
Distributed Unfolding of Petri Nets⋆

Paolo Baldan1, Stefan Haar2, and Barbara König3

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy
2 INRIA Rennes, Distribcom team, France

3 Institut für Formale Methoden der Informatik, Universität Stuttgart, Germany

Abstract. Some recent Petri net-based approaches to fault diagnosis of
distributed systems suggest to factor the problem into local diagnoses
based on the unfoldings of local views of the system, which are then
correlated with diagnoses from neighbouring supervisors. In this paper
we propose a notion of system factorisation expressed in terms of pullback
decomposition. To ensure coherence of the local views and completeness
of the diagnosis, data exchange among the unfolders needs to be specified
with care. We introduce interleaving structures as a format for data
exchange between unfolders and we propose a distributed algorithm for
computing local views of the unfolding for each system component. The
theory of interleaving structures is developed to prove correctness of the
distributed unfolding algorithm.

1 Introduction

Partial order semantics are often instrumental in providing a compact represen-
tation of the behaviour of concurrent systems: modelling concurrency of events
in an explicit way rather than considering all the possible interleavings of such
events helps in tackling the so-called state explosion problem. In recent years
there has been a growing interest in the use of unfolding-based approaches.
Originally introduced in the setting of Petri nets, the unfolding semantics [14]
is a branching partial order semantics which represents in a single structure all
the possible events in computations, and their causal dependencies and conflicts
(branching points). Each branch represents a concurrent execution of the net,
in the form of an acyclic conflict-free net. The unfolding provides an “efficient”
representation of the state space of the system, not only taking advantage of a
partial order representation of concurrency, but also keeping together different
computations in its branching structure until a conflict is reached.

When analysing a complex system it happens frequently that we want to
consider only a small part of such a system: either because the system is inher-
ently distributed and each observer has access only to a local component of it,
or because the system is too big to be analysed or monitored as a whole. In this
paper, we take Petri nets as systems models and their unfolding semantics as

⋆ Partially supported by EC RTN 2-2001-00346 SegraVis, MIUR project PRIN
2005015824 ART, European NoE ARTIST (IST-2001-34820), French RNRT project
SWAN (No. 03 S 481), DFG project SANDS, SFB 627 (NEXUS).

reference semantics, and we view systems as made up of smaller components.
Then we show how the projection of the semantics of the whole system over
each single local component can be computed locally via a distributed unfolding
algorithm, requiring only a minimal interaction among components.

The original motivation of this work is not verification, but distributed di-
agnosis of asynchronous systems. The general principle of diagnosis for discrete
event systems (DES) can be stated as follows: not all transitions of a system
are observable; in particular, faults are invisible and have to be deduced from
the observations. This deduction of behaviour from the observations is the topic
of diagnosis; efforts to force the system into a desired behaviour are studied in
the domain of control. Although it has an important intersection with diagnosis,
control is a clearly distinct problem, not addressed by the present article. Diag-
nosis can be approached via the construction of finite automata, the diagnosers,
detailed in [19]; the input of a diagnosis procedure is the language of observed
sequences and its output is the language of behaviours that explain the obser-
vations. Communication among diagnosers allows for a decentralised diagnosis,
in which different diagnoses are proposed by various local diagnosers and then
merged to filter out incompatible local views (see, e.g., [6, 16, 5]). Some authors
consider timed extensions [17] or use Petri nets as system models [10].

The diagnosis approach in [3, 4, 9], which the present work builds upon, differs
from all of the above in the fact that the asynchronous behaviour is captured by
partial order semantics, thus abstracting away time aspects and interleavings of
concurrent events in order to fight state space explosion. The system behaviour
is given in the form of a Petri net model, where only a subset of transitions
is observable. Then a sequence (or partially ordered scenario) of observations,
called alarm pattern, is explainable by several net computations. These explana-
tions are obtained by unfolding the synchronous product of the model net with
the alarm pattern, and extracting the maximal configurations compatible with
the alarm pattern (see [3]). This approach suffers, for large systems, from the
explosion of the size of the global unfolding. Moreover, the practice in diagnosis
for large networks justifies the use of several supervisors having only a partial
view of the network.

This leads to the idea of distributed diagnosis via unfoldings: each supervi-
sor computes a local diagnosis and an exchange of messages with neighbouring
supervisors allows to eliminate branches that do not appear as local traces of
admissible global configurations. Being able to construct the local views of the
global unfolding (of prohibitive size in general) without computing it is the heart
of the problem. We remark that we are interested in the projections over the
local components of the unfolding of the whole system rather than in the un-
foldings of the components themselves. This will become clearer in the technical
treatment, but intuitively the reason is that the “autonomous” unfolding of each
single component would include “spurious” runs which, although consistent with
the structure of the local component itself, have no counterpart in the behaviour
of the whole system, due to component interactions. In [4, 9] Petri net compo-
nents were fused on places, and the fusion of views was done through products

of event structures obtained by using a projection operation with an exchange
of messages relating transition actions. Another fusion approach using so-called
augmented processes is developed in [7, 8].

