the use of pullbacks of graph mbigms, in addition to products. Pullbacks are needed since
we want to describe system composition via a common interfac

Acknoledgements We are very grateful to the anonymous referees for theiraldé comments on the preliminary
version of the paper.

Appendix A. Auxiliary Material

In this appendix we first briefly recap the functorial evenistiure semantics for graph transformation systems, as
defined in [10] and adapt them to the labelled setting. Theas¢ins is given in terms aisymmetric event structures
(aes’s) [17], a generalization of prime event structures wharedonflict relation is allowed to be non-symmetric. A
functor mapping any occurrence grammar intowenis defined. The event structure semantics of a graph gransmar i
obtained by taking thees associated to the unfolding of the grammar.

Then, using the characterisation of tha’s semantics as a right adjoint, we prove a property of theycbof
interleaving structures which is fundamental for the tiygnrthe paper.

Appendix A.1l. From occurrence grammars to asymmetric estamttures

For technical reasons we first introduce pre-asymmetriotesteuctures. Then asymmetric event structures will
be defined as special pre-asymmetric event structure$ysadis suitable condition of “saturation”.

Definition 23 (asymmetric event structure). A pre-asymmetric event structure (pes) is a tupleA = (E, <,
, A\, 1), whereE is a set okvents<, " are binary relations ok calledcausalityandasymmetric conflictespectively,
anda : P — Ais a labelling over the set of labefs such that:

1. causality< is a partial order ante| = {€ € E | € < ¢} is finite for alle € E;
2. asymmetric conflict” satisfies, for ale, € € E:

@e<e = e/ ¢,

(b) " is acyclic in|e],

where, as usuag < € meane < € ande # €.
An asymmetric event structu(ees) is a preaes which additionally satisfies:

24

3. foranye € € E, if /iscyclicin|e] U |€]thene / & (and alscee 7 €).

Conditions 1 and 2 are easily understandable in the light@ahalogous properties of causality and asymmetric
conflict in occurrence grammars (see Definition 14). As cyolkeasymmetric conflict play the role of conflicts in this
setting, Condition 3 requires that conflicts inan are inherited through causality.

It can be shown easily that any pkes can be “saturated” to produce aes. More precisely, given a prees
A = (E, <, /,A, A, its saturation, denoted by, is theaes (E, <, /7, A, 1), where /7 is defined a® ' € iff
(e /€)or Tiscyclicinle] U |€].

Definition 24 (category of AESS).Let Ay andA; be twoaes’s such thatA; € Ag. An ags-morphism f: Ay — Ay
is a partial functionf : Eg — E; such that,

1. for alley € Eg, f(ep) | iff Ao(€p) € A1 and, in this casel;(f(ep)) = Ao(ep);
and for alley, €, € Eo, assuming thaf(ep) | and f(ef) |,

2. | f(eo)] € f(leol);
3. (@ f(en) /1 f(e)) = e . 0E€,
(b) (fle)) =) A(n2€) = e o€,

We denote bYAES the category having asymmetric event structures as olgedtses-morphisms as arrows.
The notion of configuration fokes'’s is completely analogous to that of occurrence grammars.

Definition 25 (configurations). Let A be anaes. A configurationof A is a set of event€ C E such that

1. for anye € C it holds|e| c C;
2. /¢, the asymmetric conflict restricted @ is acyclic and finitary.

Given any occurrence grammar, the corresponding asynor@teint structure is readily obtained by taking the
production names as events. Causality and asymmetric ciogfdi the relations defined in Definitions 12 and 13.

Definition 26 (AES for an occurrence grammar). Let O = (T,Gs, P, 7, A, 1) be an occurrence grammar. Thies
associated t@, denotedE4(0), is the saturation of the prezs (P, <, 7, A, 2), with < and ~ as in Definitions 12
and 13.

The above construction naturally gives rise to a functoictvis a right adjoint. The following theorem is adapted
from a result of [10] which can straightforwardly be extedde labelled grammar morphisms.

Theorem 3 (coreflection). For any occurrence grammar morphism: 0y — O, let E¢(h)(q) = hp(q) if hp(q) # 0
and&s(h)(q) T, otherwise. The&s : OGG — AES is a well-defined functor, which is a right adjoint.