At a technical level, we will introduce a decomposition/composition mecha-
nism based on pullbacks which allows to view a given Petri net N3 as built as
the join of two components N1 and N2 (or more) along a common interface net
N0. The categorical approach allows to exploit a compositionality result which
plays a basic role in the design of the distributed unfolding algorithm: the un-
folding construction can be expressed as a right adjoint functor between suitable
categories of nets and thus it preserves pullbacks. Hence the unfolding of a net
N3, arising as the the pullback of N1 and N2 along N0, can be obtained as the
pullback of the unfoldings of the single components.

In order to compute the projections of the full unfolding over the various
net components, we propose a distributed algorithm requiring an exchange of
information among such components. The components communicate through the
interface net, whose unfolding is used to store information about dependencies
on events induced by both components. This information is conceptually stored
in so-called interleaving structures, whose theory provides a solid theoretical
basis for proving the correctness of the distributed unfolding procedure. More
specifically, factorisation results from category theory will be used to show that
the information stored in the interface suffices in order to obtain the desired
result.

The paper is organised as follows. In §2 we lay some general technical ground
for the categorical techniques involved. In §3 we focus on Petri net decomposi-
tion, while in §4 we introduce Petri net unfoldings. In §5 we develop the theory
of interleaving structures, which play a basic role in the distributed unfolding
algorithm presented in §6. Finally, in §7 we draw some conclusions.

2 Notation and Categorical Background

Given a (possibly partial) function f : A 99K B and a ∈ A we will write f(a) ↓
whenever f is defined on a and f(a) ↑, otherwise.

Let A be a set. The powerset of A is denoted by 2A. A multiset of A is
a total function M : A → N. It is called finite if the underlying set {a ∈ A |
M(a) > 0} is finite. A finite multiset is sometimes denoted as a formal sum
M =

⊕
a∈A M(a) ·a. The set of finite multisets of A is denoted by µA. A subset

X ⊆ A will be often treated as the multiset
⊕

a∈X 1 · a.
A (finitary) multirelation f : A ↔ B is a multiset of A×B such that for all a ∈

A the set {b ∈ B | f(a, b) > 0} is finite. Any multirelation f : A ↔ B induces a
function µf : µA → µB defined by µf(

⊕
a∈A na ·a) =

⊕
b∈B(

∑
a∈A na f(a, b))·b.

We say that a multirelation f : A ↔ B is total if for any a ∈ A there exists
b ∈ B such that f(a, b) > 0, injective if for any b ∈ B we have

∑
a∈A f(a, b) ≤ 1,

surjective if for any b ∈ B we have
∑

a∈A f(a, b) ≥ 1.
We will refer to some categorical concepts (see also [1]), and in particular we

will make extensive use of pullbacks and factorisation structures.

Definition 1 (pullback). Let C be a category and f1 : B → D, f2 : C → D be
arrows in C. The pullback of f1 and f2 is an object A (pullback object) and a
pair of arrows π1 : A → B, π2 : A → C such that (i) f1 ◦π1 = f2 ◦π2 and (ii) for
any object A′ with arrows α1 : A′ → B, α2 : A′ → C such that f1 ◦ α1 = f2 ◦ α2

there exists a unique arrow γ : A′ → A such that πi ◦ γ = αi (i ∈ {1, 2}).

A′

γ %%

α2

..

α1

��

A
π1

//

π2

��

B

f1

��

C
f2

// D

For instance, for a fixed a set Λ of labels, consider the category LSet∗ of Λ-
labelled sets and partial functions. Objects are pairs (A, λ), where A is a set and
λ: A → Λ is a total labelling function, while arrows are label-preserving partial
functions. Given two arrows f1: (B, λB) → (D, λD), f2: (C, λC) → (D, λD) the
pullback object is (A, λA) with

A = {(b, c) | b ∈ B, c ∈ C, f1(b) = f2(c)}

∪ {(b, ∗) | b ∈ B, f1(b) ↑} ∪ {(∗, c) | c ∈ C, f2(c) ↑}

∪ {(b, c) | b ∈ B, c ∈ C, f1(b), f2(c) ↑ and λB(b) = λC(c)}

and λA, π1 and π2 defined in the obvious way.

Definition 2 (factorisation structures). Let C be a category and let E, M

be classes of morphisms in C, closed under composition with isomorphisms. The
pair (E, M) is called a factorisation structure for morphisms in C and C is
called (E, M)-structured whenever

– C has (E, M)-factorisations of morphisms, i.e., each morphism f of C has
a factorisation f = m ◦ e with e ∈ E and m ∈ M .

– C has the unique (E, M)-diagonalisation property, i.e., for each commuta-
tive square as shown on the left-hand side below with e ∈ E and m ∈ M

there exists a unique diagonal, i.e., a morphism d such that the diagram on
the right-hand side commutes (i.e., such that d ◦ e = f and m ◦ d = g).

A
e

// //

f
��

B
g

��

C // m
// D

A
e

// //

f
��

B
g

��

d

zz
C // m

// D

The classical example of (E, M)-factorisation in Set is the factorisation of a
function f into a surjective and an injective part. In the following, morphisms
from E are drawn using double-headed arrows of the form A ։ B, whereas
morphisms from M are drawn using arrows of the form A B.

In any (E, M)-structured category (E, M)-factorisations of morphisms are
unique up to isomorphism, the sets E and M are both closed under composition
and all arrows in M are stable under pullback.

δα

β

2

3

γ

4

1

(a) N
′

3

5

3

γ

4

δ

1

6

α

2

β

(b) N3

Fig. 1. Two examples of Petri nets.

3 Composing Petri Nets

In this section we introduce the basics of Petri nets and the corresponding cate-
gory. Then we present a technique for decomposing Petri nets into smaller com-
ponents (or equivalently to compose Petri nets) along a given interface, showing
how the operation can be interpreted, in categorical terms, as a pullback.

We will consider labelled Petri nets, with morphisms as introduced in [20].
In the rest of the paper Λ denotes a fixed label set for all considered Petri nets.

Definition 3 (Petri net). A Petri net is a tuple N = (S, T, λ, •(), ()•, m) where
S is the set of places, T is the set of transitions, λ: T → Λ is a labelling func-
tion, •(), ()•: T → 2S associate to each transition t ∈ T its pre-set and post-set,
respectively, and m ∈ 2S is the initial marking.

A (Petri net) morphism τ = (η, β): N → N ′ is a pair consisting of a par-
tial function η: T 99K T ′ and a finitary multirelation β: S ↔ S′ such that (i)
µβ(m) = m′, and (ii) for any t ∈ T , µβ(•t) = •η(t) and µβ(t•) = η(t)•, where
conventionally •η(t) = η(t)• = ∅ when η(t) ↑. The category of Petri nets and
their morphisms is denoted by PN.

In the sequel we will assume that in any considered Petri net, all transitions
have a non-empty pre-set, a typical property required in unfolding-based ap-
proaches. Moreover we will denote the components of a Petri net N as S, T , λ,
•(), ()• and m. Superscripts will carry over to the component names.

Example: Examples of Petri nets can be found in Fig. 1. Initially marked places
are drawn with thick lines. Both nets consist of a loop involving four transitions,
labelled over the set Λ = {α, β, γ, δ}.

For defining formally the local projections of the full unfolding we need some
special classes of morphisms.

Definition 4 (projection and embedding). A Petri net morphism τ =
(η, β) : N → N ′ is called a projection whenever η and β are surjective. It is
called an embedding if both η and β are total and injective.

It can be shown that PN is (projection,embedding)-structured (pe-structured,
for short). Given a PN morphism τ = (η, β) : N → N ′, let τ(N) denote the sub-
net of N ′ including only transitions in η(T). Then the projection τ : N → τ(N)
and the inclusion of τ(N) into N ′ provide a pe-factorisation of τ .

In the following we define how to restrict a Petri net to a subset S0 of its
places. Specifically, a transition t will appear in the new net only if it is connected
to at least one place in S0.

Definition 5 (restricting a net). Let N be a net and let S0 ⊆ S be a subset of
places. Then the restriction of N to S0, denoted [N]S0

= (S0, T0, λ0,
•(), ()•, m0),

is defined as follows: T0 = {(t, 0) | t ∈ T ∧ (•t ∩ S0 6= ∅ ∨ t• ∩ S0 6= ∅)},
λ0((t, 0)) = λ(t), •(t, 0) = •t ∩ S0, (t, 0)• = t• ∩ S0 and m0 = m ∩ S0.

This induces a morphism τN,S = (η, β): N → [N]S with η(t) = (t, 0), when-
ever (t, 0) ∈ T0, and η(t) ↑ otherwise. Furthermore β(s, s′) = 1, whenever
s = s′ ∈ S0, and β(s, s′) = 0 otherwise.

The next proposition provides a recipe for decomposing Petri nets along some
chosen places, which play the role of interface between the subcomponents.

Proposition 6 (decomposition of Petri nets). Let N3 be a Petri net and
let S3 = S1 ∪ S2. Let S0 = S1 ∩ S2 and construct nets N0, N1, N2 as follows:
N1 = [N3]S1

, N2 = [N3]S2
, N0 = [N1]S0

= [N2]S0
. Say that transitions in

Ti−T0 are local to Ni for i ∈ {1, 2} and assume that transitions local to different
nets have distinct labels. Then the nets Ni with i ∈ {0, 1, 2, 3} together with the
morphisms τN3,S1

, τN3,S2
, τN1,S0

, τN2,S0
form a pullback diagram.

Note that, in order to exploit the results about unfolding, also the component
nets must not contain transitions with empty pre-sets. Henceforth, all decompo-
sitions are supposed to have this property. For safe nets this can be achieved by
introducing extra complement places. Also, decomposition will have to be done
in such a way that local transitions in different components have different labels.