As a right adjointEs preserves limits, specifically it preserves products.

Appendix A.2. A property of the product of interleaving staes

Lemma 3. Let 01, O, be two occurrence grammars. Consider the product of theledeing structures 1{O;),
llv(O,) and the image through the llv functor of the prod@tx O, in OGG as shown below.
Then the mediating morphis#ris a projection which is total on events.

IV(01) 22— IV(01) X IN(O2) — 2 IV(0>)

5o
v (ro)

V(01 X O2)

v (r2)

25

Prookr. In order to prove thad is a pjrojection, consider any run= e; ... &, in llv(0;1) x llv(O,). We have to prove
that there exists a ruri of llv(O1 x O,) such that*(r’) =r.

By definition of interleaving structure morphisnis= 6; (r) is a run inliv(0;), fori € {1, 2}. Hence, by Proposi-
tion 2, the seC; of events which occur in is a configuratiorC; € Conf(0;) andr; is a linearisation o€; compatible
with the asymmetric conflict relatiop; in O;, fori € {1, 2}

Consider thaies E¢(0;) underlying gramma@; for i € {1, 2}. Note that functoEs is a right adjoint by Theorem 3
and thus it preserves limits and, in particular productsid@&s(01 X O) = E5(01) X Es(O2), i.€.,

Es(m1) Es(m2)
Es(01) = E5(01 X O2) —— E5(07)

is a product diagram iAES.
Define anses corresponding to the run i.e.,

R ={ew...,en}, <r, r. Ar, AR),

where<g is defined byg <g g1 fori € {1,...,n— 1} and<g = (<g)*. Moreover, "z = <g, Ag = A1 U Ay andlg is
the restriction of the labelling iftv(O1) x 1lv(O,).

It is not difficult to see thasiz : R — Es(0;), the restriction ob; to {ey, .. ., e}, is a well-definedies morphism
fori € {1, 2}. Therefore we deduce the existence of a unique mediatinghisins’ : R — Es(O1 x O2) as shown in
the diagram below

Es(m1) Es(m2)
Es(01) +—— E5(01 X O2) —— E5(0-)

e

R

Recalling thataes-morphisms map configurations into configurations (see [€mma 3.6]), we have th&’ =
{7’'(e1),...,m' (&)} is a configuration ir€4(0; x O2) and it is immediate to see thet = 7/*(r) is a linearisation of
C’ compatible with asymmetric conflict. Since for any occuceegrammag, we haveConf(O) = Conf(Es(0)), we
deduce tha€’ € Conf(O; x O,) and

S1R O21R

r'e ||V(01 X 02)

Additionally, by commutativity of the diagram abow@s(ri)*(1") = dij(r) = 6;(r) = ri fori € {1,2} and thus, since
both&s andllv when applied to a grammar morphism leave the production mgpmchanged, fore {1, 2} we have

v ()™ (r') =i
Coming back to the diagram in the statement of the lemma, bynuatativity, fori € {1, 2} we have:
67 (6°(r) = v(m)*(r') =

From this, recalling how the product of interleaving stures is characterised (Proposition 4), we deducestifet) =
r, as desired.

In order to prove thad is total it sufices to observe that, for any evexin llv(O1 x O,) (and hence i1 x 05),
eitherllv(r1(€)) or llv(ro)(e) are defined. This immediately follows by from the fact tHat, Proposition 1, either
n1(e) # 0 or mp(€) # 0. Now, this implies that(e) must be defined, since otherwise eithep § = 711 Or§, 0§ = 7
would not hold. a

References

[1] C. Cassandras, S. Lafortune, Introduction to Discreterie Systems, Kluwer Academic Publishers, 1999.

[2] M. Sampath, R. Sengupta, K. Sinnamohideen, S. Lafortun&ebeketzis, Failure diagnosis using discrete event mpteE Transaction
on Control System and Technology 4 (1996) 105-124.

[3] Y. Wang, T.-S. Yoo, S. Lafortune, Diagnosis of discretem systems using decentralized architectures, DiscratatEdynamic Systems
17 (2007) 233-263.

26

[4] E. Fabre, A. Benveniste, S. Haar, C. Jard, Distributed itnoang of concurrent and asynchronous systems, Journalisdréte Event
Dynamic Systems 15 (2005) 33-84.