Example: Consider the Petri net N ′
3 in Fig. 1(a). We intend to split the loop along

the places 1 and 3, i.e., we plan to decompose as described in Proposition 6 with
S1 = {1, 2, 3} and S2 = {1, 3, 4}. However, this would result in subcomponents
N0, N1 and N2 including transitions with empty pre-set. In order to avoid this
problem, we can complement the interface places 1, 3 by adding two more places
5, 6, thus obtaining the net N3 in Fig. 1(b). Call place p̄ the complement of place
p if p• = •p̄, p̄• = •p, and p ∈ m ⇔ p̄ 6∈ m. Then 5, 6 are complements for 1, 3.
The new net is equivalent to N ′

3 (in a sense which can be formalised [15]) and
can be safely decomposed using S1 = {1, 2, 3, 5, 6} and S2 = {1, 3, 4, 5, 6}.

We split N3 into two subnets N1, N2 with interface N0 (according to Propo-
sition 6), thus obtaining the pullback in category PN shown in Fig. 2.

4 Unfolding Petri Nets

Recall that given a Petri net N the dependencies between transitions are cap-
tured by two basic relations, causality and conflict. Causality is the least tran-
sitive relation <N over S ∪ T such that if s ∈ •t then s <N t and if s ∈ t• then

α

3

4

δ

5

γ

1

6

β

5

3

γβ

2 4

α δ

1

6

5

3

γβ

α

1

6

δ

β

3

5

γ

δ

1

6

α

2

N0

N3

N2N1

Fig. 2. Decomposing a loop as a pullback of nets.

t <N s. We denote by ≤N the reflexive closure of <N and for any x ∈ S ∪ T ,
⌊x⌋ = {y ∈ S ∪ T : y ≤N x}. Conflict is the least symmetric relation #N over
S ∪ T such that (i) if •t ∩ •t′ 6= ∅ and t 6= t′ then t#N t′ and (ii) if t#N t′ and
t <N t′′ then t′′#N t′.

Occurrence nets are basically acyclic nets where each place is generated by
at most one transition. They are used to unfold Petri nets as described below.

Definition 7 (occurrence net). An occurrence net is a net N satisfying:

1. if t• ∩ t′• 6= ∅ then t = t′;
2. ≤N is a partial order and ⌊t⌋ is finite for any t ∈ T ;
3. the initial marking m is the set of ≤N -minimal places;
4. #N is irreflexive.

With ON we denote the full subcategory of PN having occurrence nets as objects.

A configuration of an occurrence net N , formalising the intuitive idea of
“concurrent run”, is a subset C ⊆ T such that C is left-closed w.r.t. ≤N and
free of conflicts. A set of places X ⊆ S is called concurrent, written conc(X), if
⌊X⌋ is a configuration and ¬(s <N s′) for all s, s′ ∈ X .

We are now ready to define the unfolding of a Petri net. The unfolding con-
struction unwinds a given net N into an occurrence net, starting from the initial

marking, firing transitions in all possible ways and recording the corresponding
occurrences. For the sake of presentation we give an equational definition.

Definition 8 (unfolding). Let N be a Petri net. Its unfolding U(N) and the
folding morphism τN = (η, β) : U(N) → N are the occurrence net and net
morphism determined by the following recursive equations, where the components
of the unfolding are primed:

m′ = {〈∅, s〉 | s ∈ m}

S′ = m′ ∪ {〈{t′}, s〉 | t′ = 〈X, t〉 ∈ T ′ ∧ s ∈ t•}

T ′ = {〈X, t〉 | X ⊆ S′ ∧ conc(X) ∧ t ∈ T ∧ µβ(X) = •t}

For t′ = 〈X, t〉 ∈ T ′ : •t′ = X and t′• = {〈{t′}, s〉 | s ∈ t•}

η(t′) = t iff t′ = 〈X, t〉

β(s′, s) = 1 iff s′ = 〈x, s〉 (x ∈ 2T ′

)

Observe that items in the unfolding are enriched with their causal histories.
Place s′ = 〈x, s〉 records its generator x (x is empty when the place is in the
initial state, otherwise x is a singleton) and the place s in the original net;
transition t′ = 〈X, t〉 represents a firing of t that consumes the resources in X .

Proposition 9 (right adjoint [20, 13]). The construction U extends to a
functor U : PN → ON, right adjoint to the inclusion of ON into PN.

Right adjoints preserve limits (see [12, 1]) and hence also pullbacks, which are
special limits. As a consequence the unfolding of a pullback in PN is the pullback
(in ON) of the unfoldings of the component nets. More precisely, given a pullback
τ ′
i : N3 → Ni, τi: Ni → N0 (i ∈ {1, 2}) in PN, we have that U(τ ′

i):U(N3) →
U(Ni), U(τi):U(Ni) → U(N0) (i ∈ {1, 2}) is a pullback in ON. This result will
play a central role in the rest of this paper.

Example: Unfolding the nets N0, N1, N2 and N3 of Fig. 2 we obtain the occur-
rence nets O0, O1, O2 and O3 in Fig. 3 (ignore the shaded places and transitions
for the moment). Transitions in the occurrence nets are named by using their
label, with an additional index. The morphisms to the original nets are the obvi-
ous ones suggested by the labelling. By the considerations above, the occurrence
net O3 arising as unfolding of N3 is the pullback of O1 and O2 along O0.

The aim of this paper is to compute—in a distributed way—the projection
of U(N3) to U(Ni), i.e., the local view of component Ni, when taking into ac-
count the behaviour of the other component. The intuitive idea of local view is
formalised by using factorisations.

It can be shown that, taking projections and embeddings as in Definition 4,
the category ON is pe-structured. The only delicate point is to show that given
an occurrence net morphism τ : O1 → O2, the net τ(O1) as defined in Section 3
is a well-defined occurrence net, but this follows from the fact that occurrence
net morphisms reflect causal chains (see [20], Lemma 3.3.6).

...

...

... ...

5

O2 = U(N2)O1 = U(N1)

O3 = U(N3)

O0 = U(N0)

3

51

1 1

3

β1

α1 γ1

6 4 5

δ1 β2

1

α2 γ2

6 4 5

δ2δ′
1

... ...

...

1 5

α1

6 2

β1

3

γ1

4 5

δ1

1

α2

6 2

β2

3

γ2

4 5

δ2

1

1 5

α1 β1

6 3

δ1 γ1

1

α2 β2

6 3

1 5

α1

6 2

δ1 β1

1 3

α2 γ1

6 2 5

δ2 β′
1

β2

1 3 3

γ′
1

5
...

... ...

Fig. 3. Composition of unfoldings as pullback of occurrence nets.

Definition 10 (projection of occurrence nets). Let τ = (η, β): O1 → O2 be
an ON morphism, and let τp: O1 → O1

2, τe: O1
2 → O2 be the pe-factorisation of

τ . Then the occurrence net O1
2 is called the projection of O1 onto O2.

Example: Consider the unfoldings of our running example in Fig. 3. The shaded
places and transitions in O0, O1 and O2 identify the projections O3

0, O3
1 , O3

2 .
Transitions in O1 and O2 which disappear in the projection intuitively represent
events that are infeasible if the net components interact. For instance, consider
transition β′

1 in O1. From the point of view of N1, transition δ1 is a cause for
β′

1. However, through the interface, transition β′
1 in N1 corresponds to β1 in N2,

and in this latter net β1 is a cause for δ1. Hence β′
1 turns out to be not firable.

5 Interleaving Structures and Their Properties

In order to be able to compute the local projection of the unfolding, intuitively,
each net component needs to know the behavioural constraints on the events
of the interface net imposed by the other component. Unfortunately, the idea
of simply representing dependencies between events, i.e., causality and conflict,
with prime event structures, and projecting to the interface the additional de-
pendencies derived in each net component does not work. Consider, for instance,
the occurrence nets in Fig. 4, where morphisms ϕi map any transition in Ni to
the only transition in the interface net with the same label. Since the two γ-
labelled transitions in N1 are fused in N0, the projection of causalities in N1 to
N0 would result in an or-causality between {t0, t1} and t2, a phenomenon that
is not expressible in a prime event structure. Still, from N2 we obtain the infor-
mation that t2 must be fired before t1. By combining this knowledge we discover
that t0 < t1 < t2 is the only possible order in which the transitions of N0 can
be executed. It can be shown that similar problems arise when considering more
general partial order models including Winskel’s general event structures [20].

The search for structures suitable to express possible orderings of events
and forming a category with nice factorisation properties leads us to so-called
interleaving structures. As their name suggests, these structures do not rely on
partial orders, but, as discussed in [2], for practical purposes an efficient partial
order representation based on occurrence nets can be devised.

Interleavings. For a set A, denote by A∗ the set of finite sequences of elements
of A and by A⊙ the subset of sequences in A∗ in which each element occurs at
most once. A (partial) function f : A 99K B induces a function f : A∗ → B∗ (still
denoted by f), where for r ∈ A∗ its image f(r) is defined pointwise, removing
from the sequence the elements on which f is undefined.

Definition 11 (interleaving structures). An interleaving structure is a tuple
I = (E, R, λ) where E is a set of events, λ: E → Λ is a labelling of events and
R ⊆ E⊙ is the set of runs, satisfying: (i) R is prefix-closed, (ii) R contains the
empty run ε, and (iii) every event e ∈ E occurs in at least one run.

α

γ

β

N2

t0

t2

t1

ϕ2
��

α

γ γ

β

t0

t′
2

t′′
2

t1

N1

ϕ1
//

γ

βα

N0

t0

t2

t1

Fig. 4. Projecting dependency relations over the interface.

The components of an interleaving structure I will be denoted by EI , RI ,
λI , whereas the components of Ii will also be denoted by Ei, Ri, λi.

Definition 12 (interleaving morphisms). Let Ii = (Ei, Ri, λi) with i ∈
{1, 2} be interleaving structures. An interleaving morphism from I1 to I2 is
a partial function θ: E1 99K E2 on events such that (i) λ2(θ(e)) = λ1(e) when-
ever θ(e) ↓, and (ii) for every r ∈ R1 it holds that θ(r) ∈ R2. We denote the
category of interleaving structures and interleaving morphisms by Ilv.