[5] A.Benveniste, E. Fabre, S. Haar, C. Jard, Diagnosis yic®onous discrete event systems, a net unfolding apprd&&t Transactions
on Automatic Control 48 (2003) 714-727.

[6] T. Chatain, C. Jard, Models for the supervision of welv®es orchestration with dynamic changes, in: AISAPIREELETE’'05, IEEE,
2005, pp. 446-451.

[7] R.Bruni, H. C. Melgratti, Non-sequential behaviour gfid@mic nets, in: S. Donatelli, P. S. Thiagarajan (Eds.), @&dmngs of ICATPN’06,
volume 4024 oLNCS Springer, 2006, pp. 105-124.

[8] P.Baldan, T. Chatain, S. Haar, BoKig, Unfolding-based diagnosis of systems with an evolvamplogy, in: F. van Breugel, M. Chechik
(Eds.), Proceedings of CONCUR’08, volume 5201.BfCS Springer, 2008, pp. 203-217.

[9] M. Lowe, Algebraic approach to single-pushout graph transfoomaTheoretical Computer Science 109 (1993) 181-224.

[10] P. Baldan, A. Corradini, U. Montanari, L. Ribeiro, Uding semantics of graph transformation, Information and Cadatmn 205 (2007)
733-782.

[11] A. Corradini, U. Montanari, F. Rossi, Graph procesgasydamenta Informaticae 26 (1996) 241-265.

[12] M. Ldwe, M. Kofff, A. Wagner, An Algebraic Framework for the Transformation dfributed Graphs, in: M. Sleep, M. Plasmeijer, M. van
Eekelen (Eds.), Term Graph Rewriting: Theory and Practdtey, 1993, pp. 185-199.

[13] R. Bruni, F. Gadducci, Some algebraic laws for spans thed connections with multirelations), in: W. Kahl, D. Pasy G. Schmidt
(Eds.), Proceedings of RelMiS'01, volume 44EXITCS Also published as Technical Report, Bericht Nr. 2001-G&kuiat fur Informatik,
Universitt der Bundeswehr Nhchen.

[14] G. Winskel, Event Structures, in: W. Brauer, W. Reiskg,Rozenberg (Eds.), Petri Nets: Applications and Relatigps to Other Models of
Concurrency, volume 255 afNCS Springer, 1987, pp. 325-392.

[15] G. Winskel, Petri nets, algebras, morphisms, and conipasiity, Information and Computation 72 (1987) 197-238.

[16] S. Lack, P. Sobodiski, Adhesive and quasiadhesive categories, RAIRO — Etieat Informatics and Applications 39 (2005) 511-545.

[17] P. Baldan, A. Corradini, U. Montanari, Contextual Pagts, asymmetric event structures and processes, Infomreatid Computation 171
(2001) 1-49.

[18] P.Baldan, S. Haar, B. #hig, Distributed unfolding of petri nets, in: W. Aceto, Agdolfsdottir (Eds.), Proceedings of FoSSaCS '06, volume
3921 ofLNCS Springer, 2006, pp. 126-141.

[19] S. Haar, A. Benveniste, E. Fabre, C. Jard, Partial cdagnosability of discrete event systems using Petri naildinfgs, in: Proceedings of
42nd Conf. on Decision and Control, volume 4, IEEE, 2003, 7@83-3753.

[20] B. Konig, V. Kozioura, Aicur 2—a new version of a tool for the analysis of graph transfoionatystems, in: Proceedings of GT-VMT '06
(Workshop on Graph Transformation and Visual Modeling Téghes), volume 211 dENTCS pp. 201-210.

[21] A. Rensink, The GROOVE simulator: A tool for state spaemeration, in: J. L. Pfaltz, M. Nagl, B.d@len (Eds.), Proceedings of
AGTIVE'03, volume 3062 olLNCS Springer, 2004, pp. 479-485.

[22] P.Baldan, A. Corradini, T. Heindel, B.dfig, P. Sobocinski, Unfolding grammars in adhesive categpi: M. Lenisa, A. Kurz, A. Tarlecki
(Eds.), Proceedings of CALCO’09, volume 5728 CS Springer, 2009, pp. 350-366.

27