By Condition (2) above, θ must be injective on the events occurring in any
single run. Pullbacks can be constructed in a quite straightforward way in Ilv.

Proposition 13 (pullbacks in Ilv). Let θi: Ii → I0, i ∈ {1, 2} be two inter-
leaving morphisms. Their pullback in Ilv, denoted by πi: I3 → Ii, i ∈ {1, 2} can
be constructed as follows:

– Define E′
3 as the pullback in the category of labelled sets and partial functions,

and let π′
i: E3 → Ei be the standard partial projections.

– Define R3 = {r ∈ (E′
3)

⊙ | π1(r) ∈ R1 ∧ π2(r) ∈ R2}.
– Let E3 ⊆ E′

3 be the subset of events in E′
3 that occur in at least one run in

R3. Furthermore let πi = π′
i|E3

: E3 → Ei be the projections restricted to E3.
– Finally set λ3((e1, e2)) = λ1(e1) = λ2(e2), λ3((e1, ∗)) = λ1(e1) and λ3((∗, e2))

= λ2(e2) for all events in E3.

Then I3 = (E3, R3, λ3) is the pullback object.

Factorisation Structures. We next show how to obtain a factorisation struc-
ture for Ilv. This is needed in order to project information about possible inter-
leavings of events from each component down to the interface, where it can be
read by the other component.

Definition 14 (projection, embedding). An interleaving morphism θ: I1 →
I2 is called projection if the induced function on runs θ: R1 → R2 is surjective.
Morphism θ is called embedding if the mapping on events is a total injection.

Observe that by definition any projection θ is surjective on the set of events.
Given any morphism θ: I1 → I2 in Ilv, a projection-embedding factorisation

I1
θp

→ I1
2

θe

→ I2 can be obtained by taking as the runs of I1
2 all runs in I2 having

a preimage under θ, and defining the set of events of I1
2 and θp, θe appropriately.

The interleaving structure I1
2 is also called projection of I1 to I2 via θ.

Proposition 15 (Ilv (E, M)-structured). The category Ilv is (E, M)-struc-
tured where E is the set of projections and M is the set of embeddings.

It can be shown that, not only the embeddings, but also the projections are
stable under pullbacks in Ilv. Note that an analogous proposition does not hold
in ON. This is one of the reasons for resorting to interleaving structures.

Projections of Interleaving Structures and Occurrence Nets. Every
occurrence net O can be associated with an interleaving structure Ilv(O) whose
set of events coincides with the set of transitions of the net.

Definition 16. Let O = (S, T, λ, •(), ()•, m) be an occurrence net. Its interleav-
ing structure is Ilv(O) = (T, R, λ), where R consists of all runs r ∈ T⊙ such
that for every prefix r′ of r the events occurring in r′ form a configuration of O.

In the following an element r ∈ RIlv(O) will be called a run of O.
The mapping Ilv can be extended to a functor Ilv : ON → Ilv. It can be seen

that Ilv does not preserve pullbacks, but still a useful relation can be established
between pullbacks in ON and in Ilv.

Lemma 17. Consider a pullback diagram in ON as shown in the left-hand side
below and take its image through the Ilv functor, thus obtaining the outer square
in the right-hand diagram below. Furthermore let I ′

3 be the pullback in Ilv of θ1

and θ2. Then the mediating morphism δ: Ilv(O3) → I ′
3 is a projection.

O3
χ1

//

χ2

��

O1

ξ1

��

O2
ξ2

// O0

Ilv(O3)
δ1

//

δ2

��

δ '' ''

I1

θ1

��

I ′
3π2

vvnnnnnnnn

π1
99rrrrrr

I2
θ2

// I0

Summing up, we obtain a procedure for determining the projection of a
pullback object in ON without actually constructing the pullback.

Proposition 18. Let τi: Oi → O0, i ∈ {1, 2} be two occurrence net morphisms
and let ξi: O3 → Oi, i ∈ {1, 2} be their pullback. Then the projection O3

1 and the
morphism O3

1 → O1 can be determined (without computing O3) as follows:

– Determine the interleaving structures I0, I1, I2 corresponding to O0, O1, O2,
i.e., Ii = Ilv (Oi), including their morphisms θi = Ilv (τi): I0 → Ii, i ∈ {1, 2}.

– Compute the projection-embedding factorisation I2
θ

p

2→ I2
0

θe
2→ I0 of θ2.

– Take the pullback of θ1 and θe
2 and obtain the morphism δe

1: I
3
1 → I1.

– Now take the subnet of O1 that contains the transitions in the image of δe
1.

This gives the projection O3
1 of O3 to O1 with morphism ξe

1 : O3
1 → O1.

Ilv (O3) //

����

I2

θ
p

2����

θ2

{{

I3
1

//
��

δe
1

��

I2
0
��
θe
2

��

I1
θ1

// I0

PB

O3
//

ξ
p

1 ����

O2

τ2

��

O3
1
��

ξe
1

��

O1 τ1

// O0

6 An Algorithm for Distributed Unfolding

We can now present a distributed unfolding algorithm based on interleaving
structures. The algorithm takes as input a pair of net morphisms τi: Ni → N0,
i ∈ {1, 2} obtained by decomposing a Petri net N3 as in Proposition 6. Then it
builds, in a stepwise fashion, the remaining morphisms of the commuting diagram
in Fig. 5, where O

j
i is the projection of U(Nj) over U(Ni). When ξi = (ηi, βi),

we will sometimes write ξi(t) instead of ηi(t).

Algorithm 19 (distributed unfolding) Denote intermediate states of the oc-
currence nets and morphisms by Ō0, Ō1, Ō2, ξ̄i, δ̄j . Start with occurrence nets
corresponding to the initial places of N0, N1, N2 and the appropriate corre-
sponding morphisms. At any step transform the morphisms ξ̄i, δ̄i as follows: let
j ∈ {1, 2}

O
3

2

δ2

��

ξ2

%% %%JJJJJJ

O
3

1

ξ1
// //

δ1

��

O
3

0

δ0

��

N2
τ2

&&LLLLLL

N1

τ1
// N0

Fig. 5. Nets and morphisms involved in Algorithm 19.

(1) Look for a concurrent subset of places X in Ōj such that δ̄j(X) is the pre-set
of a transition t in Nj and furthermore4

(*) there exists a run r of Ōj that contains all causes of X and no
consequences of X with ξ̄j(r) ∈ ξ̄3−j(RIlv(Ō3−j)).

(2) Add t′ = 〈X, t〉 with postset {〈{t′}, s〉 | s ∈ t•} to Ōj ;
Update δ̄j by adding t′ 7→ t and 〈{t′}, s〉 7→ s.

(3) If τj(t) = t0 is defined,
add a new transition t′0 = 〈ξ̄j(X), t0〉 with post-set {〈{t′0}, s0〉 | s0 ∈ t0

•}
to Ō0, unless it is already present;

Update δ̄0 by adding t′0 7→ t0 and 〈{t′0}, s0〉 7→ s0;
Update ξ̄j by adding t′ 7→ t′0 and 〈{t′}, s〉 7→ 〈{t′0}, τj(s)〉.

Assuming that there are two unfolders and a third process which manages
the interface information (i.e., which records the projections of the runs of both
components) then the checking of Condition (*) and step (3) are performed by
unfolder j together with the interface manager, whereas the remaining steps can
be performed by unfolder j on its own. Hence communication between unfolders 1
and 2 is restricted to communication via the interface manager.

A transition t in the occurrence net Ō0 is called valid if it appears in one of
the runs of R = ξ̄1(RIlv(Ō1))∩ ξ̄2(RIlv(Ō2)). A transition t′ of Ōj for j ∈ {1, 2} is

valid if ξ̄j(t
′) ↑ or there is a run rt′ in Ōj such that ξ̄j(rt

′) ∈ R. Note that the
algorithm will never generate a transition having a non-valid cause. Furthermore
transitions of Ō0 might at some point not be valid but become valid at a later
stage when corresponding pre-images have been generated by both unfolders.

Example: The above algorithm, applied to our running example, produces the
shaded subparts of the nets in Fig. 3. For instance transition β′

1 will never be
added to Ō1. This transition may follow the run α1δ1α2, but there is no run r

in O2 for which we have ξ2(r) = α1δ1α2 = ξ1(α1δ1α2).

In order to ensure that every enabled transition will eventually be chosen, the
algorithm unfolds breadth-first: the sets X computed in step (1) of one round
have to be worked out completely before those from the next round.

Proposition 20 (correctness of distributed unfolding). Let Ō0, Ō1 and
Ō2 denote the (infinite) unions of the sequences of nets produced by the algorithm
above. By restricting Ō0, Ō1, Ō2 to the valid transitions (and their pre- and post-
sets plus the initial places), one obtains exactly the occurrence nets O3

0, O3
1, O3

2,
where O

j
i is the projection of U(Nj) over U(Ni).

7 Conclusion

We have presented a distributed algorithm for Petri net unfoldings based on pull-
back decompositions, whose use allows to factor the global unfolding into local

4 Condition (*) basically states that transition t can be fired after a run r of Oj and
this run r is consistent with the behaviour of the other component. That is, there is
a way to synchronise r and some run of O3−j .

views. In fact, computation of the—potentially large—global unfolding of a dis-
tributed system is avoided; local supervisors develop their local views, guided by
message exchange with their peers through an interface net. As a data structure
for this communication, event structures would appear as a natural choice, but
for all considered branches of event structures (e.g., prime, bundle, stable, general
event structures) important properties concerning factorisations and projections
were lacking. This difficulty has been overcome by introducing the category of
interleaving structures, which has been shown to enjoy the needed properties.
The investigation of partially ordered models and related categories for the corre-
lation of local views is a theme for future investigation. Some results concerning
partial order representations for interleaving structures can be found in [2].

We gave a distributed unfolding algorithm in the case of two peers interact-
ing through an interface. This calls for a generalisation to an arbitrary number
of peers and unfolders. If all components share the same interface, this gen-
eralisation is straightforward: we only have to replace pullbacks by so-called
wide pullbacks of diagrams with several arrows having a common target object.
The case where, for instance, the system consists of three components, and the
interface between components 1 and 2 is different from the interface between
components 1 and 3 is not straightforward and represents a matter of future
investigation.

The task we addressed is closely related to that of [4, 9], so the differences de-
serve to be pointed out. A first one resides in the notion of system factorisation:
[4, 9] use a composition operation between Petri nets based on place fusion, so
transition occurrences have to be communicated between components and a so-
phisticated label coding is used to determine the local effect of a transition. Our
approach essentially relies on a composition operation along an explicit interface,
formalised as a pullback in a suitable category of nets; in the pullback decompo-
sition, transitions acting on shared places are necessarily shared themselves. This
contributed to making the algorithm simpler and easier to understand. Moreover,
moving from the (computationally hard) products of event structures used in [4,
9] to the pullback of interleaving structures (possibly computed through their
partial order representation) can lead to a gain in efficiency for the algorithm.
More generally, the fact that our approach is developed in a categorical setting
suggests a way for adapting it to different computational models, e.g., variations
of Petri nets or more expressive models, like graph transformation systems [18].
This will only require to verify that the needed properties are satisfied by the
category of models at hand.

Finally, distributed unfolding is orthogonal to the parallelisation of Petri net
unfoldings in [11]: that work parallelises the computation of the global unfolding
to gain efficiency, while we strive to avoid that computation altogether.

Acknowledgements. We are grateful to Andrea Corradini and Eric Fabre for
fruitful discussions on preliminary versions of this work.

References

1. J. Adamek, H. Herrlich, and G.E. Strecker. Abstract and Concrete Categories -
The Joy of Cats. Wiley, 1990.

2. P. Baldan, S. Haar, and B. König. Distributed unfolding of petri nets. Technical
Report CS-2006-1, Department of Computer Science, University Ca’ Foscari of
Venice, 2006.

3. A. Benveniste, E. Fabre, Claude Jard, and S. Haar. Diagnosis of asynchronous
discrete event systems, a net unfolding approach. IEEE Trans. on Automatic
Control, 48(5):714–727, 2003.

4. A. Benveniste, S. Haar, E. Fabre, and C. Jard. Distributed monitoring of concur-
rent and asynchronous systems. In Proc. of CONCUR’03, volume 2761 of LNCS,
pages 1–26. Springer, 2003.

5. R. Boel and J. van Schuppen. Decentralized failure diagnosis for discrete event
systems with costly communication between diagnosers. In Proc. 6th Int. Workshop
on Discrete event Systems (WODES), pages 175–181, 2002.

6. C. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer
Academic, 1999.

7. E. Fabre. Factorization of unfoldings for distributed tile systems, part 1: Reduced
interaction case. Technical Report 4829, INRIA, May 2003.

8. E. Fabre. Factorization of unfoldings for distributed tile systems, part 2: General
case. Technical Report 5186, INRIA, May 2004.

9. E. Fabre, A. Benveniste, S. Haar, and C. Jard. Distributed monitoring of con-
current and asynchronous systems. Discrete Event Dynamic Systems: theory and
application, 15(1):33–84, 2005.

10. S. Genc and S. Lafortune. Distributed Diagnosis of discrete-event systems using
Petri net unfoldings. In W.M.P. van der Aalst and E. Best, editors, Proc. of
ICATPN 2003, volume 2679 of LNCS, pages 316–336. Springer, 2003.

11. K. Heljanko, V. Khomenko, and M. Koutny. Parallelisation of the petri net un-
folding algorithm. In Proc. of TACAS’02, volume 2280 of LNCS, pages 371–385.
Springer, 2002.

12. S. Mac Lane. Categories for the working mathematician. Springer, 1971.
13. J. Meseguer, U. Montanari, and V. Sassone. Process versus unfolding semantics

for Place/Transition Petri nets. Theoret. Comp. Sci., 153(1-2):171–210, 1996.
14. M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains,

Part 1. Theoret. Comp. Sci., 13:85–108, 1981.
15. W. Reisig. Petri Nets. An Introduction. Number 4 in EATCS Monographs on

Theoretical Computer Science. Springer Verlag, 1982.
16. S. L. Ricker and J. van Schuppen. Decentralized failure diagnosis with asyn-

chronous communication between diagnosers,. In Proc. of the European Control
Conference, 2001.

17. S.L. Ricker and K. Rudie. Distributed knowledge for communication in decen-
tralized discrete-event systems. In Proc. of the IEEE Conference on Decision and
Control (CDC), 2001.

18. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, Vol.1: Foundations, volume 1. World Scientific, 1997.

19. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis.
Diagnosability of discrete-event systems. IEEE Trans. on Automatic Control,
40(9):1555–1575, 1995.

20. G. Winskel. Event structures. In Petri Nets: Applications and Relationships to
Other Models of Concurrency, volume 255 of LNCS, pages 325–392. Springer, 1987.

